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Abstract

A framework is proposed for investigating the effect of evolution
ary selection on a population where some agents learn. It is shown 
that learning behaviour when aggregated has different properties than 
when considered at the level of the individual and that a combination 
of learning and evolution has different properties in terms of stability 
than when considered separately. Convergence is shown for all 2 x 2 
games and a famous 3 x 3  example.

"I would like to thank Alan Kirman, Mark Salmon, Ken Binmore, Debora di Gioacchino 
and participants at Stony Brook 1993, for comments and suggestions.
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1 In tro d u ctio n

Game theorists have recently shown an increasing interest in modelling both 
learning and evolution. Nash equilibrium (and its refinements) place strong 
requirements on the rationality and the computational ability of players 
and on the information they must possess. In switching to models with 
boundedly-rational agents the hope has been not only to weaken those de
mands but also to select between equilibria in a manner which is more in
tuitive. Unfortunately, the dynamics considered do not necessarily converge 
and thus fail to give clear predictions. The results here indicate that in part 
this failure arises from too narrow a focus. Most research has concentrated 
on properties of individual algorithms. We examine a model where there is 
both learning and evolution and find quite different results from when they 
are considered separately. In particular, there is convergence for a wider class 
of games.

There are obvious similarities between the properties of adaptive learning 
and evolutionary dynamics. Typically, both are concerned with the devel
opment of the distribution of strategies within some large population1. As 
Cabrales and Sobel [3] show, evolutionary dynamics under certain condi
tions can be “consistent with adaptive learning” in the sense of Milgrom and 
Roberts [13]. But this is only a condition on the asymptotic behaviour of a 
selection or learning process. In the short run, although “consistent”, dif
ferent processes may behave quite differently. In particular, while selection 
dynamics are typically smooth functions of current strategy distributions, 
under fictitious play or Cournotian dynamics, where players make best re
sponses to previous play(s) of opponents, there can be discontinuous jumps 
in play. Convergence to mixed strategies is in particular troublesome (for 
example, see Fudenberg and Kreps [7], Jordan [10]). Here it is shown that 
if one aggregates such behaviour across a large population, smoothness is 
obtained.

The standard evolutionary dynamic framework assumes that agents com
pete in some game and then reproduce according to the success they ob
tain. Here I make the (strong) assumption that the- population is randomly 
matched an infinite number of times in each “generation” to play the game.

'Some papers in the first camp include Milgrom and Roberts [13], Kandori et al. [11], 
Young [18]; in the second, Nachbar [14] , Samuelson and Zhang [15].
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The population is heterogeneous in that some agents learn. At the end of 
their “lifespan” agents reproduce according to the success of the strategies 
they develop, or, to be precise, according to the limit of this learning process. 
Thus, there are two mechanisms that can change the mix of strategies in the 
population. Agents can change their own strategies, a “learning” process, 
and an evolutionary mechanism also chooses between different agents, the 
“selection” process.

The combination of the two has quite different implications for the sta
bility of equilibrium than each considered in isolation. We show that the 
distribution of strategies in the population converges to Nash frequencies for 
all 2x2 asymmetric games and also for a famous 3x3 game first proposed by 
Shapley [16] in 1964. Shapley’s original pessimistic result has been confirmed 
and generalised by more recent research, (Jordan [10]). It is therefore par
ticularly striking that, even given the particular assumptions of this model, 
that a population can converge to the Nash equilibrium of such a game.

