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Abstract

In the first chapter, co-authored with Peter Hansen and Asger Lunde, we suggest a novel approach to modeling
and measuring systematic risk in equity markets. We develop a new modeling framework that treats an asset
return as a dependent variable in a multiple regression model. The GARCH-type dynamics of conditional
variances and correlations between the regression variables naturally imply a temporal variation of regression
coefficients (betas). The model incorporates extra information from the realized (co-)variance measures ex-
tracted from high frequency data, which helps to better identify the latent covariance process and capture its
changes more promptly. The suggested structure is consistent with the broad class of linear factor models in
the asset pricing literature.

We apply our framework to the famous three-factor Fama-French model at the daily frequency. Throughout
the empirical analysis, we consider more than 800 individual stocks as well as style and sectoral exchange traded
funds from the U.S. equity market. We document an appreciable cross-sectional and temporal variation of the
model-implied risk loadings with the especially strong (though short-lived) distortion around the Financial Crisis
episode. In addition, we find a significant heterogeneity in a relative explanatory power of the Fama-French
factors across the different sectors of economy and detect a fluctuation of the risk premia estimates over time.
The empirical evidence emphasizes the importance of taking into account dynamic aspects of the underlying
covariance structure in asset pricing models.

In the second chapter, written with Bo Laursen, we extend the popular dynamic Nelson-Siegel framework by
introducing time-varying volatilities in the factor dynamics and incorporating the realized measures to improve
the identification of the latent volatility state. The new model is able to effectively describe the conditional
distribution dynamics of a term structure variable and can still be readily estimated with the Kalman filter.

We apply our framework to model the crude oil futures prices. Using more than 150,000,000 transactions for
the large panel of contracts we carefully construct the realized volatility measures corresponding to the latent
Nelson-Siegel factors, estimate the model at daily frequency and evaluate it by forecasting the conditional
density of futures prices. We document that the time-varying volatility specification suggested in our model
strongly outperforms the constant volatility benchmark. In addition, the use of realized measures provides
moderate, but systematic gains in density forecasting.

In the third chapter, I investigate the rate at which information about the daily asset volatility level arrives
with the transaction data in the course of the trading day. The contribution of this analysis is three-fold.
First, I gauge how fast (after the market opening) the reasonable projection of the new daily volatility level
can be constructed. Second, the framework provides a natural experimental field for the comparison of the
small sample properties of different types of estimators as well as their (very) short-run forecasting capability.
Finally, I outline an adaptive modeling framework for volatility dynamics that attaches time-varying weights to
the different predictive signals in response to the changing stochastic environment.

In the empirical analysis, I consider a sample of assets from the Dow Jones index. I find that the average
precision of the ex-post daily volatility projections made after only 15 minutes of trading (at 9:45a.m. EST)
amounts to 65% (in terms of predictive R2) and reaches up to 90% before noon. Moreover, in conjunction with
the prior forecast, the first 15 minutes of trading are able to predict about 80% of the ex-post daily volatility.
I document that the predictive content of the realized measures that use data at the transaction frequency is
strongly superior as compared to the estimators that use sparsely sampled data, but the difference is getting
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negligible closer to the end of the trading day, as more observations are used to construct a projection.
In the final chapter, joint with Peter Hansen, Guillaume Horel and Asger Lunde, we introduce a multivariate

estimator of financial volatility that is based on the theory of Markov chains. The Markov chain framework takes
advantage of the discreteness of high-frequency returns and suggests a natural decomposition of the observed
price process into a martingale and a stationary components. The new estimator is robust to microstructural
noise effects and is positive semidefinite by construction. We outline an approach to the estimation of high
dimensional covariance matrices. This approach overcomes the curse of dimensionality caused by the tremendous
number of observed price transitions (normally, exceeding 10,000 per trading day) that complicates a reliable
estimation of the transition probability matrix for the multivariate Markov chain process.

We study the finite sample properties of the estimator in a simulation study and apply it to high-frequency
commodity prices. We find that the new estimator demonstrates a decent finite sample precision. The empir-
ical estimates are largely in agreement with the benchmarks, but the Markov chain estimator is found to be
particularly well with regards to estimating correlations.
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Chapter 1

A Factor Model with Realized
Measures

Joint with Peter Hansen and Asger Lunde

1.1 Introduction

The economic environment is constantly changing. Among other things, it is reflected in time-varying business
conditions and permanently fluctuating interdependencies among the single companies as well as the whole
sectors of the economy. This, in turn, manifests in changing volatilities and correlations between financial asset
returns over time. Ignoring such variation might lead to inaccurate or wrong implications in macroeconomic
and finance research. This matter is also of critical significance for practitioners since the covariance between
financial securities is in the heart of a portfolio allocation, risk management, and hedging. An availability of
high frequency data gives a promise of a more accurate measurement and estimation of unobservable covariation
variables and suggests new frontiers for econometric modeling.

In this paper we develop a flexible framework that properly accounts for temporal changes in the latent
covariance structure of multivariate asset returns, incorporates realized measures of volatilities and correlations
based on high frequency data, nests several modeling approaches, simple in estimation, and can be useful for
a range of research and practical applications. More particularly, the design allows to carefully model the
conditional second moments of multivariate and univariate returns, simplifies the treatment of high dimensional
return vectors and is consistent with the broad class of linear factor models in asset pricing.

Our framework is closely related to the Realized GARCH model (Hansen et al. (2012)) and extends it
along the several directions. Similarly, together with asset returns we explicitly model the dynamics of realized
measures of variances and correlations which timely provide us with precise signals about the latent conditional
covariance. The central element of the modeling strategy is the assumption of a multiple regression structure
for an asset return which implies that a given financial asset has an exposure to a set of regressors (factors) and
to an idiosyncratic component. Importantly, the model implies dynamics for the whole covariance structure,
i.e. both within the set of regressors and between the regressors and a dependent variable.

We follow an hierarchical modeling framework suggested in Hansen et al. (2014b). At first, we build the
marginal model, or the core model, for the set of regressors that represents a newly developed multivariate
realized GARCH model. Then, conditionally on the variables filtered from the core part, we set the models
for individual asset returns handling them as dependent regression variables. When the regressors are common
factors for a variety of assets, the core model is relevant for the conditional dynamics of many individual returns.
An assumption of a factor structure together with an hierarchical modeling makes it feasible to deal with
conditional covariance matrices of potentially large dimensions as long as we suppose that the cross-correlations
are predominantly explained by a handful of common factors.
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Furthermore, the suggested framework is perfectly adapted for an empirical analysis of asset pricing linear
factor models if regressors are treated as factors of systematic risk. The rich dynamics of the conditional
covariance structure implied by the framework induces a temporal variation in regression coefficients, or factor
loadings (betas). As a consequence, the use of high frequency data is helpful not only to identify the unobservable
covariation components, but also directly leads to potential efficiency gains in estimating conditional factor
loadings and risk premia.

From the methodological side, the paper is related to several branches of the econometric literature. The
core model for multiple factors contributes to the large class of multivariate GARCH models1. Similar to the
DCC model (Engle (2002)) or the model in Tse and Tsui (2002), we split the covariance structure into the
variances and correlations and specify separately the corresponding conditional dynamics. In contrast to the
DCC, instead of modeling the conditional correlation matrix directly we work with the vector of elements from
its logarithmic transform. Such strategy is attractive because it renders the filtered correlation matrix valid,
preserving positive definiteness at each step. In addition, all correlation elements are endowed with their own
non-trivial dynamics, unlike in the CCC (Bollerslev (1990)) or the DECO (Engle and Kelly (2011)) models.
However, the most important feature that differs our modeling approach from most of models in the literature
is the use of realized measures of volatilities and correlations. Thus, signals from both low frequency returns
and high frequency observations are incorporated into the model in order to better capture the dynamics of
unobservable covariance.

Modeling of dynamic variances and covariances with realized measures became a popular research direction
after the works of Andersen and Bollerslev (1998a), Andersen et al. (2001b), Barndorff-Nielsen and Shephard
(2002b), Andersen et al. (2003a), Barndorff-Nielsen and Shephard (2004), etc., where the theoretical grounds
for the realized variance estimator and the practical benefits from its applications were establshed2. The
literature suggests several dominant approaches to modeling the multivariate volatility with realized measures.
They include purely reduced-form models where the realized covariance elements are described as time series
processes (e.g., Liu (2009), Chiriac and Voev (2011)), semi-reduced-form models where the reduced-form time
series of realized covariances are supplemented by measurement equations (see Golosnoy et al. (2012), Bauwens
et al. (2012)), and the models where realized covariance measures are modeled jointly with the multivariate
return vector (Noureldin et al. (2012)). In the realized GARCH paradigm we not only model return vector
together with realized measures, but also incorporate the measurement equations which complete the model
by connecting observed realized and latent conditional covariances. Note that an implicit advantage of the
measurement equations relates to the increased stability of model estimation due to an additional likelihood
component specified for the realized measures.

The modeling framework developed in the paper extends the growing family of the realized GARCH models.
First, the core part of the model can be viewed as a direct multivariate generalization of Hansen et al. (2012)
and Hansen and Huang (2016). Apart from the alternative multivariate Realized GARCH models proposed
in Balter et al. (2015) and Hansen et al. (2016), we ensure positive definiteness of the covariance process and
disentangle the volatility dynamics from the correlation dynamics, thus making the model formulation more
convenient and tractable. Second, the conditional model for individual returns represents an extension of the
Realized Beta GARCH framework (Hansen et al. (2014b)) for the case of multiple conditioning factors. Finally,
our model can incorporate the leverage effects, spillover effects for volatilities and correlations, as well as the
heavy-tailed distributional aspects (see Banulescu et al. (2014)). This endows the conditional return density
with flexible dynamics and makes a promise of a decent empirical fit.

An appealing feature of the developed framework relates to its interpretation as a linear factor model.
In particular, the possibility to readily extract dynamic factor loadings as a function of conditional covariation
variables suggests a promising contribution to the literature on the empirical evaluation of dynamic asset pricing
models. The factor loadings, or the factor betas, are the benchmark indicators of non-diversifiable systematic

1For more references, see surveys in Laurent et al. (2006) and Silvennoinen and Terasvirta (2008).
2For more references on the estimation of realized volatility measures, modeling, and forecasting see reviews in McAleer and

Medeiros (2008), Andersen et al. (2010), Hansen and Lunde (2011).
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risk for a given asset or portfolio. A number of studies documented empirical evidence in favour of dynamic
nature of betas in the asset pricing factor models (see Bollerslev et al. (1988), Ferson and Harvey (1991),
Jagannathan and Wang (1996), and others). Thus, an ability to accurately and promptly estimate local factor
loadings may improve an assessment of asset pricing models and their cross-section pricing implications.

The factor loadings implied by the specification of our framework are intrinsically time-varying since they
depend on the dynamic conditional variances and correlations incorporated into the model. This is unlike to the
rolling regression approach commonly used in the literature. Although the rolling regressions allow a certain
degree of time variation in betas, they are not capable to capture most of the dynamic features that are possibly
embedded in factor loadings, especially at higher frequencies. The problem of imprecise beta estimation when
long-window rolling regressions are used has often been pointed out (see Fama and French (1997), Lewellen and
Nagel (2006), etc.).

The dynamic betas produced within our framework are expected to have an advanced precision. On the one
hand, since our model enjoys the superior information content from high frequency realized measures, the model-
implied betas are more efficient and supposed to more rapidly adjust with the changes in the true unobservable
loadings. As a consequence, we may presume an advantage over the dynamic betas estimated by more standard
multivariate GARCH frameworks where only the information from low frequency returns is exploited (Bekaert
and Wu (2000), Engle (2012)). On the other hand, as opposed to the reduced form models (e.g., Bollerslev
and Zhang (2003), Andersen et al. (2006)) for realized betas (Barndorff-Nielsen and Shephard (2004), Bandi
and Russell (2005)), our approach is based on the multivariate GARCH structure for daily returns. Therefore,
conditional betas are primarily driven by the dynamics of variances and correlations between actual returns and
risk factors, rather than by the corresponding realized measures solely.

In order to examine our novel modeling framework empirically we apply it to the celebrated Fama-French
three factor model (Fama and French (1992), Fama and French (1993)) at a daily frequency. At first, we
construct intra-daily Fama-French factors using high frequency data on the style exchange traded funds (ETFs
henceforth), which represent portfolios of assets selected according to the different investment styles. The
constructed intra-daily factor series allow us to obtain realized measures of variances and correlations between
the factors. At second, we estimate the core model for the three factors and then estimate conditional Fama-
French factor models for different test assets. For this purpose we use large cross-section of more than 800
stocks from the U.S. equity market and a range of ETFs that reflect different investment styles and sectoral
indexes. At third, we produce a descriptive empirical analysis of the model-implied dynamic betas, implement
an approximate decomposition of asset return variances along the risk factors and, finally, assess the pricing
implications of the Fama-French factors through the prism of our modeling framework.

We found that although the betas demonstrate an appreciable variability in dynamics, such variability is
highly heterogeneous across the sectors of the U.S. economy. Our findings reveal a large extent of temporal
variation in the cross-section distributions of factor loadings, especially for the book-to-market factor. We,
thus, corroborate the results from Hansen et al. (2014b) obtained for the market betas, but now controlling
for the two additional risk factors. We document that the variance decomposition of stock and ETF returns,
implied by the dynamic Fama-French model, significantly changes over time. In particular, we found that the
value (book-to-market) factor is reflected mostly in the return variances of the financial companies around the
Great Recession and in the aftermath. Despite that the cross-section risk premia estimates, computed with
the model-implied factor loadings, are very noisy at high frequencies, the results suggest an evidence of an
appreciable time variation in the premia for all three risk factors.

Our empirical findings confirm an ability of the modeling framework to evaluate multi-factor models for
asset returns. It motivates to investigate further both statistical implications and the economic significance
of the model-implied variables. In particular, it might be interesting and important to examine the model
performance in estimation and forecasting large-scale dynamic covariance matrices given a proper choice of the
common factors, to assess risk-return benefits from the portfolio selection strategies based on the filtered and
predicted risk factor loadings, evaluate the implications of different asset pricing models on the conditional
density of returns, etc. These routes are the subject of the ongoing and future research.
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We proceed as follows. In Section 1.2 we present the framework and discuss the estimation methodology. In
Section 1.3 we describe the data, provide the details on the construction of realized measures and give a short
discourse of the model estimation results for the Fama-French factors. We discuss the properties of the filtered
dynamic betas and provide a variance decomposition analysis in Section 1.4. In Section 1.5 we refer to asset
pricing implications of our modeling framework. Section 1.6 concludes and provides an extended outline. The
detailed estimation algorithm, the model evaluation, and the thorough description of the ETF selection for the
Fama-French factors replication can be found in Appendices.

1.2 Realized GARCH for Multiple Factor Models

In this section, we describe the modeling strategy in details. We begin with the brief description of the general
modeling assumptions and introduce a notation. Then, we proceed with the multivariate core model for the
factors. After, we present the conditional factor model for individual asset returns. Finally, we discuss the
assumptions that are needed to apply our framework to a large system of individual assets and outline the
estimation strategy.

1.2.1 Notation and Preliminaries

We cast the model in a discrete time and index t stands for a generic time unit which is typically a trading day.
We also suppose that there are many individual assets in the asset universe, i = 1, ..., N . Let rit denotes a return
on an individual asset i and rct denotes a k × 1 vector of returns associated with k factors. Additionally, we
observe realized covariance measures for the vector of factor returns rct . The information contained in a realized
covariance matrix may be represented through k×1 vector of realized factor variances xct and the k×k realized
correlation matrix Y ct . Also, for each asset i we possess realized variance measures of individual asset returns,
xit, as well as k× 1 vectors yit of realized correlations between asset and factor returns, rit and rct . Naturally, all
realized variances are strictly positive and all pairwise realized correlations lie in the open interval (−1, 1).

We introduce two types of information sets. The first type is a tuple which contains all observable variables
related solely to the multivariate factor process, X ct =

(
rct ,xct , Y ct

)′. The second information tuple consists of
observables associated with an individual asset, X it =

(
rit, x

i
t,yit

)′, and is available for all i = 1, ..., N . We also
introduce two types of natural filtrations. The first is generated only by the information sets X ct and can be
written as the following σ-algebra

Fct = σ
(
X ct ,X ct−1, ...

)
The second type is based on the richer information where the variables related to an asset i are also incorporated,

Fc,it = σ
(
X ct ,X it ,X ct−1,X it−1, ...

)
In accordance with the Realized GARCH framework, we model a conditional joint density of observable

returns and realized measures, p(X ct ,X it |F
c,i
t−1). We follow an hierarchical modeling approach previously sug-

gested in Hansen et al. (2014b). This approach is based on the assumption that the conditional joint density
of the observable variables related to the factors, p(X ct |F

c,i
t−1), does not depend on observations related to any

individual asset i3, that is

p(X ct |F
c,i
t−1) = p(X ct |Fct−1) (1.1)

As a consequence, we may factorize the joint conditional density as follows
3This assumption is natural, especially in the current context of a factor model. Whereas an individual asset returns are supposed

to depend on factors, the opposite is usually not assumed.
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p(X ct ,X it |F
c,i
t−1) = p(X ct |Fct−1)p(X it |X ct ,F

c,i
t−1) (1.2)

Since the conditional distribution of asset variables depends on factor variables, but not vice versa, the
modeling strategy for p(X ct ,X it |F

c,i
t−1) naturally consists of two steps. At first, the model for p(X ct |Fct−1) is

formulated. Note, that this model can be set up independently from individual assets due to (1.1). We will
refer to this model as to the core model, since it is on the upper level of the hierarchical framework. In the second
step, the dynamics for p(X it |X ct ,F

c,i
t−1) is specified conditionally on the estimated core model. The corresponding

models (on the lower level of the modeling hierarchy) will represent conditional factor models for individual
assets i = 1, ..., N .

1.2.2 Multivariate Realized GARCH Model for Factors

We begin with the core model for the factors and their realized measures of covariance. As we have noted
before, this model is associated with the conditional density p(X ct |Fct−1). We now introduce the version of the
multivariate Realized GARCH model where the dynamics of conditional distribution of the return vector is
modeled together with the realized measures of its variances and correlations.

1.2.2.1 Conditional Distribution of Returns

We suppose that the k×1 vector of factors is conditionally distributed as a multivariate Normal random vector4

rct |Fct−1 ∼ N
(
µc, Hc

tR
c
tH

c
t

)
(1.3)

where µc is a k× 1 constant vector, Hc
t is an unobservable diagonal matrix of conditional volatilities, and Rct is

a latent conditional correlation matrix of rct :

Hc
t =


√
hc1,t 0 · 0
0

√
hc2,t · 0

· · · ·
0 0 ·

√
hck,t

 and Rct =


1 � · �

ρc21,t 1 · �
· · · ·

ρck1,t ρck2,t · 1


As long as we assume that Rct is an invertible matrix, we may rewrite (1.3) in the equation form

rct = µc +Hc
t zct (1.4)

where zct is a k × 1 standardized factor return distributed as a multivariate Normal, zct ∼ N(0, Rct). In our
model, we follow the principles of the Dynamic Conditional Correlation (DCC) framework (see Engle (2002),
Engle and Sheppard (2001), etc.) in sense that we disentangle the dynamics of conditional variances from the
dynamics of conditional correlations. In contrast to the DCC, we incorporate realized measures of variances
and correlations into the conditional covariance process.

1.2.2.2 Conditional Variances

At first, lets describe the conditional dynamics of variances. For expositional convenience we introduce a k × 1
vector of conditional variances hct = (hc1,t, hc2,t, ..., hck,t)′. The realized analogue of this vector is the k× 1 vector
xct = (xc1,t, xc2,t, ..., xck,t)′ consisted of realized variances of k factors obtained using the high frequency data. In
the spirit of the Realized GARCH model, we formulate a measurement equation to establish a contemporaneous
relation between the conditional variances and their realized measures

4Note that the distributional choice may be different. We use the Normal assumption and rely on the QML argument in case
of a possible misspecification.
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log xct = Φc0 + Φc1 log hct + δc(zct) + uct (1.5)

where Φc0 is a k× 1 vector and Φc1 is a k×k matrix of constant coefficients, which accounts for a bias in realized
measures5. A random vector uct ∼ N

(
0,Ωcu

)
introduces a stochastic measurement error6. Note that measure-

ment errors of realized variances corresponding to different factor returns may be correlated and, therefore,
covariance matrix Ωu is generically non-diagonal. The measurement error uct is assumed to be independent
from zct . Although this assumption is quite restrictive, the presence of the leverage component δc(zct) provides
some compensation for that. Following Hansen et al. (2012), we introduce a parametric leverage function which
reads

δc(zct) = Dc
1zct +Dc

2(zct ◦ zct − ιk)

where ιk stands for the k × 1 unit vector, Dc
1 and Dc

2 are k × k coefficient matrices. The leverage function
defined as above represents a multivariate version of the leverage function introduced in Hansen et al. (2012).
This function captures an asymmetry in the relation between returns and volatility dynamics and is motivated
by the stylized empirical facts7. Hansen et al. (2012) found that a parsimonious leverage function written as a
second-order Hermite polynomial makes a good job in capturing the aforementioned asymmetry and appreciably
improves the model fit. If we set the matrices Dc

1 and Dc
2 to be diagonal, then, as it follows from (1.5), we

come up with k independent asymmetry effects between k factors and k corresponding conditional variances.
In this case, each element of vector δc(zct) gets the same functional form as a univariate leverage function from
Hansen et al. (2012). In contrast, if Dc

1 or Dc
2 are non-diagonal, the leverage spillovers from some factors to the

volatilities of other factors are incorporated.
We now may formulate the GARCH-type dynamic equation for the conditional variances

log hct = Γ c0 + Γ c1 log hct−1 + Γ c2 log xct−1 + τc(zct−1) (1.6)

where Γ c0 is a constant k× 1 vector, Γ c1 and Γ c2 are k× k coefficient matrices, and, finally, τc(·) is an additional
leverage function which has the same form as in the previous case

τc(zct) = T c1 zct + T c2 (zct ◦ zct − ιk)

with T c1 and T c2 being k×k coefficient matrices. The equation (1.6) is the Realized EGARCH dynamic equation
from Hansen and Huang (2016) written in a vector form. A key feature is the presence of a realized variance
measure, which improves the reaction of the modeled conditional volatility process to the latent changes in the
volatility level. Another important aspect is the presence of an additional leverage component τc(·), which adds
an extra flexibility in modeling the dependence between return shocks and volatility shocks and was proven to
be beneficial for the empirical model performance. In both the measurement equation (1.5) and in the transition
equation (1.6), we use vectors with log-transformed entries. This choice is in line with the EGARCH modeling
framework and ensures that the elements from hct always stay positive8.

5There are several reasons that may cause a bias in the realized measures of volatility. One of the main reasons is that realized
measures do not account for an overnight variation since they are computed using intra-daily returns observed only during the
trading hours. Therefore, if one takes rct to be close-to-close returns, realized measures will consistently underestimate the return
variance. Other reasons include a small sample bias of particular high frequency realized estimators, the presence of jumps and
outliers, etc.

6Another interpretation of uct is a volatility shock (see Hansen and Huang (2016)). Since hct can be treated as a forecast of the
latent variance that is made at t− 1, the difference between the realized variance xct and hct represents a forecast error, or variance
innovation with respect to the predicted volatility level.

7Conventionally, the leverage effect is accociated with a (usually negative) correlation between the return volatility and the
return shocks, or news. See, e.g., Black (1976), Christie (1982), Engle and Ng (1993).

8In addition, the use of log-transformed variances in the measurement equation (1.5) can be motivated by the empirical studies
of Andersen et al. (2001a) and Barndorff-Nielsen and Shephard (2002c), who found that the logarithm of the realized variance can
be well approximated by the Normal distribution.
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1.2.2.3 Conditional Correlations

We now turn to the conditional dynamics of correlations. A full-rank real valued matrix Rc needs to satisfy 2
properties in order to be a correlation matrix: it has to be positive definite and each element from the main
diagonal must be equal to one. These restrictions on the matrix structure complicate modeling of the conditional
correlation dynamics9. In contrast to the standard DCC approach, we will not formulate a matrix process, but
suggest a vector process for the elements of the transformed conditional correlation matrix.

We base our modeling strategy on the matrix logarithmic and exponential transformations. Applying the
spectral decomposition to a positive definite matrix A we get A = V ΛV ′, where V is an orthonormal matrix
of eigenvectors and Λ is a diagonal matrix with the eigenvalues of A on the main diagonal. Then, log-matrix
transform of A implies logm(A) = V log(Λ)V ′, where log(Λ) applies logarithmic transformations to all diagonal
elements of the matrix Λ. The matrix exponential represents an inverse operation and reads expm(A) =
V exp(Λ)V ′, where exp(Λ) takes the exponent of all diagonal elements in Λ.

The useful property of log/exp-matrix operations is that they provide a simple mapping from the space
of positive definite matrices to the space of symmetric matrices and back. This property is especially useful
when is applied to modeling matrices which have to be positive definite, such as covariance matrices10. In what
follows, we will also exploit this feature, but in the context of modeling correlation matrices and their realized
measures. To begin with, we provide a lemma

Lemma 1. Suppose that R is a non-singular correlation matrix. Then, the diagonal elements of logm(R) are
bounded above, but the off-diagonal elements are unbounded on R.

Lets denote the log-transformed matrices of conditional and realized correlations as

LRct = logm(Rct) =


lρc11,t � · �
lρc21,t lρc22,t · �
· · · ·

lρck1,t lρck2,t · lρckk,t

 and LY ct = logm(Y ct ) =


lyc11,t � · �
lyc21,t lyc22,t · �
· · · ·

lyck1,t lyck2,t · lyckk,t


By lρct = (lρc21,t, lρ

c
31,t, lρ

c
32,t, ..., lρ

c
kk−1)′ = vechodLRct we denote the 1

2k(k−1)×1 vector with the stacked distinct
off-diagonal elements from LRct . The realized analogue of lρct is denoted by lyct = ((yc21,t, ly

c
31,t, ly

c
32,t, ..., ly

c
kk−1)′ =

vechodLY ct . We also make the following conjecture

Conjecture 1. For any vector x ∈ Rk(k−1)/2 there exists at most unique k × k correlation matrix R such that
x = vechod(LR).

Note that the conjecture does not claim that for any real vector such correlation matrix necessarily exists.
We formulate measurement and dynamic equations, analogous to (1.5) and (1.6), for the vectors lyct and lρct .
Implications of Lemma 1 and Conjecture 1 make these vectors convenient for doing it. At first, the elements of
both vectors are not bounded, which simplifies a formulation of the measurement equation. At second, vectors
lyct and lρct contain all information that is needed to restore the reciprocal correlation matrices Y ct and Rct .

We introduce realized measures by means of the measurement equation similarly to the case of realized
variances,

lyct = Ψ c0 + Ψ c1 lρ
c
t + vct (1.7)

9Several other examples (apart from the original DCC model), where the dynamic matrix process for conditional correlations
is proposed, include the consistent DCC model of Aielli (2013) as well as the modified DCC version suggested by Shephard et al.
(2008). In the context of modeling dynamics of realized correlation matrix, Bauwens et al. (2012) developed an extension of the
Conditional Autoregressive Wishart model of Golosnoy et al. (2012). They disentangle the dynamics of realized variances from
realized correlations with the dynamic equation for the latter being closely related to the specification used in the DCC models.

10An idea to use matrix logarithm for modeling covariance matrices was introduced in Chiu et al. (1996). It was then exploited to
model dynamic covariance matrices in the context of the multivariate GARCH (Kawakatsu (2006)), Stochastic Volatility (Ishihara
et al. (2014)) and DCC models (Asai and So (2015)). Matrix logarithm has been also applied to study the dynamics of realized
covariances. In particular, Bauer and Vorkink (2011) used log-matrix transform for modeling and forecasting realized covariance
matrices. The matrix logarithm and exponential were considered as cases of the more general Box-Cox transformation and its
inverse and then were applied to modeling realized covariance matrices in Weigand (2014).
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where Ψ c0 is a 1
2k(k− 1)× 1 vector and Ψ c1 is a 1

2k(k− 1)× 1
2k(k− 1) matrix of constant coefficients to capture

a possible bias in realized measures. The vector of measurement errors vct ∼ N
(
0,Ωcv

)
is supposed to be

independent from zct , but may correlate with uct . The concatenated vector of all measurement errors is then
distributed Normally with zero mean and variance

Ωc = Var
(

uct
vct

)
=
(

Ωcu (Ωcuv)′

Ωcuv Ωcv

)

The dynamic equation for lρct is given by the following autoregressive process

lρct = Λc0 + Λc1 lρ
c
t−1 + Λc2 lyct−1 (1.8)

where Λc0 is a constant 1
2k(k− 1)× 1 vector, Λc1 and Λc2 are coefficient matrices with the conformable size. Note

that the elements from the vector lρct are not directly interpretable because each element in lρct is a function
of the whole correlation matrix Rct . If we suppose that the true dynamics of the conditional correlations is
sufficiently smooth and persistent, we may expect a similar regularity for lρct since the log-matrix transformation
is continuously differentiable.

The estimation of the core model requires to have available the filtered matrix Rct at each time period t.
Note that only the off-diagonal elements of LRct are known from lρct . In order to find the diagonal elements of
LRct we recall that Rct = expm(LRct) has to be a correlation matrix and use Conjecture 1. Namely, by means
of simple numerical methods the diagonal elements of LRct can be uniquely identified from the condition that
diagonal elements of Rct = expm(LRct) are all equal to ones. As long as we have restored the matrix LRct , we
can find the conditional correlation matrix as Rct = expm(LRct).

We note that for the case k = 2 the logarithm of a correlation matrix has a simple analytical form. It can
be found (see Williams (1999), Bauer and Vorkink (2011)) that in this case

LRct = 1
2

(
log(1− (ρc21,t)2) 2 atanh(ρc21,t)
2 atanh(ρc21,t) log(1− (ρc21,t)2)

)

where an off-diagonal element, lρct = atanh(ρc21,t), is the Fisher transform which maps from (−1, 1) to R and
which was used in Hansen et al. (2014b), inter alia, for modeling the dynamics of the conditional correlation
process in a bivariate GARCH framework. Thus, the Realized Beta GARCH model of Hansen et al. (2014b) is
a special case of our Multivariate Realized GARCH model for k = 2. For larger k, the closed form of LRct is
becoming far more complicated.

1.2.3 Conditional Factor Model for Individual Assets

We formulate the conditional model for individual asset returns and corresponding realized measures of volatility
and correlations with the factors. This model deals with the conditional density p(X it |X ct ,F

c,i
t−1) from (1.2).

Naturally, the conditional model represents an extension of the univariate Realized GARCH model to the
dynamic factor framework with the factor dynamics described by the multivariate Realized GARCH from the
previous subsection.

1.2.3.1 Conditional Distribution of an Individual Return

According to the conditional model, an individual asset return rit is given by

rit = µi +
√
hitz

i
t (1.9)

where µi is the constant trend parameter, hit is the unobservable conditional variance, and zit is the standardized
return, which is conditionally jointly distributed with the standardized factors. Namely,
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(
zct
zit

)∣∣∣∣∣Ft−1 ∼ N

((
0k×1

01×1

)
, Rc,it

)
(1.10)

where the (k + 1)× (k + 1) joint conditional correlation matrix Rc,it is

Rc,it =
(

Rct ρit

(ρit)′ 1

)
(1.11)

The matrix Rct in (1.11) is the k × k factor correlation matrix filtered from the core model and ρit is a k × 1
vector of correlations between an individual asset return rit and the factors rct .

It follows from assumptions (1.10) and (1.11) that

zit|zct ∼ N
(
(ρit)′(Rct)−1zct , 1− (ρit)′(Rct)−1ρit

)
(1.12)

1.2.3.2 Conditional Variance and Correlations

In analogy with (1.5) and (1.6) we introduce the measurement and GARCH equations for the conditional
variance hit of an asset return rit

logxit = φi0 + φi1 log hit + δi(zit) + uit (1.13)

log hit = γi0 + γi1 log hit−1 + γi2 log xct−1 + τi(zit−1) (1.14)

where xit is a realized measure of hit, uit is a measurement error, and leverage functions are defined as before

δi(zit) = δi1z
i
t + δi2((zit)2 − 1) and τi(zit) = τ i1z

i
t + τ i2((zit)2 − 1)

For the conditional correlations ρit and the corresponding realized measures yit we suggest similar specifica-
tions

F (yit) = Ψ i0 + Ψ i1 F (ρit) + vit (1.15)

F (ρit) = Λi0 + Λi1 F (ρit−1) + Λi2 F (yit−1) (1.16)

where F (·) applies the element-wise Fisher transform to the vectors yit and ρit in order to map each correlation
element from the closed interval (−1, 1) onto R. Similar to the core model, the measurement equation (1.15)
defines the contemporaneous relationship between the k × 1 vector of latent conditional correlations ρit and its
realized measures from yit. Matrices Ψ i0 and Ψ i1 of the proper dimensions account for a possible measurement
bias, whereas vit stands for the k × 1 vector of stochastic measurement errors. The equation (1.16) describes
a transition of conditional correlations by imposing the vector autoregressive dynamics on the transformed
conditional correlation, so it depends on its own lags and the lagged realized measures, as it is standard for the
Realized GARCH framework.

As in the core model, we assume that the measurement errors from (1.13) and (1.15) are zero mean and
Gaussian and we allow them to be correlated

Ωi = var

(
uit

vit

)
=
(

Ωiu (Ωiuv)′

Ωiuv Ωiv

)

Furthermore, we suppose that for each considered asset i the measurement errors from the core model (in (1.5)
and (1.7)) have a joint Normal distribution with the measurement errors from the conditional model for this
individual asset, therefore
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uct
vct
uit

vit

 ∼ N
((

0k(k+1)/2

0k+1

)
,

(
Ωc (Ωc,i)′

Ωc,i Ωi

))
(1.17)

Importantly, we keep an assumption that the measurement errors are independent from the return shocks zct
and zit.

However, equations (1.15)-(1.16) require specific constraints on the parameter matrices and the measurement
error specification in order to guarantee that the conditional correlations ρit, being filtered from the model,
comply with the required positive definiteness of the joint correlation matrix (1.11) for all t. The following
lemma imposes the necessary and sufficient condition on the elements from vector ρit to ensure that Rc,it remains
a correlation matrix.

Lemma 2. Suppose that R is a (k + 1) × (k + 1) symmetric matrix with ones on the main diagonal. Let the
upper left k× k block of R consists of non-singular correlation matrix Rc. Denote the upper right k× 1 block of
R by p. Then, R is a non-singular correlation matrix if and only if p′(Rc)−1p < 1.

Fisher transforms in (1.15) and (1.16) only ensure that elements of ρit are less than 1 in absolute values,
which is necessary, but not sufficient for the positive definiteness of Rc,it as long as k > 1. Nonetheless, we
apply the current specification in our empirical analysis due to its simplicity and convenience, but check the
condition (ρit)′(Rct)−1ρit < 1 at each t = 1, ..., T for the estimated model. In case it is violated, we look for an
another set of parameters that solves the likelihood maximization problem and generates admissible series ρit.
In the subsection devoted to the model estimation, we describe this procedure in more details. On top of that,
in Appendix A.2 we outline an alternative modeling strategy for the correlation process ρit via the spherical
coordinate transform which automatically ensures a positive definiteness of Rc,it .

1.2.4 Multiple Regression Representation and Key Quantities

An asset or portfolio return rit from (1.9) can be alternatively represented as a linear multiple regression

rit = αit + (βit)′rct + εit (1.18)

where βit is a k × 1 vector of conditional regression coefficients (betas) that is defined as

βit = Var
(
rct
∣∣Fc,it−1

)−1Cov
(
rit, rct

∣∣Fc,it−1
)

and can be written in terms of the model variables as

βit =
(
Hc
tR

c
tH

c
t

)−1
Hc
t ρ
i
t

√
hit =

(
Hc
t

)−1(
Rct
)−1

ρit

√
hit (1.19)

where matrices Hc
t and Rct are filtered from the core model, whereas the conditional correlations ρit and the

variance hit are extracted from the individual factor model related to asset i. The intercept coefficient in (1.18)
is formally expressed as αit = µi − (βit)′µc and compensates for possible non-zero factor means. The term εit is
an idiosyncratic Gaussian error term with zero mean.

The multiple regression representation (1.18) is conformable with the conditional factor framework for asset
returns (see Engle et al. (1990), Braun et al. (1995), Bollerslev and Zhang (2003) among many others) with
time-varying factor loadings depending on the conditional covariance structure. Due to orthogonality of εit, the
conditional idiosyncratic variance of rit is readily obtained using (1.3) and (1.12), so we can write

εit =
√
hit(1− (ρit)′(Rct)−1ρit)ωit (1.20)

where ωit ∼ i.i.d.N(0, 1) is a standardized idiosyncratic shock.
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1.2.5 Large System of Assets

Consider now a sample of assets, i = 1, ..., N and assume that the factors are common for all these assets. The
factors may represent, for example, the sources of a systematic risk for asset returns as it is commonly implied in
the Arbitrage Pricing Theory. The factor framework described above allows to study some dynamic properties
of the joint conditional distribution of many individual assets. In doing so, we closely follow the framework
developed in Hansen et al. (2014b). We first introduce a natural filtration that comprises all the information
that is available up to day t related to the common factors and an asset universe

Fc,It = σ
(
X ct , {X it }Ni=1,X ct−1, {X ct−1}Ni=1, ...

)
In order to apply our hierarchical model to a high dimensional vector of individual returns, we additionally
assume that

p(X ct |F
c,I
t−1) = p(X ct |Fct−1) and p(X it |X ct ,F

c,I
t−1) = p(X it |X ct ,F

c,i
t−1) (1.21)

for all i = 1, ..., N . Thus, both the core and the conditional factor models are not affected by the fact that the
information from many assets is observed. Consequently, the models for individual assets can be set up and
estimated independently from each other conditionally on the estimated core model for the factors.

An exposure to the common factors is the only channel for the conditional correlations between the considered
assets in the model. Though this assumption is restrictive to a certain extent, it does simplify dramatically the
modeling and estimation of large systems of assets.

Using (1.18), the vector of individual returns rt = (r1,t, r2,t, ..., rN,t)′ can be expressed as

rt = αt +Btrct + εt

where Bt is N × k matrix with asset betas in the corresponding rows, αt = (α1
t , α

2
t , ..., α

N
t )′ is a vector of

intercepts and εt = (ε1
t , ε

2
t , ..., ε

N
t )′ is a vector of idiosyncratic asset returns. It then follows that the conditional

variance of a N -dimensional vector of asset returns reads

Var
(
rt|Fc,It−1

)
= BtVar

(
rt|Fc,It−1

)
B′t + Σt (1.22)

where Σt = E
(
εtε
′
t|F

c,I
t−1
)
is a conditional covariance matrix of the idiosyncratic return components. Since we do

not model explicitly the joint conditional density p({X it }Ni=1|X ct ,F
c,I
t−1), the dynamic properties of the residual

correlations in Σt are left uncovered in our modeling framework11.
Equation (1.22) illustrates the factor structure embedded in the conditional variance of the high dimensional

return vector. Although the common factors are supposed to account for an amount of correlations within the
system, we emphasize that some residual correlations may be contained in the idiosyncratic component Σt. Such
correlations may come from the common factors or group (e.g., industry-specific) factors that are not included
in the specification of the core model. In case the factors explain a common return variation sufficiently well, the
parsimoniously formulated covariance (1.22) can significantly simplify the estimation, modeling and forecasting
of large covariance matrices.

1.2.6 Estimation

Due to the structural similarities between the presented modeling framework and the Realized Beta GARCH
model, the estimation principles are largely the same as in Hansen et al. (2014b). The model implies an
observation driven dynamics for the time-varying volatility and correlation parameters, which is an appealing
feature shared by the GARCH models. It permits a simple estimation by maximizing the likelihood function that

11Hansen et al. (2014b) found a significant amount of the residual correlation that is left unexplained in the one-factor (CAPM)
model. On top of that, they found an evidence that such residual correlation is time-varying.
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is analytically available. In addition, the hierarchical structure of the model suggests a convenient estimation
procedure even if we deal with a large system of assets. We now briefly outline the estimation scheme and refer
a more detailed description to Appendix A.3.

We begin with the core model. It describes the conditional distribution dynamics of a multivariate return
vector. It is related to the density p(X ct |Fct−1) from decomposition (1.2) that can be further factorized as

p(X ct |Fct−1) = p(rct ,xct , Y ct |Fct−1) = p(rct |Fct−1)p(xct , Y ct |rct ,Fct−1)

where p(rct |Fct−1) is the marginal part related to the factors and p(xct , Y ct |rct ,Fct−1) is the conditional part
related to the corresponding realized covariation measure, taken conditionally on the factors. The associated
log-likelihood function is

Lc =
T∑
t=1

log p
(
rct |Fct−1; θc

)
+

T∑
t=1

log p
(
xct , Y ct |rct ,Fct−1; θc

)
(1.23)

where θc is a vector with the static parameters of the core model. The model is estimated by maximizing (1.23)
with respect to θc.

Secondly, the conditional factor model for an individual asset return is related to p(X it |X ct ,F
c,i
t−1) from (1.2).

The subsequent decomposition of this conditional density gives

p(X it |X ct ,F
c,i
t−1) = p(rit, xit,yit|X ct ,F

c,i
t−1) = p(rit|X ct ,F

c,i
t−1)p(xit,yit|rit,X ct ,F

c,i
t−1)

where p(rit|X ct ,F
c,i
t−1) is a density of the daily asset return evaluated conditionally on the variables from the core

model. The term p(xit,yit|rit,X ct ,F
c,i
t−1) is a density related to the realized measure conditionally on the daily

asset return as well as on the variables from the core model. The corresponding log-likelihood is given by

Li|c =
T∑
t=1

log p(rit|X ct ,F
c,i
t−1; θi) +

T∑
t=1

log p(xit,yit|rit,X ct ,F
c,i
t−1; θi) (1.24)

where θi stands for the parameter vector of the conditional factor model formulated for an asset i.
In order to estimate the model for a large system of N assets, it is then needed to estimate the core model

and separately estimate N individual models for i = 1, ..., N conditionally on the variables filtered from the
core model.

The one-step ahead forecasting of the return distributions from the model is trivial due to the fact that
all dynamic variables are specified in the observation driven manner, i.e. are the functions of lagged variables.
Thus, given all relevant variables at day t, the time-varying parameters at t+ 1 are determined. The multi-step
ahead forecasting can be accomplished via simulation methods or by bootstrapping. Such forecasting schemes
designed for the Realized GARCH class of models are described and investigated, for instance, in Lunde and
Olesen (2014) and Hansen et al. (2014b). We notice that bootstrap method is more preferable in the current
context since it is more robust to possible distribution misspecifications.

1.3 Application to the Fama-French Model

We apply the realized factor framework developed in the previous section to the conditional version of the
three-factor model of Fama and French. We describe the data that is used to replicate the Fama-French risk
factors on a daily and an intra-daily frequencies as well as the data on the test assets. Then, we discuss the
construction of the realized measures of variances and correlations that we use in our empirical analysis. We
estimate the multi-factor Realized GARCH model for the large cross-section of stocks and then we apply the
model to style and sectoral ETFs. Finally, we report and discuss the model estimation results.
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1.3.1 Three-factor Fama-French Model

A conditional version of the Fama-French model (Fama and French (1992), Fama and French (1993)) implies
that an asset return has the following generating process

rit = αit + βmktt rmktt + βsmbt rsmbt + βhmlt rhmlt + εit (1.25)

where rit is an excess return on some asset i. Returns rmktt , rsmbt and rhmlt are the market (in excess of
risk-free rate), small-minus-big (market capitalization), and high-minus-low (book-to-market ratio) factors.
Vector βt =

(
βmktt , βsmbt , βhmlt

)′ is Ft−1-measurable vector of conditional factor loadings (betas) and εit is an
idiosyncratic shock with zero mean. The conditional mean (alpha) αit is also allowed to be time-varying and
represents a measure of an abnormal risk-adjusted asset performance.

The design of the multi-factor Realized GARCH developed in the previous section intends to model the
dynamic conditional covariance of the three factors together with an individual return. In particular, the core
part of the model represents a multivariate GARCH model for the three Fama-French factors. Equations (1.3)
and (1.4) read  rmktt

rsmbt

rhmlt

 = µc +Hc
t

 zmktt

zsmbt

zhmlt

 ;

 zmktt

zsmbt

zhmlt

∣∣∣∣∣Fct−1 ∼ N
(
0, Rct

)

The conditional variances Hc
t and correlations Rct are modeled jointly with the corresponding realized measures.

Thus, the core model filters the latent covariance structure of the Fama-French factors using signals from both
low frequency daily factor returns and high frequency intra-daily realized covariance measures.12

A conditional model for an individual asset return represents a univariate GARCH model where the stan-
dardized return is assumed to be distributed jointly with the Fama-French factors, thus, directly implying a
factor structure for a given return. Equations (1.9) and (1.10) read

rit = µi +
√
hitz

i
t,

(
zmktt , zsmbt , zhmlt , zit

)′∣∣Fc,it−1 ∼ N
(
0, Rc,it

)
The conditional variance hit and the conditional correlations ρit are modeled jointly with the corresponding
realized measures taking the conditional covariances between the factors, filtered from the core model, as given.

1.3.2 Data

The time period selected for the analysis begins on January 3, 2005 and lasts until December 31, 2013 spanning
2260 trading days in total. As it is implied by the design of the modeling framework, we use the data observed
at distinct frequencies. Along with the factors and asset returns obtained at a daily frequency, we make use
of intra-daily factors and asset price observations in order to construct corresponding realized measures of
volatilities and correlations.

The close-to-close daily returns on the three Fama-French factors are extracted from the Kenneth French
data library13. These factor returns are constructed using value-weight asset and portfolio returns formed on
the size and book-to-market characteristics. Since almost all stocks listed on the NYSE, AMEX and NASDAQ
are exploited, the factor returns from the Kenneth French library are highly representative for the broad U.S.
equity market and are widely recognized as a benchmark in the empirical research.

The realized measures of variances and correlations related to the daily Fama-French factors are constructed
with the high frequency data on exchange traded funds. Broad market and style ETFs can be treated as market
and style portfolios and used to replicate risk factors. In Appendix A.5 we discuss in details both the selection
of the proper ETFs and the scheme of how we construct the ETF-based risk factors. Since an intra-daily data

12We note that the process of the conditional factor covariance is an interesting object by itself. In particular, it is one of the
central elements of the stochastic discount factor (SDF) implied by the linear factor model (e.g., see Cochrane (2001)).

