

EUI Working Paper ECO No. $93 / 7$

Initializing the Kalman Fiter with Incompletely Specified Initial Conditions

VÍCTOR GÓMEZ and
AGUSTÍN MARAVALE

European University Library

30001001496720

Please note
As from January 1990 the EUI Working Paper Series is divided into six sub-series, each sub-series is numbered individually (e.g. EUI Working Paper LAW No. 90/1).

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 93/7

Initializing the Kalman Filter with Incompletely Specified Initial Conditions

VÍCTOR GÓMEZ
and
AGUSTÍN MARAVALL

All rights reserved.
No part of this paper may be reproduced in any form without permission of the authors.
© Víctor Gómez and Agustín Maravall
Printed in Italy in February 1993
European University Institute
Badia Fiesolana
I-50016 San Domenico (FI)
Italy

INITIALIZING THE KALMAN FILTER WITH INCOMPLETELY SPECIFIED INITIAL CONDITIONS

Víctor Gómez, Instituto Nacional de Estadistica, Madrid
Agustín Maravall, European University Institute, Badia Fiesolana, I-50016, S. Domenico di Fiesole (FI), Italy

1. Introduction

We consider observations generated by a discrete time state space model (SSM) such that the initial state vector x_{0} has a distribution which is unspecified. We will further allow for unknown regression type parameters. Examples are non-stationary time series which follow an ARIMA model, regression models with ARIMA disturbances, structural models (as in [8]) and ARIMA component models, among others. In all these cases it is not possible to initialize the Kalman Filter (KF) as usual, by means of the first two moments of the distribution of x_{0}, because they are not well defined. Therefore, it is necessary to incorporate new assumptions in order to deal with this initialization problem.

Among the different alternatives that have been proposed in the literature, we will focus on the transformation approach of Kohn and Ansley, the diffuse Kalman filter (DKF) of de Jong, the initialization procedure of Bell and Hillmer and the approach of Gómez and Maravall, based on a trivial extension of the KF, to be denoted the Extended Kalman Filter (XKF), with a distribution defined conditionally on the initial observations. There are other approaches as well, like the so called "big k " method (see, for example,[5] and [7]). This method uses a matrix of the form $k I$ to initialize the state covariance matrix, where k is large to reflect uncertainty regarding the initial state. The big k method is not only numerically dangerous, it is also inexact. An alternative to the big k method is to use the information filter (see [1]). However, as seen in [2], the information filter breaks down in many important cases, including ARMA models.

The paper is structured as follows. In Section 2 we will define the SSM and consider some illustrative examples. In Section 3 we suppose that the initial state vector x_{0} is fixed, define the likelihood and show how the XKF and the DKF can be used to evaluate it. In Section 4 we will deal with the different approaches to define and evaluate the likelihood of the SSM in the case when there are no regression type parameters and the initial state vector has an unspecified distribution. In Section 5 we will extend these results to include regression type parameters.

2. State Space Model

DEFINITION 1. A vectorial time series $v=\left(v_{1}^{\prime}, \ldots, v_{N}^{\prime}\right)^{\prime}$ is said to be generated by the State Space Model (SSM) if, for $t=1, \ldots, N$,

$$
\begin{equation*}
v_{t}=X_{t} \beta+C_{t} x_{t}+Z_{t} \xi_{t^{\prime}} \quad x_{t}-W_{t-1} \beta+A_{t-1} x_{t-1}+H_{t-1} \xi_{t-1} \tag{1}
\end{equation*}
$$

where $x_{0}=B \delta, \xi_{t} \sim \operatorname{Niid}\left(0, \sigma^{2} I\right), t=0, \ldots, N, \delta \sim N\left(c, \sigma^{2} C\right)$ with C nonsingular or C $=0, \delta$ and $\xi=\left(\xi_{0}^{\prime}, \ldots, \xi_{N}^{\prime}\right)^{\prime}$ are independent, B is of full column rank and β is a vector of fixed regression parameters. Also, $\operatorname{Var}(v)$ is nonsingular if $C=0$.

This definition is similar to the one in [13]; the vector δ models uncertainty with respect to the initial conditions. Following [13], we will say that δ is diffuse if C^{-1} is arbitrarily close to 0 in the euclidean norm, denoted $C \rightarrow \infty$. Contrary to de Jong, we will always suppose that β, the vector of regression parameters, is fixed; considering β diffuse introduces confusion as to what likelihood should be used and it affects neither the equations nor the
computations with the DKF, to be defined below.
The formulation we use for the SSM has the virtue of explicitly separating the timeinvariant "mean" effect β from the state vector $\boldsymbol{x}_{\boldsymbol{t}}$, keeping its dimension to a minimum. Choosing adequately the matrices X_{t}, W_{t}, H_{t} and Z_{t}, appropiate components of β and ξ_{t} can be excluded from or included in each equation. Thus, the specification covers the case where the mean and disturbance effects in each equation are distinct.Two simple examples will illustrate the definition.

EXAMPLE 1. Suppose a regression model with random walk disturbance and scalar v_{t},

$$
\begin{equation*}
\nabla\left(v_{t}-y_{t}^{\prime} \beta\right)-a_{t}, \tag{2}
\end{equation*}
$$

where $\nabla=1-L, L$ is the lag operator $\left(L\left(v_{t}\right)-v_{t-1}\right)$, and the $a_{t} \sim N\left(0, \sigma^{2}\right)$ are independent. Model (2) can be put into state space form by defining $X_{t}=y_{t}^{\prime}, C_{t}=1, Z_{t}=0$, $W_{t}=0, A_{t}=1, H_{t}=1, x_{t}=v_{t}-y_{t}^{\prime} \beta$ and $\xi_{t-1}=a_{t}$. That is,

$$
\begin{align*}
& x_{t}=x_{t-1}+a_{t} \tag{3a}\\
& v_{t}=y_{t}^{\prime} \beta+x_{t} \tag{3b}
\end{align*}
$$

For initialization, we make $A_{0}=1, H_{0}=1, W_{0}=0, B=1$ and $x_{0}-\delta$. Therefore, the first state is $x_{1}=\delta+a_{1}$ and δ is in this case equal to the initial state. Because $\left\{\boldsymbol{x}_{\boldsymbol{t}}\right\}$ follows the non-stationary model (3a), the distribution of δ is unspecified.

EXAMPLE 2. Suppose Example 1, but with ∇ replaced by $1-\rho L$, where $|\rho|<1$. Then, we have a regression model with $\operatorname{AR}(1)$ disturbances. The SSM is

$$
\begin{equation*}
x_{t}=\rho x_{t-1}+a_{t} \tag{4}
\end{equation*}
$$

and (3b). For initialization, we make $A_{0}=1, H_{0}=1 / \sqrt{1-\rho^{2}}, W_{0}=0, B=1$ and $x_{0}=0$ ($c=0, C=0$). In this case, $\left\{x_{\mathrm{t}}\right\}$ follows the stationary model (4) and we can use the first two moments of x_{t}, namely $E\left(x_{t}\right)=0$ and $\operatorname{Var}\left(x_{t}\right)=\sigma^{2} /\left(1-\rho^{2}\right)$, to set up the initial conditions. The first state is $x_{1}=\left(1 / \sqrt{\left.1-\rho^{2}\right) a_{1}}\right.$.

A representation which will be very useful in what follows is given by the next theorem.
THEOREM 1. If $v=\left(v_{1}^{\prime}, \ldots, v_{N}^{\prime}\right)^{\prime}$ is generated by the SSM (1), then $v=R \delta+S \beta+\varepsilon$, where the rows of S are

$$
\begin{aligned}
& S_{1}-X_{1}+C_{1} W_{0} \\
& S_{2}=X_{2}+C_{2}\left(W_{1}+A_{1} W_{0}\right) \\
& \quad \ldots \ldots . . \\
& S_{N}=X_{N}+C_{N}\left\{W_{N-1}+A_{N-1} W_{N-2}+\ldots+\left(A_{N-1} \ldots A_{1}\right) W_{0}\right\}
\end{aligned}
$$

and those of R are

$$
R_{i}=C_{i} A_{i-1} \ldots A_{0} B, \quad i=1, \ldots, N .
$$

Besides, $\varepsilon \sim N\left(0, \sigma^{2} \Sigma\right)$ with Σ nonsingular and $\operatorname{Cov}(\delta, \varepsilon)=0$.
PROOF. The expressions for S_{i} and R_{i} are obtained by repeated substitution using (1). The vectors ε_{i} are linear combinations of $\xi_{0}, \xi_{1}, \ldots, \xi_{i}, \quad i=1, \ldots, N$.

3. Fixed Initial State

If δ is fixed ($C=0$), then $\delta=c$ and the representation of Theorem $1, v=R \delta+S \beta+\varepsilon$, constitutes a regression model where the distribution of ε is known. If we define $X=(R, S)$ and $\gamma=\left(\delta^{\prime}, \beta^{\prime}\right)^{\prime}$, then the log-likelihood of this model, based on v, is (throughout the paper all \log-likelihoods will be defined up to an additive constant)

$$
\lambda(v)=-\frac{1}{2}\left\{M \ln \left(\sigma^{2}\right)+\ln |\Sigma|+(v-X \gamma) \Sigma^{-1}(v-X \gamma) / \sigma^{2}\right\},
$$

where $\operatorname{Var}(v)-\sigma^{2} \Sigma$ and M denotes the number of components in v, the vector of stacked observations. The maximum likelihood estimator of σ^{2} is

$$
\begin{equation*}
\hat{\sigma}^{2}=(v-X \gamma)^{\prime} \Sigma^{-1}(v-X \gamma) / M \tag{5}
\end{equation*}
$$

Substituting $\hat{\sigma}^{2}$ back in $\lambda(v)$ yields the σ^{2}-maximized log-likelihood:

$$
l(v)=-\frac{1}{2}\left\{M \ln \left(\hat{\sigma}^{2}\right)+\ln |\Sigma|\right\} .
$$

It turns out that we can evaluate $l(v)$ efficiently using the KF.
DEFINITION 2. The Kalman Filter (KF) is the set of recursions

$$
\begin{align*}
& e_{t}=v_{t}-X_{t} \beta-C_{t} \hat{x}_{t, t-1}, \quad D_{t}=C_{t} P_{t, t-1} C_{t}^{\prime}+Z_{t} Z_{t}^{\prime} \\
& G_{t}=\left(A_{t} P_{t, t-1} C_{t}^{\prime}+H_{t} Z_{t}^{\prime}\right) D_{t}^{-1}, \quad \hat{x}_{t+1, t}-W_{t} \beta+A_{t} \hat{x}_{t, t-1}+G_{t} e_{t} \tag{6}\\
& P_{t+1, t}=\left(A_{t}-G_{t} C_{t}\right) P_{t, t-1} A_{t}^{\prime}+\left(H_{t}-G_{t} Z_{t}\right) H_{t^{\prime}}^{\prime}
\end{align*}
$$

with starting conditions $\hat{x}_{1,0}=W_{0} \beta+A_{0} B \delta$ and $P_{1,0}=H_{0} H_{0}^{\prime}$.
Here $\hat{x}_{t, t-1}$ is the predictor of x_{t} using $\left(v_{1}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$ and $\operatorname{Var}\left(\hat{x}_{t, t-1}-x_{t, t-1}\right)-P_{t, t-1}$. The e_{t} are the errors of predicting v_{t} using $\left(v_{1}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$. They constitute an orhogonal sequence with $E\left(e_{t}\right)=0$ and $\operatorname{Var}\left(e_{t}\right)-D_{t^{\prime}}$, as given in (6). Note that we have supposed $\sigma^{2}=1$ in the equations (6) because we will estimate σ^{2} using (5). It can be shown (see, for example, [13]) that if $e=\left(e_{1}^{\prime}, \ldots, e_{N}^{\prime}\right)^{\prime}$, then there exists a lower triangular matrix K with ones in the main diagonal such that $e=K(v-X \gamma)$ and $K \Sigma K^{\prime}=D=\operatorname{diag}\left(D_{1}, D_{2}, \ldots, D_{N}\right)$. Therefore, $\Sigma^{-1}=K^{\prime} D^{-1} K$ and $\hat{\sigma}^{2}=e^{\prime} D^{-1} e / M, \quad \ln |\Sigma|=\ln \left|D_{1}\right|+\ln \left|D_{2}\right|+\ldots+\ln \left|D_{N}\right|$. In the case of scalar v_{t}, the D_{t} are also scalar and we can obtain a "square root" of Σ^{-1} by
putting $\Sigma^{-1 / 2}=D^{-1 / 2} K$. Then, we can use a vector of standardized residuals $\tilde{e}=D^{-1 / 2} e$ such that $\hat{\sigma}^{2}=\tilde{e}^{\prime} \tilde{e} / M$ and maximizing $l(v)$ becomes equivalent to minimizing the nonlinear sum of squares

$$
S(v, \gamma)=\left(\prod_{t=1}^{N}\left|D_{t}^{1 / 2}\right|\right)^{1 / M} \tilde{e}^{\prime} \tilde{e}\left(\prod_{t=1}^{N}\left|D_{t}^{1 / 2}\right|\right)^{1 / M}
$$

For vectorial v_{t}, suppose that in each step of the KF, in addition to D_{t}, we also obtain, by means of its Cholesky decomposition, a "square root" $D_{t}^{1 / 2}$ of $D_{t}, t=1, \ldots, N$. Then, the matrix $D^{1 / 2}=\operatorname{diag}\left(D_{1}^{1 / 2}, D_{2}^{1 / 2}, \ldots, D_{N}^{1 / 2}\right)$ is a "square root" of D and we can proceed as in the scalar case to evaluate $S(v, \gamma)$.

