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Abstract

An elementary and visual account of Amari’s (1990) expected geom
etry is provided, focusing on the full exponential family case. Formal 
definitions of affine connections are not required. Rather, it is sufficient 
to consider the first two moments of the score function under the true 
distribution. Amari’s fundamental non metric affine connection appears 
as the natural measure of the non constancy of the true covariance of 
the score. This covariance is constant in the natural parameters. Non 
linearity of the graph of the mean score in the natural parameter is seen 
to reflect a curvature present in nearly all parametric families.

The notion of ^-duality is introduced. This is a natural duality be
tween the score function in one parametrisation and the maximum like
lihood estimate in another. It is seen to correspond to, and therefore 
provide a statistical interpretation of, the notion of duality in Amari’s 
expected geometry.

American Mathematical Society Subject Classification. Primary 53B99; Sec
ondary 62F05, 62F12.

Key words: Asymptotic inference; affine connection; curvature; differ
ential geometry; duality; expected geometry; exponential family; generalised 
linear model; metric tensor; parametrisation; score function; tangent space. 
This work has been partially supported by ESRC grant ‘Geodesic Inference, 
Encompassing and Preferred Point Geometry in Econometrics’ (Grant Number 
R000232270).
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1 Introduction.

Differential geometry has found fruitful application in statistical inference. In 
particular, Amari’s (1990) expected geometry has been used in higher order 
asymptotic analysis, and in the study of sufficiency and ancillarity. However, 
we identify three drawbacks to the differential geometry approach. Firstly, the 
unfamiliar terms involved in such an approach can be difficult for the statis
tician to fully appreciate. Secondly, their statistical meaning can be less than 
completely clear, and finally the fact that, at its core, geometry is a visual 
subject can be obscured by the mathematical formalism required for a rigorous 
analysis, thereby hindering intuition. All three drawbacks apply particularly to 
the differential geometric concept of a non metric affine connection.

The primary objective of this paper is to mitigate these drawbacks in the 
case of Amari’s expected geometric structure on a full exponential family. We 
aim to do this by providing an elementary account of this structure which is 
accessible geometrically, clearly based statistically and also visually presented.

Statistically, we use three natural tools, these are; the score function and 
its first two moments with respect to the true distribution. Geometrically, we 
are largely able to restrict attention to tensors. In particular, we are able to 
avoid the need to formally define an affine connection. It turns out that this 
account also sheds some new light on the choice of parametrisation as discussed 
by Amari (1990), extending earlier work by Bates and Watts (1980, 1981), 
Hougaard (1982) and Kass (1984).

A key feature of our account is that all expectations and induced distribu
tions are taken with respect to one fixed distribution namely, that assumed to 
give rise to the data. This is the so called preferred point geometrical approach 
developed in Critchley, Marriott and Salmon (1992, 1993), on whose results we 
draw as appropriate.

To emphasise the visual foundation of geometric analysis we parallel the 
mathematical development with graphical illustrations using important exam
ples of full exponential families. Although the analysis is not restricted to this 
case, we emphasise one dimensional examples so that simple pictures can be 
used to illustrate the underlying geometrical ideas and aid intuition.

There are also a number of points of contact between our account and 
Firth (1993).

Our hope is that this account will serve to broaden interest in an im
portant and developing area. For a more formal but still readable treatment
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of differential geometry, see Dodson and Poston (1977). For broader accounts 
of the application of differential geometry to statistics see the review papers 
or monographs by Barndorff-Nielsen, Cox and Reid (1986), Kass (1987, 1989), 
Amari (1990) and Murray and Rice (1993).

The paper is organised as follows. The elementary prerequisites are estab
lished in Section 2. The key elements of Amari’s expected geometry of general 
families of distributions are briefly and intuitively reviewed in Section 3. In 
particular, his connections are discussed in terms of the characteristic statis
tical properties of their associated affine parametrisations. The final section 
contains our account of this geometry in the full exponential family case, as 
outlined above. Extending this account to the general case is necessarily more 
complicated and will be dealt with in a future paper.

2 Preliminaries.

2.1 The general framework.

Let
M  =  {p(x, 8) : 8 e 0 }

be a p-dimensional parametric family of probability (density) functions. The 
available data x  =  (aq,. . .  ,x n)T is modelled as an i.i.d. random sample with 
some unknown true distribution p(x, ij)) € M. Let the parameter space 0  be 
an open connected subset of R p. Formally, certain regularity conditions are 
entailed. These are detailed in Amari (1990, page 16).

