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GENERAL INTRODUCTION AND SUMMARY

Testing economie theory on thè basis of available data sets through econometrie modelling is only 
legitimate if each condition of thè entire collection of underlying assumptions is satisfied. This, at 
first glance obvious, statement has more implications than many of thè practitioners of
econometrics in thè field are aware of. Even on a theoretica] level, econometricians seem to show
little agreement about thè recommended modelling strategies or estimation procedures. This is 
imputed to thè highly non-experimental nature of economie data and thè fact that in many cases 
thè theoretical variables do not coincide one-to-one with thè available observed data. Disciples of 
both Fisher’s experimental design paradigm or Gauss’s theory of errors have to assume that thè
mechanism which generates thè data is a nearly isolated system. See'Spanos (1993) for an
exposition of these different methodologies. This means that thè systematic explanatory part of thè 
model is somehow fixed or predetermined and thè error terms can be viewed as non-systematic 
effeets of omitted influencing factors or mismeasurement. In sharp conflict with this assumption, 
economie data is held to be generated by a fìckle process where explanatory variables are often 
endogenous and influential factors show up and disappear. Usually, a specific economie theory 
only considers a sub set of thè systematic explanatory components and makes predictions under thè 
assumption that thè influential factors which have been put aside are Constant. These ceteris 
paribus clauses often do not hold when analyzing reai data sets.

The textbook approach (a hybrid of Fisher’s paradigm and thè law of errors, see Spanos
(1986), Fig. 1.1) towards econometrie modelling consists of thè following sequence of steps: First, 
thè theoretical model is translated into an econometrie model by appending an error terni which 
has to obey certain conditions. Second, thè unknown parameters are estimated with a classical 
estimation procedure such as OLS. Third, specification tests are performed. Most of thè time, thè 
applied econometrician only tests for homoskedasticity, independence and normality of thè error 
terms. Fourth, if thè specification tests give rise to rejection of thè initial model assumptions then 
either another estimator is applied (for instance GLS or 2SLS), which is thought to be appropriate 
under new model assumptions or thè theoretical model is redefined (by adding or removing 

explanatory variables). Followers of thè textbook approach impiicitly assume that thè theoretical 
model coincides with thè statistica! model which describes thè probabilistic structure of thè data. 
Friction between thè statistica! model and thè underlying generating process of thè data, however, 
may cause serious misleading conclusions about empirical support for theoretical relationships. The 
following two examples, chosen among many others, put a question mark on thè standard textbook 
approach: Mizon (1995) fmds that autocorrelation correctors, as a response to rejection of thè 
independence assumption by traditional autocorrelation tests, can produce inconsistent parameter 
estimates if thè statistical model is misspecified. Furthermore, in applied econometrie studies it is 
common to include thè square of thè explanatory variable in thè design in order to model non-
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2 General Introduction and Summary

linearities. Hinloopen and Wagenvoort (1995) show that this can amplify thè exorbitant influence 
of outlying observations on thè unreliable parameter estimates and t-values if thè data is polluted.1 
Indeed, sometimes, juggling with models has eamed thè applied econometrician a bad reputation.

It is to thè credit of thè London School of Economics (LSE) tradition in econometrie 
modelling that it calls attention to thè proper specification of thè statistica! model. In this light. 
Spanos (1993) introduces his Probabilistic Reduction approach where thè theoretical model is 
explicitly distinguished from thè statistical one.2 The first task of thè empirical researcher is now 
to develop a well specified statistical framework which corresponds to thè generating process of 
thè observed data (specification). Data plots and simple statistics (covariances, mean, median etc.) 
determine thè structure of thè statistical model. Note that this data snooping is strictly forbidden in 
thè textbook approach since it will invalidate statistical inference. In thè second round of thè 
probabilistic reduction approach thè parameters of thè statistical model are estimated and thè 
underlying assumptions are tested (misspecification testing). The first and second steps are repeated 
until a well specified statistical model is found (respecification). Finally, thè bridge is built 
between thè statistical and theoretical model by reparameterizing or restricting thè first 
(identification). Economie theory (represented by thè restricted model) can be tested against thè 
specific alternative, namely thè full well specified statistical model.

Although thè latter approach to econometrie modelling is less dependent on a priori 
specification assumptions than thè textbook methodology, it may suffer from many practical 
problems. Since we can only speculate when considering thè unknown generating mechanism of 
economie data, it remains unclear how thè appropriate statistical model has to be found. If thè 
dimension of thè joint distribution of thè dependent and explanatory variables exceeds three then 
one can not rely on data plots. More importantly, what should one do if thè statistical model is 
miles away from thè theoretical structure (i.e. it can not be identified) or if two different statistical 
models both rendering thè probabilistic information of thè data lead to different economie 
hypotheses? Another difficulty, which also applies to thè textbook approach and which will bring 
us to thè next modelling strategy, is thè occurence of observations which do not follow thè pattern 
of thè bulk of thè data. It may happen that, although thè variables of interest have population 
moments corresponding to a joint normal distribution, having relatively few outlying observations 
can cause thè rejection of thè normality assumption. Even if in this case thè modeller chooses to

I
abandon thè normality assumption by choosing, for example, a t-distribution as thè proper 
probabilistic structure, it cannot be guaranteed that thè outliers will not spoil thè statistical 
inference.

In reply to thè susceptibility of thè classical estimatore towards outliers, new so-called 
robust estimatore were developed in thè research area of robust statistics. The aim of robust

1 Outliers are defined as observations which do not follow thè pattern of thè majority of thè data.

2 The probabilistic reduction approach belongs to thè class of generai to specific modelling strategies 
(see e.g. Hendry (1987)).
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statistics is to trace outliers and to diminish their influence on statistical inference. This is achieved 
by relaxing thè usuai idealized assumptions in econometrics. The crux of thè robust theory is thè 
approximate character of thè strict parametric model. An econometrician of thè probabilistic 
reduction approach searches for thè specified distribution function G(x,6) which describes all thè 
data x at hand through thè unknown parameters 6, whereas in robust statistics we assume that a 
fraction l-£ of thè data obeys G but thè rest of thè observations emerge from an unknown 
distribution H(x,0). Thus, thè distribution of thè complete set of data points is now represented by 
F(x,0) = (1-e)G(x,0) + eH(x,0). Huber (1964) was thè first statistician who considers such a "filli 
neighborhood" of a parametric model in his minimax strategy and introduces M-estimators which 
are defined by a generaiization of thè criterion function of thè maximum likelihood estimator. 
Hampel et al. (1986, p.21) discuss a number of reasons for deviation from thè strict parametric 
model. The occunence of gross errors (due to typing, copying or computation errors etc.) and/or 
rounding and grouping of thè data can invalidate thè distributional assumptions of thè model. The 
theoretical model may be only appropriate for a sub set of thè data or only coincide with thè 
probabilistic structure of thè data in thè limit, by virtue of thè centrai limit theorem. Furthermore, 
thè independence and homoskedasticity conditions may also only be approximately fulfilled.

To provide a global measure of thè sensitivity of an estimator to outlying observations 
Donoho and Huber (1983) introduce thè idea of a breakdown point. The maximum fraction of data 
contamination which leaves thè estimator determinate defines its breakdown point. Classical 
estimatore such as OLS, GLS, 2SLS, GMM etc. have a breakdown point of zero, i.e. a single 
observation can cause thè estimator to produce any estimates and any standard errore. Another 
important concept related to thè robustness of an estimator is thè influence function which 
measures thè effect of an additional observation in any locai point x on thè estimator, given a 
(large) sample with distribution F (see Hampel et al. (1986), p.41). Estimatore with bounded 
influence functions are called B-robust.

Data snooping is permitted in robust statistics. In fact, semi-parametric or non-parametric 
tools can be used to discover outlying observations before thè parametric estimation procedure is 
started. For example, distances based on thè Minimum Volume Ellipsoid (MVE) estimates of 
location and scatter of thè design are reliable indicatore of leverage points (see Rousseeuw 
(1985)).3 These robust distances measure thè extent to which an observation on thè regressore 
deviates from thè center of thè independent variables. However, one should not use thè regression 
residuals or design distances which are computed with classical estimatore when unmasking 
outliers. These residuals and distances are likely to be based on wrong estimates, therefore outliers 
can be left unnoticed.

In thè thesis in hand we adopt thè robust estimation methodology by considering 
neighbourhoods of parametric models. In thè first part of this monologue we develop new robust 
estimatore for panel data models. The second part contains an application; thè new estimatore are

3

3 Data points for which thè independent varìable lies far from thè bulk of thè explanatory observations 
are called leverage points (see Rousseeuw and van Zomeren (1990) and Chapter 1).
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4 General Introduction and Summary

employed when estimating a neoclassica! investment model in order to test for imperfections in thè 
financial markets.

We start in Chapter 1 with thè presentation of a High Breakdown Point Generalized M- 
estimator (HBP GM) as a B-robust alternative to thè well-known ordinary least squares method for 
thè standard linear model. Joint research with Jeroen Hinloopen, encapsulated in two papers (see 
Hinloopen and Wagenvoort (1995, 1997)), provides a good background for this part of thè thesis.4 
The HBP GM estimator is constructed according to thè rules outlined in Simpson, Ruppert and 
Carroll (1992) and combines thè quality of being able to handle up to 50% data pollution without 
taking arbitrary values. Further, it exhibits thè desirable asymptotic properties of consistency and 
normality under weak conditìons. The Gauss-Markov theorem ensures that OLS provides thè Best 
Linear Unbiased Estimator. The price we have to pay for thè robustness of our estimator is an 
alleged loss in efficiency since thè HBP GM method downweighs (good) leverage points. 
However, by means of a simulation study we demonstrate that thè HBP GM estimator is only 
slightly less efficient than OLS for clean data but, in most cases, is much more efficient than both 
thè robust Least Median of Squares (LMS) estimator (see Rouseeuw (1984)) and OLS if thè data is 
contaminated. An example from thè astronomy is included with a view to highlighting thè 
successful performance of thè HBP GM estimator with respect to LMS and OLS when anomalous 
data is present and to introduce graphical tools for thè discovery of outliers. Simulated t-statistics, 
under clean and polluted generated data sets, are reported in order to demonstrate thè reliability of 
thè robust statistical inference.

The identification of leverage points, within our specific HBP GM method, is based on thè 
MVE estimates of thè centre and dispersion of thè regressors. Since no closed form solution can be 
obtained for these MVE estimatore, we have to nely on approximations. For this purpose, thè 
projection algorìthm and thè resampling algorithm have been invented to approximate robust 
distances (see Rouseeuw and Van Zomeren (1990, 1991)). Our simulation results, however, 
indicate that both algorithms are inadequate and can be improved by a specific correction factor.

The aim of thè second chapter is to show how thè HBP GM technique can be extended in 
order to produce more efficient estimates for models where thè homogeneity and/or independence 
conditions are not fiilfilled. We present thè robust counterpart of Pagan and Vella's classical test 
on multiplicative heteroskedasticity associated with thè HBP GM estimator of Chapter 1 (see Pagan 
and Velia (1989)) and robustify Harvey’s (1976) two-step method. Multiplicative heteroskedasticity 
and thè occurence of outlying observations are, for some reai data sets, two sides of thè same coin. 
In this case, application of thè classical Harvey procedure is not an adequate solution to thè outlier 
problem since this procedure suffere from thè masking effect mentioned earlier in thè introduction. 
Furthermore, a bounded influence estimator for thè Seemingly Unrelated Regression (SUR) model 
is derived. This type of regression model is especiaUy relevant for panel data which give cause to 
correlated errors across different time-periods but zero cross-sectional correlation. Monte Carlo

4 In particular, Section 1.5 corrcsponds with Hinloopen and Wagenvoort (1995).
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5

results affirm that substantial efficiency gains can be achieved for various experiments by
Consulting thè robust proposals of Chapter 2.

Up to now we have ignored important aspects of non-experìmental data. Economie 
variables often fluctuate simultaneously and thè explanatory factors of thè statistical model are 
usually measured with error. Therefore, in Chapter 3, we relax another assumption of thè standard 
linear model. It so happens that thè design matrix is not necessarily orthogonal to thè model errors.
In this case, instrumentai variable techniques such as Two Stage Least Squares (2SLS) provide
consistent estimates given that outliers do not corrupt thè data. In imitation of Krasker (1986), we 
draw a parallel with robust regression and introduce thè Two Stage Generalized M (2SGM) 
estimator.

Although thè 2SGM estimator produces heteroskedastic consistent estimates and standard 
errors, it fails to fully exploit all thè moment restrictions if thè error terms exhibit a non-diagonal 
covariance matrix or heteroskedasticity. In response, we develop a more efficient estimator than 
2SGM in thè guise of Robust Generalized Method of Moments (RGMM) for models with 
correlated and/or heteroskedastic errors. The usuai GMM unbounded influence estimator is defined 
by equating thè empirica] moment restrictions, corresponding with thè theoretical moment 
conditions, to zero. For example, thè sample mean is thè method of moments estimator of thè 
population mean of a random variable. This statistic, however, is vulnerable to outliers since it 
does not discriminate between different observations in thè sample, i.e. each of them is given a 
weight equal to one over thè number of observations. For that reason, thè median of thè 
observations can be a much better predictor of thè first theoretical moment than thè standard 
empirical moment (thè sample mean). This gave us thè idea of replacing thè usuai GMM defining 
sample moment condition by a robust empirical moment restriction. The latter is obtained by 
means of inserting weights for each observation in thè moment condition depending on both thè 
leverage of thè instruments and thè position of thè observation with respect to thè bulk of thè data 
from thè viewpoint of thè relationship between thè dependent variable and thè predicted 
explanatory factors. These weights are computed with thè help of thè Minimum Volume Ellipsoid 
estimator and thè 2SGM method. Conditions are provided for which thè RGMM estimator is 
consistent, asymptotic nonmally distributed and possesses a bounded influence function.

An illustrative example is given by employing thè RGMM estimator on a generated panel 
data model with erroneously measured explanatory variables which is extensively studied by 
Griliches and Hausman (1986). They derive thè optimal set of instruments under different 
assumptions imposed on thè stationarity and covariance structure of thè measurement errors. From 
our Monte Carlo results we conclude that thè RGMM estimator is consistent and almost as 
efficient as thè standard GMM approach if thè data are free from any outliers. The HBP GM 
estimates are downward biased in thè cases both of first difference regression and when estimating 
in thè within dimension of thè data by caiculating deviations around individuai means, to eliminate 
thè individuai fixed effects. This rcsult is expected since it has been shown that OLS under- 
estimates thè parameters too when there are errors in thè regressors. Furthermore, thè Wu-Hausman 
(see Wu (1973) and Hausman (1978)) test statistic reveals that thè first difference and within
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6 General Introduction and Summary

estimates are significantly different for thè first experiment. This is also explained by thè occurence 
of measurement errors in thè explanatory factors. The standard GMM estimator breaks down when 
thè data are contaminated. However, thè robust version of thè generalized method of moments stili 
produces reliable relatively efficient estimates when thè orthogonality condition is rejected and thè 
data are polluted. To our knowledge, Chapter 3 presents thè first example of an estimator which 
combines these properties.

A brìef literature survey of thè conclusive arguments for an active corporate financial 
policy heralds thè second part of thè thesis. In Chapter 4 we discuss thè consequences of 
incompleteness of thè capitai markets, credit constraints and taxes for Modigliani and Miller's 
famous Proposition I of 1958 on thè irrelevance of thè capitai structure. The conlusion to be drawn 
from this review is that, in generai, financial policy is relevant.

Keeping this result at thè back of our mind, we explicitly take into account thè financing 
side of investment projects when modelling thè optimal capitai choice of a production firm in 
Chapter 5. Following Bond and Meghir (1992), a neoclassica! investment model is introduced with 
convex capitai adjustment costs where thè managers of thè firm simultaneously decide on thè level 
of investment, thè financial structure and thè input factors of thè production process. Both thè 
Euler equation and Tobin’s Q-specification (see Tobin (1969) and Hayashi (1982)) of thè model 
are derived and estimated, using a panel data set of Dutch manufacturing companies which are 
quoted on thè Amsterdam stock exchange. Due to several very large outliers among thè 
observations, in most of thè cases, thè classical estimation methods fail to reveal thè direction and 
signifiance of thè relationship, implied by thè majority of thè data, between thè investment capitai 
ratio and its explanatory factors. In constrast with our estimation results associated with classic 
GMM and most of thè empirical studies on thè Q-theory presented so far, we fmd that thè 
empirical performance of thè Q-model is satisfactory. The empirical Euler equation is less 
appropriate for describing thè investment behaviour of thè Dutch manufacturing companies. The 
new robust GMM estimator is successali in securing consistent relatively efficient estimates of thè 
parameters of our panel data model with endogenous regressors, autocorrelated errors, fixed effects 
and heterogenous observations including severe outliers.
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ROBUST ESTIMATION
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CHAPTER 1

An Example of a High Breakdown Point Generalized 

M-Estimator

Section 1.1 Efficiency Versus Robustness

At thè beginning of last century, thè widely known Ordinary Least Squares (OLS) method was 
introduced by thè two celebrated statisticians Legendre and Gauss. To this day, empirical researchers 
use OLS and its generalizations since thè Gauss-Maikov theorem asserts that OLS provides thè Best 
Linear Unbiased Estimator (BLUE) for thè parameters of thè standard linear model. The estimator is 
best in thè sense that it is thè most efficient one among thè linear estimators when thè data are smooth, 
i.e. do not contain outlying observations. Following Rousseeuw and Van Zomeren (1990) we 
distinguish leverage points and/or vertical outliers (see Figure 1.1) when defining these anomalous 
observations. Data items for which thè independent variable lies far from thè majority of thè 
explanatory observations are called leverage points. These observations deserve special attention from 
thè econometrician since leverage points may invalidate classical statistical inference. On thè other 
hand. they may substantially lower thè standard errors if thè variation in thè design matrix reveals thè 
statistical pattern contained in thè data set. Observations which do not follow this relationship which 
is observed by thè majority of thè data, are defined as vertical outliers. Note that an observation can 
be both a vertical outlier and a leverage point (point d in Figure 1 ) or can be horizontaiiy outlying 
without being a vertical outlier when it perfectly fits thè relation between thè independent variable and 
thè explanatory factors (point c). Outliers are present in almost any reai data set for a number of 
reasons: they may emerge from typos or measurement errors, thè model error term may come from 
a fat and/or long tailed distribution, or thè theoretical model may be only appropriate for a sub set of 
thè data. If thè data is contaminated with vertical outliers and leverage points then OLS can not only 
be a very inefficient regression technique but also produce dramatically different estimates when a 
single outlying observation is added or deleted. The survival of OLS for about two centuries in 
empirical studies is not justified by its performance on contaminated data.

Ever since thè discovery of thè least squares criterium statisticians were aware of these 
shortcomings as can be seen from thè following two citations:1

1 Cited by Rousseeuw and Leroy (1987).
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Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

jure 1.1 Simple Regression Example with (a) Regular Observations, (b) Vertical 
Outlier, (c) Leverage Point and (d) Vertical Outlier and Leverage Point

Legendre in 1805:

If among these errors are some which appear too large to be admissible, then those 
observations which produced these errors will be rejected, as coming from too faulty ex- 
periments. and thè unknowns will be determined by means of thè other observations, which 
will then give much smaller errors.

Edgeworth in 1887:

The method of Least Squares is seen to be our best course when we have thrown overboard 
a certain portion of our data—a sort of sacrifìce which has often to be made by those who sail 
upon thè stormy seas of probability.

endre and Edgeworth point here at thè two core issues of robust estimation: which observations 
; excessive influence on thè estimation results and how can thè distortions be circumvented. It 
ns rather drastic to completely ignore part of thè data as is suggested by thè two scientists above. 
lis case, good leverage points, i.e. a horizontal outlier which is not vertically outlying, can no
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Part I. Robust Estimation 11

longer contribute to thè efficiency of thè estimator. Evidently, one needs to have prior beliefs about 
thè true parameters of thè model to determine whether a leverage point is good or bad. There exists 
a trade-off between efficiency and outlier robustness. The aim of Part I of this thesis is to find thè best 
terms of exchange for various settings of thè linear model. We search for relatively efficient 
estimators, in comparison with thè classical proposals such as OLS, GLS, 2SLS and GMM, subject 
to thè restriction that any observation has limited influence on thè parameter estimates, i.e. thè 
influence function associated with thè estimator has to be bounded.2 In Chapter 1 we discuss a 
bounded influence or so-called B-robust estimator for thè standard linear model which is almost as 
efficient as OLS when it is applied to clean data sets. Chapter 2 and 3 provide B-robust relatively 
efficient solutions to thè estimation of thè linear covariance model and linear simultaneous equations 
respectively. Beside thè efficiency argument, other reasons can motivate thè inclusion of thè outliers. 
In some studies thè researcher has special interest in analysing and predicting thè outlying 
observations. Hinloopen (1997) discusses in his Ph.D. thesis an entertaining example about engineers 
who have to decide on thè height of a dyke. Throwing thè outliers overboard would in this case cause 
thè water to flood over thè dyke at thè Dutch village Borgharen dorp during stormy weather.

An early attempt to generate robust estimates was made in 1887 by Edgeworth who proposes 
to replace thè objective of OLS to minimize thè sum of thè squared errors by thè criterium: minimize 
thè sum of thè absolute errors. The resulting least absolute values estimator or so-called L,-estimator 
is less sensitive than OLS to certain types of outliers (see Judge (1988, p.899)), but it can stili be 
tricked by one outlying observation. Using thè terminology developed in thè research area of robust 
statistics, we say that its breakdown point, defined as thè smallest fraction of data contamination which 
causes thè estimator to take on arbitrary values3, is equal to zero. The notion of breakdown point 
provides a global measure of reliability whereas thè influence function is developed to indicate thè 
effect of a single (or cluster of) outlying observation(s). An example of a high breakdown point 
estimator is provided by Rousseeuw’s (1984) Least Median of Squares (LMS) estimator which mini- 
mizes thè median of thè squared residuals instead of thè sum. The LMS estimator has thè appealing 
property that its breakdown point is 50%. By definition this is thè highest percentage achievable, since

5 The influence function is formally defined by thè change in thè estimates retumed by thè estimator $ when
thè portion t of thè initial data distribution F is replaced by thè distribution G which puts mass 1 at thè point x :

IF(x$,F) * -  ffo)

for those x where this limit exists (Hampel et al. (1986), p. 84). The gross-error sensitivity y" of thè estimator 
to small data contamination is then obtained by evaluating thè upper bound on thè influence function:

r -  SUXP\1F(X$,F)\.

See Hampel et al. (1986) for a survey of robust statistics based on influence functions.

3 In Section 1.4 we give a formai definition of this concept.

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



12 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

beyond this limit thè distinction between good and bad data becomes arbitrary.4 The price of thè 
robustness of thè LMS estimator in terms of efficiency loss is substantial. Therefore, generalizations 
of thè Least Median of Squares estimator are presented by Rousseeuw and Yohai (1984) in thè forni 
of robust S estimatore5. These S estimatore exhibit thè desirable properties of having both a 
breakdown point of 50% and good asymptotic performance in terms of efficiency.

Generalized M-estimatore belong to thè class of bounded influence estimatore but, on their 
tum, exhibit thè deficiency of having a low breakdown point in multiple regression models. Maronna. 
Bustos and Yohai (1979) prove that thè breakdown point of thè GM estimator is at most l/(p+l), 
where p is thè number of explanatory variables. M-estimators are defmed by minimizing thè sum of 
transformed residuals, where thè symmetric transformation function p has a unique minimum at zero 
(i.e. thè quadratic objective function of OLS is replaced by another functional form), see Huber (1973). 
The shape of thè transformation function determines thè relative influence of differently sized residuals 
on thè parameter estimates. The robust M-estimator assigns less weight to vertical outliers than OLS. 
In addition to bounding thè influence of observations which have relatively large residuals, GM 
estimatore also bound thè influence of leverage points irrespective of their residuals emanating from 
thè regression. Krasker and Welsch (1982) derive thè most efficient B-robust estimator given a bound 
on thè gross-error sensitivity (see footnote 2).

The breakdown point of thè General M estimator can be driven up by resorting to a two-step 
procedure suggested by Simpson, Ruppert and Carroll (1992), henceforth SRC. In this chapter we 
work out a specific example of a High Breakdown Point General M-estimator (HBP GM) according 
to thè rules set down in SRC (1992). The idea of thè HBP GM technique is to initiate thè Newton- 
Raphson (NR) iterations, which are executed to solve thè GM defining equation, with a preliminary 
HBP estimator. We have chosen Rousseeuw’s LMS method to serve as preliminary estimator. SRC 
show that under mild conditions thè breakdown point of thè preliminary estim atori) carries over to 
thè final HBP GM estimator. They also demonstrate that thè HBP GM estimator yields consistent 
asymptotically normal estimates. In addition, we show in this chapter, by means of a simulation 
experiment, that thè HBP GM estimator we use is more efficient than it’s preliminary LMS estimator 
when different kinds of data contamination are involved. Moreover, these simulations reveal that thè 
efficiency loss incurred when using thè HBP GM estimator instead of OLS in experiments with non- 
polluted data is small.

The HBP GM estimator we employ, involves computation of Minimum Volume Ellipsoid 
(MVE) location and scale estimates (see Rousseeuw and Leroy (1987)). Since there is no analytical 
expression for this estimator we must rely on numerical approximations. In thè literature two 
algorithms are developed for this purpose (see Rousseeuw and Van Zomeren (1990)): thè resampling

4 Strictly speaking 50% is thè highest breakdown point achievable for regression equivariant estimatore.

5 S estimatore are defìned by minimizing a robust measure of thè scale of thè residuals (see e.g. Hampel et 
al. (1986), p.l 14).
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Part I. Robust Estimation 13

and thè projection algorithm. We derive a correction factor which improves both algorithms for 
computing thè Minimum Volume Ellipsoid estimator.

The set up of Chapter 1 is as follows. Section 1.2 contains an analytical derivation of thè HBP 
GM estimator. Here we also indicate for which models and what kind of data this estimator is suitable. 
In thè subsequent section we provide thè definition and thè computational procedure of thè MVE 
estimator and test thè above mentioned correction factor. The statistical properties (breakdown point, 
consistency and efficiency) of thè HBP GM estimator together with its covariance matrix and t-values 
are discussed in Section 1.4. In this section we also show how to compute thè adjusted coefficient of 
determination and how to obtain a robust estimate of thè variance of thè HBP GM regression residuals. 
Section 1.5 presents a reai data example while conclusions are stated in Section 1.6. In Appendix Al 
we go into thè details of thè computation of thè LMS estimator.

Section 1.2 Construction of a High Breakdown Point Generalized M-Estimator

The aim of Chapter 1 is to provide a B-robust relatively efficient estimator of thè unknown parameter 
vector p of thè linear model

?, = *,P + £,
( 1. 1)

where thè errors e.... . are i.i.d. with distribution function F and finite variance a 2. F is assumed to
have a density symmetric around zero which is not necessarily equal to thè norma!. As usuai, y. is thè 
regressand and x { is a row vector of length p of observable explanatory variables. The regressors are 
assumed to be orthogonal to thè model errors.

1.2.1 Mailow’s First Order Condition

The M-estimator of P is defined by thè objective function 

m in i
p j! ;p(r') ’ <12>

where r  = y.-or^P. Here we assume that thè transformation function p is twice continously 
differentiable on thè domain [-c,c], p e  C 2[-c,c], p( - ) : K— ce R The OLS and thè maximum 
likelihood estimator (MLE) are members of thè class of M-estimators as can be seen from choosingp 
equal to p(r.) = r f  and p(r.) = -ln[/{r)] respectively, where In denotes thè naturai logarithm and f 
thè probability density function. In thè case of Huber’s (1973) proposai, thè first order condition 
associated with criterium ( 1.2) can be written as
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14 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

E x ,f y r(r,) = 0. (1.3)
i-i

wr( -) : R—>R is a weight function which Controls for vertical outliers. x j  is thè transpose of x r Huber 
suggests downweighing observations whenever thè absolute value of their residuals exceeds a certain 
positive Constant c:

c. Consider a cloud of data points without outlying observations generated by a simple regression 
model where thè regressand is independent of thè regnessor. It suffices to add one leverage point to 
this data set to let thè M-estimator return any estimate. In fact, thè fitted regression line will connect 
thè leverage point with thè cloud containing thè rest of thè observations. The breakdown point of M- 
estimators is thus l/n which approaches zero as thè number of observations increases. In this example, 
not so much thè estimate of |ì but especiaUy thè estimate of its standard error may induce spurious 
regression results. In order to bound thè influence of leverage points, Mallows (1975) generalizes thè 
first order condition of M-estimators to

where kx( •):RP— is thè weight function based on thè identifìcation of horizontal outliers. The

appropriate choices of thè weight fiinctions and wr which downweigh both leverage points and 
vertical outliers.

The Newton-Raphson (NR) algorithm is employed to solve (1.5). For this purpose we computo 
thè Hessian by differentiating thè LHS of (1.5) (thè gradient) with respect to (5,

(1.4)

Leverage points are fully taken into account if thè corresponding residuals are less than or equal to

n
Ex[w /x.)r.w r(r.) = 0, (1.5)

solution to equation (1.5) results in a bounded influence or so-called Generalized M-estimator for

( 1.6)i-l

where

(1.7)

For each step j of thè NR iterations

( 1.8)
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Part I. Robust Estimano!) 15

we repeatly determine which observations are considered to be vertically outiying since thè size of thè 
f'th residuai r .  and hence also wr(rf/) depend on thè parameter estimates fL On thè other hand, 
leverage points are distinguished independently of thè statistica] pattern contained in thè data. Thus, wr(ry) 
are updated for every iteration whereas wt(x() have to be computed only once.

Simpson, Ruppert and Carroll ( 1992) show that thè final GM estimator (after convergence of 
procedure ( 1.8)) inherits thè breakdown point of thè preliminaiy estimators that are used to (i) compute 
and (ii) to obtain an initial estimate of (3, provided that certain conditions on wr are fulfilled. With 
this end in view, we base thè identifìcation of leverage points on thè MVE-estimates of location and 
scale and employ Rousseeuw’s LMS technique to deli ver a starting value of $ for thè NR algorithm. 
Both thè LMS and MVE estimators have thè comfortable breakdown point of 50%. In Section 1.4 we 
verify whether thè SRC conditions necessary for thè transfer of thè breakdown point apply to our 
choice of H>r. To compute thè LMS estimator we have used thè resampling algorithm with thè 
intercept updating rule, both as described in Rousseeuw and Leroy (1987, p. 197-202) and Appendix 
A l. The computation of thè MVE is extensively discussed in Section 1.3.

1.2.2 Weights Based On Leverage Points

What we need in order to detect leverage points and to determine weights correspondingly is to 
measure thè extent to which an observation deviates from thè center of thè explanatory variables. A 
classica! measure is thè diagonal of thè hat matrix (see e.g. Judge et al. (1988, p.892)),

h = x  XX TX)~lxJ  i = \,..,n ,
‘ 1 (1.9)

where X = {xl„.jcTn)T. Related to (1.9) is thè Mahalanobis distance6 

MDi = ^ x i - n X ) ) C ( X y , ( x i - T ( X ) ) T i = l,.„  n,  (1 , 0)

where 7(*) is thè arithmetic mean and C(*) thè sample covariance matrix. These classical 
indicators show how far an observation is located from thè sample average. Although thè use of (1.9) 
and (1.10) is to trace thè leverage points, in seeming contradiction, both can however be corrupted by 
them. Consequently, mild leverage points or a cluster of huge horìzontal outliers can escape easily 
from being discovered when these classical non-robust criteria are used (For a prominent exposition 
of this phenomenon see Rousseeuw and Van Zomeren (1990). See also thè example of Section 1.5). 
To overcome this masking effect we insert robust Minimum Volume EUipsoid (MVE) estimates of thè 
location T(X) and thè dispersion C(X) in (1.10). This results in robust distances RD. since

* Rousseeuw and Van Zomeren (1990) mention that /r *A/£>,2/(n - 1 ) + l/n.