EXAMPLE 2 (Continued). In this case $\delta=0$, so that, by Theorem 1, we have $v=S \beta+\varepsilon$. The initial conditions for the KF are $\hat{x}_{1,0}-0$ and $P_{1,0}-1 /\left(1-\rho^{2}\right)$. Then, the KF gives

$$
\begin{aligned}
& e_{t}=v_{t}-X_{t} \beta-\hat{x}_{t, t-1}, \quad D_{1}=1 /\left(1-\rho^{2}\right), \quad D_{t}=1, t>1, \\
& G_{t}=\rho, \quad \hat{x}_{t+1, t}=\rho \hat{x}_{t, t-1}+\rho e_{t}, \\
& P_{1,0}=1 /\left(1-\rho^{2}\right), \quad P_{t+1, t}=1, t>0 .
\end{aligned}
$$

The vector of residuals is $e=K(v-S \beta)$, where

$$
K=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-\rho & 1 & 0 & \ldots & 0 & 0 \\
0 & -\rho & 1 & \ldots & 0 & 0 \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & -\rho & 1
\end{array}\right]
$$

and the vector of standardized residuals is $\tilde{e}=D^{-1 / 2} e$, with $\tilde{e}_{1}=\left(v_{1}-y_{1}^{\prime} \beta\right) \sqrt{1-\rho^{2}}$ and $\tilde{e}_{t}=\left(v_{t}-y_{t}^{\prime} \beta\right)-\rho\left(v_{t-1}-y_{t-1}^{\prime} \beta\right), t>1$. The nonlinear sum of squares is

$$
S(v, \gamma)=\left(1 / \sqrt{1-\rho^{2}}\right)^{1 / N} \tilde{e}^{\prime} \tilde{e}\left(1 / \sqrt{1-\rho^{2}}\right)^{1 / N}
$$

We can concentrate γ out of $S(v, \gamma)$ if we replace in $S(v, \gamma) \quad \gamma$ by its maximum likelihood estimator $\hat{\gamma}$, which is the generalized least squares (GLS) estimator of the model

$$
\begin{equation*}
v=X \gamma+\varepsilon \tag{7}
\end{equation*}
$$

We now show how to obtain $\hat{\gamma}$ by means of the XKF. From what we have just seen, it is clear that the KF can be seen as an algorithm that, applied to a vector v of the same dimension than v, yields $K v$ and D. The algorithm can be trivially extended to compute also $D^{1 / 2}$. Therefore, if we apply this extended algorithm in model (7) to the data v and to the columns of the X matrix, we obtain $D^{-1 / 2} K v=D^{-1 / 2} K X \gamma+D^{-1 / 2} K \varepsilon$, where $\operatorname{Var}\left(D^{-1 / 2} K \varepsilon\right)=\sigma^{2} I_{M^{\prime}}$, and we have transformed a GLS regression model (7) into an
ordinary least squares (OLS) one. The estimator $\hat{\gamma}$ can now be efficiently and accurately obtained using the $Q R$ algorithm. Supposing X of full column rank, if p is the number of components in γ, this last algorithm premultiplies both $D^{-1 / 2} K \nu$ and $D^{-1 / 2} K X$ by an orthogonal matrix Q to obtain $\omega=Q D^{-1 / 2} K v$ and $\left(U^{\prime}, 0^{\prime}\right)^{\prime}=Q D^{-1 / 2} K X$, where U is a nonsingular $p \times p$ upper triangular matrix. Then $\hat{\gamma}=U^{-1} \omega_{1}$, where ω_{1} consists of the first p elements of ω, and we can evaluate

$$
S(v, \hat{\gamma})=\left(\prod_{t=1}^{N}\left|D_{t}^{1 / 2}\right|\right)^{1 / M} \omega_{2}^{\prime} \omega_{2}\left(\prod_{t=1}^{N}\left|D_{t}^{1 / 2}\right|\right)^{1 / M}
$$

where ω_{2} consists of the last $M-p$ elements of ω.
DEFINITION 3. The Extended Kalman Filter (XKF) is the KF (6) with the equations for e_{t} and $\hat{x}_{t+1, t}$, respectively, replaced by

$$
E_{t}=\left(v_{t}, 0, X_{t}\right)-C_{t} \hat{X}_{t, t-1^{\prime}} \quad \hat{X}_{t+1, t}=\left(0,0,-W_{t}\right)+A_{t} \hat{X}_{t, t-1}+G_{t} E_{t^{\prime}}
$$

with starting condition $\hat{X}_{1,0}=\left(0,-A_{0} B,-W_{0}\right)$. Also, $D_{t}^{1 / 2}$ is computed along with D_{t}.
The columns of the matrix $\hat{X}_{t, t-1}$ contain the state estimates, and those of E_{t} the prediction errors, corresponding to the data and to the columns of the X matrix, respectively. The XKF has been suggested in [15] and [19]; it has been generalized to the case of a rank defficient X matrix in [6].

EXAMPLE 2 (Continued). Applying the XKF with starting condition $\hat{X}_{1,0}=(0,0)$, we get

$$
E_{t}=\left(v_{t}, y_{t}^{\prime}\right)-\hat{X}_{t, t-1}, \quad \tilde{E}_{t}=D_{t}^{-1 / 2} E_{t}, \quad \hat{X}_{t+1, t}=\rho \hat{X}_{t, t-1}+\rho E_{t}
$$

This implies $E_{t}=\left(v_{t}-\rho v_{t-1}, y_{t}^{\prime}-\rho y_{t-1}^{\prime}\right), t>1$, and $E_{1}=\left(v_{1}, y_{1}^{\prime}\right)$. The GLS model $v=S \beta+\varepsilon$ has been transformed into the OLS model

$$
\left[\begin{array}{c}
v_{1} \sqrt{1-\rho^{2}} \\
v_{2}-\rho v_{1} \\
\cdots \\
v_{N}-\rho v_{N-1}
\end{array}\right]=\left[\begin{array}{c}
y_{1}^{\prime} \sqrt{1-\rho^{2}} \\
y_{2}^{\prime}-\rho y_{1}^{\prime} \\
\cdots \\
y_{N}^{\prime}-\rho y_{N-1}
\end{array}\right] \beta+\tilde{\varepsilon}, \quad \tilde{\varepsilon} \sim N\left(0, \sigma^{2} I\right)
$$

Consider now predicting the state x_{t} using $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$. This is equivalent to first predicting x_{t} using $\left(\gamma^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$, and then predicting this predictor using $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$. The first mentioned predictor is $\hat{x}_{t, t-1}$, as given in (6). It is easy to check that $\hat{X}_{t, t-1}\left(1,-\gamma^{\prime}\right)^{\prime}$, where $\hat{X}_{t, t-1}$ is given by the $X K K F$, verifies the same recursion and starting condition as $\hat{x}_{t, t-1}$ and hence $\hat{x}_{t, t-1}=\hat{X}_{t, t-1}\left(1,-\gamma^{\prime}\right)^{\prime}$. Thus, $\tilde{x}_{t, t-1}=\hat{X}_{t, t-1}\left(1,-\hat{\gamma}^{\prime}\right)^{\prime}$ is the predictor we are looking for. Its mean squared error (Mse) is

$$
\begin{aligned}
\operatorname{Mse}\left(\tilde{x}_{t, t-1}\right) & =\operatorname{Var}\left(x_{t}-\hat{x}_{t, t-1}+\hat{x}_{t, t-1}-\tilde{x}_{t, t-1}\right)-\operatorname{Var}\left(x_{t}-\hat{x}_{t, t-1}\right)+\operatorname{Var}\left(\hat{x}_{t, t-1}-\tilde{x}_{t, t-1}\right) \\
& =\sigma^{2} P_{t, t-1}+\operatorname{Var}\left\{\hat{X}_{t, t-1}\left(0,(\hat{\gamma}-\gamma)^{\prime}\right)^{\prime}\right\} \\
& =\sigma^{2} P_{t, t-1}+\hat{X}(\gamma)_{t, t-1} \operatorname{Mse}(\hat{\gamma}) \hat{X}(\gamma)_{t, t-1}^{\prime}
\end{aligned}
$$

where $\hat{X}(\gamma)_{t, t-1}$ is the submatrix of $\hat{X}_{t, t-1}$ formed by all its columns except the first, and
$\operatorname{Mse}(\hat{\gamma})=\sigma^{2}\left(U^{\prime} U\right)^{-1}$. If \tilde{v}_{t} is the predictor of v_{t} using $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$, then it can be shown analogously that $v_{t}-\tilde{v}_{t}=E_{t}\left(1,-\hat{\gamma}^{\prime}\right)^{\prime}, \quad \operatorname{Mse}\left(\tilde{v}_{t}\right)=\sigma^{2} D_{t}+E(\gamma)_{t} \operatorname{Mse}(\hat{\gamma}) E(\gamma)_{t}^{\prime}$, where $E(\gamma)_{t}$ is the submatrix of E_{t} formed by all its columns except the first.

The DKF of de Jong can also be used for likelihood evaluation when $C=0$, although, as we will see, it has other uses as well.

DEFINITION 4. The Diffuse Kalman Filter (DKF) is the XKF without the computation of $D_{t}^{1 / 2}$ and with the added recursion $Q_{t+1}=Q_{t}+E_{t}^{\prime} D_{t}^{-1} E_{t}$, where $Q_{1}-0$.

Given that $(v-X \hat{\gamma})^{\prime} \Sigma^{-1}(v-X \hat{\gamma})=q-s^{\prime} S^{-1} s$, where $q=v^{\prime} \Sigma^{-1} v, s=X^{\prime} \Sigma^{-1} v$, and $S=X^{\prime} \Sigma^{-1} X$, the Q_{i} matrix accumulates the partial squares and cross products and

$$
Q_{N+1}=\left[\begin{array}{ll}
q & s^{\prime} \tag{8}\\
s & s
\end{array}\right] .
$$

Therefore, the DKF allows us to evaluate the (σ^{2}, γ) -maximized log-likelihood, given by

$$
-\frac{1}{2}\left\{M \ln \left(\left(q-s^{\prime} S^{-1} s\right) / M\right)+\sum_{t=1}^{N} \ln \left|D_{t}\right|\right\} .
$$

EXAMPLE 2 (Continued). The DKF gives, besides E_{t} and $\hat{X}_{t+1, t}$, computed as in the XKF, the quantities Q_{t}. In this case,

$$
Q_{N+1}=\left[\begin{array}{cc}
\left(1-\rho^{2}\right) v_{1}^{2}+\sum_{t=2}^{N}\left(v_{t}-\rho v_{t-1}\right)^{2} & * \\
\left(1-\rho^{2}\right) v_{1} y_{1}+\sum_{t=2}^{N}\left(v_{t}-\rho v_{t-1}\right)\left(y_{t}-\rho y_{t-1}\right) & \left(1-\rho^{2}\right) y_{1} y_{1}^{\prime}+\sum_{t=2}^{N}\left(y_{t}-\rho y_{t-1}\right)\left(y_{t}-\rho y_{t-1}\right)^{\prime}
\end{array}\right] .
$$

The estimator $\hat{\gamma}$ is obtained by solving the normal equations of the regression, $S \gamma=s v$. However, to solve the normal equations this way can lead to numerical difficulties because what we are doing is basically squaring a number and then taking its square root. It is numerically more efficient to use a device such as the $Q R$ algorithm or the singular value decomposition, once the XKF has been applied. Another alternative, but computationally more expensive, is to use a square root filter version of the DKF.

