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A CASE STUDY
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European University Institute
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Alexandre Mathis 
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Paris

Abstract

Through the encompassing principle, univariate ARIMA analysis could 
provide an important tool for diagnosis of VAR models: The univariate ARIMA 
models implied by the VAR should explain the results from univariate analysis. 
This comparison is seldom performed, possibly due to the paradox that, while 
the implied ARIMA models typically contain a large number of parameters, 
univariate analysis yields highly parsimonious models.

Using a VAR application to six French macroeconomic variables, it is 
seen how the encompassing check is straightforward to perform, and 
surprisingly accurate. The VAR model explains univariate analysis, and the 
gain from multivariate modelling can be properly attributed to relationships 
among the variables. Finally, the univariate and VAR models are used to 
measure the persistence (or long-term effect) of shocks on the macro variables 
considered. Again, inferences based on univariate models are encompassed by 
the VAR, although, on occasion, inference based on univariate analysis can be 
misleading.

Please address correspondence to
Professor A. Maravall, Department of Economics, European University Institute, Badia 
Fiesolana, 1-50016 San Domenico di Fiesole (FI), Italy. (FAX no.: +39-55-50.92.202)
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1 Introduction

After the crisis of traditional structural econometric models, a particular 
multivariate time series specification, the Vector Autoregression or VAR  
model, has become a standard tool used in testing macroeconomic hypotheses. 
Zellner and Palm (1974. 1975) showed that the reduced form of a dynamic 
structural econometric model has a multivariate time series model expression, 
and that this relationship could be exploited empirically as a diagnostic tool in 
assessing the appropriateness of a structural model. As Hendry and Mizon 
(1990) state, a well specified structural model should encompass the results 
obtained with a VAR model; similar analyses are also found in Monfort and 
Rabemananjara (1990), Clements and Mizon (1991), and Palm (1986).

It is also well known that a multivariate time series model implies a set 
of univariate models for each of the series. Thus, as argued by Palm (1986), 
univariate results can, in turn, provide a benchmark for multivariate models, 
and should be explained by them. When done, the comparison usually takes the 
form of comparing the forecasting performances of the multivariate model 
versus the set o f univariate models, identified with Box-Jenkins (1970) 
techniques [see Palm (1983)]. More generally, however, since the multivariate 
model implies a set of univariate models, these should be derived from the 
fitted multivariate one, and then compared with the models obtained through 
univariate analysis. If the two sets of univariate models are clearly different, 
then there is reason to suspect specification error in some of the models. Given 
that, in general, direct identification of the univariate model is simpler than 
identification of the multivariate one, lack of agreement between the two sets 
of univariate models may well indicate misspecification of the multivariate 
model and invalidate, as a consequence, its use in testing economic hypotheses.

Therefore, the use of univariate models as a diagnostic tool should 
include the comparison between the univariate models derived from the 
multivariate one and those obtained with univariate analysis (we shall refer to 
them as "implied" and "estimated" univariate models). This comparison, 
however, is seldom done. Univariate analysis is used (often wrongly) in 
identification of multivariate models [see, for example, Jenkins (1979), and 
Maravall (1981)]; it is hardly ever used (as it rightly should) in the diagnostics 
stage. Perhaps this is due to what Rose (1986) has termed "the autoregressivity 
paradox", which can be described as follows:
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It is a well-known fact that the immense majority of ARIMA models fitted 
to economic series are parsimonious, including few parameters. Yet even 
relatively small multivariate models imply univariate models with a very large 
number of parameters. Therefore, if the world is multivariate (as it is), ARIMA 
models should be highly unparsimonious, and hence of little practical use. Yet 
we know that this is not the case. How can the two facts be reconciled? Rose 
(1986, 1987) suggests an explanation: macroeconomic variables are basically 
contemporaneously correlated and there are few dynamic relationships among 
them. The explanation is a bit drastic, and it seems sensible to seek for some 
alternative one. As pointed out by Wallis (1977), two possibilities come to 
mind: First, it may happen that the autoregressive (AR) and moving average 
(M A ) polynomials of the implied ARIMA model have roots in common. 
Cancelling them out, the order of the model would be reduced. Second, some 
of those two polynomials may contain a large number of small coefficients, 
that would be undetectable for the sample size used. The first possibility will 
be denoted the "root effect", and the second, the "coefficient effect".

Although both effects are certainly possible, the question remains of 
whether they can be measured with enough accuracy in actual applications. For 
example, the autoregressive coefficient estimates in VAR models are, on 
occasion, unstable, and the roots of the polynomials are sensitive to small 
variations in those coefficients. That factor might have an effect on the 
detection of common roots. Furthermore, it is an empirical fact that often the 
factorization of the determinant of the AR matrix in VAR models yields roots 
with relatively large modulus. This might affect the presence of small 
coefficients in the implied univariate representation.

Yet the issue of whether the root and coefficient effect can be actually 
detected, so as to simplify an ARMA model with perhaps 40 or 50 parameters to 
an ARMA model with (at most) 2 or 3 parameters, is ultimately an empirical 
issue. Therefore, we shall look at an example consisting of a standard VAR 
model, for 6 quarterly macroeconomic variables. We shall see whether, in 
practice, despite the Autoregressivity Paradox, univariate analysis (a relatively 
familiar tool) can be of practical help in checking the adequacy of a 
multivariate model. Finally, we consider what the comparison says in terms of 
an economic application: the measurement of the persistence of macro- 
economic shocks.
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2 Univariate Models Implied bv a Vector Autoregressive Model

Let zt = (zu..... zic)' be a stationary stochastic vector process which
follows the VAR model

<D(L)zt = a, + p , (1)

where L is the usual lag operator, d> (L) is a (k x k) matrix with finite poly
nomials in L as elements, at is a k-dimensional white noise variable with 
zero mean vector and contemporaneous covariance matrix Q, and p is a 
vector of constants. If the (i,j)-th element of d>(L) is a polynomial with 
coefficients <X>ijk, k = 0, 1,.... we adopt the standardization <Diio = l, and 
d>,jo = 0 for i *  j . Finally, the stationarity of z, implies that the roots of the 
equation | <t> (L) | = 0 (where I • I denotes the determinant of a matrix) lie out
side the unit circle. Following Zellner and Palm (1974), to obtain the univariate 
representation of zit (i = 1..... k), we simply need to express (1) as

z. = [O(L)] •' (a, + p) = | <t(L)| ■' d.‘(L)(a, + p), (2)

where <t>* (L) is the adjoint matrix of <t> (L). For the i-th element of z„ 
expression (2) becomes

I o  (L) I zit = X  (L) aj, + Ci (3)
j=i

where c; is a constant, equal to the i-th element of <D*(l)d • Since (ignoring 
the constant) the right-hand side (r.h.s.) of (3) is the sum of k finite moving 
averages, it can also be represented as a finite moving average 9i(L)uu, 
where ult is a white-noise variable, such that

i  .
0i (L) uit = X  *ij (L) ajt, (4)

j=i

[see Anderson (1971)]. Considering (3) and (4), the univariate models implied 
by (1) are given by

<t> (L) Zit = 6i (L) uit + ci (i = 1,.... k ), (5)

where the autoregressive (AR) polynomial is equal to
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<D(L) = |0 (L ) | , (6)

and each moving average polynomial, together with the variance of the
univariate innovation u,t , can be obtained through (4) as detailed in Appendix
A. It is worth noting that:

a) A VAR process implies univariate ARM A (not simply AR) models, and 
that all univariate models share the same AR polynomial (6).

b) As shown in Appendix A, the univariate MA polynomials are always 
invertible, with the orders (qi) depending on the elements Oy (L).

c) W hen p * 0 ,  the univariate model for zj, will always contain a 
constant.

