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A bstract

The paper deals with unobserved components in economic time series within a 
general model-based approach. The component, its final estimator, and the pre­
liminary one (which also includes the forecast) are seen to follow different Arima 
models, which can be expressed in terms of the series innovations. Analytical 
expressions are derived for the different types of associated errors.

Two applications are presented. The first one shows how the use of unob­
served components can increase substantially forecasting precision, and how the 
model-based approach can rigorously answer questions of applied concern. The 
second application illustrates the dangers of using unobserved components in some 
macroeconomic models. It is first shown how unobserved component estimators, 
such as for example a series seasonally adjusted with XI1 or with a model-based 
procedure, will most likely be noninvertible, and hence invertible models (for ex­
ample, a Var model) are not appropriate for them. Second, the recent Stock and 
Watson model aimed at forecasting recessions is used to illustrate how probabili­
ties computed over the distribution of the component, of its final estimator, and 
of its preliminary one will be poor estimators of each other. As a consequence, the 
recession forecasts will be systematically biased.

'Department of Economics, European University Institute, Badia Fiesolana,
1-50016 S. Domenico di Fiesole (FI), Italy, Tel: +39-55-5092.347, Fax: +39-55-5092.202, 
E-mail: Maravall@bf.eui.it
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In tro d u ctio n

The evolution of economic time series is subject to a variety of short-term movements 
that may provide a distorted view of the underlying growth of a variable of interest. 
Typical examples of such movements are the seasonal fluctuations, and the transitory 
and erratic movements that tend to cancel out over relatively short periods (i.e., the 
short-term noise). Since a seasonal or a noise component are never directly observed, the 
relevant underlying growth of the series is, as a consequence, an unobserved component 
(i.e., a “signal”). Typical signals Eire, for instance, the Seasonally Adjusted (SA) series 
or the trend component.

Therefore, interest in obtaining a less distorted view of how the economy is evolv­
ing leads to interest in unobserved components and, naturally, their forecasts. In this 
paper I address the issue of unobserved components and their forecasts within a model- 
based approach: the components, and hence the observed series, are outcomes of linear 
stochastic processes which shall be parametrized as Autoregressive Integrated Moving 
Average (A rima) models.

In section 1 the basic unobserved components model is presented, as well as the 
mEiin assumptions, Eind section 2 discusses optimal estimators and forecasts of the signal 
of interest. The properties of the estimators and forecasts, and in particular the structure 
of their Mean Squared Error (Mse) are analysed in section 3. Section 4 contains a 
straightforward application, where forecasts of different signals are compared, and it is 
seen how it is possible to obtain a substantial improvement in forecasting precision. It is 
further seen how the results in sections 2 and 3 can provide solutions to several problems 
of applied interest.

The distinction between the theoreticsd unobserved component, its final or histori­
cal estimator, and the preliminary estimator (and forecast), is often a source of confusion 
in applied work. Section 5 discusses some of the dangers associated with not modeling 
the distinction properly. The discussion is illustrated with a model similar to that re­
cently developed by Stock and Watson to analyse and forecast the business cycle; it is 
also seen how the results are easily extended to other important types of models. Finally, 
section 6 contains a summary of the results.

1 T h e  M o d e l and  A ssu m p tio n s

Let i t  be a time series which is the sum of a signal mt, and a nonsignal component nt, 
as in

x t = mt + nt, (1.1)

where the two components are outcomes of A rima models, which we write in short as

</>m(B)m , =  8m(B)bt, (1.2)

1
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M B ) n t = 0n(B)«; (1.3)

B  denotes the lag operator, <j> (B ) and 9(B) are finite polynomials in B  that may contain 
unit roots, and bt and ct are orthogonal white-noise variables, with variances 14 and 
14- (Throughout the paper, a white-noise variable denotes a variable that is normally, 
identically, and independently distributed.) It is assumed that the roots of the autore­
gressive (A r) polynomials <t>m(B) and <pn(B) are different; since A r roots for the same 
frequency should belong to the same component, this is not a restrictive assumption. 
The two polynomials <f>m(B) and 9m(B) share no root in common, and the same is true 
of <t>n{B) and 9n(B). The paper is mostly aimed at quarterly or monthly data, so that, 
in terms of (1, 1), the signal of interest can be the seasonally adjusted series (in which 
case the nonsignal is the seasonal component), or the trend (in which case the nonsignal 
is the sum of the seasonal plus the irregular component).

Combining (1.1), (1.2), and (1.3), it is obtained that

<t>m(B) <j)n(B) x t = <j>n{B) 9m(B) bt + <j>m{B) 9n(B) ct ,

and hence x t also follows an A rima model of the type

<t>(B) Xt =  9(B) at, (1.4)

where <j)(B) =  cj>m(B) <j>„(B), and 9(B) at is the moving average (MA) process such that

9(B) at = (j>n(B) 0m(B) bt + (j>m(B) 9n(B) ct, (1.5)

with at a white-noise variable with variance Va (see Anderson, 1971, p. 224). Without 
loss of generality, Va is set equal to 1, so that the variances of the component innovations 
will be implicitly expressed as fractions of Va, the variance of the one-period-ahead 
forecast error for the observed series. Since the sum of two uncorrelated MA processes 
[as in (1.5)] can only be noninvertible when the same unit root is shared by both MA 
polynomials, if we further assume that 9m(B) and 9„(B) have no common unit root, it 
follows that model (1.4) will be invertible. On the other hand, given that the concept of 
a trend or a seasonal component is intimately linked to nonstationary behavior, models
(1.2) and (1.3) will typically be nonstationary (see Hillmer, Bell, and Tiao, 1983). We 
shall still use the representation

ifi(B) = 9(B)/4>(B) (1.6)

when the series is nonstationary, and similarly for ipm(B). Further, letting u  denote 
frequency (in radians), the Fourier transform of ijj(B) ip(F) Va, where F  =  B~l is the 
forward operator, will be referred to as the spectrum of x t, gx(uj) (for nonstationary 
series, it is often called the “pseudospectrum”; see Hillmer and Tiao, 1982, or Harvey, 
1990). In a similar way, gm(uj) will denote the spectrum of the signal.