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



16 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

thè MVE estimator has a breakdown point of 50% (see Rousseeuw and Leroy (1987)).
The squared Mahalanobis distances follow a chi-squared distrìbution with p degrees of freedom 

if thè p explanatory factors are drawn from a joint normal distrìbution. If we are willing to assume that 
thè majority of thè explanatory observations of thè data represent thè normal then weights based on 
leverage points can be calculated as:

. . . (. Ẑo.975 (p )  l - i  (1 i n= m in^l,.!— — ------ j  / =

Notice that all observations with a robust distance exceeding thè 97.5"’ percentile of thex2( p) 
distrìbution are identified as leverage points and receive weights less than unity.

1.23 Weights Based On Vertical Outliers

Our next goal is to determine weights based on vertical outliers. To grasp a better understanding of 
thè sensitivity of OLS to outliers, we differentiate thè objective function p( •) with respect to r, 
Although thè resulting function, \|f(r ) = dp(r)/dr, is somewhat different from thè influence function 
defìned in footnote 2, they are closely related (see Hampel et al. (1986), p.316). V|/(r) measures thè 
rate of change of thè objective function (1.2) due to an infinitesimal change in thè residuai associated 
with thè ith data point. In thè case of OLS, y ( r  ) = 2rr As a consequence, large positive or negative 
residuals have a stronger impact on ( 1.2) than small absolute residuate given a certain accompanying 
value of x . Thus, OLS is extnemely vulnerable to vertical outliers.

In order to bound thè influence of vertical outliers we force thè y-function to be redescending 
in its argument. In particular, Tukey’s bi-square function, depicted in Figure 1.2,

V ( r . ) = r (  l-(r./« T c))2)2 \ r / o \ <c
(I.ÌZ)

= 0 | r / a |£ c ,

is used when constructing thè weights wr:

,  ̂ v ( r,)**',('■() = ------- ri*° (1.13)
t

= 1 r =0.

Speciflcation of c and o  is required to compute (1.12). The LMS scale estimate (see Appendix Al) 
is used as an approximation for thè standard deviation whereas a common choice for c is 4.68S (see 
Beaton and Tukey (1974)); c reflects thè tradeoff between efficiency and outlier robustness of thè 
HBP GM estimator as mentioned in thè introduction to Chapter 1. Choosing values lower than 4.685 
means that more observations are downweighted and lower weights apply to thè vertical outliers. Thus,
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Part I. Robust Estimation 17

Figure 1.2 Tukey’s Bi-square Function and The OLS Psi-Function

efficiency losses are sustained if thè data is free from outliers. On thè other hand, thè efficient 
maximum likeiihood estimator (MLE) is obtained when c grows to infinity but then thè estimates are 
unreliable if thè data is contaminated. The chosen number c = 4.685 is found by simulation. The M- 
estimator (i.e. *’/■*,) = 1, f=l,..,/i) based on (1.12) with c = 4.685 reaches an efficiency level of 
95% in comparison with MLE if thè large sample of model errors are standard normally distributed. 
Notice that our HBP GM estimator also downweighs leverage points which are not vertically outlying. 
This creates another channel that reduces efficiency. Monte Carlo experiments are performed and 
reported in Section 1.4 to examine thè efficiency of our HBP GM estimator.

Two differences between Huber’s proposai (1.4) and Tukey’s suggestion for thè computation 
of thè weights wr stand out: (i) The bi-square function downweighs thè observations to zero if their 
standardized residuals step over thè threshold value c whereas thè most excessive vertical outlier stili 
has influence on thè estimates if Huber’s weights are employed, (ii) Huber does not discriminate 
between observations with small and large residuals as long as thè absolute value of thè residuai is less 
than c. Therefore, among thè observations which are not identified as vertically outlying, thè ones 
exhibiting relatively small residuals have less influence on thè objective function (1.2) than thè others. 
On thè other hand, all vertical outliers have thè same impact if thè explanatory part of these
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18 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

observations is equal.7 In contrast with (1.4), thè Tukey weights based on (1.12) do not only 
distinguish a group of huge vertical outliers (which are downweigted to zero) but also divide thè other 
group between observations which receive more importance when thè absolute value of thè residuai 
increases and thè mild vertical outliers which receive less and less influence thè further they are away 
from their concomitant predicted value. The standardized residuals of thè latter group of mild outlying 
observations take an absolute value between a and c in Figure 1.2. In support of thè bi-square function 
one could argue thè following: It is not void of reason to ignore those observations with extremely 
large residuals8 since they by no means reveal thè predicted theoretical relationship between thè 
independent variable and thè explanatory factors. The theoretical (economie) model is misspecified for 
these outliers. Of course, thè applied econometrician should always report how many and which 
observations are put aside. In this way, insight is gained into what extern thè data suits thè theory.

1.2.4 Data and Model Suitability

After convergence of thè NR algorithm (1.8), thè HBP GM estimator can be written as

n
E x  Jwx(Xi)wr( r .)y.

---------------------  (i 14)
ExJ'wx(xl)Hr(r.)xl
*-1

where w /-*,) is given by (1.11) and vvr( r )  by (1.13).9 In obvious matrix notation (1.14) reads 

K m = ( ^ r ^ ( ^ ) W r( r ) X ) - ( X I'Wx(X)Wr(r)j;) ,

where Wx(X) is a diagonal matrix comprising wjixt), i=1 , and Wr(r) is a diagonal matrix with 

entries wr(r.), /=l,..,n.
When should thè HBP GM estimator (1.15) be applied? In economics, data can be qualitative 

or quantitative and be measured either at micro (e.g. firm or household) or macro (e.g. aggregate) 
level. In what follows we will discuss each of these cases and indicate when thè HBP GM estimator 
is to be used.

If thè response variable is qualitative (giving rise to probit, logit, etc. models), thè HPB GM

7 In thè Huber case, \y(r) = r i f  r<£, \|/(r) = 1 otherwise.

1 Note that if thè model errore are normally distributed then more than 99.75% of thè domain of thè 
standardized errors is covered by thè interval [-c,c]. In thè normal case, standardized absolute residuals which 
exceed c are considered to beiong to thè group of extreme outliers.

9 Olir GAUSS computer program retums a HBP GM estimate which slightly differs from (1.14) since NR 
assumes that thè second order term of thè Taylor expansion is negligible (see formula (1.39) of sub-section 
1.4.1).
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Part I. Robust Estimation 19

estimation technique is inappropriate. In this case, thè bi-square function does not act as thè tight 
sounding board for thè measurement of outlying residuals while correcting for leverage points is not 
at all straightforward. On thè other hand, if (some of thè) explanatory variables are dichotomous (i.e. 
dummies) and thè dependent variable is not, thè HBP GM estimator can be applied.

Although time series often contain outlying observations, thè HBP GM estimation procedure 
is not developed to estimate ARIMA type models. In particular, outliers present in time series are of 
a fundamentally different nature (see e.g. Gómez and Maravall (1994)) than thè ones considered in 
this chapter. Using pooled cross-section-time-series data (so called panel or longitudinal models) 
creates specific problems which are analyzed in Chapter 2 and Chapter 3. For a discussion on joint 
estimation of model parameters and outlier effects in time series see Chen and Liu ( 1993).

Micro data are notorious for their erratic behaviour. Here especially robust estimation 
techniques are called for. Aggregation of micro data can remove some of thè irregularities, but also 
in this case robust estimation is stili desired since classic and robust estimates are almost identical 
when data are smooth. On thè other hand, if thè aggregate data remain erratic, thè HBP GM estimator 
yields more reliable estimates compared to classic techniques. Moreover, cross-country (macro 
economie) surveys are likely to contain (severe) outliers despite their aggregate nature.

To summarize, thè HBP GM estimator described in this section is appropriate for estimating 
a cross-sectional data model in which thè response variable is not dichotomous.

1J  The MVE Estimator of Location and Scatter

The Minimum Volume Ellipsoid (MVE) estimator (Rousseeuw (1985)) is based on thè hyper ellipsoid 
of minimum hyper volume containing at least half of thè observations. The estimate of location 
corresponds to thè centre of this hyper ellipsoid while thè corresponding covariance estimate is thè 
hyper ellipsoid multiplied by some factor to obtain consistency.

The determinant of a scatter matrix (that is, a positive definite symmetric matrix) is 
proportional to thè squared volume of thè corresponding tolerance ellipsoid (see Rousseeuw and Leroy
(1987), p.259). The MVE estimator is defined as thè pair (T ,0  which

minimizes det(C)
( T ,C ) (116)

subject to
#U\[x i - T ) C ' ì[xr T]T̂ S 2} > h,

where h = [(n+p+1 )/2]. Recali that p refers to thè number of explanatory variables. The notation [x] 
stands for thè largest integer less than or equal to x. If it is assumed that thè majority of thè data 
comes from a normal distribution, 82 is set equal to thè 50th percentile of thè y}(p) distribution. We 
then denote
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20 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

RD{x ,) = / [ i r n c - [ x (- r ] r , (1.17)

as thè robust distance of case x r  Observe that T  and C are defmed such that thè /j-th order statistic 
of thè robust distances is

Two procedures are reported in thè literature to approximate thè solution to (1.16): thè resampling 
algorìthm and thè projection algorithm. However, those algoritms do not yield robust distances 
satisfying (1.18), as will become clear below. We therefore propose to correct thè approximated MVE-

In this way thè median (or more precisely, thè /i-th order statistic) of thè RD ’{•) is always equal to 
thè root of thè 50-th percentile of thè x 2-distrìbution with p  degrees of freedom.

Further, thè breakdown point of thè MVE estimator is [(n-p+\)l2]ln, which is 50% as thè 
number of observations, n, goes to infinity (see Rousseeuw and Leroy (1987, p.264)).

To assess thè correction factor we have run some simulations, thè results of which are 
presented below, after brief descriptions of thè two algorithms used to approximate thè MVE-distances.

13.1 Projection

The need for a correction factor like (1.19) is made clear by considering thè projection algorìthm of 
Rousseeuw and Van Zomeren (1990), which is based on Gasko and Donoho (1982). This algorithm 
is built around

(1.18)

distances RD *( •). computed by either algorìthm, by multiplying each computed robust distance with 
thè correction factor (this factor was orìginally conceived by Kloek (19%))

(1.19)

h. = max 
v

|x <vr -L (x 1vT..... x mv T)\

S ( x%v T hv t )
( 1.20)

which is thè exact one-dimensional version of (1.17) applied to thè projections x ,v r if L(  •) andS( •) 
are thè MVE-estimates of location and scatter respectively. The latter are defìned as
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Pan I. Robust Estimation 21

L{zì -  (Zy V2 (1.21)

and

S(z}, -  y(zj~zj _h, ì )

where zì^ z 2̂ . . .^ z m is any set of numbers, where zJ-zJ_h^ì is thè smallest of thè differences 

” ^1’ *̂->1 ~^2’.....

(1.22)

(1-23)

and where y is some Constant used to achieve consistent estimates of thè unknown scale parameter.10 
If thè projections x.v T are (standard) normally distributed then one can verify that y must equal

1
» — ---------- » (1.24)

2 / x2.»(D

for large samples.
In prìnciple all directions v should be considered to compute (1.16). Because in practise this 

is impossible, Rousseeuw and Van Zomeren (1990) propose to restrict thè set of directions to allv 

defined as x t ~M, 1 = 1 with = ) mec^(x )} '
Observe however that thè uj in ( 1 io )  do not neéessanly satisfy (1.18) unless there is only one 

explanatory variable. Indeed, in thè special case of one dimension we have

where In this case we can compute thè h-th order statistic of thè u. exactly. As a first
step, we find thè remarkable identity

{ |j : .- r |}  = maximum \ x - T \  = ( x - x ^ x)l2,  (1 26)
h j - h  + \ <i£ j

because h of thè x ’s are in between x  and x.. Hence,I J +1 J

10 Rousseeuw and Van Zomeren (1990) argue that thè factor y(n)depends on thè sample size but do not 
provide an explanation or a specification of y.
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22 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

U r T  I
S(-) 2y (1.27)

Given that y is fixed independently of thè number of explanatory variables, thè robust distances 
RD *(x ) based on thè projection algorithm in generai do not satisfy (1.18). For higher dimensions we 
can restore equation (1.18) by multiplying thè u 's  by (1.19). Robust distances are then given by

’ (1.28)

The following steps summarize thè algorìthm as we have used it in our simulations:

Algorìthm P (Projection Algorìthm). This algorìthm calculates robust distances for each case x ( using 
approximated MVE-estimates of location and scale obtained by projecting x t on a one-dimensional 
subspace. The MVE-estimates of location and scale are approximated as being thè midpoint and length 
respectively of thè shortest half of all projections considered.

P I. [Projection of each case x f on a one-dimensional subspace] Compute thè projections zt =x fv j  

forali cases x ( in thè direction v; = x t - M ,  with \ f  = ^mee^̂ x  ) met*(x ))•
P2. [Shortest half of thè projections] Order thè numbers z( suéh that z ^ z ^ .- S z ^ .  Compute thè 

smallest of thè differences

_21 * ~Zn-h + ì '

where h = [(n+p + 1 ) /2 ] . Denote this shortest half by zJ-zj_h. v  
P3. [Midpoint and thè length of thè shortest half] Compute thè location and scale estimate

according to (1.21) and (1.22) respectively (observe that because thè final robust distances are 
multiplied by (1.19), in this step set y equal to 1 (see (1.22)).

P4. [Repetition] Repeat step PI through P3 for all projection directions v,, l -  \
P5. [Robust distances] Compute robust distances u..
P6. [Correction factor] Compute correction factor (1.19) as

yXojoi p )
med |« j

i = ì , . . ,n
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Part I. Robust Estimation 23

P7. [Final correction] Multiply each robust distance ut by thè factor of step p6.

1.3.2 Resampling

The oldest algonthm to approximate thè MVE is thè resampling algorithm proposed by Rousseeuw 
and Leroy (1987, pp. 259-60); see also Rousseeuw and Van Zomeren (1990, 1991). The idea is to 
compute a sufficient number of ellipsoids containing half of all observations. Among these, thè one 
with lowest volume is taken as thè approximation of (1.16).

In particular, let

be respectively thè arìthmetic mean and corresponding covariance matrix of a subsample of( p + ì)  
different observations, indexed by K = { j}. To assure that exactly h observations are 
contained in thè corresponding ellipsoid, CK should be inflated or deflated by thè /i-th order statistic

(1.29)

and

(1.30)

(1.31)

Indeed, thè ellipsoid containing h observations corresponding to subsample K  is given by m* CK, with 
a concomitant volume proportional to

det (m^C*).
(1.32)

The algorithm consists of computing thè value of (1.32) for many different subsamples, after which 
thè subsample K *, corresponding to thè lowest value of thè objective function, is retained. The MVE- 
approximation of location and scatter are then respectively given by
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24 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Robust distances are then obtained by inserting (1.33) and (1.34) into (1.17). Observe that up to this 
point (1.18) always holds even if ( 7 " ,C ')  are not based on thè ellipsoid of minimum volume.

Recali that according to formula (1.11) observations are suspicious when their robust distances 
exceed yXo.rotP) • By generating normally distributed series and application of thè resampling 
algorithm one can determine thè extern to which thè computed robust distances RD ' clash with thè 
X2-distribution. With such an experiment, thè cutoff value and weights (1.11) can be approved or not. 
In this way, an improvement in thè resampling algorithm is found, due to Rousseeuw and Van 
Zomeren (1991). They determine an empirical factor c, which depends both on n and p, such that on 
average thè 97.5-th percentile of thè RD(x t) approaches thè square root of thè X2-distribution with 
thè appropriate degrees of freedom. In particular, (1.34) is multiplied by

c { n , p f  = (1 * \ 5 ! { n - p ) f .
(1.35)

Our simulations show that (1.35) indeed improves thè MVE estimates (see Section 1.3.3) but stili even 
more accurate MVE estimates can be obtained.

Another improvement had already been proposed by Rousseeuw and Leroy (1987, p.260). 
They assign to each observation a weight >v according to

w = 1 i f  ( x r T ' ) C - ' ( x - T ' ) T < k
' n • ( 1.36)= 0 otherwise,

where, for instance, K = Xo97s(p )- More efficient (reweighted) estimators for location and scatter are 
then suggested as being respectively

Ì wjc,

(1.37)

and

tw .(xr T ” )T(xr T ” )
* * i •!

u " ------------ :---------------------  (1.38)
E  H'J. - 1 
ì-i

The /i-th order statistic of thè robust distances RD * based on thè MVE-estimates ( 1.37) and
(1.38) are no longer necessarily equal to y/xo so^)- Therefore, more accurate robust distances are 
possibly obtained by applying thè correction factor (1.19) to thè robust distances computed with thè 
one-step improvement of Rousseeuw and Leroy. Notice that thè Constant c of Rousseeuw and Van 
Zomeren (1991) becomes redundant once thè robust distances are multiplied by our correction factor
(1.19). In Section 1.3.3 we test both correction mechanisms. As will become clear below, it appears 
that thè procedure in which correction factor (1.19) is applied to robust distances obtained from (1.37)
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Part I. Robust Estimation 25

and (1.38) results in thè most satisfactory approximations. We need to remark that (1.19) is a small 
sample correction factor since it will converge to 1 if thè number of symmetrically distrìbuted 
observations grows to infinity.

In short, thè algorithm as we have used it in our simulations evolves according to thè 
following steps:

Algorithm R (Resampling Algorithm). Robust distances for each case x, are computed, using 
approximations of thè MVE-estimates of location and scale. The latter are approximated respectively 
as thè mean and corrected covariance of a subsample K ’. The covariance of this subsample has thè 
lowest corresponding volume among Q different randomly drawn subsamples of p  +1 data points.

R I. [Number of drawings Q] Compute

Q •
In ( 1 -prob)

ln( 1 - (  1 -eV’41)

where e is thè maximum fraction of data poliution, and where prob is thè probability that at 
least one of thè subsamples is free of outliers. In our GAUSS routines we have set e equal 
to 0.5, prob equal 0.99 and take 10 times as many subsamples as given by thè above rule.

R2. [Drawing of a subsample] Draw at random a subsample K of p +1 different observations x r
R3. [Initial mean and covariance] Compute thè mean (TK) and thè covariance ( CK) of thè

subsample K according to (1.29) and (1.30) respectively.
R4. [Objective value] Compute inflation factor (1.31) and accordingly thè objective function’s

value ( 1.32).
R5. [Repetition] Repeat steps R2 through R4 for Q different subsamples. Keep thè subsample, K *,

with thè lowest value of thè objective function, as computed under R4.
R6. [Scale estimate] Compute thè covariance estimate (1.34) on subsample K ' .

R7. [Weights] Assign to each observation x (. a weight tv. according to (1.36), using thè covariance

estimate of step R6.
R8. [Rousseeuw and Leroy’s one step improvement] Compute new estimations of location and

scale according to (1.37) and (1.38) respectively.
R9. [Robust distances] Compute robust distances R D ’ by inserting thè location and scatter

estimates of step R8 into (1.17).
RIO. [Correction factor] Compute correction factor (1.19).
R II . [Final correction] Multiply each robust distance RD" by thè factor of step RIO.
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26 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Table 1.1 Simulateci 97.5th percentiles using Resampling and Projection Algorithms*

Algorithm1’
n *50

p = 1 p =2 ■*3 II p »4 p=5

I 0.936926 0.878970 0.854576 0.839810 0.829328

n 0.982440 0.957838 0.949937 0.946205 0.944832

in 0.968137 0.956340 0.953417 0.951283 0.950901

IV 0.968073 0.964506 0.962086 0.959474 0.958450

V 0.936398 0.865388 0.882428 0.886528 0.924196

VI 0.936398 0.978546 0.973650 0.967520 0.960898

n= 250

i 0.963207 0.951092 0.942612 0.932714 0.922099

ii 0.973080 0.964387 0.959334 0.952085 0.944556

IH 0.961111 0.960795 0.961163 0.960228 0.959358

IV 0.972621 0.972188 0.971987 0.971478 0.971067

V 0.963284 0.937228 0.936116 0.939820 0.949292

VI 0.963284 0.986768 0.984296 0.980796 0.977084

* Each celi contains thè mean of thè estimated percentile over thè 10,000 runs.

b I Resampling
II Resampling with correction factor (1.35)
III Resampling with Rousseeuw and Leroy’s one step improvement and correction factor (1.35)
IV Resampling with Rousseeuw and Leroy's one step improvement and corTection factor (1.19)
V Projection
VI Projection with correction factor (1.19)

1 3 3  Testing thè MVE-Approximations

In order to assess thè empirical performance of (1.19) we have tested different versions of both thè 
resampling and projection algorithm to approximate (1.16). Table 1.1 reports our simulation results. 
Each experiment consisted of generating a standard normal random variable for which thè MVE- 
distances were approximated. using various versions of thè resampling algorithm (lines I-IV) and thè 
projection algorìthm (lines V-VI). Then, what fraction of thè approximated squared MVE-distances 
exceeded thè 97.501 percentile of thè X2(p )-distrìbution (6 )  was examined. This was repeated 10,000
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Part I. Robust Estimation 27

times both for a small sample (n = 50) and for a large sample (n = 250), as well as for a number of 
explanatory variables. In Table 1.1 thè mean outcomes of 1 - f t  are reported.

The rows labelled (I) in Table 1.1 contain thè nesults obtained when using thè resampling 
algorithm without any correction. The impact of thè correction factor (1.35) (due to Rousseeuw and 
Van Zomeren (1991)) on thè resampling algorithm can be seen from thè second row. Indeed, a 
significant improvement is observed although, apart from thè one dimensionai case, thè MVE-distances 
are not adequately approximated. Observe also that thè initial correction factor has much more impact 
in thè small sample case ( n =50) than in case of thè large sample (n =250). This is due to thè fact that 
thè small sample correction factor is approaching 1 if n increases. The third row entries (III) involve 
thè resampling algorithm with correction factor (1.35) and thè one-step improvement as suggested by 
Rousseeuw and Leroy (1987, p.260). This leads to some improvement although in all cases considered 
thè 97 percentile is underestimated. Both thè one-step improvement of Rousseeuw and Leroy (1987) 
and correction factor (1.19) are used in thè fourth algorithm. This version of thè resampling algorithm 
has thè best performance of all versions considered. Indeed, since thè third algorithm underestimates 
thè 97.5"' percentile there is stili room for additional refinement. which we achieve by applying (1.19) 
to this algorithm.

Except for thè one-dimensional cases, thè projection algorithm (V) almost never yields 
appropriate distance approximations. Applying correction factor (1.19) to this algorithm does 
considerably improve its performance. Note that thè two versions of thè projection algorithm are 
equivalent if thè model contains only one regressor.

To conclude, in all cases considered thè resampling algorithm with Rousseeuw and Leroy’s 
one step improvement and correction factor (1.19) yields reliable approximations of thè MVE 
distances. Further, applying correction factor (1.19) to thè projection algorithm also results in 
appropriate distance approximations. When thè sample is small thè corrected projection algorithm 
outperforms thè resampling algorithm whereas thè corrected resampling algorithm is slightly more 
accurate than projection in thè large sample experiment. In thè first case we recommend using 
projection since this algorithm is much faster than thè resampling algorithm. For thè simulations 
conceming efficiency of thè HBP GM estimator (reported below) and thè other cases in this thesis 
where computation of MVE distances is required, however, we have used algorithm IV.

Section 1.4 Statistical Properties of thè HBP GM Estimator

Our next aim is to bring to light thè statistical properties of thè HBP GM estimator. First we discuss 
severa] widely-used diagnostic regression statistics such as thè coeffìcient of determination, scale 
estimate and t-values. Then we proceed with revealing thè asymptotic behavior of thè estimator by 
considering consistency, thè breakdown point and thè level of efficiency.
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28 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

1.4.1 t-values, adjusted R2 and Scale Estimale

In order to derive thè covariance matrix of thè HBP GM estimator, cov(0cv), we use a Taylor 
expansion around $ CM = P for thè first order condition (1.5):

0 = 't\ (̂rj)xjwi(xì)

_ _ ( 1 -39)

= tyiztfwjx.) + t (̂r,) r' r,rw (*,>(&<;„-P).
i-i ì-i cfr. 3R

Evaluating (1.39) in PCM * P and performing obvious manipulations gives

V ^ ^ c ^ -P )  » \/n [- i £  ? f? .E- . r ]x ,wx(x ,) ) [ l É ^ e ^ / V ^ x , ) ] .  (1.40)
riì-t dE, J ’-ni-i J

Thus, in large samples, thè covariance matrix of Pcw approximately equals 

coV{$c u ) H X  T V lryW jX ìX )- 'X  T W ' V C W W J X W  4

where is a diagonal matrix consisting of ( ^ ( r ) ) 2, i = l , V(r) is a diagonal matrix containing 
dy (r)/d r., i*l,..,n and W (̂X) is as defined as in equation (1.15) of Section 1.2.4. With (1.41) thè 
usuai t-values can be computed."

Although any observation has bounded influence on thè estimates of P, standard error 
breakdown may stili occur (see Simpson, Ruppert and Carroll (1992), p. 441). Consequently, thè t- 
statistics do not provide a robust test on thè significarne of thè HBP GM estimates. A solution to 
robust testing of thè hypothesis P2 = 0, P, unspecified (where P2 contains q components of thè p- 
dimensional vector P, pr = (P ,7̂ 7) ,  q<p), is found by, among others, Markatou and Hettmansperger 
(1990). They robustify thè traditional F-test for testing generai linear hypotheses in thè linear model 
to a so-called aligned generalized M-test. The M-test is constructed for thè Generalized M-estimator 
and exhibits thè appealing property of having a bounded influence function.12 Furtermore, Markatou 
and Hettmansperger show that thè robust M-test has asymptotically a chi-squared distribution with q 
degrees of freedom under thè nuli hypothesis.

To examine thè reliability of thè usuai t-values in clean and corrupted data sets we have 
performed a Monte Carlo study. Series of two independent standard normal one-dimensional

11 Ali and Sharma (1996) investigate thè robustness of F-tcsts when thè nuli distribution is not necessarily 
normal. They find that thè standard F-test is especiaUy sensitive to thè presence of leverage observations. Since 
thè HBP GM estimator weighs these influential observations, Ali and Sharma’s results do not apply here.

12 See Hampel et al. (1986), p. 191, for a definition of thè test influence function.
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Pollution 97.5th percentile/ 
2.5th percentile. 

t-statistic

p-value,
t-statistic

95th percentile. 
M-statistic

p-value.
m-statistic

N=200

0% 2.002
-2.016

0.0547 3.503 0.0394

5% 2.187
-2.150

0.0719 3.239 0.0303

10% 2.285
-2.255

0.0818 2.781 0.0200

15% 2.408
-2.414

0.1005 2.353 0.0110

20% 2.647
-2.685

0.1227 2.105 0.0089

25% 2.963
-2.858

0.1504 1.784 0.0045

n=1000

0% 1.991
-2.035

0.0575 3.897 0.0514

5% 1.979
-2.046

0.0546 3.629 0.0433

10% 2.019
-2.013

0.0560 3.369 0.0368

15% 2.049
-2.112

0.0622 3.159 0.0297

20% 2.121
-2.145

0.0697 2.982 0.0241

25% 2.294
-2.219

0.0801 2.767 0.0187

* The number of replìcations is 10,000 for both scrìes of length N=200 and N=1000. Under thè null-hypothesis 
of P2 = 0 thè M-statistic has a chi-squared distrìbution with 1 degree of freedom,Xo.05(l)  = 3.84146,
W ° ° )  = 1 % -

explanatory variables jet, and x2 were generateti. The independent variable was constructed by 
y  = jCj + e where e is a random variable also with a standard normal distrìbution. After generating 
thè clean data, thè t-value associated with thè coefficient on x2 and thè Markatou-Hettmansperger M-
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30 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

test, both based on application of our HBP GM estimator to a model which includes thè regressors*, 
and x2, are computed for a small and a large sample consisting of 200 and 1000 observations 
respectively. This experiment was repeated ten thousand times. The 2.5-th and 97.5-th percentile of 
thè calculated values of thè t-statistic and thè 95-th percentile of thè M-test with corresponding p- 
values are reported in Table 1.2. Then we contaminated both thè series of thè independent and 
explanatory variables by replacing 8% of thè observations by random values drawn from a normal 
distribution with zero mean and variance 100. The t-values and M-tests are computed for different data 
sets which are increasingly contaminated with steps of 5% up to thè level of pollution of 25% 
(§=0,5,10,15,20,25).

The simulation results reveal that thè applied econometrieian should be cautious when 
interpreting thè t-values of thè HBP GM estimator if thè data set under investigation is relatively small 
and contaminated. In all cases considered, thè t-statistic rejects too many times thè true null-hypothesis 
if a significarne level of 5% is employed. In thè small sample case of maximum data pollution, thè 
p-value reaches a level of approximately 15%. Thus, 15% of thè computed absolute t-values exceeded 
thè cutoff value of 1.96. On thè contrary, thè M-test tends to be first order stochastically dominated 
by thè x20)-distribution. The corresponding p-value decreases from almost 4% for thè clean small 
sample data set to not even 0.5% when 25% of thè data are polluted. Evidently, conlusions can not 
be drawn from Table 1.2 about thè power properties of thè M-test when thè alternative hypothesis 
holds. On thè other hand, thè usuai t-values are accurate for relatively large samples even if between 
10 and 15 per cent of thè data points do not follow thè statistical pattern observed by thè majority of 
thè data. The computed p-value associated with thè t-statistic is equal to 5.6% for thè 10% pollution 
large sample case. This number is reasonably dose to thè significami level of 5% while extreme 
outliers comipt thè data. Note that for thè large sample cases thè p-values corresponding to thè M-tests 
remain considerably higher.

A reasonable estimate of thè goodness of fit ( R 2 ) of thè regression requires a correction factor. 

The final outcome of thè HBP GM estimation procedure (see equation (1.15)) can be obtained by 
applying OLS to thè weighted observations X  * = X\jwx(X)Wr{r) and y '  = y\jWx(X)Wr(r) . Given thè 
perception that thè HBP GM technique boils down to weighted least squares, a logicai choice for 
computation of thè unadjusted coefficient of determination is:

£ ( * # « , - ?  *)J
A 2 = " __________  „

Ì»1

when thè model contains an intercept and
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Part I. Robust Estimation 31

—  1 "otherwise, where v * = —Ey ' .  A 2 is an inapproprìate measure of fit since it is increasing in thè 
number of explanatory vaiiàbles. For that reason, thè adjusted R:

** = 1 (1.44)

is used to measure thè explanatory power of thè regression model (see Judge et al. (1988, pp. 212- 
213)).

