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INITIALIZING THE KALMAN FILTER WITH INCOMPLETELY SPECIFIED INITIAL
CONDITIONS

Victor Gómez, Instituto Nacional de Estadistica, Madrid
Agustin Maravall, European University Institute, Badia Fiesolana, 1-50016, S. Domenico di 
Fiesole (FI), Italy

Abstract

We review different approaches to Kalman filtering with incompletely specified initial conditions, 
appropiate for example when dealing with nonstationarity. We compare in detail the transformation 
approach and modified Kalman Filter (KF) of Ansley and Kohn, the diffuse likelihood and diffuse KF 
of de long, the approach of Bell and Hillmer, whereby the transformation approach applied to an initial 
stretch of the data yields initial conditions for the KF, and the approach of Comez and Maravall, which 
uses a conditional distribution on initial observations to obtain initial conditions for the KF. It is 
concluded that the later approach yields a substantially simpler solution to the problem of optimal 
estimation, forecasting and interpolation for a fairly general class of models.
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1. Introduction

We consider observations generated by a discrete time state space model (SSM) such that 
the initial state vector x0 has a distribution which is unspecified. We will further allow for 
unknown regression type parameters. Examples are non-stationary time series which follow 
an ARIMA model, regression models with ARIMA disturbances, structural models (as in [8]) 
and ARIMA component models, among others. In all these cases it is not possible to initialize 
the Kalman Filter (KF) as usual, by means of the first two moments of the distribution 
of x: , because they are not well defined. Therefore, it is necessary to incorporate new 
assumptions in order to deal with this initialization problem.

Among the different alternatives that have been proposed in the literature, we will focus 
on the transformation approach of Kohn and Ansley, the diffuse Kalman filter (DKF) of de 
Jong, the initialization procedure of Bell and Hillmer and the approach of Gomez and 
Maravall, based on a trivial extension of the KF, to be denoted the Extended Kalman Filter 
(XKF), with a distribution defined conditionally on the initial observations. There are other 
approaches as well, like the so called "big k" method (see, for example,[5] and [7]). This 
method uses a matrix of the form kl to initialize the state covariance matrix, where k is large 
to reflect uncertainty regarding the initial state. The big k method is not only numerically 
dangerous, it is also inexact. An alternative to the big k method is to use the information filter 
(see [I]). However, as seen in [2], the information filter breaks down in many important 
cases, including ARMA models.

The paper is structured as follow's. In Section 2 we will define the SSM and consider some 
illustrative examples. In Section 3 we suppose that the initial state vector x0 is fixed, define 
the likelihood and show how the XKF and the DKF can be used to evaluate it. In Section 4 
we will deal with the different approaches to define and evaluate the likelihood of the SSM 
in the case when there are no regression type parameters and the initial state vector has an 
unspecified distribution. In Section 5 we will extend these results to include regression type 
parameters.

2. State Space Model

DEFINITION 1. A vectorial time series v -  (v',..., v'Ny is said to be generated by the State 
Space Model (SSM) if, for f -  1 ,...,N  ,

v i ” X,P + C'X'+Z't^', W ^P + ^ m + H,

where x0-B  8 , NiiiKO, a 2/)  , t -  0,...,N  , 8 ~ N (c ,o 2C) with C nonsingular or C 
= 0, 8 and ^ -( i^ ,. . . ,^ )2 are independent, B is of full column rank and p is a vector of 
fixed regression parameters. Also, Var(v) is nonsingular if C = 0.

This definition is similar to the one in [13]; the vector 8 models uncertainty with respect 
to the initial conditions. Following [13], we will say that 8 is diffuse if C'1 is arbitrarily close 
to 0 in the euclidean norm, denoted C -» °° . Contrary to de Jong, we will always suppose 
that P , the vector of regression parameters, is fixed; considering p diffuse introduces 
confusion as to what likelihood should be used and it affects neither the equations nor the

1
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computations with the DKF, to be defined below.
The formulation we use for the SSM has the virtue of explicitly separating the time- 

invariant "mean" effect (5 from the state vector x, , keeping its dimension to a minimum. 
Choosing adequately the matrices X(, W(, Ht and Zf , appropiate components 
of (3 and ^  can be excluded from or included in each equation. Thus, the specification 
covers the case where the mean and disturbance effects in each equation are distinct.Two 
simple examples will illustrate the definition.

EXAMPLE 1. Suppose a regression model with random walk disturbance and scalar v ( ,

V (v,-y ;p) -  fl,, (2)

where V -  1 -  L , L is the lag operator (L(vf) -  v ) , and the a~ N(0, a 2) are 
independent. Model (2) can be put into state space form by defining X, = y,', C, = 1, Z, = 0, 
W, = 0, A, = 1, H, = 1, xt -  v t -y 'p  and ^  t -  a, • That is,

X. “  + a, (3a)

V '- i / 'P + x ,  (3b)

For initialization, we make A„ = 1, H0 = 1, W0 = 0, B = 1 and x0 -  8 . Therefore, the first 
state is x, - 5  + flj and 8 is in this case equal to the initial state. Because (x() follows the 
non-stationary model (3a), the distribution of 8 is unspecified. □

EXAMPLE 2. Suppose Example 1, but with V replaced by 1 -p L  , where lpl<l .Then, 
we have a regression model with AR(1) disturbances. The SSM is

x , -  P + a,

and (3b). For initialization, we make Aq = 1, H0 -  1 /\jl -  p2 , W0 = 0, B = 1 and x0 -  0 
(c = 0, C = 0). In this case, (x t\ follows the stationary model (4) and we can use the first two 
moments of x t , namely E(xt) -  0 and Var(x ) -  o2/ ( l - p 2) , to set up the initial 
conditions. The first state is x, -  ( 1 / y l - p 2 )aJ . □

A representation which will be very useful in what follows is given by the next theorem.

THEOREM 1. If v -  (v',..., v'N)' is generated by the SSM (1), then v -  R S + S p+ e  , where 
the rows of S are

s, - x 1+c ,w 0 
s2 -  x2 + c2(w1 + a , w0)

+ c N{ wN_, + an_, wn_2 +... + (An_v..A,) w0}

and those of R are

2
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R. -  C A . , ... A.B,l f 1—1 O ' '

Besides, e~ N (0 ,o2£ )  with £  nonsingular and Cov(&, e) - 0  .

