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Abstract
In the context of an application, the paper deals with unobserved components 
in A rima models with Garch errors. The application is seasonal adjustment 
of the monthly Spanish money supply series, which shows clear evidence of 
(moderate) nonlinearity, that does not disappear with simple outlier correction. 
The Garch structure explains reasonably well the nonlinearity, and this expla­
nation is robust with respect to the Garch specification. The time variation 
of the standard error of the adjusted series estimator is of applied interest. We 
first show how to measure this variation, and the implications it may have on 
short-term monetary control. The nonlinearity seems to have a small effect in 
practice. It is further seen that the conditional variance of the G arch process 
may, in turn, be decomposed into components. In fact, the conditional variance 
of the money supply series is the sum of a weak linear trend, a strong nonlin­
ear seasonal component, and a moderate nonlinear irregular component. This 
information has policy implications: for example there are periods in the year 
when policy can be more assertive because information is more precise. Finally, 
a comment is made on the interaction among nonlinearity in the components of 
the money supply that shows how linear combinations of nonlinear series can 
produce series that behave linearly.

Key Words: A rima Models, Autoregressive Conditional Heteroskedasticity,
Nonlinearity, Unobserved Components, Seasonal Adjustment, Monetary Aggre­
gates.
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1 Introduction

Short-term monetary policy centers around the intrayear evolution of the sea­
sonally adjusted monetary aggregate series. For the case of Spain, the monetary 
aggregate is the series of Liquid Assets in the Hands of the Public (A l p , in 
short), and seasonal adjustment is performed with a model-based method, as 
described in Bank of Spain (1993). The method follows the so-called A r im a  
model-based approach, originally developed by Cleveland and Tiao (1976); Box, 
Hillmer, and Tiao (1978); Burman (1980); and Hillmer and Tiao (1982). The 
particular application to the Spanish A lp series is discussed in Maravall (1988).

In brief, if xt =  log A l p ., seasonal adjustment is based on the decompo­
sition

xt =  st + p t +  Ut =  st + n t, (1.1)
where st, Pt- and ut denote the seasonal, trend, and irregular components, which 
are assumed mutually orthogonal, and nt denotes the seasonally adjusted se­
ries. The method consists of several steps. First, an A r im a  model is identified 
for the observed series x (. Then, from this ‘‘aggregate” model, appropriate 
models for the components are derived. (These component models have also 
ARlMA-type expressions.) Finally, estimates (and forecasts) of the components 
are obtained with linear filters that are a straightforward generalization of the 
Wiener-Kolmogorov (WK) filter to finite realizations of typically nonstationary 
series (see Cleveland and Tiao, 1976; Bell. 1984; and Maravall, 1989). The filter 
provides the minimum Mean Square Error (M se) estimator of the component 
and, under suitable starting conditions, is equal to the conditional expectation 
of the unobserved component given the available series. The WK filter repre­
sents, thus, an alternative algorithm to the Kalman filter for computation of 
the above conditional expectations; details of the algorithm can be found in 
Burman (1980).

The method relies on A r im a  models that have normally distributed in­
novations, with zero mean and constant variance; that is, the process for xt is 
assumed linear. In this paper, we look at some of the issues that arise when 
those innovations display some evidence of nonlinearity. In choosing a real ap­
plication, where nonlinearity is clearly present, but in moderate amount, we 
shall be also interested in to what extent this nonlinearity may have, in prac­
tice, relevant implications for short-term policy. To capture nonlinear effects, 
we shall use Generalized Autoregressive Conditional Heteroskedastic (G a r c h ) 
models, of the type introduced by Engle (1982); Weiss (1984); and Bollerslev 
(1986).
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2 A rima Estimation

We consider the monthly A lp series from January 1974 to December 1990 (i.e., 
T =  204 observations); the log of the series is plotted in figure 1. The A rima 
model identified for log A lp is given by

V  V 12 Xt =  (1 -  e1B) (1 -  euB12) at +  p, (2.1)

where B is the backward operator (such that Bj xt =  xt-j), V  =  1 — B, and 
V 12 =  1 — B12. Maximum Likelihood estimation produced 9\ =  —.160 (.073), 
On =  —.701 (.055), and p =  —.000351 (.000129), where the standard errors 
(SE) of the estimators are given in parenthesis. The variance of the residuals at 
(the innovations in the observed series) is Va =  (.00376)2, and figure 2 displays 
the series at. The residuals seem to fluctuate randomly around zero, and their 
Autocorrelation Function (Acf) confirms that randomness. Table 1 presents 
some statistics of interest: Q\i is the usual Box-Ljung statistics for the first 
12 autocorrelations, Qs is similarly defined for the first two seasonal autocorre­
lations, and pi, p6, and p12 are the lag-1, lag-6, and lag-12 autocorrelations. 
Under the assumption that the series is white noise, Q i2 has an asymptotic x 2 
(9) distribution (Ljung and Box, 1978), Qs can be roughly approximated by a 
X2 (2) distribution (Pierce, 1976), and the asymptotic standard error of p6 and 
of pi2 is approximately .07 (Box and Jenkins, 1970).