Identification of the models (1.2), (1.3), and (1.4) can be reached in several ways. 
Broadly, two basic approaches can be distinguished: the so-called ARIMA-Model-Based
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approach (important references are Burman, 1980, and Hillmer and Tiao, 1982), and 
the Structural Time Series approach (important references are Engle, 1978, and Harvey 
and Todd, 1983). Since observations are only available on xt, the first approach starts 
with model (1.4), which can be identified and estimated directly from the data using 
Box-Jenkins techniques; then, derives the models for the signal that are compatible 
with (1.4). From the set of all admissible models, some additional requirements permit 
the selection of a unique one. The second approach proceeds in an inverse manner, by 
identifying a-priori models (1.2) and (1.3) for the components. Ultimately, since (1.2) 
and (1.3) imply a model of the type (1.4), both approaches are closely linked; in fact, the 
results in this paper are valid for both approaches, and do not depend on the particular 
identification restrictions used in order to specify models (1.2) and (1.3).

2 O p tim al E stim a tio n  and  F orecastin g  o f  an  U n o b ­
served  C o m p o n en t

Given that the signal is never observed, one is forced to use an estimator. For known 
models (an assumption that will be made throughout the paper), and having available 
a finite realization of the series X-r =  [xi, . . . ,  xxj, the signal estimator is given by the 
conditional expectation

mi|T =  E(mt\XT), (2.1)

which, under our assumptions, yields the Minimum Mean Squared Error (M m se) esti­
mator. When t < T , (2.1) provides an estimator of a past signal; when t = T, (2.1) is the 
concurrent estimator of the signal, and when t > T, rhqr is the (t — T)-periods-ahead 
forecast. The analytical treatment of these different types of estimators is the same; I 
shall nevertheless focuss attention on the signal forecast.

It is well known that the conditional expectation (2.1) can be efficiently computed 
with the Kalman filter (see, for example, Harvey, 1989). For our purposes, however, 
it will prove more useful to work with an alternative representation of the conditional 
expectation, namely, the Wiener-Kolmogorov (WK) filter, particularly suited for ana­
lytical discussion. In order to derive the WK filter consider, first, the case of an infinite 
realization of the series Xt, to be denoted X . The optimal estimator of the signal

rht = rht |oo =  E{mt\X) (2.2)

can then be expressed, using the notation (1.6), as

m, =  14
*{b ) m f ) Xl

(2.3)

Replacing the ^polynomials by their rational expressions, after cancelling common 
factor, (2.3) becomes

rht = v ( B ,F ) x t, (2.4)
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(2.5)

where v(B, F) is the WK filter, given by

v(B ,F ) = Vb 9m(B)<t>n(B) 8m{ F )M F )  
9(B) 9(F)

(see, for example, Whittle, 1963, and Cleveland and Tiao, 1976). The filter is, thus, 
centered at t, symmetric, and convergent in B  and in F  due to the invertibility of 9(B). 
In fact, (2.5) shows that the WK filter is equal to the autocovariance-generating function 
of the process

9(B)zt = 9m(B)4>n(B)bt.

(Notice that this process is stationary even when model (1.6) is nonstationary.) Conver­
gence of the filter weights implies that, in practice, the filter can be truncated after a 
certain point at both ends. To simplify the discussion, we shall assume that the avail­
able series is long enough so that, when considering recent estimates, the filter in B  has 
converged. (In practice, this is not a restrictive assumption.)

To project rnt on a finite realization X t , since X t C X , by a well-known property 
of conditional expectations,

rhtit =  E(mt\XT) = E (E(mt\X)\XT) = 
= E(m t\Xr ), (2.6)

which implies that rh t \T can be expressed as

m,|T =  i'(B, F) xt\t , (2.7)

where v(B, F) is the WK filter given by (2.5), and

xt|T =  E (xt\XT).

Since x(|r  is the forecast of x, done at time T  (equal to x{ if T  > t), the estimator 
(2.7) can be seen as the WK filter applied to the available series extended at both 
ends with forecasts and backcasts (i.e., applied to the “extended series”). For a large 
enough (positive) T  — f, (2.7) provides in practice the final or historical estimator of mf, 
equivalent to (2.4). As t approaches T, (2.7) provides preliminary estimators of recent 
signals; for t > T, (2.7) yields the (t — T )-periods - ahead forecast of the signal.

Given an overall A rima model (1.4) for the observed series, the polynomials 4>m(B ) 
and <j>n(B) are immediately obtained by factorizing <j>(B), and assigning the roots to mt 
or nt according to the type of behavior they induce in the series (i.e., the frequency with 
which they are associated). In general, however, the polynomials 9m(B) and 9n(B ), as 
well as the variances 14 and Vc, are not uniquely determined. This is easily seen from 
the following consideration.

Let models (1.2) and (1.3) represent an admissible decomposition of xt, with at 
least one of the components invertible. Let this invertible component be, for example, 
mt, and denote by gm the positive number:

9m = min gm(u>), 0 < u < n .

4
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It follows that m t in (1.2) can be further decomposed into orthogonal signal and noise 
components, as in

mt — rht + Ut, (2.8) '

where ut is a white-noise variable with variance equal to any number in the interval 
[0, <?m]. If ut is removed from m, and, consequently, added to nt , so that

fit — Tit T Ut,

it is straightforward to find that fût and nt have also expressions of the type (1.2) 
and (1.3), and, since their spectra will be nonnegative, they provide another admissible 
decomposition of xt- Different admissible decompositions can be obtained by setting 
Vu equal to the different points in the interval [0, gm\ or, in other words, by deciding 
how much white-noise (within the admissibility bounds) should be assigned to the sig- 
nal/nonsignal components. (If nt is invertible, an analogous reasoning would apply.) 
For our purposes, this lack of identification causes no problem. It is true that different 
admissible decompositions will imply different estimators of the past and concurrent sig­
nals. But, since the forecast of independent future white-noise is zero, (2.8) implies that 
all admissible decompositions will provide the same forecast of the signal.