PROOF. The expressions for and R: are obtained by repeated substitution using (1). 
The vectors £. are linear combinations of ..., ̂  , i -  1,... ,N  . □

3. Fixed Initial State

If 8 is fixed (C = 0), then 8 -  c and the representation of Theorem 1, v -  R8 +Sp + e , 
constitutes a regression model where the distribution of e is known. If we define 

X -  (R, S) and y -  (S', (P)', then the log-likelihood of this model, based on v , is 
(throughout the paper all log-likelihoods will be defined up to an additive constant)

X(v) - -ijMlnfo2)* M lM v-Xyyz-’fv-XYJ/a2},

where Var(v) -  a 21 and M denotes the number of components in v , the vector of 
stacked observations. The maximum likelihood estimator of o2 is

d2 .  (v -  XyyE~’(v -  X y )/M  . (5)

Substituting d2 back in X(v) yields the o2 -maximized log-likelihood :

/(v) -  - l fM ln (d 2) + lnl£l} .

It turns out that we can evaluate /(v) efficiently using the KF.

DEFINITION 2. The Kalman Filter (KF) is the set of recursions

e, - v.-x.p-c.i, ,,, D, - c,p1Mc;+z,z;,

G, -  ( \ P t, S \ r  HtZ [)D ;\ t M t -  w,p + V t M  + G,e,. 

pM, -  ( A - g ,c ,)p u _1a ; + (h 1- g1 Zt)H(',

(6)

with starting conditions x, 0 -  Wc(i *A QB& and P, 0 -  H0H' .

Here i  is the predictor of using (v ',...,v j y and Var(ff - x  ) -  P . 
The et are the errors of predicting v, using (v ',..., v ' t )' . They constitute an orhogonal 
sequence with E(et) -  0 and Var(ef) -  Dt, as given in (6). Note that we have supposed 

o 2 -  1 in the equations (6) because we will estimate a 2 using (5). It can be shown (see, 
for example, [13]) that if e -  (e'v ...,e'N)f , then there exists a lower triangular matrix K with 
ones in the main diagonal such that e - K ( v - X y )  and KZ K' =D= diag(Dy D2,...,D N) . 
Therefore, Z ’1 -  K 'D -'K  and d2 -  e'D-’e /M , lnlZl -  lnlD,l+ lnlD2l+ ... + lnlDNl.

In the case of scalar v ( , the Dt are also scalar and we can obtain a "square root" of Z by

3
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putting X '1/2 -  D t,2K . Then, we can use a vector of standardized residuals e -  D ',/2e 
such that 62 -  e'e / M and maximizing /(v) becomes equivalent to minimizing the non
linear sum of squares

S(v,y) -  ( n  ID2/2I)1/M e'e ( ID'/2I),/M .
f-i i-i

For vectorial v ( , suppose that in each step of the KF, in addition to Dt , we also obtain, 
by means of its Cholesky decomposition, a "square root" D(I/2 of D , t -  1 .Then,
the matrix D1/2 -  diag(Dj/2,Dj/2,...,D j|/2) is a "square root" of D and we can proceed as 
in the scalar case to evaluate S(v, y ) .

EXAMPLE 2 (Continued). In this case 8 - 0  , so that, by Theorem 1, we have 
v -  Sp + e . The initial conditions for the KF are xt a -  0 and P, 0 -  1/(1 -p 2) . Then, 

the KF gives

e, -  v . - X . P D , - l / ( l - p 2), D( -  1, f > 1,

G. - P '  *M,t~  P Pe,’

p, o - 1 / d - P 2), P , . „ -  l . t > 0  .

The vector of residuals is e - K ( v - S p )  , where

1 0 0 .. 0 o’

-P 1 0 .. 0 0
K - 0 -p 1 .. 0 0

0 0 0 .. -p 1

and the vector of standardized residuals is e -  DA/2e , with ex -  (v1 -y 'p )y l  - p 2 and 
e, -  (v ( -  y 'P ) -  p (v(1 -  y ' .p ), t > 1 . The nonlinear sum of squares is

S (v ,y ) -  (1 /^1  - p 2 ),/N e'e (1 /^ 1  - p 2 ),/N . □

We can concentrate y out of S(v,y) if we replace in S(v,y) y by its maximum 
likelihood estimator ‘j/ , which is the generalized least squares (GLS) estimator of the model

v -  Xy + e . (7)

We now show how to obtain by means of the XKF. From what we have just seen, it is 
clear that the KF can be seen as an algorithm that, applied to a vector v of the same 
dimension than v , yields Kv and D. The algorithm can be trivially extended to compute 
also D1/2 . Therefore, if we apply this extended algorithm in model (7) to the data v and 
to the columns of the X  matrix, we obtain D"1/2Kv -  D~,/2KXy + DA/2Ke , where 

Var(D-,/2Ke) - o2 \m, and we have transformed a GLS regression model (7) into an

4
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ordinary least squares (OLS) one. The estimator y can now be efficiently and accurately 
obtained using the QR algorithm. Supposing X of full column rank, if p is the number of 
components in y , this last algorithm premultiplies both D '1/2Kv and D '1/2KX  by an 
orthogonal matrix Q to obtain (0 -  QD“1/2Kv and (U ',00' -  QDAnKX , where li  is a 
nonsingular pxp upper triangular matrix. Then ^ -  (J4 0)] , where to, consists of the 
first p elements of 0) , and we can evaluate

s(v,?>  -  ( n i D t,/2Di/M cd' coj ( n |D ;« iy /“
i- 1 i-i

where co2 consists of the last M - p elements of to .

DEFINITION 3. The Extended Kalman Filter (XKF) is the KF (6) with the equations for 
et and xM t , respectively, replaced by

E, -  (v „ 0 ,X t) - C ^ IM, XM1 -  (0 ,0 , -W,) + , ,  + G,Et<

with starting condition X, 0 -  (0, -A0B, -W0) .Also, D’/2 is computed along with Dt .

The columns of the matrix Xt contain the state estimates, and those of Et the 
prediction errors, corresponding to the data and to the columns of the X matrix, respectively. 
The XKF has been suggested in [15] and [19]; it has been generalized to the case of a rank 
defficient X matrix in [6],

EXAMPLE 2 (Continued). Applying the XKF with starting condition X, 0 -  (0 ,0 ) , we get

E, -  <v.,y;)-xu , ,  £, -  DA% , xMt -  Px,,_, + P£, .