The first row of table 1 presents the four statistics for the series at: all 
of them are clearly compatible with the white-noise hypothesis. As suggested 
by Granger and Andersen (1978), the autocorrelations of the squared residuals 
provide an interesting tool to check the linearity hypothesis (in this case, the 
normality of at). If a series zt is linear, then the lag-k autocorrelation satisfies 
pk (z2) =  [pk {zt)}2 (Maravall, 1983). Moreover, Q i2 (a2) has the same asymp­
totic distribution as Q 12 (at) (McLeod and Li, 1983), and hence increases in the 
autocorrelations of a2 or in the associated Q values would be an indication of 
nonlinearity. The second row of table 1 presents Q i2, Qs, p\, pg, and pi2 for 
the series a2. All the statistics, except pi, show clear indications of nonlinearity 
and, in particular, of nonlinearity associated with seasonal lags.

The nonlinearity of at is further reinforced by the skewness and kurtosis 
estimators, equal to s =  —.67 (SE =  .17) and k =  4.55 (SE =  .34), respectively. 
The n.i.d. assumption of the residuals at is, as a consequence, rejected.
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Table 1

<?12 Q s Pi P6 Pl2
àt 9.1 1.4 .02 .05 .02
àì 27.2 18.5 .06 .14 .30

3 Outliers

Since it is well known that nonlinear behavior can be explained by the presence 
of outliers, the next step is to check for the presence of outliers in the series at. 
In fact, three relatively large outliers are detected for the periods 139. 151, and 
192. The associated t -values are -3.7, -3.3, and -3.5, respectively, and hence a 
simple and parsimonious way to attempt to reduce the outliers effect is through 
a single parameter, lj0. as in

Xt — ojq dt + ut,

where dt =  1 for t =  139, 151, 192, and dt =  0 otherwise, and ut follows an 
A rima model similar to (2.1). The parameter estimators are slightly modified 
(#i =  —.183, 0\2 =  .684), and the new series of residuals at contains no value 
larger than 3 aa in absolute value. Moreover, the skewness and kurtosis become 
s =  —.29 (.17), and k =  3.39 (.35), and hence both values are now compatible 
with the linearity assumption. As shown in table 2, the autocorrelations of 
at are, as before, compatible with a white-noise behavior; however, looking at 
the squared residuals, the Q-statistics still show a significant increase, and the 
autocorrelations pi, p6, and p12 also display clear signs of nonlinearity, which 
this time also affects the low-order autocorrelation.

Table 2

Q 12 Q s Pi P6 Pl2
àt 7.8 1.8 .00 .01 .02
à2t 28.1 11.2 .19 .14 .23

In view of the results in table 2, we conclude that the nonlinearity in the 
A lp series does not appear to be caused by the presence of the three outliers 
detected. We shall attempt, as an alternative, to model the series nonlinearity

3
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with the A rima-G arch approach mentioned earlier. But before doing this, 
there is a point concerning outlier removal that seems to us worth stating.

The way in which we have removed outlier effects is simple and parsimo­
nious, yet it is clearly possible to carry a more sophisticated outlier treatment. 
Using the approach in Chen and Liu (1993), and setting a critical value of 3, 
seven highly significant outliers are detected: two are additive outliers, two 
are innovation outliers, and three represent level shifts. Reestimating by exact 
maximum likelihood model (2.1) jointly with the seven outliers, the residuals 
obtained display the characteristics shown in table 3,

Table 3

Q12 Qs Pi P6 Pl2
dt 8.2 .9 -.01 -.01 .01

9.4 .3 .05 .04 .05

and the skewness and kurtosis statistics became s =  —.17 (.18), and k =  
2.77 (.36). The series of residuals does not display in this case any evidence 
of nonlinearity. Furthermore, we generated many Garch series and applied 
the Chen and Liu procedure to all of them. We found that it was always 
the case that the procedure yielded apparently linear residuals after correct­
ing for a moderate number of outliers (of different types). Thus we convinced 
ourselves that the linear-outlier method and the nonlinear-GARCH approach 
offered two alternative ways of linearizing a series and that, in practice, it would 
be extremely difficult to detect situations in which one of the two methods is 
undoubtedly appropriate. The selection of one of the two approaches is likely 
to require, at present, some prior preference, and cannot be simply resolved 
by sample evidence. This methodological underidentification seems to us an 
important subject for further research. For the remaining of the paper, we 
shall stick to the Garch approach, and shall use the original series unmodi­
fied for outliers, with the expectation that the Garch structure will make it 
unnecessary.

