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Chapter 1

Introduction

Economists often concentrate their interest on some particular underlying 
parts of economic variables. For instance, long-run paths or cyclical fluctua­

tions are the subject of macroeconomists’ attention. Such views fit into the 

Unobserved Components modelling framework, in which a time series is as­

sumed to be made up of severed components that are not directly observed.- 

Corresponding to the common use of unobserved components as a tool for 

economic analysis, over these last twenty yeaxs a significant body of the sta­

tistical literature has been devoted to the study of Unobserved Component 

models. However, these models have encountered a problem in that they 

are not identified. Every analyst wishing to decompose a time series into 

unobserved components must make an arbitrary assumption about the com­

ponents. This dissertation discusses the identification problem in Unobserved 

Components models.

In recent developments in economic research, unobserved components ap­

pear in a variety of problems. Firstly, these issues commonly arise when a 

variable which is supposed to play an important economic role is not directly 

observed. This concerns for example the modelling of monetary authority
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credibility (Weber (1992)); the estimation of the persistence of economic 

shocks (Cochrane (1988)); or the estimation of the underground economy 

(Aigner, Schneider and Ghosh (1988)). Unobserved components are also rel­

evant when agents are believed to react differently to distinct movements in 

a variable in which they are interested. In particular, the permanent and the 

transitory evolutions of the same economic variables have been seen to play 

different roles in the Friedman (1957) Permanent Income Hypothesis or in Lu­

cas’ (1976) analysis of the agents’ reactions to the changes in the price level. 

The Business Cycle literature focusses on some underlying movements in time 

series, in particular on the trend evolution and on the cyclical fluctuations 

of the economy (see for example Beveridge and Nelson (1981), Nelson and 

Plosser (1982), Watson (1986), and Harvey (1985), among others). Outside 

the arena of economic research, unobserved components play an important 

role in short-term policy making and in the monitoring of the economy. Typ­

ically, governments use seasonally adjusted series and, on occasion, trends, to 

set short-term macroeconomic policy. The standard decomposition involved 

here is into the seasonally adjusted series plus a seasonal component, where 

the seasonally adjusted series may be split into a trend and an irregular com­

ponent.

The wide use of unobserved components leads to a practical need for es­

timators. Methods for estimating the components may be classified in two 

main groups: empirical methods using ad-hoc filters and model-based ap­

proaches. The first group began to be developed in the beginning of the cen­

tury, and are at present widely used in applications. Two examples are the 

Hodrick-Prescott filter for detrending time series, and the X I1 filter, or some 

variant thereof, for seasonally adjusting time series. These procedures allow 

for evolving components, in opposition to the regression approach which as­
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sumes deterministic components. However, a common feature of ad-hoc filters 

is that they do not properly take into account the stochastic properties of the 

series under analysis and, as a consequence, the use of these methods presents 

some inconveniences. For instance, the estimation error and the components 

forecasts are not available, and no rigorous diagnosis of the decomposition ad­

equacy is provided. Model-based approaches which consider linear stochastic 

processes for the components can bring an answer to these problems. We 

shall consider a class of models which has become very popular in the statis­

tical analysis of time series: the class of AutoRegressive Integrated Moving 

Average (ARIMA) models. These models, developed by Box and Jenkins

(1970), have been shown to be a relatively flexible class, and also useful in 
applications. It is thus natural to adopt them to describe the behavior of 

the series and its components. Chapter 2 underlines this choice through the 

discussion of some historical considerations about the components and of the 

limitations displayed by ad hoc filters.

However, even if it has been found that it is convenient to parametrize 

the models for the components using ARIMA models, all the parameters 

cannot be identified. This identification problem is in fact general in the 

unobserved components analysis. In the vast majority of cases, statisticians 

have solved it using some a priori considerations for postulating "desirable” 

models. Chapter 3 formally discusses the identification problem in unobserved 

components models and presents the most popular identification criteria in 

use. It will be seen that the identification problem turns out to be simply a 

noise repartition problem between the components.

Chapter 4 presents the component estimation in the model-based ap­

proaches. Two estimation algorithms can be used: the Kalman Filter and 

the Wiener-Kolmogorov filter. Since it is better suited for analytical dis­
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cussion, we shall use the Wiener-Kolmogorov filter. The derivation of the 

estimators will be detailed, and the stochastic properties of the estimators 

will be discussed. In particular, their similarities and their discrepancies with 

the original components models will be analyzed. Some new properties of the 

estimators concerning the structure of the estimators cross-covariances and 

their relationship with the estimation error will be derived.

Presenting the estimation errors and analysing the estimators’ properties, 

Chapter 4 will point out the fact that both of them depend on the identifying 

assumptions. This is a crucial point which has to be underlined: any iden­

tifying assumption has some particular consequences for both the stochastic 

properties of the component estimators and also the precision of the esti­

mation. Given that any identifying assumption is arbitrary and cannot be 

justified by any compelling reason, it seems sensible to look for the model for 

the components that can be estimated with the maximum precision. Every 

analyst would benefit by dealing with a signal that can be estimated accu­

rately. The monitoring of the economy and short-term macroeconomic policy 

might also be improved if they were to be conducted signals less obscured 

by the estimation error. Chapter 5 discusses how the precision of the com­

ponent estimation is related to the set of the identifying assumptions. Some 

functions of the noise repartition will be derived. These functions will appear 

to be simply second-order polynomials in the noise repartition, with coeffi­

cients easily available. They will be used in Chapter 6 to derive some simple 

rules for selecting the best estimated decomposition. It will be shown that 

the thus-obtained decompositions possess some other attractive properties. 

Some optimal properties of a popular identification criterion, the canonical 

decomposition, will arise. The main tool for this analysis is provided by 

the ARIMA models framework, but our results are also valid for any linear
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stochastic processes.

The discussion is illustrated with some important types of ARIMA models 

in Chapter 7, and extended in Chapter 8 to the components’ growth rates. 

Finally, some actual time series are analysed in chapter 9.
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Chapter 2

The Development of the 

ARIMA-Model-Based 

Approach for Unobserved 

Component Analysis: a Brief 

History

2.1 Introduction

In this second chapter, we review some of the most important steps in the 

process leading to the development of the ARIMA-model-based decomposi­

tion of time series. Within this framework, two different fundamental notions 

are brought together: the idea of unobserved components and a probabilis­

tic theory based on parametric models. The idea that time series axe made 

up of different unobserved components has a very long history; this will be 

summarized in section 1. A detailed review of the early developments can be
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found in Nerlove, Grether and Carvalho (1979). May be the first model-based 
approach to the components analysis was the regression approach, where a 
deterministic function for the component is assumed and estimated by least- 

squares. For example, a trend was modelled as a polynomial in time. How­

ever, the deterministic assumption was soon felt restrictive, and some more 

flexible procedures have been developed. Having discarded the possibility 

of deterministic behaviors, a prominent feature of the early analysis of the 

components is that it was conducted in the absence of an explicit and suit­

able model for the series under analysis. Thus the filters constructed for the 

estimation of the components were mostly ad hoc, based on empirical con­

siderations. In this dissertation, we will refer to the component estimation 

procedures which do not explicitly assume a model for the component un­

der analysis as "empirical methods”. Being constructed independently of the 
stochastic properties of the series analyzed, empirical filters display some im­

portant limitations. The principle of empirical filters, their advantages and 

defects will be discussed in section 2.

The development of a probabilistic theory during the twentieth century 

supplied an answer to the criticisms of the empirical methods in use. An im­

portant step in time series modeling was the generalization of ARIMA models 

by Box and Jenkins (1970). These models are of interest because they provide 

a simple way to model seasonal time series with relatively few parameters. 

We devote section 3 to the description of these models. If they were initially 

designed for the statistical study of observed time series, the Box-Jenkins 

ARIMA models have provided the basis of a model-based approach for the 

analysis of the components. Characterizing the components in this way has 

allowed analysts to avoid the problems encountered with empirical methods. 

This is the approach that we will consider in this dissertation, and the gen­
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eral specification for ARIMA-model-based decomposition of time series will 

be presented in section 4. Emphasis will be put on the fact that if it is possible 

to represent the components in terms of ARIMA models, the decomposition 

of a time series into unobserved components is in general not unique.

2.2 The Idea of Unobserved Components

Nerlove and al. (1979) locates in astronomy, during the seventeenth and 

eighteenth centuries, the origin of the perception of a series of observations as 

the output of different processes. Famous mathematicians such as Laplace, 

Euler and Lagrange used this representation of series when studying the plan­

etary orbits. The success of the idea of unobserved components in astronomy 

inspired some meteorologists like B. Ballot (1847) who started looking for 

periodicities in atmospheric events. B. Ballot is also considered as the first 

to have built a procedure for seasonal adjustment: a good description of his 

work is contained in Nerlove and al. (1979, p.354-360). Economics imported 

the idea of unobserved components during the nineteenth century. Among 

the precursors was J. Gilbart ((1852), quoted in Kuznets (1933)) who noted 

a seasonal pattern in the circulation of banknotes in the UK.

The first to explicitly state the unobserved components hypothesis was 

Persons (1919, 1923). According to Persons, time series are composed of:

•  a long-term tendency or secular trend;

• a wavelike or cyclical movement;

• a seasonal movement;

•  a residual variation.

12



Persons publications were followed by an increase in the interest for un­
observed components analysis. However, the statisticians soon faced several 
difficulties, mainly related to the characterization of the components. As 

Macaulay (1931) noted, trends and cycles were evolving over time and were 

”not necessarily representable throughout [their] length by any simple math­

ematical equation” (p. 38, quoted in Bell and Hillmer (1984)). Fitting spe­

cific trend functions such as a linear deterministic trend was thus excluded. 

Macauley (1931), Joy and Thomas (1928) among others used moving aver­

ages trend estimates. Such approaches preserve the time-varying nature of 

the trend: as noted in Kendall (1976), a moving average filter for trend esti­

mation amounts to approximate the trend by local polynomials. In current 

usage in macroeconomics, a popular empirical filter for removing trend is the 

Hodrick-Prescott filter (1980).

Empirical filters were also used for the seasonal adjustment of time series. 

King (1924), for example, considered the median of successive sets of data 

points. There was a general agreement on the idea that the seasonal compo­

nents of time series also change over time. Here again, the development of 

moving average filters was related to the difficulty of precisely characterizing 

the seasonal component. During the sixties a moving average filter, the X -ll 

procedure (see Shiskin and al. (1967)), became probably the most commonly 

used tool for the seasonal adjustment of economic time series. Data producing 

agencies and institutions related to policy making have applied it widely, and 

continue to use it intensively to this day, perhaps in its variant X -ll ARIMA 

(see Dagum (1980)). Given the popularity of empirical filters, we now turn 

to a discussion of their advantages and inconveniences. The important point 

is that the problems encountered with these filters arise from their ad hoc 

nature, i.e. from the absence of a statistical model for the components.
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2.3 Empirical Moving Average Filters

A moving average filter of length 2M  + 1 can be expressed as:

C (B )=  Z
i=-M

where throughout the dissertation B stands for the backshift operator such 

that for a time series zt and any integer k, B kZt = 2t_*. Symmetric filters are 

often employed because they induce no phase-shift in the estimation of the 

components.

The principle of moving average filters can be easily understood in the 

frequency domain, where the interpretation can be drawn in terms of band­
pass filters. For example, assume that the filter C(B) is designed to detrend 

a time series. The trend component represents the long term variation of 

a time series, or in other words movements with low frequencies. A filter 

designed to eliminate a trend component will thus have a zero gain in the 

low frequency region, and a gain of 1 for the other frequencies. For seasonal 

adjustment purposes, the filters will cancel the variability associated with the 

seasonal frequencies simply by displaying a zero gain in these regions and a 

close to one gain in the other frequencies. Of course, the original series must 

be adequate, and effectively possess the features that the filter is supposed to 

remove.

Moving average filters have been developed precisely in order to present 

this bandpass structure. This class of filters are not model dependent, and in 

practice they are implemented independently of the stochastic properties of 

the series under analysis. This is very convenient when a statistical agency 

has to routinely adjust hundreds of time series, since the same filter can be 

applied to every series. The success of X I1 for the seasonal adjustment of
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- time series can be partly explained in this way. Clearly, the positive aspect of 

ad hoc filters is a practical consideration which is less relevant for academic 

research where emphasis is placed on methodological issues concerning just a 
few series.

Cleveland and Tiao (1976) and Burridge and Wallis (1984), have shown 
that the X -ll weights are the solution of a particular model, and in this way 

an underlying stochastic mechanism can be implicitly assumed as generating 

the filter. Hence, applying the same filter to each series considered can be 

seen as assuming that the same model applies to all series; this is excessively 

restrictive. It is however true that many series have stochastic structures 

that are relatively similar, and not too far away from models generating X -ll 

weights; this also explains the success of X-ll.

A further problem of ad hoc filters is that they do not provide any statis­

tics for checking the adequacy of the estimation results. At the extreme, 

one can extract with X-ll a seasonal component from a white noise variable 

(see Maravall (1993b)). Moreover, neither the estimation error on the com­

ponent nor the component forecasts are available. Given the relevance that 

this knowledge may have for policy making, its absence constitutes a serious 

shortcoming of empirical filters.

Empirical filters have been developed partly because proper statistical 

models for analyzing time series were not satisfactory, or simply were not 

available. The components were believed to evolve over time and it was not 

clear how to specify explicit models to describe them. Without a proper sta­

tistical model for the series under analysis, the filters have been built in an 

ad hoc manner which has induced the limitations that we have described. 

To overcome them, in the last fifteen years model-based approaches consid­

ering linear stochastic processes have been developed. Such approaches were
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made possible by progresses in applied time series modelling that we briefly 
summarize now.

2.4 Linear Time Series Modelling

We review some of the most important steps in the development of applied 

time series analysis relevant to our work.

Yule (1927) first introduced the class of AutoRegressive (AR) processes. 

He fitted a low order process to the Wolfer’s sunspot data by least squares 

methods. The Moving Averages (MA) processes were introduced by Slutsky 

(1937). Wold (1938) fitted MA models to data and established the important 

innovation representation for stationary processes, which is also known as the 

Wold representation theorem. The differencing of time series was used by 

Robb (1929) when dealing with the removal of the trend component.

Mann and Wald (1943) discussed inference in time series models. They 

derived the asymptotic theory for maximum likelihood estimators in AR mod­

els. Interested readers can find a good presentation of their work in Anderson

(1971). Durbin (1960) and Walker (1962) among others considered mixed 

ARMA process when studying the properties of maximum likelihood esti­

mates.

Whittle (1952) was probably the first to use high lags in time series models 

to account for seasonality. He fitted an 8-lag AR process to the Beveridge 

wheat price series (Beveridge (1921) and (1922)). For the six-month sunspot 

data, he selected a 22-lag AR model, but with the second to twenty-first lag 

coefficients set to zero. These representations may be seen as the first step 

toward seasonal time series modeling.

The contribution of Box and Jenkins (1970) was decisive for applied time



series modelling. They set the general class of AutoRegressive Integrated 

Moving Average models, which consists of a mixed ARMA process for the 

series made stationary by differencing. For nonseasonal time series, these 

models are specified as:

<j>(B)kdzt =6(B)au

where 4>{B) and 0(B) are polynomials satisfying the stationary and invertibil- 

ity conditions respectively, A = 1 — B  is the difference operator, d denotes the 
minimum number of differences required to render the series stationary and 

at is a white noise variable. If the polynomials <t>(B) and 9(B) are respectively 

of order p and q, then zt is said to follow an ARIMA(p,d,q) model.

Box and Jenkins extended the ARIMA models to cover seasonal time 

series. They started from the point that if a time series is observed with a 

frequency of m observations per year, then observations which are m periods 

apart should be similar. For example, if zt represents a monthly time series, 

then it is expected that observations for the same month in successive years 

are related. An ARIMA model relating the observation Zt to the previous 

z«_m, zt_2m, • • •, can simply be written as:

*(B m)A%zt = B(Bm)at ,

where $ (B m) and Q(Bm) are polynomials in 5 m, of order respectively P  and 

Q, which satisfy the stationarity and invertibility condition, and Am =  1—B m 

is the seasonal differencing operator. This nonstationary operator has its 

roots ei7k*/m, k = 0,1, • • •, m — 1, evenly spaced on the unit circle. The 

parameter D represents the minimum number of differences required to make 

the series stationary. It is usually assumed that the relationship between the
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same month in successive years is common to all months, so the parameters 

of the polynomials $ (B m) and ©(B™) are constant.

Beside this relationship, for a monthly time series for example, a rela­

tionship is expected to occur between successive months in the same year. 

For this reason, the variable a t will not be uncorrelated. Box and Jenkins 

account for the relationship between successive observations in a natural way, 

assuming that at itself follows the nonseasonal ARIMA model:

4>{B) A dat = 6{B)at.

It then comes out that the series zt follow a multiplicative seasonal ARIMA 

model, specified as:

<f>(B)$(Bm)A dA%zt =  &(B)Q(Bm)at.

This ARIMA model is said to be of order (p, d, q)(P, D, Q)m. In practice, this 

representation has the advantage of involving relatively few parameters and 

has proved to adequately approximate many seasonal time series. Multiplica­

tive seasonal ARIMA models have been extensively used in the statistical 

literature, for applied research and for theoretical investigations.

Formulation of an ARIMA model requires first to select the appropriate 

order of the polynomials and the adequate order of différenciation. For the 

first choice, Box and Jenkins recommend the use of the autocorrelation and 

partial autocorrelation functions. The asymptotic theory for sample autocor­

relations, derived by Bartlett (1946), serves as a statistical basis for conduct­

ing this choice. Unit root tests, as developed by Dickey and Fuller (1976) and 

Phillips (1987), help in selecting the adequate order of différenciation. Once 

a model is selected, then estimation of the parameters may be conducted by
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Maximum Likelihood or some Least-Squares criterion. Several statistics may 

be used for checking the model adequacy, in particular the residual autocorre­

lations and the Box-Pierce-Ljung Q-statistics. A particular type of ARIMA 

model which has shown to be well adapted for many seasonal series is the 

(0 ,1 ,1)(0,1, l)m model, also called the "airline model”.
The ARIMA models have provided the ground for a model-based analysis 

of Unobserved Components in time series. Cleveland and Tiao (1976) were, 

to our knowledge, among the first to consider this possibility, and they used 

ARIMA models in conjunction with signal extraction theory. That is the ap­

proach that will be adopted in this dissertation. Other approches are of course 

possible. In particular, while the ARIMA-model-based approach deduces the 

models for the components from the observed series model, the Structural 

Time Series (STS) (Engle (1978), Harvey and Todd (1983)) models proceed 

by directly specifying linear stochastic processes for the components. How­

ever, STS models are closely related to ARIMA models, and Maravall (1985) 

showed that they turn out to be a particular case of the ARIMA model spec­

ification. In that sense we can say that STS models are "encompassed” by 

ARIMA models. We believe it is better to deal with the most general linear 

model. Our choice insures that the analysis will be valid for any linear model.

We now present the general model specification, introducing the notation 

that will be used throughout the discussion, and we will see how ARIMA 

models may be used to characterize the components.
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2.5 ARIM A-M odel-Based Decomposition o f Time Se­

ries

2.5.1 General Model Specification

The ARIMA-model-based approach assumes that an observed series x t is 

made up of Unobserved Components, typically a signal st and a nonsignal nt. 

The UC and the observed series are assumed to be related according to:

xt =  n< + su (2.1)

where the additivity may be obtained after some suitable transformation of 

the observed series. For example, logs may be taken if the initial relationship 

is multiplicative. Possible applications of (2.1) will be discussed in the next 

subsection. Decompositions into more than two components are sometimes 

considered. For instance, a nonseasonal component nt can be written as 

the sum of a trend and an irregular component. For our purposes it will 

be convenient to deal with the simplest two component model, one being of 

interest, the other one summing up all other components that may be present.

The ARIMA-model-based procedure, as originally developed by Box, Hill- 

mer and Tiao (1978), Burman (1980), and Hillmer and Tiao (1982), considers 

the following assumptions on the Unobserved Components.

Assumption 1: The Unobserved Components are uncorrelated.

This assumption may appear to be somewhat restrictive, and in fact it 

is not required in order to obtain estimates of the UC (see Whittle (1963)). 

Some decompositions used in the literature consider correlated components 

(see for example Watson (1986)). Probably the most popular example of cor-
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related components is given by the Beveridge-Nelson (1981) decomposition of 

1(1) series into a temporary and a permanent component. In this procedure 

both components turn out to be defined as linear combinations of the observed 

series x t (see Maravall (1993b)). Since xt is stochastic, the Beveridge-Nelson 

decomposition implicitly assumes that the components share the same inno­

vation, which is a strong assumption.

Assuming instead independent components is a simplification which has 

some intuitive appeal. It is justified by the idea that the evolution of the 

different components is driven by separate forces. A typical illustration of 

the applicability  of this representation is provided by the monetary control 

problem. This arises because central banks often rely on Seasonally Adjusted 

(SA) money demand estimators to take decision ab'out money supply in the 

next period. In this case, the orthogonality hypothesis amounts to consider­

ing the seasonal and long-term evolution of the monetary aggregates as being 

driven by different causes: the long-term path would be related to the eco­

nomic fundamentals, while the seasonal variations would be related to events 

such as holidays timing or the Christmas period. This seems reasonable and 

thus supports the use of seasonally adjusted series for policy making. In gen­

eral, the orthogonality hypothesis is standard in practical applications such 

as the short-term monitoring of the economy.

The next assumptions concern the stochastic structures of the compo­

nents.

Assumption 2:

The correlation structure of the Unobserved Components is supposed to be 

well described by A RIM A models of the type:
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4>n(B)nt = 0n(B)ant,

<f>,(B)st = e,(B)a.t, (2.2)

where the variables ant and a,t are normally distributed white noise with vari­

ances Vn and Vt . The models are not reducible; that is each pair of polynomials 

{<j>n(B), 6n(B)}, {<t>»(B), 6t (B)}, are prime. Furthermore, the polynomials 

<t>n(B), 4>,{B), 0n(B), and 6t (B), of order respectively pn, p„, qn, and q„ may 

have their roots on or outside the unit circle, but <f>n(B)nt and <f>s(B)st are 

required to be stationary. Also, as implied by assumption 1, the innovations 

ant and att are independent.

The specification of ARIMA models for Unobserved Components can be 

found in Cleveland and Tiao (1976), Box, Hillmer and Tiao (1981), Pierce 

(1978), Burman (1980) and Hillmer and Tiao (1982) for the early references.

A restriction must however be considered:

Assumption 3: The AR polynomials <f>n(B) and <f>t (B) do not share any 

common roots, and the MA polynomials Bn(B) and 9,(B) have no common 

unit root.

The first part of the assumption implies that the spectra of the UC do not 

have peaks at the same frequencies. Given that different components are asso­

ciated with different spectral peaks, the first part of assumption 3 concerning 

the AR polynomials seems a reasonable feature of the decomposition. The 

second part of the assumption concerning the MA polynomials is required 

in order to obtain an invertible overall model, which insures a finite mean 

squared estimation error, as we shall see in chapter 4. From assumptions 1,

22



2, and 3, we obtain:

d>n{B )^ (B )x t =  <f>.(B)0n(B)ani + <j>n{B)0,{B)a.t,

so the observed series xt follows a ARIMA model of the type:

<f>x{B)xt =  0x{B)au

where the polynomials 4>X(B) and 6X(B) are respectively of order px and qx. 

The polynomial <f>x(B) is such that: <f>x(B) = <f>n(B)<f>,(B), no common root 

between the polynomials <f>n(B ) and <f>3(B) being allowed. Thus px = pn -f pt . 

The repartition of the different roots of <f>x(B) between the polynomials <j>n(B) 
and 4>s{B) depends on the behavior that the components are expected to 

display. For example, a unit root at the zero frequency would be assigned to 

the component representing the long-term evolution of the observed series. 