This implies Et -  (v, -  p vt_,,y( -  p y '. ,), f > 1 , and E, -  (vi ;y ') . The GLS model 
v -  Sfi + e has been transformed into the OLS model

VlV/ l - p 2 y,V i -  p 2

V2- p Vl
- p y( p

% - P VN-l_

Consider now predicting the state xt using (v ',v ', . . . ,v | /  . This is equivalent to first 
predicting xt using ( y ',v ' ,v ' , ... ,v 'j ) ' , and then predicting this predictor using 

(v '; v ' , ... , v ' t )' . The first mentioned predictor is 5((1 , as given in (6). It is easy to check 
that Xlt l( l ,  - y 'y  , where X is given by the XKF, verifies the same recursion and 
starting condition as SM] and hence i  " X1(1( l , - y 'y  .Thus, * -  Xt , . ,0 ,  - y ' l  is
the predictor we are looking for. Its mean squared error (Mse) is

5
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Mse(*u_, ) -  V a r i * , - -  Vari*,-* , ,_,) +Vari*, ,
- a2P„.1+Var{x,,_1(0,(?-Y)'y}

-  a 2P,,_1+X(Y),,_1Mse(Y)X(y);,.1,

where X(Y), is the submatrix of X,, , formed by all its columns except the first, and 
Mse(Y) -  aHWU)-'. If v, is the predictor of v, using ( v ',v ',... ,v'_,Y , then it can be 

shown analogously that v , - v ,  -  E ,( l,-^ ') ',  Mse(v,) -  o2D, + E(Y),Mse(^)E(Y^, 
where Efy), is the submatrix of E, formed by all its columns except the first.

The DKF of de Jong can also be used for likelihood evaluation when C = 0, although, as 
we will see, it has other uses as well.

DEFINITION 4. The Diffuse Kalman Filter (DKF) is the XKF without the computation 
of D,1/2 and with the added recursion Qu] -  Q, + E'D,"1 E,, where Q, -  0.

Given that (v - X ^ y i  '(v  -  X f) -  q -s 'S~ 's  , where q -  v ' I J v , s -  X'I.~ 'v, and 
S -  X 'Z _1X, the Q, matrix accumulates the partial squares and cross products and

Qn.i
<7
s

s'
S

(8)

Therefore, the DKF allows us to evaluate the (a2, y)  -maximized log-likelihood, given by

1 N--L(Mln((I?-s 'S - , s ) /M ) + X>ID,I1 .
2 i-i

EXAMPLE 2 (Continued). The DKF gives, besides E, and XM , , computed as in the XKF, 
the quantities Q, . In this case,

(1 - p 2)v2 + X )(v , - P v,-,)2
t -2

N N

(i - P 2)v,y1+ E ( v , - p v , . 1)(y,-py,.1) O -v 2)y,y[ + E  (y.-py.^Ky.-py,.,)'
t-2  t-2

The estimator ^ is obtained by solving the normal equations of the regression, Sy -  sv . 
However, to solve the normal equations this way can lead to numerical difficulties because 
what we are doing is basically squaring a number and then taking its square root. It is 
numerically more efficient to use a device such as the QR algorithm or the singular value 
decomposition, once the XKF has been applied. Another alternative, but computationally 
more expensive, is to use a square root filter version of the DKF.

4. Initial State with an unspecified distribution. No regression parameters

6
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In this Section, we suppose that 5 in x0 -  B5 has an unspecified distribution, that 
is 5 -  N(c, a 2C) with C nonsingular. We also suppose that there are no regression 
parameters and, therefore, W| -  0, and X( -  0. Then, Theorem 1 implies

v -  R5 + e . (9)

Ansley and Kohn [2], hereafter AK, define the likelihood of (9) by means of a 
transformation of the data that eliminates dependence on initial conditions. Let / be a matrix 
with l/l -  1 such that JR has exactly rank(R) rows different from zero. Such a matrix always 
exists. Let /, consist of those rank(R) rows of /  corresponding to the nonzero rows of /R and 
let ]2 consist of the other rows of /  so that ]2R -  0 . AK define the likelihood of (9) as the 
density of J2 v . We will show later that, under an extra assumption, this definition does not 
depend on the matrix /. To evaluate the likelihood, however, and merely for algorithmic 
purposes, given that the transformation usually destroys the covariance structure of the data, 
they use an equivalent definition of the likelihood and develop what they call "modified 
Kalman Filter" and "modified Fixed Point Smoother" algorithms. The modified Kalman Filter 
is of considerable complexity, difficult to program and is less computationally efficient than 
the procedure in [6], when applicable, or the DKF. Also, it does not explicitly handle fixed 
effects and requires specialized assumptions regarding the SSM (see [14]).

Another approach to defining the likelihood of (9) is that of de Jong [13], where 8 is 
considered diffuse by letting C —»°° . In order to take this limit we need the following 
theorem.

THEOREM 2. Let 8 ~ N(c, o2C) with C nonsingular. Then, the log-likelihood of v is

Mv) -  -ifln IC I + lnlo2 Sl + lnIC'1 + R '1 '’Rl 
2

+ {(8 -cyc-'(8 - c l e f v - R S y i - ’fv-R5)} /a2),

where 8 -  (C '1+R'X"1R)"1(C", c + R/X"1v) and S coincides with the conditional expecta
tion E(8lv) .Also, Mse(8) -  Var(5lv) -  ct2(C*’ + R 'lP’R)"1 .

PROOF. The density p(v) verifies p(8lv)p(v) -  p(vlS)p(8) , where the vertical bar 
denotes conditional distribution. The maximum likelihood estimator 8 of 8 in the left hand 
side of this equation must be equal to the one in the right hand side. Given that the equality 
between densities implies

(8 -E (8 lv )yn -^(5  -E (S lv)) + (v -R c Y Q ftv  -R c )
-  (5 -c)'C -'(8  - c )  + (v -R S y i- ’J v -R S )  ,

where f)8|v and £Jy are the covariance matrices of p(8lv) and p(v) , respectively, the left 
hand side is minimized for 8 -  E(8lv) . To minimize the right hand side, consider the 
regression model (d  , \ 'Y  -  U,R'y& + v , v~  N(0,diag(C,£ )) . Then 8 is as asserted 
and Var(8lv) -  Var(S) -  o2(C-’ + R 'l  ’R)-1 . □
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THEOREM 3. With the notation and assumption of Theorem 2, if R 'Z 'R  is nonsingular, then, 
letting C - » o° ,w e have

Mv) + i  lnICl-» - i { ln lc 2El+lnlR'E ’RI+ (v - R S y z ’tv - R S) / o 2},
2 2

8 ->S -  (R 'S-’R r 'R 'I - 'v ,  Mse(S) ->Mse(S) -  a 2(R 'I  ’R)"1.