13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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on ETFs is available, it allows to construct realized measures for the Fama-French factors replicated by means of
these ETFs at an intra-daily frequency. The intraday transaction data on ETFs is extracted from the Wharton
TAQ database.

We estimate our model for a universe of individual assets. We select the stocks traded on NYSE, AMEX and
NASDAQ throughout the whole length of our estimation period. In addition, we require that for each chosen
asset we observe at least 10 transactions for each trading day from the considered period. The resulting sample
consists of 824 stocks. We construct close-to-close daily returns on the individual stocks with the close prices
extracted from the CRSP US Stock Database. Such prices are adjusted for the stock splits and dividends.
Furthermore, each stock is accompanied by the CRSP’s unique and permanent issue identification number,
PERMNO. These identificators allow to keep track the selected companies even in case some of these companies
change their ticker symbols in the course of the considered period. The intra-daily transaction data for the pool
of individual assets is obtained from the TAQ database. We clean this data beforehand in accordance with the
methodology suggested in Barndorff-Nielsen et al. (2009).

Furthermore, we use 9 style ETFs and 9 ETFs which track sectoral indexes as individual test assets (see
Table 1.1). The corresponding realized measures are constructed with the data from TAQ, whereas the adjusted
close prices are obtained from the Yahoo Finance.

Fund’s type Ticker Description Fund’s type Ticker Description
Style funds IWD large value Sectoral funds XLB Materials
BlackRock, iShares IWB large neutral SSGA, SPDR XLE Energy

IWF large growth XLF Financials
IWS mid value XLI Industrials
IWR mid neutral XLK Technology
IWP mid growth XLP Consumer staples
IWN small value XLU Utilities
IWM small neutral XLV Health care
IWO small growth XLY Consumer discretionary

Table 1.1: List of individual ETFs used in the empirical analysis.

1.3.3 Realized Measures

An obvious challenge relates to the fact that the Fama-French factors are unobserved at intra-daily frequency, so
we can not directly compute the corresponding realized measures. A growing interest in the intra-daily analysis
of factor models has appeared recently in the literature. Usually factors are replicated by means of intra-daily
returns on portfolios formed from a sorted cross-section of stocks (see Ait-Sahalia et al. (2014), Fan et al. (2015),
Kalnina and Tewou (2015)). We use a slightly different approach and exploit intra-daily ETF data in order to
replicate the Fama-French factors at a high frequency. A similar approach of extracting realized measures for
the Fama-French factors was implemented in Bannouh et al. (2012).

Since the ETF-based factors just approximately replicate the benchmark Fama-French factors, we may
expect that our realized measures constructed with the high frequency ETF data may be inconsistent measures
of volatilities and correlations for the benchmark factors. We assume, however, that the ETF-based realized
measures are well correlated with the latent factor covariance structure and, thus, are useful instruments. A
possible systematic bias is then supposed to be captured within the model by the parameters of the measurement
equations.

1.3.3.1 Realized Covariance for the Fama-French Factors

Realized covariance measures for the multivariate factor process are estimated using intra-daily price obser-
vations on ETFs. Suppose that for a given trading day t we observe intra-daily transaction prices for a set
of market and style ETFs (portfolios). Lets denote by petf = (pm, psv, psn, psg, pbv, pbn, pbg)′ the vector with
log-prices on market, small value, small neutral, small growth, big value, big neutral, and big growth ETFs
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respectively. Denote by s ∈ [0, 1] an intra-daily time index. In agreement with the original definition of the
Fama-French factors from Fama and French (1993), the factor “log-prices” can be obtained as the following
linear combinations of ETF log-prices: pmkts

psmbs

phmls

 =

 1 0 0 0 0 0 0
0 1

3
1
3

1
3 − 1

3 − 1
3 − 1

3
0 1

2 0 − 1
2

1
2 0 − 1

2

petfs , s ∈ T ct (1.26)

where pmkt, psmb, and phml are “log-prices” on the market, the size, and the value Fama-French factors re-
spectively. The set of time indexes T ct is determined by the refresh time sampling applied to the asynchronous
intra-daily prices of all 7 funds observed at day t. We use the multivariate Realized Kernel estimator of
Barndorff-Nielsen et al. (2011a) to obtain realized covariance measures, RCcMRK,t, of the three Fama-French
factors from the intra-daily factor “log-prices” defined in (1.26). The realized correlation matrix that is used in
the model is

Y ct = diag
(
RCcMRK,t

)− 1
2RCcMRK,tdiag

(
RCcMRK,t

)− 1
2

where diag
(
RCcMRK,t

)
is a diagonal matrix with the diagonal elements from RCcMRK,t.

Although the elements from diag
(
RCcMRK,t

)
can be directly used as realized measures of factor variances

xct , we will suggest more efficient volatility measures. The refresh time sampling in (1.26) leads to appreciable
information losses, since we discard a lot of available intra-daily observations in order to bring all 7 asynchronous
ETF transaction series to the same grid, Tt. An improvement can be made by specifying 3 univariate factor
“log-prices” instead of the one multivariate as in (1.26). It gives

pmkts = [1, 0, 0, 0, 0, 0, 0]petfs , s ∈ T mktt

psmbs =
[
0, 1

3 ,
1
3 ,

1
3 ,−

1
3 ,−

1
3 ,−

1
3

]
petfs , s ∈ T smbt

phmls =
[
0, 1

2 , 0,−
1
2 ,

1
2 , 0,−

1
2

]
petfs , s ∈ T hmlt

(1.27)

where refresh time grids T mktt , T smbt , and T hmlt are generated by the transaction data from only those ETFs that
are used for the replication of the corresponding factors. Thus, T ct from (1.26) is a subset of T mktt , T smbt , and
T hmlt . Consequently, each of the univariate intra-daily “log-price” series from (1.27) provide either the same or
a higher number of observations than the multivariate intra-daily “log-price” from (1.26). Hence, the univariate
Realized Kernel estimator of Barndorff-Nielsen et al. (2008) applied to the series from (1.27) is supposed to
deliver more efficient realized measures of the factor variances than the ones in diag

(
RCcMRK,t

)
. If we denote by

Dc
RK,t a diagonal matrix with such univariate realized kernel estimates14, then the vector of realized variances

xct that is used in the model consists of the diagonal elements from Dc
RK,t.

1.3.3.2 Realized Measures for Individual Asset Returns

The intra-daily realized measures of volatility of an individual asset return and correlations between a return
and factors are estimated in a similar manner. At first, the univariate Realized Kernel provides a measure for
the asset return variance xit that is computed with intra-daily log-prices on this asset, pi. Then, the realized
correlation measures can be obtained from the multivariate Realized Kernel for the covariance between the three
factors and an asset return, RCc,iMRK,t. Such 4× 4 realized covariance matrix is estimated with the multivariate
sequence of intra-daily factor price observations from (1.26) extended by the intra-daily asset price observations

14Note that realized covariance matrix
(
DcRK,t

) 1
2 diag

(
RCcMRK,t

)
− 1

2RCcMRK,tdiag
(
RCcMRK,t

)
− 1

2
(
DcRK,t

) 1
2 can be considered

as a case of the block realized covariance estimator (Hautsch et al. (2012)), where diagonal elements are treated as blocks for which
realized variances are estimated separately.
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pmkts

psmbs

phmls

pis

 =
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3 0
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2 0 − 1
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1
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2 0
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(

petfs
pis

)
, s ∈ T c,it (1.28)

Note that a refresh time sampling T c,it is even more scarce than T ct in (1.26) since here we bring 7 asynchronous
ETF transaction series together with the price observations from an individual asset to the unique grid.

Denote the corresponding realized correlation matrix as

Y c,it = diag
(
RCc,iMRK,t

)− 1
2RCc,iMRK,tdiag

(
RCc,iMRK,t

)− 1
2

Then the 3×1 vector of realized correlations between an asset return and the Fama-French factors, yit, is defined
as the 3× 1 upper right block of Y c,it .

1.3.4 Core Model for the Fama-French Factors

The estimation results of the core model for the three Fama-French factors are reported in the last column
in Tables 1.2-1.3. For comparative purposes and for the sake of robustness we also estimate three univariate
Realized GARCH models (k = 1) for each of the factors separately (columns I-III) and three bivariate Realized
GARCH models (k = 2) for the three possible pairs of the Fama-French factors (columns IV-VI). The results
demonstrate that some of model parameters noticeably change with the inclusion of additional factors into the
system. This might be an argument in favour of the joint estimation of the whole dynamic system instead of
using marginal models to reduce the dimensionality of the optimization problem (as it is often practiced in
estimation of the DCC models, for example). Note that in contrast to the variance related parameters, we can
not directly associate correlation parameters to the correlations between the particular factors. It is because
we model the dynamics of the off-diagonal elements of the correlation matrix logarithm, but not the correlation
elements directly.

In the top of Table 1.2, we report the estimates of µc from the return equation. Since the Fama-French
factors are essentially portfolios, the parameter µc indicates the mean return on a portfolio associated with a
given factor. According to the estimates, only the market factor (excess return on the market portfolio) has a
significant positive mean, whereas the size and the value factors (returns on the zero investment style portfolios)
have insignificant unconditional expectations.

The estimates of the GARCH dynamic equations are reported further in Table 1.2. These estimates reveal
the high persistence in the dynamics of the filtered conditional volatilities and correlations of the factors.
As it follows from the VARMA representation of the conditional dynamics implied by the Realized GARCH
model (see Hansen et al. (2012)), the persistence coefficients for the volatilities are given by Γ c1 + Φc1Γ

c
2 . The

persistence parameters for the conditional variances of the market, size, and value factors are 0.976, 0.976, and
0.979 respectively. As for the off-diagonal elements of the transformed conditional correlation matrix, Λc1 +Ψ c1Λc2
gives the persistence coefficients 0.973, 0.988, and 0.990.

Table 1.3 contains parameter estimates related to the measurement equations. The parameters in the
measurement equations are strongly affected by the daily factors. As long as the daily factors are obtained with
the Fama-French research portfolios and we use realized measures based on ETFs, we may expect a possible
mismatch between the latent conditional covariance of daily factors and the ETF-based realized covariation
measures. If this mismatch leads to a systematic bias, it is supposed to be captured by the parameters in the
measurement equations.

Interesting to note, that all three Fama-French factors exhibit a significant leverage effect with positive T c1 ,
Dc

1 and negative T c2 , Dc
2. Thus, the positive impact of negative returns on volatility, which is a stylized feature

of the stock return volatility, seems also innate in the volatility dynamics of the Fama-French portfolio returns.
Table 1.4 contains indirectly estimated covariance matrix Ωc of the measurement error vector. As it is
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discussed in Hansen and Huang (2016), the measurement errors can be interpreted as shocks to the conditional
dynamic variables. This is because the errors can be represented as updating terms in the Realized GARCH
dynamic equations, if the measurement and the GARCH equations are combined together. As it can be seen
from Table 1.4, the shocks to the conditional variances are far more volatile than the shocks to the conditional
correlation components. The measurement errors related to the variance also demonstrate a significant amount
of cross-correlation, which suggests that the volatilities of the Fama-French factors exhibit some common dy-
namics.

We plot the filtered conditional factor variances and correlations in Figure 1.1. Important to note that the
variances and correlations filtered from the multivariate realized GARCH model incorporate the signals both
from the realized measures and from the daily factor returns. Thus, the latent covariance dynamics of the
benchmark Fama-French factors drives, to a large extent, the conditional covariance dynamics implied by the
model. Also, Figure 1.1 demonstrates that the Fama-French factors exhibit a significant temporal variation in
the correlation dynamics. It emphasizes the potential importance of having a time-varying specification for the
whole factor covariance structure.

In Figure 1.2 we provide qq-plots of the standardized model residuals. The corresponding empirical densities
do not perfectly match with the standard Normal density indicating some evidence of heavy tails. However,
following Hansen et al. (2012) we rely on the quasi maximum likelihood argument that renders a consistency
in the parameter estimates and we maintain the Gaussian distribution assumptions when estimate the model.

1.3.5 Conditional Models for ETFs and Stocks

In our empirical application, we estimate the individual factor models on the set of style and sectoral ETFs as
well as on the large cross-section of stocks. The corresponding estimation result are reported in Tables 1.5-1.6.
In addition, in Figure 1.3 we plot the cross-sectional distributions of some selected model parameters for the
sample of 824 estimated individual assets. Below we comment on several regularities exhibited by the parameter
estimates.

Parameters γi1, γi2, Λi1, and Λi2 in the GARCH equations determine the relative contributions of the lagged
values and the lagged realized measures to the current value of a given filtered variable. Intuitively, for the
realized measures with a higher signal-to-noise ratio we expect to obtain higher coefficients γi2 and Λi2. Note that
although the coefficients γi2 related to the realized variance signals are above 0.2, the coefficients Λi2 related to the
realized correlation signals are on average smaller. It may indicate that realized correlation measures are more
noisy and less informative for the latent conditional dynamics than realized volatility measures. This finding
may be a consequence of our approach to the construction of realized measures explained in the previous section.
Whereas the correlation measures are estimated with the significant loss of information due to the refresh time
sampling, the volatility measures are estimated from the univariate intra-daily price sequences without the
efficiency losses associated with the refresh time.

The parameter φi0 captures the possible bias in the variance measurement equation and is strongly nega-
tive for almost all the considered assets. This finding is consistent with the fact that the realized volatility
measures are based on the open-to-close intra-daily trading period and do not account for the overnight and
“over-weekend” variation. In contrast, daily returns in return equations are close-to-close and incorporate this
variation. As a result, realized measures are systematically underestimate close-to-close return variances and
this is reflected in the parameters in the measurement equations. The corresponding bias correction parameters
Ψ i0 and Ψ i1 in the correlation measurement equations have less straightforward interpretation partially because
these equations operate with the non-linear Fisher transform of the correlations. As it can be seen from the
results on the large cross-section of stocks, the additive bias term Ψ i0 is on average close to 0, whereas the mul-
tiplicative bias coefficient Ψ i1 is about 1. This may imply that the realized correlation measures are on average
not too much biased for the daily close-to-close returns.
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1.4 Empirical Analysis

1.4.1 Conditional Fama-French Betas

The Fama-French model in (1.25) implies that an asset return is exposed to the three common sources of a
systematic risk - the market, size, and value risk factors. The factor loadings, or betas, reflect the sensitivity of a
considered asset or portfolio return to the changes in the systematic risk factors and are treated as conventional
indicators of risk. An availability of the precisely estimated factor loadings is important for a portfolio allocation,
risk management and an empirical asset pricing analysis. Particularly, it allows to better measure and forecast
the systematic risk and might lead to a more reliable risk premia estimation.

Using (1.19), we can extract model-implied factor loadings from the estimated conditional covariance struc-
ture. Figure 1.4 shows the quantile plots of the model-implied factor loadings obtained for the sample of 824
stocks. The corresponding cross-section summary statistics aggregated by years is given in Table 1.7. Interest-
ingly, the cross-section distributions of all three Fama-French loadings exhibit a significant degree of temporal
variation. This is highlighted in Figure 1.5, where the quantile plots from Figure 1.4 are zoomed to illustrate
the distributions of betas in 2008 during the sharp phase of the Great Recession.

The distribution of market betas is centered around 1, which is pretty natural and implies that the average
of the large cross-section of considered stocks moves closely with the market portfolio. Particularly, it indicates
that our sample is representative enough for the US equity market. The distributions of loadings related to
the size and value factors have means that lie between 0 and 1. We note that the distributions of the loadings
associated with the book-to-market risk exhibits the highest temporal variation. This is especially noticeable
around the financial crisis episode when the value betas swiftly became substantially right skewed. Particularly,
it may indicate that many companies had become distressed and lost an amount of their market valuation at
that period.

The factor exposures of the style and sectoral ETFs are presented on Figures 1.6-1.8. Style ETFs can be
treated as portfolios sorted by the size and the book-to-market ratio. The betas on the style ETFs demonstrate
substantial degrees of variation during the estimation period15, especially for the small cap funds. The market
loadings, specifically those of large funds, stay near 1 and this is pretty expected for the market representative
portfolios. The relative risk exposures of the style ETFs to the size and value factors are consistent with the
empirical definitions of these risk factors. Namely, the size betas are considerably high and positive for the
small funds and mostly negative for the large funds, whereas the value betas are high for the value ETFs and
low (negative) for the growth ETFs.

Sectoral ETFs can be considered as portfolios of stocks that belong to the specific economic industry or sec-
tor16. The materials, energy, and financial sectors have the most volatile dynamics of the risk exposures. Their
market betas are on average larger than 1, which indicates that the returns on these funds are typically more
volatile than the market. The industrials, consumer discretionaries, and technology sectoral funds demonstrate
fairly stable factor loading dynamics and have market betas close to 1. Interestingly, the consumer staples,
utilities, and health care sectoral funds exhibit the relatively small market risk exposures implying that these
sectors act more orthogonally to the broad economy compared to the other considered funds. The size loadings
of the energy, financial, consumer staples, utilities, and health care funds tend to be negative assuming the neg-
ative correlation between these ETFs and the small-minus-big factor. Particularly, this may suggest that these
ETFs have an excessive exposure to large cap stocks. The loadings on the high-minus-low factor demonstrate
volatile dynamics. The value betas of the energy and financials are mostly positive (except for the energy fund
during the financial crisis period), whereas the technology and health care sectors demonstrate mainly negative

15Notice, that the factor loadings of almost all considered funds are especially volatile in the beginning of the estimation period
(2005, 2006). This can be a consequence of noisy realized covariance estimates since the average number of transactions per day
for the style ETFs used for intra-daily factor replication was not too high at that period.

16It is important to note that the ETF loadings on risk factors not necessarily indicate the risk exposures of the underlying
economic sectors and may be affected by the fund managers’ choice regarding a portfolio composition and style. Nonetheless, we
rely on the fact that SPDR sectoral ETFs are passively managed funds and are “managed with the objective of matching the price
and yield performance of their underlying sector indexes” (see the corresponding fund description on www.sectorspdr.com). Thus,
we regard the returns on sectoral ETFs as close proxies for the returns on the industry-representative portfolios.
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value exposures.
Our empirical results can shed some additional light on the findings from Andersen et al. (2005). In par-

ticular, using the reduced form model for realized CAPM betas they documented counter-cyclical behavior of
the market betas with the effect is being more pronounced for the value stock portfolios. They demonstrate
the substantial increase in the corresponding market betas during the 2001 recession suggesting the rise of the
value premium may be associated with an increase in expected returns for value stocks in bad times. We may
contribute to this discussion by analyzing the factor loadings implied by the multi-factor realized GARCH model
for the style and sectoral ETFs around the Great Recession episode.

As it can be seen from Figure 1.6, the market loadings for the small and mid cap value portfolios exhibit
quite moderate increase during the financial crisis, whereas we do not observe any significant change in the
level of market betas for the remaining style funds at that time. A possible explanation is that, in contrast
to Andersen et al. (2005), we use two additional factors that may explain a part of return variation which is
solely attributed to the market factor in the one-factor CAPM model. Particularly, we observe a substantial
rise of the correlation between the market and value factors in 2008 (see Figure 1.1). Therefore, in case we
do not control for the value factor, the market risk loadings of value funds (which are exposed to the value
factor by construction) tend to be mechanically increased during the Great Recession period. We, thus, confirm
the findings in Andersen et al. (2005) in part that the counter-cyclical dynamics of market betas is the mostly
feature of value stocks. Furthermore, an explicit control for the value risk substantially absorbs the effect.

The strong rise in the correlation between the market and value factors can be attributed to the growing
number of distressed companies with a high book-to-market ratio across the economy in the crisis time. However,
Figure 1.8 demonstrates that only the financial sector ETF exhibits a considerable increase in the book-to-
market risk exposure at that period. It may imply that the most of value stocks appeared during the recession
were from the financial sector and that could be the channel of the rising correlation between the market and
high-minus-low risk factors.

1.4.2 Variance Decomposition

Another aspect of the Fama-French model that is convenient to analyze within the given framework relates to
the decomposition of the return variance along the risk factors and the idiosyncratic return component and its
evolution in time. Although it does not have direct implications for the pricing of the systematic risk, splitting
the return variance can be important for a risk management and estimation of large covariance matrices.

The conditional variance of an asset (or portfolio) return rit can be decomposed as follows

Var
(
rit
∣∣Fc,it−1

)
=
(
βit
)′Var(rct ∣∣Fc,it−1

)
βit + Var

(
εit
∣∣Fc,it−1

)
The part of the conditional return variance hit explained by the systematic risk factors can be characterized
similarly to the regression R2 and can be derived from (1.9)-(1.11)

V i,ct = Var
(
rit
∣∣εit;Fc,it−1

)/
Var
(
rit
∣∣Fc,it−1

)
= (ρit)′(Rct)−1ρit (1.29)

whereas the part of the conditional return variance explained by the idiosyncratic component corresponds to
1−R2 and reads

V i,εt = 1− V i,ct = 1− (ρit)′(Rct)−1ρit (1.30)

The further decomposition of V i,ct along the individual contributions of the three risk factors is not straight-
forward due to the implied correlation between factors. Although an exact variance decomposition requires
additional identifying restrictions on the causal structure of the factors, there exist several statistical methods
which may be used to assess the factors’ “relative importance”17.

17See, for example, a related methodological review in Gromping (2007)
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We apply the approach suggested in Genizi (1993). The method rests on finding the orthogonal basis that
is closest to the system of factors (regressors) with respect to a particular norm. Then, the factors together
with the considered return are decomposed along this basis. The contribution of a particular factor to the total
return variance is then computed indirectly as a sum of variance contributions from the orthogonal components
of the decomposed factor. Although this approach to the variance decomposition is somewhat approximate, we
use the corresponding results to discuss several qualitative implications.

Figure 1.9 demonstrates the decomposed variance fractions averaged across 824 individual assets considered
in the analysis. Table 1.8 provides the corresponding cross-section decomposition statistics by years and factors.
The idiosyncratic component on average accounts for 60-70% of the total return variation throughout most of
the estimation period except for the several relatively short intervals when the variation attributed to the Fama-
French factors had been significantly amplified. The timing of such periods coincides with the Great Recession
(2008-09) and with the two waves of the Euro-area Sovereign Debt Crisis (2010 and the second half of 2011).
Note that these periods are also flagged by the increased overall stock market volatility level.

The relative variance contribution of the Fama-French factors is not identical during the considered period.
The market factor contributes on average 20-25% to the total return variance in normal times and raised up
to 35-40% during the volatile episodes. The small-minus-big factor demonstrates a cyclical intensity. Thus,
it explained about 7-8% of the average variation in stock returns in the first two years of the sample, then it
reduced to 4-5% during the Financial Crisis, raised again to 7-8% in 2010-11 and then faded to 4-5% in the end
of the sample period. Such periodic activity can hardly be attributed to the business cycle fluctuations of the
U.S. economy, but may be a consequence of a mechanical effect of changing correlations between the market
and the size Fama-French factors (see Figure 1.1). The value factor is reflected slightly in stock return variances
and explains just about 2% for most of the period. However, the relative variance shares attributed to the value
factor boosted to almost 8% in 2008 and then stayed high until the middle of 2010. This may indicate that the
proportion of the value risk in the stock return variance is significantly pronounced during recessions and the
aftermath periods.

Figure 1.10 contains variance decomposition results for the style and sectoral ETFs. As expected, since ETFs
are actually portfolios of individual stocks, the idiosyncratic portion of variance is significantly smaller than in
the previous case due to diversification. For most of sectoral ETFs the idiosyncratic component accounts for
between 25% and 50% of the total variation, whereas for the style funds it rarely exceeds 15%. The 9 style ETFs
represent a small cross-section of portfolios sorted by the size and the book-to-market. It is not surprising that
the contribution of the market factor is higher for large cap funds (~80%), but lower for small cap funds (~60%).
The size factor, conversely, brings appreciably more in the variation of the small cap funds’ returns than of
the large cap ones (~30% vs ~10%). As for the value factor, it contributes to the ETF return variance mostly
during the period between 2008 and 2011. This supports our findings related to the value factor contribution
based on the cross-section of individual assets.

An analysis of sectoral funds reveals how well the Fama-French factors explain a return variation when
applied to different sectors of the U.S. equity market. We note that the variance fractions attributed to the size
and the value factors are smaller than for the style funds because the composition of stocks in sectoral portfolios
is sufficiently well-diversified along the market cap and the book-to-market characteristics. The utilities, health
care, and consumer staples ETFs demonstrate especially low exposure to the Fama-French factors. In contrast,
technology, consumer discretionary, industrials, and financials are among the most exposed funds.

Almost all considered sectoral ETFs corroborate the evidence that the intensity of the high-minus-low factor
amplified during the financial crisis and then had been vanishing gradually. The financial sector ETF, however,
experienced an especially pronounced impact from the value factor on the return variance (up to 35% during
the Crisis phase). What is interesting, the sharp rise of its exposure to the value factor had began several
months before the recession turning point identified by NBER. This fact might imply that the interconnection
between the financial sector and the value risk contains an information that can be useful to detect recessions
on their early stages. An enormously large exposure of the financial sectoral fund to the high-minus-low factor
(relative to other sectoral funds) might indicate that the value risk is not that much “systematic” and is mostly
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the feature of assets from the particular sectors of economy.
Another interesting phenomenon can be observed in the commodity related sectors - materials and energy.

Shortly after the beginning of the crisis the idiosyncratic variation in the corresponding returns became strongly
predominant. The rise of idiosyncratic volatility in these sectors just partially explains the phenomenon. As we
can see from Figures 1.6-1.8, the risk factor loadings of the energy ETF (and of the materials ETF to a lesser
extent) significantly changed during the crisis with the market beta of the energy fund decreased considerably
and was near zero in late 2008. Such effect also attributed to the rising “orthogonality” between these specific
sectors, the global U.S. economy, and the Fama-French systematic risk factors. Particularly, this evidence
favours a widespread intuition about the strong diversification capability of commodity related securities (see
Gorton and Rouwenhorst (2006), for example). After the crisis, however, the exposure of the energy and
material ETFs to the common risk factors had promptly recovered.

To summarize roughly, the Fama-French three factors leave unexplained more than 60% of variation in the
representative individual equity returns. Therefore, in order to make a good job in modeling large covariance
matrices of individual assets the model has to be augmented by additional factors, e.g. sectoral specific, to
explain more variation by the common factor dynamics. On the other hand, the three factor framework can
be effectively exploited in modeling large covariances of portfolios or funds, where the amount of idiosyncratic
variation is considerably lower due to the averaging effect.

1.5 Pricing of Systematic Risk

One natural application of the proposed model relates to the estimation of premia for an asset’s exposure to
the sources of systematic risk. In this section, we discuss how the suggested modeling framework can be useful
to explain expected returns, discuss some properties of the pricing kernel implied by the model, and make an
attempt to measure the risk premia for the Fama-French factors using the large cross-section of equities.

1.5.1 Risk Premia

The beta representation of conditional linear factor models (see Jagannathan and Wang (1996), Bollerslev and
Zhang (2003), Lewellen and Nagel (2006), etc.) implies that N × 1 vector of cross-sectional expected excess
returns can be expressed as follows

Etrt+1 = iNλ0,t+1 +Bt+1λ1,t+1 (1.31)

where iN is the N ×1 vector of ones and Bt+1 is a N ×3 matrix containing the conditional factor loadings of N
considered assets. The vector λ1,t+1 =

(
λmkt,t+1, λsmb,t+1, λhml,t+1

)′ contains risk premia for the Fama-French
factors for the period t+1. The scalar parameter λ0,t+1 stands for the so-called zero-beta return and is intended
to capture possible risk-free rate misspecifications.

A prevailing approach to a risk premia estimation in empirical asset pricing relates to the regression based
methods (Black et al. (1972), Fama and MacBeth (1973)). Usually, the implementation proceeds in two steps.
The first stage consists of (rolling) time series regressions of excess returns on the factors and is aimed to
estimate factor loadings of the considered assets. The second stage implies the use of cross-section regressions
of excess returns on the estimated betas in order to identify premia for an exposure to the systematic risk
factors. Alternatively, both factor loadings and risk premia can be estimated jointly in the GMM framework
(see Cochrane (2001)). For the conditional models, where both loadings and risk premia are allowed to be
time-varying, an ability of static regression methods to identify the parameters of interest is limited.

Our model suggests a natural alternative to the first-stage time series regression in Fama and MacBeth
(1973). The time-varying conditional betas filtered from the model provide us with the sequence of matrices
Bt+1, so the risk premia λ1,t+1 in (1.31) can be directly estimated by means of cross-section regressions or
GMM.
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The standard practice in estimation of asset pricing models rests on using portfolios formed by various
stocks’ characteristics as base assets. Grouping stocks into portfolios is supposed to remove a part of the
idiosyncratic return variation and helps to more accurately estimate betas in the first stage regressions (Blume
(1970), Fama and French (1993)). This approach, however, leads to considerable losses of information about the
broad cross-section distribution of the factor loadings and may increase the estimation errors of risk premia, as a
consequence (Ang et al. (2010)). In addition, the principal component structure of the sample of portfolios sorted
according to the factor related characteristics (e.g. size or book-to-market) may cause a spurious assessment
of the asset pricing model implications (Lewellen et al. (2010)). Since we suggest much more careful way for
filtering the factor loadings, we expect a sufficient degree of accuracy for model-implied betas. Thus, for the
risk premia estimation we are able to exploit more disperse and granular distribution of factor loadings for the
large cross-section of individual assets rather than use portfolio betas estimated by rolling linear regressions.

Since our model is set at a daily frequency, potentially we can estimate conditional risk premia on a daily
basis using the cross-sections of daily excess returns. In Appendix A.7, we provide the plots with estimated risk
premia at a daily and a monthly frequency based on our cross-section of 824 individual assets. The plots reveal
a strong time variation of the estimated risk premia providing an additional evidence in favour of taking into
account the dynamics of factor loadings when pricing systematic risk. Note that the current study was limited
by the time span (only 9 years are considered) and, more importantly, by the asset sample. Despite we use
more than 800 stocks in our cross-section analysis, the broad market representativeness of the sample is still
a concern and a possible insufficient cross-section variation along the size and book-to-market characteristics
could deteriorate the estimation results.

Furthermore, we expect that the error-in-variables is still a substantial problem. Although the daily model-
implied factor loadings are supposed to be more consistent with factor returns and less noisy than the plain
realized betas, the measurement error may still be appreciable and the risk premia estimates will likely be
considerably attenuated. Moreover, daily stock returns are relatively noisy which leads to the presence of
outlying observations and additional distortions of the risk premia estimates. Therefore, we may need a coherent
econometric design in order to filter the conditional risk premia (consistent with our model-implied betas)
possibly at a daily frequency and from presumably very noisy signals. The work on these issues is the subject
of the ongoing research.

1.5.2 Implied Pricing Kernel

In order to further illustrate the potential asset pricing implications from the use of model-implied variables we
refer to the alternative SDF (stochastic discount factor) representation for pricing models (see Cochrane (1996),
Hansen and Jagannathan (1997), Hodrick and Zhang (2001), etc.). The SDF, or pricing kernel, implied by the
Fama-French model is affine in risk factors and reads

mt = 1 + b′t(rct − E[rct ]) (1.32)

where the 3 × 1 vector bt consists of conditional weights attached to demeaned factors in the pricing kernel
specification. Expression (1.32) also implies that mt is normalized, such that E[mt] = 1. In an absence of
arbitrage, the following fundamental pricing identity holds

Et[mt+1rt+1] = 0N (1.33)

Equation (1.33) can be associated with the Euler equation and the pricing kernel mt in this case is interpreted
as a state-dependent intertemporal marginal rate of substitution where states are determined by the risk factors.
Therefore, coefficients bt directly reflect the importance of a given factor in the investors’ attitudes towards the
systematic risk.

By substituting (1.32) in (1.33) we can establish the one-to-one correspondence between the risk premia
parameters λ1,t and the pricing kernel coefficients bt,
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bt = −Vart-1(rct)−1λ1,t (1.34)

Thus, the conditional covariance process Vart-1(rct) appears as one of the key elements of the pricing ker-
nel mt. In case we assume that Vart-1(rct) = Var(rct |Fct−1), it can be filtered directly from the core model,
Vart-1(rct) = Hc

tR
c
tH

c
t . Then, conditionally on model-implied Vart-1(rct), the risk premia parameters λ1,t can be

estimated from equations (1.32)-(1.34), for instance, by means of the GMM-based methods (see Hansen (1982),
Jagannathan et al. (2002), etc.). Importantly, when we estimate risk premia using the SDF approach, we do not
need to extract factor loadings. In other words, we only have to filter the conditional factor covariances from
the core model and do not need to estimate N conditional factor models for individual assets or portfolios18.

1.6 Conclusion and Outline

In this paper, we suggest a novel framework for modeling asset returns with an underlying factor structure. The
model carefully describes the covariance dynamics between an asset and possibly correlated factors, incorporates
information from low frequency returns, and exploits realized volatility measures extracted from high frequency
data. The modeling framework essentially consists of two parts. The first part represents a multivariate
generalization of the realized GARCH model (Hansen et al. (2012)). It jointly models conditional covariance
dynamics for a vector of returns, or factors, and the corresponding realized covariance matrix preserving positive
definiteness at each step. The second part is a linear factor model for an asset return that is formulated
conditionally on the covariance structure of factors. This part extends the single-factor realized Beta GARCH
model of Hansen et al. (2014b) to the case with multiple factors.

We apply our framework to the three-factor Fama-French model. We extract realized measures for the
Fama-French risk factors from high frequency intra-daily data on the panel of liquid ETFs that reflect different
investment styles. Then, we estimate the model at a daily frequency using the large cross-section of U.S. stocks
as well as the style and sectoral ETFs as test assets. We document a significant extent of temporal variation
in the filtered factor loadings and in their cross-section distributions. Furthermore, we provide a day-by-day
decomposition of asset return variances along the factors of systematic risk that illustrates periodically exciting
nature of the Fama-French factors. Importantly, we detect a pronounced heterogeneity in the decomposition of
the explained variance across different sectors of economy. Finally, we investigate the asset pricing implications
of our model by cross-section regressions of excess equity returns on the model-implied factor loadings. We find
an appreciable temporal variation in the premia estimates for all three risk factors during our sample period.
The empirical evidence suggested in our study additionally emphasizes the role of dynamics in the conditional
covariance of factors and in the corresponding betas for statistical modeling of multivariate returns and an asset
pricing analysis.

1.6.1 Outline

We now briefly outline several extensions and promising directions for the future research, which either directly
complement to this study or naturally stem from it.

1. Although we focus exclusively on the Fama-French three factor model in our empirical application, the
presented framework can be applied to any linear factor model as long as appropriate factor series and
realized measures can be obtained. For instance, from the large cross-section of stocks it is possible to form
the portfolios of short-term “winners” and “loosers” (portfolios of stocks with the best and worst recent
performance) and the intra-daily data can then be used to construct the corresponding realized measures.
Then the momentum risk factor (a long portfolio of “winners” and a short portfolio of “loosers”) can be

18Besides the standard methods, equations (1.32)-(1.34) can be used to extract the risk premia λ1,t assuming it is a time-varying
latent parameter. It can be made, for example, with the observation-driven approach described in Creal et al. (2015), where the
dynamics of the latent parameter is updated in a way to improve (locally) the GMM criterion.
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incorporated into the model as an additional factor of a systematic risk (Carhart (1997)). Similarly, many
other factors can be investigated within the suggested framework, including “quality-minus-junk” (Asness
et al. (2014)), profitability and investment (Fama and French (2015)), etc.

2. A natural and typical application of conditional asset pricing models is to explain asset returns out-of-
sample. Our modeling framework allows to readily produce one (or several) periods ahead forecasts of all
relevant covariance variables and factor loadings which can then be used to form sorted or mean-variance
efficient portfolios (e.g., Bollerslev and Zhang (2003), Bali et al. (2013)). The out-of-sample performance
of such portfolios can serve both for evaluation of a given asset pricing model and to assess the economic
significance of using dynamic model-implied betas and high frequency data.

3. The factor structure of the presented framework facilitates the feasible modeling of mid- and large-scale
covariance matrices. The model-implied covariance matrix that incorporates information from high fre-
quency observations and is consistent with the daily (low frequency) returns allows to expect a promising
degree of precision. The part of covariance structure that is not explained by factors can also be in-
corporated into the model dynamics after some additional regularization (as in Engle et al. (2016), for
instance).

4. Throughout the paper, we considered asset and factor returns mainly at a daily frequency and constructed
realized measures using intra-daily data. Nonetheless, the model can be set at other frequencies as well.
For example, we may use monthly returns on assets, portfolios and factors and construct realized variance
and covariance measures using daily returns observed within a given month. In result, we may estimate
and test asset pricing factor models for much longer sample periods (e.g., using long daily and monthly
series from the Kenneth French data library). Furthermore, at a monthly frequency our results would
become better comparable with the most of empirical asset pricing results obtained for monthly returns.

5. The multivariate realized GARCH framework incorporates many stylized aspects of financial returns such
as leverage effects and cross-asset spillovers of volatility, can accommodate the heavy-tailed features, and,
at the same time, the estimation and forecasting from the model are remarkably simple. Moreover, the
risk factors that are introduced into the model impose an additional structure on the specification of
return distributions. An interesting extension would be to produce multi-horizon forecasts of a return
density (univariate and multivariate) from the model (that is set at a daily or monthly frequency). Then,
the role of the systematic risk factors and their covariance dynamics could be assessed from the viewpoint
of density forecasting of asset returns.

6. The model generates useful variables that not only are important for modeling asset returns, but also may
contain relevant information about the latent state of the macroeconomic activity. Given a voluminous
theoretical research that relates the systematic factors of equity risk to the macroeconomic fundamentals,
the filtered factor loadings, for example, might be used to model and forecast indicators of the macroeco-
nomic activity (Andersen et al. (2005)). The model’s ability to timely detect the temporal changes in the
filtered series makes it possible to efficiently incorporate such potentially informative variables into the
real time nowcasting frameworks (Aruoba et al. (2009)).

7. The cross-section distributions of the risk factor loadings extracted from the model on a daily basis
can provide a useful information about the local relevance of factors. The presence of irrelevant factors
(those which just weakly correlate with asset returns) in the model may lead to identification failures
and spurious asset pricing inference (see Kan and Zhang (1999), Kleibergen (2009), Gospodinov et al.
(2014)). An availability of granular distributions of the estimated loadings motivates the development
of formal testing procedures that would be able to verify the broad market or sectoral specific relevance
of a particular risk factor day-by-day. This would make it possible to accurately identify the periods of
“strength” and “weakness” for the considered factors.
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Univariate Bivariate Full

Category Parameters I II III IV V VI VII

Return trend µc 0.031 0.037 0.030 0.033
(market) (0.017) (0.016) (0.016) (0.015)
Return trend µc 0.002 0.002 0.004 0.002
(size) (0.010) (0.010) (0.010) (0.010)
Return trend µc 0.007 0.010 0.006 0.009
(value) (0.008) (0.008) (0.008) (0.008)

Variance Γc0 0.152 0.132 0.119 0.103
(market) (0.014) (0.012) (0.012) (0.010)

Γc1 0.707 0.745 0.742 0.774
(0.019) (0.016) (0.017) (0.014)

Γc2 0.265 0.228 0.233 0.202
(0.018) (0.015) (0.016) (0.013)

T c1 -0.130 -0.099 -0.108 -0.087
(0.008) (0.007) (0.007) (0.006)

T c2 0.017 0.015 0.012 0.012
(0.005) (0.004) (0.004) (0.003)

Variance Γc0 -0.033 -0.031 -0.021 -0.025
(size) (0.011) (0.011) (0.010) (0.010)

Γc1 0.721 0.718 0.756 0.743
(0.021) (0.017) (0.018) (0.016)

Γc2 0.252 0.255 0.224 0.233
(0.018) (0.015) (0.016) (0.014)

T c1 -0.058 -0.041 -0.044 -0.033
(0.008) (0.006) (0.007) (0.006)

T c2 0.019 0.012 0.019 0.012
(0.005) (0.004) (0.005) (0.004)

Variance Γc0 0.205 0.222 0.187 0.197
(value) (0.020) (0.020) (0.018) (0.018)

Γc1 0.768 0.753 0.784 0.775
(0.018) (0.017) (0.016) (0.016)

Γc2 0.214 0.226 0.197 0.204
(0.017) (0.016) (0.015) (0.014)

T c1 -0.007 -0.006 -0.004 -0.003
(0.007) (0.006) (0.006) (0.006)

T c2 0.027 0.025 0.024 0.023
(0.004) (0.004) (0.004) (0.003)

Correlation Λc0 -0.028 -0.023
(market-size) (0.011) (0.011)

Λc1 0.811 0.808
(0.017) (0.017)

Λc2 0.232 0.228
(0.029) (0.029)

Correlation Λc0 0.038 0.038
(market-value) (0.005) (0.005)

Λc1 0.829 0.837
(0.014) (0.014)

Λc2 0.181 0.169
(0.018) (0.018)

Correlation Λc0 0.001 -0.001
(size-value) (0.003) (0.002)

Λc1 0.886 0.918
(0.012) (0.010)

Λc2 0.116 0.092
(0.017) (0.016)

Table 1.2: Parameter estimates of the core model for the three Fama-French factors. Here listed those parameters that appear in
the return and the GARCH equations of the model. Columns I-III provide the estimates of the univariate Realized GARCH (core)
models for each of the three Fama-French factors. Columns IV-VI provide the estimates of the bivariate Realized GARCH (core)
models for each pair composed from the three Fama-French factors. Column VII provides the estimates of the three-variate Realized
GARCH (core) model that is based on all three factors. Standard errors are obtained using numerical gradient and reported in
parenthesis. Estimation period is January 3, 2005 - December 31, 2013.
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Univariate Bivariate Full

Category Parameters I II III IV V VI VII

Variance Φc0 -0.588 -0.593 -0.533 -0.537
(market) (0.030) (0.030) (0.030) (0.029)

Dc
1 -0.174 -0.139 -0.149 -0.125

(0.011) (0.010) (0.010) (0.009)
Dc

2 0.057 0.038 0.045 0.031
(0.006) (0.005) (0.005) (0.005)

Variance Φc0 -0.007 -0.015 -0.018 -0.021
(size) (0.029) (0.029) (0.029) (0.030)

Dc
1 -0.060 -0.031 -0.046 -0.026

(0.011) (0.009) (0.010) (0.009)
Dc

2 0.095 0.078 0.089 0.075
(0.007) (0.006) (0.007) (0.006)

Variance Φc0 -1.107 -1.133 -1.108 -1.132
(value) (0.030) (0.030) (0.030) (0.030)

Dc
1 -0.031 -0.025 -0.019 -0.018

(0.011) (0.010) (0.010) (0.010)
Dc

2 0.062 0.056 0.053 0.050
(0.006) (0.006) (0.006) (0.006)

Correlation Ψc
0 0.168 0.154

(market-size) (0.034) (0.035)
Ψc

1 0.709 0.723
(0.066) (0.070)

Correlation Ψc
0 -0.198 -0.208

(market-value) (0.024) (0.026)
Ψc

1 0.884 0.893
(0.054) (0.060)

Correlation Ψc
0 -0.016 0.002

(size-value) (0.020) (0.019)
Ψc

1 0.890 0.783
(0.103) (0.110)

Table 1.3: Parameter estimates of the core model for the three Fama-French factors. Here listed those parameters that appear
in the measurement equations of the model. Columns I-III provide the estimates of the univariate Realized GARCH (core) models
for each of the three Fama-French factors. Columns IV-VI provide the estimates of the bivariate Realized GARCH (core) models
for each pair composed of the three Fama-French factors. Column VII provides the estimates of the three-variate Realized GARCH
(core) model that is based on all three factors. Standard errors are obtained using numerical gradient and reported in parenthesis.
Estimation period is January 3, 2005 - December 31, 2013.

umkt usmb uhml vmkt−smb vmkt−hml vsmb−hml



umkt 0.242 0.128 0.096 0.009 0.006 −0.009
usmb 0.530 0.240 0.084 0.037 −0.002 −0.007
uhml 0.396 0.345 0.244 0.005 −0.005 −0.006

vmkt−smb 0.075 0.303 0.044 0.062 −0.005 0.000
vmkt−hml 0.050 -0.015 -0.040 -0.084 0.067 0.008
vsmb−hml -0.073 -0.059 -0.047 0.000 0.131 0.059

Table 1.4: Covariances and correlations between measurement errors estimated from the multivariate realized GARCH (core)
model that is based on the three Fama-French factors. Estimation period is January 3, 2005 - December 31, 2013.
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Figure 1.1: Variables filtered from the core model for the Fama-French factors (January, 2005 - December, 2013). In the top
row, there are daily factor returns based on the Fama-French research portfolios and the standardized returns produced by the
multivariate realized GARCH (core) model. In the middle row, there are realized kernel measures of factor variances constructed
using intra-daily ETF data and the conditional variances filtered from the model. In the bottom row, there are realized kernel
measures of correlations between the factors constructed using intra-daily ETF data and the conditional correlations filtered from
the model.
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Figure 1.2: QQ-plots of residuals from the core model. In the top row, there are standardized daily factor returns, zt. In the
middle row, there are standardized measurement errors ut of the conditional variances. In the bottom row, there are standardized
measurement errors vt of the conditional correlations.
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GARCH equation Measurement equation
µi γi0 γi1 γi2 τ i1 τ i2 φi0 δi1 δi2 Ωui

Exchange traded funds

IWD 0.026 0.118 0.770 0.205 -0.077 0.013 -0.600 -0.110 0.027 0.233
IWB 0.031 0.109 0.783 0.192 -0.089 0.012 -0.598 -0.110 0.029 0.263
IWF 0.037 0.109 0.763 0.212 -0.077 0.011 -0.542 -0.119 0.021 0.210
IWS 0.032 0.114 0.792 0.185 -0.076 0.015 -0.627 -0.100 0.029 0.261
IWR 0.036 0.111 0.789 0.187 -0.076 0.016 -0.597 -0.110 0.030 0.257
IWP 0.036 0.115 0.791 0.185 -0.078 0.015 -0.611 -0.099 0.034 0.275
IWN 0.027 0.113 0.749 0.229 -0.057 0.014 -0.455 -0.088 0.015 0.187
IWM 0.027 0.106 0.726 0.249 -0.063 0.017 -0.384 -0.099 0.006 0.148
IWO 0.036 0.117 0.744 0.230 -0.059 0.017 -0.455 -0.088 0.016 0.183