4. Initial State with an unspecified distribution. No regression parameters

In this Section, we suppose that δ in $x_{0}=B \delta$ has an unspecified distribution, that is $\delta \sim N\left(c, \sigma^{2} C\right)$ with C nonsingular. We also suppose that there are no regression parameters and, therefore, $W_{t}=0$, and $X_{t}=0$. Then, Theorem 1 implies

$$
v=R \delta+\varepsilon .
$$

Ansley and Kohn [2], hereafter AK, define the likelihood of (9) by means of a transformation of the data that eliminates dependence on initial conditions. Let J be a matrix with $|J|=1$ such that $J R$ has exactly $\operatorname{rank}(R)$ rows different from zero. Such a matrix always exists. Let J_{1} consist of those $\operatorname{rank}(R)$ rows of J corresponding to the nonzero rows of $J R$ and let J_{2} consist of the other rows of J so that $J_{2} R=0$. AK define the likelihood of (9) as the density of $J_{2} v$. We will show later that, under an extra assumption, this definition does not depend on the matrix J. To evaluate the likelihood, however, and merely for algorithmic purposes, given that the transformation usually destroys the covariance structure of the data, they use an equivalent definition of the likelihood and develop what they call "modified Kalman Filter" and "modified Fixed Point Smoother" algorithms. The modified Kalman Filter is of considerable complexity, difficult to program and is less computationally efficient than the procedure in [6], when applicable, or the DKF. Also, it does not explicitly handle fixed effects and requires specialized assumptions regarding the SSM (see [14]).

Another approach to defining the likelihood of (9) is that of de Jong [13], where δ is considered diffuse by letting $C \rightarrow \infty$. In order to take this limit we need the following theorem.

THEOREM 2. Let $\delta \sim N\left(c, \sigma^{2} C\right)$ with C nonsingular. Then, the log-likelihood of v is

$$
\begin{aligned}
\lambda(v) & =-\frac{1}{2}\left\{\ln |C|+\ln \left|\sigma^{2} \Sigma\right|+\ln \left|C^{-1}+R^{\prime} \Sigma^{-1} R\right|\right. \\
& \left.+\left\{(\delta-c)^{\prime} C^{-1}(\delta-c)+(v-R \delta)^{\prime} \Sigma^{-1}(v-R \delta)\right\} / \sigma^{2}\right\},
\end{aligned}
$$

where $\delta=\left(C^{-1}+R^{\prime} \Sigma^{-1} R\right)^{-1}\left(C^{-1} c+R^{\prime} \Sigma^{-1} v\right)$ and δ coincides with the conditional expectation $\mathrm{E}(\delta \mid v)$. Also, $\operatorname{Mse}(\delta)=\operatorname{Var}(\delta \mid v)=\sigma^{2}\left(C^{-1}+R^{\prime} \Sigma^{-1} R\right)^{-1}$.

PROOF. The density $p(v)$ verifies $p(\delta \mid v) p(v)=p(v \mid \delta) p(\delta)$, where the vertical bar denotes conditional distribution. The maximum likelihood estimator δ of δ in the left hand side of this equation must be equal to the one in the right hand side. Given that the equality between densities implies

$$
\begin{aligned}
&(\delta-\mathrm{E}(\delta \mid v))^{\prime} \Omega_{\delta N}^{-1}(\delta-\mathrm{E}(\delta \mid v))+(v-R c)^{\prime} \Omega_{\mathrm{v}}^{-1}(v-R c) \\
&=(\delta-c)^{\prime} C^{-1}(\delta-c)+(v-R \delta)^{\prime} \Sigma^{-1}(v-R \delta),
\end{aligned}
$$

where $\Omega_{\delta k}$ and Ω_{v} are the covariance matrices of $p(\delta \mid v)$ and $p(v)$, respectively, the left hand side is minimized for $\delta=\mathrm{E}(\delta \mid v)$. To minimize the right hand side, consider the regression model $\left(c^{\prime}, v^{\prime}\right)^{\prime}=\left(I, R^{\prime}\right)^{\prime} \delta+v, v \sim N(0, \operatorname{diag}(C, \Sigma))$. Then δ is as asserted and $\operatorname{Var}(\delta \mid v)=\operatorname{Var}(\delta)=\sigma^{2}\left(C^{-1}+R^{\prime} \Sigma^{-1} R\right)^{-1}$.

THEOREM 3. With the notation and assumption of Theorem 2, if $R^{\prime} \Sigma^{-1} R$ is nonsingular, then, letting $C \rightarrow \infty$, we have

$$
\begin{aligned}
\lambda(v)+\frac{1}{2} \ln |C| & \rightarrow-\frac{1}{2}\left\{\ln \left|\sigma^{2} \Sigma\right|+\ln \left|R^{\prime} \Sigma^{-1} R\right|+(v-R \delta)^{\prime} \Sigma^{-1}(v-R \delta) / \sigma^{2}\right\}, \\
\delta & \rightarrow \delta=\left(R^{\prime} \Sigma^{-1} R\right)^{-1} R^{\prime} \Sigma^{-1} v, \quad \operatorname{Mse}(\delta) \rightarrow \operatorname{Mse}(\delta)-\sigma^{2}\left(R^{\prime} \Sigma^{-1} R\right)^{-1} .
\end{aligned}
$$

PROOF. It is an immediate consequence of Theorem 2.
It is shown in [13] that $\lambda(v)+(1 / 2) \ln |C|$ tends to a proper \log-likelihood, called the diffuse \log-likelihood. By Theorem 3, in order to compute it, all we have to do is to consider δ fixed in (9) and apply the methodology of Section 3. If the XKF is used, then, with the notation of Section 3, the results of Theorem 3 can be rewritten

$$
\begin{aligned}
\lambda(v)+\frac{1}{2} \ln |C| & \rightarrow-\frac{1}{2}\left[M \ln \left(\sigma^{2}\right)+2\left\{\sum_{t=1}^{N} \ln \left|D_{t}^{1 / 2}\right|+\ln |U|\right\}+w_{2}^{\prime} w_{2} / \sigma^{2}\right], \\
\delta & \rightarrow \delta=U^{-1} w_{1}, \quad \operatorname{Mse}(\delta) \rightarrow \operatorname{Mse}(\delta)=\sigma^{2}\left(U^{\prime} U\right)^{-1},
\end{aligned}
$$

whereas if the DKF is used, then, with the notation of (8), we obtain

$$
\begin{aligned}
\lambda(v)+\frac{1}{2} \ln |C| & \rightarrow-\frac{1}{2}\left[M \ln \left(\sigma^{2}\right)+\sum_{t=1}^{N} \ln \left|D_{t}\right|+\ln |S|+\left(q-s^{\prime} S^{-1} s\right) / \sigma^{2}\right] \\
\delta & \rightarrow \delta-S^{-1} s, \quad \operatorname{Mse}(\delta) \rightarrow \operatorname{Mse}(\delta)-\sigma^{2} S^{-1} .
\end{aligned}
$$

If S in (8) is singular, de Jong leaves the diffuse log-likelihood undefined. In order to define the limiting expressions of Theorem 3 when S is singular, we have to consider model (9) with an R matrix that is not of full column rank. Let K be a selector matrix formed by zeros and ones such that $K S K^{\prime}$ has rank equal to $\operatorname{rank}(R)$ and replace model (9) by

$$
\begin{equation*}
v=R K^{\prime} \delta_{1}+\varepsilon, \tag{10}
\end{equation*}
$$

where $\delta_{1} \sim N\left(c, \sigma^{2} C\right)$, with C nonsingular and δ_{1} is the vector formed by choosing those components in δ corresponding to the selected columns $R K^{\prime}$. This amounts to making the assumption that the other components in δ cannot be estimated from the data without further information and are assigned value zero with probability one. The next theorem generalizes the results of Theorem 2 to the case of a possibly singular S matrix.

THEOREM 4. Suppose model (10) with the convention that if R is of full column rank, then matrix K is the identity matrix and $\delta_{1}=\delta$. Then, with the notation and assumptions of Theorem 3, letting $C \rightarrow \infty$, we have

$$
\begin{aligned}
\lambda(v)+\frac{1}{2} \ln |C| & \rightarrow-\frac{1}{2}\left\{\ln \left|\sigma^{2} \Sigma\right|+\ln \left|K R^{\prime} \Sigma^{-1} R K^{\prime}\right|+(v-R \delta)^{\prime} \Sigma^{-1}(v-R \delta) / \sigma^{2}\right\}, \\
\delta & \rightarrow \delta=\left(R^{\prime} \Sigma^{-1} R\right)^{-} R^{\prime} \Sigma^{-1} v, \quad \operatorname{Mse}(\delta) \rightarrow \operatorname{Mse}(\delta)=\left(R^{\prime} \Sigma^{-1} R\right)^{-} .
\end{aligned}
$$

where $\left(R^{\prime} \Sigma^{-1} R\right)^{-}=K^{\prime}\left(K\left(R^{\prime} \Sigma^{-1} R\right) K^{\prime}\right)^{-1} K$ and δ and δ are interpreted as the particular maximizers obtained by making zero the elements not in δ_{1} and δ_{1}, respectively.

PROOF. The only thing that needs to be proved is that $\left|K R^{\prime} \Sigma^{-1} R K^{\prime}\right|$ does not depend on K. This can be seen in [18, p 527].

The next theorem shows the relationship between the likelihood of AK and the diffuse likelihood of de Jong. When S is singular, we take as diffuse log-likelihood the one given by Theorem 4.

THEOREM 5. Let J be a matrix with $|J|=1$ like those used by $A K$ to define their likelihood, and let J_{1} and J_{2} be the corresponding submatrices such that $J_{1} R \neq 0$ and $J_{2} R=0$. If $p(v)$ is the density of v when C is nonsingular, as given by Theorem 2, and $p\left(J_{2} v\right)$ is the $A K$ likelihood, then, letting $C \rightarrow \infty$, we have

$$
\left|\sigma^{2} C\right|^{1 / 2} p(v) \rightarrow\left\{\Pi_{1} /(2 \pi)^{d / 2}\right\} p\left(J_{2} v\right),
$$

where Π_{l} is the product of the nonzero eigenvalues of the matrix $R^{\prime} J_{1}^{\prime} J_{1} R$ and d is the number of columns of $R, \operatorname{rank}(R) \leq d$.

PROOF. Let J be as specified in the theorem. Then, $p(v)=P(I v)$ because $|J|=1$ Permuting the rows of $J R$ if necessary, we can always suppose that $J_{1} R$ are the first rows of $J R$. This amounts to premultiply $J R$ by a matrix P obtained from the unit matrix by performing the same permutations. Given that P is orthogonal, we can take $P J$ instead of J. Let K be a selector $r \times d$ matrix, where $r=\operatorname{rank}(R)$, and consider model (10). If R is of full column rank, then $K=I_{d}$ and $r=d$. That the determinant $\left|K^{\prime} R^{\prime} J_{1}^{\prime} J_{1} R K^{\prime}\right|$ is equal to the product of the nonzero eigenvalues of $R^{\prime} J_{1}^{\prime} J_{1} R$ can be seen, for example, in [18, p 527]. Let $J_{1} R K^{\prime}=M$. If $\Sigma_{j}=/ \Sigma J^{\prime}$ and we partition $\Sigma_{j}-\left(\Omega_{i j}\right), \Sigma_{j}^{-1}-\left(\Omega^{i j}\right), i, j-1,2$, conforming to $J=\left(J_{1}^{\prime}, J_{2}^{\prime}\right)^{\prime}$, then, by Theorem 4, the log-likelihood of v verifies

$$
\lambda(v)+\frac{1}{2} \ln |C| \rightarrow-\frac{1}{2}\left\{\ln \left|\sigma^{2} \Omega_{22}\left(\Omega^{11}\right)^{-1}\right|+\ln \left|M^{\prime} \Omega^{11} M\right|+\left(J_{2} v\right)^{\prime} \Omega_{22}^{-1}\left(J_{2} v\right) / \sigma^{2}\right\} .
$$

Ansley and Kohn [2], make the following assumption.