4

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



4 A rima- G arch Modelling of the (Unmodi­
fied) Series

To test for the presence of AutoRegressive Conditionally Heteroskedastik (A rch) 
effects, we use a slight modification of the Lagrange Multiplier test suggested 
by Engle (1982). With the residuals at from model (2.1) on the series xt (with 
no outlier treatment), we run the regression

hi =  Co +  ci a2_6 +  c2 a2_12,

and obtained TR2 =  13.8. Since this value is considerably larger than X2os (2) =  
5.99, we reject the hypothesis that there is no A rch  structure.

In order to accomodate the nonlinear structure, we modify model (2.1) in 
the following way. The residuals at, instead of being white noise, are assumed 
to have a time-dependent variance. If It~\ denotes the information available at 
period t — 1 (i.e., the series x up to and including xf_i). then the distribution 
of at conditional on this information set is

at/It-i ~  N(0,ht), (4.1)

where the conditional variance ht follows the G a r c h  (p. q) process

(1 — 0\B — . . .  — (3pBp) ht =  ao +  (onB +  . . .  +  a9B ?) a2. (4-2)

or, in short, 0(B) ht =  q0 +  a(B ) a2. To identify the order p and q of (4.2) we 
use the following result (Baillie and Bollerslev, 1990):

R esult 1: A G a r c h  (p, q) process for ht implies that a2 displays the A c f  of 
an A r m a  (m, p) process, with m =  max(p, q). ■

From figure 3, the most noticeable feature of the A c f  of a2 is the positive 
autocorrelation present at the seasonal lags 6 and 12. (Notice that pig and p24 
are also positive.) It will prove convenient to modify Result 1 in the following 
way. Let r  denote a positive integer, and write G a r c h t (r, s) and A r m a t (r, s) 
to represent processes with polynomials of order r and s in BT. Then Corollary 
1 is a straightforward extension of Result 1.

C orollary  1: A G a r c h t (p, q) process for ht implies that a2 displays the A cf  
of an A r m a t (m, p), with m =  max (p, q). ■

The A c f  of a2 leads us to consider models in Be, for which, in accordance 
with the two previous results, the order of the AR polynomial is equal or larger

5

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



than that of the MA polynomial (in the terminology of Burman, balanced or 
top-heavy models). In fact, the ARg (2) model

(1 -  ip6B6 -  ipuB12) of =  et (4.3)

cleans very well the A cf  of aj\ Using Corollary 1, this implies a G a r c h 6 (0, 2) 
model for ht.

Since the A c f  of a2 can be compatible with models moderately different 
from (4.3), we are interested in the robustness of the results with respect to the 
G a r c h  specification for ht. Thus we consider two additional specifications: the 
G a r c h 6 (1, 1) model, which implies an ARMA6 (1, 1) model for a%, and the 
G a r c h 6 (2, 1) model, which implies an A r m a 6 (2, 2) model for af. The first 
A rm  A model cleaned reasonably well the A cf  of a2; the second A rm  A model 
seems overparametrized, but it is also certainly compatible with the A c f  of ctf.

We consider, thus, 3 models. All of them share equation (2.1) and as­
sumption (4.1). For Model 1:

h t =  Qo +  « 6  « i - 6  +  a 12 a (—12i (4 -4)

for Model 2:
ht =  exo +  ag <Z(_6 -(- 06 h t-6; (4-5)

finally, for Model 3:
ht =  a0 + a6 a2_6 +  0u  /it—12; (4.6)

(Several additional specifications were used, but the 3 models chosen provided 
the most satisfactory results. The three contain the same number of parameters 
and their specifications are different in a nontrivial way.) The three complete 
A r im a - G a r c h  models were estimated by maximum likelihood, and a summary 
of the results is contained in table 4, where the numbers in parenthesis are f— 
values and a 0 has been multiplied by 10°.