Another statistic often reported in regression analysis is thè estimator of thè scale parameter 
c 2. To obtain a robust estimate of thè HBP GM regression standard deviation we adopt thè following 
procedure. Consider a normally distributed random variable, w, with mean fi and vari ance cr. For a 
sample of n observations of u (denoted by «) thè sample median is a robust estimator of thè location 
parameter p. Consequently u - med(u) is symmetrically distributed around zero. If we take thè median 
of thè absolute value of u - med(u), we have a robust estimate of thè 75lh percentile of thè initial 
distrìbution of u. Therefore it is straightforward to propose thè Median Absolute Deviation (MAD), 
defined as

s = med{ \u -med(u)  |)/0.6745,
(1.45)

as a robust estimator for a  where thè scaling factor 0.6745 is thè 75lh percentile of thè standard normal 
distrìbution. We use as final estimation of thè varìance of thè HBP GM regression thè square of (1.45), 
where u, is defmed as

u - y~x ,S_w / = l,.. ,n.
‘ ^  ,Kcm (1.46)

1.42 Breakdown Point

The Generalized M-estimator developed in this Chapter is B-robust; i.e. any observation has bounded 
influence on thè estimate. B-robustness does not necessarily imply that a group of observations 
containing more than one outlier have bounded impact. Therefore, it is useful to consider also thè 
notion of breakdown point. The breakdown point of an estimator is determined by thè smallest amount 
of data contamination that can cause thè estimator to take on arbitrary values. Suppose $ is an 
estimator. Define ^ ( S ; ^ ) , ^ )  to be thè supremum of I|5(Af')-$(.?0l for all X*, where X' corresponds 
to thè originai data set with a fraction 6 (=m/n) of thè observations replaced by arbitrary values. The 
breakdown point of $(•) on X  is then formally defined as (see Donoho and Huber (1983))

b(T\ )J() = m in ia t i (m ;r (  )^0= »}, ^  47^

where n is thè number of observations in X  and m thè number of originai data points exchanged by 
any value.
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32 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Simpson, Ruppert and Carroll (1992) show that13

Under reasonably generai conditions thè regression parameter estimates (one-step GM 
estimates) inherìt thè breakdown properties of thè preliminary estimates of thè regression 
parameters and thè multi variate location and scale estimates of thè design x’s (1992. p.446).

One-step refers to one iteration of thè Newton-Raphson type algorithm to solve Mallow’s ftrst order 
condition. In particular it is sufficient that thè following conditions hold:

(B.l) n-m  > il+1 > p
2

(B.2) y(r.) is odd and bounded, 

u/(r.)
(B.3) w(r.) = _ _ L _  è  d0 > 0 i f  |r. |£ a ,

I
dv|/(r.)

(B.4) — _—L. t  > 0 i f  | r. \ < a for at least n-m good points, 
ó r

3 w (r)
(B.5) ____!_ > 0 for all points,

9 r,

(B.6) thè set of ’good’ points (i.e. | r. | <a) must contain a Iinearly independent subset of size p,

(B.7) and a must strictly exceed thè appropriate tuning Constant k (k  being thè tuning Constant 0.6745 
in thè formula of thè LMS scale estimate, see Appendix Al and Simpson, Ruppert and Carroll (1992), 
p.440).

Hereafter we will discuss conditions (B.l) to (B.7) with thè intention of ascertaining thè 
breakdown point of our GM-estimator. First, observe that thè GM estimator is computed with a multi- 
step procedure (see formula (1.8)) instead of performing only one NR-iteration. If however thè one- 
step GM estimator inherits thè breakdown point of its preliminary estimators then this breakdown point 
is also carried over to thè multi-step estimator by thè argument of induction.

The first condition requires that at least half of thè data are regular. This assumption together 
with (B.4) and (B.6) are needed to ensure that thè Hessian (1.6) is positive definite and thus invertible. 
Condition (B.2) asserts that any vertical outlier has limited impact on thè estimates. Evidently, thè \y- 
function associated with OLS does not fulfill (B.2). Therefore, a single outlying observation might 
have unbounded influence on thè estimates and thus thè breakdown point of thè OLS estimator is nil. 

In contrast with thè y-function of OLS, our GM estimator is based on thè bounded Tukey’s bi-square 
function. From (1.29) and (1.30) it is straightforward to recognize that (B.3) holds (see also Figure 1.2)

13 Words within parentheses are added.
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and to compute thè number a which is enforced by condition (B.4). Recali that efficiency 
considerations led to thè choice c=4.685 as appropriate specification of thè bi-square function. Writing 
down thè derivative of y(*)

JL-L. = (1 -(r./(cO))»)(l - 5 ( r  / (ca))2) | r . /o |<c  
dr.

(1-48)
* 0 | r / o | > c .

and evaluating when d\jf(r)/dr = 0 using (1.48) for |r.| < c brings about thè Constant a=2.095. 
Consequently, also condition (B.7) is verified. Only restriction (B.5) is left for verification. Here thè 
ship rans ashore. Indeed, since thè bi-square function is redescending, for thè mild leverage points 
points (i.e. a< \ r. | <c) it is thè case that 9 \|/(r.)/9 r.< 0 , and (B.5) is violated. SRC comment on this 
situation by pointing out thè following in their remark 2.1 on p. 441:

If \|/ is redescending then d\|/(r )/3r can go negative. We conjecture that in this case it is 
possible to manipulate p data points so that thè Newton-Raphson version of H,, (thè Hessian) 
equals 0.

In other words, thè one-step GM estimates can diverge infinitely far from thè starting preliminary 
estimates. Only p outliers might cause thè breakdown of thè one-step GM-estimator. By way of 
comparison, thè Huber y-function (derived from (1.4)) satisfies all conditions (B.1MB.7). The GM- 
estimator constructed with (1.4) therefore can handle up to 50% pollution of thè data since both thè 
preliminary LMS and MVE estimatore have breakdown points of 50%. In case of our GM estimator, 
however, convergence will not be achieved with a multi-step NR-algorithm if thè Hessian becomes 
singular. The Hessian ( 1.6) has to be positive definite for all iterations of thè NR-algorithm in order 
to fmd a locai minimum of thè objective function. We suggest adopting thè following estimation 
procedure: Compute for each NR-iteration thè smallest eigenvalue of thè Hessian. If this eigenvalue 
is below some criticai positive number or if thè iterations outnumber a certain upperbound then our 
best course is to bring thè NR-algorithm to a halt and report thè preliminaiy LMS estimate as thè final 
outcome. Otherwise, thè converged GM-estimates are thè final parameter estimates. This procedure 
inherits thè high breakdown point of 50% of thè preliminary estimatore, while it is equivalent to thè 
described GM-estimator based on Tukey's bi-square function in almost all of thè regressions with 
either reai or simulated data sources.

1.4.3 Consistency

Simpson, Ruppert and Carroll (1992) also provide sufficient conditions that guarantee thè asymptotic 
normality and consistency of thè GM estimator. The requirements placed on thè asymptotic behavior 
of thè (weighted) design are observed when thè identifìcation of leverage points is based on MVE
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34 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

estimates. The other conditions are explicitly stated below:

(C.l) The errore are independent with distrìbution function F which has symmetric density
around zero.

(C.2) The score function i|/(r) is bounded and continuous,

(C.3) £[\|/(Ev)] = 0 and E[sv.fo5E*2] = 0 for any non negative scalar v,
dr,

dy(r) dv(r ) ^V(f)
(C.4) y(r.) has derivative —__L such that |—_ L I  < and | r —_ _ L | < =*=, where | . |  is

1 or. or. or.
thè supremum norm, ' J

d v (r)  c P ^ r)  d*V(r) dfy(r.)
(C.5) v has derivative ------- L such that | ------- LI < | r --------L I  < »  and

ó r  dr,2 dr,2 *  d r2

j iuP °°dr,

and

nOIL— ^ v'^ [V (E ,)]w  (jt * A and J ™ ,- L £ g [  ^ (E,) ]>»•( x  ) x j x  = B
n^ ° °  r h  ‘ «-+“  n .-i a e.

for some symmetric positive definite matrices A and B.u '

Conditions (C.2) and (C.3) are easily checked using (1.12) and ( 1.48), assuming that E obeys 
(C.l) and remembering that all odd moments of a symmetric distrìbution are zero. The second 
derivative of thè y-function can be written as:

<)r\y(r.)
—■—-— = ( -2 r /(c o )2)(6 -10(r/(cC J))2) |r /o |< c  ^ 2 * ‘ '

1 (1.49)

= 0 |r / o  |£ c .

Clearly, thè first derivative (1.48) and second derivative (1.49) of thè score function are bounded and 
become zero for large residuals. As a result (C.4) and (C.5) follow immediately. Finally, condition 
(C.6) is satisfied for an infmitely large sample of observations which are generated by a joint normal 
distrìbution. Requirement (C.6) asserts that thè Hessian must converge to a symmetric positive definite

14 As shown by SRC (1992), thè HBP GM estimator produces root-n consistent estimates if thè re are 
heteroskedastic symmetric regression errore provided that conditions (C.1MC.6) apply and thè NR-algorithm is 
used to solve Mallow’s first order condition. For instance, in this case, thè HBP GM estimates found by thè 
scoring algorithm have thè same rate of convergence (n 1 / 3 thè preliminary LMS estimates (see Rousseeuw 
and Leroy (1987), p.179).
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Table 1-3 Simulation Results with Uncontaminated Data, (3, =P2 = 1, n=200*

OLS LMS GM

0.9989610
0.0049485
0.0049474

1.0023398
0.0421095
0.0421040

0.9991616
0.0052413
0.0052406

1.0012882
0.0050393
0.0050376

1.0009535
0.0378368
0.0378358

1.0011469
0.0053645
0.0053632

* Each celi contains thè mean of thè estimated parameter value, thè mean squared error and 
thè vari ance over thè 10,000 runs.

matrix. In thè previous sub-section we argued that, on top of thè asymptotic result, thè Hessian should 
be positive definite in any step of thè NR-algorithm in order to secure thè transmission of a high 
breakdown point. After having verified conditions (C.1MC.6) we conclude that thè employed HBP 
GM estimator has asymptotically a normal distribution and produces consistent estimates.

1.4.4 Efficiency

To examine thè efficiency of thè HBP GM estimator compared to OLS and LMS under different types 
and fractions of data contamination we have performed a number of simulations. A single experiment 
began with generating a matrix of explanatory variables, x, of length 200, consisting of an intercept 
and one explanatory variable drawn from a standard normal distribution. Then a response variable, y, 
was created according to y - x $ + e  with p, and P, set equal to unity and where er  i = l ,..,200, are 
independent standard normally distributed. Given these data we re-estimated p using thè OLS, LMS 

and HBP-GM estimators, thè results of which are presented in Table 1.3.
Table 1.3 shows that OLS both yields thè lowest variance and mean squared error. This is, of 

course, no surprise since under thè data generating process outlined above OLS is thè Uniformly 
Minimum Variance Unbiased Estimator. Note however that both thè variance and thè mean squared 
error of thè HBP GM estimator are just a little higher. Recali that a M-estimator constructed with 
Tukey’s bi-square function achieves an efficient level of 95% in comparison with OLS for large 
normally distributed data samples if thè tuning Constant c equals 4.685. M-estimators have unbounded 
influence functions since they only take care of vertical outliers. On thè other hand, thè HBP GM 
estimator downweighs leverage points independentiy of their vertical distance from thè regression line. 
Therefore, we foresee an additional loss in efficiency. Division of thè OLS and GM variances reveals 
that thè HBP GM estimator obtains a relative efficiency level of 94.4% in thè experiment we carried 
out. The alleged loss in efficiency thus is very modest. Clearly, efficiency considerations are not 
convincing enough to prefer OLS to GM, knowing that thè former has a breakdown-point of 0%. On
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36 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Table 1.4 Simulation Results Concerning Efficiency of thè HBP GM Estimator1

Leverage Points Added Vertical Outliers Added Leverage Points and Vertical 
Outliers Added

OLS LMS GM OLS LMS GM OLS LMS GM

5% Pollution

0.200567
0.651876
0.012784

0.995782
0.041557
0.041539

0.998774
0.005486
0.005484

0.949351
0.032132
0.029566

0.998133
0.041833
0.041829

0.998666
0.005632
0.005630

0.196364
0.731822
0.085991

0.998468
0.041477
0.041474

0.998783
0.005538
0.005536

0.199080
0.654344
0.012872

0.994% 1 
0.037870 
0.037845

0.999903
0.005787
0.005787

0.953168
0.033310
0.031207

0.998214
0.038128
0.038125

1.000576
0.005697
0.005697

0.194158
0.739740
0.090358

0.999168
0.038582
0.038582

1.000575
0.005801
0.005800

10% Pollution

0.093830
0.823991
0.002847

0.991806
0.041783
0.041715

0.999576
0.005945
0.005945

0.898336
0.065004
0.054668

0.998771
0.041443
0.041441

0.998250
0.006232
0.006229

0.095341
0.866717
0.048310

0.996986
0.041690
0.041681

0.999447
0.005859
0.005859

0.093759
0.824204
0.002931

0.989552
0.038624
0.038515

0.999188
0.006159
0.006158

0.904547
0.065180
0.056068

0.997718
0.037663
0.037658

1.000113
0.006258
0.006258

0.095719
0.866904
0.049179

0.992524
0.038170
0.038114

1.000337
0.006165
0.006165

15% Pollution

0.057845
0.888980
0.001323

0.986834
0.041591
0.041417

0.999977
0.006472
0.006472

0.848411 
0.107698 
0.084718

0.999543
0.040655
0.040655

0.998582
0.007167
0.007165

0.057884
0.920049
0.032465

0.993765
0.040990
0.040951

1.000368
0.006512
0.006512

0.056900
0.890819
0.001383

0.984971
0.040720
0.040494

0.996509
0.006712
0.006700

0.847506
0.110691
0.087437

1.002215
0.038850
0.038845

0.997990
0.007157
0.007152

0.057706
0.920038
0.032120

0.991309
0.038975
0.038899

0.998740
0.006594
0.006592

20% Pollution

0.041390
0.919811
0.000877

0.980704
0.042421
0.042049

0.999659
0.006678
0.006678

0.804535
0.143066
0.104859

1.000447
0.041214
0.041213

0.998151
0.007736
0.007733

0.044029
0.938577
0.024696

0.989080
0.040697
0.040578

0.999559
0.006673
0.006673

0.040943
0.920667
0.000876

0.978557
0.040763
0.040303

0.995468
0.006809
0.006789

0.798557
0.149329
0.108750

0.996269
0.038140
0.038126

0.996417
0.007691
0.007678

0.041805
0.943166
0.025029

0.984524
0.038602
0.038362

0.997812
0.006821
0.006817

25% Pollution

0.030888
0.939851
0.000674

0.967603
0.048125
0.047076

0.998027
0.006839
0.006835

0.747312
0.190763
0.126912

0.998391
0.039194
0.039191

0.995502
0.008250
0.008230

0.031209
0.959140
0.020584

0.981777
0.042082
0.041750

0.998596
0.006932
0.006930

0.030397
0.940816
0.000687

0.963753
0.045688
0.044374

0.994769
0.007214
0.007186

0.749810
0.197492
0.134897

0.999797
0.037467
0.037467

0.997402
0.008487
0.008480

0.029549
0.961735
0.019959

0.982081
0.040121
0.039800

0.997499
0.007231
0.007225

* Each celi contains thè mean, thè mean squared error and thè variance of thè estimated parameter value over 
thè 10,000 runs. Each first row concems thè intercept (fi,), each second row concems thè coefficient of thè 
normally distributed explanatory variable ($3) The length of thè series equals 200 and
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Part I. Robust Estimation 37

thè other hand, Rousseeuw’s LMS estimator performs less well in terms of efficiency. This is 
considered a setback, despite its appealing HBP. Note, however, that we need thè LMS in order to 
compute thè HBP GM estimator in thè first place.

Next we successively corrupted thè second column of thè explanatory variables and thè 
response variable by replacing (randomly drawn) 5% of thè observations by random values drawn from 
a normal distribution with zero mean and variance 100. In terms of figure 1.1 we first added points 
like (d) and (b) in figure 1.1 seperately and then simultaneously. The last corruption may have 
involved adding observations like (c) in figure 1.1. With these polluted data we re-estimated p using 
all three estimators. This process was repeated 10,000 times for 8% equal to 5, 10, 15, 20 and 25, thè 
results of which are summarized in Table 1.4. Indeed, we could go up to corrupt 50% of thè data 
considering thè breakdown point of both thè LMS and HBP GM estimator. However, routine data are 
thought to contain 1%-10% gross errore (see Hampel et al. (1986), p.28). Clearly, Table 1.4 includes 
all interesting percentages of data contamination.

From Table 1.4 we can draw thè following conclusions. A dramatic decay of OLS is noticed 
when data is contaminated. OLS is unable to produce reliable estimates in any of thè cases considered, 
i.e. it breaks down completely. In terms of adequately estimating thè unknown parameters, OLS is less 
sensitive to thè construction of vertical outliers than to thè construction of leverage points (this is also 
observed by Rousseeuw and Leroy (1987)), although applying this technique stili results in 
considerable bias when vertical outliers corrupt thè data. The explanation for this phenomenon lies in 
thè way we corrupted thè data. With respect to thè model under which thè originai data are generated, 
constructing leverage points implies that these observations also become vertically outlying because 
thè originai slope parameter ( p: ) differs from zero. The most influenzai observations in OLS 
regressions are characterized by a relatively high absolute value of thè product of thè concomitant 
explanatory variable and residuai. Hence thè stronger impact on thè estimates of thè constructed 
leverage points. On average LMS retums very reliable estimates, even if 25% of thè data are corrupted 
in any way. In terms of precision however thè HBP GM estimator is in most cases even superior to 
LMS.

Looking at thè variance of thè different estimates over thè 10,000 runs we see that if only 
leverage points are constructed OLS is most efficient if 10% or more data contamination is involved 
(in case of only 5% data pollution by leverage points thè HBP GM estimator is most efficient). This 
is however little consolation considering thè bias in estimates this technique yields (even if only 5% 
of thè data are replaced by leverage points OLS retums very unreliable estimates). In all other cases 
(i.e. when only vertical outliers or both leverage points and vertical outliers are constructed) thè HBP 
GM estimator is most efificierìt. Moreover, under all types and fractions of data contamination thè LMS 
technique is considerably less efficient than thè HBP GM method. Finally, considering both efficiency 
and precision (i.e. comparing thè mean squared errors) thè HBP GM estimator is found to be superior 
to both OLS and LMS. Based on thè statistical performance of thè OLS, LMS and HBP GM 
estimators as revealed by Table 1.4, we conclude that thè HBP GM estimation procedure is favoured.
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Figure 13 Hertzsprung-Russel Diagram of thè Star Cluster CYG OBI *

38 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Log Temperature

Section 1.5 Stars, Light and Heat

To illustrate thè importance of robust estimation when data contain outlying observations, we use an 
example from astronomy. In this fìeld of science it is well known that thè star cluster CYG OBI, 
which contains 47 stars in thè direction of Cygnus, comprises four conspicuous stars, so called giants 
(see Rousseeuw and Leroy (1987)). The scatterplot of thè logarithm of thè effective temperature at thè 
surface of a star (Te) and thè logarithm of its light intensity (L/Lq), thè Hertzsprung-RusselI diagram, 
for thè star cluster CYG OBI, reveals that thè celestial bodies can be divided into two groups: thè 
majority of thè stars, which are lying along a positively sloped band, and thè four giant stars in thè 
upper left corner (see Figure 1.3). Table 1.5 summarizes thè data of star cluster CYG OBI 
(observations 11, 20, 30 and 34 are giants).

OLS reveals a negative relation between thè light intensity and thè temperature of a star ( y 

= 6.793 - 0.413x ), although for 43 stars (which in astronomy are said to lie on thè main sequence) 
this relation is positive. Clearly, thè four giants trick OLS. The LMS estimate is insensitive to these 
huge objects and yields a line which fits thè majority of observations properly ( y = -12.964 + 4.046x
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Table Data for thè Hertzsprung-Russell Diagram

Part I. Robust Estimation 39

Star

Index

logTe

(Xj)

log(L/Lo)

(y.)

Star

Index

logTe

(x,)

log(L/L„)

<*>

1 4.37 5.23 25 4.38 5.02
2 4.56 5.74 26 4.42 4.66
3 4.26 4.93 27 4.29 4.66
4 4.56 5.74 28 4.38 4.90
5 4.30 5.19 29 4.22 4.39
6 4.46 5.46 30 3.48 6.05
7 3.84 4.65 31 4.38 4.42
8 4.57 5.27 32 4.56 5.10
9 4.26 5.57 33 4.45 5.22
10 4.37 5.12 34 3.49 6.29
11 3.49 5.73 35 4.23 4.34
12 4.43 5.45 36 4.62 5.62
13 4.48 5.42 37 4.53 5.10
14 4.01 4.05 38 4.45 5.22
15 4.29 4.26 39 4.53 5.18
16 4.42 4.58 40 4.43 5.57
17 4.23 3.94 41 4.38 4.62
18 4.42 4.18 42 4.45 5.06
19 4.23 4.18 43 4.50 5.34
20 3.49 5.89 44 4.45 5.34
21 4.29 4.38 45 4.55 5.54
22 4.29 4.22 46 4.45 4.98
23 4.42 4.42 47 4.42 4.50
24 4.49 4.85

Source: Rousseeuw and Leroy (1987, p.27).

).'5 Also thè HBP GM estimator ignores these observations. However, since thè HBP GM estimator 

is more efficient than Rousseeuw’s LMS, it uses more information contained in thè data. In particular, 
observations 7 and 14 attract thè HBP GM line ( y = -7.132 + 2.741 x ). On thè other hand, they 

cannot reverse thè relation between light intensity and temperature, as exhibited by thè majority of thè 

stars.

15 Rousseeuw and Leroy (1987) find a somewhat different LMS line (y = -12.298 + 3.898x). This is due to 
thè enormous increase in computer technology over thè years which enables us to perform many more drawings 
to compute thè LMS estimator. The difference in LMS estimates does not affect thè main conclusions of this 
section.
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40 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Figure 1.4 Scatterplot of Standardized OLS Residuate Versus Mahalanobis Distances

0 . 0  0 . 1  0 . 8  1 . 2  1 . 6  2 . 0  2 . 4  2 . 8  3 .2

Classic Distances MD±

Table 1.6 reports thè estimation results. It is striking to see that thè OLS estimate is not only 

completely wrong (both coefficients have thè wrong sign), but is also insignificant for thè main 

explanatory variable. A well known phenomenon in astronomy is not revealed by this estimation 

technique. The LMS and GM estimators find thè true, positive, relation, whereas thè latter technique 

leaves no doubt as to thè significance of thè relation between thè light intensity and thè temperature 

of a star.

The scatterplot of standardized residuals versus jr-distances is an aid in visualizing leverage 
points and vertical outliers (see Rousseeuw and Van Zomeren (1990)). For our regression results with 

OLS, LMS and HBP GM these plots are depicted in Figure 1.4, 1.5 and 1.6 respectively. Leverage 

points are defined as observations with a x-distance exceeding thè square root of thè 97.5* percentile 

of thè X2(p)-distribution.16 If p  is 1, this criticai value is 2.24. In terms of Figures 1.4, 1.5 and 1.6, 

points to thè right of thè vertical line with jr-distance 2.24 are called leverage points. The standardized 

residuals are evaluated with a standard normal distribution. For this probability density function, thè

16 See Section 1.2.2.
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Part I. Robust Estimation 41

Table 1.6 Estimation Results, Hertzsprung-Russell Data*

Dependent Variable: Log Light Intensity

OLS LMS HBP GM

Constant 6.793 -12.964 -7.132
(1.237) (3.023)

Log Temperature -0.413 4.046 2.741
(-0.286) (0.680)

P 0.023 0.98

Ò 0.552 0.368b 0.44ff

' Standard errors are within parentheses. 
b Sec Appendix Al for a description of this estimator. 
c See Section 1.4.1 for a description of this estimator.

Table 1.7 Outliers in thè CYG OBI Data Identified by LMS and HBP GM

Estimation
Technique

Leverage
Points

Vertical
Outlier

Leverage Point and 
Vertical Outlier

Weights based on 
x-distances ŵ (jc()

Weights based on 
residuals w'r(r.)

7 0.695 0.220

11 0.430 0

HBP GM 14 0.991 0.976

20 0.430 0

30 0.430 0

34 0.430 0

7

9

LMS 11

14

20

30

34
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Figure 1.5 Scatterplot of Standardized LMS Residuals Versus MVE Distances
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Part I. Robust Estimation 43

absolute value of 99% of thè elements of its domain is less than 2.57. Points lying outside thè strip 
indicated by this cutoff value are defined as vertically outlying. The link between Figures 1.4, 1.5 and
1.6 and Figure 1.1 is that points in thè mid west areas of thè former figures coincide with points (a) 
in thè latter, points in thè mid east are like (c), points in thè north east area conform with (d) and 
points in thè north west area conespond to (b).

According to thè HBP GM and LMS estimates, five observations. including thè four giants, 
are both a leverage point and a vertical outlier (see also Table 1.7). Star 14 is only a leverage point. 
LMS also identifies observation 9 as vertically outlying. On thè other hand, OLS only recognizes thè 
giant stars as leverage points but not as vertical outliers. Note that this implies that, according to thè 
OLS result, thè four giants are not characterìzed by a relation between light intensity and temperature 
which differs considerably from that associated with thè majority of thè data (compare Figure 1.1, in 
which leverage points (c) are in line with thè regular observations (a)). Moreover, star 7 and 14 are 
not identified as horizontally outlying. The inability of thè classical (Mahalanobis) x-distance to reveal 
these two observations as leverage points is due to thè masking effect. The four giants corrupt thè 
Mahalanobis measure such that mild leverage points remain undiscovered.

Section 1.6 Conclusions

The success of OLS and its generalizations in applied economie research is not justified by its 
performance on contaminated (reai) data sets. If leverage points and/or vertical outliers are present, 
OLS not only produces unreliable parameter estimates but also incorrect t-values. EspeciaUy in 
economics where data are, in many cases, far from smooth, thè use of OLS can lead to seriously 
wrong conclusions.

In this chapter we have described a reliable alternative, a Generalized M-estimator for thè 
linear model, which has a high breakdown point, is consistent, has asymptotically a normal distribution 
and, as our simulation results indicate, is more efficient than Rousseeuw’s LMS estimator. A Monte 
Carlo study reveals that thè associated t-values are accurate in large samples but tend to reject thè null- 
hypothesis (i.e. thè unknown parameter is zero) in too many cases of thè small sample experiment. An 
example from thè astronomy illustrates thè effects of outliers in a reai data set and shows how these 
anomalous points can be highlighted with graphical devices.

Either thè resampling or projection algorithm is used in thè construction of thè HBP GM 
estimator. We have proposed a correction factor which, according to our simulation results, improves 
both algorithms for estimation of thè location and scatter of thè design matrix.

In thè subsequent two chapters we will present some robust specification tests and present 
solutions for thè specific probiems stemming from robust estimation of panel data.
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44 Chapter 1. An Example of a High Breakdown Point Generalized M-Estimator

Appendix Al Least Median of Squares Regression

Rousseeuw (1984) introduced a simple yet elegant and robust estimator for thè unknown parameter 
vector P in thè classica! linear model. The objective of thè estimator is to minimize thè median of thè 
squared residuate:

The breakdown point of thè resulting Least Median of Squares (LMS) estimator equals ([n/2]-p+2Vn 
for n observations and p explanatory variables which is as high as 50% when n goes to infinity (thè 
notation [r] stands for thè largest integer less than or equa! to r).

To approximate (A l.l)  we employ thè resampling algorithm. This algorìthm starts with thè 
application of thè OLS estimator on a randomly drawn sample of size p. Evidently, thè resulting 
regression line perfectly fits thè sub sample. Given this trial estimate, thè objective value
m e d i y j - x f i ^ ) 2 is calculated with respect to thè complete data set. A refinement for thè intercept 
estimate is obtained by computing thè midpoint of thè shortest half (see sub-section 1.3.1 for a 
definition) of thè numbers y - x  where x '  = xa ..xip and ^
Rousseeuw and Leroy (1987), p.201). We then proceed with thè next drawing. The estimate with thè 
lowest objective value is kept as thè approximation of thè LMS estimate.

If all distinct sub samples were to be enumerated, there were far too many estimates to be 
made for data sets of reasonable size. However Rousseeuw and Leroy (1987, p.198) show that thè 
probability of getting a sub sample consisting of p non-outlying observations when thè fraction of 
contamination equals 5 is

(A 1.2,

where m is thè required number of independent sub samples. Rewriting (A 1.2) gives thè number of 
drawings needed to get a good sub sample with probability A :

m -  [ln(l -A)/ln(l -(1 -8 )p)].
(A l.3)

In our GAUSS program A is set equal to 0.99 and 6 is set equal to 0.5. When approximating thè 
LMS estimator we, however, used 10 times as many trials as prescribed by (A l.3).

The scale estimate associated with thè LMS technique is thè result of a two stage procedure 
(see Rousseeuw and Leroy (1987), p.202). An initial estimate is made according to

(A l.l)

(A 1.4)

where r. = ^ G i v e n  s°, weights are determined according to
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w. = 1 i f  \r./s°\Z  2.5
-  0 otherwise.

(A1.5)

The second step yields thè estimate of thè standard deviation of thè errors:

■"IMS
i -1 i -1

(A l.6)

We use (A 1.6) as scaling factor in Tukey’s bi-square function (1.12).
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CHAPTER 2

B-Robust Estimation and Testing of thè SUR Model With 

Fixed Effects and Heteroskedasticity

Section 2.1 Introduction

Panel data sets are constructed by thè pooling of cross-sections and time series. These so-called 
longitudinal data sets enable researchers: ( 1) to draw conclusions from more reliable statistical 
inference as a result of an increase in thè number of observations in comparison with a single 
cross-section or a single time series, (2) to incorporate individual/firm specific fixed or random 
effects in thè regression model, (3) to assign each cross-sectional unit a different coefficient vector 
and (4) to model dynamics. The High Breakdown Point GM estimator as described in Chapter 1 is 
particulary suitable for thè estimation of models using cross-sectional data (see Section 1.2.4). 
When estimating panel data models with our HBP GM estimator we may encounter severa! 
econometrie issues including heteroskedastic regression errors due to heterogeneity among cross- 
sectional units, autocorrelated errors and also fixed effects which are correlated with thè 
explanatory variables. In this chapter we present some robust diagnostic tests and B-robust 
regression methods for panel data to detect and to capture thè aforementioned problems. These 
procedures are founded on thè HBP GM estimation method but use also featunes of other well 
known estimators in order to gain efficiency.

Multiplicative heteroskedasticity and thè occurence of outlying observations are not 
necessarily different names for thè same phenomenon in a regression model. Smooth data, i.e. data 
which do not contain any outliers, might adequate!y fit a regression model with heteroskedastic 
errors. Neither is it thè case that just a few (vertical) outlying observations in thè data imply 
heteroskedasticity. On thè other hand, large vertical outliers might coincide with large leverage 
points. In this case, we cannot distinguish between multiplicative heteroskedasticity and outlying 
observations. To test for heteroskedasticity we derive a robust version of thè Pagan and Velia 
(1989) test associated with thè HBP GM estimator. Monte Carlo results indeed show that 
heteroskedasticity is detected by thè robust Pagan and Velia test when thè generated homoskedastic 
regression model is polluted with leverage points. As shown by Simpson, Ruppert and Carroll 
(1992), thè HBP GM estimator stili produces root-n consistent estimates if there are heteroskedastic 
symmetric regression errors provided that thè Newton-Raphson algorithm is used to solve thè first
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order condition (see also Section 1.4.3). We show by means of a simulation experiment that thè 
HBP GM estimator extended with Harvey’s (1976) two-step improvement, which corrects for 
multiplicative heteroskedasticity, is more efficient than thè standard HBP GM estimator in a 
generateci heteroskedastic regression model.