2 L earn in g  and  S e lec tio n

An infinite population is repeatedly, randomly matched to play a two-player 
normal-form game, G =  ({1,2},/, J, A, B). We develop the model and no
tation on the basis that the game is asymmetric (in the evolutionary sense), 
in which case the players labelled 1 are drawn from a different “popula
tion” from the players labelled 2. For example, in the “Battle of the Sexes” 
game, players are matched so that a female always plays against a male. 
I is a set of n strategies, available to the first population, J, the set of m 
strategies of the second population. Payoffs for the first population are de
termined by A, a n x m matrix of payoffs, with typical element aXJ, which 
is the payoff a member of the first population receives when playing strat
egy i against a member of the second population playing strategy j . B, 
with typical element bji, is the m  x n equivalent for the second population. 
There are n + m “types” of agent, each associated with one strategy. The 
state of the system can thus be summarised by the proportions of the pop
ulation playing each strategy x =  (aq, ....,x„), y =  (t/i , ..., ym). That is, 
the state space is the Cartesian product of the simplexes, Sn x Sm where 
S„ =  {x = (aq,...,xn) € Rn : Exi = l,Xi > 0 for i — l,...,n}. Define the 
interior (or, int Sn+i x Sm+1), as all states where all types have strictly posi
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tive representation, and define the boundary as all states where at least one 
type has zero representation. The symbol indicates multiplication by a 
transpose, and the notation (Ay){ indicates the ith element of the vector in 
parentheses.

The basic model is modified here by the addition of a type capable of 
inheriting rules more complex than simply to play a fixed strategy2. Thus, 
we now have n +  l,m  +  1 types, and we work in Sn+i x Sm+1. We can 
think of each generation being divided into an infinite number of subperiods 
(0,1,..., s , ...). As a reminder, the selection process operates between gener
ations, the learning process within generations. We assume that the n +  1th 
and m + 1th type adjust their strategies so that they play what is an optimum 
response to the strategy of their previous opponent: the “best-response” or 
Cournotian dynamic. Similar behavioural hypotheses have been employed in 
recent learning literature (for example, Milgrom and Roberts [13j; Kandori 
et al. [11]; Young [18]), but here the implementation is particularly simple. 
Agents do not need to know anything about the overall distribution of strate
gies in the population or to have a memory longer than one subperiod. Yet, 
as we will see, this is enough to ensure convergence to Nash equilibrium in a 
large class of games.

Thus, at any given time, different members of the additional type may 
be playing different strategies. Let p(s) =  (pi(s), ...,pn(s)) and q(s) =
(qi(s),.... ,<7m(s)) where Pi(s) and qj(s) denote respectively the proportion
of this n +  1th type of population 1 playing the ith strategy, and the pro
portion of the m  +  1th type playing the jth  strategy at a given subperiod 
s. As I, J  are finite, it is a standard result that for any pure strategy 
in / ,  there exists at least one element of J  which is a best response to 
that strategy. Or V i € I  3 6,-, > bji. First, define J' as those sub
sets of I  and J  respectively of strategies which have current positive rep
resentation in the two populations. Second, let pj represent the number 
of strategies in I  which are equal best responses to strategy j .  Third, let 
Ji =  {j  £ J' : i = argmaxt€/ a^} be the set of strategies to which i is the 
best reply, and, equivalently, let Ij =  { * € / ':  j  — axgmaxj€J bji}.

The probability that an individual of type n+1, in population 1, meets an 
individual of type j  in the second population is yj. There is also a probability 
q3ym+i of meeting an individual of type m +  1 currently playing strategy j.

2Banerjee and Weibull [1], Stahl [17] employ a similar maneouvre.
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In either case, faced with an opponent playing strategy j ,  the individual will 
play in the next subperiod a strategy which is a best reply to j .  Thus, within 
each generation, each p, evolves according to a mapping Sm —» [0,1]

Thus, although individual choices are made according to the best-reply dy
namic, the distribution of strategies in the population is a continuous function 
of the previous subperiod’s distribution. We make the assumption that when 
there are alternative best responses each agent chooses independently. Then 
by the law of large numbers each alternative response is chosen by an equal 
number of agents. This explains the presence of pj, denoting the number of 
alternative best replies. Naturally if Jt = 0, p, = 0, and if J, =  J', pt =  1. 
These represent respectively the cases where i is not a best reply to any 
strategy, and where it is the dominant strategy. Similarly, for the second 
population,

Lemma 1 If, at time t, 1 > xn+\(t),ym+i(t), the learning process repre
sented by equations (1), (2) has an unique fixed point p*, q* e Sn x Sm.