Since the standardized residual et =  at/^Kt is n.i.d. (0, 1), an important 
diagnostic tool is the A cf  of the estimated standardized residuals, and of their 
squared value. Table 5 summarizes this information. For the three models, the 
A cf  of the standardized residuals are clean and, when squared, no evidence of 
nonlinearity is found. This is confirmed by the skewness and kurtosis values of 
table 6. Since the asymptotic standard error of the skewness estimator is .18, 
and that of the kurtosis estimator is .34, all values in table 6 are compatible with 
the normality assumption. Finally, the only outlier found in the standardized 
residual series (with absolute value larger than 3) is found for observation 179

6
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Table 4

e , #12 «0 C*6 C*12 06 012 log L
Model 1 -.213

(-3-0)
.711

(12.8)
.84

(4.6)
.367

(1.9)
.096

(1.4)
-- ' — 536.1

Model 2 -.218
(-3.4)

.691
(10.4)

.30
(1.0)

.320
(2.2) _

.511
(1.9) I

537.2

Model 3 -.247
(-3.6)

.716
(14.6)

.52
(2.2)

.423
(2.5)

“— .283
(1.4)

536.0

Table 5

Ql2 Qs Pi Pe Pl2
et 6.9 1.6 -.02 .06 -.03

Model 1
Ct 9.3 2.0 -.06 .00 .11
e-t 6.9 1.3 -.01 .04 -.02

Model 2
8.7 1.0 -.03 -.04 .11

et 9.0 3.0 -.01 .09 -.05
Model 3

Ct 12.5 4.1 -.01 .10 .06

Table 6

skewness kurtosis
Model 1 -.30 3.25
Model 2 -.28 3.21
Model 3 -.26 3.03

7
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for the cases of Model 1 and Model 2; the associated 1-values are -3.2 and - 
3.3, respectively. For Model 3 no outlier is detected. Since the probability of 
occurrence of at least one value larger than 3 in a sample of 200 observations 
from an N (0,1) distribution is relatively large, we conclude that the G arch 
structure has dealt reasonably well with the outlier problem and the estimation 
results for the 3 models seem acceptable. Figure 4 displays the conditional 
variance series (ht) estimated by the 3 models. Although they are not identical, 
the three series basically tell the same story. The nonlinear evolution of the 
conditional variance appears to be captured in a fairly robust way.

5 Decomposition of the Series and Seasonal 
Adjustment

Model-based nonlinear estimation of unobserved components in A r im a - G ar ch  
models would require, first, to properly define the components. This raises a 
relatively complicated problem due to the poor aggregation properties of A rch  
models (in particular, the sum of A rch  components is not an A rch  process). 
Thus we base the decomposition of the series in the A r im a  model-based ap­
proach applied to model (2.1). The approach uses a linear W K-type of filter, 
which still provides, for the A r im a - G a r c h  case, the linear function of the ob­
served series xt with minimum M se; see Bell (1984). (For a related application, 
see Harvey, Ruiz, and Sentana, 1992.)

In brief, the WK filter is found as follows. The pseudo-spectrum (here­
after, simply denoted spectrum) of model (2.1) is split into two spectra, as 
shown in figure 5. One of these spectra corresponds, to the seasonal component; 
the other one to the seasonally adjusted series. These two spectra correspond 
to the models

S{B) st =  0S(B) ast, (5.1)

V 2 nt =  9n(B) antl (5.2.a)

where st and nt are as in (1.1), S(B ) =  1 +  B +  .. .  +  Bn , and 9S(B) and 9n(B) 
are polynomials in B of order 11 and 2, respectively; in particular

dn{B) =  1 -  .7645 -  .20252. (5.2.b)

The pseudo-innovations ast and ant are orthogonal white noises, with zero mean 
and variances Vs and Vn.
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(5.3)

The WK filter that yields the seasonally adjusted series is given by

vn{B ,F ) =  k„ 6n{B) 6n{F) S(B) S(F) 
6(B) 6(F)

where 0(B) is the right-hand-side polynomial in B in (2.1), kn =  Vn/Va, and 
F =  B~l is the forward operator (see Maravall, 1988). The filter is, thus, equal 
to the Autocovariance Generating Function of the stationary A r m a  model

0(B) zt =  0n(B) S(B) bt,

and hence it is symmetric and convergent; its time and frequency domain repre­
sentations are given in figures 6 and 7. The filter filters out frequencies near the 
seasonal ones, and the narrow width of the holes reflects the relatively stable 
character of the seasonality being removed.

Since, for model (2.1), 0(B) ^  1, the filter will extend towards infinity. 
For a finite time series, the optimal estimator of nt can be expressed as

nt =  v„(B, F) x\, (5.4)

where x( is the available series extended at both ends with forecasts and back- 
casts computed with model (2.1); see Cleveland and Tiao (1976). An efficient 
way of applying the exact filter to a finite series is described in Burman (1980); 
in what follows, the derivations of the models (5.1) and (5.2), as well as estima­
tion of unobserved components (and, in particular, of the seasonally adjusted 
series) has been performed with program Seats ( “Signal Extraction in A r im a  
Time Series” ), which emerged from a program originally developed by Burman, 
and is documented in Maravall and Gomez (1992).