XLB 0.016 0.121 0.744 0.231 -0.058 0.021 -0.469 -0.098 0.030 0.181
XLE 0.028 0.135 0.716 0.255 -0.048 0.033 -0.440 -0.110 0.013 0.146
XLF 0.021 0.136 0.747 0.231 -0.060 0.025 -0.559 -0.075 0.034 0.206
XLI 0.033 0.107 0.769 0.207 -0.065 0.016 -0.506 -0.083 0.034 0.226
XLK 0.031 0.108 0.761 0.213 -0.055 0.017 -0.495 -0.110 0.023 0.208
XLP 0.030 0.062 0.749 0.224 -0.052 0.012 -0.359 -0.055 0.046 0.231
XLU 0.027 0.050 0.721 0.250 -0.027 0.024 -0.222 -0.059 0.059 0.218
XLV 0.035 0.087 0.736 0.237 -0.045 0.012 -0.415 -0.070 0.044 0.210
XLY 0.030 0.118 0.759 0.220 -0.063 0.013 -0.527 -0.088 0.035 0.204

Cross-section of stocks

mean 0.044 0.169 0.713 0.252 -0.027 0.006 -0.457 -0.020 0.065 0.278
st.dev. 0.036 0.095 0.061 0.048 0.018 0.009 0.152 0.026 0.021 0.083

skewness -0.119 3.181 -1.912 0.884 0.938 1.227 -0.521 0.941 -0.199 1.275
kurtosis 5.382 22.003 18.859 11.444 8.058 5.726 4.867 5.995 3.595 5.598

min -0.156 -0.009 0.084 0.058 -0.093 -0.014 -1.283 -0.105 -0.001 0.139
1 -0.046 0.037 0.520 0.137 -0.065 -0.008 -0.840 -0.075 0.010 0.160
5 -0.013 0.065 0.622 0.180 -0.052 -0.006 -0.699 -0.055 0.029 0.175

10 0.001 0.082 0.646 0.196 -0.047 -0.004 -0.649 -0.050 0.037 0.187
25 0.025 0.118 0.685 0.222 -0.038 -0.000 -0.549 -0.038 0.052 0.217
50 0.043 0.151 0.716 0.252 -0.028 0.004 -0.452 -0.024 0.067 0.265
75 0.066 0.195 0.750 0.278 -0.018 0.010 -0.360 -0.006 0.079 0.323
90 0.088 0.263 0.778 0.304 -0.007 0.018 -0.275 0.011 0.089 0.387
95 0.099 0.328 0.797 0.325 0.000 0.023 -0.226 0.025 0.095 0.420
99 0.139 0.503 0.843 0.380 0.028 0.033 -0.137 0.060 0.113 0.565

max 0.212 1.052 0.932 0.676 0.086 0.064 0.005 0.144 0.156 0.733

Table 1.5: Parameter estimates of the conditional factor models for the style and sectoral ETFs and for the cross-section of 824
stocks. Here we report parameters related to the variance dynamics of the considered assets. Estimation period is January 3, 2005
- December 31, 2013.
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Figure 1.3: Histograms of the estimated parameters from the conditional models for the cross-section of 824 stocks. Estimation
period is January 3, 2005 - December 31, 2013.
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Figure 1.4: Quantile plots of the cross-section distributions of the model-implied factor loadings. Estimation period is January
3, 2005 - December 31, 2013.
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Figure 1.5: Quantile plots of the cross-section distributions of the model-implied factor loadings in 2008.
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2005 2006 2007 2008 2009 2010 2011 2012 2013

Market

mean 1.160 1.227 1.088 1.027 1.070 1.084 1.089 1.153 1.098
std. 0.292 0.360 0.287 0.308 0.301 0.309 0.341 0.394 0.311
skewness 0.360 0.541 0.473 0.470 0.449 0.486 0.370 0.639 0.948
kurtosis 3.571 2.921 3.617 3.490 4.185 3.345 2.888 3.738 4.208

min 0.100 0.426 0.361 -0.033 -0.291 0.402 0.395 0.386 0.514
1 0.503 0.587 0.514 0.442 0.522 0.500 0.452 0.462 0.579
5 0.722 0.720 0.628 0.548 0.629 0.623 0.564 0.564 0.700
10 0.823 0.814 0.752 0.643 0.719 0.696 0.636 0.652 0.745
25 0.967 0.945 0.888 0.827 0.867 0.865 0.846 0.864 0.868
50 1.140 1.182 1.066 1.009 1.051 1.071 1.068 1.125 1.052
75 1.326 1.459 1.263 1.203 1.251 1.277 1.303 1.393 1.285
90 1.543 1.714 1.456 1.432 1.445 1.473 1.539 1.651 1.501
95 1.692 1.881 1.599 1.576 1.625 1.586 1.693 1.832 1.673
99 1.905 2.154 1.881 1.836 1.951 1.987 1.989 2.283 2.063
max 2.255 2.483 2.328 2.267 2.230 2.231 2.265 2.755 2.462

Size

mean 0.432 0.412 0.421 0.521 0.474 0.502 0.443 0.472 0.581
std. 0.500 0.532 0.463 0.488 0.492 0.528 0.499 0.528 0.567
skewness 0.527 0.475 0.428 0.263 0.336 0.527 0.588 0.582 0.520
kurtosis 2.867 2.593 2.735 2.655 2.740 2.498 2.665 2.755 2.764

min -0.501 -0.555 -0.502 -0.715 -0.761 -0.427 -0.387 -0.497 -0.637
1 -0.386 -0.452 -0.397 -0.459 -0.449 -0.337 -0.356 -0.370 -0.364
5 -0.262 -0.337 -0.244 -0.217 -0.267 -0.231 -0.239 -0.248 -0.213
10 -0.195 -0.248 -0.157 -0.083 -0.169 -0.137 -0.152 -0.144 -0.096
25 0.038 -0.016 0.071 0.146 0.108 0.083 0.049 0.039 0.128
50 0.378 0.346 0.365 0.485 0.445 0.410 0.344 0.389 0.512
75 0.784 0.803 0.767 0.889 0.806 0.884 0.801 0.836 0.942
90 1.135 1.142 1.050 1.162 1.124 1.282 1.148 1.214 1.395
95 1.289 1.345 1.199 1.308 1.336 1.455 1.354 1.399 1.608
99 1.750 1.751 1.574 1.695 1.675 1.827 1.726 1.946 1.966
max 2.458 2.155 2.282 2.193 2.154 2.128 2.128 2.273 2.474

Value

mean 0.117 0.240 0.082 0.136 0.227 0.110 0.026 0.120 0.188
std. 0.547 0.528 0.392 0.548 0.678 0.588 0.589 0.569 0.597
skewness 0.899 0.609 0.281 1.796 1.803 1.061 0.312 0.056 0.485
kurtosis 5.077 4.224 3.673 8.411 6.960 4.672 3.946 3.942 6.482

min -1.453 -1.469 -1.167 -1.105 -0.823 -1.213 -1.898 -2.099 -2.503
1 -0.992 -0.843 -0.816 -0.706 -0.683 -0.969 -1.493 -1.449 -1.447
5 -0.742 -0.580 -0.553 -0.467 -0.459 -0.664 -0.874 -0.766 -0.622
10 -0.519 -0.407 -0.401 -0.366 -0.367 -0.522 -0.678 -0.556 -0.409
25 -0.183 -0.077 -0.156 -0.185 -0.213 -0.278 -0.308 -0.206 -0.147
50 0.093 0.219 0.064 -0.000 0.014 0.015 -0.010 0.088 0.118
75 0.347 0.494 0.315 0.332 0.433 0.380 0.314 0.465 0.517
90 0.696 0.803 0.605 0.873 1.091 0.881 0.754 0.857 0.900
95 1.237 1.332 0.744 1.212 1.695 1.262 1.200 1.117 1.145
99 1.849 1.802 1.055 2.022 2.691 2.036 1.631 1.516 2.059
max 2.179 2.238 1.713 3.818 3.667 2.729 2.099 2.107 3.438

Table 1.7: Descriptive statistics for the model-implied factor loadings reported by years.
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Figure 1.6: Model-implied market betas for the style and sectoral ETFs. Estimation period is January 3, 2005 - December 31,
2013.
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Figure 1.7: Model-implied size betas for the style and sectoral ETFs. Estimation period is January 3, 2005 - December 31, 2013.
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Figure 1.8: Model-implied value betas for the style and sectoral ETFs. Estimation period is January 3, 2005 - December 31,
2013.
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Figure 1.9: Return variance decomposition along the Fama-French risk factors and the idiosyncratic component for the cross-
section of 824 stocks. The decomposition is implemented according to the method in Genizi (1993). Sample period is January 3,
2005 - December 31, 2013.

2005 2006 2007 2008 2009 2010 2011 2012 2013

Share of variance by the market factor

mean 0.202 0.196 0.226 0.273 0.246 0.262 0.312 0.248 0.223
min 0.020 0.025 0.034 0.019 0.008 0.024 0.048 0.022 0.015
5 0.072 0.086 0.092 0.123 0.094 0.112 0.131 0.089 0.080
25 0.136 0.144 0.167 0.207 0.178 0.198 0.233 0.175 0.160
50 0.195 0.193 0.220 0.271 0.248 0.260 0.310 0.239 0.218
75 0.256 0.241 0.279 0.335 0.312 0.322 0.385 0.315 0.283
95 0.374 0.333 0.380 0.433 0.397 0.417 0.503 0.430 0.387
max 0.511 0.433 0.493 0.541 0.528 0.516 0.590 0.535 0.533

Share of variance by the size factor

mean 0.066 0.079 0.055 0.047 0.053 0.069 0.076 0.056 0.039
min 0.011 0.013 0.006 0.006 0.006 0.011 0.015 0.007 0.003
5 0.026 0.026 0.016 0.010 0.015 0.018 0.023 0.014 0.008
25 0.041 0.049 0.032 0.023 0.031 0.037 0.046 0.030 0.016
50 0.059 0.070 0.048 0.039 0.050 0.063 0.070 0.050 0.033
75 0.084 0.101 0.072 0.065 0.072 0.093 0.099 0.076 0.055
95 0.136 0.158 0.115 0.107 0.107 0.146 0.152 0.124 0.096
max 0.231 0.236 0.171 0.158 0.137 0.206 0.220 0.184 0.141

Share of variance by the value factor

mean 0.020 0.021 0.024 0.049 0.072 0.047 0.020 0.021 0.020
min 0.003 0.004 0.003 0.007 0.012 0.006 0.002 0.002 0.002
5 0.006 0.008 0.008 0.014 0.022 0.015 0.004 0.004 0.005
25 0.010 0.014 0.013 0.027 0.039 0.027 0.007 0.008 0.007
50 0.014 0.019 0.019 0.037 0.058 0.039 0.011 0.012 0.011
75 0.021 0.026 0.027 0.056 0.094 0.056 0.024 0.024 0.024
95 0.061 0.044 0.064 0.139 0.160 0.110 0.064 0.071 0.068
max 0.139 0.078 0.148 0.279 0.316 0.258 0.140 0.142 0.124

Table 1.8: Descriptive statistics for the return variance decomposition along the Fama-French risk factors for the cross-section of
824 stocks. Statistics is reported by years. The variance decomposition is implemented according to the method in Genizi (1993).
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Figure 1.10: Return variance decomposition along the Fama-French risk factors and the idiosyncratic component for the style
and sectoral ETFs. The decomposition is implemented according to the method in Genizi (1993). Sample period is January 3, 2005
- December 31, 2013.
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Appendix A

Supplement to Chapter I

A.1 Proofs

Lemma 1. Suppose that R is a non-singular correlation matrix. Then, the diagonal elements of logm(R) are
bounded above, but the off-diagonal elements are unbounded on R.

Proof. Suppose that R is k × k correlation matrix, k ≥ 1. The spectral decomposition of R reads

R = V ΛV ′ (A.1.1)

where the columns of the k×k matrix V are eigenvectors of R and Λ is a diagonal matrix with the corresponding
eigenvalues. In what follows, we will suppose that the columns of V are chosen to constitute an orthonormal
basis. The logarithm transformation of R is a symmetric matrix which reads

R̃ ≡ logm(R) = V


logλ1 0 · 0

0 logλ2 · 0
· · · ·
0 0 · logλk

V ′ (A.1.2)

We denote by en the n-th coordinate (unit) vector. Then the n-th eigenvector can be expressed as v(n) = V en

for n = 1, ..., k. A generic (i, j)-element of R̃ can be written as follows

R̃i,j =
k∑

n=1
v

(n)
i v

(n)
j log λn (A.1.3)

where v(n)
i is an i-th element of an eigenvector v(n). Note that since R is positive definite matrix, all λn are

real and strictly positive.
We start with proving the boundedness of the diagonal elements from R̃, i.e. of the elements (A.1.3) with

i = j. Consider a generic diagonal element of R̃. From Jensen’s inequality it follows that

R̃i,i =
k∑

n=1
(e′iV en)2 log λn =

k∑
n=1

(e′iv(n))2 log λn ≤ log
( k∑
n=1

(e′iv(n))2λn
)

(A.1.4)

Here we used the fact that
∑k
n=1(e′iv(n))2 = 1, for i = 1, ..., k, since the matrix V is orthogonal. Since we know

that diagonal elements of a correlation matrix are equal to one, Ri,i =
∑k
n=1(e′iv(n))2λn = 1, diagonal elements

of R̃ can be bounded from above as follows

R̃i,i ≤ log(1) = 0 (A.1.5)
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for i = 1, ..., k.
Consider now off-diagonal elements of R̃. To demonstrate that some off-diagonal element R̃i,j , i 6= j is

unbounded on R, lets suppose that the correlation between i-th and j-th elements of the multivariate return
process is close to perfect, i.e. Ri,j → 1. Then, the spectrum of R contains an eigenvalue that is close to 0.
Without loss of generality, we assign index h to this eigenvalue. Since eigenvalues are continuous functions of
the matrix entries, it follows that

lim
Ri,j→1

λh = 0 (A.1.6)

and hence, log λh → −∞. The corresponding eigenvector, v(h), converges to the vector with two non-zero
elements in entries i and j and zeroes in other entries. For an orthonormal eigensystem {v(n)}kn=1, entries v

(h)
i

and v(h)
j converge to the values 1√

2 and − 1√
2 , so we have

lim
R(i,j)→1

v
(h)
i v

(h)
j = −1

2 (A.1.7)

Using (A.1.3), we can express an (i, j)-th entry (for i 6= j ) of R̃ as

R̃i,j =
∑
n 6=h

v
(n)
i v

(n)
j log λn + v

(h)
i v

(h)
j log λh (A.1.8)

As long as the remaining eigenvalues λn for n 6= h are fixed (in other words, if all the entries of R apart from
(i, j)-th are fixed), the first term in (A.1.8) is bounded. Thus, from (A.1.6) and (A.1.7) we have that

lim
Ri,j→1

R̃i,j =∞ (A.1.9)

As a result, a generic off-diagonal entry of R̃ is unbounded from above.
Similarly, if the correlation between i-th and j-th elements of the multivariate return process is close to be

perfectly negative, i.e. Ri,j → −1, then the spectrum of R again contains an eigenvalue which is close to 0.
Denoting the index of such eigenvalue by h, we have that log λ→ −∞ and v(h)

i v
(h)
j → 1

2 , as Ri,j → −1. Then,
from (A.1.8) it follows that

lim
Ri,j→−1

R̃i,j = −∞ (A.1.10)

so a generic off-diagonal entry of R̃ is unbounded from below as well.

Lemma 2. Suppose that R is a (k + 1) × (k + 1) symmetric matrix with ones on the main diagonal. Let the
upper left k × k block of R consists of a non-singular correlation matrix Rc. Denote the upper right k × 1 block
of R by p. Then, R is a non-singular correlation matrix if and only if p′(Rc)−1p < 1.

Proof. Since R has ones on the main diagonal, in order to be a full rank correlation matrix, R has to be positive
definite. The Schur complement of the upper left block Rc of R is given by

R+ = 1− p′
(
Rc
)−1

p (A.1.11)

According to the well known result from the linear algebra, provided that Rc is a positive definite matrix, R is
positive definite if and only if R+ > 0. Since matrix Rc is positive definite by assumption, R is a non-singular
correlation matrix if and only if p′

(
Rc
)−1

p < 1.
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A.2 Modeling Correlations between Asset and Factors through the
Spherical Coordinate Transform

In this extension, we suggest an alternative approach to modeling a vector of conditional correlations between
the individual asset returns and k factors. The k× 1 vector of unobservable conditional correlations is denoted
by ρit, whereas an observed vector of corresponding realized measures is denoted by yit. Equations (1.15)-(1.16)
suggest the joint dynamics for yit and ρit, but do not ensure positive definiteness of the correlation matrix Rc,it
which is given by

Rc,it =
(

Rct ρit

(ρit)′ 1

)

where Rct is a k × k correlation matrix that is obtained from the core model and is treated as exogenous.
At first, we introduce the k×1 vector ρ̃it = (Rct)−

1
2 ρit, where (Rct)

1
2 is a principal square root of Rct . Since Rct

is an exogenous matrix process, we may model ρ̃it instead of ρit and then recover the latter by simply multiplying
ρ̃it and (Rct)

1
2 . Suppose a realized correlation matrix Y c,it is available and Y ct stands for the upper left k × k

block which describes the correlation among the common factors and the upper right k × 1 block is yit

Y c,it =
(

Y ct yit
(yit)′ 1

)

Then, the proper realized measure for ρ̃it can be analogously obtained as ỹit =
(
Y ct
)− 1

2 yit. Note that matrix Y c,it

is supposed to be a correlation matrix by construction.
From Lemma 2 it follows that given Rct is a correlation matrix, (ρ̃it)′ρ̃it < 1 is necessary and sufficient

requirement on ρ̃it to guarantee that Rc,it remains a correlation (positive definite) matrix. In order to satisfy
this requirement we transform the correlation vector ρ̃it providing a mapping from the Cartesian to spherical
coordinates.

In a general case of multidimensional k-sphere, a spherical coordinate system consists of a radial coordinate
(radial distance) and k − 1 angular coordinates. Imagine now that ρ̃it is a Cartesian coordinate vector. Then,
the radial distance in spherical coordinates is defined by

qt =
√

(ρ̃it)′ρ̃it (A.2.12)

The radial distance can be interpreted as an aggregate measure of the correlation between an individual asset
and the considered system of k factors. To preserve positive definiteness of Rc,it we must require that qt ∈ (0, 1).
Therefore, for example, we may suggest to model the dynamics of the logistic transform, Lgt(qt), which maps
from (0, 1) to R. The k − 1 angular coordinates θ1,t,θ2,t,...,θk−2,t,ϕt (k − 2 polar angles and 1 azimuth angle)
are then constructed using standard formulae for k-spherical coordinate transform. All angular coordinates are
defined on bounded intervals, so the mapping onto R can be applied as in the case of the radial distance qt.

Denote vector ρ̃it in spherical coordinates as

ρ̃i,St =
(
qt, θ1,t, θ2,t, ..., θk−2,t, ϕt

)′
The realized measure ỹi,St corresponding to ρ̃i,St can be obtained from ỹit analogously by means of the same
spherical transformation. Then, slightly rewritten equations (1.15)-(1.16) can be used to model the dynamics
of ρ̃i,St and ỹi,St instead of ρit and yit, so

Lgt(ỹi,St ) = Ψ i0 + Ψ i1 Lgt(ρ̃
i,S
t ) + vit (A.2.13)

Lgt(ρ̃i,St ) = Λi0 + Λi1 Lgt(ρ̃
i,S
t−1) + Λi2 Lgt(ỹ

i,S
t−1) (A.2.14)
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where Lgt(·) is a logistic transform. After ρ̃i,St is filtered, it can be then easily converted to ρ̃it using the
inverse spherical transformation. Afterwards, ρ̃it can be rescaled back to ρit, which is an object of interest.
By construction, such ρit will satisfy the criterion from Lemma 2 because qt is confined on (0, 1) and positive
definiteness of Rc,it will be preserved for each t.

Nonetheless, there are several reasons of why this approach is not much convenient for a practical imple-
mentation. First of all, the problem arises with the proper identification of some angular coordinates since the
inverse trigonometric functions are, generally speaking, multivalued. To illustrate this issue, lets consider the
case with a 3-dimensional sphere (k = 3). Suppose that we transform vector x = (x1, x2, x3)′ into the spherical
coordinates. The radial distance and the polar angle are expressed as q =

√
x′x and θ = arccos(x1/q). The

azimuth angle ϕ has to be properly defined because it has a domain [0, 2π) and inverse trigonometric functions
are not single valued on a such range. Therefore, the transform should be suitable with respect to a particular
quadrant on the (x2, x3)-plane. Commonly, the arctangent function with two arguments, ϕ = atan2(x2, x3), is
used to define this angle. An equivalent characterization, that is more geometrically appealing, can be suggested
by virtue of the complex logarithm function. Namely

ϕ = Im
(
logw

)
where w = x3 + ix2 and Im(·) stands for an imaginary part of the complex number. Since the complex logarithm
is a multivalued function, the proper branches on the Riemann manifold associated with the imaginary part of
the logarithm have to be selected. In the context of our modeling strategy, we treat this angle as a dynamic
coordinate, ϕ = ϕt. The representation ϕt = Im

(
logwt

)
implies that we should model the dynamics of ϕt as

a floating point on the Riemann surface, rather than directly map [0, 2π) onto R as it was the case for other
angular coordinates defined on [0, π). Thus, we are able to avoid discontinuities and jumps in the dynamics
of ϕt when it crosses the branches of the multivalued function. In practice, such modeling approach requires
to intelligently select the suitable branch at every time point t, so it complicates the modeling and estimation
routines considerably.

Beyond that, this modeling strategy implies three sequential transformations of the conditional correlation
vector, whereas the basic approach suggested in the main paper requires just a monotone Fisher transform of the
conditional correlations. Therefore, the variables Lgt(ỹi,St ) and Lgt(ρ̃i,St ) in the dynamic equations (A.2.13)-
(A.2.14) do not have a straightforward interpretation. As a consequence, we can not exlude the possibility
that the vector autoregressions embedded in (A.2.13)-(A.2.14) are not adequate model for these transformed
variables.

One potential advantage of such modeling approach is the way to reduce the dimensionality of the modeling
dynamic variable. For instance, we may treat only the radial distance qt as a time-varying component, whereas
all angular coordinates θ1, ..., θk−2 and ϕ can be treated as constant parameters. Therefore, all components of
the conditional correlation vector ρit will still be endowed with some dynamics, but only one variable instead
of k are modeled in (A.2.13)-(A.2.14). This would allow to significantly diminish the number of estimated
parameters and, at the same time, the positive definiteness of Rc,it will be achieved for all t.
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A.3 Estimation Algorithm

Here we provide a detailed description of the estimation procedure that was adopted in our empirical analysis.

A.3.1 Core Model

The log-likelihood function for the observable variables in the core model is given by

Lc =
T∑
t=1

log p
(
rct |Fct−1; θc

)
+

T∑
t=1

log p
(
xct , Y ct |rct ,Fct−1; θc

)
Denote the vector of all measurement errors from (1.5) and (1.7) as U ct =

(
(uct)′, (vct)′

)′. Then, from Gaussian
assumptions it follows that

Lcz =
T∑
t=1

log p
(
rct |Fct−1; θc

)
= −1

2

T∑
t=1

(
k log(2π) + log |Hc

tR
c
tH

c
t |+ (zct)′(Rct)−1zct

)
(A.3.15)

Lcu|z =
T∑
t=1

log p
(
xct , Y ct |rct ,Fct−1; θc

)
= −1

2

T∑
t=1

(
1
2k(k + 1) log(2π) + log |Ωc|+ (U ct )′(Ωc)−1U ct

)
(A.3.16)

Given a parameter vector θc and observable variables {X ct }Tt=1, the evaluation of these likelihood functions
amounts to the following steps.

1. Initialize time-varying conditional volatilities hc1 and off-diagonal elements lρc1 of the log-tranformed con-
ditional correlation matrix logm(Rct). We treat initial values hc1 and lρc1 simply as additional parameters
in the vector θc.

2. Using the model equations (1.4)-(1.8), we extract the series of time-varying parameters hct(θc) and lρct(θc)
for t = 1, ..., T .

3. Obtain matrices Hc
t (θc) and Rct(θc) using hct(θc) and lρct(θc) for t = 1, ..., T . In order to recover matrix

Rct(θc) from the off-diagonal elements of LRct(θc) = logm(Rct(θc)), we rely on the implication of Conjecture
1. Namely, for a given symmetric matrix A there exists at most one vector of diagonal elements x such that
the exponential transform of a matrix A with diagonal elements x, eÃ(x), is a correlation matrix. Thus,
for each t, we find the vector dt which solves diag

(
expm

(
LRct(dt; θc)

))
= ik, where ik is the k× 1 vector of

ones. Then the conditional correlation matrix is given by Rct(θc) = expm
(
LRct(dt; θc)

)
. In section A.3.4,

we provide the iterative algorithm designed for this purpose.

4. Using (1.4), (1.5), and (1.7), obtain model residuals related to the standardized returns ẑct(θc) and mea-
surement errors Û ct (θc) for t = 1, ..., T .

5. Using filtered sequences Hc
t (θc), Rct(θc), and ẑct(θc), the log-likelihood contribution from (A.3.15) can be

evaluated, Lcz(θc).

6. We simplify the evaluation of the log-likelihood from (A.3.16) by concentrating it around the covari-
ance matrix of the measurement errors, Ωc. At first, we define its empirical analogue as Ω̂c(θc) =
1
T

∑T
t=1 Û

c
t (θc)Û ct (θc)′. Then, the log-likelihood contribution given in (A.3.16) can be approximated as

follows

Lcu|z(θc) ≈ −
T

2

(
1
2k(k + 1) log(2π) + log |Ω̂c(θc)|+ 1

2k(k + 1)
)

As a result, we do not estimate parameters from Ωc directly as components in θc. For large k it may
significantly reduce the dimensionality of our maximization problem. We nevertheless obtain the indirect
estimate of the covariance matrix of measurement errors, Ω̂c.
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7. The total log-likelihood can be found for a given θc as a sum of log-likelihood contributions from (A.3.15)
and (A.3.16), Lc(θc) = Lcz(θc) + Lcu|z(θc).

By using the provided algorithm, the log-likelihood function of the core model can then be maximized with
respect to θc. Then, the solution θ̂c, the vector that maximizes Lc(θc), is used further to filter the model implied
variables such as Hc

t (θ̂c), Rct(θ̂c), ẑct(θ̂c), Û ct (θ̂c), and Ω̂c(θ̂c), which will be further employed in the estimation
of conditional factor models for individual asset returns.

A.3.2 Conditional Factor Model

The log-likelihood function for the observable variables in the conditional model for asset i is given by

Li|c =
T∑
t=1

log p(rit|X ct ,F
c,i
t−1; θi) +

T∑
t=1

log p(xit,yit|rit,X ct ,F
c,i
t−1; θi)

At first, (1.12) provides us with the conditional distribution of a standardized asset return zit. Denote the vector
of all measurement errors from (1.13) and (1.15) of the realized measures related to asset i as U it =

(
(uit)′, (vit)′

)′.
Then, from (1.17) and using the properties of the multivariate Normal distribution we may obtain the conditional
distribution of measurement errors U it as

U it

∣∣∣∣U ct ∼ N(Ωc,i(Ωc)−1U ct , Ωi − Ωc,i(Ωc)−1(Ωc,i)′
)

From the assumption of Normality it follows that

Li|cz =
T∑
t=1

log p(rit|X ct ,F
c,i
t−1; θi) = −

1
2

T∑
t=1

(
log(2π) + log hi|ct +

(
zit − z

i|c
t

)2
hit(h

i|c
t )−1

)
(A.3.17)

Li|c
u|z =

T∑
t=1

log p(xit,yit|rit,X ct ,F
c,i
t−1; θi) = −

1
2

T∑
t=1

(
(k + 1) log(2π) + log

∣∣Ωi|c∣∣+(U it − U i|ct )′(Ωi|c)−1
(
U it − U

i|c
t

))
(A.3.18)

where zi|ct = (ρit)′(Rct)−1zct , h
i|c
t = hit

(
1−(ρit)′(Rct)−1ρit

)
, U i|ct = Ωc,i(Ωc)−1U ct , and Ωi|c = Ωi−Ωc,i(Ωc)−1(Ωc,i)′.

Given a parameter vector θi, all relevant filtered variables from the core model, and observable variables
related to the individual asset {X it }Tt=1, the evaluation of the provided log-likelihood functions proceeds as
follows.

1. Initialize time-varying conditional volatility hi1 and conditional correlations ρi1. In contrast to the estima-
tion of the core model, here we do not treat hi1 and ρi1 as static parameters from the vector θi. Instead,
we estimate univariate exponential smoothing dynamic models for the corresponding realized measures,
where the initial values of the smoothed variables are estimated parameters. Then, we use these estimated
values to initialize hi1 and ρi1. Though such approach is less appealing, it allows to avoid an increase in
the number of estimated parameters in θi and, thus, reduces the estimation time. This gain is especially
important when we have to estimate large number N of individual assets.

2. Using the model equations (1.9)-(1.16), we extract the series of time-varying parameters hit(θi) and ρit(θi)
for t = 1, ..., T .

3. For each day t = 1, ..., T we check the positive definiteness ofRc,it determined by the condition (ρit)′(Rct)−1ρit <

1 in Lemma 2. If this condition is violated for at least one day, the given parameter vector θi generates the
variables which are not admissible and such θi can not be a solution. Whereas the rigour approach would
require a likelihood maximization subject to the dynamic constraint (ρit)′(Rct)−1ρit < 1, we implement a
simplified method. As long as the condition is violated for at least one trading day, we slightly perturb
initial values hi1 and ρi1 and look for another vector θi, so that the condition is getting satisfied.
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4. Using (1.9), (1.13), and (1.15), we obtain model residuals related to the standardized returns ẑit(θi),
ẑ
i|c
t (θi), and measurement errors Û it (θi), Û

i|c
t (θi) for t = 1, ..., T .

5. Using filtered sequences hit(θi), ẑ
i|c
t (θi), hi|ct (θi), and ẑit(θi), the log-likelihood contribution from (A.3.17)

can be evaluated, Li|cz (θi).

6. As before, we simplify the evaluation of the log-likelihood from (A.3.18) by concentrating it around
the conditional covariance matrix of the measurement errors, Ωi|c. We define its empirical analogue as
Ω̂i|c(θi) = 1

T

∑T
t=1
(
Û it (θi) − Û

i|c
t (θi)

)(
Û it (θi) − Û

i|c
t (θi)

)′. Then, the log-likelihood contribution given in
(A.3.18) can be approximated via

Li|cu|z(θi) ≈ −
T

2

(
(k + 1) log(2π) + log

∣∣Ωi|c(θi)∣∣+k + 1
)

7. The total log-likelihood can be found for a given θi as a sum of log-likelihood contributions from (A.3.17)
and (A.3.18), Li|c(θi) = Li|cz (θi) + Li|cu|z(θ

i).

Thus, the log-likelihood function of the conditional model for an individual asset i can be maximized with
respect to θi. The solution θ̂i is used then to filter the model implied variables such as hit(θ̂i), ρit(θ̂i), and
ẑit(θ̂c), which can be further employed to obtain model-implied factor loadings, risk premia, and other relevant
variables.

A.3.3 Large Systems

The hierarchical structure of the modeling framework suggests a following simple way of estimating large systems
of asset returns. Suppose we have N assets and want to discover their cross-sectional properties.

1. The core model is estimated as it is explained in Section A.3.1. Variables Hc
t (θ̂c), Rct(θ̂c), ẑct(θ̂c), Û ct (θ̂c),

and Ω̂c(θ̂c) related to the dynamics of the multivariate conditional distribution of the common risk factors
are obtained.

2. For each asset i = 1, ..., N we estimate a conditional factor model conditional on the same output vari-
ables filtered from the estimated core model as it is explained in Section A.3.2. Variables {hit(θ̂i)}Ni=1,
{ρit(θ̂i)}Ni=1, and {ẑit(θ̂c)}Ni=1 related to the factor dynamics of the conditional distributions of asset re-
turns are obtained. These N conditional models can be estimated independently from each other, so the
simultaneous parallel estimation is allowed and the estimation time can be considerably reduced.

Afterwards, according to equation (1.22) the common component of a conditional variance of the large dimen-
sional return vector can be estimated. In addition, the cross-sections of the factor loadings (betas) can be
computed to analyze asset pricing implications of the considered linear factor model.
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A.3.4 Reconstruction of a Correlation Matrix

We now provide the algorithm to recover the correlation matrix from its logarithmic transformation when the
diagonal elements of such transformation are unknown.

Suppose that A ∈ Rn×n is a symmetric matrix with the off-diagonal elements obtained from the logarithmic
transformation of some correlation matrix and arbitrarily specified diagonal elements. Our aim is to change the
diagonal of A in such a way that the exponential transform of the new matrix Ã produces a correlation matrix.
We suggest the following simple iterative procedure that ensures a convergence of the initial matrix A to the
desired matrix Ã:

Ak+1 = Ak − logm
(
Diag(eAk)

)
, k = 0, 1, 2, ...

where A0 = A and Diag(A) represents a diagonal matrix with diagonal elements from A. Since the updating
term is a diagonal matrix, iterations affect only diagonal elements of the matrix A and leaves the off-diagonal
elements unchanged. With a reasonably chosen tolerance level, the algorithm converges to Ã within just a few
iterations.

We relate the detailed analysis of the suggested algorithm and its convergence properties to the separate
companion note.
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A.4 Descriptive Statistics

A.4.1 Sample description

Sector # Group #

Energy 49 Energy 49

Materials 61 Materials 61

Industrials 121 Capital Goods 80
Commercial Services and Supplies 20
Transportation 21

Consumer Discretionary 153 Automobiles and Components 12
Consumer Durables and Apparel 36
Consumer Services 29
Media 19
Retailing 57

Consumer Staples 40 Food and Staples Retailing 11
Food, Beverage and Tobacco 19
Household and Personal Products 10

Health Care 98 Health Care Equipment and Services 51
Pharmaceuticals, Biotechnology and Life Sciences 47

Financials 93 Banks 39
Diversified Financials 23
Insurance 25
Real Estate 6

Information Technology 152 Software and Services 50
Technology Hardware and Equipment 48
Semiconductors and Semiconductor Equipment 54

Telecommunication Services 9 Telecommunication Services 9

Utilities 48 Utilities 48

Table A.4.1: Table contains the breakdown of sample assets used in the empirical analysis according to the
Global Industry Classification Standard (GICS).

Fund’s type Ticker Description Fund’s type Ticker Description
Style funds IWD large value Sectoral funds XLB Materials
BlackRock, iShares IWB large neutral SSGA, SPDR XLE Energy

IWF large growth XLF Financials
IWS mid value XLI Industrials
IWR mid neutral XLK Technology
IWP mid growth XLP Consumer staples
IWN small value XLU Utilities
IWM small neutral XLV Health care
IWO small growth XLY Consumer discretionary

Table A.4.2: List of ETFs used in the empirical analysis.
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A.4.2 Summary Statistics
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Figure A.4.1: Quantile plot of daily returns from the cross-section of 824 individual assets used in the empirical
analysis.

Quantile 0.01 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.99

Mean -0.016 0.017 0.026 0.042 0.052 0.061 0.068 0.085 0.110 0.130 0.183
Std. 1.141 1.378 1.565 2.000 2.325 2.510 2.726 3.155 3.832 4.443 5.884
Skewness -1.307 -0.598 -0.322 -0.041 0.123 0.230 0.344 0.546 0.998 1.707 4.525
Kurtosis 5.850 7.109 7.698 9.136 10.723 11.912 13.425 16.726 26.656 36.574 88.837

Min -61.105 -39.567 -32.948 -24.239 -19.228 -17.707 -15.952 -13.264 -10.397 -8.875 -7.870
Median -0.139 -0.059 -0.002 0.000 0.021 0.035 0.043 0.061 0.090 0.104 0.148
Max 8.603 10.202 11.722 14.966 17.726 19.397 21.761 26.956 38.282 50.556 103.458

ACF(1) -0.176 -0.123 -0.102 -0.065 -0.045 -0.033 -0.022 -0.002 0.026 0.042 0.077
ACF(5) -0.103 -0.075 -0.064 -0.046 -0.031 -0.024 -0.017 -0.005 0.012 0.025 0.062
ACF(20) -0.042 -0.023 -0.014 0.002 0.014 0.021 0.027 0.039 0.056 0.069 0.106

Table A.4.3: Summary statistics of daily returns.
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Figure A.4.2: Quantile plot of daily annualized volatilities from the cross-section of 824 individual assets used
in the empirical analysis. Variances are computed using the Realized kernel estimator.

Quantile 0.01 0.05 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.95 0.99

Mean 0.155 0.180 0.197 0.239 0.277 0.296 0.320 0.369 0.438 0.499 0.612
Std. 0.083 0.103 0.113 0.133 0.154 0.167 0.180 0.211 0.284 0.344 0.483
Skewness 1.751 1.928 2.110 2.453 2.682 2.888 3.081 3.491 4.258 5.075 7.826
Kurtosis 7.707 9.247 10.463 13.125 15.381 17.260 19.695 24.277 38.099 59.925 149.461

Min 0.016 0.030 0.036 0.046 0.054 0.058 0.063 0.072 0.095 0.108 0.133
Median 0.133 0.152 0.167 0.200 0.231 0.248 0.271 0.314 0.374 0.419 0.506
Max 1.025 1.220 1.354 1.602 1.800 1.992 2.200 2.631 3.724 4.522 7.238

ACF(1) 0.458 0.537 0.581 0.663 0.718 0.747 0.775 0.807 0.840 0.859 0.898
ACF(5) 0.262 0.378 0.431 0.532 0.599 0.638 0.664 0.706 0.748 0.772 0.816
ACF(20) 0.170 0.274 0.332 0.427 0.493 0.522 0.545 0.585 0.631 0.655 0.715

Table A.4.4: Summary statistics of daily volatilities.
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A.5 Fama-French factors from ETF data

Here we describe the procedure for replication of the three Fama-French risk factors using the data from style
and broad market exchange traded funds (ETFs). We begin with a general empirical formulation of these risk
factors, outline the replication strategy and introduce a descriptive list of all ETFs used in the analysis. Then,
we describe the scheme that we use to construct ETF-based risk factors on a daily and an intra-daily frequencies.

A.5.1 Three Fama-French Factors

The three risk factors used in the Fama-French model are essentially unobservable. According to the original
approach (Fama and French (1993)), the factors can be replicated empirically as follows:

rmkt = rm − rrf

rsmb = 1
3
(
rsv + rsn + rsg

)
−1

3
(
rbv + rbn + rbg

)
(A.5.19)

rhml = 1
2
(
rsv + rbv

)
−1

2
(
rsg + rbg

)
where rmkt denotes the market risk factor (MKT), rsmb is the size factor which reflects a market capitalization of
stocks (small-minus-big, SMB), and rhml is value factor that captures a book-to-market ratio (high-minus-low,
HML). Factors are constructed using the following returns on specific portfolios:

return associated portfolio

rrf riskless portfolio (usually Treasury Bill rate is used)

rm market representative

rsv stocks with small market capitalization and high book-to-market ratio

rsn stocks with small market capitalization and medium book-to-market ratio

rsg stocks with small market capitalization and low book-to-market ratio

rbv stocks with big market capitalization and high book-to-market ratio

rbn stocks with big market capitalization and medium book-to-market ratio

rbg stocks with big market capitalization and low book-to-market ratio

As we can see, the market factor represents a return on a market portfolio in excess of the risk-free rate.
As long as the riskless portfolio is, generally speaking, an infeasible object, the corresponding risk-free return
is usually approximated by the one-month Treasury Bill rate. The size factor is a return on zero investment
portfolio formed by taking a long position on small cap stocks and short on large cap stocks. Finally, the
value factor is a return on zero investment portfolio formed by taking a long position on stocks with a high
book-to-market ratio and a short position on stocks with a low book-to-market ratio.

Usually, in empirical research people refer to specifically constructed research portfolios that are based on
the data from many individual stocks and are representative for a particular equity market. As an example,
Kenneth French Data Library provides the data on the Fama-French factors for the U.S. equity market based
on the regularly updated research portfolios started from 1927.

A.5.2 Replication Strategy

Our ultimate purpose in this section is to replicate returns on the Fama-French factors on a daily and intra-daily
frequencies. The high frequency intra-daily factors allow then to obtain the corresponding realized measures
of volatilities and correlations for the daily factors. Afterwards, the daily “close-to-close” factors and realized
measures are supposed to be input variables for the multi-factor Realized GARCH model developed in this
paper.

As for the daily factors, they can be directly obtained from the Kenneth French Data Library. They are
constructed with market representative portfolios using formula (A.5.19) and are considered as a benchmark
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in the empirical asset pricing literature being used intensively in the related research. The daily frequency is
the highest available frequency of the factor series at the Kenneth French website, so the replication of the
Fama-French factors intra-daily is the main challenge.

One straightforward possibility would be to use high frequency transaction observations of the assets from
the same research portfolios which were used to construct the daily factors. In that case, intra-daily portfolio
returns can be obtained and the corresponding intra-daily factors can be then directly computed using formula
(A.5.19). Although the intra-daily factors obtained in such a way would be fairly consistent with the daily
factors from the Kenneth French Library, this approach requires to aggregate large amounts of high frequency
data from the individual stocks as well as to maintain the exact compositions of the research portfolios for each
day. We, therefore, resort to another possibility of getting the high frequency factors that is much easier to
implement and replicate.

Data from market and style ETFs suggests an alternative approach to construct the risk factors. Since an
ETF represents a portfolio of stocks traded on a market as a single security, the latent Fama-French factors can
be replicated by means of proper combinations of ETF returns. Using relations from (A.5.19), where returns
on corresponding market and style ETFs are used instead of the returns on research portfolios, we may obtain
the ETF-based Fama-French factors. Because intra-daily ETF transactions are directly observable, we may use
high frequency ETF data to replicate the latent risk factors at an intra-daily level.

Since the compositions of assets in the ETFs and the Fama-French portfolios are not the same, the realized
measures obtained using ETF data are not fully consistent with the daily factors which are based on the research
portfolios. To reduce the potential mismatch, we look across several alternative ETF families and gauge their
abilities to replicate the benchmark Fama-French factors. Since the benchmark factors are available just at a
daily frequency, but not intra-daily, we perform our comparison at a daily level. We conjecture, that if some
given ETF family replicates the daily risk factors, i.e. better correlates with the benchmark (daily factors from
the Kenneth French Data Library), then on an intra-daily frequency this ETF family would also better replicate
the latent benchmark (intra-daily factors based on the Fama-French portfolios).

A.5.3 Exchange Traded Funds Used for Factor Replication

In order to replicate the Fama-French factors we consider data on style and broad market equity ETFs from
the three main U.S. investment management corporations: BlackRock, State Street Global Advisors (SSgA),
and Vanguard Group. Table (A.5.6) provides a brief description of the corresponding funds. In addition, there
are several issues that we point out here in more details.

We perform our comparison across 4 fund families. We selected these families based on several general
requirements. First of all, we consider the funds with sufficiently long trading history. This requirement is
natural since an accurate estimation of the dynamic model formulated in this paper needs sufficiently long data
span. Secondly, it is highly desirable that a considered ETF is traded intensively. In this case, the number of
intra-daily transactions is supposed to be higher, the price responds to the arrival of relevant information more
timely and, thus, more precise realized measures of variances and correlations can be obtained. Finally, we
want to use funds that can be treated as representative portfolios for the U.S. equity market. Thus, we focus
on those ETFs which track representative stock market indexes, but not those which are related to a particular
sector or industry.1

As it can be seen from Table (A.5.6), iShares (Russell 3000) funds are the most appealing from the perspective
of the aforementioned requirements. They all are incepted in 2000, are comparatively liquid, and are based on
the constituents of the Russell 3000 index which represents about 98% of the U.S. equity market. In contrast,
SPDR family which includes well known large blend SPY, the most liquid ETF with the longest trading history,

1We notice that these selection criteria do not support the use of momentum ETFs to proxy a momentum factor which could
be added then as an additional risk factor (Carhart (1997)) in our empirical pricing model. In particular, although DWAQ
(PowerShares, Invesco) is traded since 2003, it tracks momentum in NASDAQ companies and is not representative for the broad
equity market. Other popular momentum funds include PDP (PowerShares, Invesco, since 2007), MTUM (iShares, BlackRock,
since 2013), MMTM (SSgA, since 2012), MOM (QuantShares, since 2011), etc. Such funds have insufficiently long trading history,
low trading volumes, and, as a result, are inappropriate for our analysis.
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is traded less intensively than alternatives and is less representative for the broad U.S. stock market (compared
to the Russell 3000 and CRSP Total) since the funds are based on the components of the S&P 1500 index.

All the considered funds are passively managed. It means that the underlying security composition is
supposed to replicate the performance of the corresponding index or its specific segment characterized by a
particular investment style (value, neutral, or growth stocks; large or small-cap stocks). Nonetheless, it does
not mean that the composition of securities in ETFs is fully representative for the whole U.S. equity market
(unlike the research portfolios from the Kenneth French Library). Moreover, it is pretty unlikely that the ETFs
perfectly replicate the corresponding indices and style segments at least due to the presence of tracking errors
(see Hassine and Roncalli (2013)). In addition, a composition of an ETF may be slightly tilted and differ from
the index representative portfolio because of the fund-specific weighting schemes. Thus, as we have already
pointed out, we can not expect that the ETF-based Fama-French factors perfectly match the Fama-French risk
factors obtained with the highly representative research portfolios.

In what follows, we will compare how well the factors constructed with different fund families match the
benchmark factors at a daily frequency. Based on this comparison, we select the funds for the intra-daily
replication of the Fama-French factors.

A.5.4 Matching ETF-based Factors with the Benchmark

As a benchmark, we use daily factors from the Kenneth French Data Library. Daily ETF returns are obtained
from the Yahoo Finance website and the one-month Treasury bill rate (from Ibbotson Associates) is treated as
a risk-free rate rrf .

A.5.4.1 Market Factor

Several ETFs from those listed in Table (A.5.6) might be used to approximate the market factor. Namely, we
consider daily returns on 4 large-cap neutral style funds and 2 broad market funds. These funds are supposed
to closely follow the stock market indexes associated with the corresponding ETF families. Whereas the large
neutral funds track only the companies with a large capitalization, broad market funds do not relate to a
particular style segment and can be treated as more representative market portfolios.

We define rm as a daily return on one of these ETFs and then obtain the corresponding ETF-based market
factor using the definition from (A.5.19). Then, for the period 2005-2013 we compute sample correlations
between the ETF-based market factors and the benchmark market factor from the Kenneth French Library.

ETF for market factor IWB IVV VV SPY IWV VTI
Correlation with the benchmark 0.993 0.991 0.987 0.985 0.994 0.992

As we may see, all 6 funds match the benchmark almost perfectly and either can be used as a market factor.
Nonetheless, we select VTI as a replicating ETF for the market risk factor since this fund is representative for
the broad market (but not just for large-cap stocks) and is traded more intensively than the other broad market
fund IWV.