3 M ea n  Squared  E stim a tio n  and F o reca stin g  Error

Let the error in the forecast of the signal be

e(|T = mt — rht\T■

It can be rewritten as
eljT =  (m, -  frit) + (rnt -  ml!T), (3.1)

where the first parenthesis in the right-hand-side (r.h.s.) of the equation represents the 
error in the final estimator

dt — Tflt — TTlt,

and the second parenthesis represents the difference between the final and preliminary 
estimators. This is the revision error in the preliminary estimator

d t \ r  =  rh t — rht\T\

of course, when t > T, this preliminary estimator is the forecast. The structure of the 
two types of errors (in particular, their variances and covariances) can be easily derived 
simply from the models for the components in section 1. First, as shown in Pierce (1979), 
the error in the final estimator, dt, and the revision error, dtyr, are independent, so that

P(et|r) =  V(dt) + V{dt\T). (3.2)

5
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Concerning the final estimation error, Pierce further shows that dt can be seen as the 
output of the stationary model

0{B)dl = Om(B )en(B)gt, (3.3)

where gt is white noise with variance Vg =  VJ, K/K>- Therefore, the variance of dt is 
finite, and its Autocorrelation Function (Ac f) will converge; both, variance and Ac f , 
are immediately obtained from models (1.2), (1.3), and (1.4).

As for the revision error dt\T, a simple way to derive its properties is the following. 
Replacing x t in (2.4) with (1.4), the final estimator of the signal can be expressed as a 
linear filter on the innovations at of the observed series:

m  =  v(B, F) at, (3.4)

where, considering (2.5), the filter r](B, F) is given by

ri(B,F) = Vb Om(B) 0m{F) M F ) 
4>m(B) 0{F) (3.5)

The filter will not be convergent in B  when mt is nonstationary; however, it will always 
be convergent in F. Assuming some suitable starting conditions (see Bell, 1984), the 
estimator (3.4) can then be expressed as (for t>  T)

mt = ^ ( B )  aT + tî t (f ) “r+ i» (3-6)

where

v[\t (B) = rtr-t +  ijr-t-i B  + . . .  +  7?_t BT, 

h $ ( F )  =  ifr-t+i + rfr_t+2 F + . . .  + ijo F ‘~T~l + . ..

The term rf^o-T represents the effect of the innovations up to (and including) aj- on 
the estimator m t. From (3.5), the polynomial 77̂  (F) is convergent; further, the 77-  
coefficients are straightforward to compute, as shown in the Appendix. Since E r a-r+k =  
0 for k > 0, applying (2.6) to (3.6), the forecast of the signal is given by

"H|T =  nl It (B) ar,

and substracting this expression from (3.6), the revision error is found to be

dt\t = ht(|t (f ) aT+1- (3.7)

The moving average representation (3.7) cm  be used to derive the variance and A cf of 
dtyr■ Invertibility of (1.4) guarantees that the variance will be finite and the A cf will 
converge.

In summary, the error in forecasting, at period T, the signal mt is equal to

et|7- — mt — 771(17- — dt + dt\T,

where dt and dt\T are independent. From the autocovariance function of the two, the 
variance and A cf of et\r is easily computed. Notice that the fact that the variances of 
et|T, dt, and d£|7- are finite, implies that when the signal is nonstationary, the signal, its 
final estimator, and its forecast will be pairwise cointegrated.

6

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



4 A n  A p p lica tio n

As an example, consider the Italian monetary aggregate targeted in monetary policy, M 2 
(kindly provided to me by the Bank of Italy). It is a monthly series with 84 observations, 
starting in 1985. The model

V V 12i t =  ( l - .6 3 4 £ 12)a„  (4.1)

where V =  1 — B, V 12 =  1 — B 12, and x  =  log M2 fits very well the series, and the 
standard deviation of the innovation is <ra — 00723.

Model (4.1) accepts a decomposition as in (1.1)—(1.3), with <j>(B) = V V 12,
(j>m(B) =  V2, and <j>n(B) = 1 +  B + . ..  +  B ". The last two polynomials represent 
the trend-type autoregressive unit roots, and the seasonal autoregressive unit roots, re­
spectively. It is found that the identification problem mentioned in section 2 is, in this 
case, due to the fact that a white-noise component, say ut, with variance in the range 
(0, .17917,,) can be freely interchanged between the two components m, and nt with­
out violating the admissibility of the decomposition. Consider two particular cases of 
interest:

(a) The maximum noise variance is assigned to the component nt. In this case the 
signal follows the model

V2m, =  (1 +  .04B -  .96B2) 6t; Vb = .16814 (4.2)

and is equal to the trend component in the ARlMA-model-based approach referred 
to earlier. (The nonsignal component is the sum of the seasonal and irregular 
components.)

(b) The maximum noise variance is assigned to the signal m t. The model for the signal 
becomes then

V2 m, =  (1 -  .97B + .01B2) 6,; Vb = .68214 (A3)

and the signal is the seasonally adjusted series in the ARlMA-model-based ap­
proach. Notice that the seasonally adjusted series follows a model very close to the 
“random walk plus drift” specification. The nonsignal component is in this case 
simply the seasonal component. Within the set of admissible specifications for the 
signal, cases (a) and (b) represent two extreme cases: the trend (model (4.2)) and 
the seasonally adjusted series (model (4.3)) provide the smoothest and the noisiest 
signal, respectively.

Monetary policy provides an important application of unobserved component fore­
casting. Overwhelmingly, short-term policy formally uses as signal the seasonally ad­
justed series, and seasonal adjustment is indeed an issue of serious concern. Typically, at 
the end of the year, the monetary authority forecasts the seasonal factors or components
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for the next year. These factors will be used in control and monitoring of the mone­
tary aggregate, in order to accomodate the supply of money to the seasonal fluctuation 
in money demand, avoiding thus seasonal fluctuations in interest rates. The standard 
procedure to forecast the seasonal factors is to apply an “ad hoc” formula (as in X I1 or 
X ll Arima), with no underlying standard error associated with the forecast.