PROOF. It is an immediate consequence of Theorem 2. □

It is shown in [13] that Wv) + (l/2)lnlC I tends to a proper log-likelihood, called the 
diffuse log-likelihood. By Theorem 3, in order to compute it, all we have to do is to 
consider 5 fixed in (9) and apply the methodology of Section 3. If the XKF is used, then, 
with the notation of Section 3, the results of Theorem 3 can be rewritten

X(v) + — lnICl —> - i  
2 2

8 ->8 -

M ln(o2 ) + 2 lnlD'/2l + lnl till + w'1w1 / o2
f-1

U~'w , Mse(S) —»Mse(8) -  a2(U'U) x,

whereas if the DKF is used, then, with the notation of (8), we obtain

X(v) + 1  lnICl 1»
2

>8 -  S~'s,

M Into2 ) + lnIDJ + lnlSL (q - s'S 1 s> / a 2 ,
f-1

Mse(8) —>Mse(S) -  a 2S“’.

If S in (8) is singular, de Jong leaves the diffuse log-likelihood undefined. In order to define 
the limiting expressions of Theorem 3 when S is singular, we have to consider model (9) with 
an R matrix that is not of full column rank. Let K be a selector matrix formed by zeros and 
ones such that KSK' has rank equal to rank(R) and replace model (9) by

v -  RK'Sj + E , (10)

where 81-N (c ,o 2C), with C nonsingular and 8, is the vector formed by choosing those 
components in 8 corresponding to the selected columns R K1 . This amounts to making the 
assumption that the other components in 8 cannot be estimated from the data without 
further information and are assigned value zero with probability one. The next theorem 
generalizes the results of Theorem 2 to the case of a possibly singular S matrix.

THEOREM 4. Suppose model (10) with the convention that ifR  is of full column rank, then matrix 
K is the identity matrix and 8 , - 8  . Then, with the notation and assumptions of Theorem 3, 
letting C —> °° , we have

X(v) + i  lnICl -> - 1{ lnl a 2 £ 1+ lnl RR'E-1 RK'I+ (v -  RS Yz (v -  RS ) / a 2},
2 2

8 ->S -  (R'E-’RJ-R'E-’v , Mse(S) ->Mse(S) -  (R 'Z-’R)'.
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where IR 'Z ^ R Y  -  K' IKIR 'T.' R)K'Y' K and 8 and 8 are interpreted as the particular 
maximizers obtained by making zero the elements not in 8, and 8, , respectively.

PROOF. The only thing that needs to be proved is that IKR'Z^RK'I does not depend on 
K. This can be seen in [18, p 527], □

The next theorem shows the relationship between the likelihood of AK and the diffuse 
likelihood of de Jong. When S is singular, we take as diffuse log-likelihood the one given by 
Theorem 4.

THEOREM 5. Let ] be a matrix with l/l -  1 like those used by AK to define their likelihood, and 
let /j and j2 be the corresponding submatrices such that /,R # 0 and J2R -  0 .I f ply) is the 
density of v when C is nonsingular, as given by Theorem 2, and pll2 v ) is the AK likelihood, then, 
letting C —>°° , we have

la2CP/2p(v) -»{n( /(27c)d/2}p(/2v) ,

where IT( is the product of the nonzero eigenvalues of the matrix R‘I[J^R and d is the number of 
columns of R, rank(R)<d .

PROOF. Let /  be as specified in the theorem. Then, p(v) -  P (/v ) because l/l -  1 . 
Permuting the rows of /R if necessary, we can always suppose that /,R are the first rows 
of ]R. This amounts to premultiply /R by a matrix P obtained from the unit matrix by 
performing the same permutations. Given that P is orthogonal, we can take P] instead of /. 
Let K be a selector r x d  matrix, where r = rank(R), and consider model (10). If R is of full 
column rank, then K = ld and r = d. That the determinant IK'R'J'/jRK'l is equal to the 
product of the nonzero eigenvalues of R'/J/jR can be seen, for example, in [18, p 527], 
Let fR K ' -  M .If -  /  £ / '  and we partition -  (£Y.) , I j 1 « (Ql?) , i , j  -  1,2 , 
conforming to /  -  (/', / ' /  , then, by Theorem 4, the log-likelihood of v verifies

Mv) + 1  lnICI - » - i { ln la 2i l22( n , , )- 'U ln lM 'n 1,MI+ (/2v ) 'n -’(/2v ) / a 2} .

Ansley and Kohn [2], make the following assumption.

Assumption A. Matrix R in (9) and (10) does not depend on the model parameters.

This assumption holds in many practical situations, including the examples of Section 2.

COROLLARY 1. If Assumption A holds, then the AK likelihood does not depend on the matrix /.

PROOF. It is an immediate consequence of Theorem 5. □

Even if Assumption A holds, Theorem 5 shows that the diffuse log-likelihood and the AK 
log-likelihood, when maximized with respect to a2 , do not give the same results. The
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difference lies in the term M Into3) in the a 2 -maximized diffuse log-likelihood 
versus (M -d ) ln (a 2) in the AK log-likelihood, where 62 -  (1 /M )(q  - s'S~s) and 

d2 -  (1 / ( M - d ) ) ( q -  s 'S 's) . This is a consequence of de Jong taking the limit 
of Wv) + (1/2 ) lnICI instead of Mv) + (1 /2 ) lnlo2CI in Theorem 4. We think that it would 
have been more appropiate to do the latter than the former. For instance, when dealing with 
an AR1MA model, the AK likelihood coincides with the usual Box-Jenkins likelihood (see [4]), 
whereas the diffuse likelihood does not.
We now consider predicting the state xt and v, using ( v ' ,v ' , . . . ,v ' ,)' . The next two 
theorems give the details.

THEOREM 6. Let 5 ~ N (c ,o 2C) with C nonsingular and let h t, x t and v l be the predictors 
of S , x l and v using (v ', v ' , ... , v ' , respectively. Suppose the XKF or the DKF is applied and 
let X(8)( |]  and E(8 )f be the submatrices formed by all but the first columns of X[M and Ef , 
respectively. Then

8, -  (C-1+ Ri/E ;, Ri)-, (C-ic + r ;Z ;, v ,) , Mse(S,) -  a 2(C 'T + R 'l j ’R,)’1,

, Mse(x11_ ,) - o 2P1M+X(S)u ,M se(8 1)X(SyiM ,

V( - Vf = E,(1 ,-8 'y , Mse(vf) -  o2Dl + E(5),Mse(8,)E(5);, 

where Rt is the submatrix formed by the first t rows of R and £ ( -  o -2 Var((.Elv ...,elf/).