A.5.4.2 Size Factor

We construct the size factor according to the definition in (A.5.19) by using returns on the style ETFs. The
sample correlations between SMB factors replicated with ETFs from 4 different fund families and the benchmark
SMB are

ETF family for size factor iShares, Russell iShares, S&P Vanguard SSgA
Correlation with the benchmark 0.887 0.899 0.865 0.695

We can see that both iShares families as well as Vanguard funds replicate the benchmark Fama-French
size factor quite well. In contrast, SSgA funds perform relatively worse. This may be explained by the fact
that SSgA style ETFs are on average much less liquid than the alternatives. Since the iShares Russell funds
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are traded more intensively than Vanguard and iShares S&P funds, we choose this family to replicate the size
factor.

A.5.4.3 Value Factor

We obtain the daily HML factors with daily returns on the style ETFs using (A.5.19) and the comparison with
the benchmark value factor gives

ETF family for value factor iShares, Russell iShares, S&P Vanguard SSgA
Correlation with the benchmark 0.783 0.723 0.723 0.497

Similar to the previous case, iShares and Vanguard funds replicate the benchmark value factor decently (but
significantly worse than in case of the size factor). HML factor based on the SSgA funds exhibits very low
correlation with the benchmark factor. We select the iShares Russell ETF family for the replication since the
value factor constructed with these funds has the highest correlation with the benchmark.

Figure A.5.3 contains cumulative series of the benchmark research factors from the Kenneth French Data
Library and the ETF-based factors constructed with the funds selected above. Particularly, these plots illustrate
that although the correlations between the ETF-based factors and the benchmark factors vary across different
sample years, a significant co-movement is always observable.2

Finally, we acknowledge that despite our ETF-based factors correlate pretty well with the benchmark at
a daily frequency, the realized measures constructed with the ETF-based factors at an intra-daily frequency
still may be inconsistent measures of variances and correlations for the daily benchmark Fama-French factors.
Importantly, we suppose that such realized measures capture the dynamics of these latent variances and cor-
relations good enough and can be treated as valid measures (instruments) of the latter. At the same time, a
potential systematic bias in the realized measures is supposed to be controlled by the measurement equation
parameters in the model.

2We note that it is also possible to exploit the infrormation from all considered funds and obtain combined ETF-based factors.
For example, such a combined ETF-based factor can be built as a linear combination of the ETF-based factors obtained from
different fund families. To determine the weights in such a linear combination, a simple linear regression can be used

rbenchx,t = r̄x,tβx + εt

where rbenchx,t is the (daily) benchmark factor x (market, size, or value) and r̄x,t is a vector of the ETF-based factors x obtained with
different fund families. A combined ETF-based factor is, therefore, defined by r̄x,tβ̂x, where β̂x is a vector of estimated coefficients.
In that case, an increased representativeness of an underlying stock composition in the combined ETF-based factors may lead to
an improved matching with the Fama-French factors constructed by means of the representative researcher portfolios. However, to
avoid overfitting issues and potential adverse effects related to the intra-daily aggregation of many price series, we do not use such
combined ETF-based factors in our empirical analysis.
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Average daily Stock splits (since 2004)
Fund family and Index Ticker Style Inception date volume Proportion Date
BlackRock, iShares IWV broad market 22.05.2000 4.44 · 105

Russell 3000 IWD large value 22.05.2000 1.73 · 106

IWB large neutral 15.05.2000 1.29 · 106

IWF large growth 22.05.2000 2.33 · 106

IWN small value 24.07.2000 1.66 · 106 1:3 09.06.2005
IWM small neutral 22.05.2000 5.34 · 107 1:2 09.06.2005
IWO small growth 24.07.2000 1.85 · 106

BlackRock, iShares IVE large value 22.05.2000 6.04 · 105

S&P 1500 IVV large neutral 15.05.2000 3.03 · 106

IVW large growth 22.05.2000 7.54 · 105

IJS small value 24.07.2000 2.04 · 105 1:2 09.06.2005
IJR small neutral 22.05.2000 1.46 · 106 1:3 09.06.2005
IJT small growth 24.07.2000 2.23 · 105 1:2 24.07.2008

Vanguard VTI broad market 24.05.2001 1.80 · 106 1:2 18.06.2008
CRSP US Total VTV large value 26.01.2004 3.60 · 105

VV large neutral 27.01.2004 2.20 · 105

VUG large growth 26.01.2004 3.79 · 105

VBR small value 26.01.2004 1.24 · 105

VB small neutral 26.01.2004 2.68 · 105

VBK small growth 26.01.2004 1.27 · 105

SSgA, SPDR SPYV large value 25.09.2000 1.31 · 104 1:2 22.09.2005
S&P 1500 SPY large neutral 22.01.1993 1.57 · 108

SPYG large growth 25.09.2000 2.11 · 104

SLYV small value 25.09.2000 1.33 · 104 1:3 22.09.2005
SLY small neutral 08.11.2005 1.08 · 104

SLYG small growth 25.09.2000 1.21 · 104

Table A.5.6: Descriptive information on the passively managed equity exchange traded funds which are considered and used
in the replication of the Fama-French risk factors. The first column contains the name of investment management company, the
name of the fund family, and the stock market index related to the particular fund family. The second column includes the ticker
symbols, while the investment styles are in the third column. The fourth column holds the inception dates of the considered ETFs.
The fifth column contains the average daily traded volumes which are computed for the trading days within the period 2004 - 2013
inclusively. The last two columns provide an information about the dates and proportions of the ETF stock splits (if happened)
since 2004.
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Figure A.5.3: Cumulative series of the benchmark daily risk factors from the Kenneth French Data Library (solid lines) and the
ETF-based daily risk factors (dashed lines). Plots are provided for each calendar year from the sample period between 2005 and
2013 inclusively and the corresponding correlations between factors based on a one year period are indicated beneath the plots.
The ETF-based risk factors are constructed as described in Section A.5.4.
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A.6 Model Evaluation

We provide a statistical evaluation of the suggested modeling framework. At first, we formulate the set of
alternative models that will be used for comparative purposes. Then, we discuss the results of in-sample and
out-of-sample statisical analysis.

A.6.1 Alternative models

The model described in the paper allows for a dynamic correlation structure, exploits high frequency (intra-
daily) data, and also incorporates the signals from low frequency (daily) returns. To evaluate the potential
benefits suggested by these features, we specify the pool of alternative models. Each model from this pool
isolates one of the key aspects from our baseline framework.

1. A Realized CCC Model. In this model, only variances are treated as time-varying, whereas correlations
between asset returns are assumed to be constant. Therefore, we rule out the correlation dynamics from
the framework. Such model can be considered as a realized version of the Multivariate CCC (Constant
Conditional Correlations) GARCH of Bollerslev (1990). Note that this model is nested in our baseline
framework.

2. A Realized Reduced Form Model for Variances and Correlations. Here we discard the infor-
mation from the low frequency daily returns, so the model can be treated as a simple filter for realized
measures. Without this information, the filtered covariance process is no more an unbiased covariance
measure of asset returns, but rather a smoothed version of realized measures. In addition, such aspects
of the baseline modeling framework as a “leverage effect” are left out.

3. A DCC Model with Log-matrix Transform. In this case, we exclude realized measures based on
high frequency data. Instead, we provide a close counterpart of multivariate GARCH frameworks of
Engle (2002) and Tse and Tsui (2002), where the correlation dynamics is modeled using the log-matrix
transformation, as it is developed in our baseline framework. Although such model is not nested in our
main model, it can be treated as a closely related low frequency analogue.

A.6.2 Statistical Evaluation

We evaluate both the core and the factor models from our baseline framework. As for the core model, we compare
partial and predictive log-likelihoods for the system of the three Fama-French risk factors. A comparison of
results across the pool of alternative models will allow us to assess the relative benefits in a statistical fit that
are suggested by different aspects of our baseline framework. As for the factor models, we implement a beta
hedging tracking exercise (in- and out-of-sample) using style and sectoral ETFs as individual assets.

Table A.6.7 contains log predictive likelihoods of the three-variate Fama-French return for 4 models. It
is quite naturally that the DCC model performs in-sample better than the alternatives since the likelihood
estimation objective coincides with the evaluation criterion. This is not the case for other three models, where
the likelihood objectives have additional components related to the observable realized measures. In contrast,
in the out-of-sample comparison the baseline realized model performs better than the DCC model. Note that
a poor performance of the reduced form realized model reflects the absence of the return distribution in the
estimation objective.

Table A.6.8 provides the variances of hedging tracking errors. As we may see, the realized models demonstrate
significantly better hedging performance than the DCC model. Particularly, it may indicate the superior
information content of the variance and correlation signals obtained from realized measures. It is interesting to
note that for several funds the realized model with constant correlations outperforms the baseline model both
in- and out-of-sample.
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DCC with LM-transform Reduced Form Realized Model Realized CCC Baseline Model

In-sample Mean Predictive Log-likelihood

-2.619 -3.339 -2.762 -2.658

Out-of-sample Mean Predictive Log-likelihood

-1.850 -2.374 -1.840 -1.824

MCS size 1% 5% 10%

Table A.6.7: Density forecasting for the Fama-French factors.

IWD IWB IWF IWS IWR IWP IWN IWM IWO

In-sample Fund Tracking Variance

DCC with LM-transform 0.069 0.047 0.062 0.085 0.080 0.090 0.097 0.093 0.090
Reduced Form Realized Model 0.049 0.024 0.056 0.073 0.067 0.092 0.089 0.074 0.099
Realized CCC 0.045 0.022 0.049 0.067 0.060 0.080 0.082 0.072 0.073
Baseline Model 0.044 0.039 0.083 0.067 0.061 0.081 0.083 0.071 0.092

Out-of-sample Fund Tracking Variance

DCC with LM-transform 0.031 0.021 0.022 0.055 0.044 0.053 0.058 0.051 0.053
Reduced Form Realized Model 0.022 0.012 0.023 0.042 0.036 0.050 0.029 0.022 0.045
Realized CCC 0.017 0.010 0.016 0.037 0.029 0.036 0.031 0.024 0.034
Baseline Model 0.017 0.018 0.049 0.042 0.032 0.039 0.028 0.021 0.041

MCS size 1% 5% 10%

XLB XLE XLF XLI XLK XLP XLU XLV XLY

In-sample Fund Tracking Variance

DCC with LM-transform 0.193 0.212 0.148 0.148 0.133 0.136 0.174 0.146 0.145
Reduced Form Realized Model 0.143 0.156 0.071 0.088 0.110 0.125 0.175 0.122 0.093
Realized CCC 0.187 0.212 0.152 0.137 0.133 0.131 0.182 0.141 0.137
Baseline Model 0.189 0.208 0.145 0.134 0.128 0.131 0.178 0.143 0.138

Out-of-sample Fund Tracking Variance

DCC with LM-transform 0.161 0.164 0.079 0.098 0.117 0.125 0.173 0.132 0.111
Reduced Form Realized Model 0.143 0.156 0.071 0.088 0.110 0.125 0.175 0.122 0.093
Realized CCC 0.135 0.150 0.072 0.085 0.107 0.121 0.153 0.118 0.091
Baseline Model 0.140 0.157 0.074 0.089 0.110 0.127 0.167 0.126 0.093

MCS size 1% 5% 10%

Table A.6.8: Beta hedging analysis.
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A.7 Fama-French Risk Premia at High Frequency

We estimate risk premia from the cross-section of individual assets at a daily and a monthly frequencies. Daily
risk premia is simply estimated with the series of daily cross-section regressions (1.31) using daily excess returns
and daily factor loadings filtered from the realized factor model. The monthly premia is estimated with an
assumption that the risk premia λ0,t and λ1,t are locally constant within a month. Therefore, we use monthly
excess returns and monthly averaged model-implied factor loadings3 to estimate (1.31) on a monthly basis.
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Figure A.7.4: Daily and monthly risk premia estimates (in %) based on the cross-section of 824 stocks and
factor loadings filtered from the realized factor model (January, 2005 - December, 2013). For the monthly
premia estimates (right column), we plot 95% confidence intervals obtained with robust regression standard
errors.

Both the daily and the monthly premia estimates are noisy and not persistent when we obtain them from
a sequence of cross-section regressions. This is not surprising because of many adverse factors that are es-
pecially pronounced at high frequencies and potentially distort the estimates. These factors include a strong
autocorrelaton in the factor loading measurement errors, a large extent of idiosyncratic variation in individual
asset returns, the presence of outliers, the error-in-variable attenuation due to the imperfect or not perfectly
consistent measurement of factor loadings, etc. Thus, the true unobservable risk premia (as well as the implied
pricing kernel) might have more regular and predictable dynamics. This motivates the development of a more
elaborate econometric framework for an extraction of the latent dynamic risk premia.

3We ignore the compounding effect that causes a slight inconsistency between the averaged daily betas and monthly returns.
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Chapter 2

A Realized Dynamic Nelson-Siegel
Model with an Application to Crude
Oil Futures Prices

Joint with Bo Laursen

2.1 Introduction

Throughout the last decade commodities have become a popular asset class among investors. The commodity
markets have experienced a rapid growth in both trading activity and volume due to large inflows of invest-
ment capital. Such financialization has directly affected commodity price dynamics and volatility1 and, as a
consequence, has emphasized the role of interactions between commodity prices and macroeconomic variables.2

Furthermore, the financial crisis spurred investors interest in commodities since they provide a natural alterna-
tive for financial securities.3 Analyses of commodity prices have, therefore, become of increasingly important
both from an academic perspective and for practitioners.

The predominant amount of literature related to modeling and forecasting commodity prices focuses on
point forecasts, which are informative only about the central tendency of predictions. In contrast to that,
density forecasts provide rich information about uncertainty around the central tendency and allow to invoke
many additional useful statistics such as interval predictions, upside and downside risk assessments, etc. This
appealing feature recently caused a burst of interest in density forecasting of economic and financial variables
among researchers and policymakers (see e.g. Hall and Mitchell (2007), Clark (2011)). The density dynamics
is of special interest when dealing with commodity markets. The poor point predictability of commodity
spot and futures prices enhances the importance of having reliable density forecasts. To accurately evaluate
uncertainty associated with point forecasts is of great practical value for risk management purposes and might
also be useful for central bankers who are interested in relations between the dynamics of commodity prices and
macroeconomic variables.

In this paper, we analyze the role of time-varying volatility in modeling commodity futures prices from the
standpoint of forecasting. For this purpose we develop a class of models that allow us to capture the futures

1Empirical evidence on the impact of the commodity market financialization on the prices is given in Buyuksahin and Robe
(2014), among others. An analysis of such impact from the theoretical perspective is suggested in Basak and Pavlova (2015) (see
also references therein).

2The links between commodity prices and a real economic activity are discussed in Kilian (2008), Kilian (2009), Collier and
Goderis (2012) as well as in many other papers.

3An attractive diversification potential of commodities was pointed out in Gorton and Rouwenhorst (2006), for example. How-
ever, recent empirical studies provide a cautious assessment of such diversification and hedging abilities identifying an increasing
integration between commodity and equity markets around the financial crisis episode (see Ravazzolo and Lombardi (2012), Hansen
et al. (2014a), Bhardwaj et al. (2015), etc.).
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price dynamics for the full spectrum of maturities. These models perform well both in and out of sample and
simultaneously account for the time-varying volatility. The latter is the key element in our framework that
allows capturing changes in the second moment of distribution dynamics. We examine to what extent time-
varying volatility is able to improve the density predictability and whether we gain from the use of realized
measures of volatility.

Commodities are by nature very different from financial securities. The vast majority of trading in commodi-
ties happens through exchange traded futures contracts. Analyzing commodity prices therefore often involve
modeling the whole term structure of futures prices. A standard approach for modeling the term structure is
to specify a dynamic model for the underlying spot price4 and derive the futures price based on no arbitrage
arguments (see Brennan and Schwartz (1985), Schwartz (1997), Geman (2005), etc.). In this paper, we make
use of another approach. Instead of building a model based on the spot price dynamics, we explicitly assume a
functional form for the term structure curve.

We apply the dynamic Nelson-Siegel (DNS henceforth) factor approach of Diebold and Li (2006). The
approach is based on a dynamic version of the classical Nelson-Siegel interest rate model, which is specifically
suited for forecasting yield curves. The data on commodity futures share many similarities with interest rate
data. Hence, the DNS framework can be directly applied to commodity markets. In this case, the Nelson-Siegel
approach is based on the assumption that the futures prices can be described by three unobserved factors
interpreted as the level, slope, and curvature of the futures curve. The factors are assumed to follow particular
dynamics that allow forecasting the whole term structure of futures prices.

The futures returns of the majority of commodities show a clear sign of time-varying volatility. The tur-
bulence of energy prices around the financial crisis and the recent oil price downfall provide fresh examples of
periods with excess volatility. The volatility dynamics of many commodity prices also tend to cluster, that is
demonstrating a cyclical behavior where the moderately volatile time intervals alternate with the periods of
high price variation.

We introduce time-variation directly into the conditional variance of the three dynamic factors. Therefore,
both the conditional mean vector and the conditional covariance matrix of the futures term structure possess
factor dynamics determined by the time-varying mean and volatility components of the Nelson-Siegel factors
respectively. This factor approach effectively reduces the dimensionality of the problem and allows to parsi-
moniously model the joint density dynamics of highly multivariate futures prices. Moreover, such parsimonity
likely benefits the forecasting performance of the model. Compared with the constant volatility frameworks,
time-varying aspects allow to assess more accurately an increased degree of the forecast uncertainty throughout
the periods of price turbulence and not to overestimate such uncertainty during the calm periods. We note that
an additional challenge comes from the fact that we model the volatility of unobserved variables (Nelson-Siegel
factors) opposed to the more standard frameworks (e.g., VAR models with time-varying volatility) where only
the volatility is unobserved.

Furthermore, we introduce realized measures of volatility into the model. While doing this we closely follow
the Realized GARCH framework of Hansen et al. (2012). Namely, we not only insert the realized measures
directly into the conditional dynamics of the volatility components, but also “close” our model by adding
measurement equations for the realized measures. The use of precise volatility information extracted from high
frequency data often provides a better signal about the current level of volatility than what could otherwise
be extracted from the lower frequency data. Hence, models that exploit realized measures should be better
at “catching up” with the hidden volatility dynamics and therefore more suited to periods where the volatility
changes rapidly. We expect these aspects to improve the density forecasting properties of the model.

We apply our modeling framework to the futures prices of the most traded commodity from the energy
sector - WTI light sweet crude oil. We demonstrate that ime-varying volatility significantly improves density
forecasting of the oil futures prices. On top of that, the use of realized volatility measures provides moderate in

4In addition, modeling commodity prices potentially involves specifying a certain stochastic variable, which reflects benefits/costs
to the holder coming from the possession of a commodity. For example, the net convenience yield is a usual interpretation of such
variable.
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magnitude, but systematic improvements in the density prediction. We also find that including several dynamic
components to control the conditional variance of the DNS factors is preferable to using just a single factor.

The rest of the paper is organized as follows. In the remaining part of this section we provide a brief review
of the related literature. In Section 2 we introduce our main modeling framework. In Section 3 we describe the
futures data used in the empirical analysis. We discuss the choice and construction of realized volatility measures
from the high frequency intra-daily price observations in Section 4. We outline the model evaluation strategy in
Section 5 and Section 6 provides the corresponding results. Section 7 concludes and all supplementary materials
are found in the Appendices.

2.1.1 Related Literature

Our paper refers to several strands of the literature. First of all, it relates to the area of modeling and forecasting
term structure curves with dynamic factor models. Pioneered by Diebold and Li (2006) and Diebold et al. (2006)
DNS models have become a popular framework for modeling and forecasting term structures of interest rates.
The original models primarily focused on point forecasting and assumed a constant conditional variance for the
term structure curve.

Recently, several versions of the DNS model with time-varying volatility have been proposed in the literature.
Koopman et al. (2010) added a time-varying volatility component to the idiosyncratic conditional variances of
the term structure. Alternatively, Bianchi et al. (2009), Hautsch and Ou (2012), Shin and Zhong (2015)
introduced stochastic volatility directly into the dynamics of the common Nelson-Siegel factors. Applied to the
interest rate yield dynamics, these models confirmed the usefulness of a time-varying volatility for in-sample
fit and revealed some gains for point and density predictability. In our paper, we suggest a modification of the
DNS modeling framework, which introduces an observation driven5 conditional volatility into the Nelson-Siegel
factors and exploits intra-daily realized volatility measures.

The DNS model has previously been applied to commodity markets. Karstanje et al. (2015) examine
comovements in different commodities by assuming that the factors of each commodity can be decomposed
into a market, sector, and idiosyncratic components. Hansen and Lunde (2013) analyze futures prices on oil
by modeling the factors using a GARCH model with Normal Inverse Gaussian innovations within a copula
framework. The method provides a flexible model suitable for matching heavy tails in the conditional density of
the commodity prices. Although we rely on a conditionally Gaussian density, we note that by simply allowing
the volatility of the factor innovations to be time-varying the model may also replicate some of the heavy-tailed
aspects of futures returns. The procedure in Hansen and Lunde (2013) demands extracting the latent factors in
a first step and subsequently treating them as if they were observable. This method becomes problematic when
the cross-sectional dimension of the futures data is sparse. In our approach the factors are extracted directly
using the Kalman filter. Thus, while filtering the latent factors, we effectively exploit both cross-sectional and
time-series dimensions of the data.

Secondly, we add to the spacious and still growing area of volatility models that exploit realized measures as
an extra source of information about the latent volatility level. The idea originates from Andersen and Bollerslev
(1998b) where the realized variance based on intra-daily asset returns was used as an ex-post return variance
proxy to assess the performance of the ARCH-type dynamic models. Shortly thereafter, realized variance
measures based on high frequency data were directly introduced into the dynamic volatility specifications in
(G)ARCH models (Engle (2002)) and stochastic volatility models (Barndorff-Nielsen and Shephard (2002b)).
The more accurate estimation and the forecasting gains associated with the inclusion of realized measures into
the modeling frameworks inspired a rapidly growing research activity in this area.6

5According to the classification in Cox (1981) (see also a related discussion in Koopman et al. (2015)), an observation driven
specification of a time-varying parameter implies that its current realization is a deterministic function of its lagged realizations and
lagged observable variables (the most notable examples include (G)ARCH, ACD and Dynamic Conditional Score (DCS) models).
In contrast, a parameter driven specification suggests that a time-varying parameter is driven by its own stochastic innovations (as
in unobserved component models, stochastic volatility models, etc.).

6Some selected examples related to asset return modeling include observation driven MEM of Engle and Gallo (2006), HEAVY
model of Shephard and Sheppard (2010) as well as parameter driven (stochastic volatility) models of Takahashi et al. (2009),
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The way of volatility modeling suggested in this paper is closely related to the Realized GARCH model of
Hansen et al. (2012). We also incorporate realized measures into the GARCH dynamics of the latent conditional
volatility and use measurement equations to directly establish a link between realized measures and the volatility
process. Loosely speaking, our framework can be considered as a multivariate version of the Realized GARCH
where the state-space DNS factor model plays a role of the return equation linking the dynamic volatility com-
ponents with the conditional distribution of the low frequency price vector. Naturally, the presented framework
can be easily extended for the case of a more general dynamic factor model in a place of the return equation.7

A closely related paper from a methodological perspective is Shin and Zhong (2015). They incorporated
realized measures into the DNS framework with stochastic volatility and documented the corresponding gains for
bond yield density prediction. Similarly to their framework, we introduce a time-varying conditional volatility
into the Nelson-Siegel factor dynamics and link it with realized measures of volatility obtained from observations
of a higher frequency. Our modeling strategy, however, is different in several aspects. Opposed to the prevailing
practice in the literature, we model the conditional volatility dynamics not as a stochastic volatility process,
but in an observation driven manner. The stochastic volatility models often lead to non-linear non-Gaussian
state space models and thereby complicate the estimation dramatically. In contrast, our observation driven
specification can be estimated straightforwardly by maximum likelihood via the Kalman filter. Moreover, we
suggest the use of direct realized volatility measures for the latent Nelson-Siegel factor innovations to avoid
imposing structural non-linear relations between the vector of term structure realized volatility measures and
the three volatility components related to the Nelson-Siegel factors, as in Shin and Zhong (2015).

Finally, we contribute to the empirical literature on the forecasting of commodity futures prices. In doing
so, we apply our modeling framework to the prices of futures contracts and evaluate how well the model is able
to predict the conditional density for the whole range of maturities. So far, the literature related to density
forecasting of commodities is scarce and the corresponding findings are not very conclusive. Using the DNS
framework Hansen and Lunde (2013) found some improvements from the time-varying volatility for the point
forecasts of crude oil futures prices and for the corresponding value-at-risk forecasts. Lunde and Olesen (2014)
used the Realized GARCH framework and documented only slight gains in the forecasting of return densities
of univariate electricity forwards from the use of realized volatility measures. Despite that our framework
comprises certain elements from these two settings, it differs from both. On one hand, we complement to
Hansen and Lunde (2013) by focusing on the implications of time-varying volatility on the density prediction
and by integrating realized volatility measures into the framework. On the other hand, although we also
exploit realized measures and invoke Realized GARCH dynamics in our study, we model the joint multivariate
conditional density dynamics of the whole term structure and not only the univariate density of the shortest
contract as in Lunde and Olesen (2014).

2.2 Modeling Strategy

2.2.1 Nelson-Siegel Framework

We model the term structure of futures contracts within a dynamic Nelson-Siegel framework. In their original
paper Nelson and Siegel (1987) suggested a parsimonious and flexible three-component polynomial approxima-
tion for the term structure of Treasury bond yield curves. The choice of polynomial functions was associated
with the solution to a second-order differential equation and provided an ability to fit a range of shapes typically
revealed by yield curves including monotonic, hump-shaped and inverted hump-shaped patterns.

Subsequently, Diebold and Li (2006) interpreted the Nelson-Siegel framework as a factor model where the
factor loadings are defined by the Nelson-Siegel polynomials and are treated as latent dynamic factors. Such
extension made it possible to filter the dynamically evolving latent Nelson-Siegel factors and to produce out-
of-sample forecasts of the entire yield curve. The class of dynamic Nelson-Siegel factor models has been then
Koopman and Scharth (2012), etc.

7From this perspective, our model is a hybrid of the Realized GARCH of Hansen et al. (2012) and the framework of Harvey
et al. (1992) (or the Factor GARCH of Engle et al. (1990) where the common factors are latent and have to be extracted).
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successfully applied to modeling and forecasting different types of assets and financial instruments with a term
structure embedded.

We denote the logarithmic price at time period t of a contract with τ periods until expiration by yt(τ).
Assume that at time t there are nt types of contracts in the market that differ in their times until expiration:
τt,1 < τt,2 < ... < τt,nt . Note that nt likely changes with t since the number of contracts available for trade is
varying from day to day. We also introduce the nt × 1 vector yt(τt), which collects the futures prices for all nt
contracts traded at time t, yt(τt) = (yt(τt,1), yt(τt,2), ..., yt(τt,nt))′. In accordance with the dynamic Nelson-Siegel
framework, a scalar log-price component yt(τ) for some given τ obtains the following factor representation8

yt(τ) = fl,t +
(

1− e−λτ

λτ

)
fs,t +

(
1− e−λτ

λτ
− e−λτ

)
fc,t (2.1)

where fl,t, fs,t and fc,t are latent dynamic factors and λ > 0 is a parameter of the Nelson-Siegel factor loadings.9

The model in (2.1) links futures prices with the maturities by means of the three common factors and the
associated factor loadings. The loadings to the first factor fl,t are constant across the whole range of maturities
and a change in fl,t translates to the same change for all prices in yt. Factor fl,t is therefore usually interpreted
as a level of the term structure curve. The second factor, fs,t, has loadings which are monotonically decreasing
as time to maturity τ grows, so it is commonly interpreted as a slope of the term structure. Parameter λ
regulates the steepness of this slope. The higher λ is, the faster decay is exhibited by the loading function. The
loadings to the factor fc,t also depend on τ and λ. They converge to 0 for τ → 0 and τ → ∞ and reach a
maximum at some intermediate value of τ . Parameter λ governs the location of the extremum. When λ gets
larger, the peak of the loading function shifts towards lower values of τ . This hump-shaped loading function
associated with fc,t leads to an interpretation of this factor as the curvature of the term structure. Whereas a
change in the level factor fl,t affects all the contracts in yt uniformly, an increase in the slope factor fs,t imposes
an effect mainly on short-term contract prices and an increase in the curvature factor fc,t increases prices for
mid-term contacts.

The dynamic Nelson-Siegel framework treats factors as time-varying processes, which explain the variation
in the term structure. Most of the related literature, however, is focused exclusively on the dynamics of the
conditional mean of the factor process. As a consequence, an associated analysis is usually limited to modeling
a dynamic location of the term structure variable and its point forecasting, so the uncertainty around the
extracted and predicted term structure curves is left uncovered. This paper shifts the focus to the dynamic
conditional variance of the factors. Such aspect naturally allows to model and forecast the conditional density
dynamics of the term structure curve, which is implied by the conditional density dynamics of Nelson-Siegel
factors.

2.2.2 Dynamic Nelson-Siegel Model with Time-varying Volatility and Realized
Measures

2.2.2.1 Dynamics of Conditional Mean

Following Diebold et al. (2006) we cast the dynamic Nelson-Siegel model from (2.1) in a state-space represen-
tation.10 The observation equation in a matrix form is

8In equation (2.1) we use a slightly reparametrized version of the original Nelson-Siegel curve, as it is suggested in Diebold and
Li (2006).

9We note that parameter λ can be considered as a time dependent parameter, λt. In most of related studies, however, λ is
treated as a constant parameter. Although being convenient for estimation, such assumption is quite restrictive, especially if the
time span of the analyzed period is sufficiently long. There are several papers where time-varying λt was examined in the context of
term structure modeling of interest rates (see Creal et al. (2008) (section 4.1.3), Koopman et al. (2010)). Nevertheless these studies
do not provide an unambiguous answer on whether the gains from time-varying λt are significant for the model fit and forecasting.
Due to the different focus of the present paper, we will treat λ as a constant parameter as it is common in the literature on term
structure modeling.

10State-space representation of a dynamic Nelson-Siegel model is closely related to the traditional factor model representation
(see Stock and Watson (2011) for a related survey). According to the factor model interpretation, as it is conventional in the
literature, term Λtft from (2.2) is called a common component and εt is an idiosyncratic component. A part of variation in yt
explained by the common component is due to the latent factors ft which are common for all variables in yt. The idiosyncratic
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yt = Λtft + εt (2.2)

where ft = (fl,t, fs,t, fc,t)′ is a 3× 1 vector of dynamic latent factors, εt = (εt,1, εt,2, ..., εt,nt)′ is a nt × 1 vector
of idiosyncratic components, and Λt = Λt(λ; τt,1, τt,2, ..., τt,nt) is nt × 3 matrix of factor loadings

Λt =


1 1−e−λτt,1

λτt,1
1−e−λτt,1
λτt,1

− e−λτt,1

1 1−e−λτt,2
λτt,2

1−e−λτt,2
λτt,2

− e−λτt,2

: : :
1 1−e−λτt,nt

λτt,nt

1−e−λτt,nt
λτt,nt

− e−λτt,nt

 (2.3)

The state equation describes the dynamics of latent factors. We suggest a simple random walk specification11

ft = ft−1 + ηt (2.4)

where ηt is a 3× 1 shock to the state vector ft orthogonal to εt. We select a random walk for several reasons.
At first, it is an appealing choice due to its parsimony and is a pretty suitable assumption in our context,
since we mainly focus on the time-varying volatility of the futures term structure and not on the dynamics
of its conditional mean. Such simple specification not only facilitates the estimation process, but is also less
prone to overfitting that may have an adverse effect on the out-of-sample model performance. At second, the
Nelson-Siegel factors extracted from commodity futures prices on a daily basis are, in fact, close-to-unit-root
processes (see Hansen and Lunde (2013) for an empirical evidence).

We assume that the idiosyncratic component εt is an autoregressive process which reads

εt = βCtεt−1 + wt (2.5)

where Ct is a selection matrix of dimensions nt × nt−1 filled with zeros and ones. An entry (i, j) of matrix Ct
is equal to 1 if some contract that is traded at t − 1 (with maturity τt−1,j) is also traded at t (with maturity
τt,i which is equal to τt−1,j − 1). If otherwise, an entry (i, j) of matrix Ct is equal to 0. Parameter β ∈ (0, 1)
is a constant scalar that determines the persistence of the price misspecification generated by the model. We
then suppose that wt ∼ i.i.d.N(0,Σt), where Σt is a constant diagonal matrix with time-dependent dimensions
nt × nt. We use a simple parametrization Σt = σ2

wInt , where Int is the identity matrix of size nt.12

The conditional mean dynamics of the futures prices suggested in this subsection have an appealing and
intuitive interpretation. The common Nelson-Siegel term Λtft from (2.2), which is governed by the random
walk factors, can be treated as a persistent long-run dynamic component of the futures price vector yt. The
autoregressive idiosyncratic component εt, in turn, can be related to the transitory short-run fluctuations in
yt. As a result, our model implies that the futures prices are mean-reverting to its long-run (equilibrium)
dynamics.13

2.2.2.2 Dynamics of Conditional Variance

Time-varying volatility is a central element in our analysis. We introduce it directly into the dynamics of the
Nelson-Siegel factors

ηt
∣∣Ft−1 ∼ N(0,Ωt) (2.6)

component is a zero mean stationary process, which comprises variable specific variation of yt that is not explained by the common
factors and absorbs measurement errors.

11Note that a more general VARMA process (with proper identification restrictions) can be used to model transition dynamics
within a linear state-space framework. In particular, a popular choice is to assume a first-order autoregressive process as in Diebold
et al. (2006).

12We note that the time dependence in Λt, Ct, and Σt is related to the number of contracts nt traded at a given day t and their
maturities {τt,1, τt,2, ..., τt,nt}. Since this information is exogenous in our model, matrices Λt, Ct and Σt change with time in a
deterministic way.

13From this perspective our specification is conceptually similar to the modeling framework of Schwartz and Smith (2000).
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where Ωt is a 3 × 3 time-varying conditional covariance matrix of the factor increment ∆ft = ηt and Ft is a
filtration that contains all the relevant observable information up to day t inclusively. This way of modeling
imposes a factor structure on the conditional variance of the multivariate price process, yt

Var
(
yt
∣∣ft−1;Ft−1

)
= ΛtΩtΛ

′

t + Σt (2.7)

Thus, the large nt×nt conditional covariance matrix of the whole term structure of futures prices Var
(
yt
∣∣ft−1;Ft−1

)
is fully characterized by the deterministic matrices Λt and Σt as well as the small scale 3× 3 time-varying con-
ditional covariance matrix Ωt.

A similar approach was used in Bianchi et al. (2009) and Hautsch and Ou (2012) among others, where
stochastic volatility was introduced directly into the dynamics of the Nelson-Siegel factors. Koopman et al.
(2010) pointed out that this approach is somewhat restrictive since in this case the Nelson-Siegel loading matrix
Λt serves as a weighting matrix for both conditional mean and variance of elements in yt. As an alternative, they
suggested to endow a covariance matrix of idiosyncratic components Σt with a time-varying volatility factor, so
each element from yt has a time-varying volatility component.

We, nonetheless, maintain the assumption from (2.6) and incorporate time-varying conditional volatility in
the factor dynamics. In doing so, we are motivated by the argument that the total variation of the term structure
variable yt is mainly explained by the common factor dynamics ft and only to a little extent by the idiosyncratic
component εt. Therefore, uncertainty associated with the futures prices yt is largely incorporated in ft. As
a result, we may expect that time-varying volatility of the factors is more relevant for density modeling and
forecasting than time-varying volatility in the idiosyncratic term εt. Moreover, these two approaches have been
compared in Shin and Zhong (2015) in a similar study in the context of bond yield density prediction. Their
results confirm that whereas time-varying volatility in factor dynamics helps to sufficiently improve the model
performance, dynamic components in the variance of the idiosyncratic term do not seem to play a significant
role.

We use a constant conditional correlation (Bollerslev (1990)) structure to parametrize Ωt and treat the con-
ditional factor volatilities as time-varying processes. Thus, the conditional variance matrix can be decomposed
as follows

Ωt = HtRHt = Ht

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1

Ht (2.8)

where R is a constant correlation matrix and Ht is a diagonal matrix with conditional volatilities of the factor
increments ∆ft on the main diagonal. Therefore, the dynamics of Ωt is fully driven by the dynamics of the
3 × 3 diagonal matrix Ht. We will suggest two alternative dynamic specifications for Ht - with one and three
time-varying parameters.

One of the key features of our framework is that we use realized measures of variance based on intra-daily
high frequency data while formulating the dynamics for the time-varying parameters from Ωt. The use of
realized measures of volatility is commonly motivated by the precise information content of the high frequency
data (e.g., Dobrev and Szerszen (2010)). We, thus, expect that the realized signals of the futures price volatility
will help to formulate and extract the latent conditional variance dynamics more accurately and to improve the
predictive performance of the model.

We incorporate realized measures into the model along the lines of Realized GARCH of Hansen et al. (2012).
Thus, we formulate a transition (GARCH) equation that links the latent volatility with own lags and lagged
realized measures. The realized measures, in turn, are linked to the latent volatility through the specially for-
mulated measurement equation. The measurement equation provides a contemporaneous relationship between
the latent dynamic variable and its realized proxy allowing for a stochastic measurement error. The role of such
measurement equation, therefore, is to directly relate the latent volatility process to the corresponding measures
and, thus, to incorporate the precise information about the conditional factor variance Ωt into the model. Apart
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from that, this equation may account for a systematic measurement bias and can be accommodated with some
stylized features of financial data, such as the leverage effect.

Note that another possibility could be to specify the dynamics for all six distinct elements of the 3 × 3
matrix Ωt, thus reflecting a time variation in both conditional variances and correlations.14 However, an
approach with fully specified dynamics of Ωt is hardly implementable in our application due to the difficulties
with the extraction of a full realized matrix of Nelson-Siegel factor covariances at intra-daily frequency. We
describe these challenges in details in the section related to the construction of realized volatility measures.

2.2.2.3 One-component Specification for the Conditional Variance Matrix

We start with a simple parametrization of the conditional covariance matrix Ωt. We assume that the diagonal
volatility matrix Ht from (2.8) depends on a single time-varying parameter controlling the volatilities of all 3
factors

Ht =


√

exp(ht) 0 0
0

√
as + bs exp(ht) 0

0 0
√
ac + bc exp(ht)

 (2.9)

where as, bs, ac, bc are non-negative scaling coefficients and ht is a scalar time-varying parameter. Therefore, the
variances of all three Nelson-Siegel factors are linear functions of the single time-varying variance component
exp(ht). Note that for identification we directly set exp(ht) equal to the variance of the level factor. An
exponential transformation simplifies the formulation of the transition and measurement equations for ht since
for any real values of ht the positivity of the factor variances is preserved. Closely following the specification of
the Realized GARCH model we set up the transition (GARCH) equation as an autoregressive process15

ht = γ0 + γ1st−1 + γ2ht−1 (2.10)

where st is an appropriately chosen realized measure for ht. The measurement equation is formulated as

st = ξ + φht + δ(zt) + ut (2.11)

where ut ∼ N
(
0, σ2

u

)
is a stochastic measurement error, ξ and φ are constant parameters which determine the

systematic bias of the realized measure st, δ(·) is the so-called leverage function that introduces a dependence
between variance and returns of futures prices, zt is a suitable Ft-measurable variable that reflects the price
movement occurred at day t. We discuss the choice of zt below.

An empirical usefulness of the leverage component introduced in such way was confirmed in Hansen et al.
(2012) and Hansen and Huang (2016) in the context of modeling the conditional variance dynamics of asset
returns. A standardized asset return plays the role of variable zt there, so the measurement equation explicitly
establishes the link between the conditional variance and price shocks. The specification for the leverage
component δ(·) suggested in Hansen et al. (2012) is the following polynomial function

δ(zt) = δ1zt + δ2(z2
t − 1) (2.12)

where δ1 and δ2 are constant parameters. Such functional form is convenient for several reasons. As long as zt
is a standardized random shock, the leverage component δ(zt) has zero mean. It, therefore, does not induce an
additional bias for st in the measurement equation (2.11). Also, the quadratic specification in (2.12) allows to
capture asymmetry effects in the volatility responses to the price shocks.

14For example, a proper dynamics for all elements from Ωt (which preserves a positive definiteness of Ωt) can be formulated
along the lines of Chiriac and Voev (2011) or Golosnoy et al. (2012). In the former case, the vector of Cholesky elements of Ωt
is modeled and then these elements can be related to the corresponding realized measures. In the latter case, Ωt is treated as a
matrix process and the realized measures of Ωt are assumed to be distributed as a Wishart matrix random variable.

15In this paper, we consider only the parsimonious (1,1) specification for lags. The lag order can be extended if needed.
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The one-component specification of the conditional variance matrix Ωt given by (2.8) and (2.9) implies that

Var
(
yt|ft−1;Ft−1

)
= ΛtH(ht)RH(ht)Λ

′

t + Σt (2.13)

Particularly, it means that conditional variances of all futures contracts are driven by the single dynamic
volatility component ht. As a consequence, we may expect that the realized variances of the futures prices can
serve as good signals about the unobservable volatility state and, thus, can be related to ht. More specifically,
for some selected τ ∈ {τt,1, τt,2, ..., τt,nt}16

st ≡ logRV
(
∆yt(τ)

)
' logVar

(
yt(τ)|ft−1;Ft−1

)
(2.14)

For such choice of st we suggest the following choice of variable zt to establish a dependence between volatility
component ht and the futures price change

zt =
∆yt(τ)− E

(
∆yt(τ)|ft−1;Ft−1

)√
Var
(
∆yt(τ)|ft−1;Ft−1

) (2.15)

so zt is a conditionally standardized Ft-measurable Gaussian random variable, which represents a price shock
to the contract τ .

Summarizing, equations (2.9), (2.10), and (2.11), where st and zt are defined as in (2.14) and (2.15) respec-
tively, constitute the one-component dynamic specification for the conditional covariance matrix Ωt.

2.2.2.4 Three-component Specification for the Conditional Variance Matrix

We also suggest a richer dynamic parametrization for Ωt where three time-varying parameters are introduced.
We link these dynamic components with the three conditional variances of the level, slope and curvature. The
matrix Ht reads

Ht =


√

exp(hl,t) 0 0
0

√
exp(hs,t) 0

0 0
√

exp(hc,t)

 (2.16)

where hl,t, hs,t and hc,t are the three time-varying logarithmic conditional variances of the 3-variate shock ηt to
the dynamic factor process ft. We denote a 3×1 vector of dynamic volatility components as ht =

(
hl,t, hs,t, hc,t

)′
and note that exp(ht) = diag

(
Ωt
)
. Similar to the previous specification, we write the transition equation as

ht = Γ0 + Γ1st−1 + Γ2ht−1 (2.17)

where st =
(
sl,t, ss,t, sc,t

)′ is a 3 × 1 vector of the proper realized measures for ht and Γ0, Γ1, Γ2 are constant
parameter matrices of suitable dimensions. The measurement equation is defined as

st = ζ + Φht +D(zt) + ut (2.18)

where ut ∼ N
(
0,Σu

)
is a 3 × 1 vector of measurement errors, D(·) is a multivariate leverage function, zt is a

Ft-measurable 3 × 1 vector and ζ, Φ are constant matrices of proper dimensions. The leverage function in a
multivariate version has the following form

D(zt) = D1zt +D2(zt ◦ zt − ι3) (2.19)

where D1, D2 are 3× 3 parameter matrices and ι3 is the 3× 1 vector of ones.
16Note that several realized measures related to distinct contracts τ ∈ {τt,1, τt,2, ..., τt,nt} can be used to extract ht. In this case,

in analogy with Hansen and Huang (2016), several measurement equations (2.11) which correspond to different realized measures
st(τ) have to be formulated.
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We attempt to directly extract realized measures st of the latent factor variances from intra-daily data
by exploiting the recent advances in high frequency volatility estimation. The description of the estimation
procedure is referred to the next section. Thus, signals st in this case are the realized variance measures for
Nelson-Siegel factor increments ∆ft

si,t ≡ logRV
(
∆fi,t

)
' logVar

(
∆fi,t|ft−1;Ft−1

)
, i ∈ {l, s, c} (2.20)

We define the corresponding 3× 1 vector zt, which is required for the leverage function, as

zt = Var
(
E
(
ft|Ft

)
−E
(
ft−1|Ft−1

)
|Ft−1

)− 1
2
(
E
(
ft|Ft

)
−E
(
ft−1|Ft−1

))
(2.21)

so zt is a conditionally standard Normal random vector.
As a result, the three-component specification for the conditional covariance matrix Ωt is represented by

equations (2.16), (2.17) and (2.18) with st and zt specified in (2.20) and (2.21) respectively. In our empirical
analysis we stick to the parsimonious model parametrization. In particular, matrices Γ1, Γ2, Φ, D1, D2 from
(2.18)-(2.20) are assumed to be diagonal.

2.2.3 Estimation

Suppose that we observe futures prices yt and realized measures st within a sample period t = 1, ..., T . The joint
conditional density function of observable variables for some given trading day t can be factorized as follows

p(yt, st|Ft−1; θ) = p(yt|Ft−1; θ)p(st|yt,Ft−1; θ) (2.22)

where Ft = σ(yt, st, yt−1, st−1, ...) is a σ-field generated by all observables up to t and θ is a vector of model
parameters.

The first term in the decomposition, p(yt|Ft−1; θ), is the conditional density of observed futures prices. Equa-
tion (2.2) and the dynamic Nelson-Siegel specification imply that this conditional density is Gaussian and can be
evaluated by means of the Kalman filter17 given the sequence {Ωr, r ≤ t}. The time-varying covariance matrix
Ωt = Ω(ht) from the state equation (2.6) is a Ft−1-measurable variable as it follows from the assumptions of
GARCH dynamics for ht in (2.10) and (2.17). Therefore, for every t we have that p

(
yt|Ωt,Ft−1; θ

)
= p
(
yt|Ft−1; θ

)
and the Kalman filter can be applied to evaluate the density p(yt|Ft−1; θ).

The second term in the factorization (2.22), p(st|yt,Ft−1; θ), relates to the conditional density of the realized
measures st. From (2.11) and (2.18) it follows that such density is Gaussian. According to (2.15) and (2.21), the
leverage variable zt = zt(yt,Ft−1; θ) for all t is expressed through the variables from the Kalman forward recur-
sions applied to p(yt|Ft−1; θ), so the conditional densities for st satisfy p(st|yt, ht, zt,Ft−1; θ) = p(st|yt,Ft−1; θ).