The actual practice of seasonal adjustment in the conduct of monetary policy has 
been questioned on several occasions. In fact it has been suggested that the trend should 
play a more important role (Box et al., 1987, Kenny and Durbin, 1982, Maravall and 
Pierce, 1986, Moore et al., 1981). One reason, among several, that may make the trend 
an attractive signal is that, due to its more stable behavior, it could be forecasted with 
more precision.

Applying the results of the previous section to model (4.1) and the two specifica­
tions ((4.2) and (4.3)) for the signal, it is straightforward to obtain the precision of the 
different forecasts. The standard errors of the 1- and 6-month-ahead forecasts of the 
M2 series (in logs), of its trend, and of its seasonally adjusted component axe compared 
in the following table:

S tandard  E rror of Forecast
(Monetary Aggregate Series)

1-period-ahead 6-periods-ahead
Series .0072 .0177
Seas. Adj. Series .0071 .0166
Trend .0066 .0163

Clearly, for the short-term horizons we consider, the trend outperforms the sea­
sonally adjusted series and the original series in terms of its forecasting accuracy. This 
relative performance of forecasts is, in fact, found in other important macroeconomic 
series. The following table gives the same standard errors of the previous table for the 
Spanish export and import series (in logs) discussed in Maravall (1986):

S tandard  E rror of Forecast
(Foreign TVade Series)

1-period-ahead 6-periods-ahead
Series Exports .126 .143

Imports .117 .133
Seas. Adj. Series Exports .110 .129

Imports .101 .127
Ttend Exports .056 .088

Imports .054 .083

Since the “true” trend component is never observed, we will never be able to 
measure the exact forecast error. But if the overall A rima models shows no sign of
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misspecification, we can reasonably assume that the (unobservable) forecast error of 
the trend displays the precision derived from the model. As seen in figure 1 for the 
export series, a 95% confidence interval around the trend forecast would be substantially 
narrower than the corresponding one around the original series forecast (the interval 
around the SA series would lie in between the two previous ones). Since, in the previous 
examples, the difference between the trend and the observed series is simply the seasonal 
component plus random noise (which tends to cancel out over relatively short periods), 
the relative precision of the trend makes it an attractive candidate for a short-term 
signal.

Expressions (3.4) and (3.7) — completely determined from the structure of models
(1.2), (1.3), and hence (1.4) — allow us to compute, for a given model, the exact standard 
error of the different signal forecasts. The models derived for dt and dt\T provide further 
answers to a variety of questions of applied interest. For example, rates of growth are 
typically easier to interpret than levels, and are thus heavily used. From the Ac f  of 
dt, dtyr, and et\r, standard errors for the (linear approximations to the) different rates 
of growth and their forecasts are readily obtained. A closely watched rate, for example, 
is the annual rate at which money is growing at the present moment, measured as the 
growth of the signal over the last six months for which there are observations, plus the 
forecasted growth over the next six months. For the Italian monetary aggregate example, 
the standard error of the above rate (expressed in percent points) is 1.91 for the original 
series, 1.88 for the seasonally adjusted ones, and 1.85 for the trend component. Over 
the larger span implicit in the annual rate, the forecasting improvement from using 
unobserved components naturally decreases.

The final illustration we mention concerns another problem of applied concern. As 
mentioned before, the standard operating procedure for the monetary authority is to 
seasonally adjust once a year, and compute then the seasonal factors to be used during 
the following year. It is well known that there is a loss in precision with respect to 
a procedure whereby seasonal adjustment is done concurrently every month, and it is 
important to know how much precision is lost with the suboptimal procedure. Within 
the framework of section 3, this loss of precision can be quantified as follows.

In the once-a-year adjustment, the seasonal factors used are s(|t, s(+t|t, . . . ,  St+n|o 
their estimation error can be expressed as

et+j|i =  dt +  dt+j\t, j  =  0, 1 , . . . ,  1 1 .

The variance of dt is, as before, that of model (3.3), and, letting denote the coefficient 
of B1 in F) of (3.4), the variance of dt+j\t becomes, for j  =  0,

OO
v « i . )  =  £  v l

i= l

a convergent sum, and, for j  =  1 ,2 ,. .. ,  11,

^(^t+ jlt) =  V - j+ i  +  • • • +  Vo +  y  (rft|t).
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For the monetary aggregate series (model (4.1)), operating in this way, and averaging the 
results for the 12 estimation errors dt|ti . . . ,  dt+n|t, it is found that concurrent adjustment 
would reduce the root mean-squared error of the seasonal factor estimators by 15.2%, on 
average. This seems to be a somewhat boundary value: the improvement is certainly not 
negligible, but neither are the practical requirements of a concurrent seasonal adjustment.

5 S om e E x ten sion s; T h e  D an ger o f  U sin g  U n o b ­
served  C o m p o n en ts

5.1 T he B asic M odel

In the previous section I have illustrated some straightforward applications of unobserved 
components forecasting. However, when used in econometric models, the distinction 
between the theoretical unobserved component, its final estimator, and the preliminary 
one is often a source of confusion in applied work. Since one is always forced to work 
with estimators, lack of a proper consideration of the different stochastic structures may 
have serious effects. I shall address two types of effects, one related to the specification of 
the models; the second one related to probability statements concerning the distribution 
of the unobserved components.