2.2 The score function.

The score function

s(0>x ) =  lnP(x ’ 0)> • • • > ^  lnK x - d))T

is very natural to work with statistically as it contains precisely all the relevant 
information in the likelihood function; Integrating over 0  recovers the log like
lihood function, Z, up to an additive constant which is independent of 8. This 
is equivalent to the likelihood up to a multiplicative positive factor which may 
depend on x  but not 8. Two different choices of the constant will contain the
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same likelihood information (Cox and Hinkley 1974, page 12). We call this in
formation the shape of the likelihood. Visually, the graph of the score function 
displays the shape of the likelihood in a natural and direct way. We use this to 
advantage later.

The score function is also a very natural tool to work with geometrically. 
An important concept of differential geometry is that of the tangent space. We 
can avoid the general abstract definition here as we have a concrete representa
tion of this space in terms of the score function. Regarding now x  as a random 
variable, following Amari (1990), we identify the tangent space TMg at each 
fixed p(x, 6) G M  with the vector space of random variables spanned by

Q
{Sj(0,x) =  —  ln p (x ,6») : i =  l , . . . , p } .

Under the regularity conditions noted in Section 2.1, this vector space has di
mension p, the dimension of M.

2.3 Distribution of the score vector.

Naturally associated with each fixed tangent space TMg is the joint distribution 
Pg of the components of the score vector s(6, x ) . This may be known analytically 
but can always, by the central limit theorem, be approximated asymptotically 
by the multivariate normal distribution ./Vp(/^(0), <7*(0)) where

p*(9) =  Ep(l^) [s(0, x)] =  7iEp(l>)[s(0,:r)]

and
g't’ ie) =  Covp(x^)[s(0,x)] =nCovp(l>)[s(0,z)]

These last two quantities are the statistically natural tools that we shall employ 
in our account of Amari’s geometry. The matrix g’t>(6) is assumed to be always 
positive definite.

Note that, for all <f>,

=  0 and g*{<p) — =  ni{4>)

where I and i denote the Fisher information for the sample and for a single 
observation respectively.

For later use we define the random vector e^(0,x) by the decomposition 

s (0, x ) =  p.*{d) +  e*(9, x)

3
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so that Ep(I^)[e^(0, x)] vanishes identically in 8 and <j>.

In the one dimensional case there is a particularly useful graphical rep
resentation of the three tools on which our account is based. For a particular 
realisation of the data x  the plot of the graph of s(8, x) against 8 can give great 
insight into the shape of the observed likelihood function. We call this graph 
the observed plot. Together with this we use the expected plot. This is a graph 
of the true mean score together with an indication of variability. We make 
extensive use of this graphical method for particular important examples.

2.4 Reparametrisation.

So far, we have worked in a single parametrisation 8. It is important to consider 
what happens under a reparametrisation.

We consider reparametrisations 8 —> £(0) that are smooth and invertible. 
Define,

say. By the chain rule, the components of the score vector transforms as 1- 
tensors. That is:

for each fixed 6. This amounts to a change of basis for the vector space TMg. 
By linearity of expectations, the components of p?“{0) are also 1-tensors. That 
is:

As covariance is a bilinear form, we see that 3^(8) is a 2-tensor. That is, its 
components transform according to:

By symmetry, the assumption of positive definiteness and since g4‘{8) varies 
smoothly with 8, g^id) fulfils the requirements of a metric tensor, see Amari 
(1990, page 25). It follows at once, putting 8 =  <j>, that the Fisher information 
also enjoys this property.

In parallel with this tensor analysis plotting the observed and expected 
plots for different parametrisations of the model can be extremely useful in

p

d iW =  J2K (8)d t(8 ) (2)

9i f m ) = ± ± m ( 8)9m (3)
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conveying the effects of reparametrisations on the shape of the likelihood and 
the statistical behaviour of important statistics such as the MLE.

3 Some elements of Amari’s expected geome
try.

3.1 Connections.

Formally. Amari’s expected geometry is a triple (M, I, V +1) in which M  is 
a family of probability (density) functions and I  the Fisher information met
ric tensor, as described above. The major difficulty in understanding revolves 
around the third component V +1 which is a certain non metric affine connec
tion. In Section 4, we obtain a simple clear, statistical interpretation of it in 
the full exponential family case.