PROOF. The first two equalities are a consequence of Theorem 2. The other expressions can 
be proved as the corresponding ones for the case C -  0 in Section 3 . □

THEOREM 7. With the notation and assumption of Theorems 6 and 4, if the rows 
of X(5)tt , and E(5)t are in the space generated by the rows of (R'tT.~'Rl)~ , then, 
letting C —»“  ,

8, ->8, -  ( R ^ ’R . r R ^ ’v, , Mse(S,) ->Mse(S,) -  o2(Rt'E ;, R,)-,

V i  ->*t._i( l , - S 'y  , Mse(x11_1) ^ a 2P11_1+X(8)11_1Mse(S1)X(5)/M.1 , 

v, -»C ,X ,,-,0 ,-S 'y , Mse(v() -^o2Dl + E(5),Mse(81)E(5);.

PROOF. The first two limits are a consequence of Theorems 2 and 4. The other expressions 
are a direct consequence of Theorem 6. □

By Theorem 7, in order to get the desired predictors, we must consider the regression 
model (9) with 8 fixed and apply GLS theory. We can use the results of Section 3 and, in 
order to get an afficient algorithm, we can apply the XKF or the DKF for likelihood 
evaluation or prediction. Note that the difficulties that may arise stem from the fact that the 
matrix R may be rank defficient. In this last case, we have to use generalized inverses 
throughout the process and neither all observations will be predictable, nor will all states be
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estimable.
The next theorem states that the predictors obtained with the modified Kalman Filter 

coincide with those obtained by means of the XKF or the DKF.

THEOREM 8. Let Assumption A hold. Then, the predictors of x t and v ( obtained with the 
modified Kalman Filter and those obtained with the XKF or the DKF coincide. If the same estimator 
of a2 is used in both procedures, then the Mse errors also coincide.

PROOF. Theorem 5.2 in [2] states that the AK predictors coincide with the diffuse 
predictors and the statement about the Mse follows trivially. □

We have seen that, in order to evaluate the AK log-likelihood, we can use the modified 
Kalman Filter of AK, although it is not the best procedure, or we may use the efficient XKF 
or DKF to evaluate the diffuse log-likelihood, which, by Theorem 5, differs from the AK log- 
likelihood only in a constant. This constant, under Assumption A, does not depend on model 
parameters. The XKF or the DKF should be applied to model (9) considering 8 fixed (C = 
0). It would be nice to employ the XKF or the DKF only for an initial stretch of the data, as 
short as possible, to construct an estimator of 8 and, from then on, use the KF. When this 
occurs, one speaks of a collapse of the XKF or the DKF to the KF. Let rank(R) = r and 
suppose that the first r rows of R are linearly independent. Let R( be the submatrix formed 
by the first r rows and let R(( consist of the other rows of R. Partition 

v -  ( v ',v ,„y and e -  (e/| ,e '( )' conforming to R -  (RJ,R',y . Then, we can write

v, -  R,5 + e, (11a)
v / / ' R//5 + e H- Hlb)

The next theorem shows how to implement the collapsing of the XKF or DKF to the KF.

THEOREM 9. Under Assumption A, let ] with l/l -  1 be a matrix like those used by AK to define 
their likelihood, with corresponding submatrices /, and f2 such that J^R * 0 and ]2R -  0 , 
and let p(vJ; Iv,, S,) be the density of v )/-E (vJIlv(,S )) , where E(v[(!v( , 8 ( ) is the conditional 
expectation of v (J given v ( in model (11a) and (lib), considering 8 fixed (C = 0), 
and 8 replaced by its maximum likelihood estimator 8 , in model (11a). Then,

p(/2v) -  p(v„lv,,8,) ,

where p(/2v) is the density of /2v .

PROOF. For simplicity, consider that R( is of full column rank. If not, we would use 
generalized inverses, but the proof would not be affected.From model (11a) and (lib), we 
h a v e , c o n s id e r in g  8 f ix e d ,  E fv jv ,) -  R((8 + I 21 £ j’ (v, -  R ,8) , w h e re  

X2] -  Cov(eH,e () an d  Z n -  Var(e,) . T hen , E(v„lv( ,8 ,)  -  R„R,~’v ( an d  
v „ - E<v //Iv , ' 8 ,) -  v n - R nR f'v r  Define the matrix / -  ( / ' , / 'y  with /, -  (1 ,0 ) and 
J2 ■ (-R„R;"1, / )  . Then, /  is a matrix of the type used by AK to define their likelihood 

and v „ -E (v J v , ,S ,)  -  /2v . □
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By Theorem 9, to evaluate the log-likelihood of vj; -  E(v;(lv(, 8 ,) -  /2v , we can proceed 
as follows. First, use the XKF or the DKF in model (11a) to obtain the maximum likelihood 
estimator (mle) 8, and initial conditions for the KF

E(x ) -  X ^ a - S ' y  , Var(*s) - a 2PM_1 + X(5)ii .1Mse(8,)X(8)'l ,.1 ,

where vs is the first observation in (lib). Then, proceed with the KF, applied to the second 
stretch of the data v (J , to obtain the log-likelihood of v J( -  E(vHlv(,8 ,)  -  /2v asinSection 
3, but with no regression parameters. We have used the initial stretch v ; of the data to 
construct the mle 8, and the initial conditions for the KF. After that, the effect of 8 has 
been absorbed into the estimator of the state vector and that is the reason why we can 
collapse the XKF or DKF to the KF.

We now give another interpretation to the result of Theorem 9. With the notation of 
Theorem 2, we can write

Wv)+ lnlCI/2 -  U(v,) + lnlCI/2} + Wv„lv(), (12)

where Mv((lv() is the conditional log-likelihood of v (( given v ( . By Theorem 3, letting 
C -»<«> , the term in curly brackets tends to {M(ln(a2) + IR('R(I}/2, where M( is the 

number of components in v, , whereas X(v „lv 2) converges to the log-likelihood of /2v , 
which, by Theorem 9, is equal to the log-likelihood of v„ -  EW^Iv,, 8 ( ) . Thus, the diffuse 
log-likelihood of v is the sum of the diffuse log-likelihood of v ( and the log-likelihood 
of /2v . Note that the first term does not contribute to either the determinant or the sum of 
squares of the diffuse log-likelihood.