Finally, the log-likelihood function of the model can be written as

log p(y, s|θ) =
T∑
t=1

log p
(
yt|Ft−1; θ

)
+

T∑
t=1

log p
(
st|yt,Ft−1; θ

)
(2.23)

The function in (2.23) is effectively a sum of conditional Gaussian log-densities. It can be maximized by means of
standard numerical optimization routines and the corresponding quasi-maximum likelihood (QML) parameter
estimates, θ̂, can be obtained. While estimating the model we rely on the QML argument in sense of White
(1982). In particular, in case of certain distribution misspecifications we refer to (2.23) as to the quasi-likelihood
function, so the corresponding QML estimator is supposed to retain its consistency.

17See comprehensive material on the state-space models and estimation in Harvey (1991), Durbin and Koopman (2012).
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2.2.4 Discussion

Conceptually our modeling framework consists of two blocks. The first block relates to the observed term
structure of futures prices. It is described by the dynamic Nelson-Siegel model with time-varying volatility
imposed on the factor dynamics. The Nelson-Siegel factors govern the dynamics of the futures price vector yt
and the time-varying volatility embedded in these factors allows to explicitly model the uncertainty associated
with yt. The second block is auxiliary to the dynamic Nelson-Siegel model and links the latent time-varying
factor volatility to the realized measures extracted from the high frequency data. This part of the model is
unusual in the literature on term structure modeling and we expect that it improves the identification and
forecasting the conditional volatility.

The time-varying volatility component ht is modeled as an observation driven process and fully determines
dynamics of the factor conditional variance matrix Ωt. Important to note that the process ht incorporates
information from both blocks of the framework, i.e. from both low and high frequency data. First, the daily
increments of the latent Nelson-Siegel factors ∆ft (which are extracted from the daily prices yt) can provide
(noisy) signals about the latent conditional variance of ft. Second, the realized measures st (based on intra-
daily price observations) directly contribute information about the latent factor variance and these signals are
supposed to be more precise.

2.3 Data Description

2.3.1 Transaction Data

The raw dataset is obtained from Tick Data Inc. It consists of transactions on light crude oil (CL) futures
traded on the Chicago Mercantile Exchange (CME). The data is analyzed using a period ranging from August
9, 2004 to January 16, 2015.

All futures trading are managed by the CME group and through their clearing house they act as a counterpart
to all transactions. The transactions are made through a fully electronic trading system that allows market
participants to trade around the clock Monday-Friday except for a 45 minutes trading break each day from
5:15p.m.-6.00p.m. EST. A special feature of these futures contracts is that the settlement at maturity is not by
cash but via physical delivery. However, the vast majority of contracts never go to delivery. Most are canceled
beforehand by taking the offsetting position. This allows for a huge amount of transactions to take place since
it is possible to be a market participant without taking part in the physical delivery of the commodity. The
availability of large amounts of transactions data facilitates computation of intra-daily measures, which form
the basis of our analysis on volatility of oil futures.

Table 2.1 presents statistics for the transaction data. Generally the number of transactions has been in-
creasing through most of the sample period. The average number of transactions per contract shows a similar
pattern suggesting that the increase in transactions is not solely due to the introduction of additional contracts.
The majority of the transactions are in futures with a short time to maturity while contracts with medium and
long time to maturity are less traded.

The raw data series are cleaned using the algorithm in Barndorff-Nielsen et al. (2009). Specifically we delete
the observation if the transaction price is more than five mean absolute deviations from a rolling centered
median of the 25 preceding and the 25 subsequent observations. On rare occasions observations may also be
reported with a time stamp that is not consistent with the corresponding trading day. These observations are
also deleted. In total we delete 732,881 out of 153,883,976 transactions corresponding to nearly 0.5% of the
initial sample.

2.3.2 Daily Data

The cleaned high-frequent transaction data is used to construct a dataset with daily observations. For all
available contracts the closing price, assumed to be the last transaction of the day, is used as the daily futures
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Table 2.1: Average number of transactions

Average number of transactions
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

Shortest 4,892 5,130 7,865 23,348 33,002 33,341 35,396 85,002 98,906 102,910 88,186 49,907
Medium 33 78 85 415 844 674 718 8,662 13,399 16,847 13,855 5,406
Longest 0 10 15 167 1,152 321 258 2,747 5,803 6,228 4,752 2,084
All 4,926 5,217 7,964 23,931 34,998 34,336 36,373 96,412 118,108 125,984 106,794 57,398

Average number of transactions per contract
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total

Shortest 699 735 1,148 3,343 4,700 4,741 5,048 12,046 13,951 14,586 12,494 7,080
Medium 10 15 23 80 153 112 125 884 1,322 1,666 1,373 560
Longest NaN 9 13 51 269 97 40 211 411 450 364 200
All 480 395 652 1,548 2,042 2,072 1,902 3,348 3,776 4,063 3,494 2,273
The first part of the table presents the average number of transactions per day for each year in the sample period (rounded
to nearest integer). Shortest refers to all futures contracts with time to maturity less than 149 business days. Medium
contracts have between 149 and 360 business days to maturity and Longest refers to all contracts with time to maturity
larger than 360. The second part shows the average number of transactions per contract per day (rounded to nearest
integer). The year 2014 includes the period January 1, 2015 to January 16, 2015.

price. This procedure results in a daily panel dataset consisting of 56,412 observations.
Table 2.2 presents some descriptive statistics for the constructed dataset. The futures prices are all reported

as per barrel of oil. The number of traded contracts pr. day generally increases throughout the sample period.
The dataset is therefore an unbalanced panel where the cross-sectional dimension varies with time. As evident
from the statistics on time to maturity, the increase in the cross-sectional dimension generally comes from the
introduction of new contracts with a very long time until expiration. The Vol. columns show that the volatility
of the futures returns is generally decreasing with time to maturity. This effect is known as the Samuelson effect
(Samuelson (1965)). The argument is that the arrival of news will have a direct impact on the shortest futures
while long-term contracts tend to remain unchanged since adjustment of fundamentals is likely to take place
before the contracts come to delivery at maturity.

Figure 2.1 presents the daily dataset visually. There are two types of plots. In both types each dot represents
an observation. The first plot shows the evolution of all the futures prices as a function of time. The next plot
shows the evolution of the corresponding time to maturity (measured in business days). The diagonal “lines”
in the maturity plot represent specific contracts and arise since the time to maturity decreases linearly with
time. The holes in the “lines” represent days where the contract is not traded and are more common for long
contracts.

Generally it seems there are a lot of observations in the short end, while observations in the very long end
are more scarce and generally not present before 2010. The long contracts are typically also issued with a longer
time span between them, reflected by the longer distance between the diagonal “lines” in the maturity plots.

We divided the dataset into three periods. The first 100 days represent an initialization period used to
initialize the Kalman filter (August 9, 2004 to December 30, 2004). The second period is the estimation period
(January 3, 2005 to December 31, 2013) and the third period is used for forecasting (January 2, 2014 to January
16, 2015). The three periods are separated by vertical dashed lines in figure 2.1.

Figure 2.2 gives an example of what typical term structures may look like. Each dot represents a futures price
observation and they are linearly interpolated for a better visualization. All the futures curves are normalized
by the price of the shortest futures. It is clear that the futures curves are able to take very different forms.
They can be both increasing (contango), decreasing (backwardation), hump-shaped, smooth, and irregular.
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Figure 2.1: The daily dataset. Daily futures prices and time to maturity as functions of time. Each dot represents
an observation. For illustration all observations are divided into three groups and colored with respect to time
to maturity. Each group consists of approximately one-third of the observations. The first group represents
observations with a maturity less than 149 business days and is presented in green while observations with a
maturity longer than 360 are colored in red. The second group consists of observations in between and is colored
in yellow.
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Table 2.2: Descriptive statistics for daily futures data

Shortest futures Median futures Longest futures

Period #Cont. τ Mean Min. Max. Vol. Mean Min. Max. Vol. Mean Min. Max. Vol.
2004 10 108 47.3 40.7 55.2 0.40 43.2 38.6 49.5 0.28 43.2 38.6 49.5 0.27
2005 13 141 56.7 42.2 69.9 0.32 57.5 40.8 69.4 0.24 56.0 39.1 68.2 0.23
2006 12 140 66.3 55.9 77.4 0.27 70.9 64.2 80.8 0.21 70.6 64.5 80.0 0.20
2007 15 168 72.3 50.4 98.3 0.29 72.7 56.1 91.4 0.20 71.4 58.4 88.5 0.18
2008 17 191 99.9 33.2 145.4 0.57 100.8 49.4 146.3 0.40 102.0 64.8 142.2 0.34
2009 16 177 61.9 34.4 81.3 0.51 70.2 48.0 86.0 0.32 77.1 54.3 92.4 0.26
2010 19 205 79.5 69.2 91.4 0.29 84.3 73.9 94.4 0.24 91.5 77.0 100.3 0.18
2011 26 288 95.1 76.4 113.7 0.34 97.7 79.0 114.1 0.28 97.2 87.3 107.1 0.21
2012 31 326 94.2 78.0 109.6 0.25 96.0 81.6 109.2 0.21 87.1 82.0 94.1 0.17
2013 31 325 98.0 86.4 110.2 0.18 93.1 85.5 97.4 0.13 81.5 77.0 86.4 0.11
2014 30 319 91.1 45.7 107.3 0.24 86.4 53.7 98.1 0.18 80.8 66.1 89.8 0.13
Total 19 233 80.4 33.2 145.4 0.35 81.6 38.6 146.3 0.25 80.2 38.6 142.2 0.23

The descriptive statistics are based on the daily data set with sample period August 9, 2004 to January 16, 2015. The
three time series Shortest futures, Median futures and Longest futures are constructed by each day taking the shortest
contract, the contract with time to maturity closest to 233 (the median number of business days to maturity in the
full sample) and the longest contract respectively. #Cont. refers to the median number of contracts available per day
during the given period. τ shows the median number of business days to maturity for all contracts available. Vol.
measures the annualized volatility of futures return. The returns are calculated by excluding periods where the shortest
contract moves into maturity, a new contract becomes the median contract or a new longest contract is issued.

2.4 Intra-daily Data and Realized Measures

In the preceding section we built a framework for the term structure modeling that introduces time-varying
conditional volatility in the dynamics of the Nelson-Siegel factors. The key element in our approach is the use
of realized volatility measures constructed with intra-daily futures prices to approximate the latent volatility
components in the factor dynamics. In this section, we briefly discuss the features of the high frequency futures
data and outline how we use it to retrieve appropriate realized measures of factor volatility.

2.4.1 Intra-daily Data and Practical Challenges

For most business days the futures contracts considered in this paper are traded 24 hours with a short break
between 5:15p.m. and 6:00p.m. EST. Thus, we conventionally associate the intra-daily trading period for
business day t with the period between 6:00p.m. of t − 1 and 5:15p.m. of t. Suppose that nt contracts with
times until maturity {τt,1, τt,2, ..., τt,nt} are traded at a given day t. We now assume that there exists nt-variate
process pt(v) =

(
p

(τt,1)
t (v), p(τt,2)

t (v), ..., p(τt,nt )
t (v)

)′, where v ∈ [0, 1] is an intra-daily time index and p
(τ)
t (v)

denotes an intra-daily efficient log-price process of the contract with time to maturity τ ∈ {τt,1, τt,2, ..., τt,nt}
(contract τ , henceforth). The daily closing price yt(τ) which we consider in our main model is, therefore,
associated with p(τ)

t (1).18

In practice, an efficient intra-daily price process is never observable. Instead, we observe pt(v) only at the
discrete moments of transactions and these observations are contaminated by microstructural noise. In addition
to the market microstructural effects,19 a multivariate nature of intra-daily futures data suggests several other
challenges. In particular, some of these challenges are illustrated in Figure 2.3, which provides examples of
typical transaction patterns for the crude oil futures:

• transactions are irregular

• on average, the number of transactions is lower for contracts with higher time to maturity
18Practically, however, we use p(τ)

t (νlast), where νlast is the time of the last observed transaction for the contract τ at day t.
19Market microstructural effects are inevitable attributes of financial data observed at high frequency. Among the sources of

the microstructural noise researchers emphasize a bid-ask spread, fixed minimal price increment (tick size), etc. Theoretical and
empirical implications of market microstructural effects on the observed price process and the analysis of the realized variance are
considered in Bandi and Russell (2008) and Hansen and Lunde (2006b).
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Figure 2.2: Different term structures of futures prices.

• transactions are asynchronous across contracts

Active trading mostly occurs within a relatively short intra-daily sub-period (the distributions of intra-daily
trading intensities for the futures contracts are given in Figure 2.4). As a consequence, transactions appear
very irregularly over the trading day. In particular, between-trade durations range from milliseconds to several
hours depending on the intra-daily period and the time to maturity of the contract.

Another implication of intra-daily futures data relates to the unbalancedness of observed trades across
contracts with distinct maturities. Short-maturity contracts are the most traded ones, whereas long-maturity
contracts are traded less frequently. This feature is especially pronounced in the first years of our sample. The
scarcity of transaction data for long-maturity contracts naturally complicates the extraction of realized volatility
signals related to the long end of the term structure.

Transactions on distinct contracts arrive non-synchronously. Partially the asynchronicity can be attributed
to the liquidity issues. Namely, we may expect that the fundamental news associated with the underlying com-
modity are getting incorporated into the futures prices not simultaneously, but with the lags for less liquid long
contracts. Another contribution to non-synchronous trading stems from the situations where some information
relevant only in the short run does not lead to the trading of long-maturity contracts and conversely. Such
situation is typical for multivariate high frequency asset prices and leads to the so-called Epps effect (see Epps
(1979)) in the context of covariance estimation.

Irregular, highly unbalanced and asynchronous transaction data substantially complicates the intra-daily
analysis of the multivariate factor structure in the futures contracts as well as the construction of the corre-
sponding realized measures of factor volatilities. Therefore, the expected degree of improvements in modeling
and forecasting the term structure density from the use of high frequency realized volatility measures should
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Figure 2.3: Examples of intra-daily transaction data for a 24-hour period which starts at 6p.m. the day before
the date specified in the header and lasts until 6p.m. of the specified date. Plots contain log futures prices
observed at the moments of transactions for 4 selected trading days from the analyzed sample. For expositional
convenience we plot the data for only 5 selected contracts with different times until expiration. Dashed vertical
lines correspond to the start of the trading break at 5:15p.m.
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Figure 2.4: Intra-daily distributions of transactions observed over the period 01/2005-12/2014. The left plot
corresponds to the futures contracts which expire no later than in 148 business days. The middle plot displays
contracts with maturities between 148 and 360 days. The right plot refers to the futures contracts with more
than 360 trading days until maturity. On the vertical axis there is a total number of observed transactions (in
millions) for the specified contracts from the sample period 01/2005-12/2014 computed over 30-minute rolling
intra-daily intervals. Dashed vertical lines correspond to the start of the trading break at 5:15p.m.
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be assessed cautiously. In the following subsections we discuss our approach to the construction of realized
measures related to the conditional variance of the Nelson-Siegel factors.

2.4.2 Volatility Measures from Intra-daily Data

The aim of our intra-daily developments is to obtain realized measures st for the time-varying component ht
from the conditional factor variance matrix Var(∆ft|ft−1;Ft−1) = Ωt. As it is outlined in the model description,
we consider two specifications of Ωt based on the one- and three-component dynamic parametrizations. We
now suggest and discuss suitable realized measures for each specification. An empirical justification of using
few dynamic volatility components for modeling Ωt is given in Appendix B.1.

2.4.2.1 Realized Measures for the One-component Specification

According to (2.14) the realized variance of a close-to-close futures return on some contract τ ∈ {τt,1, τt,2, ..., τt,nt}
can serve as a signal of ht, since all contracts yt(τt) contain information about the common latent volatility
component ht. The unbalancedness of trading intensity across contracts with different times until expiration
suggests that the front contract with the shortest time to maturity is the best candidate for measuring ht. Such
contract is systematically traded more frequently than others and, what is more important, the corresponding
transactions appear in the course of the whole trading day. Therefore, the realized variance computed on the
basis of intra-daily transactions on the shortest contract yt(τt,1) is expected to be a more efficient measure of ht
rather than a realized variance computed using some other contract with longer time to maturity. The realized
variance of the shortest contract, thus, can be treated as a state variable which controls all three Nelson-Siegel
factor volatilities.

To minimize the influence of microstructural noise effects we suggest to use a sparse sub-sampled 5-minute
realized variance estimator.20 For this purpose we partition a trading period v ∈ [0, 1] with a 1-minute grid.
We denote the set of equidistant gridpoint times as {vi}mi=0, so 0 = v0 < v1 < ... < vm = 1. Although futures
contracts with the shortest maturity τt,1 are liquid enough and traded frequently, they do not necessarily occur
exactly at the moments vi for all i. Thus, we refer to the previous tick interpolating scheme. In particular,
let p̃(vi) denote the transaction price in case we observe it at vi. If we do not observe a transaction at that
moment, then p̃(vi) stands for the price observed for the nearest transaction prior to vi.21 Then, the sub-sampled
5-minute realized variance estimator based on intra-daily prices for contract τ reads

RV sst (τ) = 1
5

5∑
j=1

m

m− 4

m−5+j∑
i=j

(
p̃

(τ)
t (v5i)− p̃(τ)

t (v5(i−1))
)2 (2.24)

and we define a realized measure for the one-component dynamic variance specification as st ≡ logRV sst (τt,1).
The sub-sampled estimator in (2.24) is essentially an average of realized variances computed for 5 sparse

5-minute grids shifted by a 1-minute interval with respect to each other. Such sub-sampling of the realized
variance was proposed in Zhang et al. (2005) and later considered in Andersen et al. (2011b), Liu et al. (2015),
among others22. The sub-sampling is aimed to improve efficiency of sparsely sampled estimators since more
intra-daily information is used in this case.

The estimator in (2.24) is consistent for the quadratic variation of an asset return for the open-to-close
trading period. Note, that despite st is linked in (2.11) with the close-to-close return variance, we do not
account explicitly for the “overnight” (and “overweekend”) variation while specifying st. Firstly, the length of
the overnight period for the considered commodities is very short (45 minutes). Secondly, the specification of

20We prefer model-free realized variance estimator since the almost 24-hours trading span provides sufficiently many sparsely
sampled intra-daily returns. Also, Liu et al. (2015) demonstrated in an extensive empirical study that a sparsely sampled realized
variance estimator exhibits an accuracy which is not significantly outperformed by any of the competing realized estimators. As
an alternative, noise robust estimators of the quadratic variation based on more frequently sampled intra-daily returns can be
exploited, such as in Barndorff-Nielsen et al. (2008), Jacod et al. (2009).

21Previous tick interpolation was introduced in Wasserfallen and Zimmermann (1985). See also a related discussion in Hansen
and Lunde (2006b).

22Note that estimator (2.24) can also be considered as a case of the realized kernel estimator where Bartlett kernel is used.
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the measurement equation (2.11) is able to capture a systematic bias in st stemming from the lack of overnight
variation embedded in the realized measures.23

2.4.2.2 Realized Measures for the Three-component Specification

When we formulate the realized measure for the one-component specification of Ωt, we discard much of the
available intra-daily data. In particular, we use the high frequency price observations of the contract with the
shortest maturity, whereas the intra-daily data from all of the traded contracts is available.

According to the three-component dynamic specification of Ωt, the time-varying elements are the conditional
volatilities of the Nelson-Siegel factors, i.e. the components of ht of the diagonal matrix Ht from (2.16). We now
suggest a way to retrieve a proxy for ht from the intra-daily data on multiple traded contracts with different
expiration times τ . Namely, we directly assess factor volatilities by evaluating parametrically the dynamic
Nelson-Siegel models intra-daily.

Estimation of the multivariate state-space models with high frequency data closely relates to the recent
developments of Shephard and Xiu (2012) and Corsi et al. (2015) in the parametric QML estimation of realized
covariances in equity prices. In particular, these methods consider an intra-daily multivariate price process as
a local level model and provide consistent QML estimates of the covariance matrix with irregular asynchronous
price observations under weak assumptions on the underlying price process. In our case we treat an intra-daily
multivariate price process pt(v) as a factor (dynamic Nelson-Siegel) model. As a consequence, our intra-daily
state-space model has an additional challenge of latent factor identification. A typical pattern of the observed
high frequency futures prices provides a very harsh field for an intra-daily implementation of such state-space
methods. Thus, we reorganize slightly the structure of high frequency observations and impose several simplified
assumptions on the intra-daily Nelson-Siegel framework.

First of all, similar to case with the one-component measure, we partition a trading day with a 5-minute grid
and define the vector of observed prices as p̃t(vi) =

(
p̃

(τt,1)
t (vi), p̃

(τt,2)
t (vi), ..., p̃

(τt,nt )
t (vi)

)′ for i = 1, ...,m using
the previous tick interpolation scheme.24 As a result, we obtain a panel of observed prices {p̃t(vi)}mi=0. The
fact that we use a sparse 5-minute grid is helpful for mitigating microstructural noise effects and the improved
balancedness of an intra-daily observations panel enhances a stability of the model identification and estimation.

We then assume that the intra-daily price dynamics of p̃t(vi) is compatible with the constant volatility
dynamic Nelson-Siegel model. Thus, the intra-daily dynamic Nelson-Siegel model for a trading day t is given
by

p̃t(vi) = Λtgt(vi) + εt(vi) εt(vi) ∼ iidN
(
0, σ2

ε Int
)

(2.25)

gt(vi) = gt(vi−1) + ωt(vi) ωt(vi) ∼ iidN
(

0, 1
m
HtRHt

)
(2.26)

where gt(vi) is a 3 × 1 vector of the latent intra-daily Nelson-Siegel factors. For any given trading day t

the parameters are fixed and do not depend on the intra-daily index i. Note, that in the intra-daily model
specification we do not endow the idiosyncratic term εt(vi) with the autocorrelation effect as we do it in the
daily model. The model in (2.25)-(2.26) is a discrete time linear Gaussian state-space model that can be
estimated by means of the standard Kalman filter. We also note, that the discrete state-space specification
(2.25)-(2.26) complies with the Brownian semimartingale assumption for the latent efficient futures prices pt(v)
which is a standard assumption in the high frequency econometrics literature.

We facilitate the estimation of (2.25)-(2.26) by presetting parameter values for λ, σ2
ε and R with the cor-

responding estimates from the constant volatility dynamic Nelson-Siegel model evaluated at a daily frequency.
Therefore, only the intra-daily factor covariance matrix Ht = H(ht) is left for estimation in (2.25)-(2.26). We

23Alternatively, it is possible to combine the open-to-close realized variance and the overnight squared return to obtain a consistent
measure for a close-to-close quadratic variation, as in Hansen and Lunde (2005). This approach was used in Christoffersen et al.
(2014) in a similar context to measure the variation in commodity futures prices.

24In addition, if some contract τ that is traded at t was traded at t− 1 with time to maturity τ + 1, we use the close price of the
contract τ + 1 at t− 1 in the interpolation scheme when we obtain p̃(τ)

t (vi) for day t.
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then define the required realized measure as st ≡ ĥt. Vector ĥt here is the corresponding factor variance estimate
obtained from the intra-daily dynamic Nelson-Siegel models (2.25)-(2.26), which are evaluated using the high
frequency price observations {p̃t(vi)}mi=0 of contracts traded at day t.

Of course, the realized measure st is hardly a consistent measure of the conditional variances ht of the latent
Nelson-Siegel factors from the daily model at least due to the difference in specifications between the daily and
the simplified intra-daily models (2.25)-(2.26). What is important, we suppose that these measures correlate
well with the unobservable factor volatility processes. Thus, they still can be considered as valid and the possible
systematic bias can be captured by the parameters of the measurement equations (2.18) in the main model.
Informally, we will refer to these measures of factor variance as realized measures.

2.4.3 Remarks

Table (2.3) contains descriptive statistics of the estimated realized measures for the one- and three-component
model specifications. Figure (2.5) provides the corresponding time series plots.

ACF

Realized measure Mean Std. Skew. Kurt. Min Med Max ρ(1) ρ(5) ρ(22)

Shortest contract 0.306 0.163 2.823 16.006 0.048 0.275 2.046 0.857 0.803 0.713
Level factor 0.113 0.078 1.590 6.609 0.007 0.095 0.553 0.556 0.437 0.379
Slope factor 0.184 0.102 1.848 7.858 0.021 0.163 0.784 0.646 0.529 0.444
Curvature factor 0.371 0.272 1.890 8.199 0.031 0.308 2.004 0.631 0.553 0.494

Table 2.3: Descriptive statistics of the realized measures of volatility (annualized) for the sample period that
starts in January, 2005 and lasts until December, 2014.

The realized measures for the one-component specification based on the non-parametric realized variance
estimator demonstrate relatively smooth and highly persistent dynamics. On contrary, parametric volatility
measures for the three-component specification reveal noisy and weakly persistent dynamics, which suggests
that these measures are likely less accurate.

There are several potential reasons of why the three-component measures are relatively noisy. First of all,
since high frequency price observations are unbalanced and we usually do not observe a sufficient number of
transactions on long-term contracts, the factor identification in the intra-daily Nelson-Siegel models is weak and
unstable.25 We also have to recognize that the data interpolation may lead to the distortions in the intra-daily
estimation of ĥt. We argue, nonetheless, that an adverse impact from these causes is expected to be limited
since we preset factor correlation matrix R and only estimate volatilities ht of the latent factors.

This issue points out an interesting trade-off between the use of the one- and three-component dynamic
specifications of the time-varying covariance matrix Ωt. On one hand, the three-component dynamics provides
more flexibility to the term structure volatility, on the other hand the one-component specification suggests a
better precision of the realized measures. Consequently, this trade-off makes it ex-ante unclear which type of
approach is able to better model and predict the density of the futures prices and we relegate this question to
our empirical evaluation.

25In practical implementation we use the following method to improve the factor identification. When estimating an intra-daily
Nelson-Siegel model for a trading day t we supply it with the interpolated 5-minute prices from 2 consecutive trading days t − 1
and t, {p̃t−1(vi); p̃(vi)}mi=0. Although only the data related to day t is used for likelihood maximization, additional data from the
previous trading day significantly improves the ability of the model to identify the latent Nelson-Siegel factors. This happens due
to the critical deficit of price observations for the contracts with long maturities if the data from just one trading day is used. In
case we obtain a “suspicious” outlying volatility estimate, we use the data from the two consecutive trading days for likelihood
maximization. It helps to smooth out very noisy estimates coming from the days when the intra-daily observation panel is especially
scarse.
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Figure 2.5: In the top panel: annualized subsampled 5-min realized volatility for the front futures contracts. In
the 3 bottom panels: annualized volatility measures of the Nelson-Siegel factors estimated parametrically using
intra-daily state-space models for each trading day of the sample. The sample period starts in January, 2005
and lasts until December, 2014.

2.5 Evaluation Strategy

In this section, we outline the out-of-sample evaluation of our modeling framework. At first, we briefly describe
the set of alternative (benchmark) model specifications. The corresponding state-space model formulations are
given in Appendix B.2. Then we explain our strategy for the out-of-sample density forecast evaluation.

2.5.1 Pool of Competing Models

In our empirical evaluation we consider several alternative models along with our baseline framework. The
goal is to investigate whether time-varying volatility and realized measures suggested in our main framework
provide improvements in the out-of-sample performance compared to the alternative models with no such
features. For better comparison, all the alternative models have the DNS factor dynamics in the conditional
mean, have autocorrelated idiosyncratic components, and the random walk assumption is maintained for the
Nelson-Siegel factor dynamics. In other words, the part described by equations (2.2)-(2.6) is common for all
considered models and the differences come in the specification of the factor covariance matrix Ωt. Particularly,
we examine alternative specifications a) with constant volatility and b) with time-varying volatility, but with
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Model Dynamic covariance Realized measures Leverage effect
components

DNS-CV 0 No No

DNS-GARCH-1 1 No No
DNS-GARCH-3 3 No No

DNS-RGARCH-1 1 Yes No
DNS-RGARCH-1-lev 1 Yes Yes
DNS-RGARCH-3 3 Yes No
DNS-RGARCH-3-lev 3 Yes Yes

Table 2.4: Set of competing models used in the paper. All models are the DNS factor models with the random
walk dynamics of the Nelson-Siegel factors and the autocorrelated idiosyncratic components. In all models the
correlations between the Nelson-Siegel factor innovations are constant.

no use of realized measures.
DNS with constant variance (DNS-CV). This model is the standard state-space DNS framework from

Diebold et al. (2006) where all variance parameters are assumed to be constant. The model is characterized by
(2.2)-(2.6) with the constant covariance matrix Ω in (2.6). The DNS-CV represents a natural constant volatility
benchmark in our analysis.

DNS with GARCH effects (DNS-GARCH). In this class of models we add time-varying volatility
components to the factor covariance matrix Ωt. We suggest two specifications with one and three dynamic
volatility components, so they possess the same parametrization of Ωt as proposed in our baseline framework.
Similarly, these time-varying components are supposed to have GARCH-type dynamics, but they are not related
to any kind of realized volatility measures. We follow the methodology from Harvey et al. (1992) by incorporating
GARCH effects into a linear Gaussian state-space model. Therefore, instead of realized measures we use the
conditional expectations of the factor innovation shocks in order to specify the updating terms in the GARCH
equations for dynamic volatilities.26 Since these conditional expectations appear explicitly in the forward
Kalman recursions, the models can be estimated directly by means of the Kalman filter. We consider them in
order to assess the gains from introducing time-varying volatility in the Nelson-Siegel factor dynamics. At the
same time, we rule out the effect from the realized measures which is presented in our baseline models.

DNS with GARCH effects and realized measures (DNS-RGARCH). This class of models is our
baseline framework and is described in details in Section 2. We consider specifications of Ωt with the one and
three dynamic volatility components exploiting the information from realized measures of volatility. Therefore,
in addition to the time-varying volatility aspect, these models also incorporate the effect from the use of
volatility measures based on high frequency data. We examine the baseline models with and without leverage
effects specified in (2.12) and (2.19).

Table 2.4 provides the complete list of the models used in our evaluation study.

2.5.2 Density Forecasting

In contrast to point and interval forecasts, which only reflect a central tendency and a probability of falling into
a certain interval respectively, density forecasts provide a full probability distribution over the possible future
realizations of the forecasted variable. Thus, density forecasting allows to evaluate the model’s ability to describe
a complete pattern of uncertainty associated with the prediction. Essentially, a specification of the conditional
second moment in a model is supposed to affect substantially the quality of the corresponding density forecasts
since it is directly related to the degree of uncertainty in the dynamics of the predicted variable. Thus, density
forecasting is especially suitable for model evaluation in our context since we aim to investigate and compare
the gains from the several dynamic volatility specifications.

26The use of conditional expectations of factor volatility shocks implies that the model should be seen as an approximation to a
standard GARCH model.
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We use the log predictive likelihood as a criterion for the forecast evaluation. The comparison of scoring
rules across the pool of competing models to assess their relative ability of producing density forecasts has a
long tradition in empirical macro and finance (see e.g. Diebold and Lopez (1996), Lopez (2001), Geweke and
Amisano (2010)). The log predictive likelihood of a log futures price yt+h(τ) reads

LPLmt,h,τ
(
yt+h(τ)

)
= log p̂

(
yt+h(τ)|Ft,Mm

)
(2.27)

where h denotes a forecast horizon and p̂
(
·|Ft,Mm

)
is the forecast of the probability density function of yt+h(τ)

that is made with the modelMm conditional on the information Ft available up to day t. As it is evident from
(2.27), the log predictive likelihood gets a higher value if the corresponding forecasted density assigns a higher
probability to the actual future realization of the predicted variable (yt+h(τ), in our case). Intuitively, the model
that systematically exhibits higher predictive likelihoods has a better density forecasting performance.

Given the fact that our models are set at a daily frequency, we focus on short-term forecasting. We consider
8 forecast horizons: 1, 2, 3, 4, 5, 10, 15, and 22 business days ahead. Note that for commodity futures the
maturities of traded contracts τ change from day to day, so we can not observe the same set of contracts in the
course of the forecasting period. Thus, we partition the traded contracts into several maturity ranges (e.g. 1-3
months, 1-2 years, etc.) and consider average log predictive likelihoods across the traded contracts from the
given maturity range.

The forecasting period lasts from January 2, 2014 until January 16, 2015 and contains 269 trading days in
total. The oil prices demonstrate very diverse dynamic regimes throughout the forecasting period (see Figure
2.6). In particular, it spans both the relatively calm period in the first half of 2014 and the sharp downfall of
oil prices that occurred during the second half of 2014. In addition to the full out-of-sample period we also
evaluate our models based on the 6 month sub-period that lasts from March 3, 2014 until August 29, 2014 (129
trading days). During this sub-period the futures prices behave in a relatively regular way. We consider this
sub-period separately for two reasons. First, since the full out-of-sample period contains the episode with the oil
price collapse in autumn 2014, the sharp negative trend in prices might cause severe density mispredictions for
a number of days. As a consequence, we get too large negative values of log predictive likelihoods for these days
and this complicates the comparative analysis.27 Thus, we may expect that the model comparison based on the
calm forecasting period will be less noisy. Second, it is interesting by itself to inspect the relative forecasting
performance of our models based on the out-of-sample sub-period when the futures prices have more stable and
regular dynamics.
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Figure 2.6: Futures prices during the forecasting period (January 2, 2014 - January 16, 2015)
27In the forecast evaluation based on the full out-of-sample period we delete such days where the log predictive likelihoods get

extremely large negative values for all of considered models (14 trading days in total).
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In order to forecast the futures price density from a given model we refer to the simulation techniques (apart
from the case of the constant volatility DNS model where the predicted density can be derived analytically).
More precisely, in order to produce a density forecast p̂t+h,τ

(
·|Ft,Mm

)
for the price yt+h(τ), we simulate S

price sequences of length h, which are initialized at day t given information Ft. While simulating, we use
the stochastic law of motion defined by the model Mm with the pre-estimated constant parameters. As we
obtain S forecasts {ŷst+h(τ)}Ss=1, we apply a kernel density estimator to get p̂t+h,τ

(
·|Ft,Mm

)
and evaluate the

log predictive likelihood from (2.27) at the actual futures price realization yt+h(τ). In our analysis we take
S = 10, 000 simulations and use the Matlab built-in function ksdensity with Normal kernel smoother and the
corresponding optimal bandwidth.

In order to statistically assess the differences across the log predictive likelihoods from the pool of competing
models, we construct the Model Confidence Set (MCS) of Hansen et al. (2011). Compared to the Weighted
Likelihood Ratio Test in Amisano and Giacomini (2007), which is designed for a pairwise model comparison and
is a popular tool for the statistical evaluation of density forecasts in the literature, MCS provides the framework
for multiple comparison of the competing models. Taking the log-predictive density as a “gain” criterion, we
define the MCS as follows

MCSh,τ =
{
m∗ ∈M : E(LPLm

∗

t,h,τ ) ≥ E(LPLmt,h,τ ), ∀m ∈M
}

(2.28)

so MCS consists of the models that exhibit significantly superior log-predictive likelihoods. We use Kevin
Sheppard’s MFE Toolbox28 for Matlab in order to obtain the corresponding p-values for MCS of 99, 95, and
90% coverage, while doing so we set the number of stationary bootstrap replications at 10,000 and the average
window length at 12.

2.6 Empirical Results

2.6.1 Parameter Estimates and Factors

Table 2.5 presents the parameter estimates for the seven different models. Significance at a 5% level is indicated
in bold face.

The parameter estimates are obtained by numerically maximizing the log-likelihood (2.23) using data from
the estimation period (January 3, 2005 to December 31, 2013). To start the estimation with appropriate values
of the three Nelson-Siegel factors and the volatility components we make use of the 100 days initialization period
(August 9, 2004 to December 30, 2004).29

The parameters λ, σ2
w, β, ρls, ρlc, ρsc are common for all models and their estimates tend to be relatively close

across the models. Hansen and Lunde (2013) fix λ = 0.005, which is slightly smaller than the estimates found
in Table 2.5. The parameter β is significant and relatively high for all models, which reflects the importance
of incorporating autocorrelation in the idiosyncratic component especially when applying the model to daily
data. The most pronounced correlation parameter is the large negative correlation between the level and the
curvature. Hence, an increase in the overall level of futures prices tends to be offset by a decrease in the prices
of the medium maturity contracts.

The parameter estimates controlling the volatility dynamics in the standard GARCH models are not directly
comparable to their realized counterparts. The volatility dynamics in the GARCH-1 and GARCH-3 models are
linear while the models based on realized measures have a log-linear volatility specification.

If we consider the realized models, we immediately see that the realized measure of the RGARCH-1(-lev)
model is less noisy than the realized measures of the RGARCH-3(-lev) model by comparing the σ2

u parameter
estimates. The parameter γ1l governing the impact on the volatility from the realized measure is also substan-

28https://www.kevinsheppard.com/MFE_Toolbox
29In the initialization period the filter is started by assuming the factors are multivariate normal with a mean equal to their

empirical counterparts (see Diebold and Li (2006)) and a high variance equal to the identity matrix. The volatility components are
initialized at their unconditional means.
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tially larger in the RGARCH-1(-lev) model compared to the corresponding parameters in the RGARCH-3(-lev)
model.

In the RGARCH-1-lev model we find a negative δ1, which is the common finding in finance literature. Here,
a negative return in the shortest futures often leads to an increase in the volatility of all three factors. In the
RGARCH-3-lev model the sign of the δ1 parameters is not unambiguous and for the level factor we observe
an inverse leverage effect δ1l > 0. All δ1 parameter estimates are, however, insignificant in this model. The δ2
parameter is positive in the RGARCH-1-lev, which indicates that large standardized returns of either sign in
the shortest futures often lead to an increase in the general volatility level. For RGARCH-3-lev we find an even
more pronounced effect for all factors.

Figure 2.7 shows the filtered factors and the annualized volatility series of the different models. Here we
only present the filtered factors for the RGARCH-3 model including its 99% confidence interval. The filtered
factors from the other models are visually identical. In the volatility plots we leave out the volatility series of
two models including leverage since they are visually identical to their non-leverage counterparts.

By comparing the level factor with the data (Figure 2.1) we may see that the factor tracks the overall
tendency of the futures prices. The slope factor is slightly positive (corresponding to a decreasing futures
curve) in the beginning of the estimation period and rapidly turns negative to reach its lowest values during the
financial crisis. After the financial crisis the slope factor gradually returns to positive values. The curvature is
positive in nearly 75% of the days in the estimation period. A hump-shaped or inverted hump-shaped futures
curve may appear if the curvature is relatively large compared to the slope. Most of the hump-shaped futures
curves are observed in late 2005 to 2006 and again in 2012. A few inverted hump-shaped futures curves, with
a negative curvature and a relatively small slope, are observed in late 2007.

The time-varying volatility series of the three factors all share the same pattern. All factors are most volatile
during the financial crisis. The curvature is by far the most volatile factor followed by the slope. The level is
generally the factor with the smallest volatility. It is evident that the volatility series of the RGARCH-3 models
are less “rough” than the series of the competing models. This is consistent with the relatively low estimates of
the γ1 parameters.

2.6.2 Density Forecasting

Tables 2.6-2.9 contain the results of our density forecasting analysis. Results based on the whole forecasting
period are reported in Tables 2.6-2.7. In Tables 2.8-2.9 we provide the results based on the 6 month sub-period
(March, 2014 - August, 2014) where the oil prices exhibit relatively stable dynamics with no long negative
or positive trends (see Figure 2.6). We report the mean predictive log-likelihoods in the first column that
are related to the constant volatility DNS model. For the remaining models we provide the changes in mean
predictive log-likelihoods relative to the constant volatility benchmark from the first column. Since we compare
log-likelihoods, a difference in 0.01 approximately stands for a 1% relative change in the density forecasting
performance. The background colors indicate that the corresponding models belong to MCS. It means that for
a given forecast horizon and a maturity range such models produce higher predictive log-likelihoods and the
gains are statistically significant.

The analysis of the density forecasting results reveals several important implications. First of all, it is evident
that models with time-varying volatility strongly outperform the constant volatility benchmark.30 This finding
is quite expected in the density predictability context and agrees with the corresponding results on the term
structure density forecasting of interest rates (see Carriero et al. (2014), Shin and Zhong (2015)). As far as the
forecasting horizon increases, the difference between constant and time-varying volatility models disappears.
This fact is also not surprising since in the absence of long-memory effects the GARCH volatility components
converge to their unconditional means relatively fast. We also note that such difference is more pronounced for

30We note that the constant volatility DNS model produces pretty conservative density forecasts and, therefore, is not an easy
competitor. This is because the estimation sample includes the exceedingly volatile Great Recession episode, so it increases the
estimated values of constant variance parameters.
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Figure 2.7: Filtered factors with 99% confidence intervals and the annualized filtered conditional factor volatil-
ities.

the futures with short and medium time to maturity, whereas for the long contracts (more than 4 years until
expiration) an advantage of time-varying volatility is significant only up to the 2-week forecasting horizon.

Secondly, we find that the use of realized volatility measures provides not large, but systematic gains in
density forecasting. Since the volatility is persistent, realized measures make an appreciable difference only
when the latent volatility state is rapidly changing. Whereas the standard models can take a while to adjust
the volatility process, the use of realized measures can speed the adjustment up. By comparing DNS-GARCH-
1 and DNS-GARCH-3 models to DNS-RGARCH-1(-lev) and DNS-RGARCH-3(-lev) respectively, we may see
that the realized models demonstrate higher predictive likelihoods at all the considered horizons for the short-
and mid-term contracts. Qualitatively, this finding is similar to the results of Shin and Zhong (2015) who
documented significant gains from the use of realized measures in the bond yield density forecasting within a
DNS framework. However, in our case these gains are quantitatively much smaller.31 The “realized” models
always appear in the MCS (for both full and calm out-of-sample periods), which suggest that the gains from
realized measures are systematically significant, though they are not so large. The relative performance of the
models with and without realized measures is getting less discernible as the forecasting horizon increases. This
is natural since the realized information about the current volatility state is more relevant for the short-term
volatility (and density) predictions rather than for the far ahead forecasts.

Third, the comparison of models with the one and three dynamic volatility components (DNS-(R)GARCH-
1(-lev) to DNS-(R)GARCH-3(-lev)) reveals a significant advantage of the three component specifications in
the ability to produce density forecasts for the short and mid term contracts. This is especially evident from
the results based on the calm forecasting sub-period where for the contracts below 2 years until maturity only
3-component models appear in MCS at all considered horizons. It may imply that the use of three dynamic

31For instance, realized models with the one dynamic volatility component, DNS-RGARCH-1(lev), provide about 8% gain in
predictive likelihood compared to its non-realized counterpart DNS-GARCH-1 for the 1-day ahead horizon for the short and mid
term futures. The corresponding gain for the 3-component DNS-RGARCH-3(lev) is much smaller and is about 2.5%. We note,
however, that the latter result can be explained by relatively noisy realized measures used in the 3-component model specifications.
The relatively small benefits from using realized measures in forecasting the oil futures densities resemble the findings of Lunde and
Olesen (2014) from the electricity markets. In particular, they demonstrated that the use of realized volatility measures does not
give any significant improvement in the density predictions of the nearby NOMXC forward returns in the context of the univariate
Realized GARCH framework.
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volatility components allows to better control the distribution of the futures term structure than the use of just
one dynamic volatility component. This result conforms with the study of Creal and Wu (2014) who found
that one volatility component is not sufficient to properly capture the distribution dynamics of the interest rate
term structure. At the same time, we may see that for the long-term contracts ( > 4 years until maturity)
the one component models provide superior predictive likelihoods at the horizons above 1 week ahead. The
possible explanation of this effect is the following. The volatility of the level factor implied by the one-component
models is systematically more conservative (higher) than the level volatility in the three factor models. Since the
conditional variance of long term futures is mostly explained by the volatility of the level factor, one-component
models provide more conservative density forecasts for the long-end contracts. Thus, the large mispredictions of
the long futures prices at turbulent periods lead to less severe losses in the corresponding predictive likelihoods
for the models with the one volatility component.32

Finally, we note that the leverage effect does not seem to improve the forecasting performance. We observe
only slight gains from the introduction of the leverage effect for the short-term contracts up to 3 days-ahead
forecasting horizons and only for the calm out-of-sample period.

2.7 Conclusion

In this paper, we analyze the role of time-varying volatility in modeling commodity futures prices. Our ap-
proach is based on a dynamic version of the classical Nelson-Siegel model. The model effectively reduces the
dimensionality by modeling the whole term structure as a function of three factors: level, slope, and curva-
ture. The dynamic factor structure allows for direct forecasting of the whole term structure of futures prices.
We improve the density forecasting properties of the model by introducing time-varying volatility directly into
the conditional variance of the three unobserved factors. When modeling the volatility we follow the Realized
GARCH framework by utilizing precise volatility information extracted from high-frequency data. The realized
measures provide a better signal about the latent volatility than the daily returns used in conventional GARCH
models. The volatility specification is therefore better suited to periods where the volatility changes rapidly.
This makes the model very attractive for forecasting future volatility and in turn providing superior density
forecasts.

Empirically we apply the model to data on light crude oil futures. By an extensive out-of-sample forecasting
exercise we examine to what extent time-varying volatility improves the density predictability and whether
we gain from the use of realized measures. We evaluate the forecast performance based on two out-of-sample
periods: one sub-period with regular price dynamics and the full out-of-sample period containing both calm
periods and periods with sharp price changes. We examine the forecasting performance for different forecast
horizons and for different maturity categories of the futures prices. We use the log predictive likelihood as
a criterion for forecast evaluation and compare the performance of the competing models using the model
confidence set.

We find that the models with time-varying volatility strongly outperform the constant volatility benchmark.
The benefit from time-varying volatility is generally larger for short horizon forecasts and for futures contracts
with short/medium time to maturity. The use of realized measures provides small but systematic gains in density
forecasting relative to standard GARCH volatility. When comparing the one- and three factor specifications of
the volatility we find that the three component specification generally produces better density forecasts except
for long maturity contracts at long forecast horizons. Finally, we found that leverage effects do not seem to

32As we can see from the results, for the long-term contracts the gains from the time-varying volatility (and the realized measures)
are small and insignificant for the long enough forecasting horizons (which is especially evident from the results based on the full
out-of-sample period). One possible reason is an inability of the DNS models to appropriately capture the variance dynamics of
the long-term futures prices. When the time-varying volatility is introduced into the three Nelson-Siegel factors, the variance of
the term structure long-end is regulated by the variance of the level factor solely, whereas the volatilities of the short and mid
futures are additionally explained by the variances of the slope and curvature factors respectively. Since the fraction of the futures
with long maturities is relatively small in our panel, the volatility of the level factor may be not very well adjusted to the volatility
dynamics of the long term futures prices. Therefore, an introduction of an additional volatility factor associated with the long-term
futures prices could lead to a potential improvement in the term structure modeling.
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improve density forecasting significantly.