Here we note certain additional facts concerning connections and Amari’s 
geometry, offering intuitive explanations and descriptions where possible. For 
a formal treatment see Amari (1990). We emphasise that such a treatment is 
not required here, as our later argument proceeds in terms of the elementary 
material already presented.

A connection allows us to (covariantly) differentiate tangent vectors and, 
more generally tensors, see Dodson and Poston (1977, Chapter 7). A connection 
therefore determines which curves in a manifold shall be called ‘geodesic’ or 
‘straight’ . Generalising familiar Euclidean ideas, these are defined to be those 
curves along which the tangent vector does not change.

A metric tensor induces in a natural way an associated connection called 
the Levi-Civita or metric connection. In Amari's structure the Fisher informa
tion I  induces the affine connection denoted by V°. The Levi-Civita connection 
has the property that its geodesics are curves of minimum length joining their 
endpoints. No concept of length is associated with the geodesics corresponding 
to non metric connections.

Amari shows that the two connections V ° and V +1 can be combined to 
produce an entire one parameter family {V “ : a £ R }  of connections, called 
the «-connections. The most important connections statistically correspond to 
a =  0, ±| , ± 1, as we now explain.
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3.2 Choice of parametrisation.

For each of Amari’s connections it can happen that a parametrisation 6 of M  ex
ists such that the geodesic joining the points labelled 6\ and 02 simply comprises 
of the points labelled {(1 — A)0i +A02 : 0 <  A <  1}. For example Cartesian coor
dinates define such a parametrisation in the Euclidean case. When this happens 
M  is said to be flat, such a parametrisation is called affine, and the parameters 
are unique up to affine equivalence. That is, any two affine parametrisations are 
related by an affine transformation. In the important special case of a metric 
connection M  is flat if and only if there exists a parametrisation 9 in which the 
metric tensor is independent of 9.

For a connection to admit an affine parametrisation is a rather special 
circumstance. When it does, we may expect the affine parametrisation to have 
correspondingly special properties. This is indeed the case with Amari’s ex
pected geometry. When an a-connection has this property, the manifold is 
called a-flat and the associated parametrisations are called a-affine. Amari 
(1990, Theorem 5.12, page 152), to whom we refer for further details, estab
lished the following characteristic features of certain a-affine parameters. We 
note below the a-affine parametrisations which have the particular statistical 
property shown.

1. a  =  1 ,  natural.

2. a  =  5, normal likelihood.

3. a  =  0, Constant asymptotic covariance of the MLE.

4. a =  — zero asymptotic skewness of the MLE.

5. a =  —1, zero asymptotic bias of the MLE.

These correspond to the 6 =  0, |, |, 1 parametrisations respectively of Hougaard
(1982), who studied the one dimensional curved exponential family case. In any 
one dimensional family an a-affine parameter exists for every a. A full expo
nential family, of any dimension, is always +l-flat and —1-flat, with the natural 
and mean value parameters respectively being affine. Amari (1990) also estab
lishes the duality result that M  is a-flat if and only if it is —a-flat. This duality 
between V “  and V - “ has nice mathematical properties but has not been well 
understood statistically.

The following section contains an elementary account of the above aspects 
of Amari’s geometry.
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4 The expected geometry of the full exponen
tial family.

4.1 Introduction.

We restrict attention now to the full exponential family. In the natural parametri- 
sation, 0 , we have

p{x,6) =  e x p {^ti(a ;)^  -  ip{0)}.
1=1

The mean value parametrisation is given by 77 =  (771, . . . ,  t/p), where

rf{0) =  E ^ ,„)[«,(*)] =  g > ) .

These two parametrisations are therefore affinely equivalent if and only if \b 
is a quadratic function of 6, as with the normal distributions with constant 
covariance. As we shall see this is a very special circumstance.