It is highly conceivable that regression errors are correlated over time in panel data models. 
For instance, it is not inconceivable that thè errors belonging to a certain cross-sectional unit are all 
positive for every period whereas thè opposite applies to another unit. Consider a panel data set 
with a small number of time periods but which is large in thè number n of cross-sectional units. 
Here we might apply thè Seemingly Unrelated Regression (SUR) model (see Zellner (1962)) with 
one equation for each time period. Peracchi (1991) develops an optimal bounded influence 
estimator for thè SUR model. This estimator is a specific case of thè generai solution for B-robust 
estimation of panel data models proposed by Krishnakumar (1995). Peracchi (1991) derives thè 
normal equations which define thè B-robust estimator of thè unknown components of thè variance- 
covariance matrix (L) of thè model error terms. After choosing thè bounds on thè influence 
functions of thè estimators for respectively P and X, optimal solutions in thè sense of estimatore 
which have minimum asymptotic mean square error can be computed. We develop a similar B- 
robust estimator for thè SUR model. However, instead of solving thè first order condition 
associated with X and computing new accompanying weights, we use thè regression residuals and 
corresponding weights of thè first step HBP GM regression to determine a possible transformation 
of thè observations in order to correct for autocorrelation. Then in thè second step we proceed with 
thè computation of thè robust SUR (RSUR) estimates, which are considerably more efficient than 
thè standard HBP GM estimates if autocorrelation occurs as is shown by a Monte Carlo study.

It is well known that thè Generalized Least Squares (GLS) Estimator is inconsistent if thè 
fixed effects are correlated with thè independent variables and left aside as part of thè error terms. 
Among a number of different solutions which have been proposed to eliminate these individuai 
specific intercepts are: estimating in thè within dimension of thè data by calculating deviations 
around individuai means or differencing thè data over thè time periods. For example, first 
differences are calculated by subtracting thè last period value (first lag) from each current value of 
thè cross-sectional observation. Although thè GLS estimator is most efficient and consistent under 
thè nuli hypothesis of uncorrelated fixed effects, thè difference and within estimatore generate 
consistent estimates even when thè fixed effects are correlated. Griliches and Hausman (1986) in 
tum show that thè reason for finding biased and significantly different within and difference 
estimates is possibly due to measurement errors in thè explanatory variables. They propose an 
estimation strategy for panel data with errore in variables which is based on thè Generalized 
Method of Moments estimator. In Chapter 3 we develop an alternative robust GMM estimator 
which continues to generate unbiased estimates when thè panel data set with correlated fixed 
effects is contaminated (see Section LI for different types of data pollution). In this case, thè 
standard GMM estimator breaks down.
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In short, Chapter 2 is organized as follows. After disclosing thè panel data mode! with its 
underlying assumptions in section 2.2 we present a specification test on correlated fixed effects and 
a specification test on cross-sectional correlation in sections 2.3 and 2.4 respectively. In Section 2.S 
we show how to extend thè standard HBP GM estimator with Harvey’s two-step improvement and 
derive thè robust Pagan and Velia test. Both thè robust testing and thè estimation procedures 
conceming heteroskedasticity are evaluated by means of a Monte Carlo study in section 2.5.1 and 
2.5.3 respectively. The subsequent section contains thè generalized Durbin-Watson statistic of 
Bhargava, Franzini and Narendranathan (1982), thè derivation of our B-robust SUR estimator and 
its varìance-covarìance matrìx and thè simulation results conceming autocorrelation. Finally, 
section 2.7 concludes Chapter 2.

Section 2.2 Model Assumptions

Consider thè linear panel data model

where etì is thè error term corresponding to cross-sectional unit i in period t and T]., /=l,..,n are 
thè fixed effects. ytì is an observable dependent variable and x tì is a row vector of length p of 
observable explanatory variables. There are T periods and n cross-sectional units, adding up XoN 
observations. The fixed effects are eliminated from equation (2.1) by estimating either in first 
differences ($gM) or in thè within (0^*) dimension of thè data.

The model errors are assumed to exhibit thè following properties. First, thè associated 
distrìbution function F has a density symmetric around zero. Second, £„. is assumed to be 
orthogonal to x tì. In other words, thè explanatory variables are treated as fixed or predetermined. 
Third, thè n errors £(i t=s, /■ within one time period s (one equation) are assumed to be 
independent. Therefore, we use thè Seemingly Unrelated Regression (SUR) model in a somewhat 
unusual way.

The distinguishing features of Seemingly Unrelated Regressions as a method for pooling 
time-series and cross-sectional data are contemporaneous correlation in thè disturbances and 
thè assumption that each cross-sectional unit has a different cocfficient vector 
(see Judge et al. (1988), p.444).

In contrast with this definition we assume that thè parameters of thè linear model are equal for 
each cross-sectional unit (model (2.1)) and there is zero cross-sectional correlation (see(A.3) 
below). However, we allow disturbances within each time-series to be correlated. Consequently, thè 
following assumptions are made on thè covariance structure of thè error terms of thè panel data
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model (2 .1):

04.1) /=l,..,n, r=l,..,7*,

04.2) £[E,x J=0,

04.3) E[E"£t}=0, i f  i*j,

04.4) « ou.

In thè literature on panel data, (2.1) together with assumptions (A.l)-(/4.4) is called thè 
covariance model (see Màtyàs and Sevestre (1992) p. 26).

Section 13  Testing For Correlated Fixed Effects

Rewriting thè panel data model (2.1) as 

y = x_B + $f  n tfr ti
(2.2)

where d t. = £n + ri., shows that Generalized Least Squares estimation of (2.2) generates 
inconsistent estimates if thè fixed effects are correlated with thè explanatory variables. In this 
case thè disturbances 'òtì are not perpendicular to thè independent variables. Since thè within 
estimator does not exhibit this inconsistency, one can test for correlated fixed effects by 
constructing a Wu (1973) - Hausman (1978) test statistic of thè form

(2.3)

The Wu-Hausman test compares, under thè null-hypothesis of correct model specification. a 
consistent and efficient estimator with an alternative consistent estimator which does not 
necessarily attain asymptotically thè Cramer-Rao bound. In case of misspecifìcation, thè first 
estimator is inconsistent but thè latter one has to be consistent. Under thè nuli hypothesis of non- 
correlated fixed effects, m is asymptotically chi-squared distributed with p degrees of freedom.

Metcalf (1996) discusses powerful Wu-Hausman tests in panel data models with 
endogenous regressors. He shows that computing m from (2.3), where thè GLS and within
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estimatore are replaced by their instrumentai variable counterparts, is equivalent to calculating:

(2.4)

where (5b are thè instrumentai variable estimates obtained with thè between estimator. Between 
estimation boils down to computing time-averages for each cross-sectional unit and regressing thè 
average value of thè independent variable on thè average value of thè dependent variables. A 
remarkable result is that thè more powerful test is not necessarily constructed with thè more 
efficient GLS estimator. It can be advisable to use an incomplete set of instruments. See Metcalf 
(1996) for an explanation and details on thè choice of thè instruments.

In thè application discussed in Chapter 5, we will test for thè need to add fixed effects to 
thè panel data model by comparing thè HBP GM (RSUR) estimates of thè model

>’„ -  c + + e„
(2.5)

with thè HBP GM (RSUR) within or first difference counterparts using thè Wu-Hausman statistic. 
c is an unknown intercept. If thè nuli hypothesis E['n.(jrj]=c holds then thè OLS (SUR) estimator 
(in levels) is consistent and asymptotically attains thè Cramer-Rao bound. The HBP GM (RSUR) 
estimator however attains at thè most 95% of thè efficiency level of thè OLS (SUR) estimator. We 
therefore foresee that thè computed Wu-Hausman statistic only approximates thè x2-distribution. 
Estimating (2.5) in levels retums biased coefficients under thè alternative hypothesis that thè fixed 
components are not Constant and correlated with thè explanatory factors.

Section 2.4 Testing For Cross-sectional Independence

The Lagrange Multiplier test statistic due to Breusch and Pagan (1980)

is one measure to test thè nuli hypothesis of zero cross-sectional correlation; c y is thè Pearson 
correlation coefficient between thè ith and /th cross-sectional units. The standardized vereion,

-  « (( r -D C ^ -D /2  has an asymptotic standard normal distribution. This desirable 
asympototic result can be shown to hold when thè number of time periods T  grows to infinity. 
Thus, thè Breusch and Pagan test is especially useful in panels where T  is relatively large with 
respect to n . Throughout this monograph, however, we consider panel data sets which are large in 
n but relatively small in T. It is a fact that is not distribution free if T  remains fixed, even 
when thè number of cross-sectional units grows to infinity. This is seen as a serious drawback.

Frees (1995) introduces a non-parametric vereion of which does not depend on thè
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parent distrìbution of eti and has good power in finite samples1,

r a v e  = (2 J  ^ r</> (2.7)

where /v is thè Spearman rank correlation coefficient between thè /'th and yth cross-sectional units.
The statistic (2.7) can be approximated with

Rave = (”(” _1)) 1 ̂  1 (2.8);-lu-l VV-1 J i-1 /

Frees (1995) shows that « ( / ^ ^ - ( T - l ) '1) converges in distrìbution to Q when n—*», under thè
nuli hypothesis of iid errors with;2

ÌJJI J ^

Q = a (T )(x \T -\)- (T -\) )  * b(D (x2(T(T-3)/2)-(T(T-3)f2)),
(2.10)

a(T) = 4(7V2> , bjT) = 2(.5L ^ .  ( 2 n )
5(7'-l)2(r+l) 57-(7--l)(r-l) (z*n )

where (Rn ,..JÌiT) are thè ranks of (e,^..,*^); y?(T-\) and x 2(T(T-5)/2) are independent chi- 
squared random variables with 7-1 and T(T-3)t2 degrees of freedom respectively. The lower 
bound of Q and an upper criticai value of thè Frees test can be established, given thè number of 
time periods which must exceed three. We reject thè nuli hypothesis of zero cross-sectional 
correlation if is less than this lower bound or exceeds thè upper 95th percentile of Q, thè
weighted sum of two ^ 2-distributions.

The Frees (1995) test would be vulnerable to outliers if we compute R^ve' on thè basis of 
thè HBP GM residuals rtì = y , - x $ GU- Instead a robust Frees test is achieved by employing thè 
weighted residuals

1 If either negative or positive correlations occur, Frees (1995) recommends using a one-sided test. The
statistic Rave is especially powerful when (1) a priori it is unclear whether positive or negative correlation 
prevail or (2) a mix ture of negative and positive correlations occurs.

2 It is assumed that thè errors Ef. have a continuous distrìbution.
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Notice that these weighted residuals rw;. are different from thè ones which are obtained by 
multiplying thè residuals by thè weights associated with Tukey’s bi-square function 
V(rn) = rtw r(rn)  (see section 1.2.3). The choice of (2.12) follows naturally once one realizes that 
computation of thè HBP GM estimator is equivalent to applying Ordinary Least Squares to thè 
weighted data (see formula (1.14) of section 1.2.4).

Section 2.5 Heteroskedasticity

2.5.1 The Pagan and Velia Diagnostic Test on Heteroskedasticity

To test thè nuli hypothesis of homoskedastic errors in (2.1) a robust Pagan and Velia (1989) test 
statistic is derived. The Pagan-Vella test on heteroskedasticity evaluates thè sample analogue of

£tv„<e?, -  02)1 '  °- (2.13)

where thè errors Zu have Constant variance CT2 that is unrelated to thè variables vn. under thè nuli 
hypothesis. Below we will indicate thè necessary ingredients to compute thè test statistic which 
corresponds to thè HBP GM regression. In this section autocorrelation as set down in assumption 
(A.4) and thè fixed effects are neglected, i.e. £T £,,£„] =o„=0, t*s and ti =0,

First, we start with scaling model (2.1) with thè robust Median Absolute Deviation (MAD) 
estimate of thè scale parameter o  (see section 1.4.1). Then, we choose vn equal to thè square of 
thè explanatory variables x tf> v^-x* and define3

g(qu,G>) -  xjw (xrt)y(£„), (215)

where (tì=(Pr,<J2)r, « ^ E j 'W E ^ - iW E , , ) ) 2], ^

T  <i

'GM (2.16)
Y.Lxlw i(xtì)wr(ri) x tl
r-li-l

The weight functions h' / x*) and Hr(rn) are based on thè identification of leverage points and

3 We note that va should not contain an intercept term.
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vertical outliers respectively. These are discussed at length in section 1.2.2 and section 1.2.3. v* is 
thè transpose of vtì.

Using a Taylor approximation of gig^fù) we can write

1 7 "& -  co « -B (2.17)
/V

where fi) is thè robust estimate of co, and

B -  - ' Ì Ì z l w p t ) ^ L .  (2.18)
N  i-ifi dp

Now, Pagan and Velia (1989) show that y/Nì has an asymptotic normal distribution with zero 
mean under thè nuli hypothesis, where

1 7 "i  = -r r ^ m iq ^ ù ì) .  (2.19)

Using (2.17) and a Taylor approximation of J n ì  we derive

T m
^  ^ , r „ \  y (  (2.20)

v/M = M  * E E / n ^ t o )  + A(& -  to) -  '  /  | -A(B - )  h 1?
KN" ìm J W  EE g($ _co)tr '

r*ltmì

where

a  -  ( 2.21)

and /  is thè identity matrix of dimension p. From (2.20) follows that thè covariance matrix of 
v/ni can be written as

V -  (  / ,  1 -MB ->) (  _ L £ i(  J  1 - *»  ">) • C.22,

Under thè nuli hypothesis, thè test statistic 

NXrV '1 f
(2.23)

is asymptotically x2(p) distributed where p  is equal to thè dimension of vH and thè sample 
analogue of (2.22), V, is a consistent estimate of V.

To examine thè power properties of thè robust Pagan-Vella test in clean and contaminated 
data sets we compute thè test statistic (2.23) for thè HBP GM regressions of y  on x, in thè course
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Table 2.1 Simulation Results Concerning Power Properties of thè Pagan-Vella Test 
on Heteroskedasticity*

N=200 N=1000

Pollution 95th Percentile p-value 95th percentile p-value

0% 3.520

Standard

0.0414 2.796 0.0244

0% 2.411

Robust

0.0158 2.313 0.0125

5% 2.437 0.0113 4.850 0.0980

10% 3.379 0.0333 9.027 0.4025

15% 4.204 0.0685 13.469 0.7059

20% 5.250 0.1303 18.043 0.8484

25% 5.950 0.1817 21.976 0.9043

* The number of replications is 10,000 for both serìes of length N=200 and N=1000. Under thè null- 
hypothesis of homoskedasticity thè test-statistic has a chi-squared distrìbution with 1 degree of freedom, 
x2oj(D -  3.84146.

of which thè generated data sets of thè Monte Carlo experiments of section 1.4.1 are used. Table
2.1 shows thè p-values and thè 95-th percentiles corresponding to thè serìes of length ten thousand 
containing thè Pagan-Velia statistics for both small and large samples consisting of 200 and 1000 
observations respectively. A striking observation is thè high p-values for thè experiments with thè 
polluted data sets. Although on average thè regression residuals are not heteroskedastic, thè nuli 
hypothesis of homoskedasticity is rejected many times. This result is explained by thè way thè 
outliers are constructed. That is, thè contaminated data sets contain many leverage points which are 
also vertically outlying. These points cause thè robust Pagan-Vella statistic to rìghtly reject thè 
homoskedasticity hypothesis. Heteroskedasticity and thè occurence of outliers are for some data 
sets two sides of thè same coin. With this end in view it could be deduced from Table 2.1 that thè 
robust Pagan-Vella statistic has less power in thè small sample cases in comparison with thè large 
sample cases. For example, if 15% of thè data is polluted with possibiy heteroskedastic 
observations then thè p-value of 0.0685 associated with thè small sample experiment just exceeds 
thè 5% significance level whereas in case of thè large sample experiment thè nuli hypothesis is 
more than 7000 times (p-value equal to 0.7059) rejected.

The purpose of application of thè Pagan-Vella test is to inquire whether efficiency gains 
can be obtained through correction for multiplicative heteroskedasticity using for instance Harvey’s 
(1976) method. If thè model errors are homoskedastic and thè data sets are free of outlying
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observations then thè standard HBP GM estimator is more efficient than thè HBP GM estimator 
extended with Harvey’s two-step improvement (see thè next sub-section for an exposition of this 
procedure). In this case, thè robust Pagan-Vella test gives thè right signal, namely, it will not neject 
homoskedasticity. Furthermore, if thè majority of thè errors are heteroskedastic then thè Pagan- 
Vella statistic will successfully trigger correction for heteroskedasticity, irrespective of whether 
outliers are present. However, there is also thè other possibility that thè nuli hypothesis is rejected 
because outliers corrupt thè data although thè majority of thè observations fit thè homoskedastic 
model. Simulation results, not shown here, indicate that in this case thè standard HBP GM 
estimator is superior to thè adjusted HBP GM estimator in terms of efficiency. Consequently, thè 
Pagan-Vella test may provide thè wrong signal, even if some part of thè data fit thè heteroskedastic 
model. We conclude that thè robust Pagan-Vella test is a reliable indicator of heteroskedasticity. 
The test decisively indicates thè correction for heteroskedasticity if homoskedasticity of thè 
disturbances is rejected but thè data is clean or polluted with relatively few outiers. If a substantial 
portion of thè data is contaminated with outliers and thè test rejects thè nuli hypothesis then further 
investigation of thè data is required before adjusting for multiplicative heteroskedasticity.

2.5.2 Correction For Multiplicative Heteroskedasticity

Although thè HBP GM estimator (2.16) retums heteroskedastic consistent estimates of thè 
parameters of model (2 .1) with heteroskedastic consistent standard errors, a more efficient 
estimator can be acquired by following Harvey (1976) if we are willing to assume that

= <?,, = exp(vua).

where a  is an unknown parameter vector and is a vector of observable explanatory variables of 
thè variance equation. The first element of thè k dimensionai row vector is a Constant and we 
choose thè other components equal to thè absolute value of thè regressors vtì=(l, |x j ) ,  
assuming that thè explanatory factors X  do not include a column of ones. The standard Harvey 
(1976) procedure computes weighted least squares estimates by means of a second step LS after a 
first step in which each cross-sectional observation is scaled by thè concomitant estimated standard 
deviation.

The unknown parameter vector a  is estimated with thè help of a second HBP GM 
regression. The naturai logarithm of thè square of thè first step HBP GM residuals /v is regressed 
on

LN(rl) = v a  + E,.
% (2.25)

where is an error term. Notice that thè size of thè unweighted residuai rf., which determines thè
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Part I. Robust Estimation 57

extent to which thè observation in thè originai equation is vertically outlying, together with thè
explanatory variables vtì may be outlying in view of thè piane determined by thè variance 
equation. Thercfore, new weights K’v(vrt) and w,(£) are determined. The HBP GM estimator&CM 
retums an initial inconsistent estimate of thè Constant term of thè variance equation. The 
inconsistency of thè first element of ò . ^  follows from thè fact that converges in distribution to 
a variable &  which is distributed as thè logarithm of a x2 variate with one degree of freedom and 
mean, £[£*]=-1.2704. Therefore, we add 1.2740 to d,

Then we proceed with thè computation of thè weights

based on thè identification of multiplicative heteroskedasticity.
During thè second step both sides of thè originai equation are multiplied by (2.27)

and thè HBP GM method is applied once more to estimate P in (2.28). After this scaling, some 
observations which were traced as outliers in thè first HBP GM regression may have disappeared 
as deviating points wheneas regular observations in thè first regression may show up as outliers in 
thè final third robust regression. The formula for thè HBP GM estimator extended with Harvey’s 
two-step improvement reads:

(2.27)

(2.28)

(2.29)

where r "  = yrt*»'j(v(<;rrt)-x tfH'j(v|,;rn) P ^ .  The covariance matrix of can be approximated in 
large samples by

co v ( |0 = (£ >  " )X  W jLvtfW 'iX W prtW W 'iX W livy))W t(vs)X(D  -'), (2.30)

where

D = X  TWs(vs)V (r H)Wx(XWs(vs))WM(vf\X
(2.31)

'P and W ^vj)  are diagonal matrices consisting of (y(r„w))2 and w,(v„’,ru)  respectively. V(rw)
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Table 2.2 Simulatìon Results Concerning Efficiency of thè HBP GM Estimator 
When thè Regression Errors Are Heteroskedastic, Experiment (I)a

0% Pollution 10% Pollution

1.000149 1.000097 0.999869 1.000112
0.002212 0.000498 0.002689 0.000619
0.002212 0.000498 0.002689 0.000619

1.000239 1.000026 0.995826 0.998892
0.017134 0.007008 0.019211 0.007956
0.017134 0.007008 0.019193 0.007955

* Each celi contains thè mean, thè mean squared error and thè variance of thè estimated parameter value over 
thè 10,000 runs. Each first row concems thè intercept (3,) * each second row concems thè coefficient of thè 
normally distributed explanatory variable (3,). The length of thè series equals 200 and p,=p,'l.

and Wx(X) are defined in section 1.4.1. Notice that thè diagonal weighting matrix Wx is computed 
on thè basis of thè Minimum Volume Ellipsoid distances of x,ws(vll:rii). to thè centre. Within thè

A Hderivation of (2.30) one can show that H'j(vn.;r.)=l/6 (i is asymptotically independent from p c<#.

2 i J  Simulatìon Results

To investigate thè efficiency of thè HBP GM estimator extended with Harvey’s two-step 
improvement, we carried out thè following simulatìon experiment:

Experiment (I)

y, = Pi + xPi * er 

e, = x ,fi

where yj and xt are independent identical standard normally distributed (iid N(0,1)); p(=p2=l.
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By construction, thè generateci random variables Jt,2 and e? are correlated. This induces 
heteroskedasticity. The length of these series is equal to 200. Experiment (I) has been repiicated 
ten thousand times both for clean and contaminated serìes. Outliers were created by replacing thè 
values of both thè response and thè explanatory variable x. for 10% of thè observations (randomly 
drawn) by random values drawn from a normal distrìbution with zero mean and vari ance 100. 
Thus, both leverage points and vertical outliers were added.

We reestimated p of experiment (I) using thè standard HBP GM estimator of Chapter 1 
and thè adjusted HBP GM estimator according to Harvey’s two-step procedure. Table 2.2 contains 
thè mean, thè mean squared error and thè variance of thè estimated parameter value over thè ten 
thousand runs.4 Both estimatore are consistent but thè adjusted HBP GM estimator is considerably 
more efficient than thè standard estimator. We observe a reduction of approximately 59% in thè 
variance of thè estimated coeffients in comparison with thè variance of This gain in
efficiency is similar in clean or polluted data sets. Evidently, these particular Monte Carlo results 
will not necessarily be obtained outside of our limited experiment. However, on thè basis of our 
results, thè HBP GM estimator extended with Harvey’s two-step improvement is to be preferred to 
thè standard estimator since its associated mean squared errors are smaller in all cases considered.

Section 2.6 Autocorreiation

2.6.1 The Generalized Durbin-Watson Test

To verify whether thè First order autocorreiation coefficient (p) of thè equation 

E = £ . p + EIl l-ijr '»n
(2.32)

is significanti different from zero, we employ thè generalized Durbin and Watson bounds test 
statistic

j  „ r«2fwl dr = ----- 7 7 - -----  (2.33)
‘'Ilflr»l

are errore and etì are thè regression residuals resulting from thè estimation of thè panel 
data model (2.1). Bhargava, Franzini and Narendranathan (1982), hereafter BFN, derive thè lower 
bound d i  and thè upper bound d i  corresponding with dr as a function of thè number of time

4 These results can be reproduced by choosing thè seed for thè random number generator of thè UNIX 
machine equal to 1. The same seed number is used in experiment (III) of section 2.6.3.
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periods T, thè number of cross-sectional units n and thè number of explanatory factors at a 
specified significance level. The nuli hypothesis of zero autoconelation is rejected against thè 
altematives p>0 and p<0 if dF<dl and d ^ - d l  respectively. Likewise, we accept thè nuli 
hypothesis if à>d^ and d<4-dù respectively. The generalized Durbin-Watson statistic converges to
2 for large samples in n if thè data are free from outliers and p=0. BFN tabulate values of d'L and dù 
for panel data sets of different size.

Two remarks are called for. First, application of thè standard Durbin-Watson test requires 
specification of an intercept term in thè linear regression model in order to have good performance 
in terms of power (see, among others, Judge et al. (1988), p. 399). The panel data model studied in 
this chapter contains individiual specific fixed effects instead of a Constant. It tums out that thè 
generalized Durbin-Watson statistic has thè desirable power properties if thè model is estimated in 
thè within dimension of thè data. However, thè statistic dF is not distribution invariant to thè first 
difference transformation of thè data, i.e. BFN's lower and upper bounds can not be applied when 
dp is computed on thè basis of thè residuals from thè first difference regression. In that case, BFN 
suggest Consulting thè Berenblut-Webb statistic (See BFN (1982), p.538). Second, it is assumed 
that thè error terms ^  of equation (2.32) are independent normally distributed with mean zero.

We compute thè generalized Durbin-Watson statistic for thè weighted residuals rwfi which 
are given in formula (2.12). Using thè unweighted residuals rn would result in a highly non-robust 
test. These unweighted residuals are normally distributed under normality of thè model 
disturbances En and outlier free data. On thè other hand, thè weighted residuals rwu are not 
normally distributed under thè centrai model distribution (i.e. e(i is normally distributed) even 
when outlying observations are not present in thè data. As a consequence, thè error terms ^  of 
equation (2.32) are not necessarily drawn from a normal distribution under thè nuli hypothesis 
p=0. Strictly speaking, thè generalized Durbin-Watson test can not be applied to thè weighted 
residuals. However, if relatively few outliers corrupt thè data then thè distribution of thè nv(. 
approximates to thè normal distribution. We make thè following suggestion as a practical solution. 
Start with thè execution of a normality test on thè weighted residuals. We use thè Doomik-Hansen
(1994) test for this purpose since it was shown to exhibit good finite (small) sample power 
properties. Then, if normality is not rejected, we proceed with thè computation of thè generalized 
Durbin-Watson statistic and decide not to apply this autocorrelation test otherwise. This ad hoc 
procedure is more reliable than application of thè generalized Durbin-Watson statistic on thè 
unweighted non-robust residuals, for there is thè possibility that only a single observation causes 
thè autocorrelation test to take on arbitrary values.

Consider thè following experiment:
Experiment (II):

ytì = ^ - *,,0 - £„- i-i,...ìoo.
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Table 23  Simulation Results Conceming Power Properties of thè Generalized 
Durbin-Watson Test, Experiment II*

Pollution,
5%

95th Percentile p-value
(P[dp]<d'L)

p-value
{P[dp)>4-d'L)

Average of 
dP

0% 2.133

OLS

0.040 0.050 2.000

HBP GM, 5% of thè Observations (Randomly Drawn) are Contaminated

0% 2.129 0.066 0.046 1.992

5% 1.708 0.998 0 1.540

10% 1.511 1.000 0 1.339

15% 1.519 1.000 0 1.355

20% 1.598 1.000 0 1.432

25% 1.739 0.996 0 1.545

HBP GM, The Very Same 5% Observations of Each Cross-section Are Contaminated

5% 2.130

For Each Time Period 

0.070 0.046 1.988

10% 2.114 0.094 0.026 1.977

15% 2.115 0.092 0.032 1.976

20% 2.102 0.124 0.022 1.964

25% 2.095 0.218 0.018 1.940

* The generalized Durbin-Watson statistic tends to 2 for large samples (in n) under thè null-hypothesis of 
zero autocorreiation and thè absence of outliers. At thè five per cent significance level, d'L- 1.8660 and 

1.8731 when T~6, r-100 and thè panel data model contains one explanatory variable (see Bhargava, 
Franzini and Narendranathan (1982), p. 537). The number of replications is equal to 500. Estimations are 
performed in thè within dimension of thè data.

The fixed effects ri are drawn from thè standard uniform distrìbution whereas x. and £, are•l fi U
independent standard normally distributed. The coefficient p is set to one. There are 7'=6 periods 
and n=100 cross-sectional units. The total length of thè serìes y ( is thus 600. Experiment (II) is 
repeated 500 times to evaluate thè power properties of BFN’s test in clean and contaminated data 
samples.

The simulated data is first transformed into thè within dimension by calculating deviations 
around individuai means. Next, thè OLS estimator is applied to estimate fi and to construct thè 
OLS residuals. The second row of Table 2.3 contains thè 95th percentile and thè average value of 
thè generalized Durbin-Watson statistics based on these ordinary residuals. Moreover, it reports thè
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empirica] p-values associated with thè probability that thè nuli hypothesis is rejected against thè 
alternative hypothesis of a significant positive autocorrelation coefficient 1.866] or thè
probability that significant negative autocorrelation P[dp>4 -d^] is detected. The subsequent row of 
Table 2.3 displays these four items attributed to thè Durbin-Watson statistics based on thè weighted 
HBP GM residuals. The two rows with thè clean data results project abundantly clear similarìties. 
The rounded average of thè Durbin-Watson statistics of thè series computed with both thè OLS 
and thè HBP GM weighted residuals is equal to two. The 95th percentiles and thè p-values are also 
reasonably dose. Thus, thè generalized Durbin-Watson statistic constructed with thè weighted 
residuals appears to be accurate for panel data sets which are free from outlying observations.

The results are dramatically different for thè contaminated data sets where 8% of thè 
observations (randomly drawn) are replaced by random values which are drawn from thè normal 
distribution with mean zero and variance 100. The percentage of corrupted data points is increased 
up to 25% with a step size equa! to 5%. The autocorrelation test falsely claims thè occurence of 
significant positive autocorrelation in almost all of thè cases. Negative significant autocorrelation is 
never found. These results indicate that BFN’s upper and lower bounds do not hold for thè Durbin- 
Watson statistic if thè weighted residuals are used to compute dp and a substantial portion of thè 
data is polluted. The data points which were replaced by possibly outlying numbers, were 
randomly chosen among thè total set of observations. For many empirical panel data studies it 
happens that a certain cross-sectional unit when traced as an aberrant point is outlying for each 
time period. Therefore, we also consider thè case where 8% of thè very same cross-sectional units 
are polluted in each time period. Consequently, ( 1 - 8)% of thè cross-sectional observations is not 
polluted in any of thè time periods. Stili, 8% of thè total number of observations is replaced by 
random values of thè norma! distribution with mean zero and variance 100. The power properties 
of thè generalized Durbin-Watson statistic are more satisfactory for thè experiments with these 
polluted data sets. The average value of thè test statistics remains dose to two unti! thè cases 
where more than 15% of thè data is contaminated. The empirical probability P[d/p>A-d[] of 
reporting significant negative autocorrelation is about 3% if 8=15% and so is dose to thè 
probability that dp exceeds thè criticai value under thè centrai model distribution. In this case, thè 
p-value indicating thè probability P[dp<d^] is less than twice thè significance level of 5% but is 
fairly high.