Though they change between generations, within each generation the 
population proportions x ,y  are fixed and are therefore constants for (1), 
(2). Consequently, the equations are simple, linear difference equations. In 
equilibrium, writing them in matrix form:

where P  =  (pi, ...,p„-i,<7i...,</m_i). As fZp = !2q = 1 we can eliminate the 
nth and mth equations, rewriting pn as 1 -  E i_1 Pi, Qm as 1 -  <7p By
inspection of (1), (2), it is possible to see that (I — Xf) can be partitioned in 
the following manner:

Each column of X n  and X 21 sums to ym+i and x„+i respectively. Thus 
(I —Xi) is singular if and only if neither X12 and X 2\ are linearly independent

( 1)

(2)

P  =  xo + X iP  =  (I -  X i^ x o

4
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of I, which can only be the case if xn+i — ym+\ — 1. Otherwise, there is a 
unique fixed point, P*(x,y) =  (p*,q*). This solution will be a function of 
(x, y), continuous on the interior of S'n+i x Sm+1. The exact weights depend 
entirely on the value of the xt, y, and not on the value of p, q at the beginning 
of the learning process. Furthermore, the sufficient condition for the existence 
of an unique fixed point is also a sufficient condition for convergence.

Lemma 2 If, at time t, 1 > xn+i(t),ym+i(t), the learning process converges 
to its unique fixed point.

(1), (2) represent a system of n+ m  linear first order difference equations. 
The Xi, yi are constant within each generation, and therefore are constants 
for (1), (2). In particular, the coefficients on the variables p ,q  on the right 
hand side are the xn+i/fi„ ym+l/pj, the sum of which in each equation have 
an upper bound in value of either xn+i or ym+\. By the elementary theory 
of difference equations if this sum is less than unity for all equations, so are 
all the roots of the dynamic system. □

It is worth remarking that here convergence is not convergence in empir
ical frequencies, a notion of convergence that has been forcefully criticised in 
the recent literature (Young [18], Fudenberg and Kreps [7], Jordan [10]). In 
this case, one does not have to take a time average. As the limit approaches, 
an outside observer would see strategies actually being played at (close to) 
equilibrium frequencies.

I make the assumption that payoffs during the learning process do not 
affect the rate of reproduction. Rather it is the limit of the learning process, 
denoted (p*,q*) which determines reproductive fitness. This construction 
has some analytic convenience: if one assumes only a finite number of plays 
each period, the values of p, q will be dependent on their (arbitrary) initial 
values. We would have to make further assumptions about how much of the 
behaviour learnt within a period is transmitted between the generations. For 
example, we could assume that each generation starts from scratch: at the 
beginning of each period p(0), q(0) are randomly determined. That is, “chil
dren” learn nothing from their “parents”. Or we can assume that the initial 
values are some function of play by the previous generation. However, using 
the limit, the value of ( p \  q*) will be the same in either case. This procedure 
is in any case defensible on the grounds that as (1), (2) are convergent, after
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a “large” number of plays the process will be arbitrarily close to the limit3.
As stated we use these limiting values to determine fitness. At the end 

of the learning process the total proportion of the first population adopting 
the ith strategy will be given by 2, = x, + x„+ip*, and, the proportion of the 
second population adopting the jth  strategy by Wj = y} + ym+iQj- Given the 
assumption of random matching it is these overall distributions which decide 
fitness. For the first n ,m  types this will be, given the normal form game G,

*xi =  (Aw)i, TTyj = (3)

and for the learners,

Trn+l =  P* ‘ AW, 7Tytn+1 = q* ■ Bz (4)

With fitnesses defined, we can propose as a selection mechanism the following 
replicator dynamics:

z<(f+l) =  /x<(x,y) =  Vii.t+ 1) =  /w(x ,y) =  (5)

or, taking the limit, as generations become arbitrarily short:

i i  =  f « (x ,y )  =  a^Ofan-z-Aw), y3 =  Fw(x,y) =  yj{t)(-ny3-v j-B z )  (6)

where z • Aw, w • B z  are the average payoffs for the two populations. Inspec
tion of (6) shows that this continuous selection mechanism has the following 
important property:

Invariance. As Fxt = Fyj =  0, the interior of the simplex 
is invariant under F. Starting from any interior point, the boundary is 
never reached in finite time. That is, if (x(0),y(0)) e int Sn+\ x Sm+1, 
then (x(t),y(t)) e int Sn+i x 5m+i for all t € R.