The MA process 0x(B)at verifies:

0x(B)at = <t>,(B)9n(B)ant + ¿n(£)0 ,(£)a4„ (2.3)

where at is a normally distributed white noise with variance Va. Without loss 

of generality, we set Va = 1 so that all other variances will be expressed as a 

fraction of V̂ . Since the MA polynomials 0n[B) and 03{B) are assumed not 

to share a common unit root, the MA process Ox(B)at is invertible; this can 

be directly seen for (2.3). Equation (2.3) also implies that the order of the 

MA polynomial is constrained by:

qx < max(pn + q„p, +  qn). (2.4)
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Equations (2.1), (2.2) and assumptions 1, 2, and 3 constitute a model which 

will be refered to as model (A). This is the general model that will be discussed 

in this dissertation. It includes more than the ARIMA-model-based: in fact 

it is valid for any linear process with normal innovations.

Since our discussion will focus on the characterization of the components, 

and since the model for observed series can be consistently esitmated, we shall 

retain the following assumption:

Assumption 4'- The model for the observed series is known.

In other words, the polynomials <f>x(B), 8X(B), and the innovation variance Va 

are known. As briefly discussed in the previous section, the knowledge of the 

model followed by the observed series is reached after estimation using Box- 

Jenkins techniques. Since identification, estimation, and diagnostic checking 

of ARIMA models are now well established procedures, we shall not discuss 

this stage. Interested readers are refered to Box and Jenkins (1970).

We need some notations about the Auto-Covariance Generating Function 

(ACGF) and about the spectra of the observed series and of the components. 

Throughout the dissertation, we will denote by Ai, i =  x ,n ,s  the ACGF of 

respectively x t, nt, st. These are defined under the hypothesis of stationarity 

as:

_ ( J M

where F  is the forward operator defined as F  =  B~l . Using the Fourier 

transform B  =  e~tw in (2.5), w denoting frequency in radians such that 

w € [—x, tt], the equation above also defines the spectra ffi(w). When one
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or both components are nonstationary, neither the spectra nor the ACGF of 
the nonstationary components and of the observed series are strictly defined: 
the presence of a unit root in a AR polynomial <f>i(B) implies an infinite peak 

in gi(w) and thus an infinite variance. However, the definitions of gi(w) and 

Ai provided in (2.5) may be extended to cover nonstationary cases, as in 

Hillmer and Tiao (1982), Bell and Hillmer (1984), and Harvey (1989), who 

refer to them as pseudo-spectrum and pseudo-ACGF. Since we do not make 

any assumptions about order of integration of the observed series, we will 

refer to the functions gi(w) and Ai, i =  x ,n , s ,  simply as the spectrum and 

the ACGF, whether the components are stationary or not in order to simplify 
the presentation.

2.5.2 Characterization of the Components: some examples

Model (A) is quite general. It embodies many possible applications, the most 

important of which are possibly detrending of time series, seasonal adjust­

ment, cycle analysis and noise extraction. These applications involve the 

components discussed by Persons, namely the trend, the seasonal, the cycle 

and the irregular component. To give some concreteness to our discussion, we 

briefly present how in practice ARIMA models may be used to characterize 

these most common components.

Trend Component

The general form for a stochastic linear trend can be written as:

A dst =  rj)t (B)atU

where 0 < d < 3, and t}>,{B)att is a low order ARMA processes. In the 

ARIMA-model-based approach, trends are often specified as IMA(2,2) mod­

els. Other model specifications used for example by Harrisson and Steven
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(1976), by Harvey and Todd (1983), and by Ng and Young (1990), and which 

are commonly encountered in the STS approach, consider "second order” 

random walks processes such that:

As, = Ht + a„,

where the drift is itself a random walk:

A fit = a^,

where aMi is a white-noise variable with variance V^. It is directly seen that 

this model can be expressed as an IMA(2,1), and thus the second order 

random walks that STS models typically consider are a particular case of 

the IMA(2,2) models for the trend encountered in ARIMA-model-based ap­

proach. Notice that if is a null constant, then the second order radom 

walk model reduces to a simple random walk plus drift, which is commonly 

used in applied econometrics.

The above formulation may be easily interpreted as a stochastic extension 

of linear deterministic trends. Setting and V, to zero, so that A fit is 

constant, the corresponding deterministic trend function is trivially obtained 

as a quadratic polynomial of time if aMt has a non-zero mean, as a linear 

function of time otherwise. With the IMA(2,2) modélisation, this is equivalent 

to having roots of 1 in the MA polynomial. Allowing for stochastidty instead 

of deterministic expressions enables the trend component to evolve over time, 

which is an expected feature of the specification. Models for stochastic linear 

trends have been exhaustively discussed in Maravall (1993a).

Seasonal Component
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Models for seasonal components may also be interpretated as stochastic 
extensions of deterministic models. The aim is still to allow the component to 

display a slowly changing behavior. Starting with a deterministic seasonality 

for which st =  st_m, m representing the number of observations per year, 

then the sum of m consecutive seasonal components will be zero, or:

U(B)st =  0,

where U(B) =  1 +  5  +  ••• +  Bm~1. The periodic nature of the seasoned 
component is captured here, but the seasoned fiuctations axe excessively re­

stricted. Small deviations from this strict model specification may be allowed 

by making the relationship subject to a random shock in each period:

U(B)st =  att.

These type of stochastic seasonal model axe considered for example in the 

Gersch and Kitagawa (1983) and Harvey and Todd (1983) approaches. More 

generally, we can allow the deviation from zero of U(B)st to be correlated 

and consider:

U(B)st = 9t(B)atU

which is mostly used in the ARIMA-model-based approach with the MA 

polynomial 8,(B) of order m — 1. The power of the spectrum of the cor­

responding component will be mostly concentrated around the peaks at the 

seasonal frequencies 2kir/m , k =  1,2, • ■ •, m — 1.

Departures from this type of model specification may be found in the 

statistical literature. For example, Pierce (1978) considered both stochastic
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and deterministic seasonality. Probably the most common departure found 
in earlier model-based approaches was to model the seasonal component with 

Am in its AR part. This should be avoided because this polynomial contains 

the root (1 — B) which is related with low frequencies movements and should 

thus be assigned to the trend. This point is also treated in Maravall (1989) 

where the seasonal component model specification is thoroughly discussed.

Cyclical Component

The cyclical component can be handled in two different ways. The first 

approach designates the ” cycle” to be the residual of the detrending of a 

nonseasonal series. This approach is quite common in macroeconomics, in 

particular in business cycle analysis where the ” cycle” usually describes the 

nonseasonal deviations from the long term evolution of time series. With this 

representation, the cycle corresponds thus to the stationary variations of the 

series. In general, it is well described by an ARMA process.

The second approach explicitly models the cyclical component. It involves 

models which are able to generate periodicities longer than a year. For ex­

ample, consider the model:

5« +  +  <j>$2&t-2 =

with <f>h < 4^*2 • A component so-defined will display a deterministic peri­

odic behavior with frequency w =  arccos(— When this frequency 

is lower than the fundamental frequency 2x/m , then the behavior of st will 

show a period longer than a year. As for the previous cases, small deviations 

from a strictly deterministic behavior are allowed by considering:
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where 0„(B)att is a low order moving average. Jenkins (1979) and Harvey 

(1985), among others, have used such "periodic cycles” models.

Irregular Component

The irregular component corresponds to the noisy part of the series. It is 

typically modeled as a stationary low-order ARM A process and most often, in 

the model-based approach, it is a pure white noise process. This component 

is of interest for example when the observations are known to be contami­

nated by some noise, and the user desires to recover the original signal. Such 

situations occur for instance in communications engineering.

It is worth noticing that in these four examples, the differences between the 
models for the different components come basically from the AR polynomial. 

However, it is also important to look at the MA polynomials and at the 

components innovations variances. We now return to the general model (A) 

to examine this point. A problem of uniqueness of the decomposition will 

arise.

2.5.3 Admissible Decompositions.

Since the AR polynomials are identified directly from the factorization of 

4>X(B), the unknowns of the model consist of the coefficients of the polynomi­

als 9t (B), 6n(B), and the innovation variances V, and V̂ . The fundamental 

problem is that, by equations (2.1), (2.2), and assumptions 1-3, these param­

eters cannot be uniquely deduced: the models for the components are not 

identified. In model (A), information on the stochastic structure of the com­

ponents is brought by the observed series and by the overall relationship (2.3). 

This information, however, is not enough to uniquely determine the models 

for the components: the equation (2.3) implies a system of max(pt +qn, pn+9»)
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covariance equations while the number of unknowns is qn + q, +  2. So when 

max(p, +  qn,pn +  qn) < qn +  q* +  2, and in the absence of an additional as­
sumption, there exists an infinite number of ways to decompose the series x,. 

Any decomposition consistent with the overall model for the observed series 

and insuring non negative components spectra will be called an ’admissible 

decomposition’. All admissible decompositions are of course observationally 

equivalent.

We illustrate this important point of underidentification of UC models 

with the following example:

Example: Trend plus Cycle decomposition.

Consider the following decomposition:

xt =  nt + st with,

A st = a

(1 -  <j>B)nt =  (1 +  9nB)ant, (2.6)

where we constrain the parameter <j> to be negative and such that | 4> |> 9n. 

The assumptions 1-3 are supposed to hold. Equations (2.6) represents a 

simple model designed to decompose a time series into a trend (st) and a 

cycle component (nt). The trend is modeled as a random walk and the cycle 

as a stationary ARMA(1,1), with period 2. It is a particular case of the model 

used in Stock and Watson (1993) to analyze the business cycle and to forecast 

recessions. This specification implies that the observed series xt follows an 

ARIMA(1,1,2) model specified as:

(1 — — (1 — B\B — 92B2)at ,
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with at NIID(0,1) and the MA polynomial is invertible given that g9(w) is 

always positive. Since the components must sum to the observed series, we 
have:

(1 -  91B -  02B 2)at = (1 -  4>B)ast + (1 -  B)(l + OnB)anU 

from where we obtain the following system of covariance equations:

1 + ol +el = (i + <t?)vs + (i + (-i + en)2 + ol)vn

-0,(1- o 2) = -4V.-(1 -o nfvn

~e2 = -onvn.

Taking 4> — —.7, 0n = .3, Vn = .129, and V, — 5V„ = .645, the model for the 

observed series is then obtained as:

(1 +  .7£)Axt = (1 +  .4042? -  .039B 2)ot.

The series is sinulated on figure 2.1 and the components st and nt on figure 

2.2. On subsequent figures, this model will be refered to as "model 1".

Now we change the specification of the components’ models and take:

As, =  (l +  .172£)a„ V, =  .470

(l +  .7£)n, = (l + AteB)ant K  = .220.
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Figure 2.1: Observed Series in Trend plus Cycle example

Figure 2.2: Components in TVend plus Cycle example
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The new system of covariance equations that this model specification implies 
is given by:

1 +  +  #2 = (l +  .8722 + .1202)K + (l +  .5762 + .4342)Vn

- * i (1 - 0 2) = .977K -  .5762Fn

- 0 2 = .120V, -  .434Vn.

It can easily be checked that for these values for 0,, V,, 0n, Vn, the MA

parameters 0\ and remain unchanged. This new decomposition, referred 
to as "model 2”, is thus consistent with the overall model that (2.6) had 

generated. Two model specifications have generated the same observed series. 

They correspond thus to two admissible decompositions.

What is the difference between the two decompositions ? The spectra of 

the components for these two decompositions are plotted on figure 2.3 and 

2.4. It can be seen that for each component, the spectra obtained from the 

two model specifications differ only by a constant. This constant can be inter­

preted as the size of an orthogonal white noise which has been interchanged 

between the two components. To isolate it, it is convenient to look at the 

spectra minima. For the first model, the trend spectrum has a minimum at 

the r  frequency equals to: = Vs/A = .161. In the second case, this min­

imum becomes: V./8 =  .081. Therefore, a white noise variable of variance 

V»/8 has been removed from the trend component spectrum. This noise has 

been assigned to the nonsignal component which becomes more stochastic. 

At the extreme, we could remove ail the noise from the trend component and 

assign it to the ’cycle’. The decomposition that we would obtain is found to
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Figure 2.3: Spectra for the cycle component

Frequency (in rad.)

Figure 2.4: Spectra for the trend component

Frequency (in rad.)
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be:

As, = (l + £)a„ K = -161

(1 + .7B)nt = (l + A96B)ant Vn = .306, (2.7)

and the trend is now noninvertible, the zero in the spectrum at the it- 

frequency meaning that it does not embody any orthogonal noise. The spec­

trum for these components are also seen on figures 2.3 and 2.4. If we look on 

figure 2.5 at the plot of the components so-obtained and compare it with the 

components of the first decomposition, one notices that the trend is smoother 

and the ’cycle’ noisier. Decompositions where one component is noninvertible 

while the other concentrates all the noise of the model are called ’canonical’ 

(see Hillmer and Tiao (1982)). Alternatively, one may be interested by the 

cycle analysis. In this case, it is possible to assign all the noise of the model 

to the trend component, and to remove it from the spectrum of the cycle. We 

thus obtain a second canonical decomposition, denoted "model 4” on figures

2.3 and 2.4, where the canonical component is now the cycle.

As shown on figures 2.3 and 2.4, the identification problem can be thus

seen as the problem of determining the spectrum of the component within

the range delimited below by the spectrum of the component free of noise and 

above by the spectrum of the component concentrating all the noise of the 

model. The admissible decompositions are thus characterized by a particu­

lar noise allocation. The identification problem in Unobserved Components 

models will be treated more thoroughly in chapter 3.
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Figure 2.5: T>end plus Cycle example: canonical trend and noisy cycle

2.6 Presentation of the problem

It is tempting to relate the underidentification of the components with the lack 

of a precise definition of the components. For example, suppose we are inter­

ested in removing the seasonal variations of a time series. The first question 

that one would immediately ask is: what is seasonality ? Unfortunately there 

is no generally accepted definition of what constitutes a seasonal component. 

And even if we accept to define a seasonal component by the spectral peaks 

at the seasonal frequencies (see for example Granger (1978), Bell and Hillmer 

(1984)), such a definition is not precise enough to imply a unique model for 

the seasonal component. Spectral peaks are generated by large roots in AR 

polynomial; nothing is said about what should be the MA polynomial and 

the component innovation variance. In the same way, a trend component may 

be defined by an infinite spectral peak at the low frequencies, but from this
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definition several models for a trend component may be derived. In other 
words, unobserved components cannot be precisely defined, and as a conse­
quence they are not identified. Identification problems are also encountered 

in simultaneous econometric models. But, if in these cases economic theory 

enables the analysts to overcome the underidentification of the model by set­

ting at zero some parameters, in statistics, as noticed in Maravall (1988b), no 

such a priori information is available. Any model-based approach must thus 

consider an arbitrary assumption on the components. This gives rise to two 

important problems in UC models. Firstly, as recognized by statisticians (see 

Bell and Hillmer (1984)), it makes difficult to evaluate a signal extraction 

procedure: it is not possible to compare methods estimating different signals. 

Secondly, given that one is interested in a signad, which model form should 

be chosen ? Obviously, it would be desirable to attenuate the arbitrariness 

inherent in any signal extraction procedure. In this dissertation, we discuss 

the choice of a UC model specification according to some "optimality” criteria 

concerning estimation and some other desirable properties. For our purposes, 

the most attractive feature of the ARIMA-model-based approach is that the 

arbitrary assumptions on the components models are made explicit, while 

they are somewhat hidden in empirical methods.

Different model specifications yield different properties and different de­

gree of accuracy of the estimator. Bell and Hillmer (1984) already noticed 

that ”the accuracy of the estimator depends heavily on what is being esti­

mated”. Since any unobserved component model specification is an arbitrary 

choice difficult to rationalize, why to not use the most accurately estimated 

decomposition ? The estimation error is important for data producing agen­

cies and researchers which are clearly interested in the most precise historical 

estimators. Similarly, policy making and evaluation would benefit of being
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conducted on the most precisely estimated concurrent signals. The concern 

of selecting a decomposition in respect to the estimation accuracy was al­

ready underlying in Maravall and Pierce (1986) when they concluded: ”why 

so much emphasis on seasonal adjustment? Perhaps attention should shift 

to estimation of a smoother signal less affected by revisions (possibly some 

type of trend)”. The "revisions” refers to a type a estimation error affecting 

concurrent estimates that will be presented in chapter 4. Maravall and Pierce 

were clearly interested in best estimated models. In Chapter 6, we shall pro­

vide an answer to the question they raise. We first need to present a formal 

discussion of the identification problem in UC models and a brief overview of 

the most popular identification criteria.
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Chapter 3

The Identification Problem in 

Unobserved Components 

Models.

3.1 Introduction

We have just seen that in the "Trend plus Cycle" example, the decomposition 

was not unique. We had a system of 3 equations for 4 unknowns which thus 

could not be uniquely solved. Each set of parameters consistent with this 

system and insuring non negative components spectra defined an admissible 

decomposition. The difference between admissible decompositions could also 

be interpreted in terms of different noise repartitions. In this chapter, we 

formally discuss the identification problem for the general model (A) under 

the two possible perspectives: as a parametric problem and as a noise repar­

tition problem. Some popular identification criteria used in the statistical 

litterature will be presented. We first need some essential concepts about 

identifiability.
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3.2 Identifiability: Basic Concepts.

The following definitions are mainly extracted from Rothenberg (1971) and 
Hotta (1989).

Definition 3.1 A structure S is a set of hypothesis which implies a unique 

distribution function of the observable Y , say P\YfS}. The set denoted S  of 

all a priori possible structures is called a model.

From this definition, a structure is identified if there exists a unique inverse 

association between S  and P\Y/S). Considerig model (A), each structure is 

formed by a particular set of parameters Sa = {^ni, • • •, , • • • > 0»q.
Vn, V,} lying within the admissible parameter space. Model (A) would thus 

be identified if the distribution of the observable x t would be generated by a 

unique set of parameters Sa -

D efinition 3.2 Two structures Si and Si € S  are said to be observationally 

equivalent if P \Y jS \\ =  P\Y/S?\ almost everywhere.

A model will thus be identified if and only if there does not exist two different 

structures which are observationally equivalent.

Definition 3.3 A structure S  € S  is said to be identifiable if there is no other 

structure in S  which is observationally equivalent. A model S  is identified if 

all the structures are identified.

In practice, we will consider a weaker condition and say that a model is iden­

tified if almost all the structures (not in a probabilistic sense) are identified.
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3.3 The identification problem as a parametric prob­

lem: identification by zero-coeificients restrictions.

For a Gaussian model such as model (A), a structure reduces to a set of 

parameters consistent with the first and second moments of the stationary 

transformation of the observed series. When the first moment of the station- 

axised series is null, as in model (A), it is enough to use the autocovariance 

generating function or the spectrum of the stationarised series to check the 
identifiability of the underlying structures.

3.3.1 A necessary condition for identifiability.

For the general model (A), the relationship (2.3) provides the following iden­
tity:

ex(B)ex(F) = <t>,(B)<j>,(F)6n(B)en(F)Vn + 4>n{B)4>n{F)ea{B)6t {F)V„ (3.1)

which implies a set of covariances equations by equating the coefficient the 

coefficient of B :. The right hand side of (3.1) contains qn + q„ + 2 unknowns, 

which are 0nl, •••, 0n,B, Vn, 0,i, • • -, 6,qt, and V„ while the left hand side 

yields qx +  1 covariances equations. So when qn + q, + 1 > qx, the system is 

underidentified and instead of a unique decomposition, a set of observationally 

equivalent decompositions is obtained. Using qx = max(pn +  qt ,pt + çn), we 

can easily deduce that the necessary condition for identification of model (A) 

is:

qt < f i  or qn < fn- (3-2)
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We now prove that this condition is also sufficient for the identification of 

model (A).

3.3.2 A sufficient condition for identifiability.

For certain types of decompositions, Hotta (1989) has shown that condition 

(3.2) is sufficient to identify the UC models. However, its demonstration did 

not apply to model (A) which is more general that the specifications that he 

discussed. Hotta (1989) also considered a seasonal and a nonseasonal compo­

nent sharing a unit root at the zero frequency. As discussed in Pierce (1979), 

this hypothesis would imply that no optimal estimators exist, so it is natu­

rally excluded by our model specification. We thus must adapt the Hotta’s 

demonstration to the type of models we axe considering. Hotta’s methodol­

ogy is based on the relationship between the spectrum of the observed series 

and the spectra of the UC. Using the Fourier transform in (3.1), we have:

I « .i« '“ ) I2=l ¿ .(e -“ )0„(e-a ) |2 V„+ | * ,(« -")» ,(« -“ ) |J V„

where for a polynomial r/(e'*), | T](e'Á) |2= tj(^x)r¡(e~tx). Developing the 

squared polynomials, we get:

¿  0+ cos(iA) = [Vn ¿  8$i cos(t'A)][¿ fa  cos(tA)] + 
t= 0  «=0 »=0

+[K ¿  0i¡ «»í**)]» (3-3)
t=0 t=0

where: ^ =  x»ni5 and = 1 if * =  0, £”  =  2

otherwise. The coefficients fa  and f a  are defined similarly.
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To prove the sufficiency of condition (3.2), we need a trigonometric prop­
erty, a lemma and a theorem (Hotta (1989)):

Lemma 3.1 I f  X^_0 o.} cos(jA) = jyj_0bjCos(jX), A 6 [—r , 7r], then a,j = b3 
for all j .

To demonstrate this lemma it is enough to see that cos(jX),j =  1, • • •, r is a 

set of linearly independent functions.

Theorem  3.1 If ip(B) and r^(B) are two polynomials of order b with roots 

not inside the unit circle, then:

¿=0 t=0

for j  = 0, 1, • • •, b and with ipo = rp0 has a unique solution =  xpit i = 1, • • ■, 6 

and a2 = a2.

The proof is given in Anderson (1971). This theorem allows us to focus on the 

identification of the 0* and 0* since the identification of the MA parameters 

will follow. The trigonometric property that we will use is:

P ro p e rty  3.1

cos(fcA) cos(jA) = ^[cos((fc -(- j)  A) +  cos((fc — j)A)].
mt

We demonstrate the sufficiency of condition (3.2) for the case where max(pn+ 

q$, qn +  Pb) =  qn + P»i the alternative case leading to a similar demonstration.

So qx =  qn + ps and the necessary condition is: q, < pt and/or qn < pn. We 

focus on showing that qt < p, is sufficient to identify of model (A). We can
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proceed with qt =  p, — 1 to have the maximum of MA parameters on the sig­

nal to identify. We however need a restriction which is: qn < q,. The opposite 

case will be discussed later. Also, notice that q, = pt — 1 and qx =  pt 4- qn 

imply pn < qn•
Using lemma (3.1) and property (3.1) in equation (3.3), we get for q, < pa 

the following system of equations:

2^ . « .  =

j v-

2« i„  =  [ +  • • • + 2^ ^  +  K h. - A  +  • • ■ +  +

+ +  • • • +  + 2C .* Jo  +  +  • • -F .
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2<Çi =  I C W Ì . - 1  +  < . « )  +  ' ' ' +  +  & ¡ M Y n  +

+ P O Í ,  + M S tò  + ' • • +  ( C - i  +

2«í> =  [ C C  + -  + í í i t ó + 2^ Í H i  +

+  [2* Í* ¿  + -  + O Í . ) V-

In matrix notation: T = where:

(Pí+9n+l)x 1

2 0+ xp,+qn

20+ . xp.+Pn

20+xO

(3.4)
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and:

n , y .

«t,v.

*JoK

Writing \P in this form gives a matrix A of the type:

■̂ n

6+ Vnnq„ r n

0+ Vl7np„ v n

l (p .+ 9n + l) X (|>,+ * ,+ 1) —

0

(?» ~Pn  +  1) X (?n -  J>n +  1) ( in  -  Pn +  1) X (p. +  J>„)

121 »22

0>. +  |>n) X (in  -  Pn +  1) (p» +  Pn) *  (p, + Pn)

with:

A n =

d>+YPm

K.-i <i>+

pj-fln+pn

0

4>+^p.