To summarize thè simulatìon results, thè generalized Durbin-Watson statistic based on thè 
weighted residuals is a reliable indicator of autocorrelation if thè data is free of outliers or when 
relatively few data points are deviating. The test might provide a wrong signal if a substantial 
number of thè cross-sectional units is contaminated.
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2.6.2 Robust Seemingly Unrelated Regression

In matrìx representation, model (2.1) can be reformulated as 

y  = T| 0 /  + Xp e,
(2.34)

where / is a T-dimensional vector comprising ones, ®  is thè symbol of thè Kronecker product,
and y,Hytr~,ym)T, X=(xJ„..jcTm)T. The cross-sectional units are 

compiled for each time period and these bundles of observations per period are stacked below each 
other. According to thè assumptions (A.1MA.4) of Section 2.2 thè variance-covariance matrix ofe 
can be written as £[e£ where thè 7-dimensional matrix X consist of thè elements
£[£(,£j=o„ and IK is thè n -dimensionai identitiy matrix. As usuai, thè fixed effect are eliminated 
by estimation in thè within dimension of thè data or in first differences. Below we will not 
introduce a new notation for these transformed dependent and independent variables but keep 
writing y  and X.

Our robust SUR estimator is defmed by thè first order condition

X  -  0 (2 35)

where Cl contains thè consistent estimates of thè elements of thè variance-covariance matrìx of 
Tukey’s bi-square errors (see section 1.2.3). Notice that thè probability limit ofCl
is different from thè variance-covariance matrìx of thè originai model errors. Adjustment for 
autocorreiation is achieved by thè insertion of thè inverse of thè weighting matrìx (ó® /,) in thè 
usuai HBP GM defining equation. The thus constructed robust SUR estimator is essentially 
different from Peracchi’s (1991) bounded influence SUR estimator. Peracchi (1991) derives an 
additional GM score function in order to obtain consistent robust estimates of X which then are 
used to determine thè autocorreiation adjustment in thè normal equation for 0 ^ , .

The computation of thè robust SUR estimator in (2.35) involves a two-step procedure. In 
thè first round, thè usuai HBP GM estimates, either corrected for multiplicative heteroskedasticity 
or not, are computed to construct thè 7-dimensional square matrix Cl with entries

= Ì E V(rr,)y(r.). (2.36)
rii"\

rn=yn-x rf$ c/l# are thè HBP GM regression residuals. The second round consists of solving (2.35) 
for thè robust SUR estimator:

= <* rVV(X)(ft®/n)-' Wr(r)y) 37)

in case that no adjustment for heteroskedasticity is made and
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3 L *  = (*  TWi(XWj)Ws(ò® Iitr lW W rX)-'(X TWi(XWs)Wi{Ù®!ny 'W W y ) (2.38)

otherwise.5 An iterative procedure such as thè Newton-Raphson (NR) algorithm could be 
employed to solve thè score function (2.35). For each NR step one could update thè weight 
function Hr and thè estimate of Cl. Instead, we perform only one iteration. The one-step RSUR 
estimator however exhibits thè sanie asymptotic properties as thè multi-step alternative.

Recali that thè influence function measures thè change in thè estimates, retumed by thè 
estimator $, caused by an infinitesimal perturbation in thè centrai model distribution F :

The distribution function G(z) puts mass 1 at thè point z = (y ^ ,) .  Let us introduce thè notation 
Fs -  (1 -s)F  + sG and define Fn as thè empirical distribution function which assigns a probability 
of 1 IN to each observation (yirx a)- The distribution function Fs describes thè data at hand of 
which (1 -s)%  is generated by F and s% by G, given p. provides a consistent estimate of
these unknown parameters p. Thus thè outliers are supposed to be drawn from thè distribution 
function G. Then, thè score function (2.35) can be written as

where j j=Cyl/,..,yT5)r, X.=(x,7 ..j:^ )r and thè diagonal matrices Wt(X) and W^r,) contain thè

/pYt-A = l*m P((l -s)F+sG(z)) -  P(F) IF(z#,F) = slQ -------------------------------- (2.39)

(2.40)

weights (H^(xu),..,w'j(xn)) and (w,r(r|l),..,H'r(rT;)) respectively. By thè same token, we may define 
Pstz*^,) for any distribution function Fs:

^ X ’v/^X)CnFt)"W ri r ^ r X ^ F ^ F ^ ,
(2.41)

The normal equation (2.41) can be rewritten as:

(1 -s)fxjw ,(Xi)£KF,)-'M',(r1)(r r Xi$„ l„(F,)WF »

(2.42)

1 m
s In thè latter case, <ì>o=_E y(r,/')y(r/) where r " ’y ^ I(vM’rH>~x t w,^v^ rJ ^ >Lr/li-l
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Given some regularity conditions (see, among others, Huber (1981) and Hampel et al. 
(1986)) which allow thè interchange of integration and differentiation, we obtain thè following 
identity by application of thè chain mie when differentiating (2.42) with respect to s:

where V(r() is a diagonal matrix consisting of (d\|f(r].)/dr1.,..,dy(rT;)/dr7i). The influence function
is delivered by evaluating (2.43) in s=0, using thè facts that 

3*«/*(*>£’ &(F)=£l and noticing that £[r(jx tf]=0 following assumption (A.2):

This influence function is only well defined if we assume that thè expectations £ F[y(£)y(E)7] and

equation (2.44) is clearly bounded. Leverage points x j are downweighted by thè function Wx(xt) 
whereas aberrant errors are bounded by thè weights Wr(e(). We conclude that our estimator 
is a reliable robust alternative to Zellner’s (1962) SUR estimator since it has a bounded influence 
function.

The robust SUR two-step procedure developed in this section belongs to thè category of 
estimators considered in Krìshnakumar’s (1995) generai methodology o f robust estimation for  
panel data models. So we may apply Lemma 1 (see Krishnakumar (1995), p.7) where it is 
demonstrated that thè estimator has thè appealing properties of being consistent and asymptodc 
normally distributed (see also Maronna and Yohai (1981)). Using a Taylor approximation of (2.35) 
one can show that thè asymptotic variance-covariance matrix of $*swr can be consistently 
estimated by:

d. ^ £ ^ . l d F  * (1 -s) [ x jw  
ds J 1

-  s f c w ù l F X 'V i r p t ;

(2.44)

E^X, rWj(A'i)ò  V(r/)À'/] exist and are matrices of filli rank, i.e. nonsingular. The right hand side of

= (£> ")X TWxm f r ' ® l ii)Wi(X)X{D ') 7 (2.45)

where

D = XWx(X)(Ù®lKy'V(r)X.
(2.46)
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At this point, after taking care of heteroskedasticity and autocorreiation. it is worthwhile 
establishing whether anomalous observations have excessive impact on Zellner's (1962) SUR 
estimates. The robust Wu-Hausman type test statistic

K  -  (247)

A His computed to test whether thè adjusted RSUR estimates are significanti different from thè
GLS counterparts (see Hausman (1978) and Wu (1973)). The X2(P) distrìbution First order 
stochastically dominates hR; p  indicates thè number of explanatory variables. Thus, under thè nuli 

SUK is unbiased and efFicient for smooth data sets hR induces type II errors 
(acceptance of thè nuli hypothesis when thè nuli hypothesis is false) more frequently than thè 
significance level associated with thè chosen criticai value (percentile of thè X2(p) distrìbution) 
would predict. The common Wu-Hausman test statistic

* -  < & ; L r O w o ^ O > - ,< c . - C , >  (2 .4 8 )

is well behaved under thè nuli hypothesis but is inapproprìate for (small) contaminated samples 
since outliers also comipt thè OLS covarìance estimate. In particular, h may induce type II errors 
in polluted data sets.

2.6.3 A Monte Carlo Study

To examine thè consistency and efficiency of thè RSUR estimator in panel data sets with 
autocorrelated errors we performed experiment (III).

Experiment (III):

y* - P.+ x$ i + En’

E„ = y,i + vr  *“ 1 .-100 , r=l,..,4

where yn are independent and identically normally distributed with variance 1/4 (iid N(0,l/4)), 
v., X" are iid N(0,1). The dimension of thè vectors v is equa! to n=100; The number of time 
perìods equals 7=4; Thus, thè serìes y and x have length 400; P, = p2 =1.

Like experiment (I), experiment (III) was repeated 10,000 times for both clean and 
contaminated data sets. In thè latter ones, ten percent of thè observations have been replaced by a 
normal random variable with mean zero and variance 100. This creates anomalous observations in
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Table 2.4 Simulatìon Results Concerning Efficiency of thè HBP GM Estimator 
When thè Regression Errors Are Autocorrelated, Experiment (III)*

^ GM $*si« $CM &*«/*

0% Pollution 10% Pollution

1.002323 1.002412 1.001934 1.002243
0.011120 0.011587 0.011533 0.012782
0.011114 0.011582 0.011529 0.012777

1.000364 1.000053 0.986842 0.986751
0.003490 0.001098 0.004920 0.003258
0.003490 0.001098 0.004747 0.003082

‘ Each celi contains thè mean, thè mean squared error and thè variance of thè estimated parameter value over 
thè 10,000 runs. Each first row concems thè intercept (3,). each second row concems thè coefficient of thè 
normally distributed explanatory variable ($2). The length of thè series y  equals 400 and — 1 -

thè form of both leverage points and vertical outliers. The disturbances have innovationv
in common. This causes correlation in thè time-series of thè panel data whereas thè cross-sectional 
units are uncorrelated since thè v. ,/=l,..,n and ~fa, i = are drawn independently. 
Correlated errors are constructed without omission of important explanatory variables, in thè sense 
that there are no independent variables available to explain thè correlation in thè disturbances. In 
contrast, for instance Mizon (199S) gives an example of a data generating process where thè 
lagged dependent variable is incorporated in thè set of explanatory variables. Re-estimation of this 
model without including thè lagged response variable, obviously also induces autocorrelated 
residuals. Here we need to remark that in view of model (2.1) thè data of experiment (III) result 
after transformation of (2.1) in order to drop thè Fixed effects. These individuai effects are 
supposed not to fully explain thè autocorrelation in thè originai model disturbances. Evidently, 
within or first difference regression of experiment (III) would eliminate thè autocorrelation.

The mean, thè mean squared error and thè variance of thè parameter estimates for both thè 
standard HBP GM method and thè RSUR estimator over thè 10,000 replications are reported in 
Table 2.4. The standard HBP GM estimator is consistent for experiment (III) where thè 
disturbances are autocorrelated, even in thè case of data pollution. Moreover, rather surprisingly, it 
produces thè most accurate estimates of thè intercept term P, as is shown by thè corresponding 
mean squared errors of thè HBP GM and RSUR estimates. The B-robust SUR estimator is 
considerably more efficient in generating consistent estimates of thè parameter Pr  provides,
among thè two estimators considered here, thè most accurate estimates of thè coefficient of thè
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explanatory variable xtì. However, thè differences in thè corresponding mean squared errors decline 
when thè data is contaminated. Table 2.4 reveals that thè variance associated with $, is about 68% 
smaller in case of RSUR estimation in comparison with standard HBP GM regression for smooth 
data sets. If 10% of thè data is deviadng from thè centrai model distribution then this efficiency 
gain is diminished to approximately 35%. In section 2.5.3 we found that thè extent to which thè 
performance of thè HBP GM technique extended with Harvey’s two-step improvement is superior 
to standard HBP GM, is equal under thè centrai heteroskedastic model distribution and thè polluted 
vereion.

Mizon (1995) shows for his simulation experiment that autocorrelation correctore, for 
instance thè Autoregressive Least Squares (ALS) estimator, might produce inconsistent parameter 
estimates. He concludes:

Although it is important to test for serial correlation in thè residuals of econometrie models, 
it is rarely appropriate to 'autocorrelation correct’ in response to rejecting thè hypothesis of 
zero serial correlation (Mizon (1995), p. 285).

In thè context of panel data models, we provided an intuitive widespread counterexample where 
thè B-robust SUR estimator is to be preferred to thè standard HBP GM method. Furthermore, 
Mizon (1995) continues by stating:

The practice of 'autocorrelation correction’ is an example of specific-to-general modelling, 
and so thè example presented in section 2 is a particular illustration of thè weakness of this 
modelling strategy (Mizon (1995), p. 285).

The nature of thè serial correlation in experiment (III) is dissociated from thè independent variables 
of thè regression model, in thè sense of that it is assumed that no explanatory factor is available.6 

In this respect, modelling strategy does not come into thè play in our case. We did not verify what 
would have happened to thè efficiency of thè HBP GM estimator if thè panel data regression 
model incorporated thè lagged values of thè response variable. For panels with a low number of 
time periods T, however, it might be unwise to lose one period consisting of n cross-sectional 
observations.

* Strictly speaking, one could introduce n firm dummies in thè regression model to take account of thè 
serial correlation. This results in p+n explanatory variables in proportion to N observations. If n is large 
and T is small, as is often thè case in empirical panel data sets, then this modelling strategy is not 
recommendable.
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Section 2.7 Conclusions

Chapter 2 is concluded below by a short summary. In thè context of a panel data model we have 
investigated how thè standard High Breakdown Point GM estimator of Chapter 1 behaves when ( 1 ) 
specific individuai fixed effects are correlated with thè regressors and (2) regression errors are 
heteroskedastistic or (3) serially correlated. Robust specification tests have been introduced to test 
thè assumptions underlying thè standard linear model, including cross-sectional independence and 
uncorrelated fixed effects. It was shown, by means of limited Monte Carlo studies, that reliable 
application of thè robust version of thè Pagan-Vella statistic and thè generalized Durbin-Watson 
test of Bhargava, Franzini and Narendranathan (1982) based on thè weighted residuals is restricted. 
The first test decisively indicates non-adjustment for heteroskedasticity if thè statistic cannot reject 
thè nuli hypothesis of homoskedasticity but can be misleading if thè homoskedastic regression 
model is contaminated with vertically outlying leverage points. The lower and upper bounds 
tabulated by BFN do only apply to thè latter test if thè normality of thè weighted residuals cannot 
be rejected. Although our simulation experiments show that thè standard HBP GM estimator is 
consistent under heteroskedasticity and autocorreiation, more efficient estimatore can be obtained 
by extending thè HBP GM method with Harvey’s two-step improvement or by employing thè 
Robust SUR estimator in case thè errors of thè regression model are respectively heteroskedastic or 
serially correlated. The influence function of thè RSUR technique is derived and is bounded. The 
RSUR estimator is thus relatively insensitive to small departures from thè centrai model 
distrìbution. Our simulation results reveal that robust autocorreiation correctors are more accurate 
in producing estimates of thè covariance model than thè classical solution of Zellner (1962). Since 
empirica! data sets are thought to contain 1 to 10 percent pollution (see Hampel et al. (1986), 
p.28), thè use of robust estimatore is indispensable. The research topic of thè next chapter covers 
B-robust estimation of simultaneous equations or models with erroneously measured explanatory 
factors.
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CHAPTER 3

Two Stage GM and Robust Generalized Method of Moments

Section 3.1 Introduction

The orthogonality condition of thè standard linear model is thè next condition to be weakened after 
having relaxed thè independence and homogeneity assumptions in thè previous chapter. Weakening 
this condition is often of cucial importance when investigating thè empirical relationship between 
economie variables. For instance, in simultaneous equations or when measurement errors occur in 
thè explanatory factors one can not expect that thè error terms of thè regression model are 
perpendicular to thè regnessors. The occasion of measurement errors in rea] economie data sets 
arises many times as theoretical variables frequently do not coincide one-to-one with thè 
observable variables. Likewise thè classical estimation procedures such as OLS and GLS, thè HBP 
GM technique and thè B-robust SUR estimator are also biased in these circumstances. In response 
to this miscalculating of thè unknown model parameters we introduce two stage generalized M- 
estimation following Krasker (1986)1 in Section 3.2 and robustify thè Generalized Method of 
Moments (see e.g. Hansen (1982)) in Section 3.3. Conditions are presented under which these B- 
robust altematives to two stage least squares (2SLS) and GMM are consistent and asymptotically 
normal. Furthermore, we show that thè influence function of thè Robust GMM (RGMM) estimator 
is bounded. Section 3.4 contains a Monte Carlo study on thè performance of various robust and 
non-robust estimatore in a simulated panel data model with errors in variables which is extensively 
discusseci by Griliches and Hausman (1986). Finally, conclusions and an outlook are presented in 
thè last section.

Section 3.2 Two Stage Generalized M-Estimation

When applying thè High Breakdown Point Generalized M-estimator to thè standard linear model

(3.1)

1 See Krasker and Welsch (198S) for a closely related instrumental variable approach, thè so-called 
Weighted Instrumental Variables (WTV) estimators.
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72 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

to estimate thè unknown parameter vector p it is assumed that thè row vector x f of length p of 
observable explanatory factors is orthogonal to thè error term er As usuai, y  is an observable 
dependent variable and n is thè number of observations. Further, thè errors are supposed to be 
independent and identically distributed with bounded variance and zero expected value. Recali that, 
following thè definitions of Rousseeuw and van Zomeren (1990), outliers are classified as leverage 
points (horìzontal outliers) when observations exhibit outlying x t whereas vertical outliers are 
observations which are positioned far from thè piane through thè majority of thè data but are not 
necessarily outlying in thè direction of x.

The aim of this chapter is to demonstrate how to obtain robust consistent estimates when 
thè orthogonality condition that x f and £ are independent, is not fulfilled. Suppose there are 
instnimental variables z r  which are correlated with thè explanatory factors x t but
independent of thè error term e.; z t is a row vector of dimension k, k>p. In imitation of thè Two 
Stage Least Squares (2SLS) procedure introduced by Theil (1971) we propose to carry out Two 
Stage Generalized M-estimation (2SGM) as follows:

Stage I. The explanatory variable x tJ (x; is thè jth column of X) is regressed on thè instrumentai 
variables z t:

x u = Z,Y, + L .
’ J '  (3.2)

where £iy are error terms and is a column vector of lenght k. This retums thè HBP GM 
estimate with concomitant first step weights h.( •) and wr( •) based on thè identification of 
leverage points in thè instrumentai variables and vertical outliers in relation to (3.2) respectively. 
The prediction of thè jth column of X  is then computed according to

t ,  - u z  rwtm w ,(r „ )z )" z  (3  3)

rXi are thè first stage HBP GM residuals associated with x .. Notice that W^r,^) differs for every 
distinct column of X. Thus p  separate HBP GM regressions are performed in stage 1.

Stage 2. Replacing thè explanatory variables of thè originai equation by their robust projection on 
Z and applying thè HBP GM technique once more provides thè 2SGM estimates

5*™  -  <X \ ( X ) W r(r,)y. (J  4)

W jjt) and Wr(r2) are diagonal matrices containing thè second step HBP GM weights; rt are thè 
second stage HBP GM residuals.

The derivation of a consistent and relatively efficient variance-covariance estimator for thè 
2SGM method is not as simple as determining an asymptotic reliabie approximation of thè
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Part I. Robust Estimation 73

variance-covariance matrix of thè HBP GM estimator (see Chapter 1, section 1.4.1). Consider a 
Taylor series expansion around $2SCW:=P for thè first order condition associated with thè second 
stage of thè 2SGM procedure

0 =
r * l

(3.5)

»*1 i-1 d t 2i

Solving (3.5) for Jn ( P ^ - P )  gives 

^ ( 3 ^ - 3 )  » • (3.6)

In large samples, — (£.) can be approximated by J.D  where 
n,-i de^ n

D = X TWx(X)V(r1)X.

Following thè notation of Chapter 1 and Chapter 2, thè diagonal matrix V(r2) contains thè 
elements dy(r2.)/dr2i,  /'=l,..,/i; f  is a diagonal matrix consisting of (\|/(r2j))2, f=l,..,n. The matrix 
D is found by evaluating V(*) in r r  The variance of thè other term of thè right hand side of (3.6), 
however, can not be adequately approximated by evaluating X TWx(X)'¥Wx(X)X in rr  This result 
occurs because XWx(X) is not independent of ^ ( r j ) .2

A solution to this problem is found by seperating thè second stage HBP GM residuals into 
components that are perpendicular to thè weighted explanatory factors. For notational convenience, 
we start with thè derivation of thè 2SGM variance-covariance matrix for thè one-dimensional case 
p=k=i. From this starting point, thè formula of thè variance-covariance matrix in generai 
dimensions can be easily deducted.

First, using (3.2) we derive

x - x t = (Jr.-zj) -  Zi(zr»VI(z)Wr(r1)z)*1z TH<,.(z)W(r1)(JC-nr).
(3.8)

a
With (3.8), E i.vv /i) w,(r2jXyi-xfijscu) can ** seperated into

i-1

2 Suppose A and B are two random variables, then El(Afi)2] * E[A}E[B2]E\A\ only if A and B are 
independent.
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74 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

E i î ( i > / ^ ) C y - j : i025CAf+(j:(-ziY)025CV-zi(z rW.(z) Wr(r, )zTlz TW:(z) Wr(r,)(x (3 .9)
ì-l

Formula (3.9) can be rewritten as 

E x w t f ^ r ^ O r - i . ^ )  = * ( x - z , # ^ )
i - l  r - l

-  E% w x(x)wr(r2i)Zi(z rWtfe)Wr(r,te)-‘z TWXz)Wr(rt)(x-zy)$
r* 1

After some manipulations we obtain

= È f  r ^ 2Kw + ^,"sT)P
r - l  i - l  V

2SGM'

2SOM*

~ %Z tW x(£)W'/rjJzKzrVV (z)lVr(rI)z)',ziw.(z.)wr(r1<)(xj-r<Y)$.2SGM

In thè case that p=k=1, formula (3.11) can be written as

R
Y:xwx(xi)wr(rli) ( y - x $ 2SCM) «
#•1

(3.10)

(3.11)

(3.12)

£  a (  (zTW (x)W (rjz)w  (z)w { r ,) \
Y . X 'W W w f r ^ - x f i ^  * 1 -  '  " '  ' ) ( x - z j ) ^ ) .

V (zTW;(z)Wr(rl)z)wx(xt)wr(rli) )

Since thè components ( y - x $ 2SGi«) ^ d  (x -zy )  are independent of xw^x^wj^r^) by construction, 
we are now in thè position to approximate thè variance of Exw'x(xj)w /r2i)(y(.-i.32JCW) in large 
samples by replacing z.y by xj in:

M  « E i * ( i ) w ( / g  {yr xfr  
ì-i V 2SGM

(3.13)

1 "— =-------------------  ------------ (x -zy)p w (r )w (x )x
V (z W,.(z)W i.(r1)z)H’x(i)H ’r(r2j) )  ^

The variance-covariance matrix of thè 2SGM technique is then computed as 

vcov^ 2sg*) = & MÓ '. (3.14)
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Part I. Robust Estimation 75

For any dimensions of p  and k , thè matrix M can be calculated as M -  QQ T where 

Q = X TWx(X)Wr(r2)(R2+P) -  t T(Z TW pt)W r(rJZ)BAC.
(3.15)

-t 2 S G IT ‘ ' yR2 and P are diagonal matrices containing (y rx I$2SCM),..,Cv)t-x .3 ISCM) and (Xj-X,)^ 
( x ^ - x ^ ) ^ ^  respectively. The matrix B, consisting of k rows and kp columns, is constructed as 
follows:

B =

0 0 & 0 0 . .
• • h

0 0
0 0,

• 0 • « , p
• ■ 0 e.

•
- 0 • 0 * 0
* 0 0 . . • • , 0
0 0 & 0 0 • • • • 0 0 K

(3.16)

where |3L is thè jth  element of 0^ ^ .  A is a block-diagonal matrix containing thè matrices 
(Z rVV (ZJVV r̂, ,)Z)‘\..,(Z TW£Z)Wr{rxJZ )~ \ Recali that ru  are thè first stage residuals 
corresponding to thè HBP GM regression of xy on Z. The dimensions of thè matrix C are 
determined by thè number of observations n (fixing thè number of columns) and pk (fixing thè 
number of rows). A typical column C  is equal to

C. = v e c iz Iw A zJ iX '-x J W ^))  = (3.17)

Zf\ ( z , ) ( x ip-xif)wr(r^ )

where rX). is thè first stage HBP GM residuai associated with thè ith observation and thè yth 
explanatory variable. Finally, notice that thè p columns of f  are built from thè A:-dimensionai 
vectors ^  ;'=1,..^.

We will assume that thè quality of thè Instruments and thè distrìbution F(q.) of thè 

observations qt = (y^XpZ,), induce thè following conditions to hold:

04.1) pUm (n ~'Z r£) * 0,

w-2) ZOZ ■ «P-n-

thè probability limit £>(P,D exists and is a finite positive definite matrix of dimension p , and
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76 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

-  N(OM).

Assumption (A.l) especially is cruciai for thè success of thè 2SGM estimator and can be tested 
(see, inter alia, Davidson and Mackinnon (1993), p.241).

Proposition 1.

The 2SGM estimator as defined in (3.4) is consistent and asymptotic normally distributed if 
conditions (A.I )—(A.3) hold.

Using thè Taylor expansion (3.6) and conditions (.4.1)-(A.2) it is straightforward to prove thè 
consistency of thè 2SGM estimator by employing Slutsky’s theorem. Further, if a centrai limit 
theorem (see, for instance, Davidson and Mackinnon (1993), p.126) is applicable to 
n ~inX  TWx(X)Wr(r2)e then condition (A.3) holds and so thè asymptotic normality of thè 2SGM 
estimator is guaranteed. Under conditions (A.1)-(A.3) thè proof follows directly from Lemma 1 of 
Krìshnakumar (1995). See also Krasker (1986) and Maronna and Yohai (1981).

Krasker (1986) derives restrictions on F and <(i. = x jw x(x ̂ ( r ^ )  which induce conditions 
(A2)-{A3)  to hold. Here we will not go into detail but only remark that thè key requirement,<|>( 
is bounded and continuous, is fulfilled for our 2SGM estimator.

On two fronts thè 2SGM procedure does not coincide with thè 2SLS method. First, thè 
way in which each method computes final residuals is strikingly different. These residuals can be 
used to construct thè sum of squared residuals, thè scale parameter or test statistics (for exampie, 
thè Frees (1995) test on cross-sectional independence or thè Durbin-Watson autocorrelation test). 
Two Stage Least Squares final residuals which are calculated according to r,tf t . = y.-Jt,0,wc are 
more accurate predictions of thè model error terms than thè second step residuals 

risLsJ ~ y,~^t^2SLs if data are free from outlying observations. Second step HBP GM weights 
are involved when computing thè weighted 2SGM residuals. On thè basis of these weighted 
predictions of thè disturbances, more reliable (robust) statistics can be provided. As a consequence, 
we can not swap x ( for x t in thè equation

Proof:

rw.1SGMJ = v V w (f ,)wr(r2)  -x  (x )w r(rv)  $ (3.18)
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without adjusting thè weights and wr .3 Second, thè variance-covariance matrix (3.14) 
associated with thè 2SGM method is consistent under heteroskedasticity whereas thè covariance 
estimator of thè standard 2SLS technique (see, inter alia, Davidson and Mackinnon, p.217) is not.

Section 33  Robust Generalized Method of Moments Estimation

Reconsider thè Seemingly Unrelated Regression (SUR) model

y , i= x *P+E„’
(3.19)

as introduced in section 2.2 but whose fixed effects are omitted and whose orthogonality condition 
£[E(jrtf]=0 is replaced by thè instrumental variable counterpart £T[Ex/ztf] =0. At this stage we will 
allow for heteroskedastic errors in model (3.19) but stick to thè cross-sectional independence 
assumption. The covariance structure of thè errors (£[££*} = 1) is therefore described by:

(B. 1) E[£(i]=0, i'=1,..^i, 7,

(B.2) £[e„£ ]=0,

(B.3) E[g\ -  a",

(B.4) £[e;ieJ  = a„.

The estimation method outlined below can be extended to thè more generai case of models with 
any finite error covariance matrix. For example, thè Newey-West (1987) procedure can be 
employed to estimate thè unknown components of I .

Although thè 2SGM technique of Section 3.2 provides heteroskedasticity consistent 
estimates with concomitant heteroskedasticity consistent standard errors, a more efficient robust 
estimator can be developed by exploiting thè relevant moment conditions. The Generalized Method 
of Moments (GMM) considers thè theoretical unconditional moment condition

3 Evidently, when new weights wr(j:() and are determined then thè relatively more

accurate predictions r1SGMj ” wx(x, ) -x ~x t>w,(y,~x fina*) may serve t0 compute
thè various statistics.
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78 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

= 0,
“ (3.20)

where wu is any vector which belongs to any information set ì t at time t with E[£(i | /  ] = 0. The 
traditional way to evaluate (3.20) is to equate its sample counterpart to zero4

- Ì E É h - ^ - x ^ )  = 0 . (3 2 i)

In thè instrumentai variable case, thè empirical moment condition (3.21) can be written as 

X TZiZ  ’IZ T 'Z  r(y-Xp) = 0.
(3.22)

Replacing thè diagonal elements of X by thè squared 2SLS residuals and solving (3.22) for P 
gives thè Two Stage Instrumental Variable Estimator (2SFV) first proposed by White (1982). 
Equation (3.22) is thè first order condition associated with thè objective function

™in (y-Xp)irZ (Z 7IZ )-,Z r<y-À'p). (3  23)

This criterium function expresses thè square of thè moment Z T(y -Xp) weighted by its covariance 
matrix Z TIZ .

The empirical moment condition (3.22) can be a very unreliable approximation of thè 
theoretical condition (3.20) in finite samples if thè data are contaminated. In order to robustify 
(3.22) we insert W.(*) to downweigh leverage points in thè instrumentai variables. The entries of 
thè yV-dimensional diagonal matrix W.(Z),

i \ ( ì /xó.97s(^) ì  (3 24)•fc,) « min | K J L _ -----j ,w
ti

are based on robust distances. These distances RD( are computed with thè Minimum Volume 
Ellipsoid (MVE) estimates of location and scale which are approximated through application of 
algorithm R of section 1.3.2. Furthermore, by making thè connection between thè error term 
En = yt - x $  and thè second round 2SGM residuals, we propose multiplying both thè response 
variable ya and thè explanatory factors x a by thè square root of thè 2SGM weighting functions 
wx(xtì) and wr(rn) .5 Note that we compute new weights for x tt using formula (3.24) since thè

4 Capital letter N defines thè total number of observations.

5 Recali that thè computation of thè HBP GM estimates is equivalent to applying OLS on weighted data 
(see formula (1.14) of section 1.2.4). The weighted data are constructed by multiplying both yH and xg by

F F w T ■
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Part I. Robust Estimation 79

second step 2SGM weights are based on £ tì.6 The residuals are calculated asr(. = y„~xlî jsatr 
The elements of thè A/-dimensionai diagonal matrix Wr(r) are founded on Tukey's bi-square 
function according to,

= 0 \rP , \ ^ C
= (1 -(r„/(C,c))2)2 \r,/Ot\<c. (3‘23)

The standard deviation at of thè errors in period t is estimated by computation of thè Median 
Absolute Deviation (MAD) of thè n residuals rti,  i - Altogether, thè robust normal equation 
becomes

X TJWx(X)Wr(r) Wz(Z)Z (Z (Z)nW. (Z)ZT Z TWz{Z){w pcìw Jr) (j-Xp) = 0. (3.26)

The appropriate covariance matrix 12 now is thè one which consists of thè variances and 
covariances of thè weighted errors Efî wr(t tì)wx(xtì) , i.e. £2=E[ \jWr(e)Wx(X) ££T̂ W x(X)Wr(t)  ].