The two types of complications appear in the important work that Stock and 
Watson have recently completed, aimed at analysing the business cycle and forecasting 
recessions (see Stock and Watson, 1989, 1991, 1993). Thus, in what follows, 1 shall main­
tain their framework and use for illustration a particularly simple case of their model. 
Leaving aside constants and leading indicators, which are irrelevant to our discussion, 
the model can be expressed as

V xt = 7 (B)Vci + «i, (5.1.a)

<t>(B) V ct =  6t, (5.1.b)

D (B)ut = wt, (5.1.c)

where Xt is a vector of k observed economic variables, ct is a scalar unobserved component 
that follows model (5.l.b), and Ut is a vector of k residuals, assumed to follow the Var 
model (5.1.c). The polynomial <j>(B) is stationary, and so is the polynomial matrix 
D{B). The residuals bt and uit are mutually independent white-noise variables, Normally 
distributed, with zero mean, and variances Vb and Vw, respectively. (While ct is a scalar 
1(1) variable, Ut contains k 1(0) variables.) The elements in the vector Xt share the 
common nonstationary component c(, and hence xt is the sum of an effect due to the 
common factor, plus a Var  model. Notice that the specification rules out the possibility 
of cointegration among the x-variables, since, in such a case, it is easily seen that ut 
could not follow a finite Var  model as in (5.1.c).
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5.2 Invertib le M odels and Seasonally A d ju sted  Series

In the Stock and Watson (SW) model, some of the variables in the x t vector have been 
seasonally adjusted with X I1. Properly speaking, thus, some of the variables in x t are 
not observed variables, but estimators of an unobserved component (the SA series). 
Although the distinction is often ignored in applied econometric work, it is in no way 
trivial, and may have strong implications in terms of the model specification, as I proceed 
to show.

Leaving aside the preliminary seasonally adjusted series at both ends of the series, 
for the historical estimator, the SA series obtained with X I1 (ignoring outlier corrections) 
can be expressed as the linear filter

xat = v X\\{ B ,F )x t, (5.2)

where vxn (B , F ) is centered and symmetric. Ghysels and Perron (1993) present the 
weights (up to 68 leads and lags) of the linear X I1 monthly filter. The Fourier Transform 
of the filter is displayed in figure 2. The zeroes for the seasonal frequencies correspond 
to seasonal unit roots and, in fact, factorizing the filter, it is found that the seasonal unit 
roots appear in duplicate, and the X ll filter can be written as

»xn(B , F) = a(B, F) S(B) S(F), (5.3)

where a(B, F) is a finite linear filter (centered and symmetric, with decaying weights, 
as shown in figure 3) and

S(B) = l + B + ...  + B n

contains the seasonal unit roots for the 1, 2, . . . ,  6 times-a-year frequency. Expres­
sion (5.3) also applies to the filters implied by the model-based approximation to X ll 
of Cleveland and Tiao (1976), and Burridge and Wallis (1984). Since, in both mod- 
elizations, the seasonal component contains the autoregressive operator S(B), in both 
cases <j)n (B) = S(B), and hence the seasonal adjustment filter, given by (2.5), has a 
factorization as in (5.3).

The series for which seasonal adjustment by X ll is appropriate are typically series 
with nonstationary seasonality. In general, thus, the roots of S(B) will be part of their 
autoregressive polynomial, so that the model for the original series can be, quite generally, 
written as

6 (B )S (B )x t = X(B)at, (5.4)

where 6(B) is the nonseasonal autoregressive nonstationary polynomial (typically V or 
V2), and A(B) at is a stationary process. From (5.2), (5.3), and (5.4), it is obtained that

6(B) xat = a (B , F) S(F) A(B) at. (5.5)

This is the model that generates the SA series from the set of innovations [aj. Since 
a(B, F) and A(B) are convergent polynomials, they cannot contain the inverse of any
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of the roots of S(F ), which are all of unit modulus. As a consequence, x“ will be a 
noninvertible series, with (at least) 11 unit roots in its moving average expression. (If 
the seasonality of x t is assumed stationary, then the polynomial S(B) in the r.h.s. of
(5.3) does not cancel out, and there will be at least 22 unit roots present!)

When the SA series is used, SW model (5.1.a) is

V i? = 7(B) V c  + ut, (5-6)

where D(B) ut =  cut, so that ut is an invertible process. Since the two components in 
the r.h.s. of (5.6) are independent and at least one is invertible, it follows that the r.h.s. 
of (5.6) is an invertible process. But this cannot be true of the left-hand-side, since 
is noninvertible. As a consequence, SW model cannot be applied to seasonally adjusted 
series with X I1.

At a more basic level, since the SA series are noninvertible, no finite autoregressive 
representation will capture their structure, nor will it be admissible, of course, to fit a 
vector autoregression to a set of series some of them seasonally adjusted. The use of 
autoregressive models on series adjusted with X I1 is, however, a common practice.

If instead of seasonally adjusting with X I1, the model-based approach of sections 
2 and 3 is used, a similar result is obtained. Letting mt in (1.1) denote the SA series and 
nt the seasonal component, expressions (3.4) and (3.5) imply that the M mse estimator 
of the SA series can be seen as the output of the model:

[0(F) mt =  [Vb 0m(B) dm(F) <6n(F)] at. (5.7)

Therefore mt will be noninvertible if the seasonal component has unit AR roots (also, if 
9m(B) has unit roots). Since practically all model-based approaches specify a seasonal 
component with S(B) included in <f>n(B), the SA series obtained with a model-based 
procedure will likely be noninvertible.

From the previous discussion it is seen that noninvertibility of the SA series is the 
result of requiring that the sum of the seasonal component over a year span should not be 
too far from zero (or, in other words, that S (B )s t be a stationary process). Given that 
this requirement seems a minimal requirement for any seasonal adjustment method (of a 
moving-average type), noninvertibility of the SA series seems a fairly general property. 
(For a similar result concerning the trend component, see Maravall, 1993.)