In natural parameters and in the one dimensional case, the score function 
is

s(0 ,x) =  n {t(x ) -  ip:{d)} =  n{t(x) -  7/(0) }  (4)

where 7it(x) =  £ ”_i t(xT). Prom (4) we have the useful fact that i) :=  7/(0) =  t. 
Further the two moments of the score function under p(x, <p) are given by,

p*(e) =  n{V''(</>) -  ip'{6)} =  n{T]{tf>) -  T](0)} (5)

g*(6) =  nib"(<t>) =  /(<£). (6)

4.2 Examples.

The following one dimensional examples are used for illustrative purposes through
out: Poisson, Normal with constant (unit) variance, Exponential and Bernoulli.

Although, of course, the sample size affects the ^-distribution of t, it 
only enters the above equations for the score and its first two moments as a 
multiplicative constant. Therefore our analysis, which is based solely on these 
quantities is essentially invariant under independent repetitions. Our third and 
fourth examples therefore implicitly cover the Gamma and Binomial families. 
Together then, these examples embrace most of the distributions widely used 
in generalised linear models (McCullagh and Nelder, 1989).
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The examples are summarised algebraically, if not very communicatively, 
in Table 1. Better, they are displayed visually in Figures 1 to 4 respectively. 
For each example, for a chosen <j> and n, shown in Table 1, we give observed 
and expected plots, both in the natural parametrisation 6 and in a non-affinely 
equivalent parametrisation £(0).

Poisson ( 9)  

(Figure 1)
Normal(0,l) 
(Figure 2)

Exponential(0) 
(Figure 3)

Bemoulli(0) 
(Figure 4)

t ( x ) X X —X X

m exp(6) ¥ 2 -In 9 ln(l + exp(0))

s (0, x) n ( x  — exp(0)) n ( x  — 9) n(-x + 0-1) n(x -  e6(l +e6)-1)

n ( e *  -  ee ) n{<t> — 9) n ( - < t>~1 + 0_1)

9* W n  exp (<t>) n n tt>~2 ne*(l + e*)~2

m 7/(0) = e e $ i r , (9) = - 9~ ' »/(0) = e"( l+ e6)-1

m r 1 3? r 2 (€(1 -€))"*

s(£,x) 3n { x  -  <f3)C2 - n ( x + o r 2 7»(*-f)(€(i-0)_1

-  £)£_1 3n($3(«>) - f 3)£2 ~{)£-2 • v m

9(W(0 9 n£4 n«((&)2r 4 „ t m i z s m" «(1-4)

<t> 0 0 1 0

n 10 20 10 10

Table 1: Examples.

We take £(0) to be the mean value parameter 7/(0) except in the normal 
case where we take £(0) = 03. In each case, £ is an increasing function of 0. 
In the expected plots, we illustrate the first two moments of the score func
tion under the true distribution (that is under p(x, </>)) by plotting the mean 
±2  standard deviations. In the observed plots, to give some idea of sampling 
variability, we plot five observed score functions corresponding to the 5%, 25%, 
50% 75% and 95% points of the true distribution of t. Recall that these plots
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precisely contain the shape of the observed and expected likelihood functions, 
thus are a direct and visual representation of important statistical information.

The observed score graphs do not cross since for each fixed parameter 
value, the observed score function is non decreasing affine function of t. This 
holds in all parametrisations, using (1). From (1), (2), (4) and (5) it is clear that 
in any parametrisation the graph of the true mean score function coincides with 
that of the observed score for data where f(x) equals its true mean r]{<t>). In the 
examples the true distribution of nt is given by Poisson(</>+ln n), Normal(n<f>, n), 
-Gamma(0, n), Binomialfn, 0), respectively.

The most striking feature of the plots is the constancy of the variance of 
the score across the natural parametrisation. and the fact that this property is 
lost in the alternative parametrisation. Also remarkable is the linearity of the 
normal plots in the natural parametrisation. A close inspection reveals that for 
each example, in the natural parametrisation, each of the observed plots differ 
only by a vertical translation, again this property will not hold in general. We 
use these and other features of the plots to better understand Amari’s expected 
geometry.

Certain information is evident from the plots straight away. Under stan
dard regularity conditions, the unique maximum likelihood estimate of a param
eter for given data occurs when the graph of the corresponding observed score 
function crosses the axis from above. Thus as t =  fj, in our examples, these five 
crossing points are the 5%, 25%, 50%, 75% and 95% percentage points of the 
true distribution of the maximum likelihood estimate. The position of these five 
crossing points gives visual information about this distribution, in particular, 
about its position, variance and skewness.