Bell and Hillmer [3] use a similar idea to construct initial conditions for the KF. Instead of 
employing the KF for the initial stretch of the data, they use the transformation approach of 
AK to construct the mle 8, and the initial conditions for the KF directly. Whether this 
approach is more advantageous than using the KF, is something that depends on the 
pecularities of the problem at hand. If it is easier to obtain the mle and the initial conditions 
directly, then it can be used. However, the KF approach to construct the mle and the initial 
conditions has the advantage that it is easy to implement, does not depend on ad hoc 
procedures and it imposes very little computational and/or programming burden.

The case we have been considering, where the submatrix R, is formed by the first r rows 
of R is important because it happens often in practice. Examples of this are ARIMA models 
and ARIMA component models.

If in model (11a) and (lib) we have v ( -  8 , then Theorem 9 implies p(/2v) -  p(vHlv() 
Also, if /  is a matrix like those used by AK to define their likelihood and /  is of the form 

/ -  ( / ' , / ' ) '  with /, -  (7 ,0 ) , then v ( is independent of /2v . This is the conditional 
likelihood approch used in [6] in the context of regression models with ARIMA disturbances 
and generalized to the case when there are missing observations. For ARIMA (p, d, q) models, 
the situation simplifies still further because it is not necessary to employ the XKF or the DKF 
for the initial stretch of the data v ( -  8 to obtain initial conditions for the KF. The SSM can 
be redefined by simply translating forward the initial conditions d units in time, where d is 
the degree of the differencing operator.
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Suppose there are missing observations in v and that in (11a) the vector v contains a 
subvector vJM of missing observations. Let v(0 be the subvector of v, formed by the 
nonmissing observations and let v ;) be the subvector of v containing the rest of the 
nonmissing observations. Then, by analogy with the result of Theorem 9, we can still 
consider v ff -  E(v(;lv| , 8 ; ) , treat v(M as a vector of fixed parameters, and define the like
lihood of (v |0,v 'j) ' as that of the regression model

%  -  RhUmv,m + “ « ' (13)

where r |(f -  v (I-R (;L/0v(0 , cow -  e(; -  R^R^’e, , and Ua and UM are the submatrices 
of R~' formed by the columns corresponding to v;o and v[M , respectively. Here we have 
supposed that R; is of full column rank. If not, we would use generalized inverses, but the 
main result would not be affected. Note that the vector vfM is considered as a vector of 
fixed parameters that have to be estimated along with the other parameters of the model. The 
next theorem shows that this definition of the likelihood is equivalent to the AK definition.

THEOREM 10. Under Assumption A, the (cr2, v;AI) -  maximized log-likelihood corresponding 
to (13) coincides, up to a constant, with the a 2 - maximized AK log-likelihood.

PROOF. Let Var(mn ) -  <j 2Q and let Q -  LL' be the Cholesky decomposition of . 
If we premultiply (13) by L'1 , we obtain the OLS model

LX  -  L~'RuUMv IM + L~'(On .

The QR algorithm, applied to the L"1 RH UM matrix, yields an upper triangular matrix S with 
nonzero elements in the main diagonal such that Q'LA RnUM -  (S'.O)' , where Q is an 
orthogonal matrix. Then, we can write

-

The matrix L-1 will not have, in general, unit determinant. If we multiply L'1 by 
a  -  ILI1/M" , where MJf is the number of components in v J( , then a L 1 has unit 

determinant. Let K -  (KJ, K'2Y with R, -  (1,0) and K2 -  ( -R (JU0, /) .  and let
P -  (P', P'y with P1 -  (/, 0) and P2 -  (0, aQ 'L '1) . Partition Q' -  (Q,, Q2)' 

conforming to Q'L_1R()UM -  S and Q'2L~'RIIUM -  0 . If / = PK, then /  has unit 
determinant and

/ < v 'I0 (V',c
(Rk

,(a Q 'L -'i\liyy
,(a S R ,J ,o y & (pf (£ vt/o 'vt// a Q L - ' t a j A a f Z L - ' t o j y ,

where we have partitioned R( and e, conforming to the partition of v, into v and 
v |M . Given that (R'0, (aSR ;m)')' has rank equal to that of R( , the matrix /  is of the AK 

type. Therefore, the AK likelihood is the density of a Q 'L -1r |H and the AK log-likelihood,
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maximized with respect to a 2 , is

- -  rs) ln(d2) + lnli,fIM"~r-,/M"}

where d2 -  (1 /(M„ -  r ))r |'I(L '1),Q2Q'L", r |(I and rs =rank(S). The log-likelihood of (13), 
maximized with respect to a 2 and vJM is -{M^lnfS2)+ lnlLI2J /2  , where

<j2 -  ( i / M ^ n ^ L - ’yQ^Q'L-’n,, . □

Theorem 10 generalizes the result obtained in [6] for ARIMA models with missing data. 
This approach is useful when the matrix R; corresponding to the first observations v ( 
(included the missing ones) is of full column rank.

We now suppose that in model (9) the first r rows of R do not, in general, constitute a 
submatrix of R of rank r. Let R, be the first submatrix of R formed adjoining consecutive 
rows to the first row, such that it has full column rank and let Rn consist of the other rows 
of R. Partition v -  (v/(,v '| )' and e -  (e ',e 'fl)' conforming to R -  (R(,RjI )' . In the rest 
of the section, whenever we refer to models (11a) and (lib), we will refer to this partition. 
Consider the decomposition given by (12). Then, letting C as before, the term in curly 
brackets tends to

-  i  (M ,ln(c2) +11,,! + IRjljjR,! + (v, -  R,S,)2!  j’(v ( -  R,8,) / a 2},

where Var(Ej) -  o2Zu and 8 ( -  (RjXj'R,T’RJZ'Jv( . The conditional log-likelihood 
WvHlv() converges to the log-likelihood of /2v , where J2 -  (-R^S,-1^ , / )  , S , -  
(R jlj’R,)-1 and T{ -  RjEjj . To see this, define /  -  ( / j , /2)' with Jj -  (7 ,0 ) . Then, 
X.(v) -  M/ v) because ] has unit determinant and

Mv) + i  lnICI -  {A.(v ) + — lnICI} + X(/7vlv ).

Note that now /  is not a matrix of the AK type.