Assumption A. Matrix R in (9) and (10) does not depend on the model parameters.
This assumption holds in many practical situations, including the examples of Section 2.
COROLLARY 1. If Assumption A holds, then the AK likelihood does not depend on the matrix I.
PROOF. It is an immediate consequence of Theorem 5.
Even if Assumption A holds, Theorem 5 shows that the diffuse \log-likelihood and the AK \log-likelihood, when maximized with respect to σ^{2}, do not give the same results. The
difference lies in the term $M \ln \left(\hat{\sigma}^{2}\right)$ in the σ^{2}-maximized diffuse \log-likelihood versus $(M-d) \ln \left(\tilde{\sigma}^{2}\right)$ in the $A K \log$-likelihood, where $\hat{\sigma}^{2}=(1 / M)\left(q-s^{\prime} S^{-} s\right)$ and $\tilde{\sigma}^{2}=(1 /(M-d))\left(q-s^{\prime} S^{-} s\right)$. This is a consequence of de Jong taking the limit of $\lambda(v)+(1 / 2) \ln |C|$ instead of $\lambda(v)+(1 / 2) \ln \mid \sigma^{2} \mathrm{Cl}$ in Theorem 4 . We think that it would have been more appropiate to do the latter than the former. For instance, when dealing with an ARIMA model, the AK likelihood coincides with the usual Box-Jenkins likelihood (see [4]), whereas the diffuse likelihood does not.
We now consider predicting the state x_{t} and v_{t} using $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$. The next two theorems give the details.

THEOREM 6. Let $\delta \sim N\left(c, \sigma^{2} C\right)$ with C nonsingular and let $\delta_{t}, \tilde{x}_{t}$ and \tilde{v}_{t} be the predictors of δ, x_{t} and v_{t} using $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{t-1}^{\prime}\right)^{\prime}$, respectively. Suppose the XKF or the DKF is applied and let $\hat{X}(\delta)_{t, t-1}$ and $E(\delta)_{t}$ be the submatrices formed by all but the first columns of $\hat{X}_{t, t-1}$ and E_{t}, respectively. Then

$$
\begin{aligned}
& \delta_{t}=\left(C^{-1}+R_{t}^{\prime} \Sigma_{t}^{-1} R_{t}\right)^{-1}\left(C^{-1} c+R_{t}^{\prime} \Sigma_{t}^{-1} v_{t}\right), \quad \operatorname{Mse}\left(\delta_{t}\right)=\sigma^{2}\left(C^{-1}+R_{t}^{\prime} \Sigma_{t}^{-1} R_{t}\right)^{-1}, \\
& \tilde{x}_{t, t-1}=\hat{X}_{t, t-1}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Mse}\left(\tilde{x}_{t, t-1}\right)=\sigma^{2} P_{t, t-1}+\hat{X}(\delta)_{t, t-1} \operatorname{Mse}\left(\delta_{t}\right) \hat{X}(\delta)_{t, t-1}^{\prime}, \\
& v_{t}-\tilde{v}_{t}=E_{t}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Mse}\left(\tilde{v}_{t}\right)=\sigma^{2} D_{t}+E(\delta)_{t} \operatorname{Mse}\left(\delta_{t}\right) E(\delta)_{t}^{\prime},
\end{aligned}
$$

where R_{t} is the submatrix formed by the first t rows of R and $\Sigma_{t}-\sigma^{-2} \operatorname{Var}\left(\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{t}^{\prime}\right)\right.$).
PROOF. The first two equalities are a consequence of Theorem 2. The other expressions can be proved as the corresponding ones for the case $C=0$ in Section 3 .

THEOREM 7. With the notation and assumption of Theorems 6 and 4, if the rows of $\hat{X}(\delta)_{t, t-1}$ and $E(\delta)_{t}$ are in the space generated by the rows of $\left(R_{t}^{\prime} \Sigma_{t}^{-1} R_{t}\right)^{-}$, then, letting $C \rightarrow \infty$,

$$
\begin{aligned}
& \delta_{t} \rightarrow \delta_{t}=\left(R_{t}^{\prime} \Sigma_{t}^{-1} R_{t}\right)^{-} R_{t}^{\prime} \Sigma_{t}^{-1} v_{t}, \operatorname{Mse}\left(\delta_{t}\right) \rightarrow \operatorname{Mse}\left(\delta_{t}\right)=\sigma^{2}\left(R_{t}^{\prime} \Sigma_{t}^{-1} R_{t}\right)^{-}, \\
& \tilde{x}_{t, t-1} \rightarrow \hat{X}_{t, t-1}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Mse}\left(\tilde{x}_{t, t-1}\right) \rightarrow \sigma^{2} P_{t, t-1}+\hat{X}(\delta)_{t, t-1} \operatorname{Mse}\left(\delta_{t}\right) \hat{X}(\delta)_{t, t-1}^{\prime}, \\
& \tilde{v}_{t} \rightarrow C_{t} \hat{X}_{t, t-1}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Mse}\left(\tilde{v}_{t}\right) \rightarrow \sigma^{2} D_{t}+E(\delta)_{t} \operatorname{Mse}\left(\delta_{t}\right) E\left(\delta \delta_{t}^{\prime} .\right.
\end{aligned}
$$

PROOF. The first two limits are a consequence of Theorems 2 and 4 . The other expressions are a direct consequence of Theorem 6 .

By Theorem 7, in order to get the desired predictors, we must consider the regression model (9) with δ fixed and apply GLS theory. We can use the results of Section 3 and, in order to get an afficient algorithm, we can apply the XKF or the DKF for likelihood evaluation or prediction. Note that the difficulties that may arise stem from the fact that the matrix R may be rank defficient. In this last case, we have to use generalized inverses throughout the process and neither all observations will be predictable, nor will all states be
estimable.
The next theorem states that the predictors obtained with the modified Kalman Filter coincide with those obtained by means of the XKF or the DKF.

THEOREM 8. Let Assumption A hold. Then, the predictors of x_{t} and v_{t} obtained with the modified Kalman Filter and those obtained with the XKF or the DKF coincide. If the same estimator of σ^{2} is used in both procedures, then the Mse errors also coincide.

PROOF. Theorem 5.2 in [2] states that the AK predictors coincide with the diffuse predictors and the statement about the Mse follows trivially.

We have seen that, in order to evaluate the AK log-likelihood, we can use the modified Kalman Filter of AK, although it is not the best procedure, or we may use the efficient XKF or DKF to evaluate the diffuse log-likelihood, which, by Theorem 5, differs from the AK loglikelihood only in a constant. This constant, under Assumption A, does not depend on model parameters. The XKF or the DKF should be applied to model (9) considering δ fixed (C $=$ 0). It would be nice to employ the XKF or the DKF only for an initial stretch of the data, as short as possible, to construct an estimator of δ and, from then on, use the KF. When this occurs, one speaks of a collapse of the XKF or the DKF to the KF. Let $\operatorname{rank}(R)=r$ and suppose that the first r rows of R are linearly independent. Let R_{l} be the submatrix formed by the first r rows and let $R_{I I}$ consist of the other rows of R. Partition $v=\left(v_{I}^{\prime}, v_{I I}^{\prime}\right)^{\prime}$ and $\varepsilon=\left(\varepsilon_{I}^{\prime}, \varepsilon_{I I}^{\prime}\right)^{\prime}$ conforming to $R=\left(R_{I}^{\prime}, R_{I I}^{\prime}\right)^{\prime}$. Then, we can write

$$
\begin{align*}
& \mathrm{v}_{I}=R_{I} \delta+\varepsilon_{I} \tag{11a}\\
& \mathrm{v}_{I I}=R_{I I} \delta+\varepsilon_{I I} \tag{11b}
\end{align*}
$$

The next theorem shows how to implement the collapsing of the XKF or DKF to the KF.
THEOREM 9. Under Assumption A, let J with $|J|=1$ be a matrix like those used by AK to define their likelihood, with corresponding submatrices J_{1} and J_{2} such that $J_{1} R \neq 0$ and $J_{2} R=0$, and let $p\left(\nu_{I I} \mid \nu_{I}, \delta_{I}\right)$ be the density of $\nu_{n}-\mathrm{E}\left(\nu_{I I} \mid \nu_{1}, \delta_{l}\right)$, where $\mathrm{E}\left(\nu_{l \mid} \mid \nu_{1}, \delta_{l}\right)$ is the conditional expectation of $v_{I I}$ given v_{I} in model (11a) and (11b), considering δ fixed $(C=0)$, and δ replaced by its maximum likelihood estimator δ_{i} in model (11a). Then,

$$
p\left(J_{2} v\right)=p\left(v_{l l} \mid v_{I}, \delta_{l}\right)
$$

where $p\left(J_{2} v\right)$ is the density of $J_{2} v$.
PROOF. For simplicity, consider that R_{l} is of full column rank. If not, we would use generalized inverses, but the proof would not be affected.From model (11a) and (11b), we have, considering δ fixed, $\quad E\left(\nu_{I I} \mid \nu_{l}\right)=R_{I I} \delta+\Sigma_{21} \Sigma_{11}^{-1}\left(\nu_{l}-R_{l} \delta\right)$, where $\Sigma_{21}=\operatorname{Cov}\left(\varepsilon_{I I}, \varepsilon_{I}\right)$ and $\Sigma_{11}=\operatorname{Var}\left(\varepsilon_{I}\right)$. Then, $\mathrm{E}\left(v_{I I} \mid \nu_{1}, \delta_{I}\right)=R_{I I} R_{I}^{-1} \nu_{1} \quad$ and $v_{I I}-\mathrm{E}\left(v_{I I} \mid v_{I}, \delta_{I}\right)=v_{I I}-R_{I I} R_{I}^{-1} v_{I}$. Define the matrix $J=\left(J_{1}^{\prime}, J_{2}^{\prime}\right)^{\prime}$ with $J_{1}=(I, 0)$ and $J_{2}=\left(-R_{I I} R_{I}^{-1}, I\right)$. Then, J is a matrix of the type used by AK to define their likelihood and $v_{I I}-E\left(v_{I I} \mid v_{I}, \delta_{I}\right)=J_{2} v$.

By Theorem 9, to evaluate the log-likelihood of $v_{I I}-\mathrm{E}\left(v_{I I} \mid v_{I}, \delta_{I}\right)=J_{2} v$, we can proceed as follows. First, use the XKF or the DKF in model (11a) to obtain the maximum likelihood estimator (mle) δ_{I} and initial conditions for the KF

$$
\mathrm{E}\left(x_{s}\right)=\hat{X}_{s, s-1}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Var}\left(x_{s}\right)=\sigma^{2} P_{s, s-1}+\hat{X}(\delta)_{s, s-1} \operatorname{Mse}\left(\delta_{J}\right) \hat{X}(\delta)_{s, s-1}^{\prime},
$$

where v_{s} is the first observation in (11b). Then, proceed with the KF, applied to the second stretch of the data $v_{I I}$, to obtain the log-likelihood of $v_{I I}-E\left(v_{I I} \mid v_{I}, \delta_{I}\right)=J_{2} v$ as in Section 3 , but with no regression parameters. We have used the initial stretch v_{1} of the data to construct the mle δ_{I} and the initial conditions for the KF. After that, the effect of δ has been absorbed into the estimator of the state vector and that is the reason why we can collapse the XKF or DKF to the KF.

We now give another interpretation to the result of Theorem 9. With the notation of Theorem 2, we can write

$$
\begin{equation*}
\lambda(v)+\ln |C| / 2=\left\{\lambda\left(v_{t}\right)+\ln |C| / 2\right\}+\lambda\left(v_{l l} \mid v_{t}\right), \tag{12}
\end{equation*}
$$

where $\lambda\left(v_{\|} \mid v_{t}\right)$ is the conditional \log-likelihood of $v_{I I}$ given v_{t}. By Theorem 3, letting $C \rightarrow \infty$, the term in curly brackets tends to $\left\{M_{1} \ln \left(\sigma^{2}\right)+\left|R_{l}^{\prime} R_{l}\right|\right\} / 2$, where M_{l} is the number of components in v_{I}, whereas $\lambda\left(v_{I I} \mid v_{I}\right)$ converges to the log-likelihood of $J_{2} v$, which, by Theorem 9 , is equal to the \log-likelihood of $v_{I I}-\mathrm{E}\left(v_{I I} \mid v_{I}, \delta_{I}\right)$. Thus, the diffuse \log-likelihood of v is the sum of the diffuse \log-likelihood of v_{1} and the log-likelihood of $J_{2} \vee$. Note that the first term does not contribute to either the determinant or the sum of squares of the diffuse log-likelihood.