Given that estimation of the seasonally adjusted series of xt involves the 
application of a linear filter to a nonlinear series, the estimator will yield a 
nonlinear time series. It is of interest to see how the linear seasonal adjustment 
filter affects the nonlinearity of the series.

Fitting an A r im a  model to the seasonally adjusted series n(, the following 
model is obtained

V 2 ht =  (1 -  .774B -  .167B2) ast, (5.5)

which is very close indeed to the theoretical model for nt, given by (5.2). (Notice 
that the two roots —  for B~l —  of the MA polynomial in (5.5) are .95 and 
—.17. Since the first one is close to 1 and the second one is small, the model 
for the seasonally adjusted series is relatively close to the well-known “random 
walk plus drift” specification.)
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The A c f  of ast can be easily accepted as that of white noise. As in the 
case of the series residuals at, the A cf  of (ast)2 displays some evidence of non­
linearity. The results are summarized in table 7. The nonlinearity is associated 
with seasonal lags; comparing table 7 with table 1, the lag-6 autocorrelation 
has disappeared and the lag-12 autocorrelation is now included. Altogether, the 
linear seasonal adjustment filter, by filtering out seasonal frequencies, has re­
duced the amount of nonlinearity in the series (compare the two values of Q\2). 
But some nonlinearity still remains in the adjusted series. This nonlinearity 
has an important implication: although the point estimator of the component 
obtained with the WK filter is still the best linear estimator, the estimator stan­
dard error will vary in time. We try next to measure that variation and, for the 
particular case of the A lp series, the practical importance that this variation 
may have for A lp watchers.

Table 7

Q\2 Q s P6 P12 P24

O'st 12.0 1.3 .04 -.08 -.15

4 16.2 5.7 .01 .16 .16

6 The Standard Error of the Seasonally Ad­
justed Series

6.1 Levels

Let dt denote the error in the estimator of the seasonally adjusted series, so 
that dt =  nt — ht, where ht is given by (5.4). The estimator ht, and hence 
the. error dt, depend on the series xet or, equivalently, on the finite realization 
available. Let this finite realization be [x\ a n d  denote the estimator 
obtained with (5.4) by ht/T• Further, let nt/d e n o t e  the estimator obtained 
with (5.4) when x\ =  xt, that is, when an infinite realization is available; it will 
be called the “final estimator” . In order to derive the time varying standard 
error of ht/T, write

dt/r =  ft +  Pt/T> (6-1)
where ft= i'it — fit/oo is the error in the final estimator, and rt/T — nt/oo — fh/T 
is the revision the “preliminary estimator” ht/r will undergo as T  goes to 00.
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Since the final estimator is obtained when T  —> oo, it is easily seen that the 
A rch  assumption does not alter the result that the two errors f t and rt/T are 
uncorrelated. Moreover, f t will still display constant variance and, following 
Pierce (1979), it is easily found that its A c g f  will be that of the A rm  A model

6(B) j t =  6n(B) 0.(B) gu (6.2)

where gt is white noise with variance Vn Vs/Va.

As for rt/r, following Maxavall (1993), we first express the final estimator 
ht as a function not of xt but of its innovations at. This yields

ht =  v(B,F) at,

where r)(B, F ) is the convolution of the WK filter (5.3) with the filter rp(B) =  
6(B)/V  V 12 (i.e., the MA representation of model (2.1)). and hence

r)(B, F) =  kn en(B) en(F) 5 (F ) 
V 2 6{F )

The filter is not convergent in B, but invertibility of (2.1) guarantees its con­
vergence in F. Assuming suitable initial conditions (Bell, 1984), the estimator 
nt can be expressed as

nt =  r)B(B) at +  t]F(F) aT+i, (6.3)

where

Vb {B) =  Tfr-t +  Tfr-t-i B + .. .  +  r]_t BT,

Vf (F) =  Vr-t+i +  Vr-t+2 F +  . . . .

The term tib{B) ar represents the effect of the starting conditions and of the 
innovations up to and including a j on the estimator of rat; the filter tif(F) 
reflects the way “future” innovations will be incorporated. Since Et ar+fc =  0 
for k >  0, from (6.3),

^t/r =  Vb (B) ar, (6-4)

so that, substracting (6.4) from (6.3), the revision error is found to be

n/T =  Vf (F) aT+u (6.5)

a convergent moving average. Properly truncated, (6.5) can be used to derive 
the A c g f  of rt/r- Invertibility of (2.1) implies that the variance will be finite
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and that the A cf  will converge. From (6.5), the variance of rt/T for the A r im a -  
G a r c h  case is found equal to

k
V (rt/T) =  £  Vr-t+j hr+j/T, (6.6)

3=1

where k denotes the truncation point. Computation of the variance (6.6) at 
period T requires the estimators hT+j/T, that is, the forecasts of the conditional 
variance for future periods. These forecasts can be obtained as in Baillie and 
Bollerslev (1992), a relatively complicated procedure, or, in a simpler way, in 
the following manner.