From a more general perspective, what expression (5.7) indicates is that the es­
timator of a signal (be that an SA series, a trend, or a cycle) will be noninvertible 
whenever the nonsignal component contains nonstationarity. When this happens, in­
vertible models (such as the SW model or a Var model) fitted to the signal estimator 
will be misspecified.
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5.3 Sequences o f U nobserved  C om ponents and Forecasting  
R ecession s

Leaving aside intercepts and leading indicators, Stock and Watson (1993) use model 
(5.1) to forecast recessions. In brief, with model (5.1) as the data-generating process, 
they define first a recessionary pattern as a sequence of V ct (the monthly growth of the 
common unobserved component) that are below a certain threshold; an expansionary 
pattern is a sequence of V ct above some threshold values. The economy is in a recession 
in month t if (and only if) that month belongs to a recessionary pattern. In that case, 
the variable Rt takes the value 1; otherwise, Rt = 0. Similarly, the variable Et takes the 
value 1 when month t falls in an expansionary pattern, and Et = 0 otherwise. To forecast 
a recession, SW estimate the probability that, for some future t, Rt = 1, conditional on 
the present information. This probability is estimated by Monte Carlo simulation in the 
following way:

Suppose information is available up to period T(t > T). SW consider the joint dis­
tribution of a sequence Mt = [V c(_ t,, . . . ,  V ct). . . ,  V Ct+î ] conditional on information 
through month T. Thus, they consider the joint distribution of the preliminary estima­
tor Mt\r- Then, preudo-random realizations are drawn from that distribution, and Rt 
and Et are computed for each realization. The probability of a recession is estimated as 
the number of times Rt =  1 divided by the number of times Rt and Et are 1 over all 
realizations.

The probability that a future A ct falls into a recessionary pattern depends on the 
joint distribution of the sequence Mt. This is obvious from the following consideration: 
When the recessions tend to be very long and the expansions very short, the probability 
of a future A ct falling into a recessionary pattern will be larger than when recessions are 
very short and expansions very long. This probability, as already mentioned, is measured 
by SW over the distribution of the preliminary estimator Mt\r-

The authors match the in-sample (and a few out-of-sample) forecasts of their 
model with the official dating of recessions by the N ber  Business Cycle Dating Com­
mittee (B cdc). If their model has nothing to do with the way in which the B cdc  
proceeds, then good performance of the SW forecast would be a product of luck. This is 
unlikely; as the authors state, their model “attempts to capture, in a simple way, the in­
stitutional process in which recessions are categorized” by the B c d c , and they certainly 
develop an attractive framework for analysing recessions. Yet the use of the unobserved 
component Ci brings a point that casts some doubts as to the proper relationship between 
their definition of a recession, the way the recession probabilities are estimated, and the 
actual dating of recessions by the BCDC.

Assume the most favorable case, in which the SW model exactly duplicates the 
BCDC behavior. In that case, the definition of a recession would be based on the “true” 
unobserved component, the recession forecast on the preliminary estimators of the com­
ponent, while the B cdc  measurements would be based on the (optimal) final estimator. 
Concerning this last assumption it is worth mentioning that indeed the B cdc  identifies
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recessions with a two-sided filter, characteristic of final estimators. Thus, for example, 
the B cdc reported on December 22, 1992, the dating of the last official recession: it had 
started in July 1990, and had ended in March 1991. It took, thus, the BCDC 21 periods 
after the recession ended to reach the final “official” estimator. (This behavior is clearly 
rational: after all, what the B cdc does is to look at observations and extract some type 
of stochastic signal. It would not make sense to stick to an old preliminary estimator 
when new evidence points to a revision.)

While it is true that the final estimator is the best estimator of the unobserved 
component when all relevant information has become available, and that the preliminary 
estimator is the best estimator of the component (and of its final estimator) when part 
of the information is still not available, the distribution functions of the unobserved 
component, of the final estimator, and of the preliminary estimator will be (structurally) 
different. As a consequence, measures of probability computed over those distributions 
can be poor estimators of each other.

To illustrate the point it will be enough to consider the simplest (nontrivial) case 
of model (5.1), namely the one given by

V x t = Wct + Ut 
(1 — 4>B) V ct =  bt,

where ut and bt are independent white-noise variables with variances Vu and 14, respec­
tively. By defining zt =  V x t, and mt =  V ct, the previous model can be rewritten

Zt = m t + ut (5.8.a)

(1 -  (j>B) m t — bt. (5.8.b)

Model (5.8) is a simple “signal-plus-noise” decomposition, with the signal following a 
stationary AR(1) process. It is easily seen that (5.8) implies that the observed series 
follows an Arma(1, 1) model of the type

(1 -  4>B) zt = (1 -  OB) at, (5.8.c)

where (1 — OB) at is the invertible MA(1) process such that its autocovariance function 
is that of [bt +  (1 — <j>B)ut\. The parameters 0 and Va are easily obtained from Vu, 14, 
and (j>.

For this simplified model, define a recession as two consecutive negative values of 
the signal. Consider an infinite realization of the process V ct = m t, as well as the 
corresponding series of final estimators m t, and of preliminary estimators rht+k\t, for 
some positive value of k. Let us ask ourselves the question: what is the probability that 
mt and m t-1  are both negative? This probability is easily obtained from model (5.8). 
According to it

mt U l V
77li_i j 0 , vm 1 4>

<t> 1
(5.9)
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where Vm =  14/(1 — (j>2). Prom this joint distribution, P(mt < 0, mt- \  < 0) is readily 
obtained.

The distribution (5.9) of the unobserved component concerns the definition of a 
recession. The B cdc  however never observes the component and is forced to use its 
optimal estimator when all relevant data has been observed, i.e. rht. So, let us ask now 
the question: what is the probability that rht and mt_i be both negative? To compute 
it, notice that equation (5.7) becomes, for the particular case of model (5.8),

(1 -  <t>B) (1 -  OF) rht =  14 at, (5.10)

from which the autocovariances of m, are easily obtained. The joint distribution of the 
final estimators rht and mt_i is

N Q, V, (5.11)

where r — (cj> +  0 )/(l +  <j>0), and Vj =  (1 +  <j>6) V 2 V4/[(l -  <j>8){ 1 — <j>2) (1 -  02)]. From 
(5.11), one can obtain P(mt < 0, rht-1  < 0).

Finally, the recession forecasts are based on the joint distribution of the preliminary 
estimator rht+k\t, for k > 0. Again, let us ask the question: what is the probability that 
the preliminary estimators of two consecutive monthly growths {rht+k|t and mt+jt_i|t) be 
both negative? In order to derive the appropriate distribution, notice first that, from 
(5.10), rht+k can be expressed as

mt+k =  V(B, F) at+k,

where
t?(B, F) =  . . .  + 77_i B + ?jo + r)i F  + . ..  =  (1 -  <t>B)~l (1 -  0F)_I.