If we impose the condition that atJ, b}, and hence nxl, nXJ, are strictly 
positive4 for all i , j ,  invariance will also hold for the discrete dynamic / .  
Given that p*, q* are themselves functions of the frequencies of types in the

3Compare Harley’s assumption (e): “The learning period is short compared to the 
subsequent period of stable behaviours” [6, p613|.

4Any game matrix with negative payoffs can be transformed by the addition of a positive 
constant. This will not change the best response structure or Nash equilibria but may 
change the qualitative behaviour of the discrete replicator dynamics. See Cabrales and
Sobel [3] for a discussion of the issues involved.
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population, fitnesses will not be linear in x, y - a usual assumption of the 
replicator dynamics - and perhaps not even be defined when xn+l and ym+i 
are equal to one. However, by Lemmata 1 and 2, fitnesses are continuous 
functions of x ,y  elsewhere. This, combined with invariance implies that 
from any fully-mixed initial conditions, (that is, > 0, i — + 1 and
yj > 0, j  = l...m +  1), the learning process converges, and fitnesses are 
defined, for all t € R. Thus while both /  and F are not continuous on all of 
Sn+1 x Sm+1 they are continous on its interior. In other words, both /  and 
F possess a limit even along a dynamic path with an acculmulation point on 
the boundary of Sn+i x Sm+i, even if that limit may be path-dependent.

3 E q u ilib riu m

Equilibrium in this model consists of a population distribution which is a 
rest point for both selection and learning processes. That is, a state of the 
system where the limit of the learning process is such that all types present 
in the population earn the same average payoff. In the standard evolutionary 
model, that is, in the absence of the learners, under the selection dynamics 
defined by (5) or (6), denote the rest points for the game G in the interior of 
Sn x Sm, (x^y*). It is well known that such rest points are Nash equilibria 
(Hofbauer and Sigmund [8], Nachbar [14])s. For the extended game, the 
conditions for an interior rest point under the selection dynamics are

T r l •••• Trn-f-li ^Tyl 1 (*7)

Furthermore, as (x, y) are both constant if (7) holds, the limit for the learning 
process is also unchanging across all subsequent generations. The consequent 
distribution of strategies is a Nash equilibrium. Comparison of equations (3), 
(4), reveal that any values of (x, y) that satisfy the above condition (7), also 
satisfy Xi + p'Xn+i = x*, and fjj + q’ym+i = y]- That is, it is a Nash equi
librium for the original game G in the sense that an outside observer would 
see, as the learning process reached its limit, strategies being played with the 
Nash equilibrium frequencies, (x*,y*). Note that'for each population there 
is now one less independent equation than there are independent variables. 
This means that any isolated equilibrium of the original game in the interior

5A11 states that consists of just one type are also rest points, but not all are equilibria.
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of Sn x Sm will be represented by a continuum of fixed points in the interior
of ^ *̂ rn+l•

Furthermore, we can show that for all 2 x 2 games the system will converge 
to a Nash equilibrium. This is unusual in that replicator dynamics do not 
converge for asymmetric games with an unique mixed strategy (Hofbauer 
and Sigmund [7, pp!41-143]). (8) gives a generalised 2x2 game.

an ai2
«21 a22

bn f»12
621 622

Define ai — cl\2 — ^22)̂ 2 — a2i — ^11! ffi — 1̂2 — 2̂21̂ 2 — &21 — bn. if 
ai<i2 < 0 then one of the first population’s strategies dominates the other. 
The learners will only play the dominant strategy. Their frequency in the 
population will grow at the same rate as the type representing the dominant 
strategy, which will always be positive. Eventually only that strategy will 
be played in first population. If = 0 there is either weak dominance 
or complete indifference. Strategy distributions either remain unchanged, or 
one strategy will be played by all the population. A similar analysis can be 
applied for games where 6162 < 0.