Table 2.5: Maximum likelihood parameter estimates.

CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev
λ 103 5.800 5.734 5.829 5.774 5.772 5.770 5.803
σ2
w 105 4.493 4.466 4.471 4.472 4.472 4.467 4.455
β 0.633 0.634 0.632 0.632 0.633 0.633 0.631
ρls 0.030 −0.092 −0.047 −0.113 −0.111 −0.081 −0.097
ρlc −0.504 −0.535 −0.505 −0.531 −0.533 −0.563 −0.537
ρsc −0.139 −0.030 −0.047 −0.005 −0.005 −0.011 −0.003
σ2
l 103 0.168
σ2
s 103 0.351
σ2
c 103 1.132
as 104 1.458 1.274 1.140
bs 0.957 1.006 1.094
ac 107 88.809 0.044 0.000
bc 6.078 5.578 5.571
γ0l 0.000 0.000 −0.023 −0.062 0.147 0.127
γ0s 0.000 −0.068 0.009
γ0c 0.000 −0.033 −0.042
γ1l 0.146 0.093 0.431 0.436 0.135 0.143
γ1s 0.119 0.138 0.156
γ1c 0.347 0.155 0.120
γ2l 0.845 0.907 0.607 0.597 0.860 0.849
γ2s 0.850 0.838 0.828
γ2c 0.629 0.822 0.859
ξl −0.382 −0.414 −2.166 −2.117
ξs −0.537 −1.107
ξc −0.631 −0.478
φl 0.864 0.861 0.913 0.916
φs 1.047 0.981
φc 1.026 1.055
σ2
u,l 0.154 0.138 1.278 1.085
σ2
u,s 0.632 0.538
σ2
u,c 1.082 0.921
δ1l −0.049 0.040
δ1s −0.041
δ1c −0.030
δ2l 0.079 0.232
δ2s 0.190
δ2c 0.191

logL 160,551.5 161,130.2 161,255.1 160,101.6 160,230.1 151,578.7 152,128.9√
250E [Vl] 0.205 0.235 0.195 0.223 0.221 0.224 0.220√
250E [Vs] 0.296 0.299 0.273 0.286 0.286 0.279 0.286√
250E [Vc] 0.532 0.582 0.559 0.526 0.522 0.549 0.487

Maximum likelihood parameter estimates for the seven different models. Significance at a 5% level is indicated with
bold face. For visualization some rows have been scaled by the number given in the second column.
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Full forecasting period (January 2, 2014 - January 16, 2015)

Specification of factor variance dynamics within DNS model

Maturity Category CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev

1 day-ahead

< 3 months 2.656 0.174 0.248 0.242 0.249 0.270 0.271
3-6 months 2.784 0.146 0.243 0.237 0.244 0.268 0.272

6-12 months 2.921 0.168 0.257 0.253 0.259 0.285 0.289
1-2 years 3.094 0.148 0.286 0.274 0.277 0.308 0.306
2-4 years 3.126 0.246 0.326 0.322 0.317 0.344 0.326
> 4 years 3.210 0.239 0.247 0.241 0.240 0.272 0.274

all maturities 3.001 0.178 0.275 0.268 0.271 0.299 0.296

2 days-ahead

< 3 months 2.368 0.200 0.249 0.228 0.237 0.265 0.263
3-6 months 2.500 0.191 0.249 0.230 0.237 0.271 0.270

6-12 months 2.633 0.203 0.271 0.254 0.260 0.300 0.301
1-2 years 2.787 0.238 0.308 0.281 0.285 0.327 0.327
2-4 years 2.861 0.261 0.333 0.301 0.300 0.324 0.337
> 4 years 2.884 0.246 0.223 0.245 0.246 0.273 0.275

all maturities 2.707 0.227 0.286 0.265 0.270 0.305 0.307

3 days-ahead

< 3 months 2.176 0.207 0.255 0.233 0.240 0.272 0.269
3-6 months 2.305 0.187 0.250 0.233 0.239 0.275 0.273

6-12 months 2.435 0.196 0.279 0.261 0.266 0.310 0.309
1-2 years 2.585 0.203 0.302 0.291 0.293 0.333 0.339
2-4 years 2.679 0.245 0.307 0.296 0.295 0.331 0.332
> 4 years 2.696 0.248 0.190 0.249 0.247 0.270 0.273

all maturities 2.512 0.211 0.279 0.271 0.274 0.311 0.313

4 days-ahead

< 3 months 2.033 0.200 0.246 0.223 0.226 0.259 0.256
3-6 months 2.157 0.187 0.243 0.224 0.229 0.269 0.266

6-12 months 2.286 0.188 0.267 0.251 0.254 0.299 0.299
1-2 years 2.443 0.211 0.301 0.284 0.286 0.326 0.328
2-4 years 2.528 0.249 0.304 0.299 0.298 0.322 0.322
> 4 years 2.565 0.243 0.137 0.239 0.239 0.247 0.250

all maturities 2.368 0.212 0.270 0.264 0.266 0.301 0.301

MCS coverage 99% 95% 90%

Table 2.6: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the
color density.
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Full forecasting period (January 2, 2014 - January 16, 2015)

Specification of factor variance dynamics within DNS model

Maturity Category CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev

1 week-ahead

< 3 months 1.916 0.192 0.240 0.219 0.221 0.254 0.253
3-6 months 2.039 0.175 0.234 0.215 0.220 0.254 0.256

6-12 months 2.167 0.179 0.254 0.239 0.243 0.282 0.284
1-2 years 2.321 0.201 0.286 0.275 0.280 0.311 0.311
2-4 years 2.404 0.212 0.272 0.294 0.294 0.294 0.295
> 4 years 2.456 0.228 0.092 0.235 0.235 0.230 0.231

all maturities 2.248 0.197 0.251 0.256 0.259 0.284 0.285

2 weeks-ahead

< 3 months 1.501 0.166 0.222 0.217 0.219 0.264 0.261
3-6 months 1.627 0.147 0.209 0.212 0.212 0.249 0.250

6-12 months 1.763 0.138 0.210 0.222 0.224 0.244 0.249
1-2 years 1.939 0.158 0.218 0.249 0.249 0.240 0.243
2-4 years 2.052 0.167 0.147 0.250 0.249 0.191 0.202
> 4 years 2.154 0.197 -0.104 0.184 0.187 0.146 0.158

all maturities 1.867 0.159 0.177 0.231 0.232 0.228 0.233

3 weeks-ahead

< 3 months 1.256 0.123 0.235 0.240 0.238 0.294 0.295
3-6 months 1.382 0.094 0.217 0.227 0.229 0.270 0.270

6-12 months 1.524 0.075 0.198 0.226 0.231 0.244 0.243
1-2 years 1.710 0.088 0.181 0.239 0.239 0.202 0.203
2-4 years 1.835 0.037 0.063 0.209 0.208 0.111 0.115
> 4 years 1.945 0.138 -0.382 0.138 0.142 0.091 0.102

all maturities 1.637 0.085 0.125 0.222 0.223 0.201 0.204

1 month-ahead

< 3 months 0.925 -0.216 0.232 0.199 0.214 0.272 0.282
3-6 months 1.027 -0.399 0.209 0.183 0.208 0.234 0.242

6-12 months 1.172 -0.434 0.180 0.195 0.211 0.199 0.203
1-2 years 1.371 -0.276 0.107 0.201 0.206 0.105 0.129
2-4 years 1.490 -0.415 -0.238 0.159 0.170 -0.073 -0.000
> 4 years 1.650 -0.003 -1.543 0.090 0.106 -0.072 -0.038

all maturities 1.297 -0.312 -0.055 0.182 0.194 0.109 0.135

MCS coverage 99% 95% 90%

Table 2.7: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the
color density.

90



Forecasting sub-period with relatively mild price dynamics (March 3, 2014 - August 29, 2014)

Specification of factor variance dynamics within DNS model

Maturity Category CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev

1 day-ahead

< 3 months 2.805 0.290 0.368 0.333 0.345 0.386 0.391
3-6 months 2.947 0.286 0.354 0.327 0.338 0.379 0.382

6-12 months 3.077 0.309 0.373 0.352 0.360 0.406 0.408
1-2 years 3.212 0.349 0.413 0.389 0.394 0.443 0.442
2-4 years 3.305 0.360 0.445 0.395 0.396 0.435 0.433
> 4 years 3.287 0.300 0.325 0.321 0.320 0.331 0.334

all maturities 3.136 0.326 0.391 0.364 0.370 0.412 0.413

2 days-ahead

< 3 months 2.469 0.305 0.398 0.352 0.368 0.417 0.422
3-6 months 2.622 0.305 0.386 0.351 0.363 0.416 0.418

6-12 months 2.756 0.339 0.415 0.388 0.398 0.456 0.459
1-2 years 2.890 0.382 0.457 0.426 0.431 0.494 0.493
2-4 years 2.996 0.412 0.513 0.448 0.448 0.507 0.504
> 4 years 2.963 0.307 0.302 0.319 0.321 0.330 0.336

all maturities 2.814 0.355 0.429 0.397 0.404 0.458 0.459

3 days-ahead

< 3 months 2.282 0.313 0.408 0.362 0.373 0.434 0.439
3-6 months 2.431 0.316 0.393 0.360 0.372 0.425 0.429

6-12 months 2.567 0.352 0.427 0.401 0.411 0.475 0.476
1-2 years 2.707 0.401 0.479 0.445 0.452 0.522 0.521
2-4 years 2.815 0.435 0.543 0.470 0.470 0.539 0.536
> 4 years 2.781 0.313 0.282 0.317 0.315 0.332 0.334

all maturities 2.629 0.370 0.444 0.411 0.418 0.479 0.479

4 days-ahead

< 3 months 2.140 0.309 0.399 0.357 0.369 0.422 0.423
3-6 months 2.288 0.316 0.391 0.359 0.371 0.423 0.426

6-12 months 2.427 0.351 0.427 0.402 0.410 0.475 0.475
1-2 years 2.571 0.410 0.492 0.457 0.460 0.533 0.532
2-4 years 2.684 0.448 0.561 0.482 0.482 0.554 0.553
> 4 years 2.655 0.326 0.255 0.316 0.318 0.324 0.331

all maturities 2.493 0.376 0.448 0.416 0.422 0.483 0.483

MCS coverage 99% 95% 90%

Table 2.8: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the
color density.
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Forecasting sub-period with relatively mild price dynamics (March 3, 2014 - August 29, 2014)

Specification of factor variance dynamics within DNS model

Maturity Category CV GARCH-1 GARCH-3 RGARCH-1 RGARCH-1-lev RGARCH-3 RGARCH-3-lev

1 week-ahead

< 3 months 2.022 0.307 0.391 0.356 0.362 0.413 0.415
3-6 months 2.172 0.313 0.383 0.356 0.363 0.411 0.413

6-12 months 2.317 0.351 0.422 0.400 0.407 0.467 0.466
1-2 years 2.464 0.413 0.494 0.459 0.463 0.535 0.533
2-4 years 2.580 0.458 0.574 0.492 0.492 0.566 0.563
> 4 years 2.557 0.332 0.240 0.312 0.316 0.332 0.335

all maturities 2.384 0.379 0.446 0.418 0.422 0.482 0.482

2 weeks-ahead

< 3 months 1.680 0.295 0.364 0.344 0.351 0.393 0.391
3-6 months 1.829 0.301 0.357 0.348 0.349 0.388 0.384

6-12 months 1.976 0.343 0.398 0.395 0.399 0.444 0.442
1-2 years 2.133 0.414 0.480 0.468 0.469 0.521 0.518
2-4 years 2.254 0.453 0.546 0.486 0.483 0.531 0.529
> 4 years 2.230 0.312 0.068 0.232 0.242 0.239 0.257

all maturities 2.050 0.372 0.412 0.409 0.412 0.455 0.454

3 weeks-ahead

< 3 months 1.490 0.299 0.371 0.346 0.347 0.405 0.405
3-6 months 1.639 0.302 0.362 0.347 0.347 0.400 0.395

6-12 months 1.786 0.338 0.391 0.388 0.389 0.444 0.437
1-2 years 1.941 0.402 0.464 0.457 0.451 0.507 0.499
2-4 years 2.052 0.422 0.497 0.432 0.425 0.471 0.465
> 4 years 2.017 0.276 -0.197 0.157 0.171 0.160 0.178

all maturities 1.856 0.360 0.375 0.390 0.389 0.436 0.432

1 month-ahead

< 3 months 1.302 0.294 0.380 0.342 0.343 0.405 0.401
3-6 months 1.448 0.290 0.358 0.335 0.335 0.391 0.385

6-12 months 1.602 0.330 0.387 0.381 0.378 0.443 0.436
1-2 years 1.753 0.385 0.443 0.433 0.425 0.487 0.479
2-4 years 1.857 0.380 0.438 0.380 0.376 0.420 0.415
> 4 years 1.814 0.221 -0.477 0.083 0.112 0.088 0.116

all maturities 1.666 0.339 0.334 0.364 0.363 0.414 0.411

MCS coverage 99% 95% 90%

Table 2.9: Comparison of predictive log-likelihoods across the pool of competing models. In the first column, the
mean predictive log-likelihoods for the constant volatility DNS model are reported. In the remaining columns,
we provide changes in mean predictive log-likelihoods relative to the values reported in the first column. The
background color indicates that the model is in MCS with a coverage 99%, 95%, and 90% depending on the
color density.
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Appendix B

Supplement to Chapter II

B.1 Realized Variances for a Panel of Contracts

In this appendix, we investigate the co-dynamics of realized variances computed for contracts with different
maturities. The purpose of this inspection is to validate the assumption that the variance of the oil futures
term structure can be adequately captured by means of just few dynamic volatility components.

We consider the period between January 3, 2012 and January 16, 2015, which amounts to 785 trading days.
This period is chosen due to availability of the large cross-section of traded contracts, so we are able to consider
a broad spectrum of maturities. We partition this spectrum into 10 maturity categories: up to 2 month, 2-4,
4-6, 6-9, 9-12, 12-18, 18-24, 24-36, 36-48 and more than 48 months until expiration. For each trading day from
the considered sample period and for each maturity category we compute a subsampled realized variance as in
(2.24) using high frequency transaction data. If at a given day t we observe several traded contracts that belong
to the same maturity category, we take an average of the corresponding realized variances. As a result, we have
a balanced panel of realized variances that spans 10 maturity ranges and 785 trading days (see Figure B.1.1).

The matrix of correlations between the log realized variance series of different maturity ranges is provided
in Table B.1.1. We can see that the realized variances are highly correlated across all maturity categories.





< 2 1.000 0.990 0.961 0.885 0.788 0.766 0.697 0.740 0.703 0.541
2− 4 1.000 0.970 0.892 0.799 0.775 0.702 0.749 0.709 0.551
4− 6 1.000 0.900 0.796 0.758 0.688 0.725 0.692 0.515
6− 9 1.000 0.832 0.726 0.634 0.686 0.657 0.453

9− 12 1.000 0.789 0.647 0.657 0.671 0.492
12− 18 1.000 0.753 0.696 0.678 0.553
18− 24 1.000 0.643 0.588 0.463
24− 36 1.000 0.669 0.508
36− 48 1.000 0.653
> 48 1.000

Table B.1.1: Correlation matrix of log realized variances computed for distinct maturity categories (January 3,
2012 - January 16, 2015). The maturity range is specified in the left column.

These sample correlations, however, are silent about the co-dynamic properties of the realized variance series
as well as about the presence of some common factors in such dynamics. To gauge the possible co-variation we
implement a principal component analysis. The results are provided in Table B.1.2.
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PC Variation Total

1 0.690 0.690
2 0.137 0.826
3 0.048 0.874
4 0.038 0.913
5 0.033 0.945
6 0.027 0.972
7 0.019 0.991

Table B.1.2: Principal component analysis of the log realized variance panel. Seven main principal components
appear in the first column. In the second column there is a percentage of the variation explained by the
corresponding principal components. In the third column we report the cumulative fraction of the explained
variation.

As it can be seen, the first principal component explains roughly two third of the total variation in the joint
dynamics of the log realized variance series, whereas the first 4 explain more than 90% of the total variation.

On one hand, the principal component analysis indicates that the volatility panel reveals a significant degree
of comovement. To a certain extent this finding supports the idea that even only one time-varying component
can describe an appreciable amount of the common realized variance dynamics. Note that the realized variance
of the shortest contract that is used as a volatility state variable in our one-component dynamic volatility
specification has a correlation about 0.9 with the first principal component.

On the other hand, if just a one component is used, a sufficient amount of realized variance dynamics (about
30%) is left unexplained. This motivates to make use of several dynamic components in order to better capture
the conditional second moment of the whole term structure distribution.
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Figure B.1.1: Dynamics of the log prices (top panel) and the corresponding log annualized realized variances
(bottom panel) for oil futures (January 3, 2012 - January 16, 2015).
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B.2 State-Space Formulations

In the technical appendix we use the following notation inspired by Durbin and Koopman (2012).
The standard linear Gaussian state space system is given by

Observation equation

xt = dt + Ztαt + νt νt ∼ N (0, Vt)

State equation

αt+1 = Ttαt + ct +Wt+1qt+1 qt+1 ∼ N (0, Qt+1)

Where the Kalman filter is defined by the following recursions:

Kalman filter

et = xt − Ztat − dt Ft = ZtPtZ
′

t + Vt

Updating step

at|t = at + PtZ
′

tF
−1
t et Pt|t = Pt − PtZ

′

tF
−1
t ZtPt

Prediction step

at+1 = Ttat|t + ct Pt+1 = TtPt|tT
′

t +Wt+1Qt+1W
′

t+1

where et denotes the one-step ahead forecast error. Ft = Var (et |Ft−1 ) is the conditional variance of the
forecast errors. at|t = E (αt |Ft ) is the filtered states and Pt|t = Var (αt |Ft ) denotes the time t conditional
variance of the states. at+1 = E (αt+1 |Ft ) is the one-step ahead predicted states and Pt+1 = Var (αt+1 |Ft ).

The log-likelihood function of a standard linear Gaussian state space system is given by

log p (x1, ..., xT ) =
T∑
t=1

log p (xt| Ft−1)

where
log p (xt| Ft−1) = −nt2 log (2π)− 1

2

(
log |Ft|+ e

′

tF
−1
t et

)
(B.2.1)

The next sections contain the specific state space formulations of each model.
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B.2.1 Constant Volatility

The constant volatility dynamic Nelson-Siegel model can be formulated directly in the standard linear Gaussian
state space formulation. Matching the notation of the standard linear Gaussian state space system with the
notation of the constant volatility dynamic Nelson-Siegel model we have that:

State space notation Dynamic NS notation
xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 =

 σ2
l ρlsσlσs ρlcσlσc

ρlsσlσs σ2
s ρscσsσc

ρlcσlσc ρscσsσc σ2
c


ct = 03×1
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B.2.2 GARCH-1

In the GARCH-1 model we follow Harvey et al. (1992).

State space notation Dynamic NS notation
xt = yt

Zt = (Λtft,−βCtΛt−1, 0nt×1)

αt =

 ft

ft−1

ηt,l


dt = βCtyt−1

νt = wt

Tt =

 I3×3 03×3 03×1

I3×3 03×3 03×1

01×3 01×3 01×1


Wt =

 I3×3

03×3

(1, 0, 0)


qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

where

Ht+1 =


√
ht+1,l 0 0
0

√
ht+1,s 0

0 0
√
ht+1,c



R =

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1


ht+1 = γ0l + γ1l

(
a2
t|t,7 + Pt|t 7,7

)
+ γ2lht

Here at|t,7 denotes the 7th element in a2
t|t and Pt|t 7,7 is the (7, 7) element in Pt|t . Since η2

t,l is not directly

observable we use E
(
η2
t,l |Ft

)
= a2

t|t,7 + Pt|t 7,7 as the “signal” in the volatility process. Hence, the model
should be seen as an approximation to a “standard GARCH” model.
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B.2.3 GARCH-3
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1, 0nt×3)

αt =

 ft

ft−1

ηt


dt = βCtyt−1

νt = wt

Tt =

 I3×3 03×3 03×3

I3×3 03×3 03×3

03×3 03×3 03×3


Wt =

 I3×3

03×3

I3×3


qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

where

Ht+1 =


√
ht+1,l 0 0
0

√
ht+1,s 0

0 0
√
ht+1,c



R =

 1 ρls ρlc

ρls 1 ρsc

ρlc ρsc 1


ht+1,l = γ0l + γ1l

(
a2
t|t,7 + Pt|t 7,7

)
+ γ2lht,l

ht+1,s = γ0s + γ1s

(
a2
t|t,8 + Pt|t 8,8

)
+ γ2sht,s

ht+1,c = γ0c + γ1c

(
a2
t|t,9 + Pt|t 9,9

)
+ γ2cht,c

Here at|t,i denotes the i’th element in at|t and Pt|t i,j is the (i, j) element in Pt|t . Since η2
t,k is not directly

observable we use

E
(
η2
t,k |Ft

)
=


a2
t|t,7 + Pt|t 7,7 for k = l

a2
t|t,8 + Pt|t 9,9 for k = s

a2
t|t,8 + Pt|t 9,9 for k = c

as the “signal” in the volatility process. Hence, the model should be seen as an approximation to a “standard
multivariate GARCH” model.
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B.2.4 RGARCH-1-lev
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

Hence, the standard space formulation is equivalent to the constant volatility model except for the fact that
Qt+1 is time-varying and driven by realized measures. Here we have that:

Ht+1 =


√

exp (ht) 0 0
0

√
as + bs exp (ht) 0

0 0
√
ac + bc exp (ht)


with

ht = γ0 + γ1st−1 + γ2ht−1

st =

ξ + φht + δ (zt) + ut with leverage

ξ + φht + ut without leverage

In the Realized models we need to account for st being an observable. Hence, we need to add
log p (st |yt,Ft−1; θ ) = −1

2 log (2π)− 1
2

(
log
(
σ2
u

)
+ u2

t

σ2
u

)
to the NS log-likelihood contribution (B.2.1).

100



B.2.5 RGARCH-3-lev
State space notation Dynamic NS notation

xt = yt

Zt = (Λtft,−βCtΛt−1)

αt =
(

ft

ft−1

)
dt = βCtyt−1

νt = wt

Tt =
(
I3×3 03×3

I3×3 03×3

)

Wt =
(

I3×3

03×3

)
qt+1 = ηt+1

Qt+1 = Ht+1RHt+1

ct = 03×1

Hence, the standard space formulation is equivalent to the constant volatility model except for the fact that
Qt+1 is time-varying and driven by realized measures. Here we have that:

Ht+1 =


√

exp (ht,l) 0 0
0

√
exp (ht,s) 0

0 0
√

exp (ht,c)


with

ht,j = γ0,j + γ1,jst−1,j + γ2,jht−1,j

st,j =

ξj + φjht,j + δj (zt,j) + ut,j with leverage

ξj + φjht,j + ut,j without leverage
for j = l, s, c

In the Realized models we need to account for st being an observable. Hence, we need to add

log p (st |yt,Ft−1; θ ) = −1
2 log (2π)− 1

2

(
log
(
σ2
u,l

)
+
u2
t,l

σ2
u,l

)

−1
2 log (2π)− 1

2

(
log
(
σ2
u,s

)
+
u2
t,s

σ2
u,s

)

−1
2 log (2π)− 1

2

(
log
(
σ2
u,c

)
+
u2
t,c

σ2
u,c

)

to the NS log-likelihood contribution (B.2.1).
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Chapter 3

Intra-daily Volatility Flow: How Fast
Does the Information Arrive?

3.1 Introduction

The persistence of financial volatility is a firmly established empirical fact that is exploited intensively for
modeling and forecasting purposes. Related studies primarily focus on forecasting uncertainty in financial and
macro variables for the horizons from one day ahead and more. In this paper, we shift the focus to the opposite
side and investigate how well financial volatility and uncertainty can be predicted within the daily span based
on the information from high frequency transaction data observed over the short intra-daily intervals.

A natural approach to this question is to consider how much we can learn about the ex-post daily variance
from the sub-periods between the market opening and a certain intra-daily moment of time. Indeed, we may
expect that even the first few minutes after the start of trading may deliver a lot of valuable predictive informa-
tion about the volatility that will be generated in course of the following hours. Clustering of intra-daily asset
volatility around the market open and close is a theoretically supported and well documented stylized evidence
(Admati and Pfleiderer (1988), Andersen and Bollerslev (1997)). The fact that in the beginning of a trading
day a relatively large fraction of daily volatility is generated mechanically induces high correlation between the
morning intra-daily and the ex-post daily variance measures. Additionally, intense morning transactions reflect
a reaction of market participants to overnight (or overweekend) news as well as to the signals that come from
other markets. Such information may have a long-lasting effect on the variance of intra-daily returns and might
be a useful signal for daily variance prediction.

We study how fast a reasonably precise projection of a daily aggregate volatility level can be constructed
by means of intra-daily information that arrives after stock market opening. Particularly, we compare the
forecasting projections (both direct and indirect) that are made upon the realized volatility measures computed
over gradually expanding intra-daily intervals that are supposed to incorporate increasingly more and more
intra-daily information about the aggregated daily variance. We find that the first 15 minutes of trading are
able to explain up to 70% of the variation in the ex-post daily variances in terms of the Mincer-Zarnowitz R2.
Moreover, the predictive performance of intra-daily measures based on high frequency data from the first 15-30
minutes of trading are on average equivalent to the standard model-based daily variance forecasts that employ
information from the preceding days.

The study appeals to several empirical and methodological concerns. Firstly, we found that the forecasting
performance differs significantly across different realized volatility estimators. It turns out that the intra-daily
variance forecasting design might serve as a field for the comparison of small sample performance of different
realized estimators. This is of significant methodological interest since it might help to better explore the
advantages and limitations of distinct classes of estimators when those are used in constrained conditions. At
second, the paper makes a step towards the framework that combines volatility forecasts that are made in
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advance (by means of any appropriate models, such as GARCH or Stochastic Volatility) with the current intra-
daily information in order to improve the projection of the latent variance level in real time. An ability to
promptly update the current state of uncertainty in the very beginning of the day is definitely important for the
risk management purposes. In addition, we discuss a dynamic approach to the intra-daily volatility updating
and suggest a simple dynamic model to illustrate the idea.

This paper contributes to the vast literature on measuring, modeling and forecasting financial volatility.
We now discuss in more details the connection with several closely related papers and briefly outline our main
findings.

First, the analysis implemented in the current paper extends the work of Frijns and Margaritis (2008) who
use the realized variance computed over a starting intra-daily interval for the ex-post daily realized variance
forecasting in a regression framework. We expand their analysis by using more recent data sample, more fine
intra-daily time intervals, extra information and multiple classes of realized measures. In addition, we investigate
the predictive performance not only by forecasting ex-post daily realized measures, but also by forecasting the
return density. We strengthen the results of Frijns and Margaritis (2008) by demonstrating a remarkably
high predictive signal contained within the short (15-30 min) opening intervals for forecasting aggregated daily
variance. Being large in the beginning of a day, the marginal improvement of the forecast quality from adding
an extra intra-daily bin of data fades very quickly.

Conceptually, our study is closely interrelated with the study in Hansen and Lunde (2005) who exploit
close-to-open (squared overnight return) and open-to-close (realized measure) information in order to construct
an optimal (mean-squared-error minimizing) estimator of a close-to-close unobservable asset return variance.
The clear analogy with our framework can be established if we note that in both studies the daily volatility
measures based on “incomplete” information (that is, measured over just a part of the period of interest) are
used as signals for an unobservable (at least by the moment of the signal extraction) volatility over the whole
period of interest (the day).

Our paper suggests a path to complement an extensive comparison of realized volatility estimators performed
in Liu et al. (2015). In our analysis, however, we focus on the small sample performance of estimators and assess
it indirectly through the intra-daily forecasting framework. Liu et al. (2015) demonstrated that the classical
5-min realized variance estimator is hardly significantly outperformed by more recently developed estimators in
measuring daily return variance. We provide an additional evidence of a systematic advantage of the estimators
that exploit data on transaction frequency over the estimators that rely on sparsely sampled data when the
information is limited and the role of estimation efficiency is better pronounced.

Finally, we contribute to the literature on adaptive time series models that use score driven dynamic speci-
fications to control a drifting of parameter values over time (Blasques et al. (2014), Petrella and Delle Monache
(2016)). We propose an extension of EWMA model that exploits realized measures as signals of the latent
variance and is able to adjust the distributed lag weights in response to the changing volatility regimes. The
model serves as an illustration of a dynamic optimal weighting scheme and closely interacts with our intra-daily
forecasting framework.

We proceed as follows. In Section 3.2 we discuss the realized estimators that will be used throughout the
analysis and describe the data. Section 3.3 contains a simple forecasting framework that is based on a linear
projection of the daily realized measure on the intra-daily measure of variance with and with no presence of
additional signals. In Section 3.4 we forecast the return density using a predictive likelihood approach. We
outline a dynamic approach to volatility measurement and forecasting in Section 3.5. Section 3.6 concludes and
provides an outlook of some further research directions. Several robustness checks are referred to Appendices.
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3.2 Volatility Measures and Data

3.2.1 Econometric Preliminaries and Notation

As it is standard in the literature, we suppose that the efficient (no-arbitrage) logarithmic price {p∗s}s≥0 follows a
semimartingale process (see, for example, Protter (2004)). The notable example of a semimartingale commonly
used in economics and finance is a Brownian semimartingale process that satisfies

p∗s =
∫ s

0
µzdz +

∫ s

0
σzdWz +Ns (3.1)

where µs is an instantaneous drift that is predictable and locally bounded, σs is a strictly positive stochastic
volatility process with a proper regularity assumptions, Ws is a standard Brownian motion independent from
µs and σs, Ns is a pure jump process.

The equilibrium price process p∗s is inherently latent. The price that is observed at transaction times s(k)
(where k = 0, 1, 2, ...,K is the transaction index) during the open market period represents a contaminated
signal of the latent efficient price

ps(k) = p∗s(k) + us(k) (3.2)

The additive component us(k) reflects the market microstructural noise arising from the rounding and data
errors, price staleness, bid-ask bounces etc.1 In the present paper we stick to the mild assumptions on the noise
properties. These assumptions correspond to those made in Barndorff-Nielsen et al. (2008) and Hansen and
Horel (2009), since we will use the related estimators in our analysis.2

The central object of interest from the perspective of the financial risk assessment is the quadratic variation
over a certain period of time. In particular, for the period s ∈ [sa, sb] the quadratic variation (QV) is formally
defined as

QV[sa,sb] =
∫ sb

sa

σ2
sds+

∑
s∈IJ

(
p∗s − p∗s−

)2 (3.3)

where IJ denotes the set of time moments within [sa, sb] when jumps occur and p∗s− stands for the left limit of
p∗s.

Another important quantity is the integrated variance (IV) that comprises only continuous (“small” price
moves) variation of the price process and ignores the variation stemming from jumps (“large” price moves)

IV[sa,sb] =
∫ sb

sa

σ2
sds (3.4)

Thus, in the absence of the jump component in (3.1), QV and IV represent the same quantity. The motivation to
consider the integrated variance in isolation partly comes from the evidence that the jump volatility component
is far less persistent than the continuous volatility component. This is reflected in better forecasting properties
of the latter (see Andersen et al. (2007)).

For notational convenience, we will denote trading days from the sample by indexes t = 1, ..., T and normalize
the open-to-close trading interval to [0, 1]. A typical trading period at NYSE is between 9:30a.m. and 4:00p.m.
EST. We then partition it into N equidistant sub-intervals, 0 = s0 < s1 < s2 < ... < sN = 1. In our empirical
analysis we will use N = 26 which corresponds to 15 minutes between two adjacent knots. Though, it is possible
to partition the trading period with an arbitrarily fine grid, e.g. with 1-min or even 1-sec intervals between the
adjacent knots.

For each day t we obtain the sequence Xt = {xt,i}Ni=1, where xt,i is a realized measure that approximates
1The effects of microstructural noise on the realized volatility estimation were analytically and empirically investigated in Hansen

and Lunde (2006b) and Bandi and Russell (2008).
2In particular, the nose is assumed to be stationary, but allowed to be serially dependent and correlate with the efficient price.
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QV, IV or a similar variance quantity over an intra-daily interval [s0, si]. Thus, a measure xt,i is constructed
using the information that is available at day t for the period from the trade opening and until the intra-daily
knot si. Below we discuss the choice of estimators that we use to obtain realized measures in our empirical
analysis.

3.2.2 Estimators

The minutes after the stock market opening are considered as notoriously hard time for investors and traders.
Activity of heterogeneously informed participants and high general uncertainty about the true price level increase
the costs of trade and the risk of taking a wrong position. These and other issues lead to severe market
microstructural effects, such as enormously wide bid-ask spreads, that complicate retrieving accurate signals of
the latent volatility from the observed price changes.

The quality of our intra-daily forecasting projections is supposed to heavily depend on the precision of the
extracted intra-daily volatility. Particularly, as long as we assume that an intra-daily variance measure contains
a strong predictive signal about the ex-post variance level aggregated over the whole day, a more precisely
extracted measure is supposed to provide an improved projection. To obtain realized measures we use distinct
estimators. Thus, the intra-daily variance forecasting design might serve as a field for an empirical comparison
of the small sample performance across different estimators as well as their abilities to mitigate microstructural
noise effects that are especially severe in the beginning of a trading day. This is of significant methodological
interest and might help to better explore the advantages and limitations of distinct classes of estimators.

We consider 4 types of realized estimators that differ both in frequencies of exploited data and in quantities
they attempt to measure. Although in our empirical analysis we inspect just a single estimator from each of
the considered classes, most of these estimators are widely representative and actively used in the empirical
research.

Realized Variance. Our first estimator is the classical realized variance (RV) estimator (Andersen et al.
(2001b), Andersen et al. (2001a), Barndorff-Nielsen and Shephard (2002b), etc.) computed at 5-minute fre-
quency. This estimator measures QV of the efficient price process and minimizes the effects of microstructural
noise by utilizing sparsely sampled observations. Since we consider only relatively liquid assets, we expect that
5-minute sampling is a sufficiently low frequency to mitigate the bias caused by microstructural noise effects.
Although the design of RV estimator is probably the simplest if compared to the most of the existed and con-
stantly introduced realized measures in the literature, the performance of RV in measuring daily return volatility
is still remains to be a strong benchmark.3 Particularly, in the extensive comparative study where more than
600 distinct volatility estimators were investigated, Liu et al. (2015) have found just a few realized measures
that significantly outperform standard 5-min RV.

Threshold Variance. Secondly, we consider a truncated version of the realized variance estimator (TV)
suggested in Mancini (2001), Mancini (2009). Similar to the realized variance, TV estimator represents a sum
of squared intraday returns, but only those that do not exceed a certain threshold.4 The truncation aims to
“filter out” the portion of variance due to the jump component in (3.1), so TV can be treated as an estimator
of the integrated variance (3.4). As in the case of RV, TV is computed with sparsely sampled returns reducing,
thus, the influence of microstructural noise.

Realized Kernel. The third type of volatility estimators that we include in our analysis operates with
frequently sampled price observations.5 The main challenge of using very high frequency data in estimating
asset return volatility relates to the disentangling the latent return variation from the microstructural noise
effects. The realized kernel estimator (RK) suggested in Barndorff-Nielsen et al. (2008) is designed to capture

3We note, that in our analysis we consider a classical RV, but not a popular sub-sampled analogue where the average of realized
variances computed at many distinct “grids” is used (see Zhang et al. (2005)). The reason is that such estimator can be treated as
a case of the realized kernel estimator with the Bartlett kernel. Instead, we separately consider the realized kernel estimator with
the Parzen kernel that has been shown to be more efficient (Barndorff-Nielsen et al. (2011b)).

4A widely accepted practice is to relate the threshold to a local IV estimate (see Corsi et al. (2010)). Since a local IV is difficult
to obtain conditional on a small number of observations over short intra-daily periods, we use an approach outlined in Bollerslev
and Todorov (2011).

5In particular, we use transaction data that is converted to a grid with a minimal interval of 1 second.
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the long-run variance of the intra-daily return process in the presence of a stationary noise (that can be both
autocorrelated and “endogenous” to the efficient price process, see Hansen and Lunde (2006b)) and, from this
perspective, it is close in spirit to the kernel type HAC estimator (Newey and West (1987)). RK has been
demonstrated to be a consistent estimator of QV with a decent small sample properties. Importantly, the
fact that RK utilizes more observations than sparsely sampled estimators (such as RV or TV) promises better
performance in measuring return volatility over the short intra-daily intervals. In our analysis, we use the
“non-flat-top” Parzen kernel and implement “jittering” to dampen the end-effects (see Barndorff-Nielsen et al.
(2009) for details).

Markov Chain Estimator. The last measure is the Markov chain estimator (MC) of Hansen and Horel
(2009) which also employs data at a transaction frequency, but is constructed upon the specific assumptions
about the observed price process ps(k). In particular, it is assumed that observed price increments, ∆ps(k),
follow a finite ergodic Markov chain process. Thus, MC naturally exploits the discreteness of the market price
changes caused by the presence of the so-called “tick size” - a minimal possible price increment.6 Since the
discreteness of the observed price changes is usually treated as a factor that generates microstructural noise,
it is even more interesting that MC estimator directly exploits this feature to disentangle the efficient price
variation. The central idea rests on the fact that a finite ergodic Markov chain can be uniquely decomposed
into the sum of a martingale difference sequence and a stationary process (see Hansen (2015)). The former
component is associated with increments of an efficient martingale price process.7 The latter can be referred to
the microstructural noise us(k) and, as in the case of RK, is allowed to be both autocorrelated and endogenous
with respect to the efficient price. The Markov chain assumption allows to derive the long-run variance of
the martingale component in a closed form, so it can be easily computed using an empirical estimate of the
transition probability matrix of the observed price increments.8

The feasible implementation of MC estimator, however, requires to reasonably restrict the set of affordable
price increments in order to keep the number of possible transitions moderate. More specifically, there should
be specified some number zmax and all price increments that are larger than zmax tick size values (in absolute
terms) are discarded.9 Therefore, especially large price increments are getting censored and, hence, MC can’t
be considered as a consistent QV estimator.10 As long as zmax is specified ad hoc, MC is obviously not a
precise IV estimator as well. The conceptual difficulty of specifying such a threshold number zmax that would
guarantee a consistency of IV estimation relates to the absence of a clear empirical definition of jumps when
the price process is considered at higher frequencies.11 Furthermore, the presence of microstructural effects
would require to introduce additional assumptions on the noise dynamics for zmax to be rigorously specified.
As a bottom line, MC estimator that we use here provides a measure of the quantity that is somewhere “in
between” of IV and QV. On one hand, MC truncates large outlying price changes that may be caused by jumps
or data errors. On the other hand, some episodes like short-lived local trends or volatility bursts (when the
price changes considerably within a short time period), that would be potentially classified as jumps at 5-minute
sampling, are not censored by MC.

6Starting from 2001 the NYSE tick size is equal to 1 cent.
7We note that due to the Markov chain assumption on the observed process, the latent martingale price process is also a Markov

chain. Hence, the efficient price under assumptions of MC estimator does not follow a jump-diffusion process (3.1), but has similar
long-run properties.

8In spite of the quite distinct assumptions, both RK and MC are based on the conceptually similar grounds. Namely, both
estimators filter the variation associated with the latent martingale dynamics exploiting the long-run properties of the contaminated
(observed) process.

9In our empirical application we set up a number zmax in such way that no more than 3% of transactions are censored.
10Alternatively, it would be possible to add the sum of squared truncated increments to the quantity obtained with MC estimator

and get (possibly noisy) measure of QV. Nonetheless, we will not do it this way in order to avoid the contribution from possible
noise effects such as bounce backs and data errors.

11In particular, Christensen et al. (2014) (and also Christensen et al. (2016)) demonstrated that most of episodes that are detected
as “jumps” when the sparsely sampled price data is used can be attributed to the local bursts in volatility process σs (or in drift
process µs), but not to price discontinuities.
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Acronym Estimator Sampling Jump censoring
RV Realized Variance Sparse No
TV Threshold Estimator Sparse Yes
RK Realized Kernel Tick No
MC Markov Chain Estimator Tick Yes

Table 3.1: List of volatility estimators used in the empirical analysis.

We note that when applying the realized estimators to the short intra-daily periods we expect the presence
of an appreciable small sample bias. We, however, use the estimators in their standard forms since our main
focus is not in the unbiased estimation of QV/IV over a given intra-daily interval, but rather in extracting the
signal that correlates well with the aggregated ex-post daily variance.

3.2.3 Data

In our empirical analysis, we consider data on 12 blue chips. The selected stocks represent different sectors
of the U.S. economy and are traded at NYSE and NASDAQ exchanges (see Table 3.2). The sample period
starts on January 2, 2004, lasts until December 31, 2013 and comprises 2517 trading days. Due to the specific
focus of our analysis we remove the days when the market was not open for the full trading day of 6.5 hours
(from 9:30a.m. until 4:00p.m. EST). Such days are usually correspond to the national holidays (Independence
Day, Thanksgiving Day, Christmas, etc.). In addition, we remove the days with the exceptionally high market
volatility (5 trading days in total, including the Flash Crash day).

Ticker Company Sector Exchange
AXP American Express Company Consumer finance NYSE
BA The Boeing Company Aerospace and defense NYSE
BAC Bank of America Banking NYSE
CSCO Cisco Systems, Inc. Computer networking NASDAQ
CVX Chevron Corporation Oil & gas NYSE
GE General Electric Conglomerate NYSE
INTC Intel Corporation Semiconductors NASDAQ
JPM JPMorgan Chase & Co. Banking NYSE
PFE Pfizer Inc. Pharmaceuticals NYSE
UTX United Technologies Conglomerate NYSE
WMT Walmart Retail NYSE
XOM Exxon Mobil Corp. Oil & gas NYSE

Table 3.2: List of stocks used in the empirical analysis.

Daily returns adjusted for dividends are obtained from the CRSP US Stock Database. Intra-daily returns
and realized measures of variance are constructed using Trade and Quote (TAQ) data. The transaction data is
cleaned accordingly to the guidelines suggested in Barndorff-Nielsen et al. (2009).

We intentionally focus our attention on liquid stocks. Most of the selected stocks are constituents of the
Dow Jones Industrial Average (DJIA) index. Therefore, for each asset we have a plenty number of intra-daily
transactions that allows to efficiently use RK and MC realized estimators.

3.3 Intra-daily (Realized) Variance Forecasting

3.3.1 Intra-daily Variance Distribution

We begin our analysis with the investigation of a periodic intra-daily “allocation” of an asset return variance.
This exercise is somewhat similar to the estimation of intra-daily periodic volatility patterns (see Andersen
and Bollerslev (1997), Andersen and Bollerslev (1998a)), though we address the issue from a different angle.
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Particularly, we estimate average variance fractions that are generated within [0, si], i = 1, ..., N , and are
measured by distinct estimators (see details in Appendix C.1).

The upper numbers in the cells in Tables 3.4-3.5 report average estimated fractions of variance realized
before the specified intra-daily time points (with 15-min step). The variance fractions are largely agree for
different estimators and indicate that on average 15-17% of variance is generated within the first 15 minutes
after market opening (9:45a.m. EST) that is less than 4% of the typical daily trading period. After one hour of
trading (10:30a.m. EST) the average variance fraction constitutes 33-35%. It is interesting to note that stocks
from the energy sector (CVX, XOM) are relatively less volatile in the morning. Thus, their average variance
fraction for the first 30 minutes is about 16-17%, whereas for other stocks it is about 25%.

One interesting observation regarding the comparative performance of our realized estimators can also be
made. An average bid-ask spread right after the stock market opening exceeds by several orders of magnitude an
average bid-ask spread in the mid/end of the day.12 Since a bid-ask spread is considered among the main sources
of market microstructural noise (Roll (1984)), we may suspect that the first 15-min interval is about the most
challenging intra-daily period for the volatility estimation. The average volatility fractions for the considered
estimators are 16.6% for RV, 17.3% for TV, 15.9% for RK and 14.8% for MC. Thus, the realized measures based
on transaction data (especially MC estimator) document systematically lower fraction of variance generated
during the first 15 minutes of trading than measures that use sparsely sampled data. This may imply that the
“high frequency” estimators filter a microstructural noise contribution better than the “low frequency” ones. It
may follow, in particular, that the 5-min sampling frequency, that is used to construct RV and TV measures, is
too high to alleviate the bid-ask spread effects in the opening trading interval.

3.3.2 Forecasting the End-of-Day Realized Variance

A high concentration of volatility near the market opening indicates a potential for making relatively precise
projections of the ex-post daily variance using intra-daily measures obtained quickly after 9:30a.m. In this
subsection we empirically assess the time that is needed to construct such projections.

We will start with predicting end-of-day realized volatility measures conditionally on realized measures
obtained in the beginning of the day. We use a simple predictive regression of the following form

xt = γ1,ixt,i + et,s (3.5)

for i = 1, ..., N . The model (3.5) represents the linear projection of the end-of-day measures xt onto the subspace
spanned by the beginning-of-day measures xt,i. Obviously, such forecasting design is far from being theoretically
elaborated and rigour13, but it may serve as a reasonable starting point.

We estimate (3.5) based on a 3-year rolling window by least squares. We re-estimate it every month in order
to account for possible changes in the average distribution of the intra-daily variance. We denote by x̂t the
out-of-sample projections obtained with the coefficient γ1,i estimated in-sample. Projections x̂t are treated then
as forecasts of the end-of-day realized volatility measures conditionally on the measures computed within the
intra-daily interval [0, si]. In order to assess the quality of such predictions we use R2 of the Mincer-Zarnowitz
regression (Mincer and Zarnowitz (1969), Meddahi (2002)).

The out-of-sample period lasts since January, 2007 until December, 2013 and consists of 1741 business days.
The approach outlined above is similar to the one implemented in Frijns and Margaritis (2008). However,
we use more recent data, exploit a range of principally different realized measures and consider a finer step
for intra-daily intervals. In Tables 3.4-3.5 we provide the Mincer-Zarnowitz R2 (middle numbers in cells).
Results aggregated across all considered stocks are also illustrated in Figure 3.1. The main implications can be
summarized as follows.

12Such phenomenon reflects the relatively large uncertainty about the latent efficient stock price during the first trading minutes.
Then, as traders learn more about it during the trading session, the spread considerably shrinks. See, for example, this article in
the Wall Street Journal (http://www.wsj.com/articles/early-birds-suffer-in-market-1442273794).