Hence
rhl+k\t = Et rht+k =  V-k at + V-k-i a,_! +  . . . ,  (5.12)

where use has been made of the fact that E, at+j — 0 for j  > 0. It is straightforward to 
find that, for k > 0,

V~k 1 — 0<j>

so that r)-k- i =  <t>r]-k• Therefore, from (5.12),

14,

rht+k\t — V_k [<h + 4>at-1 +  <j>2 at- 2 +  ...] =
^ 1 4  1

1 -e<t> 1 —  <t>Bat'

and hence the preliminary estimator follows the model

(1 — (f> B) rht+k\t =  c0at, (5.13)
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where co =  <t>k 14/(1 — 0 <j>) and B  operates on t. (Notice that the Ac f  of the component 
forecast will be closer to that of the true component than the A cf of the final estimator.) 
Replacing fc by (fc — 1), it is finally obtained that

mt+*|t =  (f>rht+k-i\t- (5-14)

As a consequence, the joint distribution of rftt+fc|t and rrr£+fc_ 11£ is degenerate; the corre­
lation between the two preliminary estimators is 1, and hence

P(rht+k\t <  0, m£+*_i|£ < 0) =  P(mt+*|t < 0) =  .5.

This probability is constant, independent of the model parameters.

In summary, the probability of a recession, as measured by the unobserved compo­
nent (according to the definition), by the final estimator (as the official dating committee 
supposedly does), or by the preliminary estimator (used for forecasting purposes), are 
structurally different. This is so because they are measured over different distributions, 
as shown in figure 4, where the same scale is used for both distributions. For example, 
for the model with parameter values 14 =  1, 14 =  .1, <j> = —■ 6, the three probabilities 
are

P(m£ < 0, m£_ i < 0) =  .15 
P(mt < 0, m£_i < 0) =  .08 

P(ffit|t-k> ffit—i|t—*) =  -50,

for fc > 0. If the sign of (j> is reversed, the above probabilities become .35, .42, and .50, re­
spectively. For any given model, thus, probabilities computed over the joint distribution 
of the preliminary estimator would provide a biased forecast of the underlying proba­
bilities for the true unobserved component or for its final estimator. Figure 5 compares 
the three types of probability for V4/V4 =  -1 and different values of <f>. Even in this very 
simple case of a stationary AR(1) signal with added noise, the three types of probability 
can be quite distant.

In particular, in model (5.8), since (5.14) holds for any fc, the probability of a 
recession computed over the joint distribution of the forecasts (equal to .5 in all cases) 
is always larger than that probability computed over the joint distribution of the final 
estimators. In other words, for any forecast horizon, the probabilty given by the forecasts 
will overestimate the probability in the official dating. It is worth noticing that SW 
find precisely the same bias: the forecasted probability tends to be larger than the one 
obtained from the BCDC classification, for all forecast horizons.

The example we have discussed has focussed on the joint distribution of the signal 
and of its estimator. A similar result can be derived for the conditional distribution 
of the unobserved component. To illustrate it, consider a slightly different version of 
the previous model, often used to analyse business cycles in macroeconomic (see, for 
example, Stock and Watson, 1988, Clark, 1987, and Watson, 1986). The observed series 
is assumed equal to the sum of a trend component, which follows a random-walk process,
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and an orthogonal stationary process, which represents the business cycle. As before, it 
will be enough to consider the simplest case, given by

x t = m t + ut (5.15.a)

V to( =  bt. (5.15.b)

where mt is the nonstationary trend, and ut is a white-noise variable, orthogonal to bt. 
Model (5.15) implies that x t follows an Ima(1, 1) model

V i t =  ( l -  OB) at, {0>  0), (5.16)

where (1 — OB) at = bt + (l — B) ut-

Since ut is white-noise, P{ut < 0|ut_i < 0) =  .5. As for the M mse estimator ut, 
for a full realization of the series, from (5.7) it is seen that ut follows the model

(1 — OF) Ut =  V(j(l — F) at, (5.17)

so that its Acf is that of the inverse or dual model of (5.16). Expression (5.17) implies 
that (ui, fit-i) have a joint distribution as in (5.11), with r = (0 — l)/2 , and Vj =  
2 Kf 14/(1 +  0); from that, the probability of interest can be easily computed. For the 
case Vu = .1, Vj, =  1, it is obtained that

P(ut < 0|ut_i < 0) =  .35,

certainly different from the value of .5 obtained for the unobserved component. As 
before, the use of the distribution of the M mse estimator induces a bias in the computed 
probability. In this case, the probability associated with the definition of a recession 
(i.e., with the unobserved component) would be underestimated. Figure 6 compares the 
conditional distribution of the component and of its estimator.

6 S u m m ary

The paper analyses unobserved component (or signal) forecasting within a model-based 
approach, whereby the unobserved components (and hence the observed series) follow 
A rima processes. The model approach, described in section 1, is quite general and, in 
particular, is valid for the so-called A rima- Model-Based and Structural Time Series 
metodologies.

In section 2 the optimal estimator and forecasts of the unobserved component are 
derived. The forecast can be seen as a preliminary estimator, which shall be revised 
until the final or historical estimator is obtained. The preliminary and final estimators 
are expressed in terms of the Wiener-Kolmogorov filter, and as filters applied to the 
innovations of the observed series. It is seen that the distribution function of the theo­
retical component will be different from that of the final estimator, which in turn will 
differ from that of the preliminary one. In section 3, analytical expressions are derived
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for the error in the final estimator (i.e., the difference between the unobserved compo­
nent and its final estimator), and for the revision error (i.e., the difference between the 
preliminary estimator and the final one). Both types of errors are seen to be stationary 
processes, determined from the overall model, and computation of their variances and 
autocovariances is straightforward.