To prove the sufficiency of condition (3.2), we have to show that the system 

(3.4) admits a unique solution, i.e. that A is invertible. We have:
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I A  I = | All II A .22 —  A 2 1 A 1 1  A \2  | =

=  I ¿11 II A 2 2  I ,

since A 12 =  0(<jn-p„+i)z(pi+pn)- Furthermore | Au  | being triangular gives: 

I A n  1= (4>tp,)9n~Pn+1 =  (2^,p,),n_Pn+1 which differs from zero if the order of 
the AR polynomial 4>t (B ) is correctely specified. So A is invertible if A 22 is. 

From (3.4), the matrix A22, of order (ps + p„)x(p4 + p„), can be decomposed 

as:

A22 =

On o 12

(P. X p.) (P. *P n )

<*21 °22 

( Pn X P*) (Pn X p„)

where, from (3.4):

an  =

¿+'rn 1npn

npn

The determinant of A 22 is given by: | A 22 |—I an II a22 — <*2ianlfli2 I* Since 
au  is triangular, we have: | an  |= 2 (^ + Jp* Simplifying, we get: | an  |=
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2(2<f>npn)p‘ which is by assumption different from zero. So A-& is invertible if 

022 is. From (3.4), the submatrix 022, of dimension pnxpn, is given by:

' 2  tt> *+, ••• 2 ^ - 1 '

OS •••

< .  +  * £ .«  ■■■ 2 * i + * i  2*1

^*,-1  ’ ’ ’ ‘ * 2^.0 .

So the only case where the matrix A is not invertible is: | 022 |=  0. However, 

the relationship that it would imply between the parameters of the polynomial 

is so specific that it defines a set of measure zero in the space of the 

parameters. Hence the matrix A is generally invertible when q, < p4, and the 

system (3.4) admits a unique solution. The condition q, < p, is thus sufficient 

to identify model (A). 1

For sake of simplicity, the demonstration has been conducted under the 

hypothesis that pn < qt . It can be easily checked that the opposite case 

does not change the triangularity property of the matrices An and an . So 

the demonstration remains valid, even if eventually the submatrix 022 would 

come out with different coefficients. So we can conclude that the model (A) 

is identified almost everywhere under the condition:

9n <  Pn or q, <  p ..

It thus possible to restrict the order of the components MA polynomial in 

order to identify the underlying structure of the model. This has been mostly
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used in ’structural models’:

3.3.3 Example of identification by zero-parameters restriction: Struc­
tural Time Series models

The Structural Time Series (STS) models have been developed by Engle 

(1978) and Harvey and Todd (1983), and are applied mostly to the mod­

elling of economic time series. They are usually designed for the purposes 

of extracting the trend or seasonally adjusting time series. The approach 

followed consists firstly of specifying a priori the models for the components, 

and then in estimating the parameters. Identification is obtained by reducing 

the order of one of the components MA polynomial, typically the trend or the 

seasonal component. Consider for example the Basic Structural Model which 

decomposes an economic time series into a trend and a ’nontrend’ component. 

The trend component is typically modeled as a random walk with a drift, the 

drift itself being a random walk:

A st =  fit -t- Uj,

A ̂  = vt,

where u, and vt are orthogonal white-noises. Maravall (1985) noted that this 

model is equivalent to specifying an IMA(2,1) model for the trend component, 

which makes explicit the identification restrictions in structural models.

However, setting the order of the MA polynomial in order to identify the 

UC is an a priori identification procedure that may not be justified by any 

extra consideration. In general, from any invertible component specified in 

this manner, there exists a particular amount of noise that can be removed,
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yielding a balanced component. Consider for example a trend specified as a 

random walk:

A st =  att.

The spectrum of st is given by: g,(to) =  V,/(2 — 2 cos w). It is immediately 

seen that the spectrum of the random walk has a minimum at the frequency 

7r, of magnitude: g,(ir) = V',/4. Removing a proportion a G]0,1] of this noise 

from g,(w) yields the spectrum of an IMA(1,1) model.

Balanced components are more general in the sense that they allow dif­

ferent noise repartitions. The order of the MA polynomial for the remaining 

component will however be constrained by the overall model for the observed 

series. Writing (2.4) as:

9x <  Px +  max(g, -  pt , qn -  p n ) ,

the model for the remaining component will be balanced if qx < px, and 

with a MA polynomial of higher order than the AR polynomial if qx > px. 

Clearly, in any of these cases the necessary and sufficient condition (3.2) for 

identification of model (A) is no longer satisfied: an additional condition must 

be imposed. The Watson’s minimax filter and the canonical decomposition 

are two identification procedures which use some extra considerations in order 

to obtain identification. With both of them, the identification problem is 

explicitly handled as a noise repartition problem.
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3.4 The identification problem as a noise repartition 

problem

3.4.1 Writing the decomposition in terms of one single unidenti­
fied parameter indexing the noise repartition

As in Watson (1987), we express the models for the Unobserved Components 

in terms of a single unidentified parameter. We must first make the assump­

tion that the model for one component, let us say st, is balanced in order:

Assumption 5: qs = ptl

so, as previously pointed out, the model for the other component nt will be 

balanced if qx < px, top-heavy qx > px. This decomposition is however non 

identified. Recalling that gx(w), ga{w), and gn(w) denote the spectra of xu 

st and nt at the frequency w, 0 < w < ir, the hypothesis of independence of 

the components yields the following relationship:

gx(w) = g,{w) +  gn(w).

As in Burman (1980), we write : £, = min«, g,(w) and en =  min„,<7n(u>). 

The quantity e, + e„ can be seen as the variance of a pure noise component 

embodied in the spectrum of the observed series which can be attributed 

arbitrarily. We shall denote this variance as Vu, which is also expressed in Va 

units. If we remove as much noise as possible from $t and attribute it to nt, 

then we obtain : <7°(t/>) =  gs(w) — £,, the spectrum of a noninvertible signal 

and <7°(u>) =  gn(w)+et the spectrum of a nonsignal n° which concentrates 

all the noise of the model.
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Using <7°(u>) and fl£(u>), we now define for a € [0,1] the unobserved com­
ponents i f  and nf as the processes with spectra :

=  s ! M + « K h  

9n(w) = (3.5)

so that the spectrum of the observed series can be represented as :

9x{w) = <7,“ H  + $“(«>)• (3-6)

If we consider the time domain, we have : Ax = A° + A%, where in the same 
way :

A° =  A°t +  aVu and An =  A$ -  aVu. (3.7)

All the admissible decompositions are written in term of one single under­

identified parameter a  which indexes the noise repartition. It is clear that 

the identification problem arises because we do not know which amount of 

noise must be assigned to the components : a  is not unique, but belongs to 

the interval [0,1]. These notations will enable us to derive some results relat­

ing the estimation errors to the unobserved components model specification. 

At this stage, we use them to present the minimax filter and the canonical 

specification.

3.4.2 Canonical decomposition

The canonical decomposition was first proposed by Box, Hillmer and Tiao

(1978) and Pierce (1978). The approach consists of specifying a component
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as clean of noise as possible. Hence, a canonical signal has a zero in its 

spectrum, which corresponds to a unit root in the MA polynomial. That is, a 

canonical signal is noninvertible. Identification is thus obtained by removing 

from the signal spectrum its minimum. It corresponds to the component 

s® previously defined by the spectrum g%w). As illustrated in (3.5), an 

interesting property of canonical decomposition is that the admissible models 

for a signal can always be written as the sum of the canonical one plus an 

orthogonal white noise. Furthermore, Hillmer and Tiao (1982) showed that 
the canonical decomposition minimizes the variance of the signal innovation. 

This model specification is widely used in the ARIMA-model-based approach. 

Additional properties of the canonical decomposition will be shown in chapter 

6.

A disadvantage of the canonical decomposition is that it is not unique. 

In (3.5), it is also possible to remove all the noise from the nonsignal nt and 

to assign it to the signal st, defining a new canonical decomposition with 

the nonsignal made noninvertible. The problem is that often it is not clear 

how to justify the choice of a particular canonical specification. Consider 

for example seasonal adjustment applications where the canonical require­

ment usually concerns the seasonal component. The underlying idea is that 

the analyst is interested by what is not seasonal, and wishes to handle a 

nonseasonal component embodying as much information as possible. This 

corresponds to the minimum extraction principle (Pierce (1978)). However, 

the same analyst may also be interested in a nonseasonal component less ob­

scured by noisy movements, and so he may expect an as-smooth-as-possible 

seasonally adjusted series. The nonseasonal component would thus be taken 

canonical. Both views can be perfectly justified. Canonical decompositions 

are not unique and a particular choice may be difficult to rationalize.
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3.4.3 Minimax filter

The minimax filter is an identification procedure proposed by Watson (1987) 

and Findley (1985). It designs the components models in order to maximize 

the Mean Squared Errors on the components estimators. It is motivated by 

the idea that, if a filter minimizes the estimation error for a particular unob­

served component model specification, the same filter may perform poorly in 

terms of Mean Squared Error for another possible decomposition. In order 

to make the estimator ’’robust” over the range of observationally equivalent 

decompositions, Watson (1987) built a minimax filter as a Minimum MSE 

filter applied on the decomposition which maximizes that.

This approach may also be difficult to rationalize. Since all admissible 

decompositions are observationally equivalent, and only differ by the noise 

repartition between the components, why to choose the decomposition with 

maximum MSE on the estimators ? Unobserved components are tools that 

are designed to capture some phenomenoms. They are expected to help as 

well as possible the users, and for that to approximate as well as possible the 

underlying signal.

As far as we know, the Watson’s minimax filter was the first approach 

relating the estimation error to the component model specification. We shall 

pursue that relationship. Before investigating how the identification of the 

components influences the accuracy of the estimators, we need to analyze the 

estimation procedure.
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Chapter 4

Minimum Mean Squared Error 

Estimation of the Components

4.1 Introduction

Estimation of the components is necessary because the components are never 

observed. In this chapter, we discuss an estimation procedure and present 

some new properties of the estimators. We will emphasize the fact that the 

estimator characteristics depend on the assumptions made in order to reach 

identification.

Writing X j  =  [ii, • • • ,x j], the optimal estimator of the signal will be 

given by:

st/T = E(st/X T). (4.1)

M i — T, the conditional expectation (4.1) yields the concurrent estimator of 

the signal. If t < T, (4.1) provides the preliminary estimator of a past realiza­

tion of the signal, while for t > T, (4.1) corresponds to the t - T  period-ahead
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forecast of the signal. In the model-based approach framework, two methods 

of calculating this expectation can be used, each one having specific advan­

tages. The Kalman filter method (see, for example, Anderson and Moore

(1979)) proceeds firstly by writing the model in a state space format, then by 

setting some initial conditions, and finally by deriving the optimal estimator 

through recursive computations. Because of its computational tractability, 

it has been used in many applied works (for a general presentation, see for 

example Haxvey (1989)). The Wiener-Kolmogorov (WK) filter has the ben­

efit of being particularly suited for analytical discussion, and provides as an 

output a clear and precise information about the structure of the estimators. 

Its computational tractability has been improved in a decisive way by the T. 

Wilson algorithm presented in Burman (1980). The theoretical nature of the 

topic developed in this dissertation motivates our choice of focussing on the 

WK filter. The results, however, will also apply to estimators obtained with 

the Kalman filter.

4.2 The W iener-Kolmogorov filter

For completeness, we present the construction of the WK filter. For stationary 

time series, this filter is derived as follow (from Whittle (1963)). We must 

first take the assumption that an infinite set of observations on the process xt 

is available. We will denote st the estimator obtained for an infinite sample, 

so that st =  i«/oo‘ This assumption will be relaxed later.

The WK filter is a linear filter of the past and future realizations of the 

observed series, so the estimator i t of the signal st may be expressed as:

00

«« =  5Z *'***-*»
fc=—oo
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= v(B)xt,

where v(B ) =  YlkL-oc vkBk. As the optimal estimator is defined as a con­
ditional expectation, the WK filter is optimal in the sense that it minimizes 

the Mean Squared Errors on the estimator. So, by orthogonal projection of 
s, on the j  =  — oo, • • • ,0, • • •, + oo, the estimator s t must verify:

cov[st — i t_j] = 0.

Thus, for each j ,  j  = —oo, • • • ,0, • • •, + oo, we have:
OO

cov[st , x t- j ] ~  ^ 2  i/kcov[xt- k , x t-j] = 0 .
f c =  — OO

Denoting w the frequency in radians and gx>{w) the cross-spectrum density 

function, this last expression can be translated in the frequency domain as:

=  t iwj[gxt{w) -  v(e ^ . ( te ) ] * » ,

where the Fourier transform B  =  e~,w is used to write: u(e~,w) = i'(B). This 

integral is finite since the observed series is supposed to have a finite variance 

(stationary case). Then, for all j  = —oo, • • •, 0, • • •, +oo, we have:

gxt(w) -  v(e~iw)gx(w) = 0,

which leads to: v(e~iw) =  gx*(w)/gx(w)- When the components are assumed 

independent as in model (A), the filter v(t~iw) may be written simply as:
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**) = 9 M l9 x (w ). (4.2)

The WK filter was initially designed to deal with stationary time series. Under 

certain assumptions, Cleveland and Tiao (1976), Pierce (1979), Bell (1984), 

and Maravall (1988a) have shown that the filter yields a finite Mean Squared 

Error even if the processes are nonstationary, so the WK filter is still valid 

for nonstationary time series. Given that most of the series encountered in 

practice are nonstationary, this extension was of a great importance for the 

applicability of the WK filter. A similar extension has been developed for the 

Kalman Filter (see, for example, Kohn and Ansley (1987)).

4.3 Optimal estimators

4.3.1 MMSE Estimators

The WK filter was expressed in (4.2) as the ratio of the spectrum of the 

signal to the spectrum of the observed series. An appealing feature of ARIMA 

models is that they provide a convenient way to parametrize the spectrum 

of time series. Applying the expression (4.2) to model (A), and under the 

hypothesis of independence of the components, the estimators can be obtained 

as (see, for example, Hillmer and Tiao (1982)):

- _ 9»{w) . _
— / \ * — 9x(w)

* 9g(e-iw)9s {eiw) Xt‘

and for the nonsignal estimator :
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Tlt = gn(«>)

S*(«>)
X* =

v  en(e-^ )en(e^)4>s(e- 
OJe-^WJe*1
)8n(e™ )Me-iw)M e iw) (4.3)

The hypothesis of invertibility of the polynomial 6X(B) insures the conver­

gence of the filter. It is a symmetric filter, which depends on the polynomials 

of the models for the observed series and those for the components. This 

dependence allows the WK filter to adapt itself to the series under analysis, 

in contrast to the empirical filters which assume that roughly the same model 

holds for every series.

From (4.3), it is clear that the MMSE estimators are available only when 

all the polynomials of model (A) have been determined. Estimating the com­

ponents requires the practitioners to first select an admissible decomposition, 

that is to make an arbitrary assumption about the stochastic structure of the 

components. Different assumptions made on the models for the component 

will imply different properties of the estimators through the squared poly­

nomial 6i(B)Bi(F) and the innovation variance Vi, where i = n,s. However, 

there is not a strict correspondence between the stochastic properties of the 

components and those of the estimators. Indeed, some discrepancies do ex­

ist. This point has been often discussed in the statistical literature (see for 

example Bell and Hillmer (1984)). It can be easily understood from a study 

of the models followed by the estimators.

4.3.2 T he distribution of the  estim ators 

Considering the estimator st, we can write:

59



i i m V u m i M n ai ,4 4)
M B M F )  1 '

Comparing the model for the estimator (4.4) and the model (2.2) for the 

theoretical signal, it is easily seen that they share the same AR and MA 

polynomials in B (see, for example, Maravall (1993b)). So, if a component 

is nonstationary, the component and its estimator will share the same sta- 

tionarity inducing transformation. Moreover, as a consequence of the validity 

of the WK filter in nonstationary cases, a nonstationary component and its 

estimator are cointegrated with cointegrating vector (1,-1).

However, the models for the theoretical components and the models for the 

estimators are structurally different. The difference is due to the presence of 

a polynomial in F: for example, the model for the signal estimator st contains 

0X(F) as AR polynomial and Q,(F)<t>n(F) as MA polynomial. This implies 

that the model for the MMSE estimator will be noninvertible when the model 

for the theoretical component is noninvertible or when the other component 

follows a nonstationary process. This latter case expresses the dependence 

of the estimator st on the model for the other component, the nonsignal n(, 

through the AR polynomial <f>n(F).

4.4 Covariance between estimators.

Another important discrepancy between the properties of the component and 

those of the estimators is that, if the components are assumed independent, 

the Minimum Mean Squared Errors estimators will always be covariated. 

This is a consequence of the estimation procedure which orthogonally projects 

both components on a space of dimension one defined by the observed series. 

The existence of covariances between the estimators even if the theoretical
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components were assumed independent has been subject of attention in the 
literature (see for example Nerlove (1964), Granger (1978), Garcia-Ferrer and 

Del Hoyo (1992)). A similar result has been discussed by Harvey and Koop- 

man (1992) concerning the estimators of the ’pseudo-residuals’ ani and ast. 

Since the covariances between the components’ estimators are described as an 
undesirable feature of the estimation, selecting the admissible decomposition 

which minimizes the lag-0 covariance between the estimators seems to be a 

reasonable identification criterion. The covariances between the estimators 

are easily obtained from the following lemma:

Lem ma 4.1 IfC (h ,s) denotes the cross-covariance generating function be­

tween nt and st, then C(h,s) is equal to the ACGF of the model:

6x(B)zt = 0,{B)6n{B)}H, (4.5)

where bt is a white noise with variance VnVt .

Proof: From (4.3), we have:

C (M ) = AnA,/A*. (4.6)

Developing and simplifying, we get:

C(n'i) =  V»V--------6AB)),(F) ' 1 ’

which is the ACGF of the model (4.5). ®

So C(n, s) can be seen as the ACGF of an ARMA process with AR polyno­

mial 6X{B), MA polynomial 6n{B)6t{B), and with innovation variance VnVt .



The dependence of the covariances between the estimators to the admissible 
decompositions occurs thus through the MA polynomial and the innovation 

variance of model (4.5).

Using lemma 4.1, we derive the following properties of the MMSE estima­

tors.

P ro p e rty  4.1 The lag-0 covariance between the estimators is always positive.

This is obvious since, from lemma 1, the lag-0 covariance between the 

estimators is equal to the variance of the process zt: cov[ht, s<] = var[zt] > 0. 

Since the estimators must sum to the observed series, the existence of a 

cross-spectrum between the estimators indicates that part of the component 

spectrum is lost by the estimation procedure. In particular, the positive sign 

of the lag-0 covariance suggests an "underestimation” of the component, in 

the sense that the estimator will be more stable than the component. This 

point will be more discussed in the next section.

P ro p e rty  4.2 The covariances between the components estimators are sym­

metric, finite and converge to zero.

Proof: The process zt, with ACGF C(n,s), has 0X(B) as AR polynomial. 

The model for the observed series being assumed invertible, zt is stationary. 

So the covariances between the signal and the nonsignal estimators are finite 

and converge to zero, even if the estimators are nonstationary. I

Two points make property 4.2 interesting. Firstly, the covariances between 

the estimators are finite even when the components are nonstationary with 

unit roots at different frequencies. Secondly, this result holds independently 

of the components’ order of integration. An interesting consequence is:

Lem m a 4.2 When the observed series xt is nonstationary, the estimators st 

and ht are uncorrelated whatever the selected admissible decomposition is.
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Proof: The correlations between the estimators are given by the ratio of the 
covariances to the product of the standard deviations of the estimators. As 

shown in property 4.2, the covariances axe finite, while xt being nonstationaxy 

implies that at least one component will be nonstationaxy, with an infinite 

standard deviation. So the ratio of covariances to standard deviations will 

tend to zero. The result is clearly valid for all admissible decompositions. I

So, when the observed series is nonstationaxy, the estimation procedure 

preserves the property of the theoretical components in terms of zero cross­

correlations. Given that most of the economic time series encountered in 

practice are nonstationaxy, our result has a wide relevance. Care must thus be 

taken with saying that ” whereas the theoretical components are uncorrelated, 

the estimators will be correlated in general” (Garcia-Ferrer and del Hoyo 

(1992)). That can be true only if the components are stationary. Notice the 

following paradox: when x< is nonstationary, the correlations between the 

estimators are zero, while:

P ro p e rty  4.3 The correlations between the stationary transformation of the 

components are different from 0.

Proof: We denote by 6t(B) and 6n(B) the polynomials inducing stationaxity 

of St and nt. If, for example, only St is nonstationary, then we have: Sn(B) =  1. 

We have seen that a component and its estimator share the same stationaxity 

inducing transformation, so 8a(B)st and Sn(B)ht are stationary. Then the 

cross-covaxiances generating function of the stationary transformation of the 

estimators is given by:

C(6t (B)su 6n(B)ht) = 6,(B)6n(F)C(st,n t)

From property 4.2, the estimators are covariated with finite covariances 

whatever the order of integration of the components is. Each term of C (ij(5)s,,
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6n(B)ht) will thus be finite and non null. The standard deviations of the sta­
tionary transformation of the estimators bang finite, the cross-correlations 
will be non null. I

We now focus on the errors in the estimators.

4.5 Estimation errors

The estimation errors can be decomposed into two types of errors: the final 

estimation error and the revision error. The first one corresponds to st — St 

or nt — ht and is obtained under the hypothesis of a complete realization 

of the observed series. Given that the WK filter is convergent, in practice, 

for large enough sample, the final estimation error concerns the estimators 

computed around the center of the series. The revision error is related to the 

impossibility to actually deal with infinite samples, and concerns in practice 

the estimators computed near the ends of the sample. The independence of 

both types of errors, as demonstrated in Pierce (1980), allows us to analyse 

them separately.

4.5.1 Final Estimation Error: relationship with the estimators 

cross-covariances.

Lemma 4.3 For all admissible decompositions, the theoretical estimators cross­

covariance generating function is also the ACGF of the final estimation error

C(n,5) =  ACGF(ht -  nt) =  ACGF(st -  st).
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Proof; To simplify the expressions, we will write for any polynomial t j ( B )  : 

rj = Tj (B)  and rj = 77(F). Multiplying C(h,s) in (4.7) by 0X8X/8X6X, we have:

M „ „ M A M A  C M  = V,V, . (4.8)

The relationship (2.3) between the MA polynomials provides:

M i  = V J J M ,  + (4.9)

Inserting (4.9) into (4.8), we get:

_  V  V  d  O ft ft Vn0nQn<j>s<f>3 +G ( n , s )  — Vn Vt vnu,unos  ̂  ̂ _

Now writing :

. .  . .  ,  v . m u  + v ? w . * . » .
G(n,s) — un“t“n“t Q~Q Q~Q 1

the CCGF C(n,s) can be seen as the ACGF of a process zt defined as :

Zt =  9n9t [Vn8n <f>so.tt — Vt6t<f>nani]/9X0X.

It is then enough to show that, for example, zt = s, — st. Developing the last 

expression, we get :

[K A M A « *  -  V A M A « * ]  
2 ,=  M * '
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Using the models (2.2) for the components:

_  WnQn^n^AtSt ~  Vt9s0,<f>n<i>nnt]
Zt "  OJr

which can be written in terms of the ACGF:

%t ~~ \_An j  A x\St =

= [1 -  A J A x)st -  [AtIAx)nt =

=  *>t [ A ^ / A x j i t =

=  S t -  St.

So Zt is exactly the final estimation error on the signal. Working on nt instead 

of st would lead to zt = ht — nt which has the same ACGF than 5, — i t. I  

An immediate consequence of lemmas 4.1 and 4.3 is that:

Lem ma 4.4 The final estimation error st — st = ht — nt can be seen as the 

output of an ARMA process given by:

ex{B)zt = 6,(B)en(B)bt,

where bt is a normally distributed independent white noise with variance VnVt .