Of more direct relevance to our present concern is the fact that, in these 
one dimensional cases there is a straightforward visual representation of the 
tangent space at each point. TMg can be identified with the vertical line through 
6, and pg (see Section 2.3) with the distribution of the intersection of this line 
with the graph of the observed score function. Identical remarks apply in any 
parametrisation. These tangent spaces are shown in both parametrisations, at 
the above five percentage points of the maximum likelihood estimate, as lines 
in the observed plots and as vertical bars in the expected plots.

In the observed plot, the five intersection points with any given tangent 
space T  Mg, are the five corresponding percentage points of pg. The same is true 
in any increasing reparametrisation Thus, comparing the position of these 
five intersection points at corresponding parameter values in the two observed
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plots gives direct visual information on the difference between pg and pffy . In 
particular, on changes in skewness.

This brings to light a certain natural duality between the MLE and the 
score function. Consider the observed plots in the natural and mean value 
parametrisations. For any given 9 consider the corresponding tangent space 
TMg and TM^g) in the two plots. In each plot we have five horizontal and 
five vertical crossing points, as above, giving information about the distribution 
of the MLE and the score function respectively in the same parametrisation. 
Now, these two plots are far from independent. As r?(x) =  r](9) +  n_ 1s(0,x), 
the horizontal crossing points in the mean parameter plot are just an affine 
transformation of the vertical crossing points in the natural parameter plot. 
The converse is true asymptotically. As we discuss below, this simple and 
natural duality between the MLE and the score function corresponds with the 
duality present in Amari’s expected geometry.

4.3 Amari’s -(-1-geometry

The above one dimensional plots have already indicated two senses in which the 
natural parametrisation is very special. We note here that this is so generally. 
Our analysis then provides a simple statistical interpretation of Amari’s +1- 
connection.

From (4) we see that in the natural parametrisation the score function 
has the form of a stochastic part, independent of 9, plus a deterministic part, 
independent of the data. Recalling (1) and (4) we see that this property is lost 
in a non affine reparametrisation £, since B{9) (:=  B }(9)) is independent of 9 if 
and only if £ is an affine transformation of 9. An equi valent way to describe this 
property is that the ‘error term’ elf'(9 ,x) in the mean value decomposition of 
s(9,x) defined at the end of Section 2.3 is independent of 9 Or again, as 
vanishes, that this decomposition has the form

s(9,x) =n*(0) +s(<f>,x). (7)

Note that p'g differs from pg, only by the translation 9) — p't’{9').

In this parametrisation, from one sample to the next, the whole graph of 
the observed score function just shifts vertically about its (^-expectation by the 
same amount s((f>,x).

As a consequence of (7), the ^-covariance of the score function is indepen
dent of 9, (and therefore coincides with =  /((/>)). But is a metric
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tensor (Section 2.4), and in this parametrisation, the metric is constant across 
all tangent spaces. Recalling Section 3.2 we note that if a metric is constant in 
a parametrisation then the parametrisation is affine for the metric connection. 
All tangent spaces thus have the same geometric structure and differ only by 
their choice of origin. For more details on this geometric idea of flatness, see 
Dodson and Poston (1977).

The metric connection is the natural geometric tool for measuring the 
variation of a metric tensor in an arbitrary parametrisation. But Critchley, 
Marriott and Salmon (1993) prove that, in the full exponential family, the met
ric connection induced by coincides with Amari’s + 1-connection. Thus we 
have the simple statistical interpretation that V +i is the natural geometric mea
sure of the non constancy of the covariance of the score function in an arbitrary 
parametrisation. In the one dimensional case, the +l-connection measures the 
change of variability of the observed score across different points of M.

Looking again at Figures 1 to 4 we see a visual representation of this fact 
is that the ±2  standard deviation bars on the expected plot are of a constant 
length for the ^-parametrisation, and this does not hold in the non affine £- 
parametrisation.

4.4 Amari’s O-geometry.

The fact that in the natural parametrisation all the observed score functions 
have the same shape invites interpretation. From (7) we see that the common 
information conveyed in all of them is that conveyed by their p-inean. What is 
it?

The answer is precisely the Fisher information for the family. This is clear 
since determines I via

while the converse is true by integration, noting that /x̂ (<£) =  0. Thus, in 
natural parameters, knowing the Fisher information at all points is equivalent 
to knowing the true mean of the score function, (and hence all the observed 
score functions up to their stochastic shift term). In particular, in the one 
dimensional case, the Fisher information is conveyed by the graph of ^ (0 )  as, 
for example, in the natural parameter expected plots of Figures 1 to 4.