3 A Case Study: The Series and Univariate Analysis

We consider six quarterly macroeconomic series of the French 
economy, taken from Deniau et al. (1989). Each series has 84 observations and 
starts in the first quarter of 1963. The series are the following:

dt = Public Debt
yt = Gross Domestic Product (GDP)
Pi =  GDP Deflator
rt = Interest Rate (on first class bonds)
nt = Balance of the Current Account (exports-imports)
m, = Monetary Aggregate (Ml).

The sources of the series, as well as some (minor) modifications performed on 
them, are described in the above reference. Figure 1 plots the six series; all, 
except n, (which can take negative values), have been log transformed. They 
seem to exhibit, in all cases, a nonconstant mean, and, as seen in figure 2, 
Autocorrelation Functions (ACF) that converge very slowly. The Augmented 
Dickey-Fuller (A DF) tests, allowing for a constant (according to result c 
above), are presented in the first row of table 1. At the 5% size, the critical 
value - taken from MacKinnon (1991) - is 2.90, and hence in no case is the unit 
root hypothesis rejected. (All regressions were run with 9 lags, enough to 
whiten all series.)
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First differences of all series were, thus, taken, and the following ARIMA 
models were identified and estimated (all differenced series were centered 
around the mean).

(l - .74 L4) V log d, = (l - .32 L4) uu , (7a)

(.11) (.16)

V log y, = u2t, (7b)

V2 log Pt = (1 - .74 L ) ) U3,, 

( .07)

(1 - .35 L) V logr, = au , (7d)

(  . 10)

V ni = (l - .47 L4) U5t , (7e)

( . 10)

( l + . 1 9 L - . 5 0 L 4) V logm t = u6t. (7f)

(.09) (.10)

(The numbers in parentheses below the parameter estimates are the associated 
standard errors.) The ACF of the residuals are displayed in figure 3, and in all 
cases they are seen to be close to the ACF of white noise. The Box-Ljung- 
Pierce Q statistics for the first 27 autocorrelations are displayed in the second 
row of table 1, and for the six series they are smaller than the corresponding 
X2 (5%) critical value. The residual standard deviations are displayed in the 
first column of table 2. Three comments are in order:

a) Since our aim is to confront the parsimony of these estimated univariate 
models with the lack of parsimony of univariate ARIMAs derived from a VAR 
model, an important model selection criterion was to minimize the number of 
parameters. Although alternative specifications are certainly possible, the 
models in (7) passed all diagnostics and, besides the innovation variance, no 
model contains more than two parameters.

b) All variables are integrated of order 1 [or 1(1)], except for the GNP 
deflator pt . However, estimation of an ARIMA (1, 1, 1) model without 
imposing the second unit root yields:
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(1 - .94 L) V log p, = (1 - .70 L) U31, (7c)

(.04) ( .09)

with slightly smaller values of Q27 and of the residual variance. Since there 
are no compelling reasons to impose the second unit root, to preserve the 
order of integration, we shall use as the estimated univariate model for p, that 
given by (7c).

c) Finally, concerning the model for mt , factorization of the AR poly
nomial produced the following roots

Modulus Frequencv
.80 0
.84 it/2
.89 K

The first root (1 - .8 L) is associated with the trend, and the last two with the 
once and twice a year seasonal frequencies; all roots display a relatively large 
modulus.

4 Testing for Cointegration

Before proceeding to estimation of a multivariate model for the six 
variables, we need to test for the presence of cointegration relationships among 
them. Let x, = (xu, • • •, x6l) denote the vector of the six undifferenced variables; 
two procedures will be applied. First, following Engle and Granger (1987), we 
compute the six regressions

6
xj, = a 0 + aj t + X  “ i xu + ejt. (8)

i=l; i*j

(j = 1, — , 6) . Then, ADF tests are run on the series of estimated residuals ejt . If 
in no case the null hypothesis of a unit root is rejected, the series are not 
cointegrated.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



7

For the six regressions of the type (8), the first row of table 3 shows the 
Q (27) statistics associated with the autocorrelation function of the residuals 
obtained in the Dickey-Fuller regression on ejt (using up to 4 lagged values). 
The second and third rows present the Dickey-Fuller t-statistics to test for the 
hypothesis that there is a unit root, and its corresponding 5% critical value; 
these last values have been computed using the response surface regression of 
MacKinnon (1991). It is seen that in no case the unit root hypothesis is rejected. 
If the term aj t is removed from (8), the results remain basically unchanged, 
except when the variable nt is the regressand, in which case the t-statistic 
becomes marginally significant.

The second type of cointegration test performed is that proposed by 
Johansen (1988), based on the rank of the matrix n  in the multivariate 
regression

A xt = n  A xt.i + • • • + rp_i A x̂ p+i + n  x,.p + p + et .

For our set of series, p = 2 was enough in order to obtain white-noise residu
als. Let r denote the number of cointegrating vectors. Table 4 presents the 
lambda-max and trace tests for the sequential testing of H0 : r £ j (j = 5,•• •, 1,0), 
where the 5% critical values have been taken from Gardeazabal and Regulez 
(1990). Both tests indicate that the six series can be safely assumed to be non- 
cointegrated. 5

5 The Vector Autoregressive Model

Since there are no cointegration relationships, the VAR model can be 
specified in first differences of the variables. Such a VAR model, for the six 
variables we consider, was estimated by Deniau et al. (1989) in order to 
analyze the effect of the public debt on several macroeconomic variables of the 
French economy. The model was identified in a manner similar to that 
proposed by Hsiao (1981) and Caines et al. (1981). In a first step, the VAR 
structure is determined, equation by equation, according to the results of 
"causality tests" between variables; the maximum lags are found with an MFPE 
information criterion. The model thus specified, is estimated as a SURE model. 
We reestimated the same VAR with the rates of growth replaced by the 
differences in logs. Also, a few parameters that were not significant were 
removed. (The effect of these modifications was minor.)
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The estimated model has a total of 20 autoregressive coefficients, and 
hence, for a 6-variate VAR, it is considerably parsimonious (an average of 3.3 
parameters per equation). In terms of equation (1), letting z, denote the 
vector:

z, = (V log dt, V log yt, V log pt, V log rt, V n,, V log mt) , 

the estimated <t>(L) matrix is given by

4>(L) =

011 0 013 0 0 016

021 022 0 024 0 0

0 0 033 034 0 0

0 0 0 044 045 0

0 052 0 054 055 0

061 062 0 0 0 066 _

where 0 denotes the null polynomial, and the nonzero elements are the 
following polynomials in L:

<t>n =  1 -.202 L4 ; 0i3 = -1.08 L -.987 L4 ; 016 = -548 L2 ;

(2.07) (3.06) (2.78) (- 3.46)

021 = - .055 L8 ; 022 = 1; 024 = - .065 L7 ;
(3.13) (3.62)

033 = 1 - .137 L - .299 L2 - .303 L5 ; 034 = - .058 L2 ;
(1.98) (4.3) (4.3) (3.76)

044 = 1 - .34 L ; 045 = .3 L ;
(3.48) (- 2.36)

052 = .964 L ; 054 = .192 L;
(- 2.9) (- 2.58)

055 =  1 + .4 L4 ; 

(-4.1)

06i =  - .097 L + .15 L2 ; 062 =  - .73 L ;

(1.94) (- 2.96) (6.62)

= 1 + .18 L - .35 L4 ; 
(-2.1) (3.65)
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the t-statistics of the parameter estimates are given in parentheses. In terms of 
its economic interpretation, the model implies that a positive shock in the 
public debt increases, in the short to medium term, aggregate demand (with a 
limited crowding-out effect), which in turn increases imports. As a 
consequence, the balance of the current account deteriorates, and there is an 
increase in interest rates associated with foreign capital inflows. Economic 
interpretation, however, is not our present concern, and we refer to the 
Deniau et al. paper.