Bell and Hillmer [3] use a similar idea to construct initial conditions for the KF. Instead of employing the KF for the initial stretch of the data, they use the transformation approach of AK to construct the mle δ_{i} and the initial conditions for the KF directly. Whether this approach is more advantageous than using the KF, is something that depends on the pecularities of the problem at hand. If it is easier to obtain the mle and the initial conditions directly, then it can be used. However, the KF approach to construct the mle and the initial conditions has the advantage that it is easy to implement, does not depend on ad hoc procedures and it imposes very little computational and/or programming burden.

The case we have been considering, where the submatrix R_{I} is formed by the first r rows of R is important because it happens often in practice. Examples of this are ARIMA models and ARIMA component models.

If in model (11a) and (11b) we have $v_{1}=\delta$, then Theorem 9 implies $p\left(J_{2} v\right)=p\left(v_{I I} \mid v_{I}\right)$ Also, if J is a matrix like those used by AK to define their likelihood and J is of the form $J=\left(J_{1}^{\prime}, J_{2}^{\prime}\right)^{\prime}$ with $J_{1}=(I, 0)$, then v_{I} is independent of $J_{2} v$. This is the conditional likelihood approch used in [6] in the context of regression models with ARIMA disturbances and generalized to the case when there are missing observations. For ARIMA (p, d, q) models, the situation simplifies still further because it is not necessary to employ the XKF or the DKF for the initial stretch of the data $v_{I}=\delta$ to obtain initial conditions for the KF. The SSM can be redefined by simply translating forward the initial conditions d units in time, where d is the degree of the differencing operator.

Suppose there are missing observations in v and that in (11a) the vector $v_{\text {, contains a }}$ subvector $v_{I M}$ of missing observations. Let $v_{I O}$ be the subvector of v_{I} formed by the nonmissing observations and let $v_{l l}$ be the subvector of v containing the rest of the nonmissing observations. Then, by analogy with the result of Theorem 9, we can still consider $v_{H}-\mathrm{E}\left(v_{I I} \mid v_{I}, \delta_{I}\right)$, treat $v_{I M}$ as a vector of fixed parameters, and define the likelihood of $\left(v_{I O}^{\prime}, v_{I I}^{\prime}\right)^{\prime}$ as that of the regression model

$$
\begin{equation*}
\eta_{I I}=R_{I I} U_{M} v_{I M}+\omega_{I I} \tag{13}
\end{equation*}
$$

where $\eta_{I I}=v_{I I}-R_{I I} U_{0} v_{I O}, \omega_{n}=\varepsilon_{n}-R_{I I} R_{I}^{-1} \varepsilon_{I}$, and U_{O} and U_{M} are the submatrices of R_{I}^{-1} formed by the columns corresponding to $v_{I O}$ and $v_{I M}$, respectively. Here we have supposed that R_{I} is of full column rank. If not, we would use generalized inverses, but the main result would not be affected. Note that the vector $v_{I M}$ is considered as a vector of fixed parameters that have to be estimated along with the other parameters of the model. The next theorem shows that this definition of the likelihood is equivalent to the AK definition.

THEOREM 10. Under Assumption A, the ($\sigma^{2}, v_{I M}$) - maximized log-likelihood corresponding to (13) coincides, up to a constant, with the σ^{2} - maximized $A K \log$-likelihood.

PROOF. Let $\operatorname{Var}\left(\omega_{\| I}\right)=\sigma^{2} \Omega$ and let $\Omega=L L^{\prime}$ be the Cholesky decomposition of Ω. If we premultiply (13) by L^{-1}, we obtain the OLS model

$$
L^{-1} \eta_{I I}=L^{-1} R_{I I} U_{M} v_{I M}+L^{-1} \omega_{I I}
$$

The $Q R$ algorithm, applied to the $L^{-1} R_{I I} U_{M}$ matrix, yields an upper triangular matrix S with nonzero elements in the main diagonal such that $Q^{\prime} L^{-1} R_{I I} U_{M}=\left(S^{\prime}, 0\right)^{\prime}$, where Q is an orthogonal matrix. Then, we can write

$$
Q^{\prime} L^{-1} \eta_{I I}=\left[\begin{array}{l}
S \\
0
\end{array}\right] v_{I M}+Q^{\prime} L^{-1} \omega_{I I}
$$

The matrix L^{-1} will not have, in general, unit determinant. If we multiply L^{-1} by $\alpha=|L|^{1 / M_{u}}$, where M_{u} is the number of components in $v_{l \mid}$, then αL^{-1} has unit determinant. Let $K=\left(K_{1}^{\prime}, K_{2}^{\prime}\right)^{\prime}$ with $K_{1}=(I, 0)$ and $K_{2}=\left(-R_{I I} U_{0}, I\right)$. and let $P=\left(P_{1}^{\prime}, P_{2}^{\prime}\right)^{\prime}$ with $P_{1}=(I, 0)$ and $P_{2}=\left(0, \alpha Q^{\prime} L^{-1}\right)$. Partition $Q^{\prime}=\left(Q_{1}, Q_{2}\right)^{\prime}$ conforming to $Q_{1}^{\prime} L^{-1} R_{\|} U_{M}=S$ and $Q_{2}^{\prime} L^{-1} R_{\|} U_{M}=0$. If $J=P K$, then J has unit determinant and

$$
\begin{aligned}
J\left(v_{I O^{\prime}}^{\prime}, \mathrm{v}_{I I}^{\prime}\right)^{\prime} & =\left(v_{I O^{\prime}}^{\prime}\left(\alpha Q^{\prime} L^{-1} \eta_{H I}\right)^{\prime}\right)^{\prime} \\
& =\left(R_{I O}^{\prime},\left(\alpha S R_{I M}\right)^{\prime}, 0\right)^{\prime} \delta+\left(\varepsilon_{I O^{\prime}}^{\prime},\left(\varepsilon_{I M}+\alpha Q_{1}^{\prime} L^{-1} \omega_{I I}\right)^{\prime},\left(\alpha Q_{2}^{\prime} L^{-1} \omega_{I I}\right)^{\prime}\right)^{\prime},
\end{aligned}
$$

where we have partitioned R_{l} and ε_{l} conforming to the partition of v_{l} into v_{10} and $v_{I M}$. Given that $\left(R_{I O}^{\prime}{ }^{\prime}\left(\alpha S R_{I M}\right)^{\prime} y^{\prime}\right.$ has rank equal to that of R_{I}, the matrix J is of the AK type. Therefore, the AK likelihood is the density of $\alpha Q_{2}^{\prime} L^{-1} \eta_{I I}$ and the AK log-likelihood,
maximized with respect to σ^{2}, is

$$
-\frac{1}{2}\left\{\left(M_{n}-r_{S}\right) \ln \left(\hat{\sigma}^{2}\right)+\ln \mid L P^{2\left(M_{n}-r_{2}\right) / M_{n}}\right\}
$$

where $\hat{\sigma}^{2}=\left(1 /\left(M_{n}-r_{s}\right)\right) \eta_{I I}^{\prime}\left(L^{-1}\right)^{\prime} Q_{2} Q_{2}^{\prime} L^{-1} \eta_{I I}$ and $r_{s}=\operatorname{rank}(S)$. The log-likelihood of (13), maximized with respect to σ^{2} and $v_{I M}$ is $-\left\{M_{I I} \ln \left(\tilde{\sigma}^{2}\right)+\ln |L|^{2}\right\} / 2$, where

$$
\tilde{\sigma}^{2}=\left(1 / M_{I I}\right) \eta_{I I}^{\prime}\left(L^{-1}\right)^{\prime} Q_{2} Q_{2}^{\prime} L^{-1} \eta_{I I} .
$$

Theorem 10 generalizes the result obtained in [6] for ARIMA models with missing data. This approach is useful when the matrix R_{I} corresponding to the first observations v_{I} (included the missing ones) is of full column rank.
We now suppose that in model (9) the first r rows of R do not, in general, constitute a submatrix of R of rank r. Let R_{l} be the first submatrix of R formed adjoining consecutive rows to the first row, such that it has full column rank and let R_{n} consist of the other rows of R. Partition $v=\left(v_{l}^{\prime}, v_{I I}^{\prime}\right)^{\prime}$ and $\varepsilon=\left(\varepsilon_{1}^{\prime}, \varepsilon_{I I}^{\prime}\right)^{\prime}$ conforming to $R=\left(R_{1}^{\prime}, R_{I I}^{\prime}\right)^{\prime}$. In the rest of the section, whenever we refer to models (11a) and (11b), we will refer to this partition. Consider the decomposition given by (12). Then, letting $C \rightarrow \infty$ as before, the term in curly brackets tends to

$$
-\frac{1}{2}\left\{M_{l} \ln \left(\sigma^{2}\right)+\left|\Sigma_{11}\right|+\left|R_{l}^{\prime} \Sigma_{11}^{-1} R_{l}\right|+\left(v_{I}-R_{l} \delta_{l}\right)^{\prime} \Sigma_{11}^{-1}\left(v_{l}-R_{l} \delta_{l}\right) / \sigma^{2}\right\}
$$

where $\operatorname{Var}\left(\varepsilon_{I}\right)=\sigma^{2} \Sigma_{11}$ and $\delta_{I}=\left(R_{I}^{\prime} \Sigma_{11}^{-1} R_{I}\right)^{-1} R_{I}^{\prime} \Sigma_{11}^{-1} v_{I}$. The conditional log-likelihood $\lambda\left(v_{I I} \mid v_{t}\right)$ converges to the log-likelihood of $J_{2} v$, where $J_{2}=\left(-R_{H} S_{I}^{-1} T_{1}, I\right), S_{I}=$ $\left(R_{t}^{\prime} \Sigma_{11}^{-1} R_{t}\right)^{-1}$ and $T_{I}=R_{t}^{\prime} \Sigma_{11}^{-1}$. To see this, define $J=\left(J_{1}^{\prime}, J_{2}^{\prime}\right)^{\prime}$ with $J_{1}=(I, 0)$. Then, $\lambda(v)=\lambda(J v)$ because J has unit determinant and

$$
\lambda(v)+\frac{1}{2} \ln |C|=\left\{\lambda\left(v_{1}\right)+\frac{1}{2} \ln |C|\right\}+\lambda\left(J_{2} v \mid v_{1}\right) .
$$

Note that now J is not a matrix of the AK type.
THEOREM 11. Let J be the matrix we have just defined, with corresponding submatrices J_{1} and J_{2}, and let $p\left(v_{I I} \mid v_{I}, \delta_{I}\right)$ be the density of $v_{I \prime}-E\left(v_{I I} \mid v_{I}, \delta_{I I}\right)$, where $E\left(v_{I I} \mid v_{I}, \delta_{I}\right)$ is the conditional expectation of v_{n} given v_{I} in model (11a) and (11b), considering δ fixed ($\mathrm{C}=0$) and replaced by its maximum likelihood estimator $\boldsymbol{\delta}_{I}$ in model (11a). Then,

$$
p\left(J_{2} v\right)=p\left(v_{I I} \mid v_{I}, \delta_{I}\right),
$$

where $p\left(J_{2} v\right)$ is the density of $J_{2} \vee$.
PROOF. The proof is analogous to that of Theorem 9.
Thus, to evaluate the AK log-likelihood or the diffuse log-likelihood, we can still use the XKF or the DKF as before, until we have processed a stretch of observations such that the corresponding submatrix of R has full column rank, and then collapse to the KF. The
likelihood is evaluated as the sum of two terms. One corresponding to the stretch v_{I} and the other corresponding to v_{H}. More specifically, the XKF or the DKF applied to model (11a) yields

$$
\begin{equation*}
\left|\Sigma_{11}\right|,\left|R_{t}^{\prime} \Sigma_{11}^{-1} R_{t}\right| \text { and }\left(v_{t}-R_{t} \delta_{t}\right) \Sigma_{11}^{-1}\left(v_{t}-R_{t} \delta_{t}\right) \tag{14}
\end{equation*}
$$

where $\delta_{I}=\left(R_{I}^{\prime} \Sigma_{11}^{-1} R_{I}\right)^{-1} R_{I}^{\prime} \Sigma_{11}^{-1} v_{I}$. These three terms will be needed for the computation of the likelihood because now there will be no cancelation of terms. With the notation of Section 3 , if the XKF is used, the expressions in (14) are

$$
\ln \left|\Sigma_{11}\right|=2 \sum_{t=1}^{N_{l}} \ln \left|D_{t}^{1 / 2}\right|,\left|R_{l}^{\prime} \Sigma_{11}^{-1} R_{l}\right|=\mid U_{l}{ }^{R} \text { and }\left(v_{i}-R_{l} \delta_{l}\right)^{\prime} \Sigma_{11}^{-1}\left(v_{l}-R_{l} \delta_{l}\right)=w_{l, 2}^{\prime} w_{l, 2},
$$

whereas, if the DKF is used, they are

$$
\ln \left|\Sigma_{11}\right|=\sum_{t=1}^{N_{i}} \ln \left|D_{t}\right|,\left|R_{l}^{\prime} \Sigma_{11}^{-1} R_{l}\right|=\left|S_{l}\right| \text { and }\left(v_{1}-R_{l} \delta_{l}\right)^{\prime} \Sigma_{11}^{-1}\left(v_{l}-R_{l} \delta_{l}\right)=q_{i}-s_{l}^{\prime} S_{l}^{-1} s_{l}
$$