Consider the G a r ch  (p, q) process (4.2) and define the variable vt =  
<Zj — ht. a zero-mean uncorrelated variable (see Bollerslev, 1986). Then, adding 
and substracting a, ht-i (i — 1 , . . . ,  q), ht can be expressed as

m Q

ht =  a0 +  Y , (ft +  Q>) ht-i +  ai vt-i, (6.7)
i= 1 1=1

which proves the following result.

R esult 2: A GARCH (p, q) process for ht implies that ht displays the A cf of 
an A r m a  (m,q — 1) process, with m =  max(p, q), with the ith AR coefficient 
given by (0l +  at), and the fth MA coefficient given by q, / q i . I

By noticing that in (6.7) the most recent value of the “innovation” is vt-i, 
which will enter the forecast function at t, the following result also holds.

R esult 3: The forecast function of the G ar ch  (p. q) conditional variance is the 
same as that obtained with an A r m a  (m, q) model, with the zth AR coefficient 
given by (/3, +  a,), and the ith MA coefficient equal to a,, using the series ut as 
innovations. I

Since an estimator of ut is available (namely 0t =  aj — ht), Result 3 
provides a very easy way of computing forecasts for ht by standard Box-Jenkins 
forecasting formulas. Using these forecasts in (6.6), an estimator of V(rt/T) can 
be obtained. Then, the variance of the seasonally adjusted series estimation 
error can be obtained through

V(dt/T) =  VUt) +  V (rt/T).

Of particular importance among the preliminary estimators is the “con­
current” estimator ht/t, be., the estimator for the most recent period. Figure 8 
displays the time-varying variance of the concurrent estimator of the seasonally
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adjusted series for Models 1, 2 and 3. For the three models, setting k =  150 
was enough for expression (6.6) to converge. As was the case with figure 4, the 
three models provide similar descriptions of the variation in time of V(d,T/t), al­
though the amplitudes of the movements are different, with Model 3 exhibiting 
the largest oscillations, and Model 1 the smallest ones. Altogether, estimation 
of the nonlinear evolution of the conditional variance of the seasonally adjusted 
series concurrent estimator appears to be robust with respect to the G arch 
specification.

6.2 Rates of Growth

For policy makers and analysts, the rate of growth of the seasonally adjusted 
A lp series is more informative than the bare level of the series. Since, as figure 
1 evidences, the monthly increases in the Alp series are relatively small, the 
monthly rate of growth (Nt) can be approximated by the difference in the logs, 
so that, for the concurrent estimator of the rate of growth of the seasonally 
adjusted series,

M/t =  fh/t —

Given that Nt =  nt — nt_i, the error (Dt) in the rate of growth estimator Nt/t 
is equal to Dt =  dt/t — dt_ i/t, or Dt =  Ft +  Rt, where Ft =  f t — f t- 1, and 
Rt =  rt/t — rr-i/t. Thus the variance of Dt can be obtained through

V(Dt) =  V(Ft) +  V(Rt), (6.8)

where V(Ft) =  2(1 — pj) V ( / (), with p\ and V (ft) being the variance and lag-1 
autocorrelation of model (6.2), and

V(Rt) =  V(rt/t -  rt-i/t) =  V(rt/t) +  V(rt_1/t) -  2Cov(rt/(, rt_Vt),

where, proceeding as in (6.6), the three terms in the r.h.s. are straightforward 
to obtain from (6.5).

In order to get an insight into the practical importance of using the time 
varying variances V (Rt) instead of the constant variance implied by the linear 
model, we use a simple example that mimics the most basic element of short-run 
monetary policy operating procedures:

Assume that, for the last two years of the period there was a constant 
annual growth target of 10% for the monetary aggregate. In order to judge 
whether growth is on target, we proceed as follows: Every month during the 
two-year period, we look at the monthly rate of growth of the (concurrent
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estimator of the) seasonally adjusted series, annualized and expressed in per­
cent points. Since that concurrent estimator is subject to error, we adopt the 
following criterion: Let a denote the standard deviation of the error; if the 
measured rate falls in the interval (10 ±  2<r), growth is acceptable (and interest 
rates should be left unchanged). If the measurement is larger (lower) than the 
upper (lower) limit of the range, then growth is excessive (insufficient), and in­
terest rates should go up (down). We are interested in answering the following 
question: If the monetary authority ignores the nonlinear structure of the se­
ries, and proceeds with the constant variance from the linear model, how man}' 
times would he have been fooled? In other words, how many times would have 
linear analysis indicated that growth was not acceptable when in fact it was, 
and viceversa?