If flia2 > 0 and 6162 > 0 then there is a mixed Nash equilibrium where 
the first strategy of each population are represented with frequencies (b, a) = 
(il+6?' a~fta2) respectively. The interesting case is when a 161 < 0, as in this 
case the standard evolutionary dynamics do not converge. However, the 
addition of an arbitrarily small initial population of learners is enough to 
stabilise the dynamics.

Proposition 1 If ai&i < 0, then the mixed equilibrium is asymptotically 
stable and attracts all other points on the interior of S3 x S3.

Proof: We give the proof for the continuous time case. Define Vj =
x l 'x Z y r 'y ? ’

V\ =  ^ i[(6 i-(6 i+ f> 2 )2 i)((-4 w )i-(A w )2 )-(a i-(a i+ a 2)n ;i)((S z)i-(B z)2 )] =  0

or in other words Vf is a constant of motion. All orbits on the interior of 
Sn+i x Sm+i will be level curves of V\. These are convex curves which pass 
through the continuum of equilibria defined by {X1 +P1X3, y\ +  <712/3) =  (6, a). 
This implies that all orbits either flow toward the interior equilibrium, or
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flow toward a boundary where X3 and/or 7/3 are zero. However, without loss 
of generality, take a 1 to be negative, note that in this case (1), (2) imply that 
p =  w and that q =  1 — z and define V2 = x“xl~ax j ly\~by2by j 1, which has 
its maximum on such a boundary.

V2 =  V2[(a -u>)((Aw)j -  (/tw)2) +  ( z - 6)((Bz)i -  (Bz)2)] < 0

Evidently, orbits flow away from the boundary to the equilibrium, which 
must attract all the interior. □

If ai&i > 0  then this interior equilibrium is a saddle. Similar arguments 
to those employed in Proposition 1, can be used to show that in this case, the 
system behaves in much the same way as standard evolutionary dynamics and 
flows toward the Nash equilibria located on the boundaries of the simplex.

4 A  3 x 3  E xam p le

The famous example given by Shapley [16] to demonstrate non-convergence 
of fictitious play is shown in (9). The only Nash equilibrium of this game 
is interior, where both row and column play each of their strategies with 
equal probability. Interior (mixed) equilibria of asymmetric games are never 
asymptotically stable under the replicator dynamics. Thus this game does 
not converge for the replicator dynamics, just as it does not for fictitious play. 
However, under this modified system this game converges to the unique Nash 
equilibrium.

Starting from a fully-mixed initial state, the proportions of type 4 playing 
each strategy evolve according to:

' 2/1 N ( x3 \ ' Ps(s)
p(s +1) = 2/2

l  03 )
+ 2/4q(s), q(s + 1) = Xi

\  *3
+  X 4 Pl(s) 

i, P2(s)
(10)

This is a system of six linear difference equations. By Lemma 2 we know 
that the fixed point of this system is the limit of the learning process. This

9
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can be calculated using standard methods. It would be possible to eliminate 
p, q by substitution using these results. However, it is easier to work in 
the other direction. We construct Zi(t) = Xi(t) + X4(t)p*(t), w,(t) = Dj + 
yn{t)q'{t)', i , j  =  1,2,3, where Zi is the total number of the first population 
playing strategy i, and Wj is the total number of the second playing strategy 
j .  Note that (10) here implies that z (t) = (92M, 93(f), 9i(0), that w =  p 
and that q-B = z -A. There is an interior equilibrium for this system: the 
plane such that X\ =  x2 =  x3, 2/1 =  2/2 = 2/3, which we denote (x,y). In 
such an equilibrium, (10) in turn implies that p = q = (1/3,1/3,1/3). I now 
prove that the limit point of all solutions under / ,  given fully-mixed initial 
conditions, is on this plane (normally for the discrete dynamics the interior 
equilibrium is a repellor).