Amari uses the Fisher information as his metric tensor. It is important to 
note that when endowed with the corresponding metric connection an exponen
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tial family is not in general flat. That is, there does not, in general, exist any 
parametrisation in which the Fisher information is constant. The multivariate 
normal distribution with constant covariance matrix and any one dimensional 
family are notable exceptions. In the former case, the natural parameters are 
affine. In the latter case, using (3) the affine parameters are obtained as solu
tions to the equation

=  constant.

For example in the Poisson family where if =  exp(0) one finds £(0) =  exp(|) as 
in Hougaard (1982).

Thus far we have seen that, in the case of the full exponential family, the 
fundamental components of Amari’s geometry ( M , / ,  V +1) can be simply and 
naturally understood in terms of the first two moments of the score function 
under the distribution assumed to give rise to the data. I is defined by the 
true mean V +1 by I  and the true covariance. Further, they can be understood 
visually in terms of the expected plots in our one dimensional examples. We 
now go on to comment on duality and choice of parametrisation.

4.5 Amari’s -1-geometry and duality.

The one dimensional plots above have already indicated a natural duality be
tween the score vector and the MLE. Also that there is a natural statistical 
curvature, even in the one dimensional case unless the manifold is totally flat. 
That is, unless the graph of the true mean score function is linear in the natural 
parametrisation. We develop these remarks here.

Amari (1990) shows that the mean value parameters

»?(0) = Ep(l,ff)[t(x)i = V>'(0)

are —1-affine and therefore, by his general theory, duality related to the natural 
+l-affine parameters 9. We offer the following simple and direct statistical 
interpretation of the duality. We have,

V =  t](0) +  n~1s(6,ic).

Expanding Q(fj) to first order about r? gives an asymptotic converse 

9=9 +  n_1 B(9)s(9, x) =  9 +  n_ 1s(r;,x),
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the right hand equality following from (1) and we use =  to denote first order 
asymptotic equivalence. Thus the duality between the +1 and —1 connections 
can be seen as the above strong and natural asymptotic correspondence between 
the MLE in one parametrisation and the score function in another. In fact this 
simple statistical interpretation of Amari’s duality is not restricted to the full 
exponential family, see Critchley, Marriott and Salmon (1993). It is established 
formally in a more general case here in Section 4.7.

4.6 Total flatness and choice of parametrisation.

The above approximation to 8 is exact when 6 and 77 are affinely equivalent. In 
this case, 6 and fj are in the same affine relationship and so their distributions 
have the same shape. In particular, as normality is preserved under affine trans
formations, these distributions are as close to normality as each other whatever 
the definition of closeness that is used. In the case where M  is a constant 
covariance normal family 9 and fj are both exactly normally distributed.

Affine equivalence of 9 and 77 is a very strong property. When it holds much 
more is true. It is the equivalent in the full exponential family case of the general 
geometric notion of total flatness defined and studied in Critchley, Marriott 
and Salmon (1992). Recall that the natural parametrisation 8 has already 
been characterised by the fact that the true covariance of the score function is 
constant in it. Total flatness entails this same parametrisation simultaneously 
has other nice properties. It is easy to show the following equivalences,

9 and 77 are affinely equivalent 
^  is a quadratic function of 8 

<=> 1(9) is constant in the natural parameters
<=? ^ (8 )  is an affine function of 9

3 a  /  fl with V a =
<=> Va, V/3, V a =  V 0
<=> the 9 parametrisation is a-affine for all a

In particular, the MLE of any a-affine parameters are all equally close in (any 
sense) to normality.

It is exceptional for a family M  to be totally fiat. Constant covariance 
multivariate normal families are a rare example. In totally flat manifolds the 
graph of ji*(9) is linear in the natural parametrisation, as remarked upon in 
the one dimensional normal example of Figure 2. More usually, even in the one
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dimensional case, a family M  of probability (density) functions will exhibit a 
form of curvature evidenced by the non linearity of the graph of

Recall that the graph of ^ (9 )  enables us to connect the distribution of 9 
and fj. Each observed graph is a vertical shift of the expected graph. This shift 
is an affine function of t =  fj. The intersection of the observed plot with the 9 
axis determines 9. When the expected plot is linear (the totally flat case) then 9 
and fj are affinely related and so their distributions have the same shape. When 
it is non linear they will not be affinely related. This opens up the possibility 
that, in a particular sense of ‘closeness’ one of them will be closer to normality.