This last result is identical to the one obtained by Pierce (1979) using 

another demonstration.
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The MA polynomial of the process for the final estimation error corre­

sponds to the product of the MA polynomials of the models for the two 

components, while the AR polynomial is given by the MA polynomial of the 

model for the observed series. From assumption 3, the observed series’ process 

is invertible, so the final estimation error follows a stationary model, whose 
variance gives the MSE of the estimation.

The choice of a particular decomposition will affect the estimation error 

through the MA polynomials 0$(B), 6n(B), and the innovation variances V, 

and Vn. Lemma 4.3 provides the following general result:

Corollary 4.1 The admissible decomposition minimizing the final estimation 
error of the components also minimizes the covariances between the estima­

tors.

Corollary 4.1 suggests that one particular admissible decomposition will 

have some attractive features, since it will minimize both the variance of the 

final estimation error of the components and the lag-0 covariance between the 

estimators. Conversely, a consequence of lemma 4.3 is that the Watson min­

imax filter will present the inconvenience of maximizing the lag-0 covariance 

beween the estimators.

Another interesting consequence of lemma 4.3 is that it enables to ap­

proximate the Mean Squared Errors on the component historical estimator 

by the covariance between the estimators. Since the latter are available as 

output of the estimation procedure, this measure would be ’’empirical”. This 

has two important implications. Firstly, recall that when the component 

estimators are obtained from ad hoc filters such as X-ll for seasonally ad­

justing series, no estimation errors are available. This is a serious limitation 

of ad-hoc filters, and the need to know the precision of the estimators has
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been repeatedly pointed out by advisory committees (see for example Hibbert 

Committee (1988)). Lemma 4.3 suggests that it is possible to use the covari­

ance between the estimators as approximation of the MSE of the estimators 

when the filtering procedure yields reasonable results. Further studies are 

however necessary to determine the behavior of this statistic.

Secondly, the final estimation error in the ARIMA-model-based approach 

was up to this point only theoretically obtained by deriving the variance 

of the model given in lemma 4.4 from the models for the components. By 

comparing this measure with the lag-0 covariance computed on the estimators 

empirically obtained, a specification test for model-based components analysis 

may be constructed. The asymptotic properties of this test are still to be 

investigated. By now, these two points remain left as open issues for future 

research.

4.5.2 Frequency domain analysis of the final estimation error.

A look at the way the filter works on the series, in the frequency domain, 

helps in understanding the differences between the final estimator and the 

component. From (4.3), the spectrum gi{w) of the MMSE estimator st is 

given by:

»'-> -  £ -

Tm \9.(w) (4*10)

When the relative contribution of the signal is high at a particular frequency 

u?*, gn(w*)/gt (w') ~  0, and most of the observed series spectrum is used for
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the signal estimation. The gain of the filter for this frequency is close to 
1, and we get: gi(w*) ~  gs(tv*). Conversely, when the relative contribution 

is low at a particular frequency, the WK filter just ignores it for the signed 
estimation. For example, suppose that either the signal’s spectrum has a zero 

at the frequency w* or the nonsignal’s spectrum admits an infinite peak at 

the frequency w*, so that we have: gn(wm)/ga(wm) —+ oo. Then the spectrum 

of the signal estimator will display a zero: gi(wm) — 0, and the estimator will 

follow a noninvertible model. This conclusion was already obtained from a 

direct observation of the model for the estimator. Furthermore, it is easily 

deduced from (4.10) that <7,(u>) < g,(w) for every frequency, so the signal 

is always underestimated (see for example Burman (1980)). The frequency 

domain analysis of the final estimation error shows that the error is mainly 

related to the frequencies where the stochastic variability of the signal is 

relatively low. As discussed in Maravall (1993a), the underestimation of the 

signal will be particularly large for a stable signal, and particularly small for 

an unstable signal.

4.5.3 Revision error

The hypothesis of having an infinite realization of the series xt was needed 

because the WK filter of (4.3) goes to —oo to oo. Since the filter is convergent, 

it can be safely truncated at some point. However, at the beginning or at the 

end of a sample, the computation of the estimator requires unknown past or 

future realizations of xt. We will focus on the distortion induced by the lack 

of future observations. Near the end of a finite sample, optimal preliminary 

estimates can be computed by replacing unknown future realizations by their 

forecasts (Cleveland and Tiao (1976)). The forecast errors imply that the 

preliminary estimates will be contaminated by an additional error, termed
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’revision error’. As new observations become available, forecasts are updated 

and eventually replaced by the observed values, and the preliminary estimator 

is revised. The total revision error in the concurrent estimate of st, that is 

the estimate of st computed at time t, is given by: st — E(st/X t). To simplify 

the presentation, we will denote by Etst the expectation of the estimate of st 

conditional on the information available at time t, so that: Etst = E(st/X t). 

Writing:

e , ( B )  o. ( F ) m e ) t
*  -  % . ( * )  ex ( F )  a<’

= &(*)«*,

with (,{B) ------- 1- +  £,0 +  £»iF +  • • •, the toted revision error can be

obtained as:
OO

s t — E ts t = ^
¿=1

and, for the revisions in any preliminary estimate of st computed at time 

t +  k, k ^  0:

00

$t — Et+kSt — 52 £nat+i-
tss/f+1

The revision errors are thus an infinite moving average process. As shown 

in Pierce (1980), the MA processes followed by the revision errors are sta­

tionary. Thus the variance of the revision error can be computed as:

v[i, -  ÆmjA) -  £  Ü- (4 -n )
«=*+!
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The stationarity of the revisions can be easily understood by noticing that the 

polynomial £a(B ,F ) is convergent in F. A consequence is that —

Et+kSt] =  0: in practice, the revisions become negligible after some number of 

periods. A convenient algorithm for computing the V’-weights is developed in 

Maravall (1994). This makes straightforward the computation of the revision 

error in (4.11). Adding final estimation error and total revision error, we 

obtain the total estimation error in the concurrent estimates as st — Etst.
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Chapter 5

Estimation Errors and 

Identification of Unobserved 

Component Models

5.1 Introduction

We have seen that model-based approaches offer some convenient answers to 

the limitations of empirical filters, since they provide the estimation error, 

they enable forecasting, and the estimation takes into account the stochastic 

properties of the series under analysis. However, they cannot avoid an im­

portant identification problem. Within the ARIMA-model-based framework, 

the hypothesis made to characterize the components are explicitly stated. We 

have also seen that the identification problem turns out to be a noise reparti­

tion problem, and that it is difficult to provide a motivation for a particular 

choice. Analyzing the components’ estimators, it appeared that their proper­

ties and their precision depend on the selected models for the components. In 

this chapter, we relate the accuracy of the estimators to the range of admis­
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sible decompositions. The results will be used in the next chapter to derive 
some simple rules for selecting the most precisely estimated decomposition. 
Some important properties of the canonical decomposition will appear as a 
by-product of our analaysis.

When dealing with the decomposition of a time series into unobserved 

components, there are mostly two types of estimators of interest: the final 

or historical, and the concurrent estimator. Although the first assumes an 

infinite sample, in practical applications with the usual series length, the con­

vergence of the filter insures that it corresponds to estimators for the central 

years of the series. For this reason, they are typically of interest to data- 

producing agencies. The second, the concurrent estimator, are employed by 
analysts involved in the short-term monitoring of the economy. As discussed 

in subsection 4.5.3, concurrent estimators are affected by an additional error, 

the revision error, which is due to the lack of future observations. In applied 

work and in economic policy making, this additional error may have some 

important implications. For the monetary policy case, Maravall and Pierce 

(1983) have studied the misleading effects of the revision error. For both 

concurrent estimators as well as for historical estimators, the importance of 

minimizing the estimation error can be understood.

We discuss the relationship between the estimation error and noise repar­

tition for these two cases of applied interest. Then, for sake of generality, we 

will extend our results to the estimator of st computed at any time t + k, 

k =  ♦ • •, — 1, 0, 1, • • •, that is to any preliminary estimator (k > 0) and to the 

forecasts of the components (k < 0).

We first need to present some notation that will be used in the remainder of 

the dissertation. We recall that sf represents a signal concentrating a fraction 

a  € [0,1] of the pure noise part of the observed series. The formal definitions
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of the decomposition of x t into s f  and nf have been given in chapter 3, 
equation (3.5). We shall denote by s f  the optimal estimator of the signal s f , 
so i® is the estimator of the canonical signal with no noise. It is obtained as 

5° =  vf(B )xt, where vf(B) =  Y^-oo  represents the corresponding WK 
filter. This estimator will be written in terms on the innovations at on the 

observed series as J® =  £°(B)at, where:

( f ( B )  =  t f ( B K ( B ) I M B )  = 

= • • • + & B  + ÎÎ  + Î Î F + . . . .

Similar notations are used to define v„(B) and £°(jB) as the WK filters es­

timating the nonsignal nf embodying all the noise as a function of the ob­

served series and of the innovations at respectively. Finally, we will denote by 

h(B) =  IT^-oo hiB* the filter obtained as h(B) =  <j>x(B)<t>x(F)/9x(B)6x(F). 

This filter corresponds to the "inverse ACGF” of the model for x t (see Cleve­

land (1976)).

5.2 Final estimation error on historical estimators

We write the final estimation error on the signal s f  as: ef = s f — sf. We 

recall that the variance of the final error in s f  also gives the variance of the 

error in n f.

Lem ma 5.1 The final estimation error ef (and hence the lag-0 covariance 

between the estimators) is related to the noise repartition a , a  £ [0, 1], ac­

cording to:

var[ef] — cot>[nf,Jf] =
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=  tmr[eJJ +  aVu(l -  2i£>) -  o 3J0V j, (5.1)

where e° ts the error in the canonical signal estimator.

Proof: Using lemmas 4.1, 4.3 and the expression 3.7 we have:

ACGF(ef) = C (h f,s f) =

_  ¿ I K

W  + a V ^ A l -  aV%]
Ax

A ° A °  A 0 1
_ L _ n + a K ( l - 2  4 i ) - a 2K24 - ,

where use has been made of Ax = A°+A°. The result (5.1) is then immediate 

given that A°A®/AX = ACGF(ef), that A$/Ax corresponds to the WK filter 

i ' t ( B ) ,  and that 1/AX =  h ( B ) .  I

Lemma 5.1 gives the relationship between noise repartition and final es­

timation error. As a function of a, the variance of the final estimation error 

is a second-order polynomial, with known coefficients V ( e?)> ho, v*  and V̂,. 

The first three coefficients can be easily obtained as variances of the following 

processes:

.  forV(«?): ec (B )z , = V(4f) = W ;

• for ho: 9x(B)zt = <f>x(B)at, Va = 1;

• far»&: 6x(B)zt = 0°t (B)<f>n(B)c°n  V(c°) = V?,
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where {9f(B),V°} and {#“(#), V̂*} are the MA polynomials and the innova­
tions variances respectively associated with the canonical signal s® and with 
a nonsignal component n° concentrating all the noise. It is interesting to 
notice that these three models share the polynomial BX(B) as the AR poly­

nomial. The parameter h0 corresponds to the variance of the ’’inverse” or 

”dual” model (see Cleveland (1972)). As discussed in chapter 3, the fourth 

coefficient Vu is simply the variance of the pure noise part of the observed se­

ries. All these coefficients are thus positive, and they can be derived from the 

model for the observed series in a straightforward manner (see Chapter 7). 

The expression (5.1) thus constitutes an easy way to obtain the estimation 

error variance over the range of the admissible decompositions.

5.3 Revision error and total estimation error on con­

current estimators

The revision error on the estimator of s f  computed at time t is denoted as: 

r f  = s f — Ets f. The total estimation error on the concurrent estimator will 

be written as: df =  s f  — Etsf. When a  =  0, rf and represent the revision 

error and the total estimation error on the concurrent estimator of a canonical 

signal respectively. The variances of the estimation errors on the signal and 

on the nonsignal estimators are of course identical.

Lem m a 5.2 The size of the revision error on the concurrent estimators of 

the signal depends on the noise repartition through:

var(rf) =  var(r?) + 2a(u% -  &)Vi +  a2(h0 -  1)VU2, (5.2)
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where is the central coefficient of the MMSE filter expressing the canonical 

signal estimator in terms of the innovations at on the observed series.

Proof: The estimator of the signal s f can be written as:

A a*£* ASst =  — xt =
Ax 

A°t + aVtUxt =
A ,

= t f ( B )  + aVuh(B))xt =

= ("* +  <*Vuhi)xt+i,
t=—oo

with i/° =  and hi = h-i since the WK filter and the polynomial h(B) 

axe symmetric. The concurrent estimate of the signed s f  is given by:

Etsf = X>° + aVuhi)xt-i + X>°, + <*Vuhi)Etxt+i. 
«=0 t= l

So the revision in the concurrent estimate is :

r “ =  5 f - £ t i f  =

= + aV«hi)(X*+i ~ EtXt+i) =
¿=1

= B " ,” +  “KAi)e.(i), (5.3)
«=1
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where et(i) is the ith-period ahead forecast error of xt. Using:

( 5 ' 4 )

we can write the ith-period ahead forecast error as:

«-l
et(t) =  ot+i + ^  tfrjat+i-j. (5.5)

j=i

Inserting (5.5) into (5.3), we get:

r? = £  ^¡(at+i +  £  +
¿=i ¿=i

OO 1 — 1
+ q K  ^2  hi(at+i + ^2  ^’ia‘+«-i) =

¿=i i=i

— 53 ^ + <  (®*®)
¿=i ¿=i

where:

i. =  +  02^+2  +  • • •, 

iTii =  hi +  V’iAi+i +  ifahi+2 +  *• * • (5.7)

Denoting 1(F) =  and m(F) =  then (5.6) can be written

as:

r f  =  If  -  £ ,i f  =  l(F)at +  aVum(F)at. (5.8)

78



So the variance of the revision error is given by:

var(r?) = var(l(F)at) + V fa2var{m(F)at) + +2aVucov(l(F)au m(F)at).

(5.9)

The first term of the right hand side of (5.8) provides the revision error on 
the concurrent estimate of the canonical signal:

wir(r°) = I(F)I(B) |s=F=0 . (5.10)

The second term of the right hand side of (5.8) relates the noise repartition 

to the revision error through the polynomial m (F ). It is worth noting that 

this polynomial is the same as that which drives the revision error in signal 

plus noise decompositions in Maravall (1986). This result was as expected 

since our model specification implicitly consider a third component which is 

an orthogonal white noise. From (5.7), m, is the coefficient of the term in jP, 

i > 0, in the polynomial multiplication h(B)ip(B). Since h(B) can be written

as 1 /xl>(B)ij>(F), we have: h(B)xf>(B) = l/i(>(F). Observing that m(0) =  0

while, by construction, the coefficient of F° in the polynomial l/xj>(F) is unity, 

we get:

l + m(F) =  l / # ) .  (5.11)

Developing var(m(F)at) = m (F)m (B ) |b=f =o, we have:

m(F)m(B) |b=f=o = ( 1 /W )  -  l) ( l/0 (* )  -  1) U=f=o=

= 1W F M B )  - 2(1 M B ))  |b=o + 1,
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which leads to:

m(F)m(B) |b = f = o  =  h o  — 1 . (5.12)

We now turn to the covariance between I(F)ot and m(F)a<. From (5.7), 

/, is the coefficient of the term in F*, i > 0, in the polynomial multiplication 

vf(B)xj)(B) which yields the WK filter expressing the estimators as function 

of the innovations: vf(B)tf>(B) = A®/if>(F) =  £?(B). Therefore, we can write:

C (B) =  < W ( i )  =  [&  + & , * + • • •  +

+ ( ¡ - ¡ B 1 + • • • + h F  + • • • + I j P  +•••]. (5 .13)

We can now use (5.13) and (5.11) to simplify cov(l(F)at,m (F)at) = /.-m,-

by writing the WK filter vf(B) as a function of the coefficients /, and m,:

¿¡(B) =

[1 +  m \B  + ttî B2 +  • • • +  xrijB* +  •••].

Considering the central term, we get:

4  = &  + t  Umi (5.14)
1=1

so: f«m«' =  v% ~  i-e- the covariance between the revision on the

canonical signal and the revision related to the noise repartition is propor­

tional to the difference between the central coefficient of the WK filter v®(B)
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and the central coefficient of the WK filter expressing the estimator in terms 
of the innovations on the observed series.

Substituting (5.14) and (5.12) into (5.9), the result in Lemma 5.2 is ob­
tained. I

Another way to express this result would make use of: &  = "a°0 + 
so that cov(l(F)a,, m(F)ai) may also be expressed using: I,m,

Lemma 5.2 presents the relationship between the noise repartition and the 

revision error on the concurrent estimator of the signal. As for the previous 

final estimator case, the relationship is simply a second order polynomial in

a. The constant terms V(r°) and can be computed without difficulty us­

ing the algorithm in Maravall (1994). Hence, given a model for the observed 

series, lemma 5.2 provides a way to compute the revision error on the concur­

rent estimator of the signal over the range of all admissible decompositions. 

We now focus on the total estimation error on the concurrent estimator.

Lem m a 5.3 The variance of the Total Estimation Error (TEE) on the con­

current estimate of the signal is related to the noise repartition through:

var(df  ) =  t>ar(<$) +  c*K(l -  2f°0) ~  q2K2- (5.15)

where var(d%) represents the variance of the estimation error on the concur­

rent estimator of a canonical signal: =  sf — Etsf.

Proof: Since the final estimation error and the revision error are orthogonal 

(Pierce (1980)), the size of the total estimation error is obtained by summing 

the size of the final estimation error and the size of the revision error. Adding

(5.1) to (5.2) yields (5.15). i



Alternative algorithms have been proposed in the literature to compute 

V (e f), t>(rf) and V(df) for a given admissible decomposition. Hillmer (1985) 

provides an algorithm for computing the mean squared revisions which takes 

into account the truncation of the sample at both sides. Where the Kalman 

filter is to be used, a method for obtaining the errors variances as output of 

the filter has been described in Burridge and Wallis (1985). Both procedures 

are however computational algorithms which do not rely on analytical results.

We illustrate our results with the following multiplicative ARIMA model:

AA12i t = (1 -  e1B)( 1 -  eu Bl2)at at ~  NIID(0 ,1) 

0! = .3 

012 = .7

The series xt was decomposed into : xt = nt +  st, where nt and st represents 

here the nonseasonal and the seasonal components defined as in model (A). 

Making st noninvertible, we obtain the following model for the nonseasonal 

component :

A 2n°t =  (1 -  1.27B + .29B2)ant Vn = .739 

The corresponding WK filter is :

where :

&i(B) = (1 -  1.275 + .29B2)

82



^»{B) = 1 4- B  + ... + B 11 

9X{B) =  (1 -  .3£)(1 -  .7£12)

This filter yields as central coefficient: i/°0 =  .859. Given that i/“0 + 1/“0 = 

1, we have: i/°0 =  .141. The inverted process zt such that: 8x(B)zt = <f>x(B)at, 

whose ACGF is h(B), has a variance of : h0 =  1.811. The size of the pure 

noise part of x t is found to be : Vu — r) = .305. For this model spec­

ification we have : cov[f^, s°] = V[s° — s°] = .089 while attributing all the 

noise to the seasonal component would lead to a final error variance of .135. 

On the concurrent estimators, the total error variance is .181 with a canon­
ical seasonal component, and .289 with a canonical nonseasonal component. 

In general, for any admissible decomposition, the fined error variance (also 
covariance between nf and if )  is given by (from lemma 5.1):

V[ef] =  .089 + .219a -  .168a2, 

and for the Total Estimation Error (using lemma 5.3):

-  Eth?] = .181 + .201a  -  .093a2,

where, for both, a  € [0, 1].

These functions are plotted on figure 5.1.

As expected they are positive for a  € [0,1]. The final error variance, 

and the lag-0 covariance between the theoretical estimators, vary within the 

range [.089, .135], and the error on the concurrent estimator within the range 

[.181, .289] according to the model specification adopted. Both types of errors 

are minimized for a  =  0, that is with a canonical seasonal component. The 

maximum final error is reached around a  = .62, which is the noise reparti­

tion yielded by the Watson minimax filter (Watson (1987)) on the historical
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Figure 5.1: Mean Squared Errors in an ARIMA(0,1,1 )12(0,1,1) model

estimators. A minimax filter on the concurrent estimates would yield a total 

estimation error varinace of .289, which corresponds to specifying a canonical 

nonseasonal component. The revision error corresponds to the area between 

the two curves, and varies from .091 for an intermediate noise repartition of 

a  ~  .10 to .149 which is obtained on the estimation of a noninvertible trend 

component.

5.4 Generalization to preliminary estimators and fore­

casts of the components.

We now generalize our results to any estimator of the signal st computed 

at time t + k. Although historical and concurrent estimators are the most 

interesting in practical applications, for the sake of generality we consider the
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case of any preliminary estimator or forecast. We write the total estimation 
error as:

^ t f t + k  ~  s t ~  E t + k $ t  =

= s? - s ?  + s t - E t +ksf =

= <  + rf/t+k, (5.16)

where ef represents the final error and rf/t+k the revision error on the esti­

mator of sf computed at time t +  k, where A: is a signed integer. Clearly,

Et+kSt corresponds to a preliminary estimator when k > 0, and to a - k -  
period-ahead forecast when k < 0. The WK filter estimating the signal s f  

using finite set of observations X t+k = [*i, •••,*(+*] is denoted v?'t/t+k(B), 
so:

¿?/,+* = E,+ki f  =

We denote A(B) the inverse polynomial:

A(£) = (5.17)
t= 0

where A0 =  1. We also define the coefficient Sk, k > 0, such that: =

Ef=o A?. Considering first the case of preliminary estimators (k > 0), we get 

the following result:

Lem ma 5.4 The variance of the error in the preliminary estimator obtained 

at time t +  k of the signal for period t is related to the noise repartition a, 

a  € [0, 1], according to:



where k > 0 and v^o is the coefficient in 5° of the WK filter estimating 

a canonical signal s° at time t + k.

Proof: From (5.16) and given the independence of final and revision errors, 

we have: var(d%/t+k) =  t>ar(ef ) +  var(r^t+k). The variance of cf is given in

lemma 5.1. We thus focus on the relationship between the noise repartition

a  and rt/t+k- Following a reasoning similar to that of Lemma 5.2, we have:

rt/t+k = — Et+kst =
oo

= 23 (vsi + ctVuhi)(xt+i -  Et+kxt+i) =
i=—oo

= ^  (j/^ +  aVuhi)(xt+i — Et+kXt+i), (5.19)
*=Ar+l

since for i < k, E t+kXt+i = xt+j. Using: xt+l- =  £ “Lo Vvat+»'-,?i it is easily 

obtained that the forecast error on x1+t- computed at time t + k, k < i, is 

given by:

1—fc-1
x t+% — Et+kx t+i =  53 V’jût+i-j* (5.20)

j-o

Now inserting (5.20) in (5.19), we get:
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’•5 .« = i>.°+°w(’xf̂ ««..w)=
i=fc+l j=0

= £ [(* £ •  + &  ̂ «+i +  • • •)“<+.- + 
t=*+l

+aK (^i +  V’l^i+x H----)<*<+»]• (5.21)

Writing:

k + V>î °,+i +  •••,

and:

rrii = A, + V’iAj+i H----> (5.22)

the variance of the revision error on the nonconcurrent estimates of the signal 

is given by:

OO OO

war(rt/t+k] = uor[r°/t+fc] + q 2k 2 12 m.2 + 2aV* 12 limi- (5-23)
«=fc+ 1 t=it+l

The first term of the r.h.s. of (5.23) represents the size of the revision error 

on the nonconcurrent estimator of the canonical signal. It can be computed

using: V (r°(+Jk) =  !£S*+i(£«)2- The second term of the r.h.s. of (5.23)

relates the revision error to the a-squared through the term V2 m*.

As defined in (5.22), m, can be seen as the term in F* in the polynomial 

multiplication h(B)tf>(B) which yields the polynomial \(F )  previously defined 

in (5.17). Hence, for i > 0, we have m, = A, while for i < 0, m, =  0 since
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the polynomial A (F) does not contain any term in B. Summing all the mi- 
squared coefficients, we then get:

f > ?  =  X(F)X(B) |b=f=o=
*=0

=  H F M B )  l s = F = 0 =

= Ao. (5.24)

Now, since for k > 0, m? =  ~  we have:

£ mf = h o - ^ m f ,  
i=fc+l »=0

= h o -6 k , (5.25)

since mi =  A,- for i > 0.