The initialization for the KF, to be used with the second stretch of the data $v_{I I}$, is

$$
\mathrm{E}\left(x_{s}\right)=\hat{X}_{s, s-1}\left(1,-\delta_{l}^{\prime}\right)^{\prime}, \quad \operatorname{Var}\left(x_{s}\right)=\sigma^{2} P_{s, s-1}+\hat{X}(\delta)_{s, s-1} \operatorname{Mse}\left(\delta_{i}\right) \hat{X}(\delta)_{s, s-1}^{\prime},
$$

where, as before, v_{s} is the first observation in (11b). Once the run of the KF is completed, we have to add up the terms in (14) to the corresponding terms obtained with the $K \mathrm{~K},\left|\operatorname{Var}\left(J_{2} v\right)\right|$ and $\left(J_{2} v\right)^{\prime}\left(\operatorname{Var}\left(J_{2} v\right)\right)^{-1}\left(J_{2} v\right)$

The fact that we don't know for how long we will have to use the XKF or the DKF before we make the transition to the KF may make collapsing unattractive. There is an alternative procedure to evaluate the AK log-likelihood or the diffuse log-likelihood that might be of interest in some cases. It consists essentially of reshuffling the observations in such a way that again the first r rows of R are linearly independent. An algorithm to achieve this is the following. Apply the XKF or the DKF to model (9) and, at the same time, obtain the row echelon form of the R matrix. Each time a new observation v_{t} is being incorporated, we check whether its corresponding row vector R_{t} is a linear combination of the rows already processed. If it is, we skip this observation as if it were missing (see [10]). Otherwise, we process the observation as part of the initial stretch of the data v_{l}. Proceeding in this way, after some time we will have processed a stretch of the data v_{l} for which the corresponding submatrix R_{I} of R will be formed by a maximal set of linearly independent row vectors. Let $v_{" 1}$ consist of the other observations and let $v_{\text {s }}$ be the first observation that we skip as if it were missing. This will be the first observation of $v_{l l}$. Suppose the Fixed Point Smoother (FPS) corresponding to v_{s} is applied, along with the XKF or the DKF, to all the columns of $\hat{X}_{t+1, t}$. Then, after processing v_{1}, we can set up as initial conditions for the KF , to be applied to $v_{I I}$, the following

$$
\mathrm{E}\left(x_{\mathrm{s}}\right)=\hat{X}_{s, I}\left(1,-\delta_{t}^{\prime}\right)^{\prime}, \quad \operatorname{Var}\left(x_{s}\right)=\sigma^{2} P_{s, l}+\hat{X}(\delta)_{s, I} \operatorname{Mse}\left(\delta_{l}\right) \hat{X}(\delta)_{\mathrm{s}, l}^{\prime},
$$

where $\hat{X}_{s, I}, P_{s, I}$ and $\hat{X}(\delta)_{s, I}$ are the quantities obtained with the FPS, and δ_{I} is the mle corresponding to v_{I}. Note that the advantage of using only the KF for likelihood evaluation
comes at the expense of an increase in the computations.
EXAMPLE 3. Consider the following ARIMA ($1,1,0$) model

$$
(1+\phi L) \nabla v_{t}=a_{t},
$$

where the notation is as in Example 1. To obtain a SSM formulation, we define $X_{t}=0, C_{t}=$ $C=(1,0), Z_{t}=0, W_{t}=0$,

$$
A_{t}=\left[\begin{array}{cc}
0 & 1 \\
\phi & 1-\phi
\end{array}\right]=A
$$

$H_{t}=H$, with $H_{1}=1, H_{2}=1-\phi, x_{1, t}-v_{t}, x_{2, t}=v_{t+1}-a_{t+1}$ and $\xi_{t-1}=a_{t}$. Then, we can write

$$
x_{t}=A x_{t-1}+H a_{t} ; \quad v_{t}=C x_{t}
$$

To initialize, we consider that $(1-L) v_{t}-u_{t}$ is stationary and follows the model $(1+\phi L) u_{t}=a_{t}$. Then,

$$
x_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] v_{0}+\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-\phi
\end{array}\right] u_{1},
$$

and we can choose $A_{0}=I, B-(1,1)^{\prime}, x_{0}-B \delta, \delta-v_{0}$ and

$$
H_{0}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-\phi
\end{array}\right] 1 / \sqrt{1-\phi^{2}} .
$$

The first state is $x_{1}-B \delta+H_{0} a_{1}$. Model (9) specializes to $R=(1,1, \ldots, 1)^{\prime}$ and $\varepsilon_{t}=u_{1}+\ldots+u_{t}, \quad t=1, \ldots, N$. The AK likelihood can be obtained as the density of the differenced data. This is equivalent to multiply v by the matrix

$$
J=\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & 1 & 0 & \ldots & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & -1 & 1
\end{array}\right],
$$

define $J_{1}-(1,0, \ldots, 0)$ and J_{2} such that $J=\left(J_{1}^{\prime}, J_{2}^{\prime}\right)^{\prime}$, and take as AK density the density of $J_{2} v$. Note that $J R=(1,0, \ldots, 0)^{\prime}$ and $J \varepsilon=\left(u_{1}, u_{2}, \ldots, u_{N}\right)^{\prime}$. The XKF or the DKF
produces $D_{1}=1 /\left(1-\phi^{2}\right), D_{t}=1, t-2, \ldots, N$,

$$
\begin{aligned}
& \ln |\Sigma|=\ln \left|J \Sigma J^{\prime}\right|=\ln \left|D_{1}\right|+\ldots+\ln \left|D_{N}\right|=\ln \left(1 /\left(1-\phi^{2}\right)\right), \\
& \ln \left|R^{\prime} \Sigma^{-1} R\right|=\ln \left|R^{\prime} J^{\prime}\left(J \Sigma J^{\prime}\right)^{-1} J R\right|=0, \delta=v_{1} \\
& (v-R \delta)^{\prime} \Sigma^{-1}(v-R \delta)=\left(v_{2}+\phi v_{1}-v_{1}\right)^{2}+\sum_{t=3}^{N}\left[\left(v_{t}+\phi v_{t-1}\right)-\left(v_{t-1}+\phi v_{t-2}\right)^{2} .\right.
\end{aligned}
$$

In case the DKF is applied,

$$
Q_{N+1}=\left[\begin{array}{cc}
\left(1-\phi^{2}\right) v_{1}^{2}+\left(v_{2}+\phi v_{1}-v_{1}\right)^{2}+\sum_{t=3}^{N}\left[\left(v_{t}+\phi v_{t-1}\right)-\left(v_{t-1}+\phi v_{t-2}\right)\right]^{2} & \left(1-\phi^{2}\right) v_{1}^{\prime} \\
\left(1-\phi^{2}\right) v_{1} & \left(1-\phi^{2}\right)
\end{array}\right]
$$

Model (11a) becomes the first equation of (9), $v_{1}=\delta+u_{1}$, where $v_{I}=v_{1}$, $R_{I}=1$ and $\varepsilon_{I}=u_{1}$. Model (11b) consists of the rest of the equations. Suppose we use the XKF or the DKF in (11a) to obtain δ_{t}, and initial conditions for the KF, that we will apply later to model (11b). Then,

$$
\begin{aligned}
& \hat{X}_{1,0}=\left[\begin{array}{ll}
0 & -1 \\
0 & -1
\end{array}\right] \quad E_{1}=\left(v_{1}, 1\right), \quad P_{1,0}=\frac{1}{1-\phi^{2}}\left[\begin{array}{cc}
1 & 1-\phi \\
1-\phi & (1-\phi)^{2}
\end{array}\right] \quad G_{1}=\left[\begin{array}{c}
1-\phi \\
\phi+(1-\phi)^{2}
\end{array}\right], \\
& D_{1}=\frac{1}{1-\phi^{2}}, \quad \hat{X}_{2,1}=\left[\begin{array}{cc}
(1-\phi) v_{1} & -\phi \\
\left(1-\phi+\phi^{2}\right) \nu_{1} & \phi(\phi-1)
\end{array}\right] \quad P_{2,1}=\left[\begin{array}{cc}
1 & 1-\phi \\
1-\phi & (1-\phi)^{2}
\end{array}\right]
\end{aligned}
$$

Given that $\delta=v_{1}$, we have $\operatorname{Mse}\left(\delta_{I}\right)=1 /\left(1-\phi^{2}\right)$ and the initial conditions for the KF are

$$
E\left(x_{2}\right)=\hat{X}_{2,1}\left[\begin{array}{c}
1 \\
-\delta_{1}
\end{array}\right]-\left[\begin{array}{l}
v_{1} \\
v_{1}
\end{array}\right] \quad \operatorname{Var}\left(x_{2}\right)=P_{2,1}+\hat{X}_{2,1}(\delta) \operatorname{Mse}\left(\hat{\delta}_{1}\right) \hat{X}_{2,1}^{\prime}(\delta)=\frac{1}{1-\phi^{2}}\left[\begin{array}{cc}
1 & 1-\phi \\
1-\phi & (1-\phi)^{2}
\end{array}\right] .
$$

Therefore, using the XKF or the DKF in (11a) to estimate δ and to compute initial conditions for the KF yields the same starting values, but shifted ahead one period of time. This is an example where we can redefine the SSM, taking $v_{I}=\delta$ and translate the initial conditions forward one unit of time. This is true for all ARIMA (p, d, q) models (see [6]).