In all cases, the 0-geometry plays a pivotal role between the ±l-geometries. 
That is, the graph of ̂ (9 )  determines the relationship between the distributions 
of the MLE’s 9 and fj of the ±l-affine parameters. We illustrate this for our 
examples in Figure 5. Both distributions are of course exactly normal when 
the parent distribution is. In the Poisson case the concavity of ^ {9 )  means 
that 9 is less positively skewed than fj. The opposite relationship holds in the 
Exponential case as ^ (9 )  is convex there.

4.7 Amari’s ±|-geometry and duality.

Amari’s |-connection can be simply interpreted in terms of linearity of the 
graph of the true mean score function, at least in the one dimensional situation 
where the ^-affine parameters are known to exist. If M  is totally flat, the graph 
is linear in the natural parametrisation, as in the normal constant covariance 
family. It is therefore natural to pose the question: Can a parametrisation be 
found for a general M  in which this graph is linear?

This question can be viewed in two ways. Firstly, for some given p(x , <j>), 
is such a parametrisation possible? However in this case, any parametrisation 
found could be a function of the true distribution. In general, there will not be a 
single parametrisation that works for all <j>. The second way is to look locally to 
4>. This is the more fruitful approach statistically. The question then becomes: 
Can a single parametrisation 9 —> £ be found such that, for all <f>, the graph of 
the true mean score is linear locally to £ =  £(</>)? In the one dimensional case, 
we seek £ such that

W>, d V w (0  
d e l«=«W - 0

Such a local approach is sufficient asymptotically when the observed score func
tion will be close to its expected value and the maximum likelihood estimate will
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be close to the true parameter. Thus in such a parametrisation, whatever the 
true value, the observed log likelihood will asymptotically be close to quadratic 
near the MLE. Hence the name, normal likelihood parameter. Amari (1990) 
shows that such parameters always exist for a one dimensional full exponential 
family, and that they axe the |-affine parameters.

The vanishing of the second derivative of the true expected score function 
in one parametrisation £ finds a dual echo in the vanishing of the asymptotic 
skewness of the true distribution of the MLE in another parametrisation A. 
This is called the —|-affine parametrisation as it is induced by Amari’s — |- 
connection. Note again that the duality is between the score function and the 
MLE as in Section 4.5. This can be formalised as follows.

Consider any one dimensional full exponential family, 

p(x, 9) =  exp{t(x)0 -  ip{9)}.

Let f  and A be any two reparametrisations. Extending the approach in Section 
4.5, it is easy to show the following equivalences:

£=£ +  n 's(A,x) <=> A=A +  n '«(£, x) d\ d£ 
M d e

In this case, we say that £ and A are -0-dual. Clearly, the natural (+l-affine) 
and mean value (—1-affine) parameters are 0-dual. A parameter £ is called self 
0-dual if it is 0-dual to itself. In this case we find again the differential equation 
for the 0-affine parameters given in Section 4.4. More generally, it can be shown 
straightforwardly that for any a  € R

£ and A are 0 -d u a l => [£ is a-affine A is -  a —affine 1

Thus the duality between the score function and the MLE coincides quite gen
erally with the duality in Amari’s expected geometry.

Note that the simple notion of 0-duality gives an easy way to find — a- 
affine parameters once +a-affine parameters are known. For example, given 
that 4 =  9* is |-affine in the exponential family (Hougaard, 1982) where 0(0) =  
— ln(0), one immediately has

d\
d9 ~  36

whence 0~* is —j-affine. Again, in the Poisson family, £ =  exp(0/3) is |-affine 
gives at once that exp(20/3) is — i-affine.
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The local linearity o f the true score in +|-parameters suggests that asymp
totically the distribution of the MLE of the ±|-affme parameters will be rel
atively close compared, for example, to the those of the ±l-affine parameters. 
In particular, it suggests that both will show little skewness. Figure 6, which 
may be compared to Figure 5(c), conveys this information for our Exponential 
family example.
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