13At least due to an implicit assumption E[xt − γt,ixt,i|xt,i] = 0 that likely does not hold in reality.
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First, the opening intra-daily period is indeed informative about the aggregate daily volatility level. Although
after the first 30 minutes of trading less than 25% of daily variance is on average generated, the measures
constructed over the same interval are able to explain up to 60-80% of variation in the aggregate daily realized
measures. These numbers are significantly higher than those reported in Frijns and Margaritis (2008).14

Second, the marginal gain from the use of an additional intra-daily information is sharply decreasing in the
morning and then settles at a roughly constant rate. Although the gains are large during a relatively short
opening interval, adding a 15-min intra-daily bin to the information set after 11:00 leads to about 1-2% of an
average increase in R2.

Third, the predictive power of the intra-daily volatility measures is very heterogeneous across considered
estimators. If we look at the starting 15-min interval, RV attains on average 49.7%, TV - 34.5%, RK - 65.3%, and
MC - 65.9%. The reason why the “sparse” measures (RV and TV) obtained after the first 15 minutes perform
significantly worse in predicting themselves at the end of the day can be naturally attributed to their higher
small sample error. In contrast, the “dense” measures (RK and MC) exploit much more intra-daily information
about price dynamics and, as a consequence, demonstrate about 1.5-2 times better predictive accuracy.

A comment should be made about the jump-robust estimator TV. The predictive fit of TV is systematically
lower than that of RV, even though both measures use sparsely sampled data. This evidence may be explained
by a lower efficiency of the truncated measure and by the presence of important predictive information that
is possibly contained in jumps. Thus, the jump truncation might reduce a short-run predictive ability. This
finding can be considered as an additional argument in favour of the predictive potential of the jump variation.15

Intuitively, jumps during the opening period might indicate an arrival of important news (that come in the
overnight break, for instance). In a short-run it may cause an additional uncertainty about the new level of the
equilibrium asset price and, as a consequence, a short-lived (intra-daily) burst in volatility and an increase in
the overall daily variance. Therefore, if jumps are ignored, such volatility bursts are left partially unexplained
by the forecast projection and it leads to a lower predictive R2. Note, that the similar reasoning might be
applied to justify the use of overnight returns as additional regressors for the short-run volatility forecasting.
However, this hypothesis should be investigated more carefully in the future.

For robustness purposes, in Appendix C.2 we provide a subsample analysis of the forecasting exercise. In
particular, we compare the predictive RMSE based on different subsets of days from the out-of-sample period. In
Appendix C.3 we report the Mincer-Zarnowitz R2 for an alternative log-specification of the predictive regression
model (upper numbers in cells). More precisely, we run

log xt = γ0,i + γ1,i log xt,i + et,s

The predictive fit is on average slightly better in this case, possibly due to a regularization of the realized mea-
sures by the logarithmic transformation that dampens effects from outliers and near “non-stationary” episodes.
Important to note that such specification implies the non-linear relationship between intra-daily and daily
variances, E[xt − γ0,ix

γt,i
t,i |xt,i] = 0.

3.3.3 Intra-daily Realized Variance Nowcasting

Next, we consider how an extra information about the daily variance level can affect the intra-daily forecasting
from the previous section. In fact, even before the market opening we may possess many potentially valuable
signals about the volatility that will realize over the trading day. For instance, Bollerslev et al. (2000), Andersen
et al. (2003b), Andersen et al. (2007) among many others investigated the reaction of different securities traded

14They found that the corresponding average R2 for NYSE and NASDAQ stocks is 40-45% for the RV estimator over the period
1996-2005. A part of the discrepancy can be attributed to the presence of the financial crisis 2007-09 in our out-of-sample period.
A large increase of variation in daily realized volatility measures can mechanically rise R2.

15Whereas Andersen et al. (2007) didn’t find a strong predictive content in jumps, Corsi et al. (2010) challenged this finding
and reported a significant impact of jumps on the future volatility by using newly introduced threshold multipower estimator to
separate continuous and jump variations. Patton and Sheppard (2015) discovered that a jump direction also affects an impact on
the future volatility.
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on distinct markets on macroeconomic and financial announcements and found that volatility responds signif-
icantly. Since many relevant announcements are scheduled, the effect can be anticipated and this information
can be used for the volatility prediction at a given day. In addition, the presence of an asymmetry of volatility
responses to positive and negative news may be exploited as an additional information about the volatility level
in the aftermath of announcements (Pagan and Schwert (1990), Engle and Ng (1993)).

Another valuable signal is contained in overnight and overweekend (close-to-open) returns. The large close-
to-open absolute return may indicate a high volatility generated at night time (due to an arrival of important
news, for example). Then, we may expect that the volatility still be high during the open-to-close period as well,
since investors and traders will probably keep to react to the overnight news in the course of the trading session.
Hansen and Lunde (2005) demonstrated the usefulness of overnight information in the ex-post measurement of
the variance for the whole day. Andersen et al. (2011a) incorporated overnight returns in the joint dynamic
model together with continuous and jump components of an asset return volatility.

In this paper we exploit the most straightforward predictive signals - volatility forecasts based on the
observations from the previous days, or the model-based forecasts. We expect that this source suggests a
considerable amount of the predictive content due to the strongly persistent dynamics of the asset return
volatility. Conceptually, our exercise is similar to the nowcasting procedure where the forecast of some low
frequently observed variable is updated as long as a more frequently observed information is arrived. Also, the
predictive performance of the model-based forecasts can serve as a good benchmark for assessing the predictive
performance of the intra-daily forecast projections.

To obtain the volatility forecasts based on the past information we exploit heterogeneous autoregressive
framework (HAR) suggested by Corsi (2009). It represents a reduced-form model for the realized volatility
measures and for the log-transformed measures the HAR model is formulated through the following linear
regression

log xt = β0 + β1 log xt−1 + β2 log xt−5:t−1 + β3 log xt−22:t−1 + εt (3.6)

where log xt−k:t−1 = 1
k

∑k
i=1 log xt−i. Despite its simplicity, the HAR performs remarkably well in forecasting

realized volatility and has recently become a widely applied tool in the related empirical research. Three
autoregressive components in (3.6) stand for the preceding long, mid, and short-run volatility levels and reflect
the cascade nature of volatility.16 Moreover, the combination of just three autoregressive factors is able to
successfully capture long memory effects in the dynamics. A log-transformation of the realized measures in
(3.6) not only ensures positivity of the dependent variable, but also is in line with the empirical findings about
the distribution of realized variance as long as the error term is assumed to be Gaussian.17

Denote by ht ≡ exp(Et−1[log xt]) an ex-ante forecast of the realized measure xt that is made using the
HAR model (3.6).18 We incorporate ht into the analysis by including it in the regression (3.5) as an additional
explanatory variable

xt = γ1,ixt,i + γ2,iht + et,i (3.7)

for i = 1, ..., N . Equation (3.7) can also be considered as a slightly restricted version of the HAR model
16Volatility cascade is associated with an hierarchical dependence between the long-run and the short-run volatility levels.

Particularly, long-run components are supposed to be useful in forecasting short-run components.
17More particularly, Andersen et al. (2001b) and Barndorff-Nielsen and Shephard (2002c) demonstrate that the realized variance

estimator has an approximately log-normal asymptotic distribution. Although it is not necessarily the case for other realized
measures, the log-transformed version of the HAR model demonstrates more stable performance (e.g., see Andersen et al. (2007)).

18Note that in case of the log-specification (3.6), we have that exp(Et−1[log xt]) 6= Et−1[xt]. Therefore, the Jensen effect will
contribute a bias to the exponential transforms of the log-measure forecasts. Suppose that the error terms εt are iid Normal and
have a constant variance σ2

ε . Then, using that log xt is conditionally log-normally distributed according to (3.6), the conditional
expectation (day-ahead forecast) of the variance level is

Et−1[xt] = exp(Et−1[log xt] +
1
2
σ2
ε) = A exp(Et−1[log xt])

where A > 1 is a constant term. Therefore, if we take ht ≡ exp(Et−1[log xt]) as an ex-ante forecast, it will have a linear multiplicative
bias that does not deteriorate the forecasting content of ht in the predictive regression.
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augmented by an additional intra-daily component xt,i.19 We naturally expect that as long as si approaches
the end of a trading day, the importance of the ex-ante forecast ht relative to xt,i in prediction of xt is falling
due to xt,i → xt as si → 1 (therefore, γ1,i → 1 as si → 1). Though, in the beginning of a trading day (when si
is close to 0) the situation is opposite. We follow the same rolling estimation and forecasting scheme as before.

Tables 3.4-3.5 contain the Mincer-Zarnowitz R2 from regressing the out-of-sample daily realized measures
xt on the forecasts x̂t (bottom numbers in the table cells). In Figure 3.1 we also plot results averaged across all
considered stocks. First of all, we note that the Mincer-Zarnowitz R2 of the HAR volatility forecasts ht alone is
on average between 0.6 and 0.7 and the predictive performance of RV and TV forecasts is systematically lower
than that of RK and MC.
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Figure 3.1: Subplots contain averaged (across all considered stocks) estimates of the intra-daily variance fractions and
averaged results of the open-to-close realized measures forecasting for the specified estimators. The bottom (yellow)
bars correspond to intra-daily variance fractions. The middle (green) bars correspond to the Mincer-Zarnowitz R2 for
the regressions that forecast the end-of-day realized measures from (3.5). The top (red) bars correspond to the Mincer-
Zarnowitz R2 for the regressions that forecast the end-of-day realized measures from (3.7). The out-of-sample period is
January, 2007 - December, 2013.

Secondly, after the first 15 minutes of trading the effect from including ht is considerable. The gains in R2

constitute around 35% for the “sparse” estimators and 15% for the “dense” estimators. In result, the difference in
predictive accuracy between the projections based on distinct estimators is blurred, but still remains appreciable.
The average R2 for RV and TV are 75% and 70%, whereas for RK and MC are 79% and 80% respectively.

Thirdly, although we can observe that the inclusion of the ex-ante volatility forecast ht provides a significant
benefit for the predictive R2 in the beginning of the trading day, the marginal gains fade very quickly for the
estimators that use transaction data. By 10:45a.m. the difference in R2 between the forecasts based on (3.5)
and (3.7) is on average less than 1%. As for the “sparse” estimators, the effect is more long lasting and at
11:30a.m. the average difference is still about 5%. This indicates that the intra-daily “dense” realized measures
possibly possess more precise predictive content that crowds out the contribution of the ex-ante forecasts ht
very quickly.

19Alternatively, it would be possible to use an augmented HAR model of the following form

log xt = β0 + γi log xt,i + β1 log xt−1 + β2 log xt−5:t−1 + β3 log xt−22:t−1 + εt

where all 4 coefficients are estimated jointly.
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Also, in Appendix C.3 we provide the Mincer-Zarnowitz R2 for the specifications with log-transformed
variables (bottom numbers in cells).

3.4 Intra-daily Forecasting of Conditional Return Density

In the previous section we investigated how well distinct realized measures obtained over the intra-daily periods
[0, si], i = 1, ..., N , forecast themselves measured over the whole day [0, 1]. Although the results provide a
good qualitative illustration of an intra-daily arrival rate of the predictive volatility content, there are several
issues that are difficult to directly examine using such setting. First, so far we have used realized volatility
measures as target variables, but the variable that is usually considered as an object of practical interest is
the latent conditional return variance. Second, since for distinct realized estimators we used the corresponding
daily realized measures as forecast targets, a direct comparison of the predictive performance across estimators
is complicated by the lack of a common objective. In this section we extend our analysis in order to respond to
these issues.

An unobservable nature of a conditional return variance significantly complicates an analysis of the forecast-
ing performance. A popular approach in the literature is to evaluate a predictive performance with respect to
an observed and possibly noisy proxy of the latent predicted variable (see Hansen and Lunde (2006a), Patton
(2011)). Thus, it would be possible, for example, to approximate the latent return variance by a strongly
robust estimator of the quadratic variation20 and specify a proper loss function with respect to this proxy.
We will follow a slightly different approach that would allow us to construct a forecast that is consistent with
the tractable objective and to evaluate it with respect to this objective. Namely, we investigate an ability of
intra-daily volatility measures to predict the conditional density of daily returns.

More precisely, we suppose that a daily open-to-close log-return, rt, is distributed according to a particular
conditional density, rt|vt ∼ p(rt|vt; θ), where vt is a (state) variable that corresponds (but not identical) to the
conditional variance of rt and θ stands for the parameter vector. In this case, the chosen forecast objective
is the mean log-predictive likelihood, or LPL (see, e.g., Amisano and Giacomini (2007), Geweke and Amisano
(2011)). Similar to the model from the previous section, we suppose that the variance parameter vt is a scaled
intra-daily realized measure xt,i

vt = βx1,ixt,i (3.8)

Coefficient βx1,i ≥ 0 renders a proper scaling to account for a possible bias. Note that for si = 1 we use xt,1 = xt

(daily realized measure) as a factor and vt in that case is no more a forecast formally, but rather a measurement.
To estimate βx1,i we maximize the log-likelihood function

∑
t log p(rt|vt; θ) in-sample. Then we use estimated

θ̂ to obtain out-of-sample forecasts of v̂t conditional on intra-daily realized volatility measures xt,i. We then
compute the out-of-sample LPL with v̂t. Note that since both the estimation and the evaluation objectives
are identical criterion functions, θ̂ is a consistent maximum likelihood estimate with respect to the out-of-
sample objective (Dumitrescu and Hansen (2013)). Note that in case of the Gaussian conditional density the
maximization of a predictive log-likelihood is identical to the minimization of the “quasi-likelihood” criterion,
or QLIKE (see Patton (2011)), where the squared return is used as a proxy for the latent conditional return
variance.

As before, we use a 3-year rolling estimation sample and re-estimate parameters every month. In Tables
3.6-3.9 (upper numbers in cells) we report the results of density forecasting for the whole out-of-sample period
(1741 business days). The conditional return density is chosen to be Gaussian, so rt|vt ∼ N (0, vt). The values
in the first column contain LPLs evaluated using variance forecasts based on the realized volatility measures
from the opening 15-min intervals. The values in other columns correspond to the changes (relative to the first
column) in LPLs that are evaluated using variance forecasts based on realized measures from the intra-daily

20Such as the 30-min RV or the realized range estimator (Martens and van Dijk (2007), Christensen and Podolskij (2007)), for
instance.
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intervals [0, si], where si are specified in headers. Since we consider log-likelihoods, such changes approximately
equal to the percentage differences in the average predictive likelihoods.

To be consistent with the analysis from the previous section, we also try an alternative 2-factor specification
for the conditional variance that is an analogue of model (3.7)

vt = βx1,ixt,i + βx2,iht (3.9)

where βx1,i, βx2,i ≥ 0 and ht is the HAR forecast of the daily realized measure of variance. The results corre-
sponding to this specification are also provided in Tables 3.6-3.9 (bottom numbers in cells). The LPLs averaged
across 12 considered stocks for both specifications of the variance parameter are depicted in Figure 3.2.
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Figure 3.2: Subplots contain averaged (across all considered stocks) forecasting results of a daily return density for the
specified estimators. The blue lines correspond to the averaged mean log predictive likelihood (LPL) computed using
the variance specification given by (3.8). The red lines correspond to the averaged LPL computed using the variance
specification given by (3.9). The out-of-sample period is January, 2007 - December, 2013.

The main implications of the density forecasting results can be summarized as follows. First of all, we
corroborate the previous findings and document the fastly arriving predictive content. Particularly, for most of
the realized measures and stocks it takes no more than 1-1.5 hours for the return density prediction with the
1-factor specification (3.8) to be on average as precise as the density forecast based by the HAR model (the
case where only ht is used).

Secondly, we confirm a large difference in the forecasting performance between the intra-daily measures
obtained with distinct realized estimators. Figure 3.2 serves as a good illustration of large heterogeneity in signal-
to-noise ratios implied in different intra-daily realized measures. In particular, lets consider LPLs evaluated
after the first 15-min sub-interval with the 1-factor specification (3.8). We can see that the “dense” estimators,
RK and MC, demonstrate on average 20% and 30% higher predictive log-likelihoods rather than RV and TV
measures respectively. Note, however, that LPLs evaluated with the realized measures computed over the whole
trading day (si = 1) are almost identical across all 4 estimators.

Finally, when we add the extra information ht and use the 2-factor specification (3.9) to forecast return
density, we observe a dramatic improvement in the LPL relative to the predictions made with the 1-factor
specification around the market opening period. The difference in performance between realized estimators

114



almost completely disappears. However, the forecasting gains from using current intra-daily information are
not too small and, by the end of the day, contribute on average about 10% to the predictive likelihood.

To provide a robustness check for the obtained results we repeat the density forecasting analysis assuming
the conditional return density is Student’s t with ν = 5 degrees of freedom. Such distribution implies heavier
tails as compared to the Gaussian density. Therefore, large density mispredictions are less severely reflected in
LPL. The results are reported in Appendix C.4 and support all our qualitative implications.

In addition, we apply the model confidence set (MCS) of Hansen et al. (2011) to investigate whether we
can statistically distinguish between the forecasting performance of different estimators evaluated at distinct
intra-daily intervals. We use the sequences of out-of-sample predictive log-likelihoods as “gains” and look at the
MCS at 95% significance level. For a given estimator we found that the density predictions made at the end of
the trading day are significantly better than predictions made any time before (both for 1 and 2-factor variance
specifications). As for the between-estimator comparison, the Markov chain measures are almost always alone
in the MCS. This indicates a systematic advantage of MC measures in the forecasting (projection) accuracy.

3.5 Adaptive Approach to Volatility Modeling

The analysis in the previous sections reveals that after a certain intraday point of time the forecasting perfor-
mance of intra-daily realized measures is tiny improved by adding an extra information from ht. This result,
however, is not surprising provided the way we use to combine the ex-ante (ht) and the ex-post (xt,i) signals.
If ht does not on average contribute extra relevant information to xt,i that can be useful to predict the target
variable, then the coefficient β2 will tend to zero.

The projection approach, though, is inherently static and very imperfect as far as we consider this problem
from a dynamic perspective. Particularly, if we suppose that the conditional covariance between ht and xt,i is
non-constant, then both signals may become less or more informative depending on the sample period. In this
section we will discuss this issue in the context of volatility measurement and modeling and illustrate the main
ideas by a simple model.

3.5.1 Optimal Combination of Measures

Suppose there is a target variable yt. Assume that variables xt and ht represent some noisy measures of
yt. For simplicity, we let these measures to be conditionally unbiased proxies of yt for all t, that is E[xt −
yt|Ft] = E[ht − yt|Ft] = 0. Further, we assume that Var[xt − yt|Ft] = σ2

x,t, Var[ht − yt|Ft] = σ2
h,t and

E[(xt − yt)(ht − yt)|Ft] = σxh,t, where Ft is some information set (sigma-algebra) such that both xt and ht are
adapted to it. An optimal (in mean squared error sense) “estimator” of yt from the affine class is expressed as
(see Bates and Granger (1969), Timmermann (2006))

ŷt = ωtxt + (1− ωt)ht (3.10)

where

ωt =
σ2
h,t − σxh,t

σ2
x,t + σ2

h,t − 2σxh,t
(3.11)

Therefore, optimal weights for the two proxy variables in the estimator ŷt depend on the whole matrix of
conditional covariance between xt and ht. Note that even if just one component of such matrix is time-varying,
the optimal weight ωt is time-varying as well.21

In our context, yt stands for the latent conditional return variance, xt stands for an intra-daily measure (xt,i,
for distinct i = 1, ..., N), and ht is an ex-ante model-based variance forecast. Both measures are exploited in
the construction of the optimal predictor (3.10) for yt. Figure 3.4 provides the optimal weights (3.11) averaged

21Except for some unrealistic cases, where the covariance components change in time together in a way that ωt is left unchanged.
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across 12 considered stocks for the static case where the covariance structure is assumed constant. Naturally,
when the proxy of the latent target variable is noisy and differs from xt, even at the end of the day both
measures, ht and xt,i, have appreciable weights in the optimal predictor.

Lets now discuss an intuition for the case when covariance structure is time-varying. In periods when the
ex-post realized measures are expected to be noisy, we put more weight on the ex-ante obtained forecasts.
Conversely, when the ex-ante forecast ht is too uncertain, we reallocate more weight on xt.

Although the variance σ2
x,t of a realized measure can be approximated by means of an asymptotic distribution

of xt and estimated using high frequency data, the remaining elements from (3.11) are usually difficult to obtain.
Returning to the static variance specification (3.9) from the previous section, we may suspect that the time-
varying coefficients in (3.9) could possibly make a better job in capturing the latent volatility state.

3.5.2 Adaptive Volatility Modeling

In order to illustrate the idea with a particular example we consider a primitive model of asset return volatility
and incorporate the intuition described above into the model.

Suppose that the latent conditional variance of an asset return yt follows the random walk process

yt = yt−1 + ηt (3.12)

and assume that a realized measure xt satisfies the measurement equation

xt = yt + εt (3.13)

where ηt and εt are zero mean, orthogonal and serially uncorrelated random shocks with finite second moments.
Taken together, equations (3.12) and (3.13) constitute the local level model. In case of Gaussian shocks it can
be estimated with the Kalman filter and latent variance process yt can be extracted. It was shown (see Muth
(1960), Durbin and Koopman (2012)) that the exponentially weighted moving average (EWMA) recursion

ht = λxt−1 + (1− λ)ht−1, λ ∈ (0, 1) (3.14)

is able to provide an optimal (in sense of minimal mean squared error) forecast of xt for a properly selected
parameter λ. In case of constant volatility shocks, the corresponding value for λ is constant.

Equation (3.14) can be viewed as a simple example of a forecast combination. Indeed, both xt−1 and ht−1

provide the relevant signals about the future level of the latent variance yt. A larger λ allocates more weight to
the current volatility signal, whereas a smaller λ attaches more importance to the exponentially weighted sum
of the past signals.

Suppose for a moment that the variances of ηt and εt are non-constant. Then parameter λ naturally becomes
time-varying (this can be easily demonstrated by means of the Kalman filter recursions, assuming the shocks
are Gaussian). As long as the measurement error εt is getting more volatile, λt decreases and assigns a lower
weight to xt reflecting the diminishing signal-to-noise ratio of xt, and vice-versa. If the shock ηt to the latent
variance process yt is getting more disperse, then λt increases and puts more weight on xt responding to the
rising model uncertainty, and conversely.

In case we knew the volatilities of shocks at t, we would be able to specify the dynamic coefficient λt that
would adapt the EWMA forecast ht to the changing regimes of uncertainty. However, as we mentioned above,
the values of such nuisance parameters are usually difficult to obtain in practice. Below we suggest an alternative
data-driven way of making the EWMA model adaptive to the changing environment.

3.5.3 Score-driven EWMA with Dynamic Weighting Coefficients

Assume that the conditional distribution of daily asset return rt is given by p
(
rt|ht,Ft−1; θ

)
, where ht is a

dynamic state variable that corresponds to the latent conditional variance, Ft is an information set available at
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t and θ is a vector of constant parameters. Note, that we allow ht to be biased with respect to the conditional
return variance yt. The dynamics of ht is specified according to the EWMA structure

ht = ht−1 + λt(xt−1 − ht−1) = λtxt−1 + (1− λt)ht−1 (3.15)

where xt is an ex-post realized measure of return variance and λt ∈ (0, 1) is the time-varying weighting pa-
rameter. Note that the EWMA in (3.15) exploits realized measures to predict the volatility state ht, but not
squared returns r2

t as in the standard RiskMetricsTM model.
Time-varying parameter λt is a key element that introduces an adaptive mechanism to the model. We

reparametrize λt using logistic transform as λ̃t = log
(
λt
/

(1 − λt)
)
in order to avoid a problem with bounded

support when specifying the dynamics for the time-varying parameter. We use dynamic conditional score (DCS)
approach (Creal et al. (2013), Harvey (2013)) to model the dynamics of λ̃t

λ̃t = λ̃t−1 + γst−1 (3.16)

where st = S−1
t ∇t is a scaled score function and γ is a constant parameter. Score function is defined as

∇t = ∂ log p
(
rt|ht,Ft−1; θ

)/
∂λ̃t and St is an appropriately chosen Ft-measurable scaling function.22 The idea

behind such dynamic mechanism is to drive the time-varying parameter along the steepest direction of improving
the local likelihood fit. By construction, scaled score process st is a martingale difference sequence, therefore
dynamics in (3.16) is essentially a random walk. We select such parsimonious specification to simplify an
exposition, though a more general ARMA process for λ̃t can be assumed. The score-driven updating term st in
(3.16) is supposed to incorporate relevant information about the relative importance of lagged volatility signals
and extracts it from the slope and curvature of the likelihood function.

We choose a heavy-tailed Student’s t conditional density for modeling daily returns. Such choice is appropri-
ate since it not only captures a well documented excess kurtosis in return densities, but also increases a general
robustness of the model dynamics to the presence of outlying return observations. Thus, the conditional density
reads

p
(
rt|ht,Ft−1; θ

)
=

Γ (ν+1
2 )

√
πΓ (ν2 )

1√
y(ht)

(
1 + r2

t

y(ht)

)− ν+1
2

(3.17)

where we set the degrees of freedom to ν = 5.23 Variable y(ht) is a latent conditional return variance that is a
deterministic function of the volatility state variable ht. In particular, we assume a presence of a multiplicative
measurement bias, so yt = y(ht) = (ν − 2)bht with a bias parameter b > 0.24 The conditional score is then
given by

∇t = b(ν − 2)
2

νr2
t − y(ht)

y(ht) · (y(ht) + r2
t )

(xt−1 − ht−1)λt(1− λt) (3.18)

The conditional score (3.18) drives the dynamics of λt and determines how the model manages the relative
weighting of recent and old signals in order to produce an update of a volatility state variable ht in (3.15).

As it can be seen from expression (3.18), if both terms, νr2
t − y(ht) (A) and xt−1−ht−1 (B) are of the same

sign, the score ∇t is positive and leads to an increase in λt+1. Thus, it suggests to shift the weight onto the
22The purpose of a scaling matrix process St is to standardize (or just to make more regular) the conditional score vector

process ∇t. The choice of St is not restricted to a particular specification and each particular form of St implies potentially
different dynamics for the modeled parameters. A typical choice is St = I1/2

t , where It = E[∇t∇
′
t|Ft−1] is a conditional Fisher

information matrix. Such choice makes the scaled score variable st conditionally standardized with unit variance. Moreover, as it
was demonstrated in Koopman et al. (2015), such specification of a scaling matrix positively affects a predictive accuracy of some
score-driven models. Several other possibilities of scaling are considered in Creal et al. (2013). For example, St = It, St = diag

(
It
)

or simply St = I can be used instead, where I is the identity matrix.
23It is also possible to estimate ν as an additional static model parameter.
24We introduce bias parameter b to account for a possible bias of the realized variance measures. Such bias correction would

be especially useful if we specify daily return rt as a close-to-close return. Then we expect that b > 1 since the realized variance
measure xt is obtained at the open-to-close period and does not account, thus, for the close-to-open portion of variance.
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current realized measure xt when producing a forecast for ht+1. Intuitively, when both terms, A and B, are of
the same positive (negative) sign, it likely implies that the previous upward (downward) step xt−1 − ht−1 of
the variance process ht in (3.15) resulted in insufficiently high (low) level of the state variable y(ht) compared
to the latent variance proxied by the squared return. Thus, the conditional score ∇t suggests to increase the
weight on xt−ht further in order to approach the latent volatility level more closely in a following step and get
an increase in likelihood, as a consequence.

A similar intuition holds for the case when (A) and (B) are of different signs, ∇t is negative and cause λt+1

to decrease. In such case it is likely that the preceding upward (downward) step xt−1−ht−1 in (3.15) resulted in
overshooting the targeted latent return variance. The model responds to this by reducing the relative weight for
the newcoming signals and by increasing the persistence of the state variable ht in order to avoid the growing
discrepancy between yt and the latent target variable.

Although these effects arise mechanically from introducing the score-driven updating term st into the dy-
namics of λt, they provide a nice illustration of the adaptive approach to the modeling. We can also notice an
analogy with the optimal forecast combinations from the previous subsection. In particular, the case when (A)
and (B) are of different signs (∇t < 0) can be interpreted as a possible increase in the measurement error uncer-
tainty in (3.13) (so the measurement xt is getting more volatile than the target variable yt). On the contrary, if
(A) and (B) are of the same sign (∇t > 0), it may be interpreted as a rise of uncertainty in the dynamics of the
latent variable yt. This prompts the model to be more adaptive in the face of a possibly changing environment
and reduce the relative importance of the past observations when producing forecasts.

The suggested model is closely related to the recent developments in the time series models with score-
driven dynamic parameters. The EWMA model with score-driven volatility was suggested in Lucas and Zhang
(2016). In contrast to that model, we introduce the time-varying weighting parameter λt and use the score to
govern its dynamics. In addition, we employ realized measures instead of squared returns in order to update the
conditional return variance. Our model is similar to Blasques et al. (2014) and Petrella and Delle Monache (2016)
who consider autoregressive adaptive models with time-varying score-driven coefficients. Apart from them, we
introduce an adaptive autoregressive mechanism into the conditional variance, but not into the conditional
mean of an observed process.

Another parallel can be drawn with Bauwens and Storti (2009) and their component GARCH model, where
the conditional return variance is a time-varying weighted combination of two distinct variance processes. Such
specification allows to capture non-stationarity and structural break effects. A somewhat similar approach to
realized volatility modeling is suggested in Gallo and Otranto (2015), Gallo and Otranto (2016), where the
volatility specification is exposed to the regime switching and/or smooth transition dynamics. In contrast, in
the EWMA framework we alter the volatility process by dynamically changing the weights for the recent and
old measures of the latent variance.

3.5.4 Empirical Application

We estimate the model on the full sample (2517 business days) for each of 12 considered stocks. In addition,
we estimate the restricted model with γ = 0 in (3.16), so the weighting parameter becomes a constant (and is
equal to the initial value λ1 that is treated as a constant parameter in the estimation).

In Figure 3.3 we plot the weighting coefficients λt filtered from both main and restricted models for GE
stock (bottom panel). We also include the plots with the annualized realized volatility (top panel) and the
log-realized quarticity (medium panel) estimated using intra-daily data for the same period. The restricted
model finds λ = 0.344. This value is much higher than the coefficients typically suggested in the RiskMetrixTM

models. This is quite natural, since a signal-to-noise ratio of realized measures is much higher than that of
squared returns. The main (unrestricted) model indicates that λt exhibits a considerable extent of variation.
As we can see from the plot, λt rises significantly above the static level in 2008-09 and in 2011. It means that
the model prefers to put a higher weight on the recent realized measures than on the old ones in the specification
of the latent volatility dynamics. A possible interpretation of this phenomenon is following. When the stock
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returns shift from a less to a more volatile regime (e.g., in the beginning of the Great Recession), the model
attaches more weight to the current and recent realized measures which contain more relevant information about
the new volatility regime than the old measures.
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Figure 3.3: The series are obtained for the General Electric (GE) asset. The top panel shows the annualized volatility
estimates obtained with the RV measures. The middle panel contains the logarithm of the realized quarticity esti-
mates. The bottom panel contains the estimated weighting coefficients λt from the static (restricted) and the dynamic
(unrestricted) coefficient EWMA models (from Section 3.5.3). The estimation period is January, 2004 - December, 2013.

In order to examine whether the model likelihood gets a statistically significant advantage from allowing
the weighting parameter λt to vary, we compute the likelihood ratio statistics using the fact that the restricted
model is nested in the unrestricted one. Table 3.3 contains the values of λ from the restricted models (upper
numbers) for 12 stocks and 4 realized estimators. We notice that realized measures based on the transaction
data (RK and MC) have on average higher weights λ as compared to the “sparse” measures (RV and TV).
The middle numbers in cells provide p-values of the likelihood ratio test statistics for the null hypothesis γ = 0
(restricted model) and the bottom lines indicate a model preferred by BIC. In absolute majority of cases, the
null is strongly rejected in favour of the dynamic specification of the weighting parameter.

3.5.5 Discussion and Extensions

To establish the link between the optimal combination of measures in the static measurement framework (Section
3.5.1) and the example of the dynamic model with the optimal combination of predictive signals (Sections
3.5.2-3.5.3) we discuss the trade-off that is relevant in both scenarios. On one hand, an ex-post realized
measure xt can be a noisy signal of the latent volatility level yt, so an ex-ante forecast ht might contain
more precise information about yt provided that the latent volatility is well described by the DGP of the
forecasting model that generates ht. Therefore, it might be preferable to increase the weight of ht in the
dynamic measurement/forecast. On the other hand, if there is a risk of changing environment (e.g., an economy
moves into a more volatile regime) and the model may provide inaccurate forecasts ht under the new conditions,
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AXP BA BAC CSCO CVX GE INTC JPM PFE UTX WMT XOM

Realized static λ 0.310 0.259 0.463 0.219 0.204 0.344 0.219 0.173 0.322 0.317 0.197 0.292
variance LR (p-values) 0.085 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

BIC prefers Stat Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn

Threshold static λ 0.356 0.304 0.455 0.220 0.223 0.351 0.255 0.199 0.382 0.332 0.236 0.295
estimator LR (p-values) 0.076 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.105 <0.01

BIC prefers Stat Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Stat Dyn

Realized static λ 0.380 0.344 0.501 0.271 0.238 0.390 0.257 0.218 0.389 0.589 0.210 0.331
kernel LR (p-values) 0.188 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

BIC prefers Stat Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn

Markov chain static λ 0.385 0.463 0.564 0.259 0.263 0.469 0.280 0.217 0.403 0.510 0.216 0.364
estimator LR (p-values) 0.243 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

BIC prefers Stat Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn Dyn

Table 3.3: Table contains results of the statistical comparison of the in-sample fit between the static and the dynamic
coefficient EWMA models (from Section 3.5.3). Rows correspond to the realized estimators used for the model estima-
tion, columns correspond to the considered stocks. An intersection of a row and a column is a cell and each cell contains
3 entries. The top numbers correspond to the estimated λ from the static models. The middle numbers contain p-values
of the likelihood ratio tests for the null of the static specification λ against the alternative of the dynamic specification
λt. The bottom entries indicate a model (dynamic or static) preferred by BIC. The estimation period is January, 2004 -
December, 2013.

ex-post measures xt may contain a more reliable signal about latent yt. Thus, putting more weight on xt may
improve the dynamic measurement/forecast. An adaptive mechanism that allows to balance this trade-off
responding to the changing environment may provide an improvement in measuring, modeling, and forecasting
of latent variables.

It is also interesting to discuss how this intuition relates to the models with a dynamic attenuation. The
idea behind the attenuation25 essentially corresponds to the first part of the trade-off from the above paragraph.
Namely, more noisy signals should have lower importance (be attenuated) compared to less noisy signals when
an unobserved variable is estimated. The class of models for the realized variance with the dynamic attenuation
effect was recently proposed in Bollerslev et al. (2016). The authors introduce a time-varying autoregressive
coefficient into the HAR model for a realized volatility. The dynamics of this coefficient is determined by
the temporal variation of an attenuation bias which is approximated by means of the realized quarticity (RQ)
measures. In result, the model takes a conservative stance when a realized measure has a large measurement
error (large RQ) and “attenuates” the effect from such observation. This model, however, does not embed the
second part of the trade-off described in the above paragraph. In particular, if we suppose that the latent state
of volatility has shifted to the higher permanent level, then it will likely be reflected in the rise of RQ as well
(see Figure 3.3). An attenuation model will respond in reducing the weights imposed on the new information.
As a consequence, the transition to a newly established higher volatility level will be slow and the forecasting
performance will be deteriorated during the transition period. In contrast, adaptive models are supposed to
take into account both sides of the trade-off and shift to the new regimes faster.

Simple adaptive EWMA model from Section 3.5.3 can be extended along the several directions. So far a
realized measure xt appears in the model as a purely exogenous variable. It would be possible, however, to
“close” the model by introducing a separate measurement equation for xt in the spirit of Hansen et al. (2012).
Such modification can potentially lead to a more precise signal extraction and a better estimation stability.
Furthermore, the EWMA specification for volatility dynamics can be replaced by a more general autoregressive
structure.

Another promising direction is to incorporate the proxies for latent measurement errors of xt (like RQ for RV
or analogous measures for other estimators) into the model. Being introduced explicitly, such information might

25See instructive discussion of the attenuation effect in the context of realized variance modeling in Hansen and Lunde (2014).
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be helpful in solving the aforementioned trade-off by better identifying the risk of measurement inaccuracy and
the risk of inconsistency between the model and the true DGP of the latent variable.

3.6 Intermediate Conclusion and Outlook

In this paper we empirically investigate how fast the information about the daily asset return variance arrives in
the course of a trading day and how much an ex-ante variance forecast can contribute to this information flow.
We find that the first few minutes of trading after market opening provide a relatively precise signal about the
daily volatility level measured ex-post. We qualitatively confirm these findings by intra-daily forecasting of the
daily return density. However, a series of additional robustness checks is needed to make more firm conclusions
(e.g., use outlier-robust or non-linear forecast projections).

We document that the predictive content of realized measures that employ high frequency data at transaction
level is strongly superior compared to estimators that use sparsely sampled data, but the difference is getting
negligible closer to the end of the trading day as more observations are used to construct the measure. Therefore,
our empirical design may serve as a natural ground for a more elaborate comparison of the small sample
properties of different types of estimators as well as their (very) short-run forecasting performance.

Furthermore, we suggest a simple score-driven adaptive EWMA model that regulates in a dynamic manner
the relative impact of old and recent measures on the variance forecasts. The adaptive mechanism provides
an insight about a choice of the optimal combination of an ex-ante forecast and newly appeared signals (such
as intra-daily/daily realized measures). Applying the model to data we find that dynamic weighting leads
to statistically significant improvements. The idea can be developed further and adjusted with the intra-
daily forecasting analysis. In particular, there can be suggested an unobservable component model that treats
conditional variance of daily returns as a latent factor which underlies intra-daily measures. A principle of
the dynamic signal combination can then be applied both to forecasting and intra-daily updating of the latent
variance in a single modeling framework.

This paper is a step towards a more extensive and careful empirical analysis of the information content
arriving with the intra-daily transaction flow. Possible extensions can be made in several directions. First, the
predictive information contained in intra-daily volatility measures can be examined in the presence of additional
control variables, such as days of the week, scheduled announcements, liquidity, market conditions, etc. It can
allow us to identify a set of important alternative ex-ante predictors of the daily volatility level. Second, it
would be interesting to investigate how much we can learn from the short intra-daily periods about correlations,
market betas and other relevant quantities. Thus, we will be able to explore an intra-daily discovery rate of a
covariance between assets that is of considerable interest for risk management and hedging purposes. Third, in
order to make more substantive empirical conclusions we would like to extend the number of considered assets
(to provide more variation in stock characteristics across the sample) as well as the set of realized measures in
use (to better examine the extent of heterogeneity in small sample performance across different estimators).
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Realized Variance
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(a) The target variable is the realized measure of variance computed with the corresponding realized
estimator at the end of the day.
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(b) The target variable is the squared open-to-close return (the same for all 4 cases).

Figure 3.4: Subplots contain the averaged (across all considered stocks) optimal forecast weights for 4 estimators. The
lower (white) parts of the bar-plots correspond to weights for the forecasts based on current intra-daily measures. The
upper (colored) parts of the bar-plots correspond to weights for the ex-ante model-based forecasts. The optimal static
weights are constructed as in Bates and Granger (1969) with an additionally imposed constraint, ω ∈ [0, 1]. The target
variables are specified below the plots. The out-of-sample period is January, 2007 - December, 2013.
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Appendix C

Supplement to Chapter III

C.1 Estimating Intra-daily Variance Fractions

The usual practice in the literature is to estimate a (“U-shape”) periodic intra-daily volatility pattern that
is oftenly considered as a deterministic seasonal component of the intra-daily return variance (e.g., Andersen
and Bollerslev (1997), Engle and Sokalska (2012)). We slightly depart from this practice and instead estimate
average volatility fractions or, more precisely, cumulative shares of volatility that realize before the certain
intra-daily moments of time (knots). We investigate the fractions of those volatility quantities, that correspond
to the estimator in use. For example, if we use TV, the latent quantity that is measured is supposed to be the
integrated variance (IV). In contrast, if we use RK, the latent quantity is the quadratic variation (QV), that
potentially includes the jump volatility component as well. As a result, the variance distributions computed by
means of distinct realized measures can be different.

We now describe a simple method for estimation of the cumulative variance fractions generated during
trading days using possibly biased intra-daily measures. Suppose that we have realized measures xt,i (as
specified above) for days t = 1, ..., T and a set of intra-daily knots si, i = 1, ..., N . The most straightforward
way to estimate the average variance fraction qi that arrives between the market opening and a time point si
is to compute a ratio

qi =
T∑
t=1

xt,i

/ T∑
t=1

xt (C.1.1)

that would correspond to the method of moments solution based on the unconditional moment E[qixt−xt,i] = 0.
A similar approach was used, for instance, in Koopman et al. (2005) and Hansen and Lunde (2005) for scaling
up an open-to-close realized variance measure to the latent close-to-close variance1.

However, this approach is not perfect as long as xt and xi,t are possibly biased. Then, the true moment
of interest is E[qiVt − Vt,i] = 0, where Vt and Vt,i are unobservable variance quantities (that depend on the
estimator choice). Thus, as far as we assume a multiplicative form of the bias, the moment condition can be
expressed as E[qi(1 + b̃)xt − (1 + b̃i)xt,i] = 0, where b̃ and b̃i are bias components ( > −1).

We suggest to use the additional information from the remaining part of the day. It can be associated
with the following moment, E[(1− qi)(1 + b̃)xt − (1 + b̃−i)xt,−i] = 0. Here xt,−i denotes the realized volatility
measure computed over the intra-daily period that starts at si and lasts until the market closure and b̃−i is the
corresponding bias component. After few manipulations we get

E[(1 + B̃i)xt,i + (1 + B̃−i)xt,−i − xt] = 0

which implies that generically E[xt,i + xt,−i − xt] 6= 0. Note, that we expect both B̃i and B̃−i be sufficiently
1In these papers, the latent close-to-close variance was approximated by squared demeaned close-to-close returns.

129



close to zero2.
We impose a further simplifying assumption on the structure of the bias terms. Namely, we assume that

B̃i = (1 − si)Bi and B̃−i = siBi. Intuitively, this means that the relative bias B̃i (B̃−i) disappears as long
as the intra-daily period [0, si] ([si, 1]) approaches the length of the whole trading day, [0, 1]. Based on this
assumption, we can specify the following moment conditions

g(θi) =
(

qix
∗
t − (1 + (1− si)Bi)xt,i

(1− qi)x∗t − (1 + siBi)xt,−i

)
; ∀i = 1, ..., N (C.1.2)

where θi = (qi, Bi)′ is a parameter vector. Instead of xt, we use a variable x∗t that is supposed to be highly
correlated with the daily realized measure xt. It is introduced to break the excessive correlation between the
two considered moments. We exploit the strong persistence in daily realized volatility measures and choose
x∗t = 1

2 (xt−1 +xt+1) to instrumentize xt. Then we use the iterated GMM approach to find the parameter vector
that solves

θ̂i = argmin
θi

(
1
T

T∑
t=1

g(θi)
)′
Ŵ

(
1
T

T∑
t=1

g(θi)
)

; ∀i = 1, ..., N

for the moment conditions specified in (C.1.2). Since the weighting matrix Ŵ converges in probability to the
inverse of the long-run covariance (Newey and West (1987)) of the moments, the procedure automatically puts
more weight on the more informative (less noisy) moments and increases the estimation efficiency relative to
(C.1.1).

A proper distribution curve {qi}Ni=1, though, requires monotonicity3, i.e. for two intra-daily knots si and sj
such that i < j, we should require that qi ≤ qj . Although in our empirical application we never encountered the
violation of monotonicity, if one decides to increase the number of intra-daily knots to enhance the precision
of the extracted distribution curve, this requirement may be violated. In such cases, we recommend to use
constrained sequential estimation with the restrictions q̂i ≥ q̂i−1, i = 1, ..., N .

As long as the cumulative variance distribution qi is estimated at sufficiently large number of intra-daily
time points, a more standard intra-daily periodic volatility pattern can be restored from qs. However, such
pattern will appear as a set of mass points, possibly erratic. The techniques suggested in Boudt et al. (2011)
or Bos et al. (2012) can be applied to regularize such pattern and to filter outliers.

Finally, the method suggested above relies on the unconditional moments which do not impose much struc-
ture on the intra-daily volatility distribution. In particular, the periodic pattern may be non-deterministic and
change significantly over time. Thus, it is interesting to use conditional moments of type E[qiVt − Vt,i|Vt] = 0
with a properly selected vector of instruments to estimate qi under more strong assumptions. Such moments
would imply a presence of a deterministic component in the intra-daily variance distribution conditionally on
the daily variance level.

Figure C.1.1 contains 95% confidence intervals for the estimated cumulative distributions of intra-daily
variance measured with the MC estimator for the whole sample period (10 years). One curve is obtained
using the unconditional moments, the other is based on the conditional moments with the lagged realized
volatility measure, xt−1, selected as an instrument. A comparison of these two curves can be considered as an
informal check for the assumption that variance distributions are conditionally deterministic. As we can see from
the plots, there is a noticeable discrepancy between the curves obtained using unconditional and conditional
moments for most of the examined assets. To a certain extent, this evidence invalidates the assumption that
periodic intra-daily volatility distribution is static (conditionally on the latent variance level) throughout the
whole sample period. The validity of this hypothesis can further be additionally investigated by using another
instruments or considering the sub-samples.

2For example, in case of the classical RV estimator, we have xt,i + xt,−i = xt by construction. Therefore, in that case,
B̃i = B̃−i = 0. Though, this is not necessarily true for the parametric MC estimator, for example, where the obtained measure
heavily depends on the quality of the estimated state transition matrix.

3Also, we should impose border conditions. Namely, q0 = 0 and q1 = 1.
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C.2 Subsample Analysis

We investigate the sensitiveness of our intra-daily forecasting results with respect to the subsample selection.
For this purpose we repeat the analysis held in Section 3.3.2 and compute the predictive root of mean squared
error (RMSE) for different sets (subsamples) of trading days. We use the RMSE criterion instead of the Mincer-
Zarnowitz R2 since heterogeneous variation across distinct subsamples would complicate the R2 comparison. We
consider the following subsets: days of the week, pre-crisis, crisis, post-crisis periods (partitioned in accordance
with NBER dates), days with low volatility (bottom quintile), days with high volatility (top quintile), days
with no jumps, days with significant jumps, days of scheduled FOMC statements, days of different months. The
results are provided in Table C.2.1.