5. Initial State with an unspecified distribution. The general case

In this Section we consider a more general SSM than that of Section 3. Besides making the assumption that δ in $x_{0}=B \delta$ has an unspecified distribution, $\delta \sim N\left(c, \sigma^{2} C\right)$, with C
nonsingular, we allow for regression parameters. That is, we consider β fixed but unknown. By Theorem 1, we have $v=R \delta+S \beta+\varepsilon$.Defining $X=(R, S)$ and $\gamma-\left(\delta^{\prime}, \beta^{\prime}\right)^{\prime}$, we can write the model more concisely as

$$
\begin{equation*}
v=X \gamma+\varepsilon . \tag{15}
\end{equation*}
$$

To define the AK likelihood, consider a matrix J of the type used by AK when there are no regression parameters and let J_{1} and J_{2} be the corresponding submatrices such that $J_{1} R \neq 0$ and $J_{2} R=0$. Then, the AK likelihood is the density of $J_{2}(v-S \beta)$. In order to efficiently evaluate the likelihood and predict and interpolate unobserved $v_{t}^{\prime} s$, they use their modified KF and modified FPS, applying them also to the columns of the regression matrix, as outlined in Section 3. The reader is referred to [15] and [16] for details. For the reasons mentioned in Section 4, we consider the modified KF and modified FPS computationally less efficient and conceptually more complex than the XKF or the DKF.
To compute the diffuse \log-likelihood of (15) we have to consider that δ is diffuse, $C \rightarrow \infty$, and β is fixed. De Jong does not consider explicitly this case, although it is a case that is often encountered in practice. Proceeding as in Theorems 2 and 3 of Section 4, replacing \vee by $v-S \beta$, and letting $C \rightarrow \infty$, we have

$$
\begin{aligned}
\lambda(v)+\frac{1}{2} \ln |C| & \rightarrow-\frac{1}{2}\left\{\ln \left|\sigma^{2} \Sigma\right|+\ln \left|R^{\prime} \Sigma^{-1} R\right|+(v-S \beta-R \delta)^{\prime} \Sigma^{-1}(v-S \beta-R \delta) / \sigma^{2}\right\}, \\
\delta & \rightarrow \delta=\left(R^{\prime} \Sigma^{-1} R\right)^{-1} R^{\prime} \Sigma^{-1}(v-S \beta) .
\end{aligned}
$$

Minimizing this diffuse \log-likelihood with respect to β yields an estimator β which minimizes $(v-S \beta)^{\prime} P^{\prime} \Sigma^{-1} P(v-S \beta)$, where $P=I-R\left(R^{\prime} \Sigma^{-1} R\right)^{-1} R^{\prime} \Sigma^{-1}$. It can be shown that the estimators δ and β obtained in this way can be obtained in a single stage as the GLS estimator $\hat{\gamma}=\left(\delta^{\prime}, \hat{\beta}^{\prime}\right)^{\prime}$ of model (15). Thus, the XKF or the DKF can be used to compute the (σ^{2}, γ)- maximized diffuse log-likelihood, given by

$$
-\frac{1}{2}\left\{M \ln \left(\hat{\sigma}^{2}\right)+\ln |\Sigma|+\ln \left|R^{\prime} \Sigma^{-1} R\right|\right\}
$$

where M is the number of components in v and $\hat{\sigma}^{2}-(1 / M)(v-X \hat{\gamma})^{\prime} \Sigma^{-1}(\nu-X \hat{\gamma})$. Under Assumption A of Section 4, the AK $\left(\sigma^{2}, \gamma\right)$ - maximized \log-likelihood differs from the $\left(\sigma^{2}, \gamma\right)$ - maximized diffuse log-likelihood only in a constant. As in Section 4, it is possible to employ the XKF or the DKF for an initial stretch of the data to construct an estimator of δ. However, it will not be possible now to collapse to the KF because we will still have to estimate the β parameters. The most we can do is to collapse to a reduced dimension XKF or DKF. More specifically, let $\operatorname{rank}(R)=r$ and suppose that the first r rows of R are linearly independent. Let R_{l} be the submatrix formed by the first r rows and let R_{l} consist of the other rows of R. Partition $v=\left(v_{1}^{\prime}, v_{H}^{\prime}\right)^{\prime}, S=\left(S_{1}^{\prime}, S_{H}^{\prime}\right)^{\prime}$ and $\varepsilon=\left(\varepsilon_{I}^{\prime}, \varepsilon_{I I}^{\prime}\right)^{\prime}$ conforming to $R=\left(R_{I}^{\prime}, R_{I I}^{\prime}\right)^{\prime}$. Then, we can write

$$
\begin{align*}
& v_{I}=R_{I} \delta+S_{I} \beta+\varepsilon_{I} \tag{16a}\\
& v_{I I}=R_{H} \delta+S_{H} \beta+\varepsilon_{H} \tag{16b}
\end{align*}
$$

Suppose that R_{I} has full column rank. If not, we would use generalized inverses instead of true inverses but the main result would not be affected. As in Section 4, we will apply first the XKF or the DKF to (16a) to obtain a GLS estimator δ_{I} of δ. However it will not be possible now to absorb both δ and β into the state estimator. Only δ will be absorbed. In this way, the XKF or the DKF will only be simplified, not collapsed to the KF, when we apply it to (16b) in the second step of the procedure. The number of states of the XKF will be reduced by a number equal to the number of components in δ. Let v_{s} be the first observation in (16b). We showed in Section 3 that, if δ and β are known, then the estimator of the state x_{s} using $\left(\gamma^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{s-1}^{\prime}{ }^{\gamma}\right.$ is

$$
\begin{equation*}
\hat{X}_{s, s-1}=\hat{X}_{s, s-1}\left(1,-\gamma^{\prime}\right)^{\gamma}=\hat{X}(v)_{s, s-1}-\hat{X}(\delta)_{s, s-1} \delta-\hat{X}(\beta)_{s, s-1} \beta, \tag{17}
\end{equation*}
$$

where $\hat{X}(v)_{s, s-1}, \hat{X}(\delta)_{s, s-1}$ and $\hat{X}(\beta)_{s, s-1}$ are the columns of $\hat{X}_{s, s-1}$ corresponding to v_{s}, δ and β, respectively. The GLS estimator δ_{I} of δ obtained from (16a) is

$$
\delta_{1}=S^{-1} T\left(v_{1}-S_{1} \beta\right),
$$

where $S=R_{l}^{\prime} \Omega_{I}^{-1} R_{I}, T=R_{I}^{\prime} \Omega_{l}^{-1}$ and $\operatorname{Var}\left(\varepsilon_{I}\right)-\sigma^{2} \Omega_{I}$. Substituting δ_{I} back in (17) yields

$$
\begin{aligned}
\tilde{x}_{s, s-1} & =\hat{X}(v)_{s, s-1}-\hat{X}(\delta)_{s, s-1} S^{-1} T v_{t}-\left(\hat{X}(\beta)_{s, s-1}-\hat{X}(\delta)_{s, s-1} S^{-1} T S_{I}\right) \beta \\
& =\tilde{X}(v)_{s, s-1}-\tilde{X}(\beta)_{s, s-1} \beta,
\end{aligned}
$$

where $\tilde{x}_{s, s-1}$ is the estimator of x_{s} using ($\left.\beta^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{s-1}^{\prime}\right)^{\prime}$ and ($\tilde{X}(v)_{s, s-1}, \tilde{X}(\beta)_{s, s-1}$) are the estimators, respectively, of the states corresponding to the data and the β parameters. Given that

$$
\operatorname{Mse}\left(\tilde{x}_{s, s-1}\right)=\operatorname{Var}\left(x_{s}-\hat{x}_{s, s-1}+\hat{x}_{s, s-1}-\tilde{x}_{s, s-1}\right)=\operatorname{Var}\left(x_{s}-\hat{x}_{s, s-1}\right)+\operatorname{Var}\left(\hat{x}_{s, s-1}-\tilde{x}_{s, s-1}\right),
$$

we have $\operatorname{Mse}\left(\tilde{x}_{s, s-1}\right)=\sigma^{2} P_{s, s-1}+\hat{X}(\delta)_{s, s-1} \operatorname{Mse}\left(\delta_{t}\right) \hat{X}(\delta)_{s, s-1}^{\prime}$. By Theorem 9 of Section 4, the XKF, to be applied to (16b), can then be initialized with $\operatorname{Var}\left(x_{s}\right)=\operatorname{Mse}\left(\tilde{x}_{s, s-1}\right)$ and $\hat{X}_{s, s-1}=\left(\tilde{X}(v)_{s, s-1}, \tilde{X}(\beta)_{s, s-1}\right)$. If the DKF is to be employed, the initialization for the Q matrix would be
where $Q_{s}=\left(Q_{i j}\right), i, j=1,2,3$. This can be seen considering that, after estımating δ, the sum of squares is $\left(v_{I}-S_{t} \beta\right)^{\prime} P^{\prime} \Sigma_{I}^{-1} P\left(v_{I}-S_{I} \beta\right)$, with $P-I-R_{I}\left(R_{l}^{\prime} \Sigma_{I}^{-1} R_{I}\right)^{-1} R_{I}^{\prime} \Sigma_{I}^{-1}$. If the first r rows of R do not constitute a submatrix of R of rank r, we would proceed as in the last part of Section 4.

REFERENCES

1. Anderson, B., and J. Moore : Optimal Filtering. Prentice Hall, New Jersey, 1979.
2. Ansley, C. F., and R. Kohn : Estimation, Filtering and Smoothing in State Space Models with Incompetely specified Initial Conditions, Annals of Statistics, 13 (1985), 1286-1316.
3. Bell, W. and S. C. Hillmer : Initializing the Kalman Filter for Nonstationary Time Series Models, Journal of Time Series Analysys, 12 (1991), 283-300.
4. Box, G. E. P., and G. M. Jenkins : Time Series Analysis, Forecasting and Control, Holden Day, San Francisco 1976.
5. Burridge, P. and K. F. Wallis : Calculating the variance of seasonally adjusted series, Journal of the American Statistical Association, 80 (1985), 541-552.
6. Gómez, V. and A. Maravall : Estimation, Prediction and Interpolation for Nonstationary Series with the Kalman Filter, EUI Working Paper ECO 92/80 (under revision for the Journal of the American Statistical Association).
7. Harvey, A. C., and G. D. A. Phillips : Maximum Likelihood Estimation of Regression Models with Autoregressive-Moving Average Disturbances, Biometrika, 66 (1979),49-58.
8. Harvey, A. C., and R. G. Pierse : Estimating Missing Observations in Economic Time Series, Journal of the American Statistical Association, 79 (1984), 125-131.
9. Harvey, A. C. : Forecasting, Structural Time Series Models and the Kalman Filter Cambridge University Press, Cambridge 1989
10. Jones, R. : Maximum Likelihood Fitting of ARMA Models to Time Series With Missing Observations, Technometrics, 22 (1980), 389-395.
11. Jong, Piet de : The Likelihood for the State Space Model, Biometrika, 75 (1988), 165-169. 12. Jong, Piet de : Smoothing and Interpolation With the State Space Model,Journal of the American Statistical Association, 84 (1989), 408-409.
12. Jong, Piet de : The Diffuse Kalman Filter, Annals of Statistics, 19 (1991), 1073-1083.
13. Jong, Piet de : Stable Algorithms for the State Space Model, Journal of Time Series Analysis, 12 (1991), 143-156.
14. Kohn, R., and C. F. Ansley : Efficient Estimation and Prediction in Time Series Regression Models, Biometrika, 72 (1985), 694-697.
15. Kohn, R., and C. F. Ansley : Estimation, Prediction and Interpolation for ARIMA Models with Missing Data," technical report, Graduate School of Business, University of Chicago, 1984.
16. Kohn, R., and C. F. Ansley : Estimation, Prediction and Interpolation for ARIMA Models With Missing Data, Journal of the American Statistical Association, 81 (1986), 751-761.
17. Rao, C. : Linear Statistical Inference and its Applications, John Wiley \& Sons, New York 1973. 19. Wecker, W., and C. F. Ansley : The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing, Journal of the American Statistical Association, 78 (1983), 81-89.

EUI WORKING PAPERS

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge - depending on the availability of stocks - from:

Publications of the European University Institute

To The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI) Italy

From
Name
Address

Working Papers of the Department of Economics Published since 1990

ECO No. 90/1
Tamer BASAR and Mark SALMON
Credibility and the Value of Information
Transmission in a Model of Monetary
Policy and Inflation
ECO No. 90/2
Horst UNGERER
The EMS - The First Ten Years
Policies - Developments - Evolution
ECO No. 90/3
Peter J. HAMMOND
Interpersonal Comparisons of Utility: Why and how they are and should be made

ECO No. 90/4
Peter J. HAMMOND
A Revelation Principle for (Boundedly)
Bayesian Rationalizable Strategies
ECO No. $90 / 5$
Peter J. HAMMOND
Independence of Irrelevant Interpersonal Comparisons

ECO No. 90/6
Hal R. VARIAN
A Solution to the Problem of Externalities and Public Goods when
Agents are Well-Informed
ECO No. 90/7
Hal R. VARIAN
Sequential Provision of Public Goods
ECO No. 90/8
T. BRIANZA, L. PHLIPS and J.F. RICHARD
Futures Markets, Speculation and Monopoly Pricing

ECO No. 90/9
Anthony B. ATKINSON/ John MICKLEWRIGHT
Unemployment Compensation and Labour Market Transition: A Critical Review

ECO No. 90/10
Peter J. HAMMOND
The Role of Information in Economics

ECO No. 90/11
Nicos M. CHRISTODOULAKIS
Debt Dynamics in a Small Open
Economy
ECO No. 90/12
Stephen C. SMITH
On the Economic Rationale for
Codetermination Law

ECO No. 90/13
Elettra AGLIARDI
Learning by Doing and Market Structures
ECO No. 90/14
Peter J. HAMMOND
Intertemporal Objectives
ECO No. 90/15
Andrew EVANS/Stephen MARTIN
Socially Acceptable Distortion of Competition: EC Policy on State Aid