The third term of the r.h.s. of (5.23) represents the covariance between 

the revision error on the canonical signal and the error induced by the noise 

repartition. It involves the term which as defined in (5.22) can be seen to 

be the term in B ^  if t < 0, and the term in F* if i > 0 in the polynomial multi­

plication v°(B)tp(B). Thus the nonsymmetric polynomial l(B ,F )  defined as: 

l(B, F) =  E S - »  is such that: l(B , F) = and thus represents

the WK filter expressing the final estimator st in terms of the innovations on

the observed series l(B ,F )  =  £°(5). Now since m(B) — 1 ¡xj>(B), we have:

l (B,F)m(B)  =  ¡ P ( B M B m B )  =
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= *?(*). (5.26)

Then, the sum of all non-zero cross-products /t-mt yields:

= l(B ,F )\(B )  |B=F=0=
t=0

=  |fi= F = 0 =

= *&• (5.27)

Then, since for fc > 0, E,=it+i hmt = £ £ 0 ~  £f=o A™«, we have:

£  -  53 /,m, =
t=fc+l t=0

= (5.28)
i=0

where use has being made of /,• = and m, = A,-. We now have to show

that E*=o = vîo^+k> Expressing the estimator s^ t+k as a function of the 

innovations at as: &t/t+k =  ^°’t/t+*(B)at, then the filter t,'*/t+k(B) is defined 

by:

e /,+‘ (B K  =  =

=  ( -  +  &.1 B + d  +  Æ f  +  - -  +  & i * K

So the filter corresponds to the filter (%(B) for the historical es­

timator truncated at the term in F k. The following relationship being still 

valid:
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inverting V>(J9), we have:

uo,*/t+*(B ) _  g*/*+k(B )\(B ) =

= (• • • + g . , B  + &  +  &/■+•• •  +  &F*)A (B).

Looking at the term in B° in i/°'^t+k(B), we directly get:

*'«/,+* =  E i l A i. <5-29)«=o

Putting together this last result, (5.25), and (5.28), in (5.23), and adding the 

variance of the historical error given by lemma 5.1 proves the lemma. ■

It is interesting to study the behavior of V(dfjt+k) when k —* oo. First, 

trivially from the definition of A*, lim*-,» $k = lim*_oo = ^o- Second,

since A(B)f i (B)  =  î (B) ,  it is obvious that i/% =  E “ 0 £?,A, which implies 

that limjt—oo v ^ t+k =  Futhermore, since the polynomial ( ,{B)  converges 

in F , V(r°/t+J  =  ES/t+i % = E Z k + i( &  must go to zero as k becomes 

infinite. Replacing ¿k by h0, and Vr(»”̂ t+fc) by zero in lemma 5.4 directly 

yields the variance of the final error given in lemma 5.1. Therefore, as k goes 

to infinity, the error in the historical estimator is recovered.

The other case of interest is that of the concurrent estimator, for which 

k =  0. Trivially since Ao = 1, v ^ *  =  £% and ¿o =  1. The relationships

(5.2) and (5.3) which give the variance of the revision and total error in the 

concurrent estimator are then immediately obtained.
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We now turn our attention to the forecast of the components. The param­

eter k is now negative, and its absolute value gives the step-ahead forecast 
horizon.

Lemma 5.5 The variance of the total estimation error in the forecast ob­

tained at time t + k, k < 0, of the signal for the period t is related to the noise 
repartition a, or G [0,1], according to:

”a r[<*f/t+Jk] =  ”<”•[<£/*+*] +  aVv  (5-30)

Proof: This result is immediately obtained by inserting (5.25) and (5.28) in 

(5.24), and by adding the variance of the historical error given by lemma 5.1. 
I

Lemma 5.5 shows that the error in the component forecast is a linear 

function of the noise repartition, with a proportional factor of unity. This 

result follows from the fact that since white noise variables are not predictable, 

adding a white noise to a component directly increases the forecast error 

variance by the size of the white noise variance without changing the forecast. 

Notice that, at the difference of variances of the preliminary estimation errors, 

the forecast error variance on the signal and that on the nonsignal are not 

equal.

To summarize, in this section we have derived the relationships between 

the admissible decompositions and the error in both the historical and con­

current signal estimators, and then we have extended our results to the gen­

eral case of the estimation of the signal st computed at any time t + k, 

k =  • • •, — 1,0,1, • • *. An attractive feature of the functions found is that they
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axe particularly simple: they axe always polynomials in a  (the parameter rep­

resenting the noise repartition), of order two, and with coefficients which are 

easily obtainable from the overall model for the observed series. We now use 

our results to build a procedure for selecting the decomposition minimizing 

the estimation error. This will lead us to some important features of the 

canonical assumption.
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Chapter 6

Model specification minimizing 

the estimation error: 

Properties of the canonical 

decomposition

6.1 Historical estimators.

Lem ma 6.1 The final estimation error and the lag-0 covariance between the 

estimators are minimized at:

• a  =  0 i / 2 u% +  Vuho < 1;

• a  =  1 otherwise.

Proof: This result is a direct consequence of lemma 5.1. As given in (5.1), 

the variance of ef is related to the term in a-squared through the coefficient 

—h0. Since h0  corresponds to the variance of the "inverse” model, hQ is
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always positive and thus V(ef) is a concave function of a  over the interval 

[0,1] (as in figure 5.1). Hence, one of the bounds of [0,1] will necessarily 

provide the minimum. To locate the noise repartition minimizing the error 

variance, it is then enough to compare V(eJ) and V̂ e®). Checking the sign 

of V(e}) — V(e°t ) =  V ^l — 2t'°0 — Vuh0) directly yields the conditions stated 

in lemma (6.1). Notice that when 2i/°0 + Vuho =  1, V(e\) = V^e“), and both 

bounds are solutions to the minimization problem. I

Over the range of the admissible decompositions, the variance of the final 

error may behave according to the three different patterns presented on figure

6.1. Cleaxly, each pattern is characterized by the position of the maximum, 

and that position also determines which bound yields the minimum error. 

The concavity and the symmetry of V(ef) implies that the minimum error 

always corresponds to the bound that is the farthest away from the value 

of a maximizing the error. Denoting a m this value, we have: am =  (1 — 

2vf0 )/2hoVtt. In the first case of figure 6.1, this maximum lies between 0 

and 1 and corresponds to the situation where .5 > ““ ^oK- The

canonical signal will then minimize the error when is close to .5 — VuhQ. 

Conversely, when becomes closer to .5 than to .5 — Vuho, the minimum 

switches to the upper bound of the interval [0,1]. The possibility that 

stands in the middle of [.5 — haV*], or equivalently that a TO =  .5, does exist, 

implying that both bounds are solutions to the minimization problem. We 

shall see in chapter 7 that situations where am lies in a close neighbourhood 

of .5, making similar the error obtained on the bounds of [0,1], may actually 

be faced.

The second case displayed on figure 6.1 for which am < 0 occurs when

> .5. The minimum error is then obtained on a signal concentrating
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Figure 6.1: Three possible paths for the Final Error Variance

Alptoa

Alpfc*

Al|*»
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all the noise of the model. The third case of figure 6.1 is symmetric: we 

have am > 1, which occurs when < .5 -  AoK, and the signal must 
be canonical to minimize the error. Notice that in these last two cases, 

the other canonical decomposition was maximizing the estimation error, and 

thus coincides with the Watson minimax filter, which would induce thus a 
noninvertible component.

Concerning the general aspect of each curve displayed on figure 6.1, it is 

interesting to notice that a low value of hoV* makes the shape of the curves 

more constant while as becomes closer to .5, the shape of the curves for 

a close to zero becomes more flat.

An obvious consequence of lemma 6.1 is a most appealing property of the 

canonical decompositions:

C orollary 6.1 A canonical decomposition always minimizes the final esti­

mation error and the lag- 0  covariance between the estimators.

Lemma 6.1 provides a procedure enabling us to identify the canonical de­

composition which presents this property. However, it is possible to add a 

further assumption to model (A) in order to precisely isolate the decompo­

sition solution of the minimization problem. It is also a way to standardize 

our notations.

Assumption 5 .a: The canonical signal s° is such that:

This assumption can be made without any loss of generality, since up to 

now st and nt could be interchanged freely. The canonical requirement is now 

applied to the component which has the largest central coefficient in the WK 

filter designed to estimate its canonical form. Under assumption 5.a, we get 

the following result:
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Lem ma 6.2 The final estimation error and the lag-0 covariance between the 
estimators are minimized over the range of all admissible decompositions with 
a canonical nt .

Proof: From lemma 6.1, the condition making a = 1 solution of the mini­

mization problem was 2 v% + Vuh0  > 1. The demonstration will just consist 

of showing that *4 > "nO set by assumption 5.a implies that this condition is 

satisfied. Our general model (A) may be respecified as:

xt -  s° +  n\ + V{,

where sf and n\ are the two components in their canonical form and ut is the 

white noise present in the series, with variance Vu. Of course, assumption 1 

(independence of the components) still holds. Then, using (4.2), the estimator 

of ut is obtained as:

.  _  „  M B ) U F )  

= V . h (B )x „

Thus Vuh0  represents the central coefficient of the WK filter estimating ttt- 

Since represents a signal concentrating all the noise of the model, it can 

simply be written as: sj =  s® + ut, and we have:

"Jo = »5. + V.A.. (6.1)

Now, since the estimators of and nj must sum to the observed series xt, 

we have: t/ ] 0  +  1/^  =  1. So assumption 5.a may be rewritten as: > 1.

Replacing in this last inequality by the expression (6.1) directly yields:
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2vlo +  Vuh0 > 1,

which according to lemma 6.1 implies that we are in the case in which a =  1 

minimizes the estimation error variance, and a canonical nt is the solution of 

the minimization problem. I

Lemma 6.2 provides a simple procedure to design the Unobserved Compo­

nents models in order to minimize the component estimation error. Roughly 

speaking, it states that all the noise of the model must be assigned to the 

component which is relatively more important. This relative importance is 

evaluated by comparing the central weight of the WK filters designed to esti­

mate the components in their canonical forms. A very simple way to compute 

the central weight of the WK filter as the variance of a simple ARMA model 

has been described in section 5.1.

Several reasons make such a model specification desirable. Firstly, over 

the range of observationally equivalent decompositions, the model specifica­

tion selected will provide the most precise estimators. That is, given the 

model for the observed series, this decomposition will yield the highest coher­

ence between the spectrum of the signed and the spectrum of the estimator. 

Nerlove (1964) saw such a coherence as a desirable feature when he discussed 

in the seasonal adjustment context several spectral criteria that adjustment 

procedures should satisfy. Specifying the unobserved components models as 

suggested in lemma 6.2 will thus reduce the discrepancies between the model 

of the signal and the model of its estimator. These discrepancies have been 

studied in the time domain in section 4.2.2 and for the frequency domain 

in section 4.4.2. We recall that this very attractive feature of the identifi­

cation procedure is obtained by minimizing also the covariance between the
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estimators.

It is interesting to notice that the Watson’s minimax filter yields oppo­
site properties. This procedure amounts to conducting a MMSE estimation 

on the unobserved components model specification which maximizes the final 

estimation error. Thus, the implicit model specification maximizes the under­

estimation of the components, the lag-0 covariance between the estimators, 

and more generally the discrepancies between the model of the theoretical 
component and its estimator.

We now turn our attention to the error in the concurrent estimator.

6.2 Concurrent estimators.

Lemma 6.3 The variance of the revision error in the concurrent estimator 

of the signal s f is maximized at:

• a  =  0 if 2(i'°0 -  & ) + K(*o -  1) < 0/

• ot =  1 otherwise.

Proof: In lemma 5.2, V(r“) is related to the term in a-squared through 

the coefficient V2(ho — 1). Since ho > 1, V(rf) is a convex function of a. 

Hence, it will always be maximized at one of the bounds of the finite interval 

[0,1]. Comparing V^rJ) and V(rf) directly yields the conditions stated in 

lemma 6.3. I

We can use lemmas 5.2 and 6.3 to pursue a discussion opened in Bell and 

Hillmer (1984) about the dependence between the component model specifi­

cation and the size of the revision in the seasonal adjustment context. The 

decompositions that they considered were the two canonical decompositions

99



and the model specification implicit in the X -ll filter. Their discussion was 
centered on the particular model for the observed series:

(1 - B ) (  1 -  B ")x , = (1 -  i ,B )(l -  01 3B 1 2 )at>

and the series x t were then decomposed into a seasonal and a nonseasonal 

component. In this model, we choose the signal s° as representing a canonical 

seasonal component. For three set of parameters, they obtained the following 

results:

Table 6.1 (reproduced from Bell and Hillmer (1984, p.308)) 

Mean Squared Revisions.

Parameters: X-ll Noninvertible

Seasonal

Noninvertible

Trend

Model 1: 9j =  .3, 0i2=.5 .123 .133 .177

Model 2: 01 =  .5, 0i2=.9 .059 .032 .114

Model 3: 9\ =  .9, 9n= .l .130 .079 .049

For the decompositions considered, the minimum revisions were obtained 

with X -ll for the first model, with a noninvertible seasonal component for 

the second model and with a noninvertible trend for the third model. Figure

6.3 presents the behaviour of the revisions over the range of all admissible 

decomposition for the three models. The curves have been obtained using 

lemma 5.2.

For the first model, the minimum revisions are obtained at .1316, corre­

sponding to a seasonal component embodying 16 percent of the pure noise 

part of the model. Assigning all this noise to the seasonal component and thus 

specifying a canonical trend maximizes the revisions at .177. This agrees with
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Figure 6.2: Mean Squared Revisions in three ARIMA(0,1, l)i2(0 , 1,1) models

lemma 6.3 since for this particular model we found: = .242, &  = .274,

Vu =  .238 and ho =  2.051, so 2(t/ a0 — £°0) + Vu(ho — 1) = .184 > 0. Notice 

that in this model, X -ll yields the lowest revisions, but it has to be remen- 

bered that it is not a model-based approach, so any comparison is difficult to 

interpret.

With the second model, the minimum mean squared revisions is reached at 

.0309 when nearly 12 percent of the pure noise part of the series is assigned to 

the seasonal component. Conversely, .114 obtained on a noninvertible trend 

is a maximum over all admissible decompositions. As expected, this result is 

confirmed by lemma 5.2 since for this model: =  .046, =  .067, Vu = .508

and ho =  1.403, so 2(v%—f5o)+Ki(^o—1) =  -162 > 0. Here, the revision errors 

yielded by X -ll correspond to the revisions obtained when approximatively 

60 percent of the noise is assigned to the seasonal component.
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With the third model, a minimum of .0366 is obtained on a seasonal com­

ponent concentrating nearly 66 percent of the noise of the model. The mean 

squared revisions of .079 corresponding to a noninvertible seasonal component 

is a maximum over all admissible decompositions. Calculating the condition 

stated in lemma 6.3 with, for this model, i/°0 =  .152, = .254, Vu = .639

and h0  = 1.246, yields —.203 < 0, which indicates that a  =  0 is the revi­

sion maximizing noise repartition. Here, the X-ll filter yields much higher 

revisions (.130).

Several points come out of our analysis. Firstly, in the three examples 

and for the model-based approaches, the maximum mean squared revisions 

is always obtained at one bound of [0,1]. This result is in fact general, and 

constitutes an obvious consequence of lemma 6.3 that we state as a corollary:

C orollary 6.2 The variance of the revision error on the concurrent estima­

tor of the components is always maximized with a canonical decomposition.

Corollary 6.2 generalizes Maravall (1986)’s result to any signal/nonsignal 

decompositions. Latter, in section 3, we will see that in signal plus noise 

decompositions, applying the rule provided by lemma 6.3. to determine which 

model specification maximizes the revision error yields results in agreement 

with Maravall’s findings. Corollary 6.2 points out an unpleasant feature of 

the canonical decompositions. As we shall see, this unpleasant feature is of 

secondary importance.

Second, Bell and Hillmer argued that "the magnitude of revisions for a 

given model depends dramatically on the relevant final adjustment”. For the 

three examples and for the model-based approach, we have evaluated the 

scale of this dependence. The ranges of variation of the revision obtained 

with the model-based approach are actually larger than those suggested by
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Bell and Hillmer. The best illustration of their statement is provided by the 

second model, for which the size of the revisions is nearly multiplied by four 
over the range of all admissible decompositions.

Bell and Hillmer concluded by saying that ”no one method gives the low­

est mean squared revisions”, and thus argued that the use of the revisions to 

evaluate different seasonal adjustment procedures was inappropriate. They 

were of course right for the decompositions considered: in the three cases, 

the specification minimizing the revision variance always corresponded to an 

intermediate noise repartition. However, Lemma 5.2 gives us the opportu­
nity to build a procedure indicating the model specification minimizing the 

variance of the total revision on the concurrent estimates:

Lem ma 6.4 The noise repartition a € [0,1] minimizing the variance of the 

revisions over the range of all admissible decompositions is given by:

jy° - t °  l/° - f °_ * *«0 S«0 : f  ^ aO SaO / - m i l

“  -  ~ W ^ T )  , f  ~ v ÿ v n ) € | , u 1 ’

I/0 -_ * a s0 n

“  0 ~ W ^ T ) < a ’

a* = 1 otherwise.

Proof: The proof is immediately obtained by minimizing the function V (rf) 

given in lemma 5.2 with respect to a  in the interval [0, 1]. I

Clearly, the specification minimizing the revisions depends on the stochas­

tic properties of the observed series. Notice that there are two cases in lemma

5.4 where this specification corresponds to a canonical decomposition, Hence, 

one of the two canonical decompositions may also provide the most precise
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preliminary approximation to the final estimator. However, since the revision 

error is additional to the final estimation error, it is may be more appropriate 

to minimize directly the total estimation error on the concurrent estimates. 

To this we turn next.

Lem ma 6.5 The variance of the Total Estimation Error on the concurrent 

signal estimator is minimized for a  G [0, 1] at:

.  a  =  0 z/2&  +  K < l ;

• a  =  1 otherwise.

Proof: Lemma 5.3 shows that the mean squared total estimation error is a 

concave function of a. The minimum is thus obtained on one of the bounds of 

any finite interval. Comparing V(dj) and yields the conditions stated

in the lemma. I

Lemma 6.5 implies the following property of the canonical decompositions:

Corollary 6.3 The variance of the total estimation error on the concurrent 

estimates is always minimized with one of the canonical decompositions.

As in the previous section, we can add without loss of generality an as­

sumption in model (A) in order to precisely isolate the canonical decom­

position with the property of Corollary 6.3. It is another possible way to 

standardize the notations. This assumption, which replaces Assumption 5.a, 

is stated as:

Assumption 5 .b: The signal sf is such that

where &o is the central coefficient of the WK filter expressing the estimator 

of a canonical nonsignal as function of the innovations at on the observed
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series. Under assumption 5.b, we obtain the following lemma equivalent to 
lemma 6.5:

Lemma 6.6 Among all admissible decompositions, the one with canonical nt 

always minimizes the error in the concurrent estimator.

Proof: The proof consists of showing that &  > implies that 2f°0+ K  > 1. 

By construction, the coefficients £“0 and are such that: £?0 + £"0 =  1. So 

&  > &  is equivalent to:

&  + & > ! •  (6.2)

Decomposing the observed series as xt =  + nj + ut, where ut represents a
white noise with variance K,, the estimator of Ut is given by:

ût = Çxt(B)at =

=
U9 , ( F ) "

which implies fuo =  Vv. Since sj =  s° + ut, we have under the hypothesis of 

independence: (1(B) — £ (B )  + £u(B) so: ^  + Vu. Inserting this last

expression in (6.2) directly yields the condition stated in lemma 6.5 for a  =  1 

to be the solution of the error minimization problem. I

Lemma 6.6 provides an easy alternative method of determining the decom­

position that can be best estimated: for each canonical component, compare 

the central coefficient of the WK filters expressing the estimators in terms 

of the innovations at, and keep canonical the component associated with the
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smallest central coefficient. In other words, the canonical estimator most af­

fected at time t by the innovation on the observed series must be assigned 

all the noise of the model. We may thus say that the maximum weight must 

be given to the relatively more important component. A simple look at the 

location of the maximum of V (dj) indicates that a failure to obey this rule 

and making instead st canonical while assumption 5.b is fulfilled leads to the 

maximization of the error when £°0 > .5.

The aggregation of the historical estimation error and of the revision er­

ror preserves the property of the canonical decompositions that they yield 

the most precise estimator. However, it is possible that while one canoni­

cal decomposition minimizes the error in the historical estimator, the other 

one minimizes the error in the concurrent estimator. In that case, the ag­

gregation of the two types of errors makes the noise repartition minimizing 

the error switch to one bound of [0,1] to the opposite bound. This happens 

when assumptions 5.a and 5.b do not simultaneously hold, for example when

> i/Jo and £°0 < Notice that since the revision error variance is al­

ways maximized at one bound of [0, 1], the switching of solutions means that 

the decomposition minimizing the final error variance is also the one which 

maximizes the revision error in the concurrent estimator.

We now check our results on the particular signal plus noise decomposition.

6.3 Example: Signal plus Noise decomposition

The problem of dealing with a time series contaminated by an additional 

noise is encountered frequently in economics (see for example Pagan (1975)) 

and in engineering. The typical representation can be presented as follows: 

the observed series xt is assumed to be made up of a signal st and of a white
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noise nt according to:

= s< + nt.

The signal and the observed series are assumed to follow ARIMA models 

satisfying the assumptions of model (A). Setting the nonsignal as a white noise 

implies that <f>x(B ) = The signal plus noise decomposition is thus a

particularly simple case of model (A). It is worthwhile to consider such a 

model specification for the analysis of the estimation errors since the results 

can be easily anticipated: it is clear that if we assign all the noise of the model 

to the signal, no estimation error is made since the signal would be defined 

as the observed series. So the noise repartition minimizing the estimation 
errors variances must correspond to the minimum noise extraction. Let us 

now see if our results are consistent with this expectation. The variance of 

nt is such that: Vn € [0, V̂ ], where Vu is here the minimum of the spectrum 

of the observed series. For each value of Vn within this interval, a particular 

decomposition is obtained. We set: Vn = Vu, so that nt concentrates all the 

noise of the model and the signal is canonical.

We first deal with the error on the historical estimator. Lemma 6.2 sug­

gests to compare and «'¿o- Trivially, removing all the noise from nt yields: 

n} =  0, so i/̂ o = 0. According to lemma 6.2, the signal must concentrate all 

the noise of the model to minimize the final error variance if: *'£> > »'no = 0. 

This condition must be satisfied since we have seen in subsection 5.1.1 that 

i/°0 is the variance of an ARMA process with AR polynomial 0X(B), MA 

polynomial 6 ,(B)<t>n(B) and innovation variance V°. Lemma 6.2 yields thus 

a result consistent with our expectation.
We now focus on the mean squared total revision error. Maravall (1986) 

showed that the revisions on the concurrent estimator of the signal are max-
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imized when a noninvertible signal is specified. Lemma 6.3 indicates that we 

should check the sign of 2(i/% — + Vu(h0  — 1).

Using //°0 = Vuh0, £°0 =  Vu, and the fact that t/£0, and £°0 

respectively sum to unity, it is immediately obtained that

^  =  1 - V uh0.

and:

&  = i -  k .

So:

2 K ° o - 0  +  ^ ( / i o - l )  = 2(-K *o + K) + Vu{k0 -  1) =

= K ( i - M -

Since, by construction, ho > 1, we get: Vu(l — h0) < 0, which implies that 

the total revision error is maximized on the estimation of a noninvertible 

signal. This confirms Maravall’s findings. Now applying the rule provided by 

lemma 5.4 to minimize the revision error, we would get as the solution to the 

minimization problem:

a  = jO___( 0C«o _
K(fco- l )

=  1.