As it can be seen from the results, the quality of the out-of-sample fit is indeed sensitive to the choice of
a subsample. Figure C.2.1 contains several interesting comparisons between the out-of-sample RMSE for the
selected subsamples. We may note that before the crisis the intra-daily variance predictability is on average
lower than after the crisis. On low volatile days the intra-daily measures predict daily variance enormously
better than on highly volatile days. This is not surprising since the mispredictions on low volatile days are not
that large in absolute terms. In addition, the sensitivity of the criterion to outliers lead to very high RMSE
values on highly volatile days when abnormally large mispredictions appear quite often.

Comparison between the fit on Mondays (start of the week) and Thursdays (middle of the week) indicate
that the intra-daily predictability of a daily variance is slightly better after a weekend. An interesting evidence
is captured by the comparison of the intra-daily predictability on jump days and the Federal Open Market
Committee (FOMC) scheduled statement days. Since the FOMC releases usually cause sharp price changes or
jumps (see Andersen et al. (2007), Zebedee et al. (2008), etc.), the FOMC days can be treated as a subset of
jump days. It might be the case then, that the scheduled FOMC announcements (that traders are aware about
in advance) lead to a considerable increase in the intra-daily predictability of a daily variance.
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Figure C.2.1: Subsample comparison of the predictive RMSE for intra-daily forecasting with the linear specification
(3.5). The realized volatility measures are obtained using the Markov chain estimator. Plots show aggregated results
over 12 considered stocks. The out-of-sample period is January, 2007 - December, 2013.
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Chapter 4

A Markov Chain Estimator of
Multivariate Volatility

Joint with Peter Hansen, Guillaume Horel and Asger Lunde

4.1 Introduction

This paper introduces the Markov chain estimator of multivariate volatility. Our analysis builds on the results
by Hansen and Horel (2009) who proposed the univariate Markov chain estimator. The multivariate extension
poses new challenges related to asynchronicity and the potential need to enforce the estimator to be positive
semidefinite.

The availability of high-frequency financial data has made it possible to estimate volatility over relatively
short periods of time, such as an hour or a day. The main obstacle in obtaining precise estimators is the fact
that high-frequency returns do not conform with conventional no-arbitrage models. The reason is that there is
a great deal of autocorrelation in tick-by-tick returns. The apparent contradiction can be explained by market
microstructure noise, which gives rise to the notion that the observed price is a noisy measure of the efficient
price. In this paper, we introduce a multivariate volatility estimator that is built on the theory of Markov
chains. The estimator utilizes the discreteness of high-frequency data, and the framework implicitly permits a
high degree of serial dependence in the noise as well as dependence between the efficient price and the noise.

The use of high-frequency data for volatility estimation has been very active over the past two decades,
since Andersen and Bollerslev (1998b) used the realized variance to evaluate GARCH models. The realized
variance is simply the sum of squared intraday returns, and its properties were detailed in Barndorff-Nielsen and
Shephard (2002a), for the case where the semimartingale is observed without noise, which was extended to the
multivariate context in Barndorff-Nielsen and Shephard (2004). The noise in high-frequency returns motivated
a number of robust estimators, including the two-scale estimator by Zhang et al. (2005), the realized kernels
by Barndorff-Nielsen et al. (2008), and the pre-average estimator by Jacod et al. (2009). Empirical features
of the market microstructure noise were detailed in Hansen and Lunde (2006b), which documented that the
noise is both serially dependent and endogenous, in the sense that there is dependence between the underlying
semimartingale and the noise. These empirical features motivated the development of the multivariate realized
kernel in Barndorff-Nielsen et al. (2011a), which is an estimator that permits the noise to have both of these
features.

An attractive feature of the Markov framework is that serially dependent and endogenous noise is a natural
part of the framework. Moreover, the Markov chain estimator is simple to compute and the same is the case for
the estimator of its asymptotic variance. It only takes basic matrix operations to compute the estimator and
its confidence intervals.
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To illustrate our estimator consider the case with two assets. The bivariate sequence of high-frequency
returns is denoted by {∆Xt}ni=1, and we define the S × 2 matrix x, where S is the number of states for ∆Xt,

and each row of x corresponds to a possible realization of ∆Xt. For instance, the s-th row of x may equal
xs,· = (2,−1) that is the state where the first asset increased by 2 units, while the second asset went down by
one unit. The S × S transition matrix, P, for a Markov chain of order k = 1 is given by

Pr,s = Pr (∆Xt+1 = xs,·|∆Xt = xr,·) , r, s = 1, . . . , S,

and its stationary distribution, π = (π1, . . . , πS)′, is characterized by π′P = π′. We define Λπ = diag(π1, . . . , πS)
and the fundamental matrix Z = (I − P + Π)−1 where Π = ιπ′ with ι = (1, . . . , 1)′ ∈ RS . From the maximum
likelihood estimator of P we deduced estimates of π and Z, denoted π̂ and Ẑ, see Section 3 for details. The
multivariate Markov chain estimator is given by

MC = nD−1
{

x′(Λπ̂Ẑ + Ẑ ′Λπ̂ − π̂π̂′ − Λπ̂)x
}
D−1,

where D = diag (δ1, δ2) and δ2
j = n−1∑n

t=1X
2
j,t is the sample average of the squared price of the j-th asset,

j = 1, 2. The expression inside the curly brackets is the estimator of the long-run variance of a finite Markov
chain, see Hansen and Horel (2014). The scaling involving D, is a transformation needed for the estimator to be
an estimator of volatility of logarithmic prices. The scaling with the sample size, n, relates to the local-to-zero
asymptotic scheme that arises under in-fill asymptotics.

Hansen and Horel (2009) showed that filtering can resolve the problems caused by market microstructure
noise under weak assumptions that essentially amounts to the noise process to be ergodic with finite first moment.
This result is theoretical in nature, because the ideal filter requires knowledge about the data generating process.
In order to turn the theoretical filtering result into an actual estimator, one needs to adopt a statistical model,
and our approach is to model the increments of the process with a Markov chain model, which is a natural
starting point given the discrete nature of high-frequency data.

The discreteness of financial data is a product of the so-called tick size, which defines the coarseness of the
grid that prices are confined to. For example, the tick-size is currently 1 cent for most of the stocks that are
listed on the New York Stock Exchange. The implication is that all transaction and quoted prices are in whole
cents. The Markov estimator can also be applied to time series that do not live on a grid, by forcing the process
onto a grid. While this will introduce rounding error, it will not affect the long-run variance of the process.
Delattre and Jacod (1997) studied the effect of rounding on realized variances for a standard Brownian motion,
and Li and Mykland (2006) extended this analysis to log-normal diffusions.

The present paper adds to a growing literature on volatility estimation using high-frequency data, dating
back to Zhou (1996), Zhou (1998). Well known estimators include the realized variance, see Andersen et al.
(2001b) and Barndorff-Nielsen et al. (2008); the two-scale and multi-scale estimators, see Zhang et al. (2005)
and Zhang (2006); the realized kernels, see Barndorff-Nielsen et al. (2008), Barndorff-Nielsen et al. (2011a). The
finite sample properties of these estimators are analyzed in Bandi and Russell (2005), Bandi and Russell (2008),
and the close relation between multi-scale estimators and realized kernels is established in Barndorff-Nielsen
et al. (2011b). Other estimators include those based on moving average filtered returns, see Andersen et al.
(2001a), Maheu and McCurdy (2002), and Hansen et al. (2008); the range-based estimator, see Christensen and
Podolskij (2007); the pre-averaging estimator, see Jacod et al. (2009); the quantile-based estimator Christensen
et al. (2008); and the duration-based estimator, see Andersen et al. (2008).

The stochastic properties of market microstructure noise are very important in this context. Estimators
that are robust to iid noise can be adversely affected by dependent noise. Hansen and Lunde (2006b) analyzed
the empirical features of market microstructure noise and showed that serial dependence and endogenous noise
are pronounced in high-frequency stock prices. Endogenous noise refers to the dependence between the noise
and the efficient price. A major advantage of the Markov chain estimator is that dependent and endogenous
noise is permitted in the framework. In fact, dependent and endogenous noise arises naturally in this context,
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see Hansen (2015). Thus estimation and inference are done under a realistic set of assumptions in regard to the
noise.

The present paper is an extension of Hansen and Horel (2009) to the multivariate context. This extension
posed new challenges that are specific to the multivariate context. For instance, different assets are typically
not traded at synchronous times. This non-synchronicity leads to the so-called Epps effect, which manifests
itself by a bias towards zero for the realized covariance as the sampling frequency increases. See Renò (2003)
for a study of the determinants of the Epps effect. Another issue that may arise in the multivariate context is a
need for the estimator to be positive semidefinite, which is not guaranteed by all multivariate estimators. The
asynchronicity poses few obstacles for the Markov chain estimator, albeit a large order of the Markov chain, or
another remedy, may be needed if an illiquid asset is paired with a liquid asset.

The outline of this paper is as follows. The Markov chain framework is presented in Section 2, and the
estimator in Section 3. In Section 4 we present two composite estimators that estimate every element of the
matrix separately. In Section 5 we propose a novel projection methods that may be needed to ensure that the
composite estimators are positive semidefinite. The properties of the estimators are evaluated in Section 6 with
a simulation study, and an empirical application to commodity prices is presented in Section 7.

4.2 The Markov Chain Framework

Let {Xt} denote a d-dimensional process, whose returns ∆Xt can take S distinct values in Rd. For notational
convenience we take ∆Xt to be a row-vector. The possible states for the k-tuple, ∆Xt = {∆Xt−k+1, . . . ,∆Xt},
are indexed by s = 1, . . . , Sk, where the s-th state corresponds to the case where ∆Xt = xs, which is an 1× kd
vector. See the example below.

We make the following assumption about the increments of the process.

Assumption 1. The increments {∆Xt}nt=1 are ergodic and distributed as a homogeneous Markov chain of
order k <∞, with S <∞ states.

The homogeneity assumption is unlikely to be valid in the context of high-frequency data. Fortunately the
assumption is not critical for our results, because by increasing the order, k, of the homogeneous Markov chain
that is imposed on the high-frequency returns, the resulting estimator becomes robust to inhomogeneity, see
Hansen and Horel (2009). This feature of the Markov chain estimator is demonstrated in our simulation study
in Section 6.

The transition matrix, P , is given by

Pr,s = Pr(∆Xt+1 = xs|∆Xt = xr), for r, s = 1, . . . , Sk,

and the corresponding stationary distribution, π ∈ RSk , which is unique under Assumption 1, is defined by
π′P = π′. The fundamental matrix by Kemeny and Snell (1976) is defined by

Z = (I − P + Π)−1,

where Π = ιπ′ with ι = (1, . . . , 1)′ ∈ RSk so that each row of Π is simply π′.
The Sk×d matrix, f, is defined to be the last d columns of x. So fs is the value that (the latest observation

of) ∆Xt has in state s. (Recall that a state represents a realization of k consecutive returns.) Finally, we define
the diagonal matrix Λπ = diag(π1, . . . , πSk).

The following example illustrates the multivariate Markov chain estimation in the case where d = 2 and
S = 2, and k = 1, 2.

Example 1. Suppose that we have two assets and that all price changes are up or down by a single unit. If
the order of the Markov chain is k = 1, then the transition matrix, P, is a 4× 4 matrix, and we can define the
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state matrix as

x = f =


1 1
1 −1
−1 1
−1 −1

 .

If, instead, the order is k = 2, then we have S2 = 16 states, and consequently P will be an 16× 16 matrix and
f an 16× 2 matrix. For instance, we may order the states as below, so that a row of x corresponds to a state
value for (∆Xt−1,∆Xt) and the corresponding row of f will have just the state value for ∆Xt:

x =



1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1
−1 1 1 1
−1 1 1 −1
−1 1 −1 1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 −1 −1 1
−1 −1 −1 −1



f =



1 1
1 −1
−1 1
−1 −1

1 1
1 −1
−1 1
−1 −1

1 1
1 −1
−1 1
−1 −1

1 1
1 −1
−1 1
−1 −1



.

Although the transition matrix is a 16 × 16 matrix, it has at most four non-zero elements in each row. The
reason is that many transitions are impossible. For, instance if ∆Xt = {(1, 1), (1, 1)} then the next state will
have to be {(1, 1), (∗, ∗)}, and a transition to, {(−1,−1), (1, 1)} say, is impossible, and thus have probability
zero. So the transition matrix, P , will be increasingly sparse as k increases.

The underlying idea of the Markov chain estimator is a martingale decomposition of

Xt = Yt + µt + Ut,

where {Yt,Ft} is a martingale with increments ∆Y ′t = e′stZf − e
′
st−1

PZf , µt = tµ with µ = E(∆Xt), and Ut is
a stationary ergodic bounded process.

The asymptotic scheme that will be used in the present context is the following:

f = n−1/2ξ, with ξ ∈ RS
k×d fixed. (4.1)

This local-to-zero asymptotic scheme is similar to those used in Delattre and Jacod (1997) and Li and Mykland
(2006), and is natural under in-fill asymptotics. In the present context, it guarantees almost sure convergence
of the estimator.

Under this scheme, it follows from Hansen and Horel (2014) (and the ergodic theorem) that

Proposition 1. Suppose that Assumption 1 holds, then under the asymptotic scheme (4.1), we have

n∑
t=1

∆Yt∆Y ′t
a.s.→ ξ′Z ′(Λπ − P ′ΛπP )Zξ = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,

as n→∞.

Proof. By Assumption 1 it follows that ϑ′t = e′stZξ− e
′
st−1

PZξ is an ergodic Markov chain (of order k+ 1) with

Eϑtϑ′t = ξ′Z ′(Λπ − P ′ΛπP )Zξ = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,
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where the first identity follows from Hansen (2015, theorem 2) and the second from Hansen and Horel (2014,
lemma 1). By the ergodic theorem it follows that 1

n

∑n
t=1 ϑtϑ

′
t =

∑n
t=1 ∆Yt∆Y ′t converges to ξ′(ΛπZ +Z ′Λπ −

ππ′ − Λπ)ξ almost surely (and in mean).

An implication of Proposition 1 is that

Σ# = ξ′(ΛπZ + Z ′Λπ − ππ′ − Λπ)ξ,

is the quadratic variation of the martingale component. The same quantity is also the long-run variance of ∆X ′t
in the sense that

var(X ′n −X ′0) = var(
n∑
t=1

∆X ′t)→ Σ#, as n→∞.

There are different ways to construct a multivariate volatility estimator using Markov chain methods, and
we shall present three distinct estimators and highlight each of their advantages.

4.3 The Markov Estimator

Let P̂ be the maximum likelihood estimator of P and let π̂ be its corresponding eigenvector, π̂′P̂ = π̂′. Fur-
thermore, let Π̂ = ιπ̂′ and Ẑ = (I − P̂ + Π̂)−1. The expression for the long-run variance of the Markov chain
motivates the estimator

MC# = nf ′(Λπ̂Ẑ + Ẑ ′Λπ̂ − π̂π̂′ − Λπ̂)f,

for which we have the following asymptotic distribution.

Proposition 2. Suppose that Assumption 1 holds, then under the asymptotic scheme (4.1), we have

n1/2(MC# − Σ#) d→ N(0,Ω),

where the asymptotic covariance between the (i, j)th and (l,m)th elements is

Ωij,kl =
∑
r,s,v

[V (r)]s,v[Ξ(r, s)]i,j [Ξ(r, v)]l,m, (4.2)

with V (s) = 1
πr

(Λe′rP − P
′ere

′
rP ) and

Ξ(r, s) = πrξ
′Z ′(Λzs − P ′ΛzsP )Zξ

+πrξ′(ππ′ − 2πz′s − 2zsπ′)ξ + ξ′[ΛπZerz′s + zse
′
rZ
′Λπ]ξ,

and where z′s = e′sZ is the s-th row of Z.

Proof. Follows from Hansen and Horel (2014, theorem 2) by adapting their expressions (substitute ξ for f and
ξ′π for µ).

Remark. We note that in the univariate case, MC# simplifies to nf ′Λπ̂(2Ẑ − Π̂− I)f, which was the estimator
proposed by Hansen and Horel (2009).

4.3.1 Volatility of logarithmic prices

The object of interest is, typically, the volatility of log-prices, rather than Σ#, which is the volatility of the
price process in levels. An exact estimator can be obtained with the Markov framework, by first extracting the
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Martingale component of Xt, however, for the univariate case Hansen and Horel (2009) show that the following
estimator,

MC = MC#

1
n

∑n
t=1X

2
Tt

,

is virtually identical to the realized variance of the filtered logarithmic prices that are deduced from the estimated
Markov chain. The resulting approximate estimator of the quadratic variation has several advantages, such as
computational simplicity. In the present multivariate context, we adopt the following estimator:

MC = D−1MC#D−1, (4.3)

with D = diag (δ1, . . . , δd) and δ2
j = n−1∑n

t=1X
2
j,t j = 1, . . . , d. Our simulation in Section 6 shows that this

approximate estimator is more accurate than other realized measures.
Alternatively one could use the estimator MC#

i,j/
1
n

∑n
t=1Xi,tXj,t, for i, j = 1, . . . , d, but we prefer (4.3)

because positively definiteness of MC# is passed onto MC, and in practice δiδj ' 1
n

∑n
t=1Xi,tXj,t because

the prices do not vary much in relation to their average level over the estimation window, which is typically a
trading day.

4.4 Composite Markov Estimators

The number of possible states increases exponentially with the dimension of the process, d. Consequently, the
dimension of P can become unmanageable even with moderate values of S, k, and d. For instance, with d = 10
assets, and price changes ranging from −4 to 4 cents, S = 9, and a Markov chain of order k = 2, the transition
matrix would be (Sd)k × (Sd)k = 920 × 920, which is impractical.

As an alternative, one can construct a composite estimator, that combines lower dimensional Markov es-
timator, which is in the spirit of Hautsch et al. (2012) and Lunde et al. (2014). In this section we consider
two such estimators. The first is constructed from univariate estimators, using a simple transformation for the
estimation of covariances. The second estimator is constructed from bivariate Markov estimators, which has the
advantage that standard errors of each element will be readily available. We will make use of these standard
errors in the next section.

4.4.1 The 1-Composite Markov Estimator

In this section we introduce a composite estimator that is based on univariate Markov estimators. The identity

cov(X,Y ) = var(X + Y )− var(X − Y )
4

motivates the estimator

MC#1
i,j = 1

4 (MC#
Xi+Xj −MC#

Xi−Xj ),

where MC#
Xi+Xj and MC#

Xi−Xj are the univariate Markov chain estimator, applied to the time series Xi,t+Xj,t

and Xi,t−Xj,t, respectively. Note that the diagonal terms, i = j, simplifies to 1
4MC#

2Xi = MC#
Xi

. This approach
to polarization-based estimation of the covariance is well known. In the context of high-frequency data it was
first used in Horel (2007, section 3.6.1) who also explored related identities. More recently it has been used in
Ait-Sahalia et al. (2010).

The 1-Composite estimator is mapped into estimators of the volatility of log-returns using the same diagonal
matrix, D, as in (4.3), thus MC1 = D−1MC#1D−1.

142



4.4.1.1 Pre-Scaling

If one seeks to estimate the covariance of two assets, whose increments are on different grid sizes, it can be
advantageous to use differentiated scaling of the assets, specifically

cov(X,Y ) = var(aX + bY )− var(aX − bY )
4ab ,

where a and b are constants. This can, in some cases, greatly reduce the number of states, which is computa-
tionally advantageous.

4.4.2 The 2-Composite Markov Estimator

In this subsection we introduce a composite estimator that uses bivariate MC# estimates. For all pairs of assets
we compute the correlation along with an estimate of its asymptotic variance, which will be used in the next
section.

We simply estimate the bivariate Markov process (Xi,t, Xj,t)′, and obtain the estimator of Section 3, MC#,
which is a 2× 2 matrix. The covariance terms we seek is the lower-left (or upper-right) element

MC#2
i,j =

MC#(Xi) if i = j,

MC#
1,2(Xi, Xj) if i 6= j,

where MC#
1,2(Xi, Xj) is the upper right element of the 2 × 2 matrix MC#, for the bivariate process, (Xi, Xj).

In contrast to the covariance estimated with the 1-composite estimator, the standard error of MC#
1,2(Xi, Xj) is

readily available from (4.2).
Analogous to the other estimators, the 2-composite estimator is mapped into estimators of the volatility of

log-returns with MC2 = D−1MC#2D−1.

4.4.3 Advantages and Drawbacks of Composite Estimators

The advantages of the composite estimators are threefold.

• Computational: The state space for a univariate series is smaller than that of a multivariate.

• Dimension: Enables the construction of covariance matrices of any dimension, whereas the multivariate
approach is limited to relatively low dimensions.

• No need to synchronize the observation times for each of the asset, e.g. by refresh time, see Barndorff-
Nielsen et al. (2011a).

The drawbacks of the composite estimators include:

• Positive semidefinite estimate is not guaranteed

• Estimate of asymptotic variance is not readily available.

The dimension of the transition matrix (and fundamental matrix) increases rapidly with the dimension of the
process d, and at some point it becomes computationally impossible to manipulate the relevant expressions that
are needed for the computation of the Markov estimator. In our empirical analysis with k = 5, the dimension
of P was about 500-1000 for d = 1, about 3000-5000 for d = 2, and about 8000-10,000 for d = 3. The problem
with non-psd appears to be relatively rare in practice when d is small. We have only seen one case where a
5× 5 estimate was non-psd estimate. The occurrence is more common in higher dimensions. Of the 251 14× 14
estimators we obtained for 2013, 14 of them were non-psd.
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4.5 Enforcing Positivity

While MC# is a quadratic form that yields a positive semidefinite estimator, there is no reason to expect that
the composite estimators, MC#1 and MC#2 , will be positive semidefinite (PSD) in finite samples. This problem
is often encountered in estimation of high-dimensional variance-covariance matrices.

One can project a non-PSD estimate, by solving the following semi-definite program for the variable Σ

min
Σ
‖Σ−A‖Fro subject to Σ ≥ 0. (4.4)

The solution can be found efficiently by computing the spectral decomposition of the matrix A, and drop all
negative eigenvalues, i.e. map the symmetric matrix, A = Qdiag(λ1, . . . , λd)Q′ into Qdiag(λ+

1 , . . . , λ
+
d )Q′, where

λ1, . . . , λd are the eigenvalues of A and x+ = max(x, 0). Such an estimator will, due to the zero eigenvalues,
be on the boundary of the space of psd matrices, which motivated Ledoit et al. (2003) to impose an additional
constraint, diag(Σ) = diag(A).

In this paper we propose a novel projection that takes advantage of standard errors of the individual elements
of the matrix A when these are available. Thus let ωij be (an estimate of) the standard errors of Aij . Then we
solve the following program

min
Σ

d∑
i,j=1

(
Σij −Aij

ωij

)2
subject to Σ ≥ 0. (4.5)

The solution can be obtained using semidefinite programming solvers that are readily available, including the
cvx software for Matlab by Grant et al. (2014). The optimization problem can be supplemented with the
constraint diag(Σ) = diag(A), which would produce a constrained estimate with strictly positive eigenvalues,
except in pathological cases, e.g. if A is psd with zero eigenvalues to begin with.

The projection in (4.5) is appealing because it attempts to influence accurately measured elements of A
less than those that are relatively inaccurate. An even more appealing projection along these lines would also
account for correlations across elements. In the present context, such cross correlations are only available for the
estimator MC#. However, since this estimator, MC#, is psd per construction, there is no need for a projection
of this estimator.

4.6 Simulation

In this section we compare the 1-composite Markov estimator against some benchmark. Diagonal elements are
compared with the realized variance (RV) and the realized kernel (RK). Off-diagonal elements are compared
with the realized covariance (RC).

4.6.1 Efficient Price

Our simulations are based on two designs for the latent price process, Yt. In the first design, Yt is simply
sampled from a Brownian motion with constant volatility. In the second design, Yt is drawn from a stochastic
volatility model, which is known as the Dothan model in the literature on interest rates, similar to that used in
Barndorff-Nielsen et al. (2008). Specifically we simulate

log Yi,t = log Yi,t + σi,tVi,t, i = 1, 2,

where Vi,t = γZi,t +
√

1− γ2Wi,t with (Z1,t, Z2,t,W1,t,W2,t) being iid Gaussian, all having unit variance and
zero correlation, with the exception that cov(W1,t,W2,t) = ρ.

In the design with stochastic volatility, the volatility, σi,t, correlates with Zi,t, so that γ controls the leverage
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effect of the volatility on the stock prices. Specifically,

σi,t =
√

∆ {exp (β0 + β1τi,t)} ,

where τi,t = exp(α∆)τi,t−1 +
√

exp(2α∆)−1
2α Zi,t, with τi,1 drawn from its unconditional distribution, and ∆ = 1

N

with N = 23, 400. Additional details about the specification is given in the Appendix.
The values of the parameters in both designs are summarized in Table 4.1.

β0 β1 α ρ γ

Constant Volatility 0 0 – -0.3 0
Stochastic Volatility -0.3125 0.125 -0.025 -0.3 0.5

Table 4.1: Parameters values for simulating the efficient price process, Yt.

4.6.2 Noise

We will use two specifications for the noise. The first is pure rounding noise, so that

Xt = δ[Yt/δ],

where [a] is the rounding of a to the integers so that the parameter δ controls the coarseness of the rounding
error.

The second specification has an additive noise component in addition to the rounding error, specifically

Xt = δ[(Yt + Ut)/δ],

where Ut are iid and uniformly distributed. The idea is that it would more closely resemble the bid ask bounce
(due to the additional jitter introduced by Ut, we will either round up or down).

In our simulation study we use δ = 0.01 to emulate rounding errors to a grid, and the noise is Ut ∼ iidU [− 1
3 ,

1
3 ]

which adds additional (mean-reverting) jitter to the returns.
In Figure 4.1 we show an example of a realization of the process with stochastic volatility using the design

in Table 4.1. The upper panel has Yt and Xt, where the latter is clearly identified by it being confined to the
grid values. The lower panel displays the corresponding volatility process, specifically we plot σ2(t) = σ2

i,t/∆.

4.6.3 Estimators and Tuning Parameters

We consider the realized variance computed with different sampling frequencies. To imitate a 24 hour period
with second-by-second price observations, we generate 23,400 noisy high-frequency returns in each simulation.

The realized variance (RV) and the realized covariance (RC) is computed using different sampling frequencies.
The choice of sampling frequency entails a bias-variance trade-off, because the bias arising from the noise is
most pronounced at high sampling frequencies, while the variance of the estimator increases as the sampling
frequency is lowered. Thus for the RV and the RC we sample every H-th price observation where H ∈
{1, 3, 5, 10, 15, 30, 60, 120, 240}.

The multivariate realized kernel (MRK) follows the implementation in Barndorff-Nielsen et al. (2011a),
which is based on the Parzen kernel, and an automatic selection of the bandwidth parameter. This estimator is
also applied to high-frequency returns based on the various sample frequencies. The MRK should, in principle,
be most accurate when based on returns sampled at the highest frequency, H = 1.

The tuning parameter for the Markov chain estimator is the order of the Markov chain, k, and we apply
this estimator for k ∈ {1, . . . , 5}.
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Figure 4.1: A typical sample path of the simulated stochastic volatility process. The upper panel displays the price
process, Yt, and the observed process, Xt, that is subject to noise and rounding error. The lower panel displays the
corresponding volatility process, σ2(t).

4.6.4 Simulation Results

We report bias and the root mean squared error (RMSE) for each of the estimators using the various choices
for their respective tuning parameters. The results are based on 10,000 simulations. The results are presented
in Table 4.2 for the case with constant volatility and stochastic volatility.

Consider first the case with constant volatility from panel A in Table 4.2. With pure rounding error we
note that the Markov chain estimator tend to outperform both the kernel estimator and the realized variance
in terms of the mean squared error. Similarly for the covariance, the MC 1-composite estimator dominates the
RC and performs on par with the MRK. The Markov estimator is somewhat insensitive to the choice of k, so
even with a non-optimal choice for k, the Markov estimator is fairly accurate. The MRK is similarly insensitive
to the choice for H. In contrast, the RV and the RC are very sensitive to the choice of H, and suffer from large
biases when H is small.

Turning to the case with both additive noise and rounding error. This design generates increments with
rather different features. While k = 1 was the optimal choice with rounding error, the best configuration is
now k = 3 or k = 4. The RV performs even worse in this design, the RC just as bad as in the previous
design, whereas MRK performs as well as in the previous design, and is on par with the Markov estimator.
This comparison is again made with hindsight as assume that relatively good choices of tuning parameters, for
k and H, respectively, are used. For the covariance, we observe that the RMSE of the Markov estimator is
predominantly driven by a bias.

Next we turn to the result from panel B in Table 4.2 which is for the case with stochastic volatility. The
Markov chain estimator is based on fitting a homogeneous Markov chain to the observed increment. For this
reason it might be expected that the Markov estimator is not well suited for the design with time varying
volatility, see Figure 4.1. However, even in the case with stochastic volatility that induced an inhomogeneous
model for the increments, we see that MC performs well. The RMSEs are, as expected, a bit larger. Interestingly,
it is the design with pure rounding errors that results in the largest RMSEs. Both the Markov estimator and
the MRK appear to benefit from the additional layer of noise that is added prior to the rounding error.
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4.7 Empirical Analysis

4.7.1 Data Description

We apply the Markov chain estimator to high-frequency commodity prices, that have previously been used in
Christoffersen et al. (2014). We confine our empirical analysis to 2013 data and consider in our study high
frequency data for 14 assets. The 14 assets include the exchange traded fund, SPY, that tracks the S&P 500
index, and 13 commodity futures. We refer to Christoffersen et al. (2014) for detailed information about the
data, including the procedures used for cleaning the high frequency data for outliers and other anomalies.

Of the 15 commodities analyzed in Christoffersen et al. (2014), we drop two of these series for computational
reasons. Specifically, we dropped “Heating Oil” (HO) because it has an unusually large number of distinct
second-to-second price increments and “Feeder Cattle” (FC) because it is substantially less liquid compared
with the other commodities. Thus, in addition to the SPY, we use the following 13 commodities in our empirical
analysis: Crude Light (CL), Natural Gas (NG), Gold (GC), Silver (SV), Copper (HG), Live Cattle (LC), Lean
Hogs (LH), Coffee (KC), Sugar (SB), Cotton (CT), Corn (CN), Soybeans (SY) and Wheat (WC).

We exclusively apply the Markov estimators to high-frequency data from the time interval 10:00-14:00 eastern
standard time, because all assets are actively traded in this period. The high-frequency prices for eight selected
assets for March 18th, 2013 are displayed in Figure 4.2.

4.7.2 Empirical Results

First we present detailed results for March 18th, 2013 (to celebrate the occasion for writing this paper). Daily
estimates (for the 10:00-14:00 interval) for all trading days in 2013 will be presented in figures.

4.7.2.1 Daily Estimates for March 18, 2013

In Table 4.4 we present five estimators of the volatility matrix for five assets. There are relatively large
discrepancies between the two realized variances, which may be due to sampling error or market microstructure
noise. The Markov estimators are largely in agreement about the correlations, but the full estimator yields a
smaller estimate of the diagonal elements in some cases. This may be caused by the estimator being somewhat
unreliable, as it is based on n = 8, 700 observations and the underlying transition matrix is an 8, 600 × 8, 600
matrix in this case. Further research is needed to characterize the limitations of the full estimator in practice.

In Tables 4.5 and 4.6 we present estimates of the full 14 × 14 matrix. The realized variances are in Table
4.5 and the two composite Markov estimators are in Table 4.6. Joint estimation of the full 14 × 14 covariance
matrix is not expected to be precise because the number of observed states (and the dimensionality of the
transition matrix) is equal to the number of observations in that case. As in the previous example, the two
realized variance estimators produce quite different values whereas the composite Markov estimators produce
rather similar results. In general, signs and magnitudes of the elements of Markov covariance matrices are
largely in agreement with those of the realized variances.

4.7.2.2 Estimates for Pooled March Data

Finally we have pooled the high-frequency data for all of March and estimated the 14× 14 matrix that reflects
the volatility in March, 2013 that occurred during the 10:00AM to 2:00PM trading periods. With 20 trading
days in March, 2013, this adds up to 80 hours of high-frequency data. Precision is expected to improve with the
larger sample size, although the dimensions of the underlying transition matrices are expected to increase as a
larger number of states and transitions will be observed in a larger sample, and the latter can potentially cause
computational difficulties. For the 2-composite estimator with k = 4 we observed between 15000 and 30000
distinct states in the pooled data set. Another challenges for the Markov estimator in the pooled sample is that
a larger degree of inhomogeneity may be expected. Hansen and Horel (2009) showed that an inhomogeneous
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Markov process can be approximated by a homogeneous Markov process, by increasing the order of the Markov
chain. So a larger k may be needed in the pooled data, which also poses computational challenges.

In Tables 4.7 and 4.8 we report estimates for the 14 × 14 covariance matrix computed with the realized
variances and the two composite Markov estimators. In contrast to the data for March 18th, 2013, the realized
variances are largely in agreement for the pooled data. Albeit some differences are observed between the 5- and
10-minute realized variances. The composite Markov estimators are in disagreement in some cases, which we
attributed to the different order of the Markov chain that were used. The 1-composite estimator was computed
with k = 5 whereas 2-composite was estimated with k = 3, for computational reasons. Naturally, one could use
a higher order to compute the diagonal elements, but we used the same order for all entries of the 2-composite
estimator to illustrate the differences that arise in this case. The 1-composite Markov estimator produces
estimates that are generally in agreement with those of the realized variance, both in terms of magnitude and
signs of covariances.

4.7.2.3 Daily Estimates for 2013

We have estimated variances and covariances for the 10:00-14:00 interval for all trading days during 2013. Some
selected series are presented in Figures 4.3 and 4.4.

In Figure 4.3 we plot annualized volatilities for SPY, Crude Oil, Gold, and Wheat based on the Markov
estimator with k = 5, and these are benchmarked with those of the realized variance with 10-minute sampling.
The estimates are quite similar, both for the very liquid assets, SPY, Crude Oil, and Gold, and the relatively
illiquid assets, Wheat, whose high-frequency data have pronounced bid-ask bounces.

In Figure 4.4 we plot daily estimates of the correlations for both the 1- and 2-composite Markov estima-
tors. These are benchmarked with the realized correlations based on 10-minute sampling. We observed that
Gold/Silver are highly correlated and its correlation is highly persistent over the year 2013. More moderate
correlations are observed for SPY/Crude Oil and Soybeans/Wheat, and these series exhibit a higher degree of
time-variation. In the case of SPY/Gold we observe a less stable correlation that changes sign several times
during the year. The general patterns are successfully captured by the composite Markov estimators, and
while the realized correlation is in agreement about the general trends, it exhibits far more day-to-day variation
which suggests that it is less accurate. The smooth and persistent behavior of the Markov estimators may be
attributed to these estimators being more accurate.

4.8 Conclusion

In this paper we have proposed a multivariate volatility estimator that is based on the theory of finite Markov
chains. The Markov chain estimator takes advantage of the fact that high-frequency prices are confined to a
grid. This is the first robust multivariate estimator for which standard errors are readily available. Previous
estimators include the multivariate realized kernel estimator, whose standard error also requires an estimate of
the long-run variance of the noise, which is difficult to estimate because the noise is, in practice, small, serially
dependent, and endogenous. The multivariate kernel estimator (MRK) converges at rate n1/5. In contrast,
the Markov estimator converges at rate n1/2 owing to the specification assumed for the high-frequency data.
These rates are, however, not directly comparable for practical situation, as the order of the Markov chain may
be required to increase with n, in order to accommodate inhomogeneity resulting from time-varying volatility.
Our simulation design suggests that the Markov estimator and the MRK performs similarly in practice, so the
major advantage of the Markov estimator is the readily available standard error.

The estimator performs well in a simulation design, and is relatively insensitive to the choice of the order of
the Markov chain, k, which is the tuning parameter that must be chosen in practice.

A potential limitation of the estimator is the high-dimensional objects that the estimator is computed from.
For the full estimator the dimension can be as large as (Sd)k, where S is the number of primitive states for the
individual series, d is the dimension of the process and k is the order of the Markov chain. The dimension will
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typically be much smaller in practice because many states are not observed in a given sample, and the transition
matrix will be very sparse, because most transitions between states are unobserved. So there is a need to further
analyze the finite sample properties of the full Markov estimator, and to characterize its limitations.

The two composite Markov estimators alleviate the challenges with high dimensional objects, but may
require a projection to guarantee a positive semidefinite estimate. For this purpose we have proposed a novel
projection that makes use of the standard errors of the elements of the matrix being projected. Since these are
readily available for the 2-composite estimator it is appealing to incorporate these, so that a projection leaves
accurately estimated elements relatively unchanged.

The empirical analysis of commodity prices illustrated the three Markov estimators, and benchmarked them
against conventional realized variances. The estimates were largely in agreement, but the Markov estimators
fare particularly well with regards to estimating correlations. While the time series of daily correlation estimates
based on the realized variance were somewhat erratic, those of the Markov estimators were more stable.
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Pure Rounding Error Noise and Rounding Error
Variance Covariance Variance Covariance

MC MC MC MC
k Bias rmse Bias rmse Bias rmse Bias rmse
1 0.002 0.109 -0.008 0.075 0.281 0.302 -0.066 0.115
2 0.004 0.144 -0.053 0.093 0.140 0.173 -0.137 0.151
3 0.007 0.174 -0.030 0.098 0.056 0.131 -0.078 0.104
4 0.005 0.202 -0.020 0.107 0.025 0.130 -0.076 0.103
5 0.003 0.221 -0.010 0.120 0.011 0.141 -0.049 0.092

RV MRK RC MRK RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse
1 3.752 3.763 0.140 0.182 -0.450 0.451 -0.008 0.074 9.697 9.708 0.112 0.159 -0.451 0.456 -0.006 0.075
3 3.445 3.455 0.058 0.136 -0.373 0.377 -0.007 0.088 8.086 8.095 0.044 0.131 -0.374 0.389 -0.005 0.090
5 3.136 3.145 0.037 0.136 -0.313 0.320 -0.007 0.097 6.829 6.838 0.027 0.135 -0.314 0.338 -0.006 0.099

10 2.486 2.494 0.017 0.146 -0.215 0.229 -0.008 0.110 4.720 4.727 0.013 0.149 -0.213 0.252 -0.007 0.113
15 2.014 2.021 0.010 0.155 -0.156 0.178 -0.009 0.119 3.488 3.495 0.009 0.160 -0.158 0.204 -0.008 0.122
30 1.222 1.229 0.002 0.175 -0.082 0.120 -0.011 0.135 1.859 1.866 0.005 0.181 -0.081 0.140 -0.011 0.138
60 0.646 0.657 -0.005 0.200 -0.042 0.100 -0.014 0.154 0.938 0.949 0.002 0.208 -0.039 0.114 -0.015 0.160

120 0.324 0.350 -0.015 0.234 -0.020 0.104 -0.018 0.182 0.467 0.491 -0.007 0.243 -0.020 0.115 -0.018 0.188
240 0.161 0.231 -0.024 0.283 -0.010 0.128 -0.019 0.224 0.233 0.293 -0.016 0.291 -0.009 0.137 -0.021 0.230

(a) Constant Volatility

Pure Rounding Error Noise and Rounding Error
Variance Covariance Variance Covariance

MC MC MC MC
k Bias rmse Bias rmse Bias rmse Bias rmse
1 0.005 0.125 -0.020 0.091 0.219 0.272 -0.055 0.143
2 0.003 0.165 -0.024 0.084 0.117 0.185 -0.093 0.131
3 0.003 0.214 -0.019 0.089 0.055 0.175 -0.053 0.097
4 0.002 0.260 -0.010 0.098 0.034 0.193 -0.050 0.094
5 -0.001 0.327 -0.007 0.108 0.021 0.212 -0.034 0.090

RV MRK RC MRK RV MRK RC MRK
H Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse Bias rmse
1 3.070 3.325 0.132 0.196 -0.325 0.443 -0.007 0.072 9.619 9.639 0.103 0.202 -0.333 0.461 -0.007 0.073
3 2.812 3.032 0.058 0.168 -0.270 0.370 -0.006 0.086 8.010 8.028 0.042 0.170 -0.275 0.392 -0.005 0.087
5 2.555 2.741 0.037 0.180 -0.227 0.313 -0.007 0.094 6.757 6.773 0.026 0.177 -0.230 0.340 -0.006 0.095

10 2.017 2.141 0.018 0.198 -0.155 0.221 -0.008 0.105 4.656 4.668 0.013 0.197 -0.160 0.256 -0.007 0.108
15 1.636 1.721 0.011 0.222 -0.114 0.173 -0.009 0.113 3.432 3.443 0.008 0.214 -0.116 0.205 -0.007 0.117
30 1.016 1.056 0.000 0.249 -0.059 0.112 -0.011 0.129 1.825 1.836 0.002 0.253 -0.062 0.142 -0.009 0.134
60 0.571 0.622 -0.010 0.295 -0.031 0.098 -0.014 0.151 0.924 0.942 -0.004 0.311 -0.032 0.116 -0.011 0.157

120 0.304 0.371 -0.022 0.374 -0.016 0.103 -0.016 0.181 0.462 0.508 -0.013 0.389 -0.017 0.113 -0.014 0.185
240 0.157 0.314 -0.031 0.498 -0.009 0.127 -0.016 0.223 0.232 0.357 -0.023 0.488 -0.009 0.132 -0.016 0.226

(b) Stochastic Volatility

Table 4.2: Simulation results. Top panel contains the simulation results where the underlying volatility is constant. The
bottom panel contains the corresponding results for the stochastic volatility. For both cases we consider two situations -
the observed process is only subject to rounding errors (left panels) and to both noise and rounding errors (right panels).
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Data Summary Statistics

SPY CL NG GC SV HG LC LH KC SB CT CN SY WC

Transactions per day
(full trading day)

19178 21993 9761 21671 9607 9738 2835 2775 2922 4013 3325 7058 8882 4684

Transactions per day: n
(10:00am - 2:00pm)

10117 8634 4495 6320 3024 2706 2315 2213 1613 2125 1940 4362 5011 2895

Primitive states:
(10:00am - 2:00pm)

11 19 11 17 11 8 8 8 11 7 23 11 13 9

Tick size 0.01 0.01 0.001 0.1 0.5 0.05 0.025 0.025 0.05 0.01 0.01 0.25 0.25 0.25

Volatility share: κ
(10am-2pm)/24h

0.31 0.36 0.40 0.24 0.20 0.20 0.47 0.25 0.44 0.37 0.46 0.24 0.25 0.52

Annual volatility (2013) 11% 19% 31% 20% 32% 19% 12% 24% 27% 18% 21% 33% 25% 22%

Table 4.3: Summary statistics for the 251 trading days in 2013. The average number of price observations per day,
and within the 10:00 AM to 2:00 PM window (n) are reported in the first two rows, followed by the average number of
primitive states (S) and the tick size for each of the assets. The second last row reports κ – the fraction of daily volatility
that occurs during the 10:00 AM to 2:00 PM window on average. The average volatility for 2013 is reported in the last
row.
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Figure 4.2: High frequency prices for eight selected commodities on March 18th, 2013 during the period from 10:00AM
to 2:00PM.
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SPY CL GC SV KC
S&P 500 81.16 79.39 -8.26 -20.03 -15.24
Light Crude 0.48 344.08 -36.52 -1.39 -2.29
Gold -0.08 -0.16 146.11 164.45 -47.74
Silver -0.13 -0.00 0.77 316.22 -36.77
Coffee "C" -0.08 -0.01 -0.20 -0.10 407.69

(a) RV5min: Realized variance with 5-minute sampling

SPY CL GC SV KC
S&P 500 68.92 90.57 1.98 -20.04 -40.79
Light Crude 0.59 342.05 -69.66 -57.07 -11.96
Gold 0.03 -0.43 78.43 50.73 -35.05
Silver -0.20 -0.26 0.48 139.93 -17.48
Coffee "C" -0.23 -0.03 -0.19 -0.07 446.70

(b) RV10min: Realized variance with 10-minute sampling

SPY CL GC SV KC
S&P 500 80.65 88.17 -24.05 -77.56 -1.89
Light Crude 0.49 407.24 -75.01 -124.63 49.36
Gold -0.26 -0.35 109.99 155.36 -32.78
Silver -0.45 -0.32 0.77 370.69 -12.07
Coffee "C" -0.01 0.15 -0.19 -0.04 257.15

(c) MC: Markov Chain Estimator (Full)

SPY CL GC SV KC
S&P 500 116.84 75.77 -10.69 4.58 21.01
Light Crude 0.35 391.86 14.34 61.58 41.60
Gold -0.09 0.07 116.87 151.25 -16.83
Silver 0.02 0.16 0.72 380.17 -0.71
Coffee "C" 0.09 0.10 -0.08 -0.00 421.94

(d) MC1: Markov Chain Estimator 1-Composite

SPY CL GC SV KC
S&P 500 116.84 80.35 -12.92 -7.44 13.76
Light Crude 0.38 391.86 -1.45 39.30 29.37
Gold -0.11 -0.01 116.87 149.72 -27.00
Silver -0.04 0.10 0.71 380.17 -59.90
Coffee "C" 0.06 0.07 -0.12 -0.15 421.94

(e) MC2: Markov Chain 2-Composite

Table 4.4: Two realized variances (5-min and 10-min) and three versions of the Markov chain estimator (full, 1-composite
and 2-composite) are presented. The estimates are for March 18, 2013 (10:00AM-2:00PM) for five selected commodities.
Variances and covariances are annualized and further scaled by 104. Correlations are in the lower triangle in italic font.
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Figure 4.3: Realized volatility based on 10 min returns against volatility computed with MC estimator (order k = 5) in
2013. Estimated values are annualized.
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Figure 4.4: Realized correlation based on 10 min returns against correlation computed with MC estimator (order k = 5)
in 2013.
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Appendix D

Supplement to Chapter IV

D.1 Details on the Simulation Design with Stochastic Volatility

For comparison with the simulation design with constant volatility we seek to have the integrated variance be
1, in expectation. This is achieved as follows. Note that

E((d log Yi,t)2) = E [exp {2 (β0 + β1τi,t)}∆] ,

and since we (approximately) have τi,t ∼ N(0, a2) with

a2 =
1−exp(2α∆)
−2α

1− exp(α∆)2 = 1
−2α,

it follows that

2(β0 + β1τi,t) ∼ N(2β0, 4β2
1

1
−2α ).

Hence

E [exp {2 (β0 + β1τi,t)}] = exp
(

2β0 + β2
1

1
−α

)
,

which will be equal to 1 if we set β0 = β2
1/(2α).
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