Following White (1982), estimates for thè diagonal components of thè covariance matrix 
Q are obtained by insertion of thè squared weighted 2SGM residuals r 2wx(xti)wr(yti „&2sgm) into 
thè diagonal of ù .  In thè circumstance of a large number of cross-sectional units n with respect to 
a relatively small number of time periods T, Zellner’s (1962) solution,

&u = r,d wr(rJ wSx J  • (3.27)« i*i

is employed to obtain consistent estimates of thè non-diagonal elements cofj of Q which indicate 
thè covariance between thè weighted errors of period t and thè corresponding
ones of period s. Non-diagonal elements of ó  are zero for those which correspond to thè 
covariances between different cross-sectional units. Solving thè first order condition (3.26) with 
respect to P retums thè Robust Generalized Method of Moments (RGMM) estimator

(3.28)

Ah»* = (*  VW (X)VV(r) Wz(Z)Z (Z ^ ( Z ^ t t '/Z iZ ) - ' Z TWz(ZhJWx(X)Wr(r) X

[x TjW x(X)Wr(r) Wz(Z)Z (Z TWXZ)ÙWz(Z)Z)" Z  TWz(Z)^Wx(X)Wr{r) y

Formula (3.28) is accompanied by two remarks. First, if thè instrumentai variable matrix 
Z has thè same dimension as X , i.e. p=k, then thè computation of thè RGMM estimator reduces 
to

* Instead one could replace X  by X  in thè RGMM defming equation. Then thè second step 2SGM 
weights w (£g) can be employed. However, thè derivation of thè variance-covariance matrix of thè resulting 
RGMM estimator is not at all straight forward (see Section 3.2 on thè derivation of thè variance-covariance 
matrix of thè 2SGM estimator).
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K g*»  | ^  "  (z  TWz{ZyjWx(X)Wr{r) J f j ' {z  TWXZhjWx(X)Wr(r) jrj . (3.29)

From (3.29) we deduce that an adjustment for heteroskedasticity or autocorreiation is no longer 
made. Therefore, we propose constructing a block-diagonal instrument matrix Z with diagonal 
components Z,, r=l,..,7 in thè case that p -k  and thè hypotheses of homogeneity and/or 
independence of thè disturbances are rejected. Our second comment concems thè unknown 
Constant c. Following section 1.2.3 this criticai value is set to c=4.685, since in that way thè HBP 
GM estimator reaches an efficiency level of 95% in comparison with thè classical Maximum 
Likelihood procedure if thè errors, and so thè 2SGM residuals r a r e  normally distributed. One 
could fix c to a value so as to induce thè RGMM estimator to achieve 95% of thè efficiency level 
of thè classica] GMM method in clean data samples. We however do not follow this route because 
c would not only depend on thè distrìbution of thè error terms but also be a function of, among 
other arguments, thè unknown correlation between X  and Z. For thè simulation experiments we 
have carried out in thè subsequent section, we find that for thè choice of c=4.685 thè efficiency of 
thè RGMM estimator fairly approximates thè 95% GMM level in thè smooth data cases for 
different sets of instruments.

In order to derive thè variance-covariance matrix of thè RGMM estimator we approximate 
thè RGMM normal equation with a Taylor expansion around 0*GMV-f3:

0 -  X T][wJ)C)wJr) Wz(Z)Z (Z TWz{Z)ÙWz(Z)Z)" Z  TW XZ){wJx)wJr)

(3.30)

= X  TylWx(X)Wr(t) WXZ)Z (Z TWXZ)ù($)Wz(Z)Z)'' Z  TWz{Z ^W z{X)Wr(t) £ -

where

D  =  . ^ (y tJ w  (Y\W <r\ W  (T\7 (7 TW  <7\C)W 17\7Y' 7 rW(7\J\V <Y\W (r\ r

For large samples in n thè matrix D can be consistenti estimated by evaluating D(P) in

D  = X TJWx(X) (dJ\Vr(r) ldr)PX

* X T̂ w jx ) w jr )  Wz(Z)Z (Z TWz(Z)ÙWXZ)Z)-1 Z  7VV (Z^VV (X) O y/w /r) fdr)RX (3  32)

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



Part I. Robust Estimation 81

+ X rv/W(X)Wf(r) W.(Z)Z (Z TW:(Z)ÙWXZ)Z)-' Z  TWSZbjwt(X)Wr(r) X.

P and R are TV-dimensiona] diagonal matrices containing 

Z ^ ’XZ0)(Z TWz(Z)ClWXZ)Z)-'Z ^ ^Z h jW jJO W fr) r, r= l,..J , (3.33)

and respectively. d)jwr(r) tàr is a diagonal matrix of dimension N
with elements

i^w ,(r ,() Qr„ -  0 k ,/# J 2c (334)
•  - 2 r J ( d f f  \rJ6t\<£.

On thè basis of (3.30), we suggest computing thè asymptotic heteroskedastic consistent variance- 
covariance matrix of thè RGMM estimator as

(3.35)

where M = X Ty[w jx )w jr) W,(Z)Z (Z TW,(Z)ÙWXZ)Z)'1 Z TW.{Zbjwt(X)Wr(r) X.
Analogously to thè argument of Proposition 1 of Section 3.2 we impose thè following 

conditions, in addition to (A.IMA.3), in order to secure thè identification and consistency of thè 
RGMM technique:

>̂ > U t ( »
exists and converges to a finite positive definite matrix of dimension p , 

<A 5> N -Zo  Q f*  ' / W  V¥iZ)zj = A

exists and has full rank p ,

(A.6) ^  (_Lz TW ,(Z )C ìW ^ ^  = H

exists and converges to a finite positive definite matrix of dimension k,

M-7» jv S L  ( ^ > , < z V ÌiW  X.) -  B

exists and has full rank p , where Ri is a T-dimensional diagonal matrix consisting of ruy..,rn.
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Furthermore,

04.8) f_Lz ’w f z j w / x ^ r )  ri -  MO.O,
V &  \

where C = £[Z/W'.(Z|)Ù W (Z)Z(], i=l,..,n; Z( = (z£,..,zn)r ^  T-dimensional symmetric 
matrix ù t is defìned similarly. Large sample properties of thè classical GMM estimator are 
established in Hansen’s seminai paper of 1982.

Proposition 2.

The RGMM estimator as defìned in (3.28) is consistent and asymptotic normally distributed if 
conditions (i4.1)-(A.8) hold.
Proof:
By solving thè Taylor expansion (3.30) for ($RCMM- P) and applying Slutsky’s theorem when 
taking thè probability limit of both sides of thè resulting equation we obain:

g Z .  ' / w w  wp * )
(3.36)

Under assumptions (A.4)-(A.6) equation (3.36) is well defìned. The last term of thè right hand 
side of (3.36) is equal to zero because of assumption (A.l). The consistency of thè RGMM 
estimator is therefore shown, p h > n ( $ ~  P- The asymptotic normality of $KGMM is conjectured 
from equation (3.36) when it is valid to apply a centrai limit theorem (assumption A.8).

The estimator $ KCMM is B-robust in thè sense that it produces reliable parameter estimates even if 
small perturbations in thè centrai model distrìbution F occur. The traditional GMM method does 
not possess this appealing property. In thè latter case, just a single observation may
cause thè GMM estimator to retum arbitrary estimates.

Proposition 3.

The influence function, IF(q\$KGMM,F), associated with thè RGMM estimator (3.28) is bounded if 
conditions (>4.1 ) and (A .5)-(AJ) hold.
Proof:
Following thè same steps taken when obtaining thè influence function associated with thè robust 
SUR estimator in section 2.6.2, we defìne F m ( 1 -s)F  + sG and evaluate thè first order condition

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



Part I. Robust Estimation 83

(3.26) under F \  As usuai, F reflects thè centrai model distribution whereas outliers are generated 
by thè distribution function G. Hence we get thè following equality:

( (1 -sìE[z, V ;(Z,)fiW;(Z,)Z,] * d - f c TW S Z A W & v ]  ) ' (3.37)

(  ( 1 ’ \V X Z ^W ,(X )W i(r l) r,] .  t E ^ ’W f Z ^ W ^ W f r , )  r ,]  ]  .

The influence function lF (q $ KCMM,F) is acquired by differentation of (3.37) with respect to s and 
evaluation of thè resulting equation in 5=0 , using thè assumptions (>4.1) and (A.5)-(A.7):

(3.38)

r 7- I-------- ^ J W (r ,)  R )  1 W  r r i------------------  1
E jz,Tw p r fw Mw  v ^  • y,j J [£,[*, y * / > W , )  K W ,\

£  j z > r(Z,)Ò H^Z)^]' e Ĵ Z,TWXZ)-JwJx~)V/Jr~)~r,] j .

By choosing G equal to thè distribution that puts mass 1 at thè point ^ we obtain

m r ì 'a m r F *  = <*<* ")B )"A (H - t e f c f e ^ C r ^ e * )  (3.39)

The distribution function G is supposed to generate thè worst possible outlier at thè maximum of 
thè influence function. The error Ef. * (yfi-x n.|3) is bounded by thè weight ^ wt(xtì)wr( tu) while 
wXz„) downweighs aberrant instruments. Thus thè influence function (3.39) associated w i th f t^ ^  
is bounded.
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Section 3.4 An Examination of thè Performance of thè Robust GMM estimator in 
Simulated Panel Data Sets With Measurement Errors in thè Explanatory Variables

Griliches and Hausman (1986) use thè traditional GMM technique in a panel data framework with 
measurement errors in thè explanatory factors.7 In this section, thè performance of thè Robust 
GMM estimator in such an environment is analysed. We closely follow thè estimation strategy 
recommended by Griliches and Hausman (1986) but employ thè robust methods of Section 3.2 and
3.3 in order to diminish thè excessive impact of outlying observations.

Consider thè linear panel data model

*  ’  <3.40,

where E;i is thè error terni associated with cross-sectional unit i in period t and T|( is thè ith 
individuai specific fixed effect. There are again T  periods and n individuai units. Equation (3.40) 
represents thè so-called covariance model or individuai dummy variables model. It can be 
contrasted with thè error components model and random coefficients model where thè intercept is 
random (see Màtyàs and Sevestre, pp. 26-28). Suppose, however, that thè true equation reads

y, ,= (3.41)

instead of thè one presented in (3.40), where x n is thè observable erroneous reflection of thè 
unobservable variables s_,

-  S*+V (3.42)

Then both first difference and within estimation of model (3.40) result in downward biased 
parameters because of thè negative correlation between thè composite disturbance term

E„ = S ,rv*P
(3.43)

and thè explanatory factors x tì; ^  are errar terms and vft. is a p-dimensionai row vector of 
measurement errors. The Wu-Hausman statistic (see Wu (1973) and Hausman (1978))

* = ^ L - 3 L > r(vcov( ^ L ) - v'cov(3 L )> ',^ L - | K m) (3 44)

can be consulted in order to test thè nuli hypothesis of thè absence of measurement errors in thè

7 Arellano and Bond (1988) discuss a similar estimation methodology for panel data (computer package 
DPD). This method also lacks correction for outliers.

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



Pait I. Robust Estimation 85

independent variables.8 and are thè HBP GM estimates in case of thè within and thè 
first difference regression respectively.

A standard econometrie technique for regression models with endogenous or erroneously 
measured variables is instrumentai variable estimation. When estimating panel data model (3.40), 
lagged and future values of thè observable explanatory variables x ti may serve to construct 
instrumentai variables z tì,

Z  « (P®I )X.
(3.45)

ln is thè identity matrix of dimension n. The ^-dimensionai square matrix P must satisfy three 
sets of conditions:

(C.l) l TP « 0,

(C.2) E[Z TX] = E[Z TS], le . E[X T(P ® I/V )  = 0,

(C.3) E[X T(P ® IfX ] * 0,

where / is a 7"-dimensional column vector with entrìes 1; ®  is thè symbol of thè Kronecker 
product. The First restriction is necessaiy to eliminate thè Fixed effects. The second requirement 
implies that thè instrumentai variables zri should be uncorrelated with thè measurement errors 
and Finally z u should have a non-zero correlation with x H. Note that by choosing thè correct 
entrìes of thè matrix P both thè within and thè First difference estimator can be written in thè 
format (Z TX )'XZ Ty ,  of thè 2SLS instrumentai variable estimator.

An optimal set of instruments Z will contain all non-redundant instruments zf  j=\,..Jc 
which satisfy conditions (C.1)-(C.3). An instrument zy is called non-redundant if it provides 
information which is not delivered by thè. other instruments of thè set. The number of non- 
redundant instruments equals thè number of linearly independent P matrices which satisfy thè 
three conditions stated above. Restriction (C.l) requires that thè sum of thè elements of each 
column of P is equal to zero. This imposes T linear restrìctions on thè choice of P. In thè case 
that thè design matrix X  is one-dimensional, condition (C.2) can be rewritten as

' ' “ J i f f -  0. (3.46)
fì f—I r —I t —1

* h is asymptotically x2-distributed with p degrees of freedom (see Section 2.3).
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86 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

Table 3.1 List of Instruments For Model (3.40) Under thè Assumption of Identically 
Distributed Stationary Measurement Errors vtf, 7~=4 a

Difference Equations Valid Instruments Under Valid Instruments Under Measurement
to be Estimated Uncorrelated Measurement Errors which are Correlated up to a

Errors MA(2) process (P^GWJW)

O*-?,,) -  <**-x„)P xu+xjr x* xu+x*
r  t «mp rir 2i y  é x ^ x u

xir x*+x* *x+*m
xa X2i

x* Xx

^2f’ X3¥

f V - O  - B
v*~~yiìJ vx^-xj p

© ■ è )

Total Number of Instruments 11 9

1 Table 3.1 corresponds with Table 2 of Griliches and Hausman (1986) in condensed form.

Condition (3.46) reveals that thè sum of thè diagonal elements of P must equal zero if thè 
measurement errors are identically distributed and stationary.9 For correlated errors following a 
Kth Moving Average (MA) process K additional restrictions have to be imposed on P. If we are 
willing to assume that condition (C.3) is not binding and that measurement errors associated with 
different columns of X  are uncorrelated then thè optimal number of instruments is equal to 
T 2-(T+K+l) when thè measurement errors associated with each column of X are identically 
distributed, stationary and correlated up to a MA(K) process. In thè appendix A3 we clarify why 
optimal instramental variable estimation of model (3.40), when thè panel data comprise four 
periods, comes down to applying 2SLS (2SGM) on thè difference equations of Table 3.1 (see also 
Table 2 of Griliches and Hausman (1986)) using thè indicated instruments.

The difference equations of Table 3.1 are estimated with thè help of thè 2SGM method 
instead of thè conventional instrumentai variable technique 2SLS because of thè argument that 
outliers may corrupt classical estimation methods. We employ thè Robust Generalized Method of

’ In case of non-stationary measurement errors, T extra conditions restrict thè choice of P.
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Moments Estimator of Section 3.3 in order to combine thè 2SGM estimates of thè 
differentdifference equations of Table 3.1 optimally. With this end in view, consider thè super 
model of stacked difference equations

y  = (3.47)

where X  and y  are thè stacked differenced independent and dependent variables respectively. It is 
assumed that thè stacked errors E obey conditions (5.1) -(5.4). The variance-covariance structure 
of these disturbances is therefore described by = X. To summarize, by estimating model
(3.47) with thè B-robust estimator we make corrections for conditional heteroskedasticity,
serial correlation in thè regression errors, measurement errors in thè independent variables and, last 
but not least, outlying observations.

Note that application of thè compound 2SLS/GLS estimator, (X r£  lX )'lX Tt. y, does not 
necessarily provide consistent estimates of thè super model since thè disturbances of one equation 
are not necessarily orthogonal to thè explanatory variables or instruments of another equation.

We have conducted a limited Monte Carlo study in order to examine thè consistency, 
efficiency and distrìbution of thè varìous B-robust and classic estimatore which have been 
mentioned so far. Consider thè following data generating processi

Experiment (IV):

>'„ =

* 3s*+s*

5a '  sù+3 4  +sà +si- 

s* * s i n ; ,

s4i ~ s,*+s i +fi"-3s’ .

where thè columns of s,*(, s^, s'x, s'm are independent and identically normally distributed with 
variance 1/4 (iid N(0,l/4)); each column of vft and en is iid N(0,1); t], are identically and 
uniformly distributed with variance 1; S  = (5,r,..^S/)T; 7=4, n - 250 and p=2; The entries of thè 
p  -dimensionai column vector P are equal to 1.

The explanatory factors in experiment (IV) are subject to stationary and uncorrelated 
measurement errors. To be in accordance with Table 3.1, thè number of periods T  equals four. The 
construction of thè independent variables is such that lagged and future values of x tt are valid
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88 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

Table 3.2 Replication 1 of Experiment (TV), p=2*

K m P RGMM Pmgmm P GMM ftcrCMM

0% Pollution

X 0.942 (69.98) 0.856 (37.68) 0.999 (80.72) 0.998 (75.41) 0.996 (75.32) 0.999 (71.86)
0.927 (60.98) 0.820(31.06) 1.009 (75.23) 1.004 (64.49) 1.008 (72.94) 1.005 (66.76)

h 45.23 45.23

0.45 0.45

0.82 0.82

0.64 0.64

0.0001 0.0001

10% Pollution

X 0.890 (44.44) 0.850 (31.17) 0.992 (65.25) 0.992 (55.56) 0.895 (20.46) 0.853 (15.00)
0.835 (26.35) 0.738 (15.15) 1.003 (55.89) 0.987 (43.11) 1.054 (16.14) 1.057 (13.38)

h 17.59 17.59

1.40 1.40

1.39 1.39

5.72 5.72

7.20 7.20

’ t-values are within parentheses; /(<»)0(r,}=1.96, Xoos(2)=5.99. and are thè HBP GM estimates in 
case of within and first difference regression respectively. and are thè Robust GMM estimates
in case of uncorrelated stationary measurement errors and MA(2) stationary measurement errors respectively. 
Table 3.2 reports thè standard Wu-Hausman (h) statistic for thè cases

and

instruments (i.e. condition (C.3) is fulfilled). Since thè calculation of thè robust GMM estimates 
requires a substantia] amount of computing time, we replicated experiment (IV) only 500 times for 
both clean and polluted data. Contaminated data sets are constructed by replacing ten percent 
(randomly drawn) of thè observations (comprising thè response and explanatory variables X) by 
drawings from three independent normal random variable with mean zero and variance 100. 
Consequently, vertical outliers in view of thè relationships (3.2) and (3.40) may occur and leverage 
points are added to both thè explanatory factors and thè instruments.

The HBP GM estimator, either in thè within or thè first difference dimension of thè data, 
produces estimates which are far away from thè true parameter values as is shown in Table 3.2 for

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



Part I. Robust Estimation 89

Table 3.3 Simulation Results Concerning Efficiency, Consistency and Distrìbution of 
thè RGMM Estimator When Measurement Errors in thè Explanatory Variable 
Are Present, Experiment (TV), p=2*

P RGMM

0% Pollution

0.931682 0.848834 0.999240 1.000222 0.997243 0.997765
0.004937 0.023388 0.000301 0.000335 0.000304 0.000320
0.000270 0.000536 0.000301 0.000335 0.000296 0.000315

0.931101 0.846582 1.000179 1.000564 0.998163 0.998077
0.005020 0.024058 0.000306 0.000347 0.000291 0.000313
0.000273 0.000521 0.000306 0.000347 0.000288 0.000309

4.789 4.295 1.460 1.756 3.923 1.799
0.476 0.484 2.633 1.516 5.338 2.024
5.265 4.779 4.094 3.272 9.260 3.823

10% Pollution

0.861685 0.822615 0.995733 0.995489 0.963497 0.968178
0.020072 0.032732 0.000451 0.000497 0.005242 0.005436
0.000941 0.001267 0.000433 0.000476 0.003910 0.004423

0.862850 0.820582 0.997569 0.997033 0.964573 0.967978
0.019861 0.033708 0.000472 0.000554 0.005315 0.006162
0.001051 0.001517 0.000466 0.000545 0.004060 0.005136

2.190 2.553 1.522 0.116 18.139 21.030
7.594 1.154 0.715 0.898 17.692 49.610
9.784 3.707 2.237 1.014 35.831 70.640

* Each celi of thè rows 3 and 6 contains thè mean. thè mean squared error and thè variance of thè estimated
parameter values over thè 500 runs. The length of thè series y equals 1000 and P,=P:=1. 0"^ and (5^ are 
thè HBP GM estimates in case of within and first difference regression respectively. >̂KC!4M and are
thè Robust GMM estimates in case of uncorrelated stationary measurement errore and MA(2) stationary 
measurement errors respectively and are thè corresponding estimates which are based on GMM
(non-robust), see Table 3.1). Each celi of thè rows 4 and 7 contains thè Doomik-Hansen (1994) statistics of 
symmetry, kurtosis and normality which are respectively distributed XJ(2), and %2(4).
Xow(2)*5.99, ^«(4)-9.49.

thè first replication of thè contaminated and clean data sets. As predicted by Griiiches and 
Hausman in 1986, our estimation results confimi that

Errors of measurement will usually bias thè first difference estimatore downward (toward 
zero) by more than they will bias thè within estimatore (Griliches-Hausman (1986), p.9S).
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90 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

In agreement with this assertion thè Wu-Hausman statistic rejects thè nuli hypothesis of 
equivalence of thè within and first difference estimates. In fact, thè robust GMM estimators which 
correct for uncorrelated stationary measurement errors ( f ^ ww) and MA(2) stationary measurement 
errors respectively, produce estimates dose to one, that is to true (3. Their classical
counterparts, however, are not capable of retuming estimates which are dose to thè parameters of 
thè data generating process if anomalous observations are present. Evidently, outliers are 
responsible for these biased results. Notice that according to thè Wu-Hausman test, thè Robust 
GMM and thè traditional GMM estimates for thè first replication are not significantly different if 
thè data are free from aberrant points. The estimates generated by and are in none
of thè cases presented in Table 3.2 significantly different as is again revealed by thè Wu-Hausman 
test. One can interpret this result as a sign of thè ability of thè instnimental variables to solve thè 
problem of non-orthogonality of thè design matrix.

Table 3.3 reports thè mean, thè mean squared error and thè variance of thè HBP GM 
within and first difference estimates, thè RGMM estimates in thè case of uncorrelated and 
correlated measurement errors and thè corresponding non-robust GMM versions over thè 500 runs. 
The HBP GM estimators produce significantly biased estimates in all cases considered. It is of no 
surprìse that, among thè GMM estimators, thè variance of thè estimates is thè lowest for thè 
classical GMM method, using thè set of instruments based on non-correlated and stationary 
measurement errors, since this technique provides thè Uniformly Minimum Variance Unbiased 
estimator under thè centrai model data generating process outlined above. Although thè differences 
in efficiency between thè B-robust and standard GMM estimators are small. The RGMM estimator 

$ Vrcmm °btains a relative efficiency level of 98.3% and 94.1% for thè explanatory variables and 
x2 respectively as is revealed by thè division of thè corresponding GMM and RGMM variances. 
More favorable efficiency characteristics in smooth data can obviously not compensate for thè 
decay of thè standard GMM estimator in polluted panel data sets. When outliers corrupt thè data, 
Pcma# 3 c«m/ break down as can be seen from thè relatively high mean squared errors and 
apparent inconsistency of thè estimates. The breakdown point of thè traditional GMM estimator is 
nil, i.e. only one observation may cause thè estimator to produce any estimates. The robust 
altematives and stili provide accurate estimates for thè 10% pollution case of Table
3.3. The robust GMM estimator which corrects for stationary and uncorrelated measurement errors 
is more efficient than thè other which is founded on thè set of instruments for stationary and 
correlated measurement errors. This result is inherent in thè way experiment (IV) is built.

The Doomik-Hansen (1994) multivariate statistic is employed to test whether thè parameter 
estimates are normally distributed. This finite sample test has a %2 -distribution with four degrees of 
freedom. Our results presented in Table 3.3 indicate that thè bounded influence estimators, HBP 

GM and RGMM, are normally distributed. If thè data is contaminated with outliers then thè GMM 
estimator no longer possesses thè normality property. The Doomik-Hansen test values of 35.83 and 
70.64 corresponding with $ VCMM and respectively, substantially exceed thè criticai value of
9.49 at thè 5% significance level. The important implication of thè rejection of thè normality
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hypothesis is that not only thè classical GMM parameter estimates but also thè concomitani 
standard errors and t-values are misleading.

To conclude, thè B-robust Generalized Method of Moments technique developed in this 
chapter is to be preferred to classical estimation procedures when thè explanatory factors are 
subject to measurement errors and data are contaminated.

Section 3.5 Summary and Outlook

The textbook approach towards econometrie modelling is inadequate when economie theory does 
not coincide one-to-one with thè statistical representation of thè phenomenon under interest. Robust 
statistics provide a solution to reliable estimation and inference in this situation by considering 
neighborhoods of thè standard parametric models. A favorable estimator within thè class of robust 
estimatore is thè High Breakdown Point Generalized M-estimator which employs non-parametric 
tools to trace outlying observations and to diminish their impact on thè estimates of thè parametric 
model. The HBP GM estimator, however, only accounts for freaks in thè data but leaves other 
important aspeets of non-experimental data aside. If thè fundamental orthogonality condition of thè 
design is at issue, this estimator produces inconsistent estimates. The B-robust 2SGM and RGMM 
estimatore which are presented in this chapter do not display this deficiency. The latter is more 
efficient than thè first if thè model errore exhibit heteroskedasticity or autocorrelation. Our 
simulation results stress thè superiority of thè RGMM estimator in panel data sets with erronously 
measured explanatory factors in comparison to thè classical generalized method of moments.

One critique often put forward by econometricians who are sceptical about robust methods 
is that robust estimatore diminish thè influence of outliers without taking into consideration thè 
reasons for their peculiarity. Outlying observations stemming from copying or computation errore 
can be appropriately corrected and included in thè data. If thè theoretical model only applies to a 
sub set of thè data one could choose, for example, a switching regime model (e.g. see Hansen’s 
(1996) threshold regression method) or statistical models with mixtures of distributions (see, inter 
alia, Titterington, Smith and Makov (1985), Robert (1994)). The first argument is implicitly 
founded on thè assumption that it is possible to distinguish outlying observations from regular 
points in thè data at hand. The use of robust estimatore, however, is indispensable in discovering 
these outliers because of thè masking effects which were already mentioned in thè introduction. 
The second argument deserves more attention. In thè presence of outliers, thè threshold regression 
method may not only produce inadequate parameter estimates but can also make thè wrong 
division of thè sample into regimes. It seems fruitful to robustify thè threshold regression technique 
since thè switching regime model suits many economie analyses. Robert (19%) noted that, in thè 
light of mixtures of classical distributions,
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92 Chapter 3. Two Stage GM and Robust Generalized Method of Moments

Their appeal goes beyond thè mere modelhng of heterogeneous populations with 
homogeneous subgroups as in discrimination and outlier detection, since this modelling 
covers a wide range reaching towards nonparametrìc statistics (Robert (19%), front page).

Comparison and integration of robust methods and models with mixtures of distributions is another 
interesting topic for future research.
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Appendix A3 The Choice of Instruments

Griliches, Hausman and Meyer (see thè appendix of Griliches and Hausman (1986)) show for p=1 
that thè optimal number of instruments in case of stationary, identically distributed and 
uncorrelated measurement errors is equal to 7 2-(7+l ) when estimating model (3.40) of Section
3.4. There are eleven transformation matrices P which fulftll thè requirements C1-C3 if 7=4. In 
this appendix we give examples of two such P matrices to clarify Table 3.1.

For 7=4, we have y  = Af=(x,r,..jc4r)r where y v -J4 are column vectors of
dimension n. The P matrices corresponding to thè first equation of Table 3.1, under thè 
assumption of stationary, identically distributed and uncorrelated measurement errors (second 
column), are equal to

-  1 -  1 0  0
p  _ 1 1 0  0 .^2
r i 0 0 0 0  ̂ '

0 0 0 0

and

0 0 0 - 1
p _ 0 0 0 1 ?
r 2 0 0 0 0"

0 0 0 0

Now we will demonstrate that estimation of

y = T\®l+X$+E
(A3.3)

with instrumentai variables Z = (P fè lJX  is equivalent to applying 2SLS (2SGM) to thè difference 
equation

y2-yi = (X2- X ^ t
(A3.4)

using thè instrument X,+X2. lm is thè n -dimensionai identity matrìx and / is a 7-dimensional 
vector with entrìes 1; The vector comprises error terms. The Two Stage Least Squares estimator 
simplifies to

(A3.5)

if X and Z have thè same dimension. Inserting Z = (P fè lJ X  into (A3.5) gives

.  ^  (A3.6) 

“ “  « p ,g>i ,)X)tx  a , ' x , ) 7( x , - x t)
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which clarifies thè second row of Table 3.1. Note that thè 2SLS estimates of difference equation 
(A3.4) are calculated as

fc*i, = ( ^ - X / Z i Z  TZ)-'Z \X Z-Xx))-\X2-X yz{z  TZ)"Z T(y2~yi),

where thè instrumentai variables are equal to Z = CX1+À',, X4) under thè assumption of stationary, 
identically distributed and uncorrelated measurement errors. This formula can not be expressed in 
terms of P. The introduction of thè P matrices, however, facilitate thè discovery of thè appropriate 
instruments for equation (A3.3).
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CHAPTER 4

A Literature Review of thè Relevance of Financial Policy

Section 4.1 Modigliani and Miller’s Proposition I

The purpose of a risk management program is to increase thè value of a firm by altering its financial 
structure. For instance, off-balance sheet hedging instruments such as futures, forwards, options and 
swaps can be used to change thè variability in future profits or cash flows. To thè extern that trading 
in these financial assets reduces company’s risk, hedging might be desirable although it creates another 
financial claim on thè company. On-balance sheet hedging by means of improving thè debt/equity 
ratio might prevent a situation of financial distress and as a consequence allows a firm to increase thè 
amount of outside money when cash flow is temporarily insufficient to finance new investment 
projects. Before tuming to thè question, raised in Chapter 5, of whether Dutch manufacturing 
companies which are quoted on thè Amsterdam stock exchange could benefit from pursuing risk 
management programs, we first give a brief literature review of thè rationale for an active financial 
policy.

In thè world of Modigliani and Miller (1958) there are no transaction costs, taxes or borrowing 
constraints and capitai markets are perfect in thè sense that any two assets which are perfect substitutes 
for each other must sell, in equilibrìum, at thè same prìce. Given this setting, Modigliani and Miller 
prove thè irrelevance of financial policy in their famous Proposition I.

Proposition 1 (Modigliani and Miller (1958), p.268):
The market value of any fimi is independent of its capitai structure and is given by capitalizing
its expected return at thè rate pk appropriate to its class.

Proposition I asserts that thè investment and financing decisions can be taken separately from each 
other since thè value of a firm is only determined by its reai assets (thè left-hand side of thè balance 
sheet) and does not depend on thè proportions of different financial claims on thè company (thè right- 
hand side of thè balance sheet). The so-called principle of value additivity holds trae; thè value of thè 
firm’s securities combined is equal to thè sum of their values considered separately.