THEOREM 11. Let ] be the matrix we have just defined , with corresponding submatrices 
/j and f2 ,andlet p(v(| lvf, S,) be the density of v „ -E (v Hlv(,8 H) , where E fv jv , ,? ,)  is 

the conditional expectation of v J( given v ( in model (11 a) and (lib), considering 5 fixed (C = 0) 
atid replaced by its maximum likelihood estimator S; in mode/ (11a). Then,

p(J2v ) -  p(yulv ,,S () ,

zotere p(/2v) is the density of /2v .

PROOF. The proof is analogous to that of Theorem 9. □

Thus, to evaluate the AK log-likelihood or the diffuse log-likelihood, we can still use the 
XKF or the DKF as before, until we have processed a stretch of observations such that the 
corresponding submatrix of R has full column rank, and then collapse to the KF. The
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likelihood is evaluated as the sum of two terms. One corresponding to the stretch v ( and 
the other corresponding to v„ . More specifically, the XKF or the DKF applied to model 
(11a) yields

ISn l , IR;z -JR,I and (v, -  R ,8 ,y in’(v, -  R,S,) , (14)

where 8, -  (RjEu’R, )"’R jXV , . These three terms will be needed for the computation of 
the likelihood because now there will be no cancelation of terms. With the notation of Section 
3, if the XKF is used, the expressions in (14) are

N,

I n l Z j -  2 52 lnlD’/2l , IR ^ 'R ,!  -  IU,P and (v, -  R ^ / Z ^ v ,  -  R, 8,)

whereas, if the DKF is used, they are
N,

lnlE„l -  52 InlD.I , IR ^JR ,! -  IS,I and (v, -  R,S,)'!,-;(v, -  R,8,) -  q ,- s ,,S;'s
f-1

The initialization for the KF, to be used with the second stretch of the data v ;/ ,

E(x ) -  X s l( l , -8',)' , V ar(x )- a2P s_,+X(8)si_1Mse(S,)X(6)/st.1 ,

is

where, as before, vs is the first observation in (lib). Once the run of the KF is completed, 
we have to add up the terms in (14) to the corresponding terms obtained with the 
KF, IVar(/2v)i and (/2v)'(Var(/2v ))-’(/2v ) .

The fact that we don't know for how long we will have to use the XKF or the DKF before 
we make the transition to the KF may make collapsing unattractive. There is an alternative 
procedure to evaluate the AK log-likelihood or the diffuse log-likelihood that might be of 
interest in some cases. It consists essentially of reshuffling the observations in such a way 
that again the first r rows of R are linearly independent. An algorithm to achieve this is the 
following. Apply the XKF or the DKF to model (9) and, at the same time, obtain the row 
echelon form of the R matrix. Each time a new observation v, is being incorporated, we 
check whether its corresponding row vector R, is a linear combination of the rows already 
processed. If it is, we skip this observation as if it were missing (see [10]). Otherwise, we 
process the observation as part of the initial stretch of the data v . Proceeding in this way, 
after some time we will have processed a stretch of the data v, for which the corresponding 
submatrix R, of R will be formed by a maximal set of linearly independent row vectors. 
Let v„ consist of the other observations and let v s be the first observation that we skip as 
if it were missing. This will be the first observation of v . Suppose the Fixed Point 
Smoother (FPS) corresponding to v s is applied, along with the XKF or the DKF, to all the 
columns of X, , ,  . Then, after processing v, , we can set up as initial conditions for the KF, 
to be applied to v„ , the following

E(x ) -  X ,( l ,-8 ',y  , Var(x )- 02P , + X(5)s,Mse(S,)X(8y , ,

where X , , Pj( and X(8)s, are the quantities obtained with the FPS, and 8, is the mle 
corresponding to v , . Note that the advantage of using only the KF for likelihood evaluation
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comes at the expense of an increase in the computations.

EXAMPLE 3. Consider the following AR1MA (1,1/0) model 

(1 + <j> L)Vv( -  at ,

where the notation is as in Example 1. To obtain a SSM formulation, we define X, = 0, C, = 
C =(1, 0), Z, = 0, W, = 0,

0 1

H, = H,with H, -  1, H2 -  1 - <|> , x ,, -  v, , x2t -  vu l - a ul and ^  ] -  a, .Then, wecan 
write

*« * Ax,-x + Ha, ■ v, - Cx, ■

To initialize, we consider that (1 - L ) v l -  ut is stationary and follows the 
model (1 + $L )m( -  ar  Then,

1
+

1 0 i

1 0 l i

and we can choose A„ = I, B -  (1,iy  , x0 -  B8, 5 -  vQ and

1 0 1
1 1 -0  .

l / ( / l - D 2

The first state is x2 -  B8 + Hga] . Model (9) specializes to R -  (1,1,...,1 y 
and e, -  ul +... +ut, t -  1,...,N . The AK likelihood can be obtained as the density of the 
differenced data. This is equivalent to multiply v by the matrix

1 0 0 .. 0 0
-1 1 0 .. 0 0

/ - 0 -1 1 .. 0 0

0 0 0 .. -1 1

define /, -  (1,0, ...,0) and /2 such that / -  ( / , ',/ ') ' , and take as AK density the density 
of /2v . Note that ]R -  (1,0, ...,0)' and /e  -  (uv u2, . The XKF or the DKF
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produces D: -  1/(1 — <t>2) , D( -  1, t -  2 , 

ln lll -  lnl/E /'I -  lnlD,l + ... + lnIDJ -  lr>(l /(1 -  (f>2)),

InIR'E-'RI -  lnlR7'(/S J'Y'JRI -  0 , 8 -  v ,,
N

(v - R S / I ^ v - R S )  -  (Vj + ^v , -  v,)2 + £  [ (v t + <t>vt ,) - ( v ( j + <t>vt 2)| .
1-3 L J

In case the DKF is applied,

Qn*i

N

(1 — <(>2)v2 + ( V 2 + 0 V,  -  V ,)2 + £  [ ( V ( + 0 V , , )  -  ( V ( , + 0 V ( 2)J (1 - 0 2)v'

(1 - <|>2)v1 (1 - 02 )

Model (11a) becomes the first equation of (9), vt -  8 + u, , where v, -  vt , 
R, -  1 and e, -  m, . Model (lib) consists of the rest of the equations. Suppose we use the 

XKF or the DKF in (11a) to obtain 8, and initial conditions for the KF, that we will apply 
later to model (lib). Then,

0 -1 
0 -1

1 1 -0
, G, -

1 - 0

1 - 0  (1 - 0 ) 2 1 0 +(1 - 0 ) 2_

(1 -0)V , -0
, P ,, -

1 1 -0

( 1 - 0  +02)V, 0 ( 0 - 1 ) 2,1 1 - 0  (1 - 0 ) 2

Given that 8 -  , we have Mse(8| ) -  1 /(1  - <t>2) and the initial conditions for the KF
are

' 1 ‘
v , ‘

, Var(x ) -  P +X (8)Mse(8 )x l (8) -  1
1 1 - 0

K j [vl. 1 - <4> [l - 0  (1 - 0 ) 2J

Therefore, using the XKF or the DKF in (11a) to estimate 8 and to compute initial conditions 
for the KF yields the same starting values, but shifted ahead one period of time. This is an 
example where we can redefine the SSM, taking v ( -  8 and translate the initial conditions 
forward one unit of time. This is true for all ARIMA (p, d, q) models (see [6]).