Proceeding in the way described earlier, the a of the interval is trivially 
obtained from V(Dt), in (6.8). Figure 9 plots the actual series of concurrent 
estimators of the rate of growth of the seasonally adjusted series over the 24- 
month period, together with the interval (10 ±  2cr), with a computed with and 
without the nonlinear structure. The nonlinearity is seen to have a relatively 
small effect and, out of 24 months, only for 3 of them the two intervals provided 
different answers to the question of whether growth was acceptable; all three 
cases, however, are borderline ones.

7 Decomposition of the Conditional Variance

We saw in section 5 that the A r im a  model that captures the autocovariance 
structure of the series xt can be used to derive WK filters for estimation of its 
unobserved components. Result 2 states that the autocovariance structure of 
the conditional variance ht is that of an A r m a  model. It is then possible to 
derive WK filters to estimate unobserved components also in ht. The purpose of 
the decomposition would be to find out to what extent the time variation of the 
variance reflects a long-term evolution (i.e., a trend), as opposed to reflecting 
seasonal variation or a purely random (irregular) volatility.

From Result 2, the A r m a  model associated with the A cf  of ht can be di­
rectly obtained from the G ar ch  specification for ht. For the three specifications 
considered, model (4.4) yields the A r m a 6 (2.1) expression

(1 -  .3675® -  .096B12) ht =  (1 +  .2625®) vt, (7.1)
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model (4.5) yields the AR^ (1) expression

(1 -  .831B6) ht =  vu (7.2)

and model (4.5) yields the ARg (2) specification

(1 -  .423B6 -  .283B12) ht =  vu (7.3)

where, in each case, vt is a zero-mean uncorrelated variable, equal to e*6 Jq, 
with b>t that of expression (6.7). In fact applying the filter (7.1), (7.2), or (7.3) 
to ht cleans reasonable well the Acf, as evidenced by the Q24 statistics, equal 
to 32.0, 23.2, and 40.5, respectively. Moreover, direct fits of an A rma6 (2, 1), 
an ARe (1), and an AR6 (2) model to ht yields results broadly in agreement 
with the specifications (7.1)-(7.3); the most noticeable difference happens for 
the AR« (2) model, where estimation yields a smaller <j>e and a larger ©12 value. 
The spectra of the three models are shown in figure 10; they display similar 
shapes, which consist of three important peaks for the 2, 4, and 6-times-a-year 
seasonal frequencies, and a relatively narrow peak for the trend frequency.

The variable ht given by (7.1), (7.2), or (7.3), accepts a decomposition into 
mutually uncorrelated trend (pt), seasonal (st), and irregular (ut) components, 
as in

ht =  pt +  St +  Uf

For the three cases, the trend follows an A rm  A (1, 1) process of the type

(1 -  <t>B)pt =  (1 + B) apt,

the seasonal component follows a process of the type:

È m r
.1=0

&t —  0S(B) ast>

where 6S(B) is of order r  (r  =  12 for models 1 and 3, t =  6 for model 2), 
and the irregular component is white noise. Table 8 presents the most relevant 
parameter values. It is seen that <f> is always close to 1, and that the stochastic 
variation o f the series ht is mostly driven by the seasonal innovation, with the 
trend being of little importance.

Estimating the components by means of the WK filters, the results for 
Models 1, 2, and 3 are displayed in figures 11, 12, and 13. The trend component 
of the conditional variance is seen to behave rather linearly, accounting for 
little variation. In fact, most of the variation in the conditional variance is

15

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Table 8

<t> Var (dpt) Var (ast) Var (ut)
Model 1 .904 .013 .298 .098
Model 2 .970 .008 .358 .105
Model 3 .960 .005 .474 .192

seasonal, with the irregular variation playing a nonnegligible role. These last two 
components, seasonal and irregular, display a discernible nonlinear behavior, 
which can also be detected in the pseudo-innovations in the components (see 
Harvey and Koopman, 1992). Table 9 displays the skewness and kurtosis of the 
pseudo-innovations of the components (averaged over the 3 models). It can be 
safely concluded that the evolution in time of the conditional variance is the 
sum of a weak linear trend effect, plus a strong nonlinear seasonal effect, and a 
moderate, highly nonlinear, irregular effect.