The intuition behind Proposition I can be easily grasped by considering two companies which 
have identical reai assets but differ in their financial structure. One company uses both stocks and debt 
to finance its investment projects whereas thè other is unleveraged. An investor who follows strategy 
A buys 10% of thè stock of thè leveraged company whereas an investor of strategy B buys 10% of
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98 Chapter 4. A Literature Review of thè Relevance of Financial Policy

thè stock of thè unleveraged company and borrows on his own account 10% of thè value of thè 
leveraged company’s debt. Noting that both investment strategies have thè same distrìbution of retums 
(O.l(profits-interest)), in perfect capitai markets, portfolio A ( O.IEl = 0.1(VL-DL) ) has thè same price 
as portfolio B ( -0.1DL+0.1 Vu = 0.1(VL,-DL) ), where thè symbols El,Dl ,Vl  and VL, denote equity, debt, 
total value of thè leveraged firm and thè value of thè unleveraged firm respectively. Consequently, thè 
market values of thè leveraged and unleveraged company are equal in equilibrìum. Clearly, if thè 
assumptions of Modigliani and Miller (1958) hold trae, a firm can raise its value by dismissing thè 
expensive risk managers since they only mess up thè company’s Financial structure without 
contrìbuting to thè firm’s profits. In fact, investors who care about their portfolio risk can always buy 
and sell hedging instruments themselves.

Since thè pioneerìng work of Modigliani and Miller (1958), a substantial number of articles 
appeared where thè irrelevance theorem is called into question. Nowadays, according to thè traditional 
view, thè optimal capitai structure is found at thè point where thè weighted-average cost of capitai is 
minimized. In thè remainder of this chapter, we relax thè assumptions of Modigliani and Miller one 
by one to gain insight into thè failure of Proposition I. In Section 4.2 we follow thè work of Detemple, 
Gottardi and Polemarchakis (1995), who claim that Financial policy is relevant if thè asset market is 
incomplete. In thè subsequent section, game theoretical arguments are put forward to explain credit 
rationing in equilibrìum. The empirica] relevance of credit rationing is established and thè implications 
of borrowing constraints for risk management are briefly analyzed. One of thè more important reasons, 
why Proposition I often can not be applied, are tax shields. If future interest expenses on debt can be 
deducted from future taxes then thè financial manager of a company should use an adjusted cost of 
capitai, which takes into account thè present value of thè tax shield, when discounting thè cash flows 
of an investment project (see e.g. Brealey and Myers (1988), Chapter 19). In this case, thè acceptance 
of a new investment pian might depend on thè way it can be Fmanced. Mauer and Triantis (1994) fìnd 
that thè impact of debt Financing on thè firm's investment and operating decisions is economically 
insignificant. In Section 4.4 we will shed light on their arguments. Finally, Section 4.5 contains some 
concluding remarks.

Section 4.2 Incomplete Capital Markets

According to Detemple, Gottardi and Polemarchakis (1995) an asset market is complete if all 
contingent contracts are prìced and all re-allocations of revenue are attainable.1 This means that 
investors can actually take all conceivable positions in thè contingent contracts at thè prevailing prìces. 
They show that, when thè markets are incomplete, thè range of attainable re-allocations of thè Firm’s

1 As noted by Detemple et al. (1995), thè asset market may be incomplete as a result of differences in access 
to information sources between different players (thè bank, stockholders, thè management of thè firm etc.). 
However, information asymmetry is not a necessary condition few incompleteness of thè asset market.
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Part II. Investment and Financial Policy 99

revenue is dependent on thè firm’s financial policy if, for instance, there are secondary assets which 
have a payoff structure that is non-linear with thè payoff to equity. To clarify this statement, consider 
an economy with a single firm which collects revenue a (2^) depending on thè state of nature 
($=1,..*S) in period 2. Three different types of assets are sold on thè financial market in thè first 
period: equity, debt and a cali option on thè firm’s equity. The debt of thè firm is assumed to be 
riskless whereas thè return on equity and thè cali option depend on thè amount of revenue brought in 
by thè company. The total dividend payed out to thè stockholders of thè company in period 2 is equal 
to

d(2,s) = a (2 j)-D , s=l,..£. (4.1)

where thè gross return on thè debt, D, is equal to thè face value of thè loan since we assume a zero 
risk-free rate of interest. For simplicity, there are only two periods in thè model of Detemple et al.
(1995), therefore, thè payoff to thè cali option with exercise price k in thè second period is equal to

(d (2 j)-ky  = max(d(2j)-k,0) (4 2 )

since thè value of thè equity coincides with thè dividend payoff d(2,s). In summary, thè matrix of 
asset payoffs in this simple two-period economy is

The columns of (4.3) represent thè return on stock, options and debt respectively. The range of 
attainable redistributions of revenue is determined by thè column span of asset payoffs, [/?(£))]. Let 
us assume that thè following assumptions hold:

Assumption 1. There are more than three different states of nature, i.e. thè asset market composed of 

three assets is incomplete, 5>3.
Assumption 2. Equity and debt are not perfect substitutes,

At this point it is easy to show that different financial policies generate matrices of asset payoffs with 
different column spans, ([/?(/?)] ^  [/?(Z5)] i f  D & D). We conclude that thè matrix consisting of thè 
possible asset payoffs to thè investor is dependent on thè debt policy of thè firm if thè asset market 

is incomplete and a cali option is written on thè firm’s stock.
Detemple et al. (1995) then proceed by introducing H consumers into thè economy and define 

a financial policy to be generically weakly relevant if and only if distinct financial policies result in 
distinct consumption allocations almost everywhere and, if it does, it is robust to perturbation!

a(2 ,l)-D  (a{2 ,\)-D -ky  D (4.3)

R(D) = 0(2,5)-D  (a(2,s)-D -k)' D

a(2S)~D  (a(2JS)-D-ky D

a(2,S)>a(2,5-1 )>...>*>.. >a(2,2)>a(2,1 ). (4.4)
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economy. Financial policy is called strongly relevant if it also affects thè market value of thè firm. 
They show in their proposition 1 that competitive equilibrìum consumption allocations are distinct 
whenever thè asset market is incomplete, if thè number of agents exceeds three (H>3) and thè agents 
are sufficiently diverse in endowments and/or preferences. Three examples of different economies are 
presented to highlight proposition 1. In example 1, where thè consumers have identical preferences 
and endowments, thè neutrality property of financial policy holds. In example 2 (variety in 
endowments), financial policy is weakly relevant since it affects thè consumption allocations but does 
not influence thè firm value whereas in example 3 (heterogenous preferences and different 
endowments) thè strong result is obtained, i.e. thè market value of thè company also changes with thè 
firm’s financial strategy. Example 3 refutes Modigliani and Miller’s Proposition I of Section 4.1 in 
thè sense that, when comparìng thè values of an arbitrary firm across equilibrìa, changes in financial 
policy, in generai, have an effect. As argued by Detemple et al. (1995), at a given equilibrìum, thè 
values of two identical companies which oniy differ in thè capitai structure must be thè same if capitai 
markets are perfect.

Financial policy is generically relevant whenever thè asset market is incomplete. This may 
happen even when secondary assets such as options do not exist. For instance, when equity holders 
have limited liability, thè payoff to equity depends non-linearly on thè financial policy. For this case, 
thè matrìx of asset retums can be wrìtten as

0 °  <“ -5> 

R(D) = a(2 j ' ) - D  D 

a(2S )-D  D

where 0 (2,5 *)>D. Evidently, thè column span of R(D)' is not independent of thè financial policy D. 
Secondary assets and limited liability are observed in many financial markets. Therefore, it is highly 
unlikely that in practice thè manager of thè firm can separate his investment and financial decisions 
as predicted by Modigliani and Miller in 1958.

Section 4 3  Credit Constraints

4.3.1 A Theoretical Explanation For Credit Rationing Equilibrìa

One of thè assumptions underlying Modigliani and Miller’s Proposition I is free access to capitai 
markets for every borrower. If investors are liquidity constrained or cannot borrow against thè same 
terms as enterprises do then they might be willing to pay a premium for thè stock of thè leveraged 
firm in comparison with thè unleveraged one. The question arises why lenders put up barriere other
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than increases in interest rates to restrict thè amount of loanable funds. After all, lenders could raise 
thè price of credit in case of excess demand for loans. Before tuming to this question we provide some 
arguments for why corporations have an incentive to enter debt markets.

A major reason for thè existence of debt in a corporate firm can be found in thè argument that 
internai funds and thè issuing of new equity may raise insufficient funds to undertake thè firm’s 
projects. Myers and Majluf (1984) show that if managers with inside information about investment 
projects look after thè interests of thè existing stockholders then firms may refuse to issue new shares, 
even if it means giving up a project with a positive net present value.2 In addition, there are several 
strategie reasons for thè fact that many firms borrow funds on thè credit market. As observed by 
Jensen and Meckling (1976), thè management of a firm may undertake actions which are in conflict 
with thè interests of thè owners of thè firm when thè stockholders can neither perfectly nor costlessly 
monitor thè management. One can think of managers who spend too much money on offìces, cars and 
thè secretarial staff. The stockholders can limit these aberrant actions of thè managers by financing 
a part of thè activities of thè firm with debt. The monitoring activities of thè bank might keep thè 
management of thè firm under control. Moreover, thè managers fear bankruptcy even if thè bank 
monitore poorly, as they lose their job if thè firm goes bankrupt. Another reason may be found in thè 
tax subsidy on interest payments (see Section 4.4).

Recent literature emphasizes thè prevalence of imperfect information in financial markets. In 
particular, debt markets are generally characterized by asymmetric information since thè borrower is 
better informed than thè lender about thè value of thè project that will be undertaken. The lender may 

restrict thè borrower’s use of debt (e.g. see Jaffee and Russell (1976) and Stiglitz and Weiss (1981)) 
because of thè problems of moral hazard and adverse selection. Equilibrium credit rationing was 
understood as a status quo of thè credit market where thè lender is not willing to change interest rates 
and to supply less or more funds to thè borrowere even though credit is in excess demand. Generally 
speaking, if demand exceeds supply, then prices will rise until demand and supply are equated at thè 
new Walrasian equilibrium price. However, thè price of credit may have sorting and incentive effects. 
The expected retum on loans is increasing initially but then decreasing in thè interest rate charged 
since a higher price of capitai causes a rise in thè riskiness of thè pool of loans.3 Thus, given that thè 
lender maximizes his expected profits, imperfect information in financial markets can lead to 

restrictions on thè amount of debt.
Many authore writing about credit rationing use their own definition of a credit rationing 

equilibrium. Essentially, from these definitions it follows that a credit rationing equilibrium is

2 Furthermore, thè asymmetric information problems in thè credit market (see below), which cause restricted 
debt markets. are believed to distort also thè equity market (see Stiglitz (1988)).

5 As is shown by de Meza and Webb (1987), if low-risk projects have a higher mean expected retum than 
high-risk projects then banks experience favourable selection instead of adverse selection when raising thè 
interest rate. Companies with high-risk projects do noi apply for a loan when thè interest rate is high. In this 
situation, a credit rationing equilibrium is not sustainable.
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characterized by a group of borrowers who cannot obtain thè amount of credit they wish. As 
formulated by Blanchard and Fischer (1989):

Type 1 (proportional) credit rationing occurs when an individuai cannot borrow as much as
he or she wants at thè going interest rate. Type 2 (random) credit rationing occurs when,
among identical borrowers. some who wish to borrow are able to do so, while others cannot.

The mora! hazard and adverse selection problems mentioned above follow from thè fact that thè 
management of thè firm has private information about its investment project and actions, which is not 
available to thè tender. A more recent idea which was also applied to thè credit market is that of costly 
state verification. Ex ante, i.e. before uncertainty is resolved, thè borrower knows as much as thè 
lender, but there exists ex post asymmetry of information because thè borrower is able to observe thè 
retum of his project costlessly, while thè lender can not. Among others, Gale and Hellwig (1985) and 
Williamson (1986) show that equilibrìum credit rationing may occur because of ex post asymmetric 
information.

It is important to notice that if thè bank can sort thè borrowers according to specific 
characterìstics, thè adverse selection problem is reduced. The interest rate is not thè only term of thè 
contract between thè lender and thè borrower, thè amount of thè loan and thè amount of collateral or 
equity thè bank demands of loan applicants will also affect both thè behavior of borrowers and thè 
distrìbution of borrowers. If low-risk borrowers are willing to pledge more collateral than high-rìsk 
borrowers then collateral may serve as a screening device (see Bester and Hellwig (1987)). A higher 
amount of outside collateral generates higher losses to thè entrepeneur in thè case that thè entrepeneur 
cannot meet thè payments to thè creditor which are specified in thè debt contract. This might give an 
incentive to thè borrower to choose less risky projects if thè amount of collateral demanded by thè 
lender is high. Bester (1994) argues that a high degree of collateralization makes debt renegotiation 
more likely to occur when there is a dead-weight loss associated with thè transfer of thè borrower’s 
assets to thè lender. It is also shown that especially high-rìsk entrepreneurs are willing to offer 
collateral if there is a chance of debt renegotiation because collateral agreements not only punish thè 
entrepreneur when thè investment project fails but also makes default less attractive to thè 
entrepreneur when thè project is successful. A company defaults if it dishonestly reports a low retum 
to thè creditor while thè actual realized retum on thè project is high. High risk entrepreneurs are shown 
to have a higher equilibrìum likelihood of dishonesty. Therefore, outside collateral can be used 
especially to lower thè expected cost of bankruptcy of risky firms. This reasoning is clearly in contrast 
with thè screening explanation. A further remark has to be made about thè possibility of banks 
influencing thè actions of thè firms. If we think of a multi-period setting, then thè interest rate can be 
reduced for non-defaulters when time passes on. This would give borrowers thè incentive to invest in 
relatively less risky projects if they have thè possibility to choose between projects and therefore thè 
mora! hazard problem could be reduced.

In thè model of Stiglitz and Weiss (1981), it is assumed that each project costs a fixed amount.
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Bester and Hellwig (1987) consider thè case where firms may vaiy thè level of investment. They show 
that a type 2 credit rationing equilibrium is no longer an outcome of thè model if thè production 
fùnctions of thè firms exhibit decreasing retums to scale. Suppose thè economy is in a state of credit 
rationing. Then, a bank could gain by giving credit to thè rationed firms and lowering thè amount of 
debt of thè others. The expected return per unit of investment has increased for each firm because of 
a diminishing marginai product as a function of increasing investment. The expected retum per unit 
of loan of thè bank has also increased because thè bank can ask for a higher interest rate while thè 
available funds are spread more evenly over thè population of loan applicants. Thus, a type 2 credit 
rationing equilibrium is not sustainable. However, it can be shown that a type 1 credit rationing 
equilibrium may stili occur.

4.3.2 Implications of Credit Rationing

If firms with good investment opportunities are excluded from thè credit market then there exists scope 
for monetary policy by a centrai govemment which can have reai effects on thè economy. As noted 
by Hillier and Ibrahimo (1993):

...if thè initial equilibrium is characterized by credit rationing it is quite possible that an 
increase in thè supply of loanable funds (e.g. by thè depositors of thè bank) may iead to an 
increase in thè volume of loans without a restriction in thè interest rate (see p.285, words in 
brackets are added).

A larger number of investment projects with positive net present value are undertaken and contribute 
to thè total reai output of an economy. From a social welfare point of view, however, it might also 
be possible that social efficiency requires credit to be even more tightly rationed compared to thè 
initial credit rationing equilibrium. Hillier and Worrall (1992) explain this result by pointing out that 
a rise in thè interest rate charged increases thè amount of loans supplied by thè banks but also raises 
thè expected monitoring costs as more borrowers are supposed to default. These higher expected 
average monitoring costs are passed on to all of thè borrowers of thè bank whereas social efficiency 
requires that each borrower should bear thè marginai cost of monitoring him self.

Monitoring costs act as a negative extemality which is not fully intemalised (Hillier and 
Worrall (1992), p. U).

Since thè effect of monetary policy on social welfare might be ambiguous, other ways of 
reducing thè risk of ending up in a credit rationing equilibrium should be considered. Companies could 
lower thè chance of having insufficient funds to finance their future investment plans by adopting 
hedging policies or signing contracts with credit commitments. A debt contract with a credit 
commitment guarantees thè commitment holder that he can borrow according to need up to a certain
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limit. Morgan (1994) shows that bank credit commitment reduces bankruptcy risk and therefore allows 
borrowers to obtain higher loan limits if bankruptcy is costly.

In thè absence of credit constraints, a risk neutra! firm has no incentive to enter Financial 
markets for secondary assets such as futures and forwards. In contrast to perfect capitai markets, let 
us assume that this company is capitai constrained. The management of thè Firm has to choose thè 
bundle of inputs before thè production process is started. One of thè productive factors has a stochastic 
input price whereas thè other factor prices are fixed. Consequently, thè firm faces uncertainty about 
total costs of production when making operating decisions. The proFit maximizing Firm is credit 
constrained in thè sense that it would increase production if it had more funds at its disposai. 
Vercammen (1994) shows that this company may choose to hedge thè Financial risk although it is risk 
neutral. The optimal factor hedge ratio is chosen such that thè uncertain factor price has about thè 
same correlation with total factor expenditures as exists in case of unconstrained proFit maximization. 
This is achieved by taking either a short or a long position in thè input with uncertain factor price, 
which is traded on a forward or future market. Liquidity constrained corporations conducted by risk 
neutral managers may benefit from active risk mangement programs.

4.3.3 Empirica! Evidence Regarding Credit Rationing

It is interesting to establish thè empirical signiFicance of credit rationing because of thè important 
impiications it has for thè economy. Several approaches have been adopted. Berger and Udell (1992) 
test for credit rationing by explaining thè stickiness of commercial loan rates. They suggest that 
equilibrìum credit rationing is not a significant macroeconomic phenomenon. Interest rates on 
1,103,933 loans of banks in thè USA between 1977 and 1988 are sticky with respect to open-market 
rates. But nearly half of thè observed loan rate stickiness prevails on debt contracts with credit 
commitment. According to Berger and Udell, borrowers who signed these contracts are by definition 
free of credit constraints. One could expect that a larger proportion of new loans are issued under 
commitment when thè credit market is tight, i.e. open-market rates are high. Berger and Udell however 
do not find such behaviour in thè credit market and therefore question thè empirical relevance of 
equilibrìum credit rationing as a result of informational asymmetries.

Another empirica! test is performed by modelling thè optimal rate of investment and testing 
whether financial variables like thè debt to assets ratio play a role as explanatory factors. Among 
others, Bond and Meghir (1992, 651 UK firms, sample period 1974-1986), Whited (1992, 325 USA 
firms, 1972-1986) and Rondi, Sembenelli and Zanetti (1994, 44 Italian firms, 1964-1988) estimate thè 
Euler equation of a dynamic model of borrowing and investment with liquidity constraints.4 Financial 
distress seems to have major consequences for thè investment behavior of firms and thus credit 
rationing is claimed.

4 See Chapter 5 for thè results on a panel data set comprising Dutch manufacturing companies.
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An approach closely related to thè latter one is thè estimation of Tobin’s Q-modei of 
investment. Given thè underlying assumptions of thè Q-model (i.e. a credit market with perfect 
information), thè only determinant of thè rate of investment is "Tobin’s Q”, thè market value of thè 
firm relative to its replacement costs (see Tobin (1969) and Chapter 5). Fazzari, Hubbard and Petersen 
(1988a, 1988b, 422 USA firms, 1970-1984), Hoshi, Kashyap and Scharfstein (1991, 145 Japanese 
firms, 1977-1982), Blundell, Bond, Devereux and Schiantarelli (1992, 532 UK firms, 1975-1986 ), 
Schaller (1993, 212 Canadian firms, 1973-1986), Becht and Ramirez (1993, 29 German firms, 1907- 
1912), and Alonso and Bentolila (1994,68 Spanish firms, 1985-1987) found cash flow as a significant 
explanatory variable of investment in addition to Tobin’s Q and conclude that this is evidence of credit 
rationing.

The reported coefficients on Q, in thè studies which were mentioned above, are in many cases 
surprisingly low and sometimes even significantly negative. Blundell et al. attribute thè unsatisfactory 
explanatory power of empirical Q-models to thè endogeneity of Q and correlated firm-specific fixed 
effects. A similar explanation for these underestimated parameters is thè presence of measurement 
errors in Tobin’s Q since thè value of equity as determined on thè stock market is used in thè 
constmction of Q .5 Equity prices, in generai, are thought to display more volatile behaviour than thè 
underlying reai values would suggest (see Marcus (1989)). We argue that aside from measurement 
errors in Q there is another reason for possible misleading conclusions on thè effect of Q on thè rate 
of investment. Namely, firm level data often contain severe outlying observations which have too 
much influence on thè estimates of thè model under investigation if standard econometrie techniques 
are used, as is advocated in Part I of thè thesis. Re-estimation of thè study of Schaller (1993) with our 
robust HBP GM estimator which downweighs outliers (see Chapter 1) results in considerably higher 
and more significant coefficients on Q.

As is suggested by Schaller (1993), a significant coefficient on cash flow is not a proof of thè 
existence of a credit rationing equilibrium as defined by Blanchard and Fischer (1989) (see Section 
4.3.1). For it is not inconceivable that companies with a high cash flow have investment opportunities 
which are not captured by Q or firms may prefer internai funds to outside finance (thè "pecking order" 
(financing hierarchy) argument, see Myers ( 1984)). In these cases, a positive relationship between cash 
flow and investment may evidently come up without any company facing extemal liquidity constraints. 
Firms are free to borrow at some interest rate which is higher than thè retum received on deposits. In 
order to determine whether thè difference between thè costs of internai and extemal fmancing is due 
to asymmetric information, Schaller (1993) defines different classes within his sample of Canadian 
firms based on thè access they have to thè credit market. Mature, non-manufacturing or concentrated 
ownership companies are thought to have better outside financing opportunities than young,

5 See Appendix A5.1, Chapter 5.
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manufacturing or disperseci ownership companies.6 As an example, cash flow has a stronger effect on 
thè investment expenditures of dispersed ownership corporations than concentrated ownership 
coiporations whereas there is little difference in investment opportunities as measured by Q. Therefore 
it is claimed that imperfect financial markets cause underinvestment by Canadian firms. It is 
noteworthy that with our robust HBP GM estimation method these differences in sensitivity of 
investment to cash flow between different classes of firms almost disappear.

Although, after reviewing thè empirical literature, it remains unclear whether asymmetric 
information distorts thè credit market there seems consensus about thè widely held belief that investors 
and firms can only borrow funds up to a certain limit. Evidently, credit constraints do undermine thè 
reasoning behind Modigliani and Miller’s Proposition I.

Section 4.4 Tax Shields

Another assumption made by Modigliani and Miller (1958), which conflicts with reai life observations. 
is thè absence of taxes. Generally speaking, corporate taxes favour debt fmancing whereas personal 
taxes favour equity fmancing. In thè extreme case of zero taxes on equity retums and a debt investors’ 
personal tax rate identica! to thè one corporations have to pay, thè net present value of thè debt 
fmancing effect (tax shield) is zero given that debt holders are fully compensated by means of a higher 
pretax retum. In this situation thè manager of a company can make his decisions on investment and 
capita] structure independently of each other. Usually, thè management takes into account thè side 
effects of thè fmancing possibilities when evaluating an investment opportunity. Mauer and Triantis 
(1994) study thè complex interaction effects between investment, operating and fmancing decisions 
in a dynamic model with operating adjustment costs and recapitalization costs. They find thè 
remarkable result that, in spite of thè presence of tax shields with positive present value, thè impact 
of debt fmancing on thè firm’s investment and operating decisions is economically insignificant. Thus, 
firms can actually split thè investment, operating and fmancing decisions. However, Mauer and Triantis 
( 1994) do reject Proposition I, i.e. thè value of a firm changes with its financial policy because of tax 
benefits. To gain insight into these results we present a brìef summary of thè dynamic model studied 
by Mauer and Triantis.7

Consider a company that produces a single commodity which is sold in a perfectly competitive 
market at thè per unit price P. P is stochastic and its future values are unknown to thè decision makers 
of thè company at thè beginning of thè time period. The company is flexible in production in thè sense

* Rondi, Sembenelli and Zanetti (1994) conclude from panel data on Italian companies that thè investment 
expenditures of state-owned relative to prìvately-owned or quoted relative to unquoted firms are more (!) 
sensitive to cash flow.

7 Mauer and Triantis (1994) rely on numerical solutions since thè model is too compìicated to derive 
analytical results.
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that it can shut down or resumé operations at thè expense of fixed exit and entry costs respectively. 
There are no personal taxes and interest expenses can be deducted from thè company’s taxable profits. 
The tax system therefore favore thè issuance of debt. The firm pays both fixed and variable 
recapitalization costs when altering its financial structure. The recapitalization costs are increasing in 
thè amount of new debt. Mauer and Triantis recognize that thè costs of debt financing are not only 
incured by companies with high probability of bankruptcy or in financial distress but also to firms 
which execute on-balance sheet hedging (recapitalization) plans, in terms of improving thè debt-equity 
ratio, to prevent financial distress.

As thè operating adjustment costs decrease thè operating profits increase and thè volatility of 
thè firm’s value falls. This drop in thè variance of thè company’s value is put down to thè fact that 
thè managers shut down thè factory when thè commodity’s price P is temporarily low and resumé 
production when it is high. The value of thè interest tax shield increases since interest expenses can 
be deducted from thè more stable and higher income.8 Thus, Mauer and Triantis (1994) predict a 
positive relationship between firm leverage and production flexibility. However, production flexibility 
(lower operating adjustment costs) and financial flexibility (lower recapitalization costs) are to a certain 
extent substitutes regarding thè effect on thè present value of thè tax shield. After all, thè company 
will respond with changes in thè optimal capitai structure along thè path of output price realizations 
if thè recapitalization costs are small. Hence, thè effect of production flexibility on thè value of thè 
interest tax shield is lower if financial flexibility is higher.

Following thè reasoning above, one is tempted to argue that financial policy will have a strong 
influence on investment and operating decisions. Especially if recapitalization costs are small then a 
levered company might accept a new investment pian (or resumé thè old production pian) at a lower 
output price than thè equivalent unlevered firm since thè interest tax shield is also contributing to thè 
levered firm’s profits. Nevertheless, Mauer and Triantis (1994) do not find significant differences in 
thè operating and investment strategies of thè two companies:

Indeed, our analysis shows that if a levered firm uses thè investment and operating policies of 
an equivalent unlevered firm. there is a negligible loss in firm value. These results are in sharp 
contiast to traditional static capitai budgetting analyses that conclude that tax-advantaged debt 
financing can make thè difference between project acceptance or rejection. In a static setting, 
however, thè value of interest tax shields over thè entire life of an investment project bear on 
thè investment decision because thè firm does not have thè option to delay investment. By 
contrast, in a dynamic setting thè firm foregoes eaming interest tax shields only over thè period 
of time that it chooses to delay thè investment. Our analysis shows that thè loss in tax shield 
value from waiting for additional uncertainty resolution is not large enough to encourage thè 
firm to significantly deviate from thè investment and operating policies of an equivalent

* A firm which makes losses on its business activities does not pay any taxes so cannot profit from tax 
deductions.

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



108 Chapter 4. A Literature Review of thè Relevance of Financial Policy

unlevered firm (Mauer and Trianlis (1994), pp. 1272-1273).

It is important to notice that although thè levered and unlevered companies follow almost thè same 
production and investment strategies, they differ substantially in total firm value. The value of thè 
levered company exceeds thè value of thè equivalent fully equity financed company since thè levered 
company pays less taxes due to thè interest tax shield. Once again, we reject Modigliani and Miller’s 
Proposition I.

Section 4.5 Concluding Remarks

In contrast to Modigliani and Miller’s separability theorem, firms may have a "pecking order" 
(financing hierarchy) when choosing between sources of finance. Internai sources may be less costly 
than debt financing or issuing new equity due to transaction costs, agency problems, taxes and 
bankruptcy costs. In most cases, firms appear to prefer using internai funds to extemal finance and, 
if internai funds are insufficient, debt instead of equity as a source of incrementa] funding of 
investment projects (e.g. see Fazzari et al. (1988a, 1988b) and Myers and Majluf (1984)).

Financial policy is relevant when thè financial markets are incomplete and credit rationing 
distorts thè optimal allocation of funds. Secondary assets, limited liability, and liquidity constraints do 
not appear out of thè blue, therefore, hedging strategies determine thè range of attainable reallocations 
of thè firm’s revenue and consequently firm value. For instance, we have seen that it is optimal for 
a capitai constrained risk neutral company which faces input price uncertainty to trade in forwards or 
futures in order to reduce company risk. In order to explain credit rationing equilibria we discussed 
Stiglitz and Weiss’s (1981) argument that thè lender might restrict thè borrower’s use of debt as a 
consequence of asymmetric information in financial markets. Two contradicting strands of literature 
which examine empirical evidence regarding credit rationing were mentioned. On one hand, Berger 
and Udell (1992) argue that thè observed interest rate stickeness in thè USA between 1977 and 1988 
is not thè result of restricted credit markets. On thè other hand, financial variables such as thè cash 
flow to capita] ratio or thè debt to assets ratio are important explanatory factors in empirical 
investment models. This finding is held as evidence of liquidity constraints. Finally, we conclude that 
thè introduction of valuable interest tax shields has consequences for thè firm’s optimal financial 
policy. Although thè capitai structure matters for thè value of thè company for tax reasons, Mauer and 
Triantis (1994) predict no major impact on thè company’s investment and operating decisions.

This survey on thè relevance of financial policy is far from exhaustive and just mentions 
briefly some important issues in thè theory of finance. For further reading on thè capitai structure 
puzzle we refer to Myers (1984) and Harris and Raviv (1991). Hillier and Ibrahimo (1992) can be 
consulted for an excellent review of thè literature on credit rationing and, among others, Froot, 
Scharfstein and Stein (1993) deserve credit for their analytical examination of thè implications of 
capitai market imperfections for risk management.
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CHAPTER 5

Empirical Evidence Regarding thè Sensitivity of Dutch 

Corporate Investment to thè Financial Environment

Section 5.1 Introduction

In thè previous chapter we looked at some of thè theoretical arguments which are put forward to 
explain thè failure of Modigliani and Miller’s well-known Proposition I. Most financial experts are 
in agreement about thè non-separability of corporate investment and financing decisions and thè 
existence of a wedge between thè cost of internai and outside finance. In generai, thè financial 
markets are not thought to be perfect.

Using a new balance sheet panel data set of 117 Dutch manufacturing companies we 
investigate in this chapter whether credit rationing distorts thè allocation of funds over investment 
projects in thè Netherlands. Do Dutch manufacturing companies face binding liquidity constraints 
when choosing their investment expenditures? Would, on average, a corporation in thè Netherlands 
be willing to increase its level of investment if it could borrow more funds on thè credit market? 
Do these firms distinguish between intemally generated funds and extemal finance when setting 
their optimal investment objectives?

To address these questions we empirically analyse two versions of a neoclassica! 
investment model with convex capitai adjustment costs: Tobin’s Q-model (Tobin (1969)) and thè 
Euler equation approach which was onginally used by Jorgenson (1963). Bond and Meghir (1992) 
solve thè first order condition of an optimization problem under uncertainty where thè firm’s 
choice between debt financing and retained eamings is taken simultaneously with thè investment 
decision. Within their framework we derive thè Q-model of investment and discuss thè empirical 
implications for companies which, a priori, belong to different financial regimes. Using thè robust 
estimation techniques which are developed in part I of thè thesis, both thè Euler equation and thè 
Q-model are estimated to test whether Modigliani and Miller’s proposition I can be applied to 
Dutch manufacturing industries which are quoted on thè Amsterdam stock exchange.