An important element in the diagnosis of a VAR model is the behavior of 
the vector of estimated residuals at . Table 5 summarizes the correlation 
functions among the components of at . The and signs
indicate, respectively, a positive significant correlation, a negative significant 
correlation, and a correlation that can be assumed to be zero [see Tiao and Box 
(1981)]. The distribution of the significant correlations appears to be random; 
the largest positive and negative values are .31 and -.30, and the number of 
significant ones is 17, or approximately 5% of the total number of computed 
correlations. The residuals obtained behave, thus, as a white-noise vector.

The residual variances are given in the second column of table 2. 
Compared to the ones obtained in the univariate ARIMA fit, it is seen that the 
innovations in the multivariate model have smaller variances. The percent 
reduction varies between 2% (variable nt ) and 23% (variable y,), with an 
average reduction of approximately 11%.

To further validate the models, an out-of-sample forecasting exercise 
was performed. Some of the series were modified after 1985, and the last 
observation available on our complete set of series is for 1985/4. In order to 
increase the number of out-of-sample forecasts, the ARIMA and VAR models 
were estimated with data up to 1983/4. Then, one-period-ahead forecasts were 
computed for the four quarters of 1984 and of 1985. Table 6 presents the Root 
Mean Squared Error of the out-of-sample forecasts for the six series. The 
results for yt , pt , r,, and mt are clearly close to the in-sample values given in 
table 2, and for d, the out-of-sample forecast is better. For nt , the out-of- 
sample forecast deteriorates and an F-test for the equality of variances in the 
case of the VAR model yielded the value 3.4, and hence equality could be 
marginally rejected. (For the other series, the corresponding F values were not 
significant.) As for the relative performance of ARIMAs and VAR models in 
out-of-sample forecasting, for four variables the VAR yields better forecasts,
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while in two cases the ARIMA models perform better. In no case, however, the 
difference between the two forecasts is large. Considering the improvement in 
in-sample fit and the overall better performance in out-of-sample forecasting 
of the multivariate model, the univariate ARIMA models do not seem to 
"parsimoniously encompass" the VAR one [see Hendry and Mizon (1992)].

In summary, both the set of estimated ARIMA models and the VAR model 
behave reasonably. The multivariate structure does not bring spectacular 
improvement, but it does bring some. Altogether, considering the simplicity of 
the models identified, the results represent sensible applications of univariate 
ARIMA and VAR modeling.

6 Implied Univariate Models in the VAR and Comparison with the
Estimated ARIMA Models: Ad-hoc Comparison

Following the derivation of section 2 and Appendix A, the univariate 
ARIMA models implicit in the VAR model have been obtained. The third 
column of table 2 contains the innovation variances of the implied univariate 
models. They are similar to those obtained with the estimated ARIMA models, 
and slightly closer to the innovation variances of the VAR model.

Concerning the autoregressive and moving average coefficients of the 
implied ARIMAs, the common AR polynomial, 0(L) of (5), is of order 22. The 
order qi of the six moving average polynomials are those in the first row of 
table 8 , and hence, despite the parsimony of our VAR model, the example 
provides a good illustration of the autoregressivity paradox referred to earlier: 
While the univariate models implied by the VAR contain an average of 42 AR 
and MA parameters, the univariate models estimated in section 3 have an 
average number of 1.3 parameters. We mentioned before two simple reasons 
that might explain the apparent paradox; let us see how they operate in 
practice.

It is well known that when the matrix O (L) in (1) has a block triangular 
or block diagonal structure, exact cancellation of roots between the AR and MA 
polynomials in some of the implied univariate models will occur [see 
Goldberger (1959), Wallis (1977), and Palm (1986)]. The matrix <jj(L) , in our 
case, does not have that type of structure, and hence no such root cancellations
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can be done. For each of the six series, the 22 roots of <$> (L) have to be 
compared with the roots of the corresponding polynomial e ;(L). Computation 
of the 144 roots shows that the VAR model is indeed stationary, although a high 
proportion of the roots are relatively large and, for example, only 7 of them 
are smaller than .5 in modulus. The MA polynomials are invertible, and they 
also display roots that are relatively large in modulus.

When comparing, for the six series, the AR and MA roots, in order to 
decide which of them cancel out, a criterion is needed. Let co and h denote 
the frequency (in radians) and modulus, respectively, of a complex root, and 
consider, for example, the implied ARMA model for the variable dt. Table 7 
displays the roots of the AR and MA polynomials (to facilitate interpretation, 
the roots displayed are those of L 1). It is easy to accept that the MA root with 
co = 2.59 and h = .78 will cancel out with the root with the same frequency 
and modulus in <|>(L). But, what about the pair of roots ( co = 1.62, h =  .78) 
and ( co = 1 .5 4 ,  h = .85)? Since, on the one hand, the roots of the
polynomials in the implied ARIMA models are complicated functions of 41 
parameters (those in <t> (L) and in Q ) and, on the other hand, the comparison 
involves 144 roots, computed from 84 observations on the vector of variables, 
we had a-priori doubts as to whether formal testing could be of help, and 
hence proceeded in two ways. First, a simple ad-hoc criterion is used, which is 
fairly restrictive and biased towards undercancellation. Second, a formal test, 
adapted from Gourieroux, Monfort and Renault (1989) is performed.

The ad-hoc criterion, discussed in Appendix B, is as follows: The root 
(h i, Si) will cancel with the root (ha. « 2) if

a) |h !-h 2U  .05,

b) | coi - a>21  ̂ .05 ,

c) | h i - h21 + ((0i - (î  |  ̂ .07 .

Applying this criterion to our example, to get an insight into the 
proximity of the cancelled roots, we consider the two that are most distant, in 
terms of the sum of the two absolute deviations. These are the root ( co = .73, 
h = .81) in the AR polynomial, and the root ( co = .7 8 , h = .79) in the MA 
polynomial, of the univariate model for r ,. The two roots generate the AR and 
MA polynomials (l - 1.21 L + .66 L2) and (l - 1.12 L + .63 L2) , respectively. 
Assume the AR polynomial is the result of estimating an AR(2) model with T =
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84 observations (our sample size), and that we perform the test <h =1.12 and 
02 = - .63 (i.e., the AR polynomial is equal to the MA one). Then, denoting by 
M the asymptotic covariance matrix of the autoregressive parameter 
estimators,

S = (0 - 0 ) M 1 (0 - 0 ) ~  X 2 <

where <t> = ( 1 .2 1 ,- .66) and 0  =(1.12, - .6 3 ) . Using the expression for M in 
Box and Jenkins (1970, p. 244), it is found that S = 1.61, certainly below the 
95% critical value of 5.99. Since this result holds for the pair of cancelled roots 
that are most distant, it is clear that the criterion favors undercancellation.

Using the above criterion, roots were cancelled in the implied ARMA 
model; remultiplying the remaining ones, new models are obtained for the six 
variables. Their orders are indicated in the second row of table 8: They have 
been considerably reduced (the average number of parameters per model 
drops from 42 to 17), but the models are still far from the parsimony of the 
ARMA models from univariate analysis.