Our procedure yields thus the expected results: the revision error in the 

concurrent estimate of the signal is minimized by assigning all the noise to 

the signal, that is when no noise extraction is performed.

108



For the total estimation error, lemma 6.6 indicates that it is enough to 
compare £°0 and &0. Trivially, = 0, so we have to check if &  = 1 -  Vu 

is positive or not. Since Ao > 1, 1 — K, > 1 — Vuho which is positive as 

we have seen in the final estimator case. Lemma 6.6 thus demonstrates as 

expected that all the noise must be assigned to the signal in order to obtain 
the minimum total estimation error.

We thus can conclude that the noise extraction case validates the results 

presented in section 1 and 2. We now generalize these results to the estimators 

of st computed at any time t + k, k = • • •, —1, 0, 1, • • *.

6.4 Generalization to preliminary estimators and fore­

cast.

About the preliminary estimators, lemma 5.4 has the following implication:

Lem m a 6.7 The variance of the error in the preliminary estimators is min­

imized at:

•  a  =  0 i f2 v ° J /t+k +  6kVu < l ;

• a =  1 otherwise.

Proof: This result is a consequence of the concavity of V(d^t+k). As pre­

viously for the lemmas 6.3 and 6.5, the minimum is located on one bound 

of [0,1]. The condition expressed in lemma 6.8 is obtained by comparing 

V(d}/l+i) and V(d?/t+J .  I

The property that a canonical decomposition always minimizes the total 

estimation error variance is thus true for any preliminary estimators. Writing 

vno*t+k the central coefficient of the WK filter estimating at time t + k a
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canonical nonsignal nj, we can as previously add a futher assumption to 

model (A) in order to standardize the notations.

Assumption 5.c: The signal sf is such that v ^ %*k > v ^ i+k.

This assumption, which replaces assumption 5.b, allows us to isolate the 

decomposition minimzing the total estimation error:

Lem m a 6.8 Among all admissible decompositions, the one with canonical nt 

always minimizes the error variance in the preliminary estimator for period 

t obtained a tt  + k, k being a positive integer.

Proof: We have to show that i / ^ i+k > v ^ t+k implies that 2 v °^ t+k+ 6 kVu >

1. Since +  l/n0 t̂+k = assumption 5.c can be respecified as: v%f̂ t+k +
S J ' t+k > 1. We thus have to show that v ° ^ tJrk +  Vu6 k =  v\'^ t+k. In the 

decomposition x t = s® +  nj -I- ut, the estimator at time t +  k of the irregular 

component u( is given by:

Û I/I+ *  =  =

= Et+k(u(B)at =

= Et+kVu\(F )a t =

=  £<+*Kj(1 + H---- )at =

= Vi(l +  XiF + -----h XkFk)at.

Since vf/t+k(B) = ( ^ kX(B), it is directly obtained using the last equation 

above and (5.17) that: v*uo+k — Vu£*_0 = The hypothesis of in­

dependence implying: s] =  1° +  ût, we have: i/},t̂ t+k(B) = u ^ t+k(B) +
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v\!t+k{B). It is then true that: ^ t/t+k = v°J/t+k + V J k. The assumption 5.c 

is thus equivalent to: 2 i/3Q̂ t+k + &kVu > 1, and lemma 6.9 is proved. I

Whatever is the set of observations available on xt and the period for 

which we are interested in the signal, it is always true that the minimum 

variance of the total estimation error is obtained by assigning all the noise 

of the model to the canonical component s° or n\ whose estimator gives the 

most weight to the particular realization xt, the other one being let canonical.

About the forecasts of the components, using lemma 5.5, the following 

result is immediately obtained:

Lemma 6.9 Over the range of all admissible decompositions, the variance 

of the forecast error on the signal is always minimized with the canonical 

specification.

Noninvertible components are always best forecasted. This result is not sur­

prising since adding an unpredictable white noise to a variable just increases 

the forecast error without changing the variable forecast.
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Chapter 7

Examples

7.1 M ethodology

These results provide the procedure to specify the Unobserved Component 

model in order to minimize the variance of the components estimation error. 

For four classes of models for the observed series, we will investigate the type 

of model specification that such an identification procedure would yield. The 

estimators on which we shall focus our attention axe the two most important 

ones, namely the historical and the concurrent estimators.

We first present the methodology that shall be followed in each case. The 

procedure can be split into five main steps:

1. given the model for the observed series, derive the system of covariance 

equations and identify it with zero coefficient restrictions;

2. compute the minimum of the spectrum of each component; then adding 

them yield the variance V"u;

3. either derive V^e”), ho,and using the models presented in subsection 

5.1.1 and check if 2 v%+Vuh0  > 1 as suggested by lemma 6.1; or compute
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the central coefficients and »'no of the WK filters designed to estimate 

the canonical components, compare them and using lemma 6.2 deduce 

which canonical decomposition minimize the final error variance;

4. provide the corresponding model specification by factorizing the spec­

trum; an algorithm for factorizing a spectrum can be found in Maravall 

and Mathis (1994);

5. for concurrent estimators, replace in the last two steps *'5> and vlo by
and £*0 and use either lemma 6.5 instead of 6.1 or lemma 6.6 instead 

of 6.2.

7.2 A Trend plus Cycle example

We analyze the model discussed in section 2.5.3. To ease the readers under­

standing, we recall that the model for the observed series was:

(1 +  .7B)Axt = (1 + .4045 -  .039£2)at.

This series was the sum of a trend and a cycle component, and making the 

former canonical, we obtained in (2.7):

A s°t = (l + £)<& I ?  = .161 

(l +  .7£)n? = (1 +  A%B)a°nt V° = .306.

The variance of the pure noise part of this series is given by: Vu = y°(0) =

.237. The coefficient V(e?), v%, and h0  correspond to the variances of the

models:
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• for V(e°): 9{B)zt =  (1 + 5)(1 + .4965)6«, Vh =  = .049;

• for u%: 9(B)zt =  (1 +  5)( 1 +  .7B)bt, Vb = V? = .161;

• for h0: 9{B)zt =  (1 -  5)(1 + .75)6,, Vb = 1;

where 9(B) =  1 + .4045 — .03952. That yields: V(e°) =  .108, =  .440 and

ho = 1.659. Over the range of all admissible decompositions, the variance of

the final estimation error is given by (from lemma 5.1):

V (tf)  = .108 + .028a -  .093a2.

This function is plotted on figure 7.1. It is easily seen that the minimum is

Figure 7.1: Mean Squared Errors in an ARJMA(1,1,2) model

obtained at a  =  1, in which case V (t\) — .043. The decomposition of x t is 

thus best estimated when the cycle is canonical while the trend concentrates
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all the noise of the model. Removing S'iJ(O) from and factorizing the

resulting spectrum <7̂ (10), the corresponding models for the components are 
found «is:

As] = (1 -  .096£)a]t V} = .788

(1 +  .75K 1 = (l + 5)<4 ^  =  .014.

Figure 7.1 also shows that the maximum estimation error variance is reached 

for an intermediate decomposition where the trend component catches 15,3% 

of the variance of the noise of the model. This decomposition is the one that 
the minimax filter would yield.

For concurrent estimation, we need to derive the filter £ (B). In the time 

domain, this filter can be written as:

e°(n\ _  t / 0  (1 + E)(l + F) 1 -|- .IF
'  * 1 - 5  1 + .404F-.039F2’

which, after calculation, yields = .642. In the same way, the revision 

error variance may simply be obtained as £ ^ i(fio )2i as (4.11) suggests, and 

that yields V(r°) =  .075. So the relationship between error variance on the 

concurrent estimator and noise repartition is given by:

V(d?) = .183 -  .067a -  .056a2.

This function is also plotted on figure 7.1.

Again, the minimum is reached at .060 on a trend component concentrat­

ing all the noise of the model. Concurrent estimation of a canonical trend 

yields instead a maximum mean squared error of .183. While specifying a
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canonical cycle minimizes the error variance on both historical and concur­

rent estimators, in this example, this canonical specification also minimizes 
the mean squared revision errors.

7.3 Regular ARIM A model

Suppose the observed series follows an IMA(2,1) process given by :

(1 — B 2 )xt =  at — Oat- i  with e, ~  N ID (0,1),

\ 0 \ < 1.

This simple model, adequate for bi-annual data, has been the subject of a 

pedagogical discussion in Maravall and Pierce (1987).

Suppose we wish to decompose the observed series as: xt =  nt +  st, where 

nt and st represent respectively the trend and the seasonal components of the 

observed series x t. The AR polynomial (1 — B 2) has a root the zero-frequency, 

which is thus assigned to the trend component, and a root at the x-frequency, 

with period two, which characterises the seasonal fluctuations of the series. 

Possible models for the components may then be of the type:

{l + B)st =  (1 — 6 tB)att,

(1 - B ) n t  = (1 -  0„fl)ont.

For these models, we have the overall relationship:

(1 -  »K  =  (1 -  B)(l -  *.#)«.. +  (1 + B)( 1 -  K B )aM,
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which provides a system of 3 covariances equations with the four unknowns 

Q», V», #n, Vn- The system is thus not identified. We overcome this problem 
by imposing zero coefficients restrictions on both components. The general 

expression for factorizing the spectrum of xt is given by:

1  +  6 2  - _ M c o s w  =  y _________1 _________+  y __________ 1 _________  ( ? 1 )

2 — 2 cos2 w *2 + 2 cosw n 2  — 2 cosw'

where it is easily obtained that Vt = (1 + 0)2/4 and Vn =  (1 — 0)2/4. The 

amount of noise embodied in the spectra gn{w) and <7, (tu) is given by:

e, -  nun gs(w) =  5,(0) = (1 + 0)2/16,

e„ = nun^nM  = gn(*) =  (1 -  0)2/16, (7-2)

so the ’pure’ noise part of the observed series is:

K = e* + ¿n = (1 + 02)/8. (7-3)

Removing t, from the ACGF of st, the central coefficient of the WK filter 

estimating a canonical seasonal component can be obtained as:

" *  ~  4(1 +  B)(l + F) ( +  1 / ]' ((1 - «B)(l -  OF)

Developing, we have:

r(l + 0)2(1 — B)(l  — F) (l + 6)2( l - B2) ( l - F 2) , ,
^  ~ 1 4 ( 1 - 9 B ) ( 1 - 0 F )  16(1 -  6B)(1 -  6F) J 1 = 0
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1 + 0 (1 + 0)2
2 8 ‘

Futher simplification of will not be necessary. We now develop the same

analysis to obtain i/*0, the central coefficient of the WK filter estimating a 
canonical trend:

"*> -  4(1 — f?)(l — F) /1S|' (1 — 6B)(1 — $F) ~Fx0'

Developing, we have:

, ( l - 0 ) 2(l + i?)(l +  F) (1 -  fl)2(l -  £ 2)(1 -  F2)
"° 1 4(1 -  0B)(1 — 0F) ^  16{1 -  0B)(1 -  0F) J |B=F=0

1 - 0  ( 1 - 0 ) 2 
“ 2 8 ’

Comparing the two coefficients, it is easily seen that v°,o ~  "no =  0 / 2  which is 

positive when 0  > 0.

So from lemma 6.2, when 6  is positive, the final estimation error and the 

lag-0 covariance between the estimators of the components are minimized by 

assigning all the noise of the observed series to the seasonal component st, 

the nonseasonal component nt being thus a canonical trend. Conversely, 0 

being negative implies that the MSE and the estimators lag-0 covariance are 

minimized by considering a canonical seasonal component.

Notice that as 0 becomes closer to 1, due to the nearly cancelling AR and 

MA unit roots of 1, the trend becomes more stable. Our previous analysis 

indicates that in this case, a canonical trend gives the most accurately es­

timated decomposition. About the seaonal component, a similar reasoning
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is valid with 0 close to -1. This illustrates the general rule that the most 
precisely estimated decompositions are the ones where the most stable com­
ponent is made canonical.

To derive any conclusion concerning the estimation error on the concur­

rent estimator, we need the coefficient of B° in the WK filter estimating 
the concurrent canonical components. Since we have seen that 

for p =  s,n, we focus on the central coefficient of the WK expressing the 

canonical estimators in terms of the innovations a*. For a canonical seasonal 
component, we have:

&  = (
_  f(i + e? l

4 ( 1  + B ) ( 1  + F)

1 + 9 (1 + 9) 2

16

Proceeding similarly for the canonical signal, we have:

<1 =  ft 1 - * ) 2 1 n  r tM r i r i i z Z Ü i
6 *° I 4 (i - b )(i - f ) * ' '■ l i -e F y B=F=0~

1 - 9  (1 - 9 ) 2

16

Comparing £°0 and £*0, it follows immediately that =  30/4. So,

from lemma 6.4, when 9 is positive, making canonical the trend component 

component yields a total estimation error minimized. Conversely, specifying 

a canonical model for the seasonal component when 9 is negative maximizes 

the total error variance. In this example, it can be easily checked that the 

canonical decomposition minimizing the error also maximizes the revision
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error. However, the final and the concurrent error are always minimized with 

the same decomposition.
A last point concerns the special case where 6  = 0. It is immediately 

checked that for this value for d, =  £*0 and that So, in that

case, both canonical decomposition minimize the error variance on the final 

and on the concurrent estimators.

7.4 Seasonal ARIM A model

Suppose the observed series xt follows the model :

(1 -  B A)xt = (1 -  BB)eu

| 0 | < 1  et ~ N I ID {  0,1).

This model is designed for quaterly time series, and has also been used for 

illustration in Kohn and Ansley (1986). Suppose we wish to decompose x t 

according to : xt = st +  nt where st and nt represent respectively the sea­

sonal and nonseasonal component of the observed series. We then specify the 

components as:

U(B)st = et (B)aH,

(1 -  B)nt =  (1 -  BnB)ant,

where U{B) =  1 +  B  +  B 2 +  B 3  and O.(B) =  1 +  9AB  + 9*B 2 + e ^ B 3. The 

polynomial U(B) characterizes the seasonal behavior of the observed series 

since it implies infinite peaks in the spectrum of the observed series at the

120



frequencies kir/2 , k = 1, 2. Similarly, the first difference operator (1 — B) 
implies an infinite peak in the observed series spectrum at the zero frequency, 
and thus is associated with the trend behavior of the observed series.

For this decomposition, the overall relationship of the model is given by:

(1 -  0B)at = (1 -  B)9.(B)a.t + U(B)( 1 -  9nB)ant,

which yields a system of 5 equations with 6 unknowns, namely 9si, 0i2, 0*31 

Vs, 9n and Vn. This system is thus not identified. To reach identification, we 

impose some zero-coefficient restrictions: 6 , 3 = 9n =  0.

The spectrum w € [0, tt], of the series x t may then be written as:

. . 1 +  92 — 26 cos w
= 2-2COS4» '

Vn 7o + iicosw  72co.s2î/;
2 — 2cosw 4 + 6 cosw + Acos2w +  2cosZw ’

where 70 =  V,(l + 6 2sl + 02t2), 7X = 6tl(9t 2  + 1)K and 72 =  6 , 7 V,. Using 

the equality: 2 cos(jw)cosw = cos(j -  l)w + cos(; + l)tw, we can build the 

following linear system of equations:

1 + 0 2 =  4Vn + 270 -  71 

-29  = 6 Vn + 27! -  270 -  72 

0 = 4v; + 2 7 2 -7 1  

0 = 2Vn -  72,

which yields the solution:
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vn = ( i - 9)2ne

70 = 8  + 10Vn =

= (10 -  40 +  1O02)/16

71 = 8K =
= (1 -  Of ¡2

72 =  2Vn = (1 -  0)2/8.

Having identified the spectra of the components for one particular de­

composition, we consider the amount of pure noise that they embody. The 

seasonal component spectrum has a minimum e, at the zero frequency when

6 > —.347, and at a frequency w* 6]tt/2, ir[ otherwise. In this latter case, 

the algebraic expression for e, is non-trivial, so for the sake of simplication 

we restrict the analytical derivations to the values of 6  > —.347. The graphs 

provided however consider the complete interval ] — 1, 1[ for 6 .

For $ > —.347, the minimum of the seasonal component spectrum is given

by:

c, =  min g,(w) = g,( 0) =

= (20Vn + 0)/16 =

= (5 -  6 6  +  502)/64.

For the nonseasonal component, the amount of noise embodied in the 

spectrum of nt is:
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rmn gn(w) = gn(ir) =  (1 -  0)2/64

So, the size of the pure noise part of the observed series corresponds to:

3 -  40 + 362
K  = 5n(*) + g,( 0) = 32

We need now to calculate The analytical derivations may be presented

by computing i/°0 and then using 1 = i/°0 4- 1/°0. Writing the WK filter for 

estimating a nonseasonal component concentrating all the noise of the model, 

in the time domain we have:

„0 (1 - 0)’ I , I 2 - ( B -  + J*)
16(2 ~ (B  + F)) ' l  + fl2 -  S(B + F ) ‘ 1 - 0  ’

which, after simplification, leads to:

i/°0 =  — g— 3 + 2 ( l  +  62)ts.

Replacing e, in this last expression by e, = (5 — 66 + 502)/64 for the case 

where 6 > —.347, and using i/°0 + i/°0 =  1, we get:

Now looking for the central coefficient of the WK filter estimating a canonical 

nonseasonal component, we have in the time domain:

•4) = 2 g ^ - 2(1 + =  

=  2 ~ g ~ ^ ~  ( 1 + ^ ( 1 -  »ŸI32. 
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Comparing and we have:

,.o ,.i o2 - 0 - 0 3 2 ( 5 -6 0  + 502) - ( l - 0 ) 2
”0 "  1 - 2  §--------( 1 + * }--------------------------------- 32--"

2 + 20 + 20s (1 + 02)(4 -  40 + A02)
4 32

12 + 200 -  8023 + 2O03 -  404 
32

The numerator N  of this last expression can be factorised as:

N  =  -4(0  -  4.827)(0 + .435)(02 -  .6080 + 1.43),

and it is readily checked that, for 0 e] — .347,1[, N  is always positive. So, 

when 0 6] — .347,1[, thus all the noise of the model must be

assigned to the seasonal component in order to obtain the most precise final 

estimators. We have checked numerically that this result is still valid when 

0 €] — 1,—.347[. Figure 7.2 displays the final error variance for the two 

canonical decompositions and for 0 varying to -1 to 1. It also shows that the 

gain in precision obtained by specifying a noninvertible trend increases as 0 

increases.

To derive any conclusion about the error on the concurrent estimators, we 

need the central coefficient of the WK filter expressing the estimators in terms 

of the innovations on the observed series. For the estimator of a nonseasonal 

component concentrating all the noise of the model, this coefficient is given 

by:

o (1 - 0 )2 5 — 60 + 502 1 — F4.
Çn0 16(1 -  B )(l - F )  64 1 — OF F~°
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Figure 7.2: Final Error Variance for Trend and SA Series

(1 -  9) 
16

2
[l + ( l + 0 )  + ( l + 0  + 02) +

1 + 0  +  02 +  03 5 _  60+ 502

+ 1 - 0  64

1 - 0  5 - 6 0  + 502
4 + 64

and since &  + =  ** we 8et:

3 + 0 5 -  60 + 502
‘â0 ~  4 64

Proceeding in a similar manner, it is easily obtained that the central coeffi­

cient of the WK filter estimating a noninvertible nonseasonal in terms of the 

innovations a< can be easily obtained as:
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Figure 7.3: Total Error Variance for Trend and SA series

_ i - g  ( i - e y
in0 4 64 '

Now comparing and as suggested in lemma 6.6, we have:

2 + 20 4 - 4 0  + 402
4 64

7 +  9 0 -0 2  
16

(0 -  9.72)(0 +  .72) 
16

which is clearly positive for 0 €] — .347,1[.

126



Figure 7.3 displays the total error variance in concurrent estimators ob­

tained with the two canonical decompositions. It is seen that specifying 

a noninvertible trend always minimizes the concurrent estimation error for 

0 G] — 1,1[. Moreover, the gain in precision increases as 6 increases. The 

ARIMA(0, 1, 0)4(0, 0 ,1) models have the property that its seasonally adjusted 

and seasonal components are always best estimated when the seasonally ad­

justed series is specified as being noninvertible.

7.5 Airline model

The so-called airline model (see Box-Jenkins (1970), p. 305) constitutes a 

class of models which has been found to adequately represent a large num­

ber of quarterly or monthly economic time series. They are defined by the 

specification:

(1 -  £)(1  -  B ')x t =  (1 -  ^ 5 )(1  -

where at is a normally distributed white noise and s denotes the number of 

observations per year. The MA polynomial is constrained to be invertible, 

and for the observed series to admit a decomposition into a seasoned and a 

nonseasonal processes, a sufficient condition is that the parameter 6, is non 

negative (see Hillmer and Tiao 1982). Then, the observed series x t is decom­

posed into a seasonal process Si with AR polynomial (f>,(B) = 1+5-1— • -+5*-1 

and a nonseasonal process rit with AR polynomial <f>n(B) =  (1 — B )2. If we 

make both processes canonical, then a third component comes out, the ir­

regular component, necessary for the full complement of the decomposition. 

Because st and nt are free of noise, the irregular component would have its
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variance maximized. Canonical signal/nonsignal decompositions may then be 

obtained either by assigning the irregular component to the canonical trend, 

producing a decomposition into Seasonally Adjusted (SA) series plus (canoni­

cal) seasoned component, or by assigning all the noise to the seasonal process, 

yielding a decomposition into (canonical) trend plus seasonal component.

Figures 7.4 and 7.5 present the canonical specifications which minimizes 

the error variance on the final estimators and on the concurrent estimators for

varying within ] — 1, 1[ and 6t within [0, 1[. On the figures, FEE stands for 

Final Estimation Error in historical estimators, and TEE for Total Estimation 

Error in concurrent estimators. Data of two periodicity have been considered: 

quarterly and monthly.

In both cases, it is interesting to notice that when 6\ is near to unity, the 

trend must be made canonical in order to minimize the mean squared final 

estimation error, while when 6, is near to its upper bound, then the seasonal 

component must be held canonical, the remaining component being the sea­

sonally adjusted series. Since $x = 1 corresponds to a deterministic trend 

component and 6t =  1 to a deterministic seasonal component, the solution to 

the error minimization problem seems to be related to the stochastic charac­

ter of the components. These figures illustrate the result that to minimize the 

final estimation errors variances, the pure noise part of the observed series 

must be removed from the relatively more stable component and assigned to 

the more unstable component. The stochastic nature of the more unstable 

component is thus ’’reinforced”. This result is in agreement with the ana­

lytical solutions obtained in the previous examples, and provides a further 

interpretation of lemmas 6.2 and 6.6.

On both figures, the continuous line represents the region where = i/*0, 

in which case the two canonical decompositions yield the same mean squared
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Figure 7.4: Monthly Airline models: specifications minimizing the errors variances
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Figure 7.5: Quarterly Airline models: specifications minimizing the errors variances
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final estimation error, and both provide components that are estimated the 
maximum precision. Similarly, the dashed line represents the region where 

£*o = £n0) which implies that the two canonical decompositions yield the same 
error variance in the concurrent estimators. It is worth noting that there exist 

cases in which it is irrelevant to select a particular canonical decomposition 
on the basis on the estimation accuracy.

The space between the two curves represents the region where assumptions

5.a and 5.b do not hold simultaneously: the final estimation error variance is 

minimized with a canonical trend and the total error variance with a canon­

ical seasonal component. That is, according to lemmas 6.2 and 6.4, we have: 

v% > and < £*0. The space between the two curves represents thus 

the region where there is a trade-off between final error and error in con­
current estimator, in the sense that minimizing the final error leads to the 

maximization of the revision error.

The figures also show the importance of specifying a canonical seasonal 

in airline type of models for minimizing the estimation errors. This is par­

ticularly clear for the case of the quarterly airline model, and in that of the 

concurrent estimators with monthly observations. This constitutes a com­

forting feature of seasonally adjusted series, since the ARIMA-model-based 

approach usually specifies noninvertible models for the seasonal component.