The outline of Chapter 5 is as follows: In thè subsequent section we derive thè Q-model in 
line with Bond and Meghir’s (1992) paper. The data is described in Section 5.3 while in Section 
5.4 we handle thè practical problem of choosing thè sorting key for thè division of thè sample into 
different financial regimes. In Section 5.5 we explain thè adopted econometrie methodology.
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Estimation results of thè Q-model of investment and thè Euler equation are presented in Section 
5.6. Section 5.7 concludes. Appendix A5.1 contains thè construction and definitions of thè 
variables of both investment models. The tables reporting thè estimation results are placed in 
Appendix A5.2.

Section 5.2 Neoclassical Investment Theory

In this Section we formally derive thè Q-model of investment with endogenous financial policy by 
closely following thè dynamic investment and fmancing setting considered by Bond and Meghir 
(1992). Financial markets are perfect in Hayashi’s (1982) semina] paper where he introduces an 
empirically testable model of thè Q-theory by proposing conditions for which thè marginai Q is 
equal to thè average Q (see Section 5.2.2). Thus, thè optimal choice of finance does not enter thè 
story. In contrast, here we explicitly consider intema] funds, debt and equity as fmancing sources 
to which different price tags dangle. First we will deal with thè cruciai ingredients and steps 
necessary to solve thè Euler equation of thè dynamic simultaneous optimization problem analyzed 
by Bond and Meghir (1992). The interested reader is referred to this article for a more complete 
exposition of thè model.1 We then exploit their framework to derive thè Q-model rather simply 
but neatly.

An important aspect of thè model under consideration is capitai adjustment costs, which 
may result from explicit installation, renovation and dismantling costs or losses in production 
during thè transition period. Firms have an incentive to spread a proposed substantial change in thè 
capita] stock over time since these adjustment costs are assumed to be convex. To introduce 
notation and to define thè companie’s optimization problem we begin with listing thè underlying 
assumptions of thè investment model.

Assumptions
(A. 1 ) Mission of thè company
The Managers of thè firm are assumed to act in thè interests of their current stockholders, i.e. they 
maximize thè sum of discounted dividends (firm value, V;). Stockholders are risk neutra]. Thus, 
thè appropriate discount factor for thè one period ahead dividend payment is equa] to 
PJ., = 1/(1 +/,) where it is thè risk-free rate of interest. The stockholder pays personal taxes m( for 
each unit of received dividend Dt and pays thè effective capitai gains tax rate z, on a unit of 
capita] gains made between period t and t+1. Tax parameters for period t+1 are supposed to be

110 Chapter 5. Empirical Evidence Regarding thè Sensitivity of Dutch
Corporate Investment to thè Financial Environment

1 Blundell, Bond and Meghir delivered an excellent survey on econometrie models of company 
investment, see chapter 17 of The Econometrìcs of Panel Data, Handbook of Theory and Applications, 
Mityàs and Sevestre (1992).
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known to thè investors at time t.

(A.2) Rational Expectations
The managers are thought to make rational decisions and to have rational expectations. Expected 
values of future variables are evaluated at realised values. This introduces measurement errors and 
therefore instrumental variable estimatore are needed to obtain consistent parameter estimates.

(A.3) Formation of thè capitai stock
The capitai stock Ktj of firm i in period t is determined by thè level of investment ìu and thè 
previous capitai stock:

where 5 is thè Constant rate of economie depreciation of firm i. Investment goods are immediately 
productive subject to convex adjustment costs which are linearly homogenous in investment and 
capitai. The symmetric convex adjustment cost function is written as

The Constant c reflects thè naturai rate of investment at which adjustment costs are zero.

(A.4) Tax treatment
The firm is allowed to deduct its interest payments made on thè outstanding debt from thè pre-
tax firm’s profits which are taxed at thè corporate tax rate Tf.

(A.5) Production and output market conditions
The production function F(KtX,) exhibits Constant re tum s to  scale; Net output

Yt = F(KiyL,) -  GiIrK) is linearly homogenous in capitai and thè variable input factors Lr The
market where thè output of thè firm is sold for a price pt per unit can be characterized by
imperfect competition. The price elasticity of demand d> 1 is assumed Constant and defines thè
number a  = 1 --L > 0 . w( denotes thè vector of prices of thè variable factor inputs. The optimal 

d
choice for L is such that thè marginai product of variable input factors is equal to thè ratio
_ _  = -----This last statement allows us to compute thè derivatives of thè thè revenue function
dL ap

(5.2)

(5.3)

with respect to Kt and /, without specifying thè production function. p,‘ reflects thè price of 
capitai goods.
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(A.6) Financial Markets
To finance new investment projects thè firm can choose between either using retained eamings. 
issuing new equity Nt or borrowing on thè debt market. There are no arbitrage possibilities on thè 
financial markets and according to our null-hypothesis thè markets for credit are perfect. 
Furthermore, we impose thè following transversality condition

Um  ^ n p ;j  Br = 0, Vr (5 .4)

T—*°°

which prevents thè firm from borrowing an infinite amount to pay out as dividends.2

Bond and Meghir (1992) explicitly consider bankruptcy, taxes on thè lender’s income, and 
deadweight costs of issuing equity and paying dividend. Omission of these elements of thè 
investment model simplifies thè mathematics but does not change thè final Euler equation which is 
to be estimated. We therefore do not take into accounct explicitly thè effects of thè probability of 
bankruptcy etc. on thè investment and financing choices.3

5.2.1 Derivation of The Euler Equation

The capitai market arbitrage condition dictates that thè cum-dividend value of thè firm’s shares V 
minus dividend plus new equity, is expected to grow at thè rate of return on default-free bonds

(1 HI Xn-O -m,)D,*N,) -  £,[V'„,] -  U £,[V ,.,]-V r-N,>
\D,D)

to thè after-tax value of thè company’s equity in period t+1. = 2,(1 +<1 -/n,.,)/,) is thè value of
taxes paid by thè marginai stockholder on one unit of capitai gains in period t+1. By stretching 
equation (5.5) we obtain thè firm’s value at time t

V' * E• (5.6)

2 In a multi-period economy, we may observe a "rational ponzi game" or bubble. A rational ponzi game 
is thè policy of a debtor to roll over all principal repayments and interest forever, i.e. to finance repayments 
by issuing new debt. O’Connell and Zeldes (1988) and Hammond (1987) show conditions under which 
rational ponzi games may exist. The basic result established by O’Connell and Zeldes is that ponzi games 
require thè participation of an infmity of agents. There can be a finite number of individuai decision makers 
in thè credit market in each period. However, thè number of agents must grow to infinity over time. To rule 
out rational ponzi games, we assume a finite number of agents over time and impose thè tranversality 
condition, lim(T—**>) r(T)BT = 0, where F(T) is thè inverse of thè discount factor of period T. The 
transversality condition implies that an individuai chooses in thè end not to be on thè lending side of a ponzi 
game and every individuai faces a budget constraint which restricts his possible consumption schemes.

3 Following Bond and Meghir’s notation we would have m,®=0, / (=0, q,l,”0, Xr»0 and 9,=1.
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which is maximized with respect to thè size of thè capitai stock, thè financial structure and thè 
input factors of thè production process, under thè restriction that dividends

0 , - n , .  ( n a - t ,

are positive. The relative tax advantage between dividend incoine and capitai gains is assimilated 
by thè tax parameter

1 m ( 5 8 )  l-m ,
y,

Bond and Meghir (1992) show in their appendix that thè equity value can be rewritten as: 

v , = E,

+ E' + E‘

(5.9)

Using (5.9) we form thè Hamiltonian

H, -  V, ♦ J.?<8 ,-<11 1 * n, ♦ N,)

♦ ♦ n ,„  .  A?,.,) (5.10)

restrìctions o f period t*2 and higher,

where Xf denotes thè Lagrange multiplier of thè restriction on dividends. At this point we relax 
thè perfect capitai market condition. Firms with high leverage ratio’s are supposed to find 
themselves in a situation of financial distress or bankruptcy more frequently than low levered 
firms. Therefore, banks require a higher interest rate on debt supplied to thè high levered firms. Let 
us assume that thè interest rate on thè company’s debt i(B/p,'Kf),, depends only on thè ratio 
(BJp'K ) and is increasing in its argument. This specification is chosen to show that thè debt to 
capitai ratio is entering thè Euler equation and Q-model when thè financial markets are imperfect. 
Unfortunately, as we will discover in Section 5.3, in this case both thè Euler equation and thè Q- 
model version of thè investment model under consideration, do not display linear one-to-one 
relationships between thè investment capitai ratio and its explanatory factors.

Observing that
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K  = yA + ( X - W ,  - Y,n+( i - T , +

ylBl * Et + terms o f period t+1 and higher (5 1  !)

and differentiating (5.10) with respect to Bt gives

-v,4 - = -(y,<) - E, fp;*l(YM<,)(i*»f(i-xM))l 
p ,%  v j (5.12)

where / — -  i '  £  0 and4 
ax

v, = f , ( 3 ! . , ( ^ , +W * /( i - v , ) ] . (5.13)

Differentiating thè Hamiltonian again to find thè first-order condition associated with /( results in 
thè equation

» ,  " ,  ' l p"  ( r . K°)Px  )

and applying thè envelope theorem when differentiating Hr with respect to Kt_t retums

f)H rìn (  \
=  3 F 7  =  ( Y ' < ) ( 1 * 5 ) - ^  +  E '  [ p - x - ( 1 - 5 ) j +

( Y ,< ) ( l - t ) / 'M_ ^ _  + E, (p;«1(y,M+X^I)(l -5)(1
^i-l Pi K,

(5.15)

where \ t measures thè shadow value of one marginai unit of thè capitai stock in period t-1. 
Using (5.14) in (5.15) gives

22n  fi1
\  -  - (Y ,^ f)( l-6) ^  -  ( Y + X fX l-* ,) / ', . . - ^ .

ó l - p , C  i (5.16)

Inserting (5.16) twice in (5.15) and rearranging terms solves thè Euler equation

4 v( differs from thè one reported on page 35, formula (Al), by Bond and Meghir (1992). Our formula 
assures that v is positive whereas (Al), although it is claimed that it can be shown to be positive, can be 
negative. We presume thè occurence of a typing error.
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(-K.,(T,., < ,X 1  -  2vr p p -  (5' ' 7)

From thè revenue function (5.3), thè capitai adjustment cost function and thè production and output 
market conditions we obtain thè equations

an , /, ,
= ~baP>Y + bcap' ~ p'

(5.18)

and

an,
W

= a p '  -  vi*. 
K. K

bapt
K.

-  b c a p —L. 
K.

(5.19)

Under thè null-hypothesis that Modigliani and Miller’s Proposition I holds true (y, = yM = 1, and 
Xf = = 0) we use (5.18) and (5.19) in thè Euler equation (5.17) to derive thè following
empirically verifiable linear relationship which explains thè future investment capitai ratio:

- t i  = c(l -co ,) «• (1 +c)a> _̂ L - < o ,/A ] - ì  + — lJ,
"  " K ,  '"KK'J T à \ K J '  ba '

£)
KJ.

(5.20)

where we have defined thè adjusted discount factor co, = p/(P,,,(l-S)pMl), thè cash flow capitai 
ratio (C/fC), = (p,l/pl)(P'Y-wlL:)/pllKl, thè debt to capitai ratio squared (B/K)] = (/?///>,M)(fi/(p/ÀT,))2, 
thè user cost of capitai

,  p . 'L  R .U r S )  1 (521)

P'K (l +L,)P,,J

and e,., as thè forecast error.
To actually arrive in thè position to estimate thè Euler equation we have to assume that thè 

coeffìcients of equation (5.20) are Constant over time and acro ss firms. If capitai markets are 
perfect then thè coefficient on thè debt to capitai ratio squared is equal to zero since for this case 
v, = 0. The coefficient on thè output capitai ratio reflects thè degree of output market imperfec- 
tion. The user cost of capitai will not be explicitly measured but its contribution to thè investment 
capita] ratio is assumed to be absorbed by thè time dummies (<j>,) and firm-specific fixed effects 
(t|() which are added to (5.20):
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= W/K),.u - P2(//*),2-u - P3(C/*0,u
(5.22)

* t t(Y/K)_u  ~

The subscript i (i =1,..,/i) is thè company indicator and thè beta’s are thè unknown parameters. The 
results of estimating (5.22) for different groups of Dutch manufacturing ftrms are reported in 
Section 5.6.1.

5.2.2 Derìvatlon of thè Q-model of investment

Another strand of thè literature on empirical research on thè optimal rate of investment, estimates 
Tobin’s Q-model. A company will invest in an additiona! unit of capitai if thè marginai value of 
thè investment exceeds thè marginai costs, i.e. if margina! q is greater than marginai investment 
costs. Marginai q is difficult to measure but Hayashi (1982) shows that under thè assumptions of 
perfect competition, perfect capitai markets and first-degree homogeneity of thè production 
function and thè capitai adjustment cost function that marginai q is equal to average Q. Once 
again, adjustment costs associated with new investment in fixed capitai are also a cruciai feature of 
thè Q-theory of investment.

Given thè assumption that Vt is homogenous of degree 1 in K^t, within thè framework of 
thè previous sub-section thè Q-model specification is found by using dV/dKt_{ = rewriting
(5.16) to

, 2an , -x  ( ì - t , ) / ' , . b :.
' = ______ :____ + ____' M... fl (5.23)

X  (y ,< ) ( l - 5 )  d -S )  P,‘K2X

and then inserting this formula into equation (5.18):

A - c  J i _______ ^ _______- , ÌL -  ( ' - g H  ,5.24,
K, ^ ( y , < ) ( l - 8)P,X .1 h ,  i .o ( l- 8) V p/K ,.,) P,

Under thè conditions of Modigliani and Miller’s debt irrelevance theorem (y; = 1 andXf = 0), 
thè variable associated with debt drops out of thè Q-equation since i* = 0 and Tobin’s Q is 
computed as

(  B +E-F, W
Q, = ' f-, f -1 f i .  (5.25)

H l S ì p X - i  Jp '

Et is thè value of equity and Ft are thè firm’s financial assets (see Appendix A5.1). Schiantarelli
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and Georgoutsos (1990) show that current output should enter equation (5.24) with a negative sign 
when thè firm is a monopolisti competitor.5 Following thè empirical studies so far presented in 
thè literature on thè Q-theory (see Chapter 4, Section 4.3.3) we include thè cash flow capitai ratio 
to allow for liquidity constraints resulting from imperfections in thè financial markets under thè 
alternative hypothesis that Proposition I is rejected. Altogether with time-dummies and firm 
specific fixed effects, we obtain thè following econometrie specification

A  -  »,Q„ -  0 , < -  P3(>7A0w * * », * H, * E. (5.26)
n

where (B/K)*-i = (B,-ìlp,lK,-t)2(p,'lp,)- Note that thè beta’s of equation (5.26) are so-called deep 
parameters which only depend on thè firm’s technology and output market conditions so that thè 
Lucas (1976) critique does not apply here.

Many comments have to be made about thè Q-model based test of credit rationing. First, if 
thè cost of internai funds substantially differs from thè cost of extemal finance, it is possible that a 
firm is willing to increase its level of investment when intemally generated funds are available but 
is not when it has to borrow funds on thè debt market. Thus, a credit rationing equilibrium in thè 
sense of a group of borrowers who cannot obtain thè amount of credit they wish (see Section
4.3.1 ), cannot be claimed only on thè basis of a coefficient on cash which is signifìcantly different 
from zero. When we refer in this chapter to liquidity constraints, these might arise both firom 
internai and extemal restrictions. Secondly, as argued by Blinder (see Comments and Discussion 
Fazzari et al. (1988a)) it is hard to believe that firms will underinvest when cash flow is temporari- 
ly low but, at thè same time, thè stock of liquidity is sufficiently high. Stock variables rendering 
thè availability of internai funds for new investment should be added to thè Q-equation. Unfor- 
tunately, our data set does not provide numbers on short-term deposits or other stocks of that sort. 
Thirdly, as noticed by Poterba (see Comments and Discussion Fazzari et al. (1988a)) a high level 
of current cash flow may signal future profit opportunities which are not captured by Q when thè 
efficient market hypothesis is violated. Equity prices, which are used in thè construction of Q, 
display erratic behaviour and are not universally believed to be a trae mirrar of thè rea! underlying 
value of thè firm. In this case, it is evident that a positive relationship between investment and 
cash flow is to be expected without necessarily having debt ceilings.

A more dramatic problem with thè verification of thè Q-theory of investment is thè 
recognition of thè fact, implied by (5.24), that Tobin’s Q as measured in (5.25) is uninformative or 
misleading with regard to thè optimal level of thè investment capitai ratio if y(+Af*l. The non- 
existence of a one-to-one relationship between thè investment of a liquidity constrained company

s Furthermore, Schiantarelli and Georgoutsos (1990) ftnd that in this case marginai q can not be equated 
to average Q and propose a dynamically richer structure of thè model by incorporating future values of thè 
investment capitai ratio and Tobin’s Q. We, however, did not attempt to measure this distortion in our Q- 
variable.
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and Q was recognized before by Hayashi (1985) and Chirinko (1987), who explicitly consider thè 
corporate fmancing side of thè Q-theory. The same line of reasoning can be applied to thè Euler 
equation (5.20) of thè previous sub-section. Bond and Meghir (1992) suggest distinguishing three 
different financial regimes. Firms of regime 1 pay out positive dividends and do not issue new 
equity. These firms are expected to have generated sufficient eamings to carry out all their 
valuable investment plans. Thus, thè shadow value of internai finance as measured by thè Lagrange 
multiplier Xf can be set equal to zero. The companies of thè other two financial regimes do not 
remit dividends. Firms which are assigned to regime 3 have sufficient attractive investment 
opportunities to finance their investment projects partly or fully by issuing new equity whereas thè 
regime 2 firms are neluctant to do so. If debt markets are restrictive then thè investment expendi­
tures of thè corporations of thè latter category clearly depend on thè availability of internai finance. 
By making thè assumption of a Constant tax discrimination parameter y, it is argued that thè Euler 
equation holds for firms which are either in regime 1 or 3 for two subsequent periods. Bond and 
Meghir (1992) incorporate extra coefficients for all explanatory variables of thè econometrie model 
to allow thè parameters of thè Euler equation to be different for regime 2 firms with respect to thè 
others. However, we need to remark that these additional parameters are not necessarily Constant 
across firms and over time which might invalidate thè econometrie results. Unless thè test on thè 
null-hypothesis of perfect capitai markets indicates that thè type-2 company’s shadow value of 
internai finance is also equal to zero. To conclude, equation (5.26) is only well specified for 
corporations which are not liquidity constrained.

The derivation of an Euler equation or Q-model which is observed by funds restricted 
companies is, to thè best of thè author’s knowledge, an unsolved issue in thè corporate finance 
literature. Our testing procedure to examine thè validity of Proposition I consists of thè following 
steps: First, we decide on thè significance of thè parameters of debt and cash in thè Q-specification 
using thè full sample of companies. Significant coefficients on these financial variables reject thè 
null-hypothesis of perfect capitai markets. Then, we repeat this first step for two different groups 
of firms. We distinguisi) a class of firms with free access to capitai markets (group 1 ). In this case, 
cash and debt should have minor influence on thè investment decisions and Tobin’s Q is well 
defìned. For thè other group of liquidity constrained companies (group 2), debt and cash can be of 
great importantance for thè investment choices but, on thè other hand, Tobin’s Q will have less 
explanatory power.
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Tabel 5.1 Partition of thè 117 Dutch Manufacturing Companies in Ten Sectors

Industry Sector SBI-code Number of Companies

Metallurgical Industry 3300-3999 21

Building and Wood Industry 3200-3299
5100-5299

6

Textile, Clothing, Paper and Printing Industry 2200-2799
4000-4099

2 1

Petrolium and Chemical Industry 1200-1999
2800-3199

1 0

Agriculture, Fishery and Food Industry 100-399
2000-2199

11

Wholesale Trade 6100-6499 23

Retali Trade 6500-6699 5

Railway, Road Transport, Shipping and Aviation 7100-7799 7

Service Industry and Machine Renting 8400-8599
9000-9999

7

Other 6

Section 5.3 The Data Sources

Panel data of Dutch corporations is delivered by Financieel Economisch Lexicon (REACH) and 
DATASTREAM.6 The balanced data set contains 117 Dutch manufacturing companies from ten 
industry sectors with SBI-codes between 100 and 9999 and runs from 1986 to 1990 (see Table
5.1 ).7 Firm specific annual data on: thè capitai stock, sales, investment, short debt, long debt, cash 
flow and depreciation have been made available by REACH. The definition and thè construction of 
thè variables are given in Appendix 1. Annual data on: thè price deflator for capitai goods, thè 
producer price index and thè market value of stock are taken from DATASTREAM. Unfortunately, 
22 firms drop out when estimating thè Q-model of investment since DATASTREAM only provides 
equity prices for 95 companies of our panel data set.

6 Financieel Economisch Lexicon is published by Delwel, The Hague, The Netherlands and is available 
on CD-ROM under thè name REACH (Review and Analysis of Companies in Holland).

7 SBI-codes are used by thè Centraal Bureau voor de Statistiek (CBS) to subdivide manufacturing 
companies into different categories.
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Section 5.4 Financial Regimes

We employ an a priori empirical sorting key to classify our data set which is different from thè 
theoretical one described in Section 5.2. The division rule should partition thè sample according to 
exogenous characteristics of thè firms, on a priori grounds, into a group of firms which are 
expected to have liquidity constraints and a group of firms which are free to borrow on thè capitai 
markets. Dividend policy is endogenous. At time t, thè bank can only guess thè degree of credit 
worthiness of thè firm in subsequent periods. The creditor might decide to tighten thè provision of 
new funds to thè debtor at present and in thè future even if thè company remits positive dividends 
in thè current period. Furthermore, dividend policy can serve as a signaling device for shareholders 
or banks. Firms might be unwilling to change their dividend policy even when this means giving 
up valuable investment opportunities. A practical reason for not taking up dividend policy as thè 
seperating rule is thè empirical observation that, for thè sample period 1987-1990, only 83 out of 
468 observations would belong to thè group 2 companies.8 These observations cannot be ascribed 
to an invariable group, i.e. most companies distribute positive dividends but some firms do not pay 
dividends only for a brief span of time. Since our estimation method requires a balanced data set, 
we would be left with a very small group of liquidity constrained firms.

The filli sample is divided into two classes of firms based on thè mean of thè debt to 
capitai ratio squared over thè period 1986-1989, where this distributive code is relatively low for 
48 group 1 borrowers in comparison with 47 group 2 borrowers. The debt to capitai ratio is 
believed to be a measure of financial distress according to thè investment model expounded in 
Section 5.2. Recali that thè econometrie specifications claim a negative relationship between 
investment and this regressor. Although we realize that thè debt to capitai ratio does not necessari­
ly coincide with thè usuai criterion for fianancial distress as given by thè relative amount of debt 
in thè financial structure. Especially for firms of thè Service sector, thè debt to capitai ratio might 
be quite misleading about thè degree of indebtedness. Note that our data and investment model 
apply to production companies for which thè size of thè capitai stock matters for generating profits. 
If thè creditors attribute to thè highly levered companies a higher probability of bankruptcy, then 
they might be inclined to restrict future increments in thè level of debt of group 2 companies* Or 
from another point of view, if thè capitai stock can be sold on a second-hand market then it can be 
contributed as collateral to thè debt contract up to a certain limit of thè debt to capitai ratio. Our 
sorting key also has its drawbacks. As in thè case with dividend policy, thè seperating rule is 
endogenous since it is based on future unknown variables. An exogenous measure would be 
delivered by considering thè past level of thè debt to capitai ratio. However, we have chosen thè 
average of this ratio over thè sample period of thè explanatory variables because in this way we do

* In case of thè Q-model only 46 out of 380 items would be classified as group 2 observations.

* Throughout thè rest of Chapter 5 we refer to highly levered companies to indicate thè ones which have 
relatively high debt to capitai ratio’s.
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not have to assume that a firm is necessarily punished with a liquidity constraint when it just 
temporarily faces an unfavourable capitai structure. Evidently, firms can swap from one group to 
thè other once their debt to capitai ratio has improved or worsened permanently. The division rule 
employed does not take into account this possible change in thè company’s status. We note that, 
given thè short sample period, our global measure might effectively order thè data.

Section 5.5 The Estimation Procedure

The procedure for thè estimation of thè Euler equation and thè Q-model is as follows:
First, we employ thè GM estimator as developed in Chapter 1 when estimating equations

(5.22) and (5.26) in levels, first differences and in thè "within" dimension of thè data by subtract- 
ing firm averages over time. The firm-specific fixed effects are omitted but a Constant is included 
in thè level regressions. The Wu (1973) - Hausman (1978) statistic is used to test whether 
incorporating fixed effects in thè regression model is necessary, by comparing thè estimates from 
thè regression in levels with thè ones obtained by estimating in first differences or within. The 
robust version of thè Pagan-Velia (1989) test stadstic is computed to test for homogeneity of thè 
error terms whereas thè generalized Durbin-Watson (see Bhargava et al. (1982)) statistic is 
consulted to examine first-order autocorrelation in thè weighted residuals. We test for cross- 
sectional correlations using thè Frees (1995) test based on thè weighted residuals.
Second, thè GM estimates of thè first step of thè estimation procedure are corrected for heterosked­
asticity and autocorrelation by application of thè methods which are described in Chapter 2. Then, 
we proceed with testing whether thè first difference and within estimates are significantly different 
using again thè Wu-Hausman statistic to discover possible endogeneity of thè explanatory variables 
or measurement errors.

Third, we use thè Robust GMM estimator which assures consistent estimates in thè case of 
simultaneity as is explained in Chapter 3. The two-stage GM estimator which is used in thè first 
round of thè RGMM method is applied to a stacked model where we have put thè explanatory 
variables below each other in thè matrix. Correction for autocorrelation using Zellner’s solution 
(see Chapter 3) is made in thè first stage of thè 2SGM procedure (orthogonal projection) and in thè 
second round of thè Robust GMM technique (thè final formula of thè RGMM estimator). In thè 
first case, not only thè correlation between error terms of thè same firm over different time-periods 
but also thè correlation of thè first stage disturbances is removed for thè same firm, in thè same 
time period but for different explanatory variables (Q etc.) when regressed on thè instruments. We 
decide not to correct explicitly for heteroskedasticity neither in thè first 2SGM round nor in thè 
second round of thè RGMM estimator but note that thè covariance matrix associated with thè 
robust GMM method is heteroskedasticity consistent. To determine thè validness of thè instruments 
we apply Hansen’s (1982) test on overidentifying restrictions. Since thè sample period is small, we 
prefer including another year in thè sample period, as correction for autocorrelation becomes
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feasible, to obtaining one more lag of thè instrumentai variables. Furthermore, Doomik-Hansen’s 
(1994) normality test is applied on thè weighted RGMM residuals.10 Although thè Robust GMM 
estimator is asymptotically norma! under thè conditions of a centrai limit theorem, even if this test 
rejects normality of thè residuals, computation of thè Doomik-Hansen statistic might be useftil for 
indicating misspecification of thè econometrie model. Finally, thè Wu-Hausman statistic, which this 
time is based on thè difference between thè classic and robust GMM estimates, is computed to 
evaluate thè importance of robust estimation techniques.

Section 5.6 Empiricism

Table 5.2 contains thè median values of thè investment to capitai ratio and its explanatory variables 
(of both thè Q-model and thè Euler equation approach) for each year over thè period 1986-1990. 
After a period of economie stagnation at thè beginning of thè decade, 1983 was a tuming point 
towards an episode of prosperity (see Centraal Economisch Pian 1986-1990)." Labour costs 
remained behind in thè increase of labour productivity. The growth in world trade picked up 
considerably which boosted foreign demand. The Dutch econonomy is to a large extent dependent 
on thè expansion of thè economy of their trading partners given that in 1989 almost 70% of 
production is exported! Dutch industriai firms acquired high-quality capita! goods and became 
more efficiently organized. These positive effects together were thè cradle for a rise in firm profits, 
consumption and employment levels. Only in 1986-1987 was a slow-down in industriai activity 
experienced. Not least because of thè weak dollar against thè guilder which harmed thè competi- 
tiveness of Dutch produets. During thè period 1983-1990 thè investment climate was excellent for 
most of thè Dutch companies. Our data meshes with this picture. The median of Tobin’s Q over 
thè full set of firms climbed from 0.500 in 1987 to 0.697 in 1990. The investment capitai ratio, thè 
cash flow capitai ratio and output capitai ratio, on average, show a moderate increase. Whereas, thè 
debt to capitai ratio squared in thè case of thè Q-model sample of firms, on average, decreased in 
1989, after an increase in 1987, almost to thè value of this ratio in 1986.

It is remarkable that low leveraged companies have considerably lower investment 
expenditures, cash flow and output levels than thè high leveraged companies (compare column 4 
and 5 of Table 5.2). The firms which were labelled as thè financially healthy companies are also 
thè ones with, on average, less thriving investment opportunities as measured by Tobin’s Q. These 
primary results are in accordance with thè predictions of thè neoclassica! Q-theory of investment. 
Apparently, companies with sound investment projeets are willing to increase their debt to capitai

10 We note that, strictly speaking, thè weighted RGMM residuals are not normally distributed under thè 
centrai model distribution. However, thè distribution of these weighted residuals approximates to thè norma! 
distribution.

11 Centraal Economisch Pian is published yearly by thè Centraal Pian Bureau (CPB).
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Table 5.2 Median Values of thè Investment Variables of both thè Euler 
Equation Approach and Tobin’s Q-model

Euler Equation 

117 companies

Q-model 

95 companies

Q-model 
Group 1 

48 companies

Q-model 
Group 2 

47 companies
Investment Capital Ratio (I/K)
1990 0.183 0.181 0.160 0 .2 0 1

1989 0.172 0.173 0.150 0.206
1988 0.195 0.187 0.190 0.180
1987 0.177 0.171 0.166 0.193
1986 0.178

Investment Capital Ratio
Squared ((I/K)‘)
1989 0.031
1988 0.038
1987 0.036
1986 0.035
Tobin’s Q
1990 0.697 -0.042 1.923
1989 0.580 -0.148 1.727
1988 0.477 0.004 1.677
1987 0.500 -0.074 1.543
Cashflow Capital Ratio (C/K)
1989 0.334 0.320 0.276 0.401
1988 0.323 0.308 0.239 0.377
1987 0.305 0.289 0.258 0.372
1986 0.312 0.305 0.250 0.354

Output Capital Ratio (Y/K)
1990 4.751 2.274 9.193
1989 4.542 4.053 1.995 8.252
1988 4.360 4.040 2.098 7.150
1987 4.331 4.073 2.154 7.387
1986 4.369

Debt to Capital Ratio squared
(B/K):
1989 2.019 1.683 0.797 5.125
1988 1.816 1.624 0.647 4.952
1987 2.014 1.753 0.681 4.080
1986 1.850 1.684 0.801 4.149
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ratio in order to finance their promising projects and have access to thè financial markets to do so. 
By interpreting only Table 5.2 one cannot distinguisi] between thè investment oppoitunity 
argument (high