The implied ARMA models obtained after removing common roots are 
displayed in table 9. Since (as shown in Appendix B) the standard deviation of 
to and of h are larger for roots with smaller modulus, cancellation will be 
likely to affect the roots with relatively large modulus. Thus the remaining 
ARMA models will mostly contain the smaller roots, which are estimated with 
less precision. In considering whether the ARMA models of table 9 can be made 
more parsimonious by removing small coefficients (undetectable in 
estimation), again a criterion is needed. Considering that most of the standard 
errors of the parameters in the estimated ARMA models of expression (7a to f) 
are in the order of .09 or larger, a reasonable criterion is to remove 
coefficients that are below .18 in absolute value. Proceeding in this way, the 
following models are obtained.

a) Series d , : (l - .65L4) Vlog d, = (l - .31L4) u u , (9a)

which is quite close to (7a). In this case, the VAR model certainly explains the 
model obtained in univariate analysis.

b) Series yt : (1 - .92L) V logy, = (1 - .98L)u2t, (9b)
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or, approximately, the random walk model of equation (7b). Again, the VAR 
model explains well the estimated univariate ARIMA model. Considering the 
relatively large decrease in the residual variance of yt in the VAR model, the 
variable GDP seems particularly suited for multivariate analysis.

c) Series pt : (l - .15 L - .30L2 - .30L5) V log p, = U31, (9C)

Model (9c) appears to be quite distant from (7c), yet if in the latter the MA 
polynomial is inverted and approximated up to the fourth power, the product 
(1 - .94 L)(l - .70) 1 , after deleting small coefficients, yields

(l - .24 L - .17L2 - .23L5) Vlogp, = u3t,

more in line with (9c). However, in so far as a fourth order approximation to 
(1 - .70 L)'1 is a poor approximation, the series pt illustrates how, when the 
univariate model contains a relatively large MA root, VAR models will have 
trouble capturing that behavior.

d) Series r ,: (l + .18 L - .25L2) Vlogr, = (1 + .50 L)u4, ,

somewhat different from the model (7d). However, expressing the model in 
pure autoregressive form, it is obtained

(1 - .32 L) V log r, = U4t , (9d)

with all other parameters smaller than .10 and converging fast towards zero. 
Models (7d) and (9d) are obviously very close.

e) Series n, (l + .21 L - .25L2 + .48L4) V nt = (l + .21 L - .20B2) u5t.

Expressing this time the model in pure MA form, it is obtained that

V n, = (l - .47 L4) u5t, (9e)

with all other MA parameters smaller than .15. Model (9e) is the same as (7e).

f) Series m, : (l - .65L4) V log mt = (l - .29 L - .18 L4) u6t.

The autoregressive expression is found to be
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(l + .29 L - .46 L4) V log m, = u6t, (9f)

with all other parameters smaller than .10. Again, model (9f) is reasonably 
close to model (7f).

In conclusion, when the (conservative) ad-hoc criterion is used, careful 
analysis of the multivariate VAR model explains well the models obtained with 
univariate analysis. We turn next to the results of formal testing.

7 Comparison of the Implied and Estimated Univariate ARIMA Models;
A Test Procedure

Despite the large number of roots we wish to compare, it is straight
forward to adapt to our case an ingenious testing procedure developed by 
Gourieroux, Monfort, and Renault (1989). Let the AR and MA polynomials of 
one of the implied ARIMA models be, respectively,

(j> (L) = 1 + <|>i B h—  + <j>p ,
0 (L) = 1 + 0] B + • ■ • + 0q Bq ,

and assume there are r common roots shared by the two polynomials. Then, 
there exists a polynomial X  (L) , of order r, formed by the product of all the 
common roots, such that

<t> (L) = A. (L) cx (L),
0 (L) = X(L) (3(L).

Let a(L)= 1 +aiL + -••+0 , 8 *, a = p-r and (3(L) = 1 + PiL + --- + pt,Bb, b = q-r  
Removing X  (L) from the previous two equations yields

<t>(L)P(L) = 0(L)a(L), (10)

an identity between two polynomials of order k = p + q - r . Denote by y  the 
vector of coefficients of the implied ARMA, and by 8 the vector of coeffi
cients after the common polynomial X  (L) has been removed, i.e.
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y  = [<h.---. <t>P. 0i. •••. 6q]' (11)

8 = [ a i , a a, Pi,- Pb]'- (12)

Equating the coefficients of L>(j = 1, —, k) in (10) yields a system of k 
equations. Conditional on y  , the system is linear in 8 , and can be written as

h = H5 (13)

where h is a k-dimensional vector, and H a kx(k-r) matrix. Conditional 
on 8 , the system is linear in y  , and can be expressed as

e = E y ,

where e is a k-dimensional vector, and E a kx(p + q) matrix. The test 
consists of the following procedure:

1) Run OLS on (13) to obtain 5 , and with this estimator construct the 
matrix E . Compute, then, the (kxk) matrix !; = E £ E ' ,  where £ denotes the 
covariance matrix of the estimators of the parameters in y  .

2) Run GLS on (13), using £ as the covariance matrix of the error term, 
and denote by SSR the sum of squares of the residuals in this regression. For 
the test consisting of

Ho: <t> (L) and 0 (L) have exactly r common roots;

Ha: (j> (L) and 0 (L) have, at most, r common roots;

the statistics (T x SSR) is distributed as a X 2 variable with r degrees of free
dom. In order to proceed sequentially, we start with r = min(p, q) , i.e., with r 
equal to its maximum possible value. If Ho is rejected, we then set r ' = r - 1 
and redo the test, until H0 is not rejected.

Implementation of the test requires computation of the matrices H, h, E, 
e, and £ . A simple procedure is described in Appendix C. Table 10 presents 
the results from the test (for a 5% size) and it is seen that the orders of the 
ARMA models obtained after removal of the common roots are much smaller 
than the ones obtained with the ad-hoc (restrictive) criterion of section 7. The
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coefficients of the ARMA model after removal of the common roots are the 
elements of S , consistently estimated when running the test; they are displayed 
in table 11. Ignoring small parameters, table 11 yields the following models

(l - .40L4)V logd, = uu (14a)

V lo g y t = u2i (14b)

(l - .16 L - .28 L2 - .30 L5) V log p, = u3, (14c)

(1 - .31 L) V log rt = U4t (14d)

V n, = us, (14e)

(l - .91 L + .33 L2 - .45 L3)V login, = (l + .79 L + .17 L2) u6, (140

The first model is similar to model (7a), since the AR representation of 
the latter is, approximately, (l - .42 L4 - .13 L8) V log d, = ui , . Model (14b) is the 
same as model (7b), and models (14d) and (7d) are practically identical. As for 
the series p ,, model (14c) is very close to the implied ARIMA model obtained 
with the ad-hoc criterion [i.e., model (9c)], which was seen to be a rough 
approximation to (7c). For the first four series, thus, the test gives results that 
are in close agreement with the results of direct univariate analysis, and with 
the implied univariate models obtained with the ad-hoc criterion.

For the last two series, however, models (14e) and (140 ae markedly 
different from models (7e) and (70- In both cases it happens that significant 
coefficients at seasonal lags are missing. This is due to the fact that the test 
yields a value of r which is too large, so that the AR and MA polynomials in 
the simplified ARMA models are not long enough to reach the seasonal lags. 
Setting r = 18 for n, , and r = 17 for m, , so as to allow for seasonal 
coefficients, the model for n, can be expressed as (once small coefficients 
have been removed)

V n, = (l - .40 L4) u5 t.

and that for m, as
(l + .15 L - .53 L4) V log m, = u6 l.
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These two models are now very similar to model (7e) and (7f). Therefore, our 
example shows that, when using the Gourieroux-Monfort-Renault test for 
cancelling common roots, care should be taken with seasonal models. Blind 
application of the test may overestimate the value of r, with the consequence 
that seasonal coefficients may be left out from the derived model. Once this 
fact is taken into account, the test is seen to perform surprisingly well. In 
summary, it seems safe to conclude that the ARMA models obtained from 
univariate analysis are quite in agreement with the univariate models derived 
from the VAR. This result is true whether the comparison is made with an ad- 
hoc criterion or with a testing procedure.

8 An Economic Application

The comparison of the VAR model with the ARIMA models estimated 
with univariate techniques has shown how the results obtained in the latter can 
be reasonably explained by the VAR. Be that as it may, since the comparison 
implies cancelling many roots and removing many small coefficients, it is of 
interest to see how, when those models are used in economic applications, 
inferences may be affected by the type of model used.

The application we chose is related to the effort by macroeconomists at 
explaining the permanent changes in aggregate output, as well as the 
fluctuations around this "permanent component". From an early period when 
the permanent component (or trend) of the series was assumed deterministic, 
economists have moved towards modeling trends as stochastic components. 
When a variable contains a stochastic trend, a shock in the series will not only 
affect the so-called cyclical component, but will also have an impact on the 
permanent one. The measurement of this long-term effect (or "persistence") of 
shocks has been the subject of attention by macroeconomists. In a univariate 
world, for 1(1) series with Wold representation

Vxt = y(B)ut , (15)

the impact of a shock ut on xl+k is given by (1+ y i + . . .  + Yk)u, . Following 
Campbell and Mankiw (1987), the persistence of a standardized shock ut= 1 
can be defined as its very long-run impact on the series or, more formally, as
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k
m = lim £  y k = \|/(l) . 

k->oo ;=o

There has been considerable interest in estimating persistence, in particular for 
the case of aggregate output, where different values of y( l )  have been 
assigned to different theories of the business cycle. If y  (1) > 1, "real 
factors", typically associated with supply (such as changes in productivity), 
would account for, both, economic growth, and most of the business cycle. On 
the contrary, if \|> (1) < 1, the business cycle would be more likely to be 
associated with transitory (typically demand) shocks; see, for example, the 
discussion in Lippi and Reichlin (1991).

Of the several approaches to the estimation of persistence, we shall select 
three that are relevant to our example. First, following Campbell and Mankiw 
(1987), y( l )  can be obtained from the univariate ARIMA estimation of (15) 
using Box-Jenkins methods. Second, since additional variables may provide 
information in explaining deviations of a variable with respect to its trend 
level, Evans (1989) computes the measure using the parameters from a VAR 
estimation. Specifically, he proposes to use y(l )  in the univariate ARIMA 
model implied by the VAR one. These two measures are based, in theory, on 
the same set of univariate innovations. Moreover, since the ARIMA models 
implied by the VAR should be in agreement with the ACF of the series, and this 
function is the basic identification tool in univariate analysis, the two measures 
of persistence should not be too distant. Discrepancies between them would be 
likely to indicate misspecification in some of the models.

Evans finds, however, that persistence of GNP, measured with the ARIMA 
model implied by his VAR model, is considerably different from the measures 
obtained by Campbell and Mankiw with univariate analysis. In order to see 
whether this discrepancy flags some problem with the model specification, we 
reestimated the bivariate VAR model of Evans (who kindly supplied us with the 
data). The equation for GNP is given by

yt = -.62 + .13 yt_i + .18 yt_2 + .02 y,.3 - .48 xt.i + 1.32 xt.2 - .59 xt_3 - .85 dt + at , (ig)
(.38) (.11) (.11) (.10) (.33) (.50) (.33) (.26)

where yt = V logG N P , x, is the unemployment rate, and dt a step dummy 
variable capturing a structural break; the numbers in parenthesis denote 
standard errors.
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To judge the validity of the equation it is not possible to perform a 
proper out-of-sample forecast exercise because the series yt has been subse
quently revised (partly because of revisions in seasonal factors). We split the 
sample period used by Evans into two subperiods, one with the first 100 
observations, and the other with the last 40 observations. His VAR model was 
reestimated for the first subperiod, and one-period-ahead forecasts were 
computed for the second subperiod. Figure 4 compares the associated one- 
period-ahead forecast errors with those obtained with a simple "AR(1) + 
constant" structure (with no structural break), estimated also for the first 100 
observations. The two series of errors are very close, and hence the large 
number of parameters in (16) does not improve upon the naive AR(1) 
specification. The equation is overly parametrized, and this is reflected in the 
large standard errors of the parameter estimates. The difference between the 
VAR and univariate measures of persistence does not seem, thus, the result of a 
more efficient multivariate estimation; on the contrary, the VAR model 
obtained seems an unreliable tool for inference.

Finally, Pesaran et al. (1992) suggest a multivariate measure of 
persistence, with the innovations defined with respect to the multivariate 
information set. In the univariate case, if g (co) denotes the spectrum of V xt 
in (15), using a well-known result, g(0) = qr(l)2 a2- The multivariate extension of 
this result, for the case of the VAR model given by (1), is

g(0) =[<h(l)-'] £2 [o (l)-‘] \

The measure of persistence proposed by Pesaran et al. is given by the squared 
root of the elements of the main diagonal of this matrix, standardized by the 
variance of the appropriate multivariate innovation. (For a vector with only 
one variable, the multivariate measure becomes the univariate one.)

Table 12 presents the three measures of persistence for the 6 variables 
we consider. The first two measures refer to the response to the univariate 
innovation, which is a function of all the innovations of the multivariate 
model, as shown in expression (4). Therefore, the two measures are not 
strictly comparable to the one obtained with the VAR model, which reflects the 
response to the innovation defined in a multivariate information set. It is seen, 
however, that, given the precision of the measurements, for four variables 
d ,, pt , rt and m, the three measures are reasonably close. A unit innovation in
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public debt has a large permanent effect on the level of debt, and a similar 
result is obtained for the price level variable. In this later case, the discrepancy 
between the two ARIMA measures may reflect the limitations of the VAR model 
in capturing a series with a relatively large MA root, as mentioned in section 7. 
For the interest rate and the monetary aggregate series the persistence is 
slightly larger than l , although for m, it could be easily accepted as equal to 1.

For the series y, and n, the univariate and multivariate results are 
more distant. For the GDP series the univariate measure of persistence is 1, 
while the multivariate measure is 1.7 and, considering the standard errors, they 
cannot be accepted as equal. According to the interpretation mentioned above, 
this could be seen as evidence that, when the innovation is cleaned of the 
effects due to other correlated shocks (i.e., when the information set is 
enlarged), the real business cycle theory gains support. For the balance of 
trade series, the univariate measure is below one, while the multivariate 
measure is 1. An economic interpretation of the persistence measures is beyond 
the scope of this paper. Relevant to our discussion are the following two 
results:

a) The proximity of the measures of persistence between the estimated and 
implied ARIMA models shows that inferences drawn from the VAR (concerning 
persistence) explain well the ones obtained from univariate analysis. Alto
gether, it is somewhat striking that the measurement is not more affected by 
the numerous cancellations of roots and removal of coefficients.

b) The univariate measure of persistence may be a reasonable 
approximation to the persistence measured in a wider information set. But 
there are cases when this is clearly not true.

9 Summary and Conclusions

It is well known that a linear dynamic structural econometric model has 
a reduced form with a multivariate linear time series model expression, which 
in turn implies univariate ARIMA models for each of the series. An important 
way to evaluate a structural econometric model, thus, is by checking for 
whether it encompasses the appropriate VAR model. Since the univariate 
models implied by VAR models have ARIMA expressions, in a similar manner,
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an important way to evaluate a VAR model is to see if the results obtained with 
univariate analysis can be explained by the VAR, i.e., if the ARIMA models 
implied by the VAR are close to the ones found in univariate analysis. Since 
identification of univariate models is easier than identification of (not too 
small) VAR models, if an implied ARIMA model is substantially different from 
the ARIMA model that fits the univariate series, the difference may well reflect 
misspecification of the multivariate model (an example is provided in section 
8).

Although the idea is simple, it is however rarely put into practice. This 
may be partly due to the fear that the comparison may be worthless because of 
the so-called autoregressivity paradox: while the ARIMA models from 
univariate analysis typically have very few parameters, the implied ARIMA 
models, even for relatively small VAR models, have a very large number of 
parameters. Can we reasonably expect to bring, for example, a 45-parameter 
ARIMA model down to a 1- or 2-parameter one? More generally, can we expect 
univariate models to be useful as diagnostic tools for VAR models?

The question is general, but the answer is ultimately empirical. Thus we 
consider a particular application: A VAR model for six quarterly macroecon
omic variables. First, using univariate analysis, ARIMA models are fit to each 
one of the series. Not counting the innovation variances, all models have at 
most two parameters. Then, after testing for cointegration, a parsimonious 
VAR model is estimated; the model is a slight modification of the one used by 
some French economists to analyze the effect of public debt on several 
macroeconomic variables. It is seen that, both, the set of univariate ARIMA 
models and the VAR model provide good fits and perform reasonably well in 
out-of-sample forecasting.

Next, the univariate models implied by the VAR are derived (following a 
procedure described in Appendix A). All have an AR polynomial of order 22, 
and the orders of the MA polynomials vary between 18 and 24. The application 
considered provides thus a good example for the autoregressivity paradox: 
ignoring the innovation variances, the average number of parameters is 42 for 
the implied ARIMA models and 1.3 for the ones estimated in univariate analysis.

In order to compare the two types of models, the roots of the common 
AR and of the six MA polynomials of the implied models are computed (a total 
of 144 roots). To determine which ones should cancel out, two approaches are
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followed. First, we use a simple ad-hoc criterion (discussed in Appendix C), 
biased towards undercancellation. Once the common roots are removed, 
careful analysis of the simplified models shows that the ARIMA models from 
univariate estimation are remarkably close to the ones implied by the VAR. The 
comparison also evidences the gain from multivariate modelling for some 
variables (in particular, GDP) and, in the case of the price variable, the 
difficulties of the VAR specifications in handling series with a large moving 
average root. Second, a formal test is applied to determine the roots that could 
be cancelled. The test is seen to be biased towards overcancellation, in 
particular when the series contains seasonality. Careful application of the test, 
however, yields finally implied ARIMA models that are in agreement with those 
obtained with the ad-hoc criterion and with univariate analysis.

In summary, the VAR model explains reasonably well the results from 
univariate analysis and passes, thus, the encompassing test. All considered, it 
seems safe to conclude that the improvement obtained with the multivariate 
model is not very large, but that it can be properly attributed to having 
captured some relationships among the macroeconomic variables.

Although the differences between the implied and estimated ARIMA 
models are relatively small, it is still of interest to see what effect they may 
have when the models are used for economic inference. As an example, we 
consider the problem of measuring the so-called persistence, or long-term 
effect, of shocks on macroeconomic variables. Persistence has been estimated 
in different ways, three of which are relevant to our discussion: First, it has 
been measured using ARIMA models from univariate analysis. Second, it has 
been measured using implied ARIMA models (derived from VAR ones). Third, 
we consider a multivariate measure based directly on the VAR model.

The three measures of persistence are computed for the six series. The 
first two measures are close, and hence the VAR model again explains well the 
inference obtained in univariate analysis. The comparison also shows how, 
although for some variables the inference based on univariate analysis may 
approximate the one based on multivariate models, on occasion, it can be 
misleading. This is clearly the case for the GDP variable.
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APPEWIX A: Univariate ARIMA Models Implied by a Vector Autoregressive Model

As seen in section 2, the univariate model for the i-th series implied by the multivariate 

VAR is given by (5), where <]> (L) is straightforward to obtain through (6), and the moving 
average pan 9, (L) Ujt satisfies (4). We proceed to summarize a procedure (easy to implement 

in most available softwares) to obtain 0; (L) and the variance of uu , a ,2 .

The adjoint matrix <t>* (L) is directly obtained from d> (L), and hence the elements 

<b*jj (L) and the matrix f l  (with the contemporaneous covariances of the vector at ) are 

assumed known. Let q denote the order of the polynomial 9j (L). The autocovariances of the 
r.h.s. of (4), say Yo . Yi . • • • . Yq . can be obtained through the Autocovariance Generating 
Function (ACGF)

Yi (L) = M L J Q f .M ' ,

where fj (L) is the i-th row of <I>* (L). The ACGF (L) is an expression of the type
q

Y. (L) = Yo + £  Y.lL' + L-1) ,  (A .l)
i= l

and our aim is to find the moving average process 0, (L) Uit that generates this set of 
autocovariances. We proceed as follows (for notational simplicity the subscript i is dropped). 
Write (A.1) as

Y (L) = L-11 (yq + • • • + Yo Lq + • • ■ Yq L2*1) = L^T(L).

Since the polynomial T (L) is symmetric around Lq , the 2q roots of the equation T (z) = 0 
can be expressed as the two sets (ri ■ -• rq) and (rj'-’-iq1) , with

| r; | > 1 > | rf11, i = 1, • • ■ q . In practice, however, there is no need to compute the 2q 
roots of T (z). Using the transformation y = z + 1/z, the polynomial T (z) is transformed into 
a polynomial in y of order q, say

A(y) = ao + ai y + --- + aq yq , (A.2)

where the vector of coefficients a = (ao, ai, • ■ â ) is obtained as follows. Let

bo = 2
b ,= (0, 1) ,
bj = (0. bj-0 - (bj.2 , 0, 0) , j = 2, ■ • q ,
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and build the (q + 1) x (q + 1) matrix S = [si , • • •, sq+i] , with the columns given by: 

S i= ( l ,O q) \
Sj = (bj-i i Oq.j+i) , j = 2, • • q,
sq+l “ bq ,

where O* denotes a k-dimensional row vector of zeros. Then, a = S y , where 

y = (Yo » Yl , • • Yq) • Let Yl , ■ • yq denote the q roots of (A.2). In each of the equations
z2- y j z + l = 0 ,  j = 1,■ • q, (A.3)

selecting the root zj such that | zj| > 1 , the polynomial 0 (L) is found through

0(L) = ( l - z 1L) - - - ( l - zqL),  (A.4)

and o f  can be obtained from of = Yo 1 + X
V i—t

Notice that the coefficient yj in (A.3) can be complex. In this case, the solution is found in the 
following way: Let yj = a + b i, and define k = a2 - b2 - 4, m = 2 a b, and

h2 = [ ( | k | + (k2 + m2 ) ”2 ) / 2 ] . Then, if zj = ẑ  + zj i is a solution of (A.3), its real and 
imaginary parts are given by:

z j = ( - a ± c ) / 2 ; z j = ( - b ± d ) / 2 ,

where, when k > 0, c = h, d = m/2h, and when k < 0, d = [sign (m)] h, c = m/2d.

The derivation of 0, (B) ujt is valid for invertible as well as noninvertible moving 
averages. (In the latter case, the unit root would appear twice in F (L).) But, as we proceed to 
show, the moving average part of the implied ARIMA will always be invertible, thus | z,| > 1 
for i = 1, - - q .

A univariate finite order autoregressive model, by construction, is invertible. But, as 
seen in Section 2, the univariate models implied by multivariate VAR ones are not finite 
autoregressive models, but full ARMAS, where the moving average part can be long and 

complex. There is thus the question of whether, for some values of the ^-parameters in the AR 
matrix, the ma part of an implied univariate model may include a unit root.
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Consider the VAR model given by (1). We have seen in Section (A.l) that, in the 
factorization of y(L) , we can always choose 9, (L) so as to have all roots on or outside the 
unit circle. Thus we only have to prove that no root of 0, (L) will be on the unit circle. If 9; (L) 
has a unit root, this implies a zero in the spectrum for an associated frequency. If the spectrum 
of the l.h.s. of (4) has a zero, all components in the r.h.s. of (4) have a spectrum with a zero for 
that particular frequency [see Terasvirta (1977)], and hence the polynomials 

**ij (L) (j = 1 • • • k) will share the same unit root. Considering the expansion of the 
determinant of d> (L) by the elements of the i-th row:

k
|4>(L)| = 2 > i j ( L ) * * M(L).

i=i

and factorizing the unit root common to d>*jt (L)- • • (L), the same unit root will have to
appear in | <t> (L) | . The root would thus be present in the AR and MA polynomials of the 
implied ARIMA model, and hence it would cancel out. It follows that the univariate models 
implied by the VAR model are always invertible.

APPENDIX B: A Comment on the Precision of the Frequency and Modulus of the Roots in an 
Estimated Autoregressive Model

When using models with AR expressions, it is often of interest to look at the roots of the 
AR polynomials, where the roots are expressed in terms of the frequency co and the modulus 
h . Since 0) and h are computed as functions of the AR parameters, it is important to know 
how errors in the estimators of the latter induce imprecision in the measurements of co and h . 
In our case, the interest is due to the need to select a criteria to determine when two roots can be 
safely assumed to be close enough for cancellation. Since our comparison involves 144 roots, 
where the modulus and frequency of each one are nonlinear functions of the 41 parameters in 
the matrices <t> (L) and fl, we seek a simple ad-hoc criterion, such that only roots that are 
clearly close in a probabilistic sense will be cancelled. In order to do that, we consider the case 
of an AR(2) model for series of the same length as ours (T = 84). One could expect perhaps a 
precision somewhat similar to that of our VAR model, with 3.3 parameters per equation: the 
slight gain from the multivariate fit could compensate for the small increase in the number of 
parameters.

Let the AR(2) model be given by

z, - <>i z,.t - $2 Z[_2 = at . (B.l)
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Expressing the roots of x2 - <J>i x - <(>2 = 0 in terms of frequency and modulus, for 0 < 0) < n 

(i.e., when the roots are not real), it is obtained that

h = V- <}>2 ; co = acos — ^ —  . (B.2)
2 7 -^ 2

It is then possible to approximate the functions that relate the estimation errors in h and co (to 

be denoted 5h and 5m ) to the estimation errors in and <(>2 (denoted ei and £2 , 

respectively). Since, for the relevant range 0 > <j>2 > -1 and 0 < co < n  , the functions given by 

(B 2) are continuous in <(>i and <j>2 , it is straightforward to obtain the linear approximation that 
relates 8 = (5h, 8a,) to e = (ei, £2) . The estimators of h and co are consistent (becoming 
super-consistent when h = 1), and the asymptotic covariance matrix of 8 , V j, can be linearly 
approximated by

V5 = D Ve D ', (B.3)

where Ve is the asymptotic covariance matrix of e , equal to

VE = 1 -h 4 1
T LP

P ■ 
1 ’

0 _  2h cos co 
1+h2 ’

and D is the matrix of derivatives

( - ! - 0 -(2h )‘

W -(2h sin co)'1 -(2 h2tanco)'1

In our example, the vast majority of the roots have modulus in the range .6 to .9. For h 
= .6, .75, and .9, table 13 presents the standard deviations of the estimation errors for h and 

<J>2, obtained with the asymptotic approximation (they do not depend on co ). The larger the 
modulus, the smaller the estimation error becomes for both parameters. For the values in table 
13, despite its larger numerical value (in absolute terms), the modulus is estimated with more 

precision than $2 .

In order to assess the accuracy of the linear approximation, 10.000 simulations of 84 
observations each from model (B.l) were made, for the 3 values of h in table 13 and 50 
partitions of the interval to e (0, n ) . In each case, the AR coefficients were estimated, and the 
estimators of h and co were obtained through (B.2). For the pairs (h, co ), figures 5 and 6
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compare the standard errors of the modulus and frequency estimators, respectively, obtained 
with the simulation and with the linear approximation. For 8^ , the approximation works 
reasonably well; for 8m , except for relatively large modulus, the approximation is less reliable. 
From the figures it is seen that, for complex roots with values of h between .6 and .9 (our 
range of concern), the standard error of 8h varies between .03 and .09, while that of 5c varies 
between .04 and .3. Considering the positive correlations between the two errors for low values 
of h and co (figure 7), we adopted the following simple criterion; for the two roots (hi.coi) 
and (Ii2 , CO2) to cancel, we require that the differences hi - h2 and coi - 0)2 be smaller than 
.05 (in absoute value). We require further that the sum of the two absolute differences be 
smaller than .07.

The criterion seems safe in the following sense: Consider a pair of cancelled roots in one 
of the implied ARIMA models, and let 5 and d denote the errors in the estimators of (h, co) in 
the AR and MA roots, respectively. Assume 5 is distributed normally, with zero mean vector, 
and covariance matrix (B.3), and that we wish to test 8 = d. For all roots actually cancelled, the 
p-value of the test would be smaller than .5. In this way, the criterion will tend towards 
undercancellation, and will avoid cancelling roots measured with imprecision.

APPENDIX C: Common Roots Test: Computation of the Matrices

To carry out the test described in section 7, the matrices H, h, E, e, and X need to be 
computed. For the first four, this can easily be done in the following way: Let Oj denote a 

column vector of j zeros, and define the vector c = ( c i , • • •, cj) , the (m x n) matrix

1 0 ■ • 0 '
Cl 1 ., 0

. • 1
Cd ’ Cl
0 cd

6 6 • •Cd .

with n < d < m , and the m-dimensional vector b (c) = (l, c', Om.d l) . Then,

h = b (<!>)- b (0), e = b (a ) -b (p ) ,  

and the matrices H and E can be obtained through

H = [H , ; - H2] , E =[-E , ; E2] ,
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where Hi , H2, Ei and E2 are given by

H[ = A (0), n = p - r
Hj = A (<()), n = q - r
Ei = A(p), n = p
E2 = A (a ), n = q ,

and m = p+q-r in all cases.

Finally, we need an estimator of I  = cov (\|/) , where V contains the parameters of the 
implied univariate model. These parameters are functions of the VAR model parameter 
estimates, as indicated by equations (4) and (6). The VAR model parameters are the AR 
coefficients in <t> (L) and the elements of Cl, the residual error covariance matrix. Let O 
denote the vector of AR coefficient estimators, and a  the vector containing the estimators of the 
elements in £2. (In order to simplify notation, we delete the symbol "A" to denote an estimator.) 
Then, a linear approximation to £  yields

£  i J M J ' ,

where

J = 3 y  . 8 q/
, M = Cov(d>, or) =

3 d> d o K*t> H?

The derivatives in J have been computed numerically. As for the matrix M, the first 
submatrix M<j, = Cov (d>) is available from the VAR estimation results; also, asymptotically, 
Hixj = M0<i)= 0- In order to obtain Mo = Cov ( a ) , its elements are expressions of the form 

Cov (<Tij aith), where £2 =(a,j), and

Oij ~ T ^  ajt 4jt-
t

Since the vector at~ Ngfo, C l\ from its moment generating function, it is straightforward to 
find that, for all values of i, j, k, and h,

COV (<7ij Gkh) — (Oik CJjh + Ojk Oih)/T,

and hence Mo can be easily computed.
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Thanks are due to Stephania Fabrizio, Grayham Mizon, Franz Palm , the 
Associate Editor and two Referees fo r  their valuable comments.
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Tests on the Univariate Series
Table 1

dt yt Pt ft nt m,

ADF-t .62 -.89 1.12 -1.61 -1.90 .67
Q27 19.9 20.8 24.3 22.8 22.9 24.0

Residual Standard Deviation
Table 2

Estimated Implied VAR
ARIMA ARIMA

d, .0359 .0359 .0319
yt .0112 .0092 .0086
Pt .0079 .0073 .0070
ft .0394 .0374 .0361
nt .0288 .0311 .0283
mt .0199 .0205 .0186
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Table 3
Engle-Granger Cointegration Test

d, yt Pt nt

Q n 34.4 28.2 26.4 23.9 36.5 30.1

ADF-t -2.93 -1.79 -2.67 -3.38 -4.42 -3.16

Critical value (5%) -5.22 -5.22 -5.22 -5.22 -5.22 -5.23

Johansen Cointegration Test
Table 4

Number of Cointegrating Vectors
r < 5 r ^ 4 r £ 3 r 5 2 r< 1 r = 0

Lambda-max test 3.45 7.99 10.14 13.33 22.29 35.59

Critical value (5%) 10.25 14.17 22.30 26.58 37.76 42.04

Trace test 3.45 11.44 21.59 34.92 57.21 92.80

Critical value (5%) 10.25 16.94 32.59 47.11 72.48 98.20
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Out-of-Sample Forecast: RMSE
Table 6

Estimated

AR1MA
VAR

d, .0148 .0155

yt .0133 .0119

Pt .0081 .0078

rt .0496 .0435

nt .0502 .0529
mt .0175 .0154
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Series d , : AR and MA Roots of the 
Univariate Model Implied by the VAR

Table 2

a) Roots of the Autoregressive Polynomial
Root Modulus Frequency

- 0.92 0.92 3.14
0.91 0.91 0
0.03 ± 0.85i 0.85 1.54
0.61 ± 0.54i 0.81 0.73

-0.67 ± 0.4 li 0.78 2.59
-0.56 ± 0.55i 0.78 2.36

0.77 ± O.lOi 0.77 0.13
0.29 ± 0.68i 0.73 1.17

-0.15 ± 0.67i 0.69 1.79
-0.55 ± 0.251 0.61 2.71

0.28 ± 0.53i 0.60 1.08
0.50 0.50 0

- 0.26 0.26 3.14

b) Roots of the Moving Average Polynomial
Root Modulus Frequency

0.85 0.85 0
0.60 ± 0.54i 0.81 0.73

-0.67 ± 0.4li 0.78 2.59
-0.04 ± 0.78i 0.78 1.62
-0.55 ± 0.55i 0.77 2.36
-0.76 0.76 3.14

0.30 ± 0.67i 0.73 1.15
0.66 ± 0.07i 0.66 0.10
0.23 ± 0.50i 0.56 1.14

-0.37 ± 0.33i 0.49 2.41
-0.19 0.19 3.14
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Order of ARMA (p, q) Model
Table 8

Series d, yt Pi rt r>i m,

P q p q P q P q P q p  q

Implied ARMA 22 19 22 24 22 17 22 20 22 21 22 21

Implied ARMA after ad-hoc 
root cancellation

13 10 10 12 5 0 6 4 10 9 13 12

Estimated ARMA 1 l 0 0 1 1 1 0 0 1 2 0
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Table l
Implied ARMA Models After Cancellation of Roots: Ad-hoc Criterion

Variable d, yt Pt h nt mt

AR coefficients
Lag 1 .05 .92 .15 -.18 -.21 .02
Lag 2 .04 -.08 .30 .25 .25 .04
Lag 3 -.03 .09 -.01 -.14 -.08 -.03
Lag 4 .65 .02 .01 -.08 -.48 .65
Lag 5 -.06 -.08 .30 .02 -.06 -.06
Lag 6 -.00 -.00 — -.01 .08 -.00
Lag 7 -.02 .03 — — -.04 -.02
Lag 8 -.07 -.04 — — -.03 -.07
Lag 9 -.01 .01 — — .02 -.01
Lag 10 .00 .00 — — .01 .00
Lag 11 -.02 — — — ____ -.02
Lag 12 .01 — — — — .01
Lag 13 .00 — — — — .00

MA coefficients
Lag 1 .03 .98 — -.50 -.21 .29
Lag 2 -.04 -.18 — .06 .20 -.09
Lag 3 .02 .12 — -.10 -.07 .05
Lag 4 .31 .03 — -.11 -.03 .18
Lag 5 -.01 -.17 — — .00 -.02
Lag 6 .00 .05 — — -.01 .00
Lag 7 .00 -.09 — — -.01 .00
Lag 8 .00 .10 — — -.00 -.02
Lag 9 -.01 -.00 — — .00 .01
Lag 10 -.00 -.00 — — ___ -.01
Lag 11 — .01 — — — -.00
Lag 12 — .00 — — — .00
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Test for Common Roots
T a b le  in

Series Order of Implied 
ARMA

Number of 
Common Roots

Order of
Simplified arma

d, (22, 19) 18 (4, 1)
yt (22, 24) 22 (0, 2)

Pt (22, 17) 17 (5, 0)

rt (22, 20) 20 (2, 0)

nt (22, 21) 21 (1 ,0)
mt (22, 21) 19 (3, 2)

Table 11
Implied ARMA Models After Cancellation of Roots:

Results from the Test

Variable d, Yt Pt rt nt mt

AR coefficients:
Lag 1 .03 — .16 .31 -.12 .91
Lag 2 .14 — .28 .09 — -.33
Lag 3 -.01 — -.02 — — .45
Lag 4 .40 — -.01 — — —

Lag 5 — — .30 — — —

MA coefficients:
Lag 1 .02 -.03 — — — -.79
Lag 2 — -.00 — —• — -.17
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Measures of Persistence
T a b le  12

Estimated Implied VAR
ARIMA ARIMA

d, 2.61 2.57 2.95
(.80) (.77)

yt 1 1.10 1.69
(.00) (.28)

pt 5.01 3.80 4.56
(1.89) (1.35)

rt 1.54 1.61 1.75
(.16) (.19)

nt .53 .78 1.01
(.10) ( .15)

m. 1.45 1.18 1.24
(.31) (.19)

The standard errors of the estimators (computed using linear approximations) are provided in 
parentheses.

Table 13
Modulus Estimator for a Complex Root in an AR(2) Model: 

Asymptotic Results 
(T = 84)

Modulus S.E. of ar coeff. S.E. of

h h $2 <t>2

.600 .085 .360 .102

.750 .060 .562 .090

.900 .036 .810 .064
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SERIES
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Figure 2

ACF: SERIES
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Figure 3

ACF: RESIDUALS
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Figure 4

ONE-PERIOD-AHEAD FORECAST ERRORS: VAR AND AR(1) MODEL

Figure 5
MSE: Modulus Estimator
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MSE: Frequency Estimator

Correlation: Modulus and Frequency Estimators
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