Proposition 2 The plane of equilibria (x, y ) under f  attracts all other points 
on the interior of S4 x S4.

Proof: Define Vs(x,y) =  X4IJ4. Given that x4(t + 1) = X4(t)—~™, andz-Aw
that j/4(t +  1) =  2/4(f)~ —~~, it follows that + 1) — V3(t) > 0 if and only

W-DZ
if

p-Aw q Bz — z-Aw w-Bz =  w • w z • z — z • w w • z* > 0 (11)

where z* =  (z3, zi, z2). Divide through by w • w z • z to obtain:

1 — cos 8zw cos 6WZ- > 0

It follows that V3(t +  1) > V3(t) with equality only at (x, y). Vs(x,y) is 
therefore a strict Liapunov function on all of the interior of S4 x 54.D

rock b a c
scissors c b a
paper a c b

a > b > c ( 12)

We consider briefly two other examples. The first (12) is the familiar 
rock-scissors-paper game, the second (13) is a game proposed by Dekel and 
Scotchmer (1992). They show that the dumb strategy survives in the limit 
under the discrete replicator dynamics although it is never a best response 
and therefore not rationalizable. rock-scissors-paper is well-known as a 
problem game. While it does converge for fictitious play, it does so only
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in empirical frequencies. It (typically) does not converge for the discrete 
replicator dynamics. As for the first example, the limit of these games when 
learners are also present is the unique Nash equilibrium. As both these 
two additional examples have a similar structure, it is not surprising that 
they elicit similar behaviour. The function, xn+i2/m+i, will again work as 
a Liapunov function and shows that in both cases there is convergence in 
population frequencies to the unique Nash equilibrium.

rock 1 2.35 0 0.1
scissors 0 1 2.35 0.1
paper 2.35 0 1 0.1
dumb 1.1 1.1 1.1 0

5 D isc u ss io n

Games such as (9) cause problems for conventional models because they 
possess cycles of best responses. One might think that random perturabtion, 
for example, trembles or mutations, would also break up these deterministic 
cycles. However, this is not the case (see for example, [18]). The fundamental 
reason that this model gives qualitively different behaviour is that there are 
two distinct processes determining the change in the distribution of strategies, 
working at different speeds. By changing strategies, the learners anticipate 
the next stage of the cycle and “damp” the non-convergent tendencies of the 
original model. The dependence is two-way. Without the non-learners, the 
best-response process would not converge for this game.

One might argue that the simple learning rule considered here would be 
displaced by more sophisticated behaviour. For example, Harley [7] claims 
that for a learning rule to be evolutionary stable it must be a “rule for ESSs”. 
That is, it must be able to lead the population to the evolutionary stable 
strategy (ESS) in one generation. However, some doubts have been cast 
on Harley’s model and methodology (Maynard Smith et al., [12]; Houston 
and Sumida, [9]). The latter paper raises a further point. “Games against 
nature”, or in economic terms, single-agent optimisation problems, represent 
a very different learning environment to a situation where there is strategic 
interaction with other agents. That is an argument that finds support in 
more recent work ([1], [2], [17]). There is no claim that the learning rule 
considered here is the “correct” one. However, there is also no strong evidence
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that evolution will select for more complex or sophisticated behaviour in a 
strategic environment.

Learning and evolution are ostensibly similar processes. However, while 
evolution is defined at the level of a population, learning is carried out by 
individuals. Crawford [4] demonstrates that even when agents’ learning is 
modelled in a similar manner to the replicator dynamics, an aggregation of 
their behaviour does not have the same properties in terms of stability as 
evolutionary dynamics. Similarly, in this paper even the most elementary 
learning behaviour gives increased stability when considered at the level of 
the population. This opens up the possibility of further research about the 
aggregate properties of populations where a number of different classes of 
behaviour are present.
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