5. Initial State with an unspecified distribution. The general case

In this Section we consider a more general SSM than that of Section 3. Besides making the 
assumption that 8 in x0 -  B8 has an unspecified distribution, 8 -  N(c, ct2C ) , with C
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nonsingular, we allow for regression parameters. That is, we consider p fixed but unknown. 
By Theorem 1, we have v -  R8 + Sp + e .Defining X -  (R, S) and y -  (S', p'y, we can 
write the model more concisely as

v -  Xy + e . (15)

To define the AK likelihood, consider a matrix /  of the type used by AK when there are 
no regression parameters and let J} and /2 be the corresponding submatrices such 
that JjR * 0 and /2R -  0 . Then, the AK likelihood is the density of /2(v - S P )  .Inorder 
to efficiently evaluate the likelihood and predict and interpolate unobserved v 's  , they use 
their modified KF and modified FPS, applying them also to the columns of the regression 
matrix, as outlined in Section 3. The reader is referred to [15] and [16] for details. For the 
reasons mentioned in Section 4, we consider the modified KF and modified FPS 
computationally less efficient and conceptually more complex than the XKF or the DKF.

To compute the diffuse log-likelihood of (15) we have to consider that 5 is diffuse,
C -» oo , and p is fixed. De Jong does not consider explicitly this case, although it is a case 

that is often encountered in practice. Proceeding as in Theorems 2 and 3 of Section 4, repla
cing v by v - Sp , and letting C -» °° , we have

Mv) + I  lnICI —» - i { ln la 2£l+lnlR'5:-, RI+ (v -S p  -R S y S '^ v  - SP - R 8 ) / o2},

S ->8 -  (R 'I"1R)", R 'I ' , (v - Sp).

Minimizing this diffuse log-likelihood with respect to P yields an estimator p which 
minimizes (v -  Sp )'P,£ '1P(v - Sp) , where P -  / -  R(R,£ ‘1R )'1R '£ _1 . It can be shown 
that the estimators S and P obtained in this way can be obtained in a single stage as the 
GLS estimator y -  (S ', p7)' of model (15). Thus, the XKF or the DKF can be used to 
compute the (o2, y ) -  maximized diffuse log-likelihood, given by

- l{ M ln ( d 2) + ln l£ l+ lnlR 'I-'R I} ,

where M is the number of components in v and 62 -  (1 /M )(v  - Xy y i  *'(v - X y )  .Under 
Assumption A of Section 4, the AK (a2,y ) -  maximized log-likelihood differs from the

(o2, y ) -  maximized diffuse log-likelihood only in a constant. As in Section 4, it is possible 
to employ the XKF or the DKF for an initial stretch of the data to construct an estimator 
of 8 . However, it will not be possible now to collapse to the KF because we will still have 
to estimate the p parameters. The most we can do is to collapse to a reduced dimension 
XKF or DKF. More specifically, let rank(R) = r and suppose that the first r rows of R are 
linearly independent. Let R( be the submatrix formed by the first r rows and let R(( consist 
of the other rows of R. Partition v -  (v2, v'B Y , S -  (S ', S'u Y and e -  (e'f, eB Y confor
ming to R -  (R ', R'n y . Then, we can write

(16a)v, -  R,8 +S,p +e, 

v u ~  R„S + S , P +e,r

18

(16b)

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Suppose that Rt has full column rank. If not, we would use generalized inverses instead of 
true inverses but the main result would not be affected. As in Section 4, we will apply first 
the XKF or the DKF to (16a) to obtain a GLS estimator S , of 8 . However it will not be 
possible now to absorb both 8 and (3 into the state estimator. Only 8 will be absorbed. 
In this way, the XKF or the DKF will only be simplified, not collapsed to the KF, when we 
apply it to (16b) in the second step of the procedure. The number of states of the XKF will 
be reduced by a number equal to the number of components in 8 . Let v s be the first 
observation in (16b). We showed in Section 3 that, if 8 and P are known, then the 
estimator of the state x using (y ',v ',v ',...,v '_ 1)' is

- y ,y  -  -*<8>,..,8  - * ( ? ) , , „ , ? .  07)

where X(v)s , X(8)s s l and X(p)js are the columns of Xss , corresponding to v s , 
8 and p , respectively. The GLS estimator 8 ( of 8 obtained from (16a) is

S, -  S-’T (v ,-S ,P ) ,

where S -  RfDj’R, , T -  RjUj' and Var(e() -  a2 Q ( .Substituting S ( back in (17) yields

x -  X ( v ) , -  X(8), ^ S - 'T v ,  -  (XfP), .., -X(5), ^ jS -’TSpp 
-  X(v)s i t  - X(p)i t ,P ,

where x s l  is the estimator of xs using (p2, v ', v ' , ... w ' , ) '  and (X(v)s s ,X(p)s j ,) are 
the estimators, respectively, of the states corresponding to the data and the P parameters. 
Given that

Mse(f ,) -  Var(x - x ,) -  Var(x, V ar(i

wehave Mse(5 s ,) -  a 2Ps s l +X(8)s s jM selSpXfS^ 5 , . By Theorem 9 of Section 4, the 
XKF, to be applied to (16b), can then be initialized with Var(xs)- M se(i s . ) and 

X f j -  (X(v)s s j,X(P)s >_1) . If the DKF is to be employed, the initialization for the Q 
matrix would be

Q

Q
n

31

where Qt -  (Q ), i, j  -  1,2,3 . This can be seen considering that, after estimating 8 ,the 
sum of squares is (v( -  S(p )'P'X j’Pfv, -  S(p ) ,with P -  I -  RJ(R |Z”, RJ) '1R|S j1 . If the first 
r rows of R do not constitute a submatrix of R of rank r, we would proceed as in the last part 
of Section 4.
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