Section 4 contains an application to the monthly series of the Italian money supply. 
Models for alternative short-term signals (in particular, the seasonally adjusted series 
and the trend) are derived. It is found that the use of the trend may produce a substan­
tial improvement in forecasting precision, and that this is also true for other types of 
macroeconomic variables. Knowledge of the models for the errors permits us to answer 
a variety of questions of applied interest. For example, the precision of the forecast of 
alternative rates of growth of interest, as measured with different signals, can be readily 
assessed. As another example, it is possible to quantify the loss in precision implied by 
a once-a-year seasonal adjustment procedure instead of a concurrent one.

The distinction between the theoretical unobserved component, its final estimator, 
and the preliminary one, is often a source of confusion in applied work. Section 5 discusses 
some of the dangers associated with this confusion. The first danger concerns the fitting 
of models to series seasonally adjusted with X I1, instead of using the original unadjusted 
series. It is shown that the final seasonally adjusted series will be noninvertible, and 
hence invertible models cannot be used on them. Examples of invertible models are 
finite autoregressive or Var models, as well as the model recently developed by Stock and 
Watson to analyse and forecast the business cycle. Use of invertible models on seasonally 
adjusted series is, however, a common practice. Using the model-based approach, the 
same result is obtained: the final seasonally adjusted series will typically be noninvertible. 
More generally, the final estimator of an unobserved component will be noninvertible 
whenever some of the other components present in the series is nonstationary.

The second danger discussed concerns bias in inferences drawn from the joint dis­
tribution of the unobserved component. The Stock and Watson model referred to above 
is used as illustration. In this model the probability of a recession depends on the joint 
distribution of sequences of an unobserved component. While the definition of a re­
cession is based on the theoretical component, the forecasted probability of a recession 
depends on the conditional distribution of the preliminary estimator. Moreover, the final 
dating of recessions is based on the final estimator. While it is true that the final and 
preliminary estimators are the best estimators of the component for a complete and a 
partial realization of the series, respectively, the distribution function of the component, 
of the final estimator, and of the preliminary estimator will be structurally different. 
As a consequence, measures of probability computed over those distributions will be 
poor estimators of each other and, as shown in the paper, will display systematic bias. 
This bias also affects the computation of conditional probabilities, as illustrated with a 
slightly different model (also used by macroeconomists to analyse the business cycle).

18

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



A p p e n d i x

D ecom p osition  o f a T w o -S id ed  A sym m etric F ilter

The filter (3.5), that expresses the M m s e estimator of the signal in terms of the series 
innovations, is a two-sided asymmetric filter. Its knowledge, as repeatedly shown in the paper, 
permits to answer many questions of applied interest. I proceed to sketch a simple procedure 
to obtain the 17-coefficients and express the filter as the sum of a filter in B and a filter in F. 
Thus, consider, in general, the filter

V(B,F) N i(B) N2(F) 
Di(B) D2(F) = r](l\ B )  + rf2\F) . (A.l)

From the N-  and D-polynomials, we wish to obtain the p-coefficients.
Let rii and <k denote the orders of the polynomials Nxiz) and D,(z), respectively (i = 1,2). 

Let n =  ni + n2, and d = d\ + d2. The filter (A.l) can be rewritten:

V(B,F) F "2 N\(B) N2(B) 
F<b Di(B) iy2(B)’ (A.2)

where, if P(z) = po + P\ z + . ..  + pr- i  zr 1 +  pT zr, P'(z) denotes the polynomial P'(z) = 
pr 4- pr_i z + . ..  + pi zr~l +p0zr. A partial fraction decomposition of the filter in B in the
r.h.s. of (A.2) yields

AT. («) N2{z) , J W  , G\z)_
D i {z)D '2{z) 91 D ,(A  D'2 (z) ’

where the order of E{z) and G'(z) are (di — 1) and (d2 -  1), respectively, and the order of 
q{z) is (n — d) when n > d and 0 otherwise. It is easily seen that this decomposition is unique. 
Compute

q(z) + G'(z) II'(z) 
D'2 {z) D^zY

then
Nt(z)Nj(z) E(z) H'(z)
Di(z) iy2(z) D\(z) + iy2 (z)'

where the order of H' (z) is ( n - d  1) when n> d,  and {d2 — 1) when n < d. The coefficients of 
E(z) and H1 (z) are easily obtained from the linear system of equations implied by the identity

E(z) D' (z) + / / ' (z) D\ (z) = Ni (z) W' (z).

As a consequence,

ri(B,F) =
fri2
pd2

\E(B)  //'(B ) 1
lOi(B)

E(B)
D'2(B) J

= F"2'
D,(B) 

a, E{B)

+  F "2

+ Fr

H'(B)
D2(F)

H(F)
(A.3)D,(B) ' ‘ D2(F )’

where r = d i—n\ when n >d  and r = n2 — d2 + 1 when n < d. Once the coefficients of the two 
one-sided filters E(B)/D\  (B) and / / ( F ) /D2(F) have been obtained (see, for example, Box, 
Hillmer and Tiao, 1978, p. 334), each array of coefficients is multiplied by the appropriate 
power of F , as indicated by (A.3), so as to be properly centered. In this way, the desired 
decomposition (A.l) is obtained.
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FORECAST OF THE SERIES AND OF THE TREND (logs)

- - - Original Series (last observation for T = 155)

----  Trend Component
Confidence interval for series forecast function 

.... Confidence interval for preliminary estimator of trend
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FOURIER TRANSFORM OF X I1 FILTER
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X I1 FILTER WEIGHTS WITH AND WITHOUT SEASONAL UNIT ROOTS

Fig. 3
lags

Weights for full filter

Weights for filter without seasonal unit roots
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JOINT DISTRIBUTION: COMPONENT AND ESTIMATOR

a) Theoretical Component

b) Final Estimator

Fig. 4
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COMPONENT AND ESTIMATORS: THEORETICAL PROBABILITIES

Probability

Probability
Probability 
or forecast

of a recession 

of a recession 

of a recession

(theoretical component) 
(final estimator) 
(preliminary estimator
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CONDITIONAL DISTRIBUTION: COMPONENT AND ESTIMATOR
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