To see how much gain in precision we can expect from our identification 

procedure, we have computed the estimation errors variance for monthly and 

quarterly airline models, and for different values of (#i, #,). The results are 

displayed in tables 7.1 and 7.2.
A similar analysis can be found in Hillmer (1985) with different sets of pa­

rameters and only for noninvertible seasonal components. We consider instead 

the two canonical decompositions, and we also report, for each of parameters,
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the maximum estimation error variance. That maximum is associated with 

the minimax filter.

Our analysis confirms a result already underlined by Hillmer: the esti­

mation errors variances decrease as 0j and 0, increase. For both historical 

and concurrent estimators, the gain in precision obtained by selecting the 

best estimated canonical decomposition increases as B-y and 0, increases. This 

gain may be of significant magnitude: for the historical estimators, when 

(0i)0i2) =  (.75,0), then the error variance goes from a maximum of .077 on 
the canonical seasonal to .019 on a canonical trend, that is smaller by more 

than a factor 3. Notice that in the vast majority of cases, quarterly airline 

models yield more precise estimators than the monthly airline models.
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Table 7.1a:
Monthly Airline Model: Variance of Final Estimation Error.

0i Model Spec. <>12 =  0 0U =  .25 012 =  .5 012 =  .75

-.75

Canonical Seas.

Max. FEE 

Canonical Trend

.410

.410
.407*

.504

.504

.504

.436*

.439

.439

.259*
.267

.267

-.50

Canonical Seas.

Max. FEE 

Canonical Trend

.308

.308

.300*

.377

.378

.376*

.327*

.337

.337

.195*

.220

.220

-.25

Canonical Seas.

Max. FEE 

Canonical Trend

.226

.226

.210*

.274

.276

.271*

.239*

.256

.255

.144*

.190

.190

0

Canonical Seas.

Max. FEE 

Canonical Trend

.164

.164

.138*

.197

.200
.186*

.173*

.197

.191

.106*

.170

.168

.25

Canonical Seas.

Max. FEE 

Canonical Trend

.121

.121
.082*

.143

.148

.119*

.129*

.160

.139

.081*

.162

.146

.50

Canonical Seas.

Max. FEE 

Canonical Trend

.096

.096

.042*

.113

.122

.070*

.106

.145

.095*

.070*

.168

.118

.75

Canonical Seas.

Max. FEE 

Canonical Trend

.077

.077

.019*

.118

.120

.036*

.116

.152

.054

.076

.188

.074*

*: Minimum Variance of Final Estimation Error.
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Table 7.1b:

Monthly Airline Model: Variance of Total Estimation Error.

Oi Model Spec. 012 =  0 012 — .25 012 =  .5 012 =  .75

-.75

Canonical Seas.

Max. FEE 

Canonical Trend

1.257*

1.261

1.261

1.151*
1.157

1.157

.905*
.913

.913

.521*

.532

.532

-.50

Canonical Seas.

Max. FEE 

Canonical Trend

.956*

.964

.964

.873*

.888

.888

.685*

.710

.710

.393*

.433

.433

-.25

Canonical Seas.

Max. FEE 

Canonical TVend

.699*

.710

.710

.641*

.665

.665

.505*

.551

.551

.292*

.369

.369

0

Canonical Seas.

Max. FEE 

Canonical TVend

.491*

.498

.498

.458*

.483

.483

.367*

.426

.426

.215*
.327

.327

.25

Canonical Seas.

Max. FEE 

Canonical TVend

.333

.333
.326*

.323*

.337

.336

.269*

.324

.324

.164*

.292

.292

.50

Canonical Seas.

Max. FEE 

Canonical Trend

.228 

.228 

.193 *

.239

.243

.217*

.214*

.250

.234

.139*

.252

.244

.75

Canonical Seas.

Max. FEE 

Canonical Trend

.149

.149

.097*

.205

.205

.120*

.207

.221

.141*

.143*

.236

.161

*: Minimum Variance of Total Estimation Error.
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Table 7.2a:

Quaterly Airline Model: Variance of Final Estimation Error.

Model Spec. 012 =  0 012 =  25 012 =  .5 012 =  .75

-.75

Canonical Seas.

Max. FEE 

Canonical TYend

.103

.103

.102*

.103*
.107

.107

.081*

.088

.088

.045*

.056

.056

-.50

Canonical Seas.

Max. FEE 

Canonical Trend

.080

.080

.078*

.080*

.087

.087

.064*

.080

.080

.037*

.066

.066

-.25

Canonical Seas.

Max. FEE 

Canonical Trend

.062

.063

.058*

.064*

.073

.073

.054*

.080

.080

.032*

.084

.084

0

Canonical Seas.

Max. FEE 

Canonical Trend

.050

.052
.043*

.056*
.064
.064

.050*

.085

.083

.031*

.103

.103

.25

Canonical Seas.

Max. FEE 

Canonical Trend

.047

.047

.033*

.059

.071
.058*

.056*

.097

.085

.037*

.125

.114

.50

Canonical Seas.

Max. FEE 

Canonical Trend

.048

.048

.029*

.073

.082

.053*

.071*

.115

.079

.046*

.150

.108

.75

Canonical Seas.

Max. FEE 

Canonical lYend

.053

.053

.027*

.092

.100

.046*

.091

.140

.061*

.060*

.179

.076

*: Minimum Variance of Final Estimation Error.
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Table 7.2b:

Quaterly Airline Model: Variance of Total Estimation Error.

0i Model Spec. 012 =  0 012 =  -25 012 =  .5 012 =  .75

-.75

Canonical Seas.

Max. FEE 

Canonical Trend

.256*

.267

.267

.219*
.231

.231

.164*
.175

.175

.090*
.102

.102

-.50

Canonical Seas.

Max. FEE 

Canonical Trend

.210*

.225

.225

.180*

.201

.201

.135*

.165

.165

.075*

.117

.117

-.25

Canonical Seas.

Max. FEE 

Canonical Trend

.172*

.190

.190

.152*

.184

.184

.117*

.170

.170

.066*

.148

.148

0

Canonical Seas.

Max. FEE 

Canonical Trend

.143*

.162

.162

.135*
.174

.174

.110*

.182

.182

.066*

.186

.186

.25

Canonical Seas.

Max. FEE 

Canonical Trend

.131*

.138

.138

.135*

.166

.166

.117*

.191

.191

.074*

.215

.215

.50

Canonical Seas.

Max. FEE 

Canonical Trend

.125 

.125 

.119 *

.147*

.159

.154

.137*

.191

.187

.090*

.222

.218

.75

Canonical Seas.

Max. FEE 

Canonical Trend

.122

.122

.102*

.167

.169

.133*

.166

.202

.156*

.113*

.229

.171

*: Minimum Variance of Total Estimation Error.

136



Chapter 8

Extensions to rates of growth

8.1 Introduction

We now extend the previous analysis to the rates of growth of the components. 

We develop this analysis for its important practiced applications, since growth 

rates are natural tools for short-term policy making. They are involved for 

example in monetary control or in monitoring the evolution of unemployment.

We assume that the overall relationship xt =  nt + st is expressed in log­

arithms. We shall consider the following linear approximations to the rate 

of growth of the signal: A¿st = st — st_j, where d is an integer between 1 

and the number of observation per year m. When d = 1, the approximation 

Ast represents the most commonly used rate: for monthly observations, it 

corresponds to the monthly rate of growth of the signal. When d = 12, the 

approximation refers to the annual rates of growth.

For any value of d, we derive the relationship between model specification 

and estimation error firstly for the historical estimator, and then the results 

will be generalized to any preliminary estimator and forecast of the rate of 

growth. Concurrent estimation error will appear as a particular case. We
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shall then check that the properties of the canonical decomposition are still 

valid and we will provide some simple rules to determine the most accurately 

estimated rates.

8.2 Historical rate of growth estimator: the Final Es­

tim ation Error variance.

In the model-based approach, the MMSE estimator of the monthly growth of 

the signal is obtained simply as:

A dst =  A dut (B)xt,

where vt (B) is the WK filter as in (4.3), Writing ef the final estimation error: 

e f =  A¿st — A jJt, it is straightforward to check that lemma 4.3 stating the 

equivalence between ACGF of the final estimation error on st and the CCGF 

between the historical estimators st and nt still holds:

ACGF{e*) = CCGF(Adsu A dht).

This implies that properties 4.1, 4.2 concerning the components’ estimators 

are also satified by the estimators of the rates of growth. These properties 

were specifically the existence of finite and convergent covariances between 

the estimators. Lemma 4.2 also holds, but a modification is required: the 

estimators are now uncorrelated if the differenced series A i s  nonstationary.

Denoting by ef" the final error on the signal rate of growth estimator 

associated with the admissible decomposition a, then:

Lem ma 8.1 The variance of ef° depends on the noise repartition a , a  € 

[0, 1], according to:
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var(ef") =  uar(ef°)+

+ 2aV.Il -  2{v% -  2u°td)] -  2a2Vt(h0 -  hd),

where V (ef°) represents the variance of the final error on the canonical signal 

rate of growth estimator, t/°d the coefficient of B d in the WK filter v®(B), and 
hd the term in B d in the inverted ACGF h(B).

Proof: The ACGF of the estimation error on the signal rate of growth esti­
mator is given by:

ACGF{ef “) = ( l - B d) ( l - F ‘i)J4 C G F (3 f-J“) =

=  (1 & ){! ^ ( ^ - a K K ^  + ttV.) _

A0 A0 A0 1
= [ 2 - ( B d + Fd) ] [ ^  + aVu( l - 2 ^ - ) - a 2V ^ ] .

A-X -**-X

The result then follows straightforwardly by noticing that:

(1 -  B*)(l -  Fd)A°nA°JAs = ACGF(e*°),

and by taking the terms in B° in (1 — Bd)(l — Fd)(l — 2A°/AC) = (1 — B d)(l — 

F d)( 1 -  2vQs{B)) and in (1 -  B d)(l -  Fd)l/A x =  (1 -  £ d)(l -  F d)h(B). I  

The difference operator introduced to approximate the rate of growth does 

not change the type of function relating final estimation error variance and 

noise repartition. It remains a second order polynomial in a, but three new 

coefficients appear: V(ef°), v°td and hd. Let us consider pd, p‘d and p$, the 

lag-d autocorrelation of the models:
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•  for 1 (B )*  -  W B f f l B W ,  n « ) * W ;

.  for pi: U B ) z ,  =  <?(£)*„(£)<?, V(<f) =  V,";

•  for Pj: Qx(B)zt = <fi,(B)a,, Va =  1,

where {&i{B),V?} and {0°(i?), VJf} are the MA polynomials and the innova­

tions variances associated with a canonical signal and with a nonsignal com­

ponent concentrating all the noise, respectively. These models are the ones 

which generated V ( «?). v% and ho in section 5.1. The coefficient is thus the 
lag-d autocorrelation of the "inverse” or "dual” model. Then, we can write 

the coefficients V(ef°), i& and hd as: V {e^)  =  V(e$-t$_d) =  2(1 - p ed)V{e%  

u*d = Pdv%i a^d hd = pdh0, Given the straightforward availability of these 
lag-d autocorrelation coefficients, lemma 8.1 provides an easy way to compute 

the final error variance over the range of all admissible decompositions.

We now focus on the error on the preliminary estimators and the forecasted 

rates of growth.

8.3 Preliminary estimators and forecasted rates of growth.

We denote by dffi+k the total estimation error in the estimator of Ads f  com­

puted at time t+ k, k =  • • •, —1,0,1, • • •. We have: df^+k =  ¿$kds° — Et+k&dSt'

We first consider the case of a preliminary estimator, for which k > —d.

We modify the definition of the polynomial A(2?) and take:

MB) =  (1 -  B 'W 'i F )  = £  \ ,F .  (8.1)

We also define the coefficients and i*, k > —d, as: =  £?=-(((£*• —

A*. We then present the following result:
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Lemma 8.2 The Total Estimation Error variance on the preliminary esti­

mates of the signal rate of growth depends on the noise repartition a according 
to:

+ 2oV,-(l -  & ) -  (8.2)

Proof: The total estimation error on the signal rate of growth can be written 
as the sum of the final error plus the revision error:

d%+k = A ds? -  Et+kA ds? =

= A dsf — A d s“ +  A dsf — Et+kAds f  =

= ef° + r f ° .

where r/*® represents the revision error on the estimator : r f°  =  Adsf — 

Et+kAdsf. As the independence between the final and the revision errors on 

rate of growth estimators still holds, we have:

V ( i % „ )  = V (e f)  + V ( r f ) .

Since V(ef,a) has already been given in lemma 8.1, we focus on V(r/*“). As 

the signal estimator was given by:

¿t = 1 2  (*£ + aVuhi)xt+i,
1= - C ©

the estimator of the signal rate of growth can be written as:
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Arfsf = 5Z [(*'»• -  t/«+d) + t*Vu(hi -  hi+d)]xt+i.
t=—OO

Thus we have:

A ds* -  £t+fcArflf = 5 3  ~ *<-rf)](**+< ~ £t+**t+,)-
t=S  — OO

Using: i , +1 -  £(+*1 ,+, =  E ir t" 1 ^jOi+i-j, we get:

A„s? -  £1+i A,lf = E  [i£ -  + oK( -  *iw)]' E
t= *+ l J=0

= E  K - i/«+d + V’i K V j - ^+ d+i) + ••• + 
«=*+i

+aVru(/i, — /i,+j  + (^t+i — ^t+d+i) H-----)]a«+i-

which implies the following expression for the variance of the revision error 

on the nonconcurrent estimator:

var[rf°] = uar[rf°] + a2V 2 £  [hi -  hi+d + 0i(&.+i -  hi+d+i) + •••]2 +
»=*+i

+2aVu X ) Wli ~  vli+d +  M v*+i “  "i+d+i) +  •••]* 
l=fc+l

•[A,- — hi+d +  0 i(/*i+i — ft.+d+i) + •••]. (8-3)

Now defining:

142



li = -  v°,i+d + M v°i+1 -  ^,+d+i) +  • • • »

and:

m i = A» — »̂+d + — t̂+<f+i) + • * • j

equation (8.3) can then be expressed as:

uar[rf°] = var[rf°] + a 2Vf ^  m2 + 2otVu ^  U i .  (8.4)
»=fc+i »=*+i

The coefficient m, can be seen as the term in F* if i > 0, and as the term in 

B\'\ otherwise, in the polynomial multiplication: (1 — B d)h(B)tp(B). Since 

(1 — B d)h{B)\j>(B) = (1 — B d)/ii>{F) — A(B) which does not contain any term 

in B 3 for j  > d, the coefficients m» must be null for i < —d, and equal to A,- 

when i > —d. So, we have:

^  2 (1 -  Fd) (1 -  B d)
2 ^  m i -  — TTTT:------ TTTn |B=F=0=

t = - d <KB) 4>(F)

= 2(ho — hd), (8.5)

and for k > —d\

£  m- = 2(/to ~ h d) ~  £  ro- 
i=*+l i=-d

— 2(h0 — hj) — Sjk- (8.6)
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In the same way, /,- may be seen as the term in F* if i > 0, and as the 

term in otherwise, in the polynomial multiplication (1 — B d)v?(B)tl>(B). 
This product yields: (1 — B J)v^(B)ij)(B) =  (1 — B d)£°(B), so for i > 0, 

I, = f t  -  fii+ii- Now multiplying by m(F) =  (1 -  Fd)/ip(B), we get:

(1 -  F ‘){.°(B)( 1 -  F*m B ) -  (1 -  Fd)(l -

Looking at the centred term, and using m, =  0 for i < —d, we have:

£  iimi = 2(*°, -  (8.7)
i=—d

In the case where k > —d, we have:

£ Iimi = 2(v% -  u°id) -  hmi = 
i=k+l t=—d

=  2(r°, - * » , ) -  £  KS ~  =
i=—d

= 2(»i - •£) - CS- (8.8)

From (8.4), (8.6), and (8.8), the revision error variance on the preliminary

estimator of the signal rate of growth is given by, for k < —d:

V (r$ +i) = V (r$ +t) +  oV.[4(»J) -  u%) -  2& ] +

+ o, V.p(A0 - A i ) - « a l .  (8.9)

Eventually, adding V(ef°) given in lemma 8.1 to (8.9) yields the expected

result. I
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Lemma 8.2 provides the general relationship between estimation error of 
the growth rates and the range of admissible decomposition for estimations 

computed at any time t+k, ik =  — , —1,0,1,—. We can check that it is 

consistent with the first case of a historical estimator presented above. When 

k goes to infinity, it is obvious that 6dk tends towards 2(h0 — hd). On the 

other hand, we have: lim*^«, £ d = lim*_oo( ^ ° - ^ 0t+ii)At' = 2(u% -  v°d), since 

we must obtain the central term of (1 — i?d)(l — F d)v®(B). . Furthermore, 

the convergence in F of the polynomial (1 — B d)£ (B )  ensures that V(rffi+k) 

tends to zero as k tends to infinity. Taking k —► oo in equation 8.11 thus 

yields V(r(fi+k) —► 0, and the historical estimation case is recovered.

Lemma 8.2 also generates the error variance for concurrent estimators. 

This particular case is obtained simply by setting k to zero in (8.9), which 

leads to replace V(r*fi+k), Xdk, and C°*, by V (r$ ), \ dQ, and CSt-
We now focus on the forecasted rates. When k < —d, at time t + k, the 

variable sf_d is forecasted. Thus, we shall say that the estimation at time 

t + k, k < —d, provides a forecasted signed growth rate.

Lemma 8.3 The variance of the total estimation error on the forecast of the 

signal rate of growth is related to the noise repartition according to:

var[d?ft+k] =  t>ar[<f$+Jt] + 2aVu. (8.10)

where k < —d.

Proof: The result is immediate using (8.5) and (8.7) in (8.4). I

We now discuss the decompositions providing the best estimated growth 

rates.
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8.4 Properties of the canonical decomposition.

8.4.1 H istorical estim ators

Lem ma 8.4 Over the range of all admissible decomposition, the mean squared

error on the historical estimator of the signal growth rate is minimized at:

.  a  = 0 i / 2 ( ^  -  W  +  V.(*« -  h i )  < 1;

• a = 1 otherwise.

Proof: In lemma 8.1, the coefficient of a 2 in the expression for V(e^a) is 

—2(h0 — hi). Since it can be written as: —2(1 — pd)h0, where p% represents 

the lag-d autocorrelation of the "inverse” model with variance h0, we have: 

—2(1 — pd)ho < 0. So V(ef“) is a concave function of a  over [0,1]. The 

minimum is thus reached at the boundaries of [0,1]. Comparing V^ef*1) and 

V(ef°) directly yields the expected result. I

A straightforward consequence of lemma 8.1 is the following property of 

the canonical decompositions:

Corollary 8.1 Over the range of all admissible decompositions, a canonical 

decomposition always minimizes the error variance in the estimator of the 

signal growth rate.

The property of canonical decompositions of always providing the best esti­

mated decomposition remains valid when growth rates are being estimated. 

This result is true irrespective of the order the differencing d that is used to 

approximate the growth rate. We can understand more clearly which canoni­

cal decomposition is best estimated by considering, without loss of generality, 

the following assumption:
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Assumption 6. a: The signal is such that: — v®d > i/*0 — u\d.

We can then restate lemma 8.4 as:

Lemma 8.5 Under assumption 6.a, the error variance on the growth rate 

final estimator is always minimized by specifying a canonical non-signal nt .

Proof: We have to show that assumption 6.a implies that the condition 

2(1^ — v°d) + Vu(h0 — hd) > 1 given in lemma 8.4 for having a =  1 as 

the solution of the minimization problem is satisfied. Since + u°Q =  1 

while, for j  > 0, v°- + v°- = 0, assumption 6.a may be rewritten:

*5 > -  *& + -  *£ > 1 .

Now, the WK filter for estimating a pure noise ut with variance Vu was given 

as: vu(B) =  Vuh(B), and we have already seen that vl(B) = v^{B) + vu(B). 

So, as o was found to be equal to 1/% + Vuh0, we have: v\d =  v°d -|- Vuhd. 

Inserting these two results in the last inequality proves the lemma. I

The terms t/J, — v®d and v q̂ — v\d represent the centred coefficients of 

the WK filters designed to estimate the canonical components growth rates. 

Hence, to obtain the best estimated decomposition, it is enough to compare 

the central coefficients of the WK filters estimating the growth rates of the 

two canonical components and to assign all the noise of the model to, roughly 

speaking, the most important component. This result is similar to that de­

rived previously for the levels of the components.

We now turn our attention to the other types of estimators.

8.4.2 Prelim inary estim ators and forecasts
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Lem ma 8.6 For a  6 [0,1], the total error variance in the preliminary esti­

mator of the signal growth rate is minimized at:

» a  = 0 i f CH + (l/2)6il,Vu < l ;

• a  =  1 otherwise,

for k > —d.

Proof: The result follows immediately from the fact that ¿¿k is defined as a 

sum of squared terms, so ¿¿t > 0 and V(dffi) as presented in lemma 8.2 is a 

concave function of a. 1

This lemma suggests «mother property of the canonical decompositions:

C orollary 8.2 Over the range of all admissible decompositions, a canonical 

decomposition always minimizes the total error variance in the preliminary 

signal growth rate estimator.

It would be also straightforward to show that canonical decompositions have 

the unpleasant property of maximizing the revision error in the preliminary 

estimators of the rates. Hence, it is true that the properties of the canonical 

decompositions still hold when rates of growth are being considered. There 

exists however the possibility that, while a canonical specification minimizes 

the error variance in the preliminary estimator of the level of the compo­

nent, the other canonical decomposition minimizes the error in growth rate 

estimator.

Predicting the evolution of a series is of particular interest. For example, 

forecasted growth rates play an important role in short-term economic policy 

making. Governments and central banks need to estimate the future paths of
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of macroeconomic series. Lemma 8.3 indicates how best to forecast growth 
rates:

Lemma 8.7 The forecast error variance on growth rates is minimized on 

canonical components.

Proof: This result follows straightforwardly from lemma 8.3. ■

As consequence, the most natural tool for monitoring the underlying evo­

lution of economic series is the forecasted trend growth rate. This result has 

been already emphasized by Box, Pierce and Newbold (1987), who however 

noticed that, despite this, in practice others estimators are used. For example, 

practitioners typically consider the forecasted growth rate of the seasonally 

adjusted series. Such estimators have the inconvenience of being the least 
precise.

8.5 An Example: A Quarterly Airline Model.

We illustrate these last results with the following example. Let a quarterly 

series follow the model (in logs):

AA4*t =  (1 -  .ZB)(l -  .7B4)au

where at is a normally distributed variable with variance Va =  1. This series 

is decomposed into a seasonal St and a nonseasonal component n< according 

to:

A2nt =  (1 + &niB +  0n2 B 2)ant,

U(B)st =  (1 +  9,iB +  6t2B2 + d'sB3^ ,
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where U(B) = 1 +  B  + B 2 + B 3. Making the seasonal component canonical, 

we obtain, using the procedure described in the previous chapter:

A 2n°t =  (1 -  1.2695 + .27652)a°„

U(B)s° =  (1 +  .0285 -  .50252 -  .52653)<&, (8.11)

with V? = .778 and V? = .009.
We consider quaterly and annual rates of growth, and we first focus on 

historical estimators. For a canonical st, the coefficients of the WK filter are 

obtained as: i/̂ , =  .119, i/al =  —.039, and i/®4 = .095, while, for a canonical 

trend: v\0 =  .333, =  .228 and = —.008. Comparing the differences,

we get for the monthly growth rates: =  .158, greater than t/*0 ~ vn\ =

.105. Applying lemma 8.5 to the monthly rates of growths estimators point 

the decomposition where the trend is canonical as being the most accurately 

estimated. For annual rates of growth, we have: — t/°4 =  .025, less than

vno ~ vn* — *341. Lemma 8.5 then indicates that, for annual growth rates, the 

decomposition with canonical seasonal provides the most accurate estimator. 