Table 9

p-innov. in skewness kurtosis
Trend .71 3.33
Seasonal .90 10.78
Irregular 2.16 14.94

The above conclusion may be of applied interest. We have seen that Va, 
the variance of the one-period-ahead forecast error of the monetary aggregate 
series is not a constant fraction of the level of the series (i.e., a constant for 
the logs), but that the fraction varies in time. This variation happens in two 
ways: one, a purely random way, and the other, following a seasonal pattern. 
The random component would be hard to predict and would have limited policy 
relevance (besides a general attitude of caution). But the seasonal component 
can be forecast, and these forecasts may be useful: they tell us that there 
are periods in the year when the monetary authority can be more assertive 
because information is then more precise. As an example, figure 14 presents the 
one-year-ahead forecast function of the seasonal component of the one-period- 
ahead forecast error variance. From the figure, it would seem reasonable to pay 
more attention to the forecast error made in March or in September, than to
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the forecast errors for June or December; the variances of the former are much 
smaller.

8 A Final Comment

Seasonal adjustment of the monetary aggregate involves adjustment of the A lp 
series as well as adjustment of its components. The nonlinearity detected in the 
aggregate may well reflect different types of nonlinearities present in the com­
ponents. The way these nonlinearities interact may present interesting features. 
Consider, for example, the two component decomposition:

A lp =  M l +  Rest, (8.1)

where M l is the sum of currency plus demand deposits, and the series “Rest” 
includes saving and time deposits plus other liquid assets. Figure 15 plots the 
three series. For the period we consider, M l represents between 23 and 35% of 
A lp, and it is clear that the two series are not cointegrated. The three series 
in (8.1) are, in fact, nonstationary. As was the case for the A lp series, a model 
o f the type (2.1) cleans well the Acf of the series log M l and, as seen in table 
10, is borderline acceptable for the “Rest” series, the only noticeable anomaly 
being a value p3 =  .16 in the Acf of the residuals.

Table 10 shows that the series A lp and M l display clear evidence of 
nonlinearity. For the A lp case , this nonlinearity is associated with the large 
value pi2 (a)*) =  .30, while for the M l case, the Acf of the squared residuals 
has large values for pi {(tf) =  .18, and p3 (a?) =  .25. The series “Rest” , on 
the other hand, can be safely accepted as linear. (A closer look indicates that 
the lag-2 and lag-3 autocorrelations of a? for Mi represent seasonal harmonics 
that contribute in an important manner to the lag-12 autocorrelation of of for 
A lp. In fact, for the series “Rest” , pn (a?) still displays a slightly large value 
of .14.) But, letting yt, x t, and zt denote the A lp, M l, and “Rest” series, table 
10 indicates that

Zt =  Vt~ Xt

represents a linear combination of two nonlinear series that can be accepted 
as linear. In this sense, one could refer to the pair of series (yt, xt) as being 
“co-nonlinear” , with the linear combination that renders the series linear given 
by the vector [1 ,-1 ].
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Table 10

0i 012 Pa Q n  (Pt) Q i 2 ( a 2t ) skewness kurtosis

A lp -.160 .727* .0038 9.1 27.2* -.67* 4.55*

M l .125 .614* .0127 12.9 26.5* -.07 4.74*

Rest .079 .539* .0070 18.6 12.3 .04 3.43

Critical
values .146 .110 — 18.3 18.3 .34 3.68

* Values significant at the 99% level.
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Figure l:Series ALP (logs) Figure 2:Residuals

Figure 3:ACF of residuals
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Figure 4: ALP Estimated Conditional Variance

xlCM Model 1

xlO-4 Model 2

x l(H  Model 3
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Figure 5: ALP Pseudo-Spectra of Components

Series Seas. A djusted Series

Seasonal C om ponent
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Figure 6: ALP Squared Gain Component Filters

Trend Seasonal
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Figure 7: ALP Estimated Components

Trend Seasonal
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Figure 8
ALP-Seas. Adj. Series, Concurrent Estimator Error Variance

xlO-6
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Figure 9
ALP-Annualized Rate of growth of SA series 

model 1

(Concurrent Estimates) 

model 2

model 3
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Figure 10: ALP Spectra of Conditional Variance

M od el 1

M od el 3

M od el 2
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Figure 11: Model 1 Components of Conditional Variance

xl0'5 Model 1: TREND

xlO-5 Model 1: SEASONAL

xlO 5 Model 1: IRREGULAR
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Figure 12: Model 2 Components of Conditional Variance

xlO-5 Model 2: SEASONAL

xlO 5 Model 2: IRREGULAR
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Figure 13: Model 3 Components of Conditional Variance

xlO-5 Model 3: TREND

xlO-5 Model 3: SEASONAL
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Figure 14
ALP Conditional Variance Seasonal Component Forecasts

xlO-5

Figure 15: Monetary Aggregate Series
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