ECO No. 90/16
Stephen MARTIN
Fringe Size and Cartel Stability
ECO No. 90/17
John MICKLEWRIGHT
Why Do Less Than a Quarter of the Unemployed in Britain Receive
Unemployment Insurance?
ECO No. 90/18
Mrudula A. PATEL
Optimal Life Cycle Saving With Borrowing Constraints:
A Graphical Solution
ECO No. $90 / 19$
Peter J. HAMMOND
Money Metric Measures of Individual and Social Welfare Allowing for
Environmental Externalities
ECO No. 90/20
Louis PHLIPS/
Ronald M. HARSTAD
Oligopolistic Manipulation of Spot Markets and the Timing of Futures Market Speculation

ECO No．90／21
Christian DUSTMANN
Earnings Adjustment of Temporary
Migrants
ECO No．90／22
John MICKLEWRIGHT
The Reform of Unemployment
Compensation：
Choices for East and West
ECO No．90／23
Joerg MAYER
U．S．Dollar and Deutschmark as
Reserve Assets
ECO No．90／24
Sheila MARNIE
Labour Market Reform in the USSR：
Fact or Fiction？
ECO No．90／25
Peter JENSEN／
Niels WESTERG \AA RD－NIELSEN
Temporary Layoffs and the Duration of Unemployment：An Empirical Analysis

ECO No．90／26
Stephan L．KALB
Market－Led Approaches to European Monetary Union in the Light of a Legal
Restrictions Theory of Money
ECO No．90／27
Robert J．WALDMANN
Implausible Results or Implausible Data？
Anomalies in the Construction of Value
Added Data and Implications for Esti－ mates of Price－Cost Markups

ECO No．90／28
Stephen MARTIN
Periodic Model Changes in Oligopoly
ECO No．90／29
Nicos CHRISTODOULAKIS／ Martin WEALE
Imperfect Competition in an Open Economy

米米米
ECO No．91／30
Steve ALPERN／Dennis J．SNOWER
Unemployment Through＇Learning From
Experience＇
ECO No．91／31
David M．PRESCOTT／Thanasis
STENGOS
Testing for Forecastible Nonlinear
Dependence in Weekly Gold Rates of Return

ECO No．91／32
Peter J．HAMMOND
Harsanyi＇s Utilitarian Theorem：
A Simpler Proof and Some Ethical Connotations

ECO No．91／33
Anthony B．ATKINSON／
John MICKLEWRIGHT
Economic Transformation in Eastern
Europe and the Distribution of Income＊
ECO No．91／34
Svend ALBAEK
On Nash and Stackelberg Equilibria when Costs are Private Information

ECO No．91／35
Stephen MARTIN
Private and Social Incentives
to Form R \＆D Joint Ventures
ECO No．91／36
Louis PHLIPS
Manipulation of Crude Oil Futures
ECO No．91／37
Xavier CALSAMIGLIA／Alan KIRMAN
A Unique Informationally Efficient and Decentralized Mechanism With Fair Outcomes

ECO No．91／38
George S．ALOGOSKOUFIS／
Thanasis STENGOS
Testing for Nonlinear Dynamics in Historical Unemployment Series

ECO No．91／39
Peter J．HAMMOND
The Moral Status of Profits and Other
Rewards：
A Perspective From Modern Welfare Economics

ECO No. 91/40
Vincent BROUSSEAU/Alan KIRMAN
The Dynamics of Learning in Mis-
Specified Models

ECO No. 91/41

Robert James WALDMANN
Assessing the Relative Sizes of Industryand Nation Specific Shocks to Output

ECO No. 91/42
Thorsten HENS/Alan KIRMAN/Louis PHLIPS
Exchange Rates and Oligopoly
ECO No. 91/43
Peter J. HAMMOND
Consequentialist Decision Theory and Utilitarian Ethics

ECO No. 91/44
Stephen MARTIN
Endogenous Firm Efficiency in a Cournot
Principal-Agent Model
ECO No. 91/45
Svend ALBAEK
Upstream or Downstream Information Sharing?

ECO No. 91/46
Thomas H. McCURDY/
Thanasis STENGOS
A Comparison of Risk-Premium
Forecasts Implied by Parametric Versus
Nonparametric Conditional Mean Estimators

ECO No. 91/47
Christian DUSTMANN
Temporary Migration and the Investment into Human Capital

ECO No. 91/48
Jean-Daniel GUIGOU
Should Bankruptcy Proceedings be
Initiated by a Mixed
Creditor/Shareholder?
ECO No. 91/49
Nick VRIEND
Market-Making and Decentralized Trade
ECO No. 91/50
Jeffrey L. COLES/Peter J. HAMMOND Walrasian Equilibrium without Survival: Existence, Efficiency, and Remedial Policy

ECO No. 91/51
Frank CRITCHLEY/Paul MARRIOTT/ Mark SALMON
Preferred Point Geometry and Statistical Manifolds

ECO No. 91/52
Costanza TORRICELLI
The Influence of Futures on Spot Price
Volatility in a Model for a Storable Commodity

ECO No. 91/53
Frank CRITCHLEY/Paul MARRIOTT/ Mark SALMON
Preferred Point Geometry and the Local Differential Geometry of the KullbackLeibler Divergence

ECO No. 91/54
Peter MØLLGAARD/
Louis PHLIPS
Oil Futures and Strategic
Stocks at Sea
ECO No. 91/55
Christian DUSTMANN/
John MICKLEWRIGHT
Benefits, Incentives and Uncertainty
ECO No. 91/56
John MICKLEWRIGHT/
Gianna GIANNELLI
Why do Women Married to Unemployed Men have Low Participation Rates?

ECO No. 91/57
John MICKLEWRIGHT
Income Support for the Unemployed in Hungary

ECO No. 91/58
Fabio CANOVA
Detrending and Business Cycle Facts
ECO No. 91/59
Fabio CANOVA/
Jane MARRINAN
Reconciling the Term Structure of
Interest Rates with the Consumption
Based ICAP Model
ECO No. 91/60
John FINGLETON
Inventory Holdings by a Monopolist Middleman

ECO No．92／61
Sara CONNOLLY／John MICKLEWRIGHT／Stephen NICKELL
The Occupational Success of Young Men
Who Left School at Sixteen
ECO No．92／62
Pier Luigi SACCO
Noise Traders Permanence in Stock Markets：A Tâtonnement Approach．
I：Informational Dynamics for the Two－
Dimensional Case
ECO No．92／63
Robert J．WALDMANN
Asymmetric Oligopolies
ECO No．92／64
Robert J．WALDMANN／Stephen C．SMITH
A Partial Solution to the Financial Risk and Perverse Response Problems of Labour－Managed Firms：Industry－ Average Performance Bonds

ECO No．92／65
Agustín MARAVALL／Víctor GÓMEZ
Signal Extraction in ARIMA Time Series Program SEATS

ECO No．92／66
Luigi BRIGHI
A Note on the Demand Theory of the Weak Axioms

ECO No．92／67
Nikolaos GEORGANTZIS
The Effect of Mergers on Potential Competition under Economies or Diseconomies of Joint Production

ECO No．92／68
Robert J．WALDMANN／
J．Bradford DE LONG
Interpreting Procyclical Productivity：
Evidence from a Cross－Nation Cross－
Industry Panel
ECO No．92／69
Christian DUSTMANN／John MICKLEWRIGHT
Means－Tested Unemployment Benefit and Family Labour Supply：A Dynamic Analysis

ECO No．92／70
Fabio CANOVA／Bruce E．HANSEN
Are Seasonal Patterns Constant Over
Time？A Test for Seasonal Stability
ECO No．92／71
Alessandra PELLONI
Long－Run Consequences of Finite
Exchange Rate Bubbles
ECO No．92／72
Jane MARRINAN
The Effects of Government Spending on
Saving and Investment in an Open Economy

ECO No．92／73
Fabio CANOVA and Jane MARRINAN
Profits，Risk and Uncertainty in Foreign
Exchange Markets
ECO No．92／74
Louis PHLIPS
Basing Point Pricing，Competition and Market Integration

ECO No．92／75
Stephen MARTIN
Economic Efficiency and Concentration：
Are Mergers a Fitting Response？
ECO No．92／76
Luisa ZANCHI
The Inter－Industry Wage Structure：
Empirical Evidence for Germany and a
Comparison With the U．S．and Sweden
ECO NO．92／77
Agustín MARAVALL
Stochastic Linear Trends：Models and Estimators

ECO No．92／78
Fabio CANOVA
Three Tests for the Existence of Cycles in Time Series

ECO No．92／79
Peter J．HAMMOND／Jaime SEMPERE
Limits to the Potential Gains from Market
Integration and Other Supply－Side
Policies

ECO No. 92/80
Víctor GOMEZ and Agustín MARAVALL
Estimation, Prediction and Interpolation for Nonstationary Series with the Kalman Filter

ECO No. 92/81
Víctor GÓMEZ and Agustín
MARAVALL
Time Series Regression with ARIMA
Noise and Missing Observations
Program TRAM
ECO No. 92/82
J. Bradford DE LONG/ Marco BECHT
"Excess Volatility" and the German
Stock Market, 1876-1990
ECO No. 92/83
Alan KIRMAN/Louis PHLIPS
Exchange Rate Pass-Through and Market
Structure
ECO No. 92/84
Christian DUSTMANN
Migration, Savings and Uncertainty

ECO No. 92/85

J. Bradford DE LONG

Productivity Growth and Machinery
Investment: A Long-Run Look, 18701980

ECO NO. 92/86
Robert B. BARSKY and J. Bradford DE LONG
Why Does the Stock Market Fluctuate?
ECO No. 92/87
Anthony B. ATKINSON/John MICKLEWRIGHT
The Distribution of Income in Eastern Europe

ECO No.92/88

Agustín MARAVALL/Alexandre MATHIS
Encompassing Unvariate Models in Multivariate Time Series: A Case Study

ECO No. 92/89
Peter J. HAMMOND
Aspects of Rationalizable Behaviour

ECO 92/90
Alan P. KIRMAN/Robert
J. WALDMANN

I Quit

ECO No. 92/91
Tilman EHRBECK
Rejecting Rational Expectations in Panel
Data: Some New Evidence
ECO No. 92/92
Djordje Suvakovic OLGIN
Simulating Codetermination in a
Cooperative Economy
ECO No. 92/93
Djordje Suvakovic OLGIN
On Rational Wage Maximisers
ECO No. 92/94
Christian DUSTMANN
Do We Stay or Not? Return Intentions of Temporary Migrants

ECO No. 92/95
Djordje Suvakovic OLGIN
A Case for a Well-Defined Negative
Marxian Exploitation
ECO No. 92/96
Sarah J. JARVIS/John
MICKLEWRIGHT
The Targeting of Family Allowance in Hungary

ECO No. 92/97
Agustín MARAVALL/Daniel PENA Missing Observations and Additive Outliers in Time Series Models

ECO No. 92/98
Marco BECHT
Theory and Estimation of Individual and Social Welfare Measures: A Critical Survey

ECO No. 92/99
Louis PHLIPS and Ireneo M:guel MORAS
The AKZO Decision: A Case of Predatory Pricing?

ECO No. 92/100
Stephen MARTIN
Oligopoly Limit Pricing With FirmSpecific Cost Uncertainty

ECO No．92／101

Fabio CANOVA／Eric GHYSELS
Changes in Seasonal Patterns：Are They
Cyclical？
ECO No．92／102
Fabio CANOVA
Price Smoothing Policies：A Welfare Analysis

米米米

ECO No．93／1
Carlo GRILLENZONI
Forecasting Unstable and Non－Stationary
Time Series
ECO No．93／2
Carlo GRILLENZONI
Multilinear Models for Nonlinear Time
Series
ECO No．93／3
Ronald M．HARSTAD／Louis PHLIPS
Futures Market Contracting When You
Don＇t Know Who the Optimists Are
ECO No．93／4
Alan KIRMAN／Louis PHLIPS
Empirical Studies of Product Markets
ECO No．93／5
Grayham E．MIZON
Empirical Analysis of Time Series：
Illustrations with Simulated Data
ECO No．93／6
Tilman EHRBECK
Optimally Combining Individual Forecasts From Panel Data

ECO NO．93／7
Víctor GÓMEZ／Agustín MARAVALL
Initializing the Kalman Filter with
Incompletely Specified Initial Conditions
© The Author(s). European University Institute
Digitised version produced by the EUI Library in 2020. Available Open Access on Cadmus, European University Institute Research Repository.