Quarterly and annual growth rates yield in this example opposite results.

It is also of interest to relate the error variance to the rate of growth 

estimator over the range of all admissible decompositions. The pure noise paxt 

of the model for x t has a variance of .302. The variance of the inverted process 

is ho = 1.817, and the lag-1 and lag-4 autocorrelations are: p\ =  —.344 

and Pi = —.344. The final estimation error variance for the decomposition 

in (8.11) is given by: V(e°) =  .043. The lag-1 and lag-4 autocorrelations 

coefficients of the model followed by e° (see section 8.3) are found to be: 

p\ =  —.257, and p\ =  .783.
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Figure 8.1: Mean Squared Errors in Growth Rates Final Estimators

Using lemma 8.1, we obtain for the monthly rates of growth and for a  € 

[0, 1]:

V[ef“] = .108 + .4130 -  .445a2.

For the annual rates of growth, we have instead:

V[ef°) = .019 + .575a -  .384a2.

These two functions are plotted in figure 8.1.

As expected from lemma 8.5, for quartely growth rates, the minimum 

error variance is obtained at .076 when the trend component is specified 

noninvertible. The maximum, around .20, corresponds to the case where 

nearly 45% of the noise of the model is attributed to the seasonal component.
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It is the specification that the minimax filter would yield. For annual growth 

rates, the minimum is obtained at .019 on a canonical seasonal component. 

The minimax filter yields here an error variance maximized at .24 which 

corresponds to a seasonal component concentrating around 75% of the noise 

of the model. The magnitude of the variations of the mean squared estimation 

error over the range of admissible decompositions emphasizes the interest of 

identifying the most precisely estimated decomposition.

We turn to the error in the concurrent estimators. The total estimation 

error for the decomposition (8.11) has a variance of V^d?) =  .088, lag-1 and 

lag-4 autocorrelations of -.194 and .743, respectively. From the polynomials 

£°(i?) and A(B), computing the coefficients and 6 <ik for ¿ = 1 , 4  and A: =  0, 

we get: = .535, = -031, 6 i 0  =  3.891 and 6 4 0  — 3.270. So, using lemma

8.2, the relationship between noise repartition and mean squared error in the 

concurrent estimator of the quaterly growth rates is given by:

F[cf°] =  .210 + .281o -  .355a2.

For the annual rates of growth, we have instead:

V[t$*\ =  .045 +  .586a -  .298a2.

The two functions are plotted in figure 8.2.

It is seen on figure 8.2 that, for this quarterly airline model, the com­

ponents growth rates most accurately estimated remain the same when con­

current estimation is considered. The quarterly growth rates is still better 

estimated with a canonical trend (.136), while for annual rates of growth, 

a canonical seasonal still yields a minimum error variance at .045. Notice
<

that for annual growth rates, the decomposition that would yield the mini- 

max filter corresponds to a noninvertible trend. The maximum error variance
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Figure 8.2: Mean Squared Errors in Concurrent Growth Rates Estimators

reached is of .343. Selecting instead a canonical seasonal would reduce this 

error by the proportion of 85%.
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Chapter 9

Applications

9.1 Introduction

The estimation errors associated with different seasonal/nonseasonal decom­

positions have been analysed for four monthly macroeconomic series : the 

US exports (1972-1 1989-7), the French money supply (Ml, 1978-1 1991-7), 

the Italian money supply (Ml, 1971-1 1991-6) and the Japan exports se­

ries (1972-1 1992-7). These series have been collected from the IMF series 

provided by Datastream. All of them have been modeled in logs. For each 

series, five types of decomposition are considered: a Seasonally Adjusted (SA) 

series concentrating all the noise of the model, a Trend representing a canon­

ical nonseasonal component, and a nonseasonal component estimated using 

a mini max filter designed for historical estimators and concurrent estimates. 

We also consider a nonseasonal component with an MA polynomial identified 

by a zero-coefficient restriction; we think that this decomposition is also of 

interest since it is used in the popular Structural Time Series model approach.

A C program has been written to obtain the corresponding estimation 

errors, and some checks have been performed using the SEATS software (see
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Mar avail and Gómez (1992)).

9.2 US Export Series

For the US export series (1972-1 1989-7), an airline model was fitted. The 

sample size is T  =  211, and the parameters of the model was obtained as :

Table 9.1:

Model fitted: AAi2xt =  (1 -  0i£)(l -  6u B 12)at

Parameters: 0i 012 Va Q22

Estimators .398 .817 2.39 10"3 26.9

(.063) (.045)

Four outliers have been detected at time t=38,70,72, 121, and with t-value 

-2.55, -3.30, 2.87, and 3.07, respectively.

The US export series, the Trend and the SA series, i.e. the two compet­

ing models for the minimization of the mean squared error in the final and 

concurrent estimators, are plotted on figures 9.1 and 9.2.

Denoting st and nt the seasonal and the nonseasonal components of xt, 

and making both of them canonical, we obtain: .085, vla = .280,

= .114, and £*o = .483. According to lemmas 6.2 and 6.6, since i/ ,̂ < 

and &  < Co, the decomposition where the seasonal component is canonical 

will minimize the estimation error variance for both historical and concurrent 

estimators.

For intermediate decompositions, we apply lemmas 5.1 and 5.2. In the 

model for the US exports series, the irregular component has a maximun 

variance of = .403 (in units), while the variance of the "inverted pro-
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Figure 9.1: US Exports Series (1972-1 1989-7)

Observations

Figure 9.2: XUS: SA Series /  Trend
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Figure 9.3: XUS Series: Mean Squared Errors

cess” is ho = 1.576. The mean squared error in historical and concurrent 

estimators are found to be: V(e°) =  .057, V(d%) = .114. Then, the rela­

tionship between the error variance in the historical estimator and the noise 

repartition, a  € [0,1], is given by:

V(eat ) = .057 -I- .334a -  .256a2, 

and for the total error in concurrent estimators:

V(d?) =  .114 + .311a -  .162a2.

These functions are plotted on figure 9.3, and the estimation errors associated 

with five different decomposition on table 9.2. *

The final error variance and lag-0 covariance between the estimators vary 

within the range [.057, .172], and, for the total error variance in concurrent
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estimators, within the range [.114, .275]. The lower bound of both intervals is 

reached by specifying a canonical seasonal component. This is in agreement 

with the discussion of the airline models in section 5.3 since the parameter 

$ 1 2  is close enough to the noninvertibility region. The maximum MSE and 

TEE axe obtained using the minimax filter for respectively historical and 

concurrent estimation. Notice that for concurrent estimation, the minimax 

filter corresponds to specifying a noninvertible trend component, for which 

the revision error are maximized at .132. As expected, specifying a IMA(2,1) 

model for the nonseasonal component yields intermediate estimation errors. 

In this example, the gain in precision obtained by specifying a canonical 

seasonal component instead of a canonical trend is substantial: the final 

error variance is reduced by 66% while the total error variance in concurrent 

estimators is reduced by 60%.
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Table 9.2:

XUS: Models for the nonseasonal component:

SA Series/Canonical seasonal.

Model specification: A2n, = (1 — .1.3825 + .392B 2)ant 
Vn =  .837

Fin ail Error var. Revision error var. Total estimation error var. 

.057 .057 .114

Canonical Trend.

Model specification: A2nt = (1 +  .0175 — .983B 2)a„t 
V„ =  .076

Final Error var. Revision error var. Total estimation error var.

.142 .132 .275

Restricting the order of the trend MA polynomial:

Model specification: A2n< = (1 — .98B)an<

Vn =  302
Final Error var. Revision error var. Total estimation error var.

.166 .103 .269

Minimax filter on historical estimator.

Model specification: A2»»t = (1 — 1.1315 +  ,14552)anl 

Vn = .416
Final Error var. Revision error var. Total estimation error var.

.172 .085 .256

Minimax filter on concurrent estimator.

Model specification: A2n, =  (1 +  -017B — .983fl2)an<

V„ -  .076
Final Error var. Revision error var. Total estimation error var.

.142 .132 .275
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9.3 French Money Supply (M l)

For the French money supply series (1978-1 1991-7), whose sample size is 

T  =  163, an (2,1, l)x(0 ,1, l) i2 model was fitted. The estimated parameters 

were :

Table 9.3:

Model fitted: (1 — faB  — <faB2)A&i2 Xt = (1 — 6\B){ 1 — 0i2B12)at

Parameters: fa fa 6\ 0i2 Va Qx>

Estimators -.690 -.484 -.203 .497 .170 10~3 26.86

(.162) (.085) .186) (.081)

A single outlier appears at time t = 99 and with a i-value of 3.10. The AR 

polynomial have conjugate roots at a frequency close to 27r/3, which are thus 

associated with the seasonal behaviour of the series.

The observed series and the two competing models for minimizing the 

estimation error variance are plotted on figures 9.4 and 9.5.

If st and nt represent the seasonal and the nonseasonal part of z t, making 

both of them canonical yields: i/% =  .447, = .243, = .445, =

.400. Since and £°0 > according to lemmas 6.2 and 6.6, the

decomposition where the trend is set canonical will yield the most accurate 

estimation.

In order to derive the expression for the mean squared error over the 

range of the admissible decompositions, we compute the coefficients V(e°) 

and V^d?). This yields: V(dj) =  .111 and V(d%) = .220. In the model for the 

French Ml series, an irregular component would have a maximum variance
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Figure 9.4: French Ml Series (1978-1 1991-7)

Observations

Figure 9.5: M1F: SA Series /  Trend
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Figure 9.6: M1F: Mean Squared Errors

of .155X4, while the variance of the "inverted” process is ho = 2.00. Using 

lemmas 5.1 and 5.3, the errors variances as functions of the noise repartition 

repartition axe then obtained as:

F(e“) =  .111 + .017a -  .048a2, 

for the final error variance, while for the concurrent estimator, we have:

V(df) =  .220 + .017a -  .024a2.

These functions are displayed on figure 9.6, and the estimation errors associ­

ated with the five decompositions considered are displayed on table 9.4.

The mean squared error and the lag-0 covariance between historical esti­

mators are minimized at .08 by the specification of a noninvertible trend. The

162



minimax filter yields the maximum error variance of .112. As expected, for 
concurrent estimates, the lowest error variance (.214) is still obtained on the 
estimation of a canonical trend. The highest total error variance that yields 

the minimax filter is reached at .223. If, for the French Ml series, a canoni­

cal trend represents the best estimated model, one can easily check that this 

model specification implies furthermore that the revision error axe maximized 

at .134. With this example, the gain of precision reached by selecting the best 

estimated model is rather low: the error can be reduced by 28% for historical 

estimators, and by 4% for concurrent estimators with respect to the error 

obtained with the minimax filter.

To minimize the mean squared error and the lag-0 covariance between 
the historical seasonal and the historical nonseasonal estimators, all the noise 

must be attributed to the seasonal component. The solution of the error mini­

mization problem is thus the maximum noise extraction, and the nonseasonal 

component is now a canonical trend. The corresponding maximization of the 

revision error is the price paid for a greater precision of the estimation. The 

French Ml series yields opposite results to the US exports series.
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Table 9.4
M1F: Models for the nonseasonal component:

SA Series/Canonical seasonal.

Model specification: A2nt =  (1 — .1.272B  + .31052)an(

Vn =  .373

Final Error var. Revision error var. Total estimation error var.

.111 .109 .220

Canonical Trend:

Model specification: A2nt =  (1 +  .0575 — ,94352)ant 

Vn =  .042

Final Error var. Revision error var. Total estimation error var. 

.080 .134 .214

Restricting the order of the trend MA polynomial:

Model specification: A2n» =  (1 — .944B)ant 
Vn =  .169

Final Error var. Revision error var. Total estimation error var.

.096 .123 .219

Minimax filter on historical estimator.

Model specification: A2n» = (1 — 1.2295 +  .26952)an,

Vn =  .329

Final Error var. Revision error var. Total estimation error var.

.112 .110 .222

Minimax filter on concurrent estimator.

Model specification: A2nt =  (1 — 1-1705 +  .21452)onj 

Va =  .282

Final Error var. Revision error var. Total estimation error var.

.111 .112 .223
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9.4 Italian Money Supply (Ml)

The Italian Ml series (T=246) was modeled as an ARIMA(0, l,0)x(0 ,1,l)a2, 

and the estimation results are displayed in table 9.5.

Table 9.5:
Model fitted: AAi2xt = (1 -  6i2B 12)at

Parameters: 1̂2 Va Q20

Estimators .55 .149 10-3 19.02

(.059)

Five outliers are found at time ¿=52, 132, 228, 245, 246, with the correspond­

ing i-values of -4.13, 3.32, 3.30, 3.14, -2.79.

The Italian Ml series, the estimators of the SA series and the Trend series 

axe plotted on figures 9.7 and 9.8.

For s® denoting a canonical seasonal component and nj a canonical trend, 

we have: = .223,v„0 =  . 3 9 0 , =  .198, = .652. In that case, lemmas

6.2 and 6.6 point the decomposition with canonical seasonal as been the most 

accurately estimated, whether the estimation is concurrent or historical.

Looking at the relationship between mean squared error and noise repar­

tition over the range of all admissible decompositions, we have: V(e°) =  .163, 

V(c$) = .341, and h0 = 2.581, while the variance of the pure noise part of the 

series is given by: Vu = .150. The error variance functions are then obtained 

as:

V(e?) =  .163 + .083a -  .058a2,
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xlO 5
Figure 9.7: Italian Ml Series (1971-1 1991-6)

Observations

Figure 9.8: M1IT: SA Series /  Trend
xlO5
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Figure 9.9: M1IT: Mean Squared Errors

for the historical estimator, and for the concurrent estimator:

V(<£) =  .341 +  .091a -  .023a2,

These functions are plotted on figure 9.9, and the estimation error associated 

with the different model specifications considered are presented on table 9.5.

Figure 9.7 confirms that to minimize the error variance and the lag-0 co- 

variance between the historical estimators, all the noise must be attributed to 

the nonseasonal component. This model specification yields a mean squared 

error of .162, while a minimax filter yields an error variance of .193. For 

concurrent estimators, the lowest mean squared error is still reached with a 

canonical seasonal component at .341. Again, this result could have been an­

ticipated from the discussion of the airline models in section 4.4. The model 

specification corresponding to the minimax filter for concurrent estimates is
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equivalent to specifying a noninvertible trend component, and yields an error 

variance of .409 . Notice that a canonical trend maximizes the revision error 

at .221. For historical as well as for concurrent estimation, the maximum 

gain of precision that we can expect from our model selection procedure is in 

the order of 16%.
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Table 9.5
M1IT: Models for the nonseasonal component:

SA Series/Canonical seasonal.

Model specification: A2n« = (1 -  -966S +  .032B2)a„,
Vn = .615

Final Error var. Revision error var. Total estimation error var. 

.162 .178 .341

Canonical Trend.

Model specification: A2n, =  (1 +  .048B — .952B2)ant 
V„ = 149
Final Error var. Revision error var. Total estimation error var.

.188 .221 .409

Restricting the order of the trend MA polynomial:

Model specification: A2n» =  (1 — .9515)atl(

Vn = .596
Final Error var. Revision error var. Total estimation error var.

.167 .179 .346

Minimax filter on historical estimator.

Model specification: A2n( =  (1 — .0405 — ,190B2)a„»

Vn = .521

Final Error var. Revision error var. Total estimation error var.

.193 .202 .395

Minimax filter on concurrent estimator.

Model specification: A2n< =  (1 +  .0485 — .952i?2)afl«

Vn =  .149
Final Error var. Revision error var. Total estimation error var.

.188 .221 .409
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9.5 Japan Exports Series

For the Japan Export series (1972-1 1992-7), with sample size T  =  247, a 

(2 ,1 ,1)(0,1,1)12 model was fitted. The parameters estimators are presented 

on the following table :

Table 9.7

Model fitted: (1 — <j>\B — 4>2B7)AAnXt = ( l - 0 1S ) ( l - 0 12JB12)at

Parameters: <f> 1 4> 2 01 012 Va Q n

Estimators -.778 -.379 -.231 .650 .179 10-3 29.32

(.162) (.085) (.186) (.081)

Three outliers are found at ¿=29, 76, 86, and their ¿-values are 3.33, -3.03, 

2.54. The AR polynomial has conjugate roots at a frequency close to 27r/3, 

and are thus assigned to the seasonal component.

The Japan Export series and the estimators of the Trend find of the SA 

series are plotted on figures 9.10 and 9.11.

Denoting s° and nj the canonical seasonal and trend components of x t, and 

computing the related WK filters, we get: =  .439, u\0 =  .283, =  .401,

fnO =  .434. Lemma 6.2 and 6.6 allow us to deduce that a canonical trend will 

yield the most accurate historical estimator, while for concurrent estimation, 

the most precisely estimated decomposition will be the one with canonical 

seasonal. This is thus a case of switching solutions.

In order to characterize the error variance for intermediate decompositions, 

we derive: V(e°) =  .111, V(<f}) =  .202, and ho = 1.690. In this model, the 

maximum variance of the irregular component is : Vu =  .16514.
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Figure 9.10: Japan Exports Series (1972-1 1992-7)

Observations

Figure 9.11: XJP: SA Series /  Trend
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Figure 9.12: XJP: Mean Squared Errors
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Noise Repartition

The historical error variance is then related to the noise repartition a 

through:

V{eat ) =  .111 +  .020a -  .046a2, 

and for the concurrent estimators:

V{dS) =  .202 +  .032a -  .027a2,

These functions are plotted in figure 9.12, and the errors sizes for five different 

decompositions are given on table 9.8.

Figure 9.12 ilustrates that, for historical estimators, the error variance 

and lag-0 cross-covariance are minimized at .085 with a noninvertible trend 

component. At the oppsite, a minimax filter yields a maximum error variance 

of .112. From specifying a canonical trend in order to minimize the historical
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error, it follows that the revision error is maximized at .122. This implies the 

switching of solutions, in the sense that now the lowest concurrent estimation 

error variance (.207) is obtained on a trend concentrating all the noise of 

the model (the seasonally adjusted series). Conversely, the highest error in 

concurrent estimators is reached at .212 with the minimax filter. Specifying 

a canonical trend instead of using the minimax filter induces thus a gain 

of precision of 25% on the historical estimators, while, on the concurrent 

estimator, the gain of precision may only be of 4%.

Here, the model specification minimizing both the error and the covari­

ances between the historical estimators corresponds to a canonical trend, 
which however maximizes the revision error. The magnitude of the revision 

error in this case implies that the error in concurrent estimators is minimized 

on the other canonical decomposition.
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Table 9.8

XJP: Models for the nonseasonal component:

SA Series/Canonical seasonal.

Model specification: A 2nt =  (1 — 1.2381? +  .263S2)an( 

vn = .421

Final Error var. Revision error var. Total estimation error var.

.111 .091 .202

Canonical Trend.

Model specification: A2nt =  (1 +  035B — .96552)aTJ(

V„ =  .056

Final Error var. Revision error var. Total estimation error var.

.085 .122 .207

Restricting the order of the trend MA polynomial.

Model specification: A 2n, = (1 — .96552)an(

Vn = .223
Final Error var. Revision error var. Total estimation error var.

.103 .108 .211

Minimax filter on historical estimator.

Model specification: A2n, =  (1 — 1.1795 -f 20752)an(

Vn =  -362

Final Error var. Revision error var. Total estimation error var.

.112 .095 .208

Minimax filter on concurrent estimator.

Model specification: A 2nt =  (1 — 1.0155 +  .04952)anI 

Vn = .247

Final Error var. Revision error var. Total estimation error var.

.106 .106 .212
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Chapter 10

Conclusion

For the general signal/nonsignal decompositions, this dissertation analyses 

the incidence on the estimation errors of the specification of the unobserved 

component models. The analysis involves the class of ARIMA models, but in 

fact the results are valid for any linear stochastic processes. The choice of the 

ARIMA models as a tool for the discussion has been motivated in Chapter 2 

through a brief review of the steps leading to the development of model-based 

approaches considering stochastic components.

Whatever is the approach undertaken, the unobserved component analysis 

cannot avoid the identification problem. We have seen in chapter 3 that the 

underidenfication of the components turns out to be simply a problem of 

allocating a certain amount of white noise between the components. Every 

noise repartition yields a particular decomposition. When reviewving the 

identification criteria in use in the statistical literature, we have seen that one 

of them, the canonical decomposition, assigns all the noise to one component 

and lets the other one noninvertible. In the two-components decompositions, 

there are thus two possible canonical decompositions. Since any intermediate 

decomposition shares the noise between the components, the range of the
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admissible decompositions may be seen as lying between these two.
Next, we have presented in Chapter 4 the estimation procedure in unob­

served components models. We have seen that estimation error depends on 

the time at which the estimation of the signal is computed. We obtained in 

particular an error in the historical or final estimator, an error in the con­

current estimator, and more generally the error in any preliminary estimator. 

Some important properties of the final estimator have been derived, and we 

established the result that estimators cross-covariances and final error co- 

variances are identical. Also, it appeared that the estimation errors and the 

stochastic properties of the estimators depend on the selected models for the 

components.

In Chapter 5, the analytical expression giving the estimation error variance 

for any admissible decomposition and for any type of error has then been de­

rived. The coefficients involved in these expressions can be straightforwardly 

obtained from the overall model. It has been shown that for historical, con­

current or preliminary estimators, the error variance is always minimized with 

a canonical decomposition. Since these decompositions are not unique, simple 

rules are derived to indicate which component must be held canonical in order 

to obtain the best estimated model. These rules involve the B° coefficients of 

the WK filters designed to estimate the components in their canonical form. 

They simply consists in assigning all the noise of the model to the component 

with greatest B° coefficient, the other one being specified noninvertible. This 

procedure also yields final estimators with a minimum lag-0 cross-covariance. 

Moreover, we have shown that canonical decompositions still display these 

optimal properties of maximizing the precision of the estimators when rates 

of growth are considered.

We believe that this work has practical relevance. While unobserved com­
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ponents models are not identified, much of the statistical literature on unob­
served components skips the identification stage by postulating "reasonable” 

models for the components. However, any particular choice of a specifica­

tion is arbitrary and difficult to motivate, and how the identifying assump­

tions affect the components properties is not well-known. We thus thought it 

worthwhile to investigate how the estimators were affected by such a priori 
choices.

This research may be seen in the line of Bell and Hillmer’s (1984) discus­
sion about seasonally adjusting time series. In attempting to evaluate dif­

ferent seasonal adjustment methods, they reached the conclusion that it was 

impossible to compare different approaches, saying that "different methods 

produce different adjustments because they make different assumptions about 

the components and hence estimate different things”. As a consequence, they 

recommended that the debate should center on the assumptions made about 

the components, arguing that "efforts would be better spent evaluating the 

assumptions underlying adjustment methods, rather than trying to evaluate 

methods by looking at adjusted data”. Then, they tried to use the revision 

error in the concurrent estimator to evaluate the different assumptions. As 

we have seen in section 6.2, for the models that they considered, no particular 

approach gives the best results. Everything depends on the stochastic proper­

ties of the series under analysis, so that their next proposition for evaluating 

a method for seasoned adjustment was that it ”...should be consistent with an 

adequate model for the observed data”. They clearly supported model-based 

procedures, but the problem remained to supply a motive for a particular de­

composition, that is to evaluate all the different assumptions that are possible 

to make on the components. Our dissertation brings a simple answer to this 

problem: since the decompositions differ only by a white noise allocation,
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select the decomposition which can be best estimated. Through Bell and 

Hillmer discussion, it appeared very important to explicitly relate the possi­

ble assumptions to a simple criterion. The choice of the error variance in the 

estimator as a criterion for evaluating different assumptions seems perfectly 

justified and it also greatly simplifies the debate because the error variance 

always can be expressed as a second order polynomial with coefficients that 

can be easily derived from the observed series model. Such a choice has the 

advantage of being able to take into account the objectives of the analysis: 

consider the final estimation error if you are interested in historical estima­

tors, or focus on the error in concurrent estimators if you are interested in 

concurrent analysis, and similarly with preliminary estimators and forecasts.
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