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FORECASTING UNSTABLE AND NON-STATIONARY TIME SERIES

Carlo Grillenzoni

Dept.of Economics, Univ.of Modena 
& European University Institute

Abstract - Many of the time series encountered in social and economic applications are 
asymptotically unstable and intrinsically non-stationary, i.e. satisfy difference equations 
with roots greater than one (in modulus) and with time-varying coefficients. Time series 
modeling developed by Box & Jenkins (1976) solves these problems by imposing on data 
two groups of stationarity transformations : differencing and exponential (Box-Cox). 
Owing to a generalization of the Jensen inequality, these transformations are not optimal 
from the forecasting viewpoint and, sometimes, they may be entirely arbitrary. In this 
paper it is shown that there are no practical and methodological obstacles in modeling 
time series with unstable roots and changing coefficients. Paradoxically, instability has 
useful consequences for conventional least squares estimators since it improves their speed 
of convergence in probability. This property, named super-consistency, was thoroughly 
analyzed by statisticians in the '50 and in this paper it is investigated by means of recursive 
estimators applied to simulated data. Next, the effectiveness of adaptive recursive esti­
mators in tracking time-varying unstable roots is shown in the context of an application 
to the airline data-set of Box-Jenkins. This framework is proper for forecasting time series 
with trends, cycles and seasonalities whose patterns change over time. Since it does not 
assume a-priori dynamics for such components, it may be used as a non-parametric 
alternative to the structured models of Harrison-Harvey.

Key Words - Unstable roots, time-varying coefficients, super-consistency, recursive 
estimators, tracking coefficients, adaptive forecasting, airline data-set.
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1 . In troduction

Unlike many of the time series encountered in natural and experimental sciences, social 
and economic time series frequently exhibit characteristics that are intrinsically evolutive. 
For example, real macroeconomic variables, such as output and consumption, behave as 
if they had no fixed mean, displaying growth and cyclical components. On the other hand, 
many financial time series, such as stock prices and and exchange rates, show "bursts" of 
variability together with local jumps in the levels. These examples qualify in two different 
ways the "evolutive" characteristic mentioned before:

1) the first class of data belongs to unstable or long memory time series, that is series in 
which the mean and the variance functions p, = £(Z,), o, = £(Z, - \ y f  increase gradually 
over time. These series can still be represented by stochastic difference equations with 
constant coefficients Z , - < j > i Z , _ Z , .p = e ,, e, ~ IID but in which some roots of the 
associated characteristic equation z', -i)>1z'’~1-....-<j>J, = 0 are greater than unity in 
modulus: | Zj | > 1 for j  =1,2... d with d <p . In this case, statistical analysis of the parameter 
estimators is complicated by the fact that the implied stochastic process {Z,} does not 
satisfy standard assumptions of asymptotic independence (or mixing) and moments 
existence (see White, 1958 and Anderson, 1959).

2) The second group of data, well exemplified by financial series, belongs to intrinsic 
non-stationary time series, i.e. data that can be viewed as realizations of heterogeneously 
distributed processes. Unlike the first group, these processes may have suitable mixing 
properties and finite second order moments; nevertheless, they cannot be well represented 
by linear models with constant parameters. Off-line inference over conventional models 
is supported by various extensions of the law of large numbers and the central limit 
theorem (see White and Domo witz, 1984); but it provides results of limited practical utility. 
On the other hand, on-line inference requires the use of recursive adaptive estimators 
which involve highly non-linear estimation problems (see Tjostheim 1986a,b).

It should be noted that unstable time series are also non-stationary, but in a weak sense, 
that is of a form that may be removed by suitable transformations. Rather than having 
time-varying moments, they do not posses moments at all, in the sense that these moments 
tend to be infinite.

In past decades the typical solution to problems of instability and non-stationarity was 
an attempt to reciprocally adapt available data and conventional models. Thus, data have 
been differenced (Z, -  Z, ), adjusted by outliers and subject to the Box-Cox transformation 
(Z]'-  1)/X (that includes the log-transformation for X = 0), in order to achieve linearity 
and stabilizing the variance. The ARIMA modeling designed by Box & Jenkins (1976) is 
the most important of these techniques; it has encountered great success by creating a 
good compromise between simplicity (or parsimony) of the models and their efficacy. 
From the model structure viewpoint the key element of this adaptation was the inclusion, 
in the difference equations, of linear factors with roots known a-priori as unity. Long 
practical experience with ARIMA models has raised two questions that are partially 
addressed by the recent research on time series developed in econometrics and statistics
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i) A-priori assumption of unit roots may be arbitrary since they form a set of measure 
zero relative to the entire parameter space of autoregressive models.

ft) Parametric transformations may not achieve stationarity since they are too general 
and implicitly assume that heterogeneity follows a well defined pattern.

Both criticisms reflect a latent demand for direct modeling of the original data; either 
in order to retain the interpretability of the models with respect to the underlying processes 
or to improve their forecasting capability. The question now is what kind of alternative 
models are possible without involving a parametric complexity excessively greater than 
that of standard ARIMA tools.

In this paper we provide a general framework for modeling unstable and non- 
stationary time series realizations of ARIMA, processes with time-varying unstable roots, 
i.e. roots which wander near the unit circle. This kind of representation is suitable for time 
series containing trends and periodicities with changing slopes and local jumps. For such 
series Perron (1989) has shown that the unit-root hypothesis (and in general that of ARIMA 
representation) must be rejected in favour of an alternative in which the trend is generated 
by a deterministic segmented line. This conclusion is clearly unsatisfactory from the 
forecasting standpoint and one might argue that the proper null hypothesis in this case, 
is provided by the unobserved components representation ;

Z, — jx, + St + zr , z, -  ARMA

M. = M.-1 + 8, + vI , v,~IN(0,oft

8, = 8,_1+wl , w,~ IN ((),<£)

S, = S,_s + u ,, u, -  IN (0,o^)

in which the stochastic trend p ,, its time-varying slope 8, and the seasonal component 
S, conform to the unit-root assumption. Models like the above were outlined by Harrison 
& Stephens (1976) as dynamic linear models (DLM) and developed by Harvey & Peters 
(1990) and Young et «1.(1991) as structural time series models. Even though they concretely 
solve some problems of the ARIMA approach (retaining parsimony and introducing 
interpretability) their fundamental limits are represented by additive structure and their 
random-walk dynamics. More specifically, as we shall see in the application to the airline 
data-set, trend and seasonality may not be independent and their dynamics may be more 
complex, i.e. less smooth, than that implied by unit roots.

In our framework, based on time-varying unit-roots of period s > 1, it will be shown 
that components of trend and seasonality may simultaneously be captured by models of 
the type Z, = <J>(l)Z,_, + z ,, where <J>(t) is a function of past events {Z,_,,Z,_2,...}  and 
{z,} is a stable and nearly stationary process. In off-line inference, the mean value 
0  = £[0(t)] =limŵ .h t" '£",,£[<!>(()] may consistently be estimated, even if its modulus 
is greater than one. In on-line estimation the path of 4>(t) may be tracked, witha satisfactory 
fit, by standard adaptive algorithms, such as recursive weighted least squares (RWLS). 
The various recursive methods can be unified into a general algorithm and their tracking
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coefficients may be determined in an optimal way by minimizing a quadratic objective 
function based on one-step-ahead prediction errors. In the numerical example it will be 
shown that instability in a time series is of no substantial obstacle to the application of 
adaptive estimation methods.

2 . U nstable T im e Series

In this section we consider basic issues of modeling unstable time series with constant 
coefficients; analyses will be developed on the dynamic representations, the forecasting 
algorithms and statistical properties of the estimators. Simulations on artificial data and 
application to the airline data-set of Box & Jenkins (1976, Cha p.9) will be provided in order 
to clarify the methodological treatment.

2.1 Models - By definition, long-memory and unstable time series are realizations of 
stochastic processes which fail to satisfy standard requirements of asymptotic indepen­
dence and existence of moments. More specifically, if {Z,; t = 0, ±1, ±2,...}  is a discrete 
time process and {/(Z,)} the associated density functions, one should have

lim4_,./(Z, |Z ,.t )* /(Z ,) ,  su p ,£ [ |Z ,-c f]  = ~

for every 0 < c , r < “  . More sophisticated definitions refer to joint density functions and 
probabilistic requirements of moments existence ; namely, for any tn), n <°°

[ /(Z v ...,Z ,JZ Ii-„.................................... Z ,J] * 0 ( \ l k c) , e>0

sup,B(|Z , | > 2  ) = s u p , 1 -  j  /(Z ,)d Z ,j * o ( l /z '+c) as |z  !->■*=

The latter always occurs in Cauchy processes, where f(Z,;r\,y) = {ityjl +((Z, - q  )/y)2]}-1 
and q , y are parameters of location and shape, respectively.

The above properties are absolutely general and must be characterized in relation to 
the specific parametric representations of the processes. Given a short-memory time series 
{ z,} a dynamic model is a mathematical device <(>(•) that transforms it into a white noise 
{a,} . It is possible to extend this definition to the relationships between long-memory 
and short-memory time series (see Parzen , 1982), obtaining a sequence of filters

{Z,J
Stabilizing! I~ Whitening!
Filter <!>(•) J {Z,} L Filter ty-) J {a,}

Referring to linear representations and allowing for the existence of periodicities of size 
i  > 1 in the dynamics of the processes, we may specifically define

z .-<»i = <bd(B')Z, = z, (2.1a)

>pz,-, = a , . <t\(B)z, = a, (2.1 b)

where (8) is the back-shift operator: B’Z, =Z,_,. Thus, the previous references in terms
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of memory-length may immediately be qualified as stability properties of linear difference 
equations, i.e. size of the zeros P [', pj* of the filters <1>(B), $(8):

* (£ ')= n f . , ( i - p ,B ’ ), |P ,|> 1 , ! = 1,2 ... <f (2.2a)

4>(fi)=n'=,( i - p ,B ) , |p , |< l ,  j  = 1 ,2 ...p (2.2 b)

Another definition of long-memory time series was introduced by Parzen (1982) in a 
somewhat heuristic way. Such series should satisfy the fitting condition

where N is the sample size. Note that in terms of the coefficient of linear determination 
the condition is equivalent to Rf, >.84,.92 for medium sample sizes N = 50,100 . Even 
though the associated F-statistics are 1 % significant for /> = 1,2, values fij, > .85, > .93
are generated in 86%, 80% of realizations by the widely stable AR(1) model Z, = .95 Z, , + z, 
with z, = .45z,_, + a, and a,~ IN (0,l).

Classification of the memory-length of a time series based on the size of the roots in 
(2.2) is less ambiguos. For example, letting d = 1, p = 0 and solving the resulting model 
Z, = <PZ,-, + a, for t = (x.v)>0 with initial condition Z, * 0 , we find

Z„ = 0 ’Zo+ a, + O’-2 Oj, + . . .  + C> a(,_ ,„ + (2.3)

With | 4> |>1 one may easily check lack of asymptotic independence: lim,^_£(Z, ,,Z ,) * 0 
and lack of asymptotic boundedness : lim,_,.8(| Z, |<Afe)<£ for any 0<e,A/£< “>, from 
which follows lack of moment existence. Some ambiguity remains for models with roots 
| Py | s  1 on the unit circle; in this case long-memory occurs but first order moments exist, 
e.g. sup,£(Z, ) = Zo . This is not the only peculiarity of unit-root processes ; other special 
features will be met in statistical inference . However, from a stochastic coefficient 
viewpoint the probability of having d > 0 roots exactly on the unit circle is zero, hence 
processes of practical interest may simply be classified as stable or unstable.

It might be argued that in case of unstable models, decompositions like (2.3) do not 
make sense since they do not converge in probability. However, mathematical devices 
exist for building convergent expansions which may be used to define the parametric 
expressions of covariance functions and spectral densities. The basic idea is that of "in­
verting" unstable roots; for simplicity, let be |Py|>l for all j  and write (2.1)-(2.2) as

I  <KiF(' “i>Z ,.„=  fl (F“ —P,)Z,_j,i=0 i = 1

where F =25 1 is the forward operator :F‘Z, = Z, . Hence the inverse of the above becomes

z , . « = n  (f ‘ -  p,.) 1 z, = n  [ - p 1̂ ( i -  v? f “ ) ’] n  u - p1=1 i = 1 ] = 1

4
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Here, each factor (i _p-' p 'f '  can be expanded in a convergent power series of F , and 
each term (1 -  p, B) can be expanded in a power series of B . The global result is a two-sided 
moving average decomposition Z, = EH— V» a,-t which converges in probability for all 
t e l .  The formal consequence of this representation is that current values of unstable 
processes Z, are correlated with future innovations a, ; this seems to deny the possibility 
of making good forecasts from past data. In reality, the above result only means that 
unstable processes formally admit two-sided decompositions which, however, may have 
no substantial meaning in a context of physically realizable processes (where t >0).

Simulations - Plots of realizations of simulated processes are useful for better under­
standing probabilistic properties of unstable models as well as to introduce heuristic 
elements of pattern identification. Figure 1 provide realizations of : (a) a random walk 
Z, = Z,., + fl,; (b) a weakly unstable process Z, = 1.001 Z,_,+a, and a random walk plus 
drift Z, = .l+Z,_, + a, ; (c) a "doubly" unstable process (1 - 1.002fl)(l -  1.001 B)Z, = a ,; (d) 
a periodic unstable process (1 -  1.001B)(1 -  1.001B1J)Z, = a, . In all simulations the di­
sturbance sequence was independent gaussian a, ~ IN(0,1). Important remarks that can 
be drawn from Figure 1 are : (1) random walks tend to be stationary in mean and only 
"explode" in presence of a deterministic drift; (2) trends generated by random walks and 
unstable models are qualitative different: the first is linear and the other is exponential; 
(3) series with two or more unstable roots tend to be smooth like deterministic functions. 
The reason is that in the decomposition Z, = 2,(1) + a, the deterministic component

Figure 1 (a,b,c,d) - Realizations of unstable processes.
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t ,( \)  = E(Z, |Z,_„Z,_2...) rapidly diverges while a, remains bounded in probability.

Combining equations (2.2) we obtain the multiplicative model §p(B)<t>d(B')Z, = a, with 
a, ~ IID. Apart from the utility in terms of classification —since it separates ordinary and 
periodic, stable and unstable linear factors— the advantage of multiplicative filters over 
the additive ones is essentially a question of parsimony. This is apparent in the presence 
of periodicities since the two parameter model (1 -  <|>B) (1 - <DB')Z, = a, generates an AR(3) 
process. Special features are also involved in second order moments since the MA model 
z, = ( l -0 B )( l-© f l’)a, has 4 autocovariance coefficients different from zero, namely 
y( 1),y(.v) and y(s -  l) = y(s +1), instead of 2 as in the additive case. Hence, multiplicative 
models have a richer internal dependence structure which is suitable for representing and 
forecasting complex stochastic processes. The price to be paid concerns the procedures of 
identification and estimation ; for example, even in absence of MA factors, estimation 
requires iterative algorithms. Standard differentiation applied to model (2.1) provides the 
gradient for the nonlinear least squares (NLS) estimator

da, , _i ... da, , .
- a * T * ( fl ) B a- ’ - d * r * m  B a'

but only in the second case this will coincide with the "observable" quantity z ,in v o lv e d  
in the sequential OLS estimator.

Sequential strategies may be used, without loss of optimality, in the forecasting phase. 
Indeed, the forecast function at origin t for lead time h must satisfy the difference 
equation

§P(B)0d{B’)2,(h) = 0 , 2,(A) = £ [Z ,„  |Z, ,Z,_,,...]

and if { zt} has an ARM A representation, the sequential solution becomes

Uh) = Z}:} 4>/*,(A -  i)+ I',» eyai-j

2,(h) = I?:,1 0,2,(h — is) + I f . ,  0,Z,_„ + i,(h)

As introduced in the abstract, data transformations Y, = g(Z,) may cause serious problems 
for the performance of predictors. In particular, the optimal predictor (in mean square 
sense) of original series does not coincide with the inverse transfomation of the predictor 
of the transformed series: 2,(h) * g -1[ f,(h)\ ,h > 0 . This result follows immediately from 
the extension to conditional expectation of the well known Jensen inequality :

E[g<.Z,t>)\Z,,Z,_„...)*g[E(Z,.h\Z,,Z,

where the sign > ,< of the inequality depends on the convexity or concavity of g( ) . This 
conclusion applies to every kind of transformation : differencing as well as Box-Cox in 
which t,(h) * [\f(h )+  l ] l/*’ . More specifically, the a-priori assumption of unit-roots for 
unstable processes and the log-transformation make the predictors biased downward.
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2.2 Application - We now illustrate the above concepts with an application to the 
airline data-set of Box & Jenkins (1976, p.305). The series, displayed in Figure 2, regards 
monthly observations of passenger totals in U.S. international air travel from 1949 to 1960; 
the sample size is IV = 144 and the period lag is s = 12 . The model fitted by Box-Jenkins 
relies heavily on the multiplicative structure and a-priori transformations

(1 - f l ) ( l  - B 'J)Iog(Z,) = (1 -  -J77 B) ( l "  , Q„ = = .182 (2.4)

where the statistics in parentheses are f-ratios and j2.v is the sum of squared prediction 
errors. In this framework the log-transformation not only serves to stabilize the variance 
of {Z,} and to improve the efficiency of estimates, but is essential for the assumption of 
unit roots. In fact, the model fitted on original series gave lower parameter values

(1 - B ) ( \ - B fl -  .310 5V 1 -  .113 Bn\
l (».) A (21) ) Q„= 17,752

Questions raised in the previous discussion regard : (i) consistency of the unit roots 
assumption with data ; («) feasibility and efficacy of unstable roots modeling ; (ffi) rela­
tionships between trend and seasonal components; (id ) effect of data transformations on 
forecasts. The first step to take to answer these questions is the estimation of the model 
identified by Box-Jenkins without the unit-roots constraint:

( '  -  X  ” ) ( '  -  \Si! -  ■%! • m o

Here, values of parameters in the two models seem quite homogeneous; however, only 
in the case without log-transformation is the coefficient <t> far from unity and does it 
substantially improve the fit over previous estimates. The introduction of a deterministic 
drift does not modify this performance in any way

Figure 2 - Plot of airline data-set [ Z,__ ; log(Z,) —  ].
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(l-.901£ 'l ( l -  1.111 fl12>1 Z,= .275 +( 1 -  .382 BYl -.470 S '2),
V 05«) )V <1461-> }1 (85) ^ (53) A (67.) J Qn = 13,965

in fact, as seen in Figure lb  , unstable roots alone may generate trends.
Another estimation experiment regards the sequential structure of multiplicative 

models. The results confirm the crucial importance of unstable periodic roots

(‘ -  B’2) Z- = * • f t  = 35,920 (2-6a)

0 -  & 3 ® M ' -  i 9? *){' -  • f t  = ™  c-<*>

In this case the introduction of a drift in the first equation has significant effects on the 
size of the roots, but the global fitting performance slightly worsens

(1 -  l-m  B 12]z, -  12.666 = z , , Q, = 32,940V (1806.) ) ' <75., ”

(1-.837B)z J 1 -  .297 flV 1 -  .361 Bn\\  (196.) )Z‘ ( (40.) A (38.) y

At this point the following remarks can be m ade: (1) With or without log-transformation, 
the presence of roots significantly greater (<J>) and lower (<>) than unity is detected in the 
airline data-set. Without log-transformation the relaxation of the unit-root hypothesis 
improves the fitting performance by about 20%. (2) Periodic unstable models of the type 
Z, = <l>Z,_, + z,, | O |> 1 are capable of simultaneously capturing seasonal and trend com­
ponents. This is concretely shown by Figure 3 which compares the differenced series 
(Z,-Z,_12) with (Z,-  1.114Z,_12), where the latter is nearly stationary. The conclusion is 
that seasonal and trend components are neither independent nor separable. (3) The high 
f-statistics in the previous estimations are due to the peculiar asymptotic properties of 
least squares estimates in presence of unstable roots. As we shall see in next sub-section 
standard limit theory does not hold and (-ratios are biased indicators.

Figure 3 - Plot of filtered series [ (Z, -1.114 Z, _ 12)__ ; (Z, -  Z, _ ,2) —  ].
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From previous estimations on log-transformed data it is not possible to discriminate 
precisely between models with unit or unstable roots; moreover, the values of the statistic 
Qn cannot be compared with those of the models estimated on original data. Thus, the 
sole objective way to compare the performances of the various models is that of making 
forecasts of real data and computing empirical prediction errors. Given the origin t and 
the steps ahead 1 < h < 12 , the predictor of multiplicative models of the type 
(1 -<t>B)(l-<t>£1J)log(Z,) = (l -0 f l)( l -® B n )a ,, is given by

) = exp [ $ log(2,(/i -  1)) + <D log(Z, . 12) -  <> Q log(Z„„ _ 13) -  0  a , _i: + 0 © a,, „ _ 13 ]

One of the hypothesis to be checked is whether this predictor is better than that which 
assumes <{> = <t> = 1 , but worse than t,(h) which works directly on original data. As a 
consequence of the conditional Jensen inequality it should be expected that 12',(h ) - Z , th \> 
| 2 ,(/i)-Z ,,j | for each i ,h ; absolute prediction errors (ApE) thus provide building blocks 
for model comparison. In order to mitigate the dependence of individual ApE, from the 
particular forecast origin, it is necessary to average over t , obtaining the index

MApE„(A) = -  I  \Z ,„ ,h-2,U>i)\ (2.7)n t=i

where n is the sample size of the mean and x shifts the forecast origin. In the airline 
application we have made forecasts over the last two years taking r = 1958.12, n = 12 and 
h ,x= 1 ,2 ,... 12 ; more specifically, forecast origin was changed 12 times, and each time 
12 forecasts were computed.

A plot of MApE statistics generated by models (2.4)-(2.5) is given in Figure 4; the best 
model is (2.5b) which does not transform data, whereas the worst one is (2.4) proposed 
by Box & Jenkins. Intermediate performance is provided by model (2.5a), with unstable 
roots but log-transformed data. Forecasting performance of unstable model (2.5b) can be 
further improved by respecifying the ARM A model of the series {z,} generated by (2.6a).

Figure 4 - Plot of statistics (2.7) for models [(2.4)__ ; (2.5a) ; (2.5b) —  ].
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However, the task of the above exercise was the evaluation of statistical effects of arbitrary 
data transformations, for a given model structure. As we may see in Figure 4 these effects 
are considerable in long run forecasts since prediction errors increase, on average, even 
by more than 100% . This is the case, for example, of MApE12(7).

2.3 Inference - A large part of the original statistical literature concerned with the 
asymptotic properties of parameter estimators of unstable AR-processes, focused on first 
order models such as

where 1 < | <I> | < <*> and 0 < | | < <*>. If Z„ is fixed or stochastically defined as , the
distribution of the process {Z,} is entirely determined by that of the disturbances {a,}; 
in the gaussian case least squares and maximum likelihood methods provide the same 
estimator

The first problem is to establish its convergence: if | 4> | < 1 the process { Z,} is covariance 
stationary (i.e. it has second order moments, asymptotically independent of Zq ) and weak 
consistency follows from the ergodic and related theorems. Specifically, {Z,Z,_,} , {Z,2_,} 
are mean stationary, asymptotically independent processes and their sample means 
converge in probability to the autocovariances y(s), y(0). The first difficulty that one 
encounters in extending this analysis to the unstable case | $  | > 1 is that the coefficients 
y(k) are infinite for each lag k .

For s = 1, Rubin (1950) and Rao (1961) showed that the consistency property can still 
be obtained by redefining the normalizing function of the estimator components. Thus, 
instead of multiplying numerator and denominator of <i>„ by VN , if one divides by a 
function that diverges exponentially, such as

it is possible to establish that 4* -» (<h£V£2) where £ is a well defined random variable. 
In particular, £ is absolutely continuous, so that P( £ = 0) = 0, and has the same moments 
as {a,} , that is £(£) = 0 and £(£2) = a2. The key element of the proof consists in showing 
that the sequence = (<I>2 -  l)in X,v. , <t>' a, converges in probability to the random variable 
 ̂ ; next, using Z^~ X'_, <P' a,-, one may obtain that g(N)2 Z,2., —> £ and similarly

S(A0'2X" ,z ,z ,_,-><!>£2 from Z, = ®Z,_, + a , .
The problem of finding the asymptotic distribution of the bounded random functional 

g(A0(‘i v - <I>) is much more involved and was tackled, in a nearly comprehensive form, 
by White (1958, 1959). Transparent results were achieved only for Zq = 0, <I> # 1 and a 
condition of gaussian disturbances a, -INfO.o2) ; in this case White (1958) proved that 
g (N) ( -  <J>) converges in distribution to the standard Cauchy density

Z, = <5>Z,_, + a ,, a, ~ IID (0, CJ2 < “>), i = s ,s  + l . . .

« ( A O M l^ l" /^ 2- ! ) } 2
P
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As is known, Cauchy random variables have no moments and standardization refers to 
parameters of location and shape; in this case the density coincides with a f-Student with 
one degree of freedom.

Another important result obtained by White (1958) was to show that for | O | = 1 and 
g(N) = N I 'l l ,  the asymptotic distribution of g(N)(&N -  <J>) is non-degenerate and invariant 
to the choice of Z„# 0 . In particular, it is related to functionals of a standard Brownian 
motion 1}

By contrast, in the general case | <I> | > 1 the inversion of the asymptotic moment generating 
function leads to non-standard probability models which depend on the values of Zo * 0 
and <î> * 1 :

Another distinctive feature of result (2.8) is its independence from the distribution of 
disturbances, the sole requirement is that {a,} bean 1ID sequence with finite moments. 
From a practical standpoint these invariance properties are very useful since they enable 
a unique tabulation of the non-standard density.

The need to recover the limiting-normality result established by Mann-Wald for stable 
models with a, ~ IID , led White (1959) to modify the standardizing function. Setting 
g(N) = (XÎ'„iZ,2_1/ôJ)la he showed that

which holds for every | <l> | * 1 and | Z,, | > 0 , but not for | | = 1. An important limitation
of (2.9) is that it only holds for gaussian disturbances a, -  IN(0,a2) ; nevertheless, in this 
context it easily enables one to implement likelihood ratio tests. In fact, given the system 
of hypotheses H0: O = <S0, with <t>„ * 1, versus //,: <1> ^ <1>0, the LR-statistic becomes

and, as usual, [-ZlogfX*)] -» x2(l) as
Original results of Rubin (1950) and White (1958) were furtherdeveloped and extended 

by Anderson (1959) and Rao (1961) toward vector AR(1) and general AR(p) processes. 
Important refinements for the scalar AR( 1) case regarded uni t roots; e.g. Anderson showed 
that under the White's assumptions a, ~ IN, Zo = 0 the limiting distribution of (2.8) is not 
symmetric. He also showed that when | «t> | > 1 the condition that disturbances be gaus­

(2.8)

[Z,''-iZ?_l/0 i]“ (<&„-<I>) ^  N (0 ,1 ) (2.9)

D

11

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



sian is essential for proving (2.9), whereas it is not necessary in the stable case. At this 
point it is useful to summarize the various normalizing functions g(N)

g(N) =
[fV /(l-0 2)]l/J if 

AT/V2 if 
I <t> T/(«&2-1) if

0<|<h|< 1 
l<t>l=l

1 <1 O |<«=

these functions determine the speed of convergence of the least squares estimator <1>,V on 
the parameter space -«■cdx-H». Thus, despite the fact that unstable processes do not 
have moments they allow conventional estimators to be more efficient in mean square 
sense. In particular, since convergence rate of <t>„ grows exponentially with modulus 10  | 
, we have a form of super<onsistency in weak sense (i.e. not with probability one). This 
largely explains the high f-statistics of the estimates of unstable parameters encountered 
in the airline application. As we have seen, however, the price to be paid for this property 
is that asymptotic distributions of bounded functions of (4»* -  <t>) are non-standard and 
need aa-hoc tabulations.

Simulations - A transparent way to numerically illustrate the super-consistency pro­
perty is that of using least squares estimators in recursive form (RLS). The on-line im­
plementation processes data one observation at time and provides corresponding para­
meter estimates; in this way it is possible to have graphical evidence of the speed of 
convergence. Formulas exist which simplify calculations, in particular they update esti­
mates on the basis of previous values and avoid direct matrix inversion. If <!>„, Z,_, are 
p x 1 vectors we have

4>, = <!>,_,

1 I 11-1

+ f',Z,-1[Z,-«V .'Z,-,]

f ) - r , . |

(2.10a) 

(2.10 b)

Simulations have been conducted on the model 2, = <I>Z,_, + a, with a, ~ IN (0,1), Zo = 0 
under various designs of <t>. Recursive estimator (2.10) has always been initialized with

Figure 5 (a,b) - Convergence of RLS estimates in AR(1) models under various designs ofd>.
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the values f 0 = 1, <J>0 = .5 . Figure 5a plots series {<!>,} corresponding to 0  = .75,1,1.05 ;

super-consistency can, however, be better appreciated in Figure 5b that reports recursive 
estimates corresponding to <I> = 1.01,1.03,1.05,1.07,1.09 .

By the '50smuch of the asymptotic theory of the first order AR process had been worked 
out. The limiting distribution had been characterized, in closed form, except, at most, for 
the unit-root case . Rubin's weak consistency result (which uniformly holds on the 
parameter space) and the fact that | <1> | = 1 is a set of measure zero, explain the lack of 
interest in integrated processes. However, the extensive use of differencing in applied 
time series analysis and the subsequent interpretation of ARIMA processes as persistent 
shock models have provided new motivations. Recent developments include Rao (1978) 
who has extended White's intuition (2.9) by applying a theorem of Cramer to obtain an 
explicit expression for the limiting density of (0W -  \)N/y2. Rao's expression is not very 
useful since it involves complicated special functions ; by contrast, functionals of the 
standard Brownian motion such as (2.8) may easily be simulated and tabulated.

An original and useful field of research regards the study of near-integrated processes, 
i.e. models with stable roots that are close to unity : <3> = 1 . In this case, although the 
asymptotic normality theory holds, it may provide a very poor approximation in small 
and moderate samples. To provide a solid statistical framework for nearly unstable pro­
cesses the parameter 0  must be replaced by 0* = 1 -  8IN , where 8 is a small constant. 
The dynamic representation then becomes Z," = 0 N Z,"., + a, with Z^ = 0 for all N . In this 
context Chan & Wei (1987) show, under mild regularity conditions, that

where y= cxp(28) -  1 and {VK(r):0</< 1} isa standard Brownian motion. The important 
point is that h(8) is a continuous family of distributions which may be simulated in order 
to obtain more accurate finite sample confidence intervals.

Identification - We conclude the section by investigating the impact of estimators' 
properties on the procedures for identifying unstable models. Assuming a multiplicative 
structure of the type (2.1M2.2) it seems natural to face the identification problem in a 
sequential way, i.e. identification of the order d of the unstable autoregressive filter; next, 
identification of the orders p,q  of the ARMA filter of the stabilized series. Since values 
of unstable roots are not known a-priori, this strategy necessarily requires parametric 
estimation of linear models in the first step. In this case, given uncertainties about the 
statistical properties of the LS-estimator in presence of several unstable roots, the appli­
cation of the sequential approach in the identification of the order d > 1 may be proble­
matic. Indeed, such a strategy would require the LS-estimation at step j  <d of the partial 
model Z,0_1>= ; but for j< d  the residual process {Z,w} is still unstable so
that statistical properties defined in the previous sub-section may not hold for PJN, t f .
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An approximate method for the selection of d , that may avoid these drawbacks, 
consists of assuming | PJ | = 1 for all j = l , . . . d  and then applying standard techniques 
for integrated processes (see e.g. Cressie, 1988). However, as seen in the airline application, 
this solution tends to overestimate d , and so leads to misspecification of the ARMA model 
of { z,} . We no w propose an identification procedure that retains sequentiality but respects 
the statistical theory of unstable processes.

Step 1 - Given the value of periodicity s > 1 (known from sample survey information), 
estimate the models

Z, = <J>1Z,_, + Z,W, Z, = <t>1Z,M + Z,(1)

if | <f>w I > 1 ,1 $uv I > 1 and , {2?1} are stationary, then set d = 1 and pass to Step 3.
If both processes 2,° are stable, choose the model for which QN = Y., [2,H]2 is lower.

Step 2 - In the negative case, fit the second order models

Z, = <D, Z, + <h2Z, , Z, = $, Z, _, + <()2Z„2+Z,B>

Z, = <t>. Z , Z ,  -  fc <!>, Z,_, + Z,(,-'>

and compute the characteristic roots [£ i ,P2> Pi.Pi]» • H one of the series {Zf’,Z,&I,Z[1'')} 
is stable and the roots of the corresponding model are both unstable, then set d = 2 and 
pass to Step 3 . If one of its roots is stable go back to Step 1 . In case of multiple choice, 
select the model which has the lower value of the statistic QN .

Step 3 - By extending Step 2 to higher order models, one may finally obtain a series 
= n ‘. , ( l  -  P,«B) n ‘„,(l -^«B O Z ,, with (k + h) = d and I p,*, P;A/1 > 1, which is stable 

and minimum variance. Setting Z f 1 = this can be used to identify —by means of 
standard techniques such as correlation functions and information criteria— the ARMA 
filter of the stationary component {z} .

Some statistical remarks are necessary in order to justify the above method.
1) Assuming d = 1, estimates at step 1 are super-consistent even though the stable series
{ z,} is not white noise . This follows by the decomposition <f>w = + (I,z,Z,_,)(I,Z,2_,)-'
where, despite the possible correlation between jz„Z,.,} , the last term tends to zero. If 
d > 1 the properties of estimates at Step 1 are uncertain, but they should exclude paradoxes 
like |<!>W|<1 or { Z } stationary, so that one may proceed to Step 2.
2) Properties of OLS estimator in presence of d > 1 unstable roots have not been inve­
stigated. However, consistency holds as a consequence of the equivalence between any 
AR(p) model and the vector AR(1) system Z, = PZ,_, + a, —where Z,'= [Z, ...Z,_r+I] ,
P '= [4> : /p_,] with <I>' = [ <(>!...... §p] ,a ,’ = la,, 0 ...0 ]— and the convergence of the LS-
estimator P,v in case of instability of the matrix P (see Anderson, 1959).
3) Extension of the Slutsky theorem enables us to prove the convergence of the roots' 
estimators P,K, pjW atStep2and the convergence of the series t f  at Step 3. More precisely, 
if the order d is rightly identified, from the relation PN = P + o,,(l) it follows that 
t ' f '  = z, + op( 1), and if d = 1 we have super-consistency: t f 1 = z, + op[ 1 lg(N)] .
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Obviously, presence of several unstable roots should be avoided since it complicates 
the identification problem ; there are, however, a number of practical reasons in favour 
of the hypothesis d = 1. For example, the size of an unstable root may be arbitrarily large 
making unnecessary the presence of other unstable factors; as seen in the simulation of 
Figure 1 (c,d) realizations of processes with two unstable roots are smooth like determi­
nistic functions and cannot represent empirical data; finally, as seen in the airline appli­
cation a single unstable factor may simultaneously capture several kinds of nonstationary 
components, such as trends, cycles and periodic oscillations.

Simulations - In conclusion we investigate, by simulations, the behaviour of LS esti- 
mators applied to unstable m o d e ls o fo rd e ^ rZ ^ ^ Z ^  + ijijZj.j + a, with a, - IN (0,1) and 
factors (1 - p 2fl)(l - p ,B)Z,= a, . Using the recursive algorithm (2.10) we investigate the 
convergence of $1*, in presence of one and two unstable roots, and the properties of 
the direct estimator of the first root p ,. Obviously, detection of super-consistency for pw 
would confirm the validity of the previous identification strategy.
1) The first simulation regards a model with parameters (Ji1 = .3 , <J>2 = .8 which has one 
unstable factor since p, = 1.057, p2 = -.757 . Figure 6a plots recursive estimates of AR pa­
rameters <t>i, <j>2 , while Figure 6b shows estimates of the unstable root p2 = 1.057 in four 
independent replications. As we may see, despite the presence of autocorrelated residuals 
z, = p: z, - 1 + a, only in the second case do we have clear evidence of super-consistency. 2 3

2) In the second simulation we have chosen $, = 2.1, <)>2 = —1.102 which involve two un­

stable roots Pi = 1.075 , p2 = 1.025. Figure 7a plots recursive estimates , - $ 2r and Figure 
7b shows the path of p„ in four independent replications. These results reproduce those 
of simulation 1, but with a speed of convergence that is twice as fast. It is certainly sur­
prising that super-consistency of p,„ still holds (and sustantially improves) despite the 
fact that the corresponding residuals Z")=p2Zj']l + a, are unstable .
3) Finally, in order to clarify the effect of residual autocorrelation on super-consistency, 
we have estimated the model Z, = 1.05Z,_, + z, with z=a,~IN (0,l) and z, = .75z,., + ar . 
Recursive estimates, relative to two independent replications, are given in Figure 8 (a,b).
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We may see that for t > 20 autocorrelation improves the convergence rate.

Figure 7 (a,b) - Plot of RLS estimates of [ <j>,__ ; -$2  —  ] and [ p, in simulation 2 .

Figure 8 (a,b) - Convergence of estimates { } with [ z, = a,__ ; z, ~ AR( 1) —  ] .

3 . U nstable N onstationary Tim e Series

In this section we develop a general framework for modeling nonstationary time series 
with time-varying coefficients. The basic representation is linear ARMA but parameters 
are assumed to be general functions of past observations. Since these may wander inde­
finitely outside the stability regions of the constant parameter models, the treatment of 
the previous section is naturally extended. Basic tools for estimation are provided by 
recursive algorithms of type (2.10); however, more general methods exist and suitable 
optimization rule may be defined for their design.

3.1 Models - Given a stochastic process z, -  ARMA(p,q) with input a, ~ IN(0,o2 < «>)

and constant drift g , a general extension toward non-linearity and non-stationarity may 
be obtained by taking any bounded function h() of its regressors {z,_j,a,_;} :
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Z, =  /i (  1 , z ,_ , .........Z,_p , a ,_ , ......... a , - , ; P,) + a , , a,~IID(0,a?) (3.1)

where {(3, ,o,} =0(1) are sequences of bounded deterministic parameters. The above 
representation cannot, however, be estimated even by modern techniques of non- 
parametric regression since the regressors {a, ;} are non-observable and the structure 
of h( ) changes over time. To establish a compromise between generality and tractability 
it is necessary to follow a linear-functional approach, by considering the parameters of the 
ARMA model as bounded functions of past events. By denoting the space of past reali­
zations as 3,_,= {z,-i,z,-2. ...} , we may define

A = H(3. - 1) + .1 <t>,(3,_i)z,-, + £  9;(3,_,)a, + a,, (flt 13, _,) — IID [ 0 ,crz(3,_,)] (3.2)

A possible analytical relationship between expressions (3.1) and (3.2) follows from a 
Taylor expansion of h(x, ; (3, ) , *,' = [ 1 ,z,_,... ,...a ,_ ,l at a generic point x ,,z< t

z .= /W +  I  ♦ .W ( z, - i - z,_,)+ I  9 (xT)(a,_y- a T ) + a,(=1 j-l ‘ 1

where $,(■), 0,( ) are elements of the vector of first derivatives r)h(xjidxx. Apart from this 
loose connection, the representation (3.2) has an autonomous meaning; in particular we 
have the following characterizations :
i) model (3.2) is fundamentally nonlinear in the variables; however, conditional on the set 
of past events it becomes linear with time-varying coefficients. Assuming, for example, 
(a,|3,_i) normal, it follows that (z, |3,-i)~N[g(3,-,),Y(3,_1)] is a conditionally gaussian 
and non-stationary process (see Tjostheim, 1986a).
ii) The structure of (3.2) may be further generalized by including the influence of an 
exogenous process {e,} on the behaviour of parameters. In this case, if {a,,e,} are 
orthogonal, the space of events becomes 3, = 3“©3f where © is the direct sum operator. 
This situation occurs, for instance, in doubly stochastic systems in which parameters 
follows dynamics of the type P, = 3,-! + 8a,. , + e, for every (1 = p ,<t>. 0 .

Necessary conditions for the stochastic stability of models of type (3.2) obviously 
require that parameters p,(3,_,) be uniformly bounded in probability. Sufficient condi­
tions can be obtained from the associated markovian representation

' z, >
M 0,,'

(  „ \  
Lt - 1 0,i .... O ' a ,  '

Z.-l = 0 1 .... 0 Z,-2 + -1 .... 0 a, -2 +
a ( _

KZ'~ P * h , 0 , ..1 0 , . 0 . . - 1  0 j

namely
z, = p(3,_1) + <t>(3,_1)z,_1 + 0(3,_i)a,_, + a,

which solved for z ,,t>  0 with initial condition z0 = (p0+a„) gives
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z, = i  ri <j>, +,(Hi + a,)+ X n
i . O j . l  l - O j - 2

Thus, if {a,} is uniformly bounded in probability : sup.f’d a, ISAfJSe small, the vector 
process {z,} retains the same property if the stochastic matrices {<!>,} are uniformly 
stable in probability .Letting X.»(3,_!),/t = 1 ... p be the eigenvalues of <J>(3,_i),thecondition 
formally becomes £{|A*(3,_1) |>  1} = 0 for all k , t >0 . By defining Sp as the region of 
stability and sta tionarity of a standard AR(p) model, sufficient conditions for thestochastic 
stability of (3.2) can be restated as

m A - i ) e  $ , . /  = ! .2 . . .p
< 1 , t e T, < ool 
a 1, elsewhere J

that is the realizations of autoregressive coefficients <(>„ may locally exit from the stability 
region Sp , only for finite periods of time T, .

Although sufficient, these conditions are very demanding since they bind every rea­
lization of a vector of stochastic parameters. On the other hand, there is the need to deal 
with non-stationary processes { Z,} which are also unstable. This is possible by including 
in representation (3.2) linear factors which have roots wandering outside the unit circle :

n  [l-p ,(3 ,-.)ft]Z , = z,. £|p,(3,_,)|= lim - I £ |p , ( 3 , - i ) l |5 1 (3.3)

The fluctuations of unstable evolving roots p,(3,_,) can determine trends and cycles with 
complex transitory components, such as structural breaks and inverting slopes. With 
respect to unobserved component models of type (1.1), the advantage of representation 
(3.2M3.3) is that dynamics of parameters is not specified a-priori. In this way, it may 
capture situations in which stable roots become unstable (in probability) and vice versa.

The price to be paid for the adaptability of the above framework, is in forecasting. 
Given the functional dependence of parameters p, from the process { z,} , the definition 
of the exact expression of the predictor optimal in mean square sense is difficult. It is then 
necessary the resort to approximations which refer to existing algorithms

f,(A) = £[z,t , 13,] -  |i,(f. -  1)+ l U h  -  1 )/,(* - i ) +  X
i = l  i=h

Consistently with adaptive forecasting methods, the predictors of parameters $„(/> -  1) = 
£[p*(3i+*-i) 13,] may in turn be approximated by the last parameter estimates P,(/) 
available from recursive algorithms of type (2.10).

The situation may be substantially improved if, on the basis of the available recursive 
estimates p(t), a model for {p,} is identified and used in forecasting. This approach 
belongs to multilayer (or hierarchical) systems in which the various levels are treated 
conditional on the set of information obtained in the lower layers. For a 3-layei system in 
which information spreads as in a waterfall, we have

$„(A -l)f,t4_(+ t  %(h-t-» !)<»,♦*
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z, = M, + I'L 1 <t>„ z , + l j ‘. , 0y, a, -y + a,

= JC,' P, + a, (say)

P, = r|, + 1' l i «>„ P, , + I? - , A„x, k_h + 1 %, ©,,e, y + e,

= X,'B, + e, (say)

B, = N + I 'I , F , .B ,+ 1 ? . 1%, G; £/,_y + 1/,

with a suitable choice of the dimension of matrices. In the above system {a, , e,, U,} are 
scalar, vector and matrix white noises, which are pairwise orthogonal; some of the roots 
of the stochastic polynomials <)>,(S l) , Det[ <J>,(fT‘)] may wander outside the unit circle; 
finally, stationarity of regression coefficients is reached in the last layer.

Under regularity conditions, the selection of the orders (p,, <7,, r,) and of the lags 
bj , j  = 2 ,3 , may be obtained by typical off-line methods such as correlation functions and 
information criteria. An essential condition for correct identification is, however, that 
parameters have an average value different from zero : 0<| £ (P*(3,_,) | <<*>, where the 
operator £(■) isdefined in (3.3). The number of layers to considerdepends on the possibility 
of obtaining a series of recursive estimates { B,) which conforms to a model with constant 
parameters, although possibly unstable. Finally, the computation of the predictor proceeds 
in the opposite direction to that of building the system, that is starting from the last layer 
and using standard algorithms.

3.2 Estimation - Given a non-stationary ARM A model z, = p/x, +a, , where

jr,' = [l,z,_, ...a,_,] and p,' = ... 0,,] , the general form taken by the recursive non­
linear estimator p(t) of parameters P(3,) is given by

„ p(r) = P (/- l)  + S(0 , S(r) = f(OS(r)a(») (3.4)

(see Ljung & Soderstrom, 1983 or Young, 1984), where f(r) = r ( r - l) -A (r)  is the gain 
m atrix ,^(t) = [-3a,/3P,l3(,_l,] is the gradient and d(/) = [z,-f(r)'P(r -  1)] is the prediction 
error. It is worth noting that the gain matrix may coincide with the information (or 
covariance) matrix of the estimator and its updating mechanism is recursive like that of 
P(r); the quantity A(t) will be defined later. The one-step-ahead prediction error d(t) has 
a substantially different nature from the residual of regression d(t) = [z, -  p(/)'£(()] : the 
first is used in loss functions and measures of validation, while the second updates the 
vector of regressors f(r) = [1 ,z, ...d(t -<?)] .Finally, in case of ARMA models the analytical 
expression of the gradient is !j, =x,/0,(B) and may easily be computed on-line as £(;) = 

-  l)5(t - j )  or approximated with the vector of regressors %(t) -  x(t).
What fundamentally distinguishes the various algorithms is the way of updating the 

gain matrix. As a general remark, the necessary condition which enables (3.4) to track the 
parameter changes 5, = [ p, — p, _, ] is that f(t) be positive definite and uniformly bounded 
in probability. Formally, for any e>0 there must exist positive numbers m,,Mc (which
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depend only on e) such that

0 < rric < Mc < <*>, P\m J<nt)<M eI \ > i - t , 1 = 1 ,2 ,3 ... (3.5)

In system identification engineering, several strategies have been implemented in order 
to satisfy condition (3.5) starting from a deterministic initial condition m l < f(0) < MI ■ 
These strategies can classified into two groups, according to the fact that they intervene 
directly or indirectly on the updating mechanism f(t) = f(t -  1) — A(r).

The first group includes recursive nonlinear least squares (RNLS) algorithms in which 
observations are weighted with sequences of deterministic weights. If this operation is 
performed on past observations with exponentially decaying weights {A,_,} we have 
exponential forgetting (EF), while if it is performed on new observations with positive 
weights {p,} we have directional forgetting (DF). It is possible to conceive a filter which 
executes both operations

f(f)_1 = k f ( ( - l ) ' ‘ + p-4(')4(')', 0< p,X< 1 (3.6a)

r«-l)4(04(0'fX0 1 
x /g + 4(0 ' r ( f - i ) 4(/)J (3.66)

in this case the estimator (3.4) becomes $(/) = (5(f -  l) + pf(t)4(<)d(f). While the logic of 
discounting past observations is immediate, the meaning of the directional factor p is 
that of preserving an ideal information matrix, by selecting new observations. However, 
as we shall see in the sequel, this task may effectively be accomplished only by a time 
varying sequence.

The second group of strategies intervenes on the gain matrix by adding fixed positive 
quantities in such a way to satisfy condition (3.5). The best known method is that inspired 
by the extended Kalman filter (EKF) where

f(t) = f(< -  ~ + 1,  0 < o \ l < -  (3.7)oJ + 4(t)'f(r-1)4(0

which is consistent with the assumption of random walk parameters (3, = p,_, + e, with 
gaussian noises e, ~ IN (0 ,Z ), a, ~ INfO.cr2) . Note that the variance o2 in (3.7) plays the 
same role as does the factor p in (3.6); moreover, both parameters are not essential in 
satisfying the tracking condition (3.5).

At this point a general recursive algorithm can simply be obtained by recomposing 
equations (3.6) and (3.7), i.e. equating X/p = o2 and adding the matrix X to (3.6). However, 
the resulting algorithm suffers from redundancy and non-linearity of certain parameters. 
Simple algebraic adjustments lead to a more flexible and specialized structure which 
should have a greater adaptive capability, namely

f ( t)= |f ( t - l ) - f f ( t - 1)4(04(0' f(l)l  
HL i +4(0' f a -  i)4(o J

+ f \ f  = diag[Y|,...y)>tl+f] (3.8)
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where the choice of r  = diag tries to establish a compromise between flexibility (r  = I) 
and parsimony 0T = y/). At the interpretative level, estimator (3.4M3.8) is consistent with 
an hypothesis of evolution of parameters given by the sum of stochastic components with
different dynamics. By defining the set = {z,...... z,} , we may write, in fact, 13(f) =
A(3!IT) +/„(3 ; :7 ) + / / 3 ; ) where A( ) is a function which depends on coefficient X and 
m = (l +p + q) is the dimension of %(t).

Useful extensions of the unified algorithm can be obtained from techniques recently 
introduced in signal processing, such as multistep filtering (see Benveniste, 1987) and 
on-line robustification. Both these modifications regard the structure of the estimation 
equation (3.4); in particular, they intervene on the increments $(r). Multistep extension 
introduces dynamics by multiplying 8, by a stable filter a(B) ; on-line robustification 
regularizes estimates by censoring anomalous prediction errors a(t)‘ . If dynamics are 
second order and robustification is based on the two-sigma rule, the estimation equation 
becomes

P(O = P(t-l) + (l+a,B+0qfi2)-r(t)4(O[p(Oa-(O] (3.9a)

M(0 =
1

20(1-1)| a-(or'
if I à(t) |<2à(t -  1) 
if I à(t) I >2ò(t -  1) (3.9b)

à(t)2 = A. à(t - 1)2 + (1 -  X) [ g(t)à(r)]2 (3.9c)

In this framework, robustification is consistent with assumptions of smooth evolution of 
the regression coefficients and of the innovation variance af = E(a2) . Indeed, filter (3.9c) 
is a robust adaptive estimator of such a variance since written in a compact form it becomes 
d(i)2 = ( l - X ) H ,1X'"'[p(()d(/)]2 where (1 /IU , V~’)-> (1 -A.) as t - > ~ .

It is important to stress the meaning of the censoring factor p(<) since, as regards the 
RLS algorithm (3.6), it has a role similar to the directional forgetting coefficient p . However, 
in the context of the covariance matrix (3.6b), the efficacy of the factor XI yL(r) in terms of 
regularization of recursive estimates and the fulfilment of condition (3.5) is not important 
since it is absorbed by other stochastic quantities. Moreover, the gain matrix (3.8) does not 
coincide with the covariance of estimates (J(z) and the role of coefficient p in (3.8) is not 
the same as that in (3.6). These remarks lead us to conclude that if outliers are not present 
in observable data { Z,} , but depend on parameter changes, then on-line robustifica tion 
may be concerned with the estimation equation (3.4) alone.

Algorithm (3.8M3.9) involves 5 + p + q unknown coefficients, whose range of varia-« »
tion, except for 0 < X < 1, is somewhat wide. Until now, in system identification literature* 
only heuristic rules have been provided for their design; using experimental informa tion 
their ideal ranges have been defined as Xe [.95,.99] , p e [ .1 ,.5] , ye [.0,.1 ] (see Ljung 
& Soderstrom, 1983). Given a sample realization 3W = {Z,...... ZN} , it is however appro­
priate to face the problem in terms of parametric estimation, by optimizing a suitable loss 
function. Squared prediction errors and recursive residuals provide natural building 
blocks, but it must be recalled their nature is substantially different. While the variance
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of the a-posteriori errors d(t) may be reduced to zero by accordingly increasing Detf(t) 
(i.e. D , the same adjustment is never possible for the a-priori errors d (t) . In practice, the 
two kinds of errors coincide in a situation of constant parameters, but in the case of 
non-stationarity only prediction errors retain a meaning in terms of goodness of fit. A 
sensible criterion to the estimation of the tracking coefficients of algorithm (3.8M3.9) is 
therefore

[£,p,Y1,a lla2;yo,|}o>do]w = argminj0* = i I ^  [z,-f(/)'|)(r -  l)]2} (3.10)

this belongs to conditional least squares (CLS) strategies discussed by Klimko & Nelson 
(1978) and Tjostheim (1986b), where conditional refers to the set of past information : 
d, = [z,-£(z, |3,_,)] . Since starting values f5(0),f(0),d(0) have a significant role on the 
statistical performance of recursive algorithms, they have been included in the estimation 
problem (3.10) as unknown coefficients Po.Yof ,Oo • The direct estimation of initial values 
entirely avoids problems of transient behaviour and error propagation involved in heu­
ristic solutions such as applying diffuse priors for f(0) as suggested by Harvey & Peters 
(1990). There should not be specific problems of parametric identifiability involved by 
Po, y0, o0; however, to avoid problems in this sense rules of parsimonious parametriza tions, 
such as f  (0) = f  = y l , or constraints on (V = [ Mo. <t>io...... 0,o] / must be followed.

3.3 Application - In this section we apply the adaptive framework discussed above 
to the models introduced in sub-section (2.2). The solution of the estimation problem (3.10) 
applied to the airline model in additive form : Z, = Ti+<t>Z,_, + <!> Z,_12 + 0a,_i + 0a,_12 + a, 
provided disappointing results. Despite the statistical significance of many tracking 
coefficients, the value of the statistic QN = 14,520 remained superior to that of model (2.5b) 
with constant parameters. Thus, a time varying parameter modeling did not seem 
appropriate for the airline data-set, at least without differencing the series. In order to 
check this first impression we have focused on the first order model : Z, = <J>,Z,_12+z, ; 
estimation results are given in Table 1

Table 1 - CLS estimates of the coefficents of algorithm (3.8)-(3.9) applied to model (2.6a).

Coeff. <*>0 Yo O? X h «2 Qn

Estim. .986 .350 2.281 .985 .453 ,18£-4 .471 -.570 16,149
(419.) <21.) (179.) (930.) (87.) (25.) (41.) (48.)

In this case, the results are very encouraging since the statistical performance in terms of 
Qn improves by about 50% over the constant parameter model (2.6a). This is a result of 
absolute merit since, unlike standard robustification methods, the statistic Q„ in (2.10) is 
not concerned with censored prediction errors [ ji(/)d(!)]2 .

As a comment to the values of Table 1 we may note that tracking coefficients belong 
to their ideal ranges; however, even small changes by the more significant among them 
(such as X) may drastically worsen <2„ . The contribution of coefficient y,, which accounts
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for the component Z = y,/ of the extended Kalman filter (2.7), is not very important. This 

means that the dynamics of parameter { 0,} are more complex than the random walk and 
updating of f(i) based on the addition of fixed quantities is too rigid. By contrast, a 
significant role is played by coefficient o0 which concerns the robustification mechanism; 
without robustification the value of QN becomes 18,130.

Figure 8 shows the paths of basic components of algorithm (3.8)-(3.9) implemented 
with coefficients of Table 1 . We have : (a) parameters estimates 4>(i) ; (b) gain "matrix" 
t( t)  ; (c) censored errors jjft)â(t) ; (d) robustified increments S(r) ; (e) prediction errors 
and ±2ô(f) bands ; (f) recursive residuals â(t) and "residuals" {z,} of model (2.6a).

Figure 8 (a,b,c,d,e,f) - Time paths of components of algorithm (3.8)-(3.9) generated with coeffi­
cients of Table 1 :(a)3(t); (è)fXO; (c)fi(r)Æ((); (d)S(r); (e)a(t),±2â(t) ; (f)â(t),z
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As a possible criticism to the above exercise, one may argue that a time-varying model 
Z, = <I>, Z, _ 12 + z, which achieves the perfect fitting z, = 0, V t can be obtained simply by the 
parameter sequence = Z,/Z,_i2 . In reality, this approach may be implemented only in 
first order models and, more importantly, it regards recursive residuals (i.e. a-posteriori 
errors) but not prediction errors. The value of statistic QN corresponding to this approach 
was indeed X, [Z,-4>,'_,Z,„, 2] =21,610, significantly worse than that ofTablel. The reason 
for this "paradox" can be explained by Figure 9 which plots the series { 4>(t), <i>*} : as we 
may see the pattern of the second is much more erratic. This confirms the importance, for 
the tracking and forecasting capabilities of adaptive algorithms, of regularization me­
chanisms such as robustification (3.9c).

Figure 9 -Time paths of recursive estimates [<t>(r)___; <S>* — ].

The attempt to improve results of Table 1 led us to consider more complex systems, 
such as

Z, = T\, + <t>,Z,_l2 + z , , Z, = 0,Z,_n + Qle,_n +e, (3.11)

Estimation results, obtained by minimizing (3.10) with the Davidson-Fletcher-Powel al­
gorithm combined with the golden steplength search, are given in Table 2. Best perfor­
mance in the estimation of the ARMA model (3.11) was provided by the pseudolinear 
implementation, which approximates the gradient as ^(r) = f(r) = [z, _12, e(r —12)]' . The 
paths of the implied recursive estimates are shown in Figure 10 (a,b).

T able 2 - CLS estimates of the coefficents of algorithm (3.8)-(3.9) applied to models (3.11).

"Ho / 4>o Yo o? X Y, a, «2 Q,

1.522 .974 .250 2.25 .985 .421 .14E-4 .512 -.605 15,930
-.760 1.13 .021 1.92 .988 .581 .11E-3 -.244 .046 14,890

The improvements for the statistic Q* in Table 2 as compared to Table 1 are not very 

significant and the constant parameter model (2.5a) still retains the best performance .
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Figure 10 (a,b) - Paths o f recursive estimates o f  (t) ;<I>—],['!> ; - 0 —] in models (3.11).

For this reason, we have chosen to model the "residual" series z, = [Z,-4>(t -  1 )Z,^12] =a(t), 

displayed in Figure 8e,by an ARMA with constant parameters:

f ,=  .183 158 a, 4-.589 + a , , Qv=ll,893 (3.12)
Cl) (19) (5.9)

The recursive estimation of this model has confirmed that the series { z,} is nearly sta­
tionary in covariance, since it provides the values Q h  = ll,524and (Yo = Yi) = 0.0.However, 
the important point here is that the strategy of sequential filtering Z, —> z, -> a, seems 
essential for adaptive methods to monotonically improve the prediction statistic Q„ . 
Recall, in fact, that adaptive estimation of the joint model (2.5b) in additive form provided 
the disappointing value Q» = 14,520.

In the context of multilayer modeling we have identified an ARMA model for the 
recursive estimates 4>(r). Its structure is strongly influenced by the multistep filter a(B) 
included in the adaptive algorithm (3.9a) and by the MA(12) component left in the series 
zWR):

<i>(r)= 1.001 4>(r-l)+ . 2 9 1 4 3 8  e,.2~ .267 e,_,2 + e,, (2V = .068 (3.13)
(«■> (3.1) (4.8) (2.8)

Adaptive estimates of the above model without the MA(12) component are given in Table 
3 (the tracking coefficients of the algorithm) and Figure 11 (the recursive estimates of 
parameters). These confirm that even the series <J>(r) is nearly stationary and therefore 
the multilayer model building stops here.

Table 3 - CLS estimates of the coefficents of algorithm (3.8)-(3.9) applied to model (3.13).

Grad. 4*0 Yo o; X Y, Qv

K 1.008 .635 -.458 .413 .015 .944 .598 .007 .063
X, .998 .740 -.348 .154 .013 1.03 .241 .472 .061
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Figure 11 - Paths o f recursive estimates o f [ <)>,__ ; — ; 02.... ] in model (3.13).

We conclude the application by evaluating the forecasting capability of the above 
framework. The sub-optimal adaptive predictor for series {Z,} is defined as

t](h) = 0,(ft) 2,'(ft -12) + z,(h) , A = 1 ,2 ___

where 2](h -  l2) = Z,th. n for ft < 12 and 4>,(ft),z,(ft) are standard predictors of the nearly 
stationary models (3.12)-(3.13). Figure 12 compares the MApE statistics (2.7) of the pre­
dictor T,(h) with those of the constant parameter models (2.4) (Box-Jenkins) and (2.5b) 
(unconstrained). The adaptive predictor uniformly provides the best result, but it should 
be recalled that this is obtained by a system which involves 15 parameters. On the other 
hand, some of these parameters do not seem essential, such as y,, al , and a good trade-off 
between efficacy and parsimony may be achieved. In this paper we have provided some 
examples of adaptive estimator modeling; the important conclusion is that such algorithms 
may run on time series containing unstable components. However, more radical modi­
fications are still possible which may further improve the forecasting capability of dynamic 
models.

Figure 12 - Plot of statistics (2.7) for models [(2.4)__ ; (2.5b) — ; (3.12,13) -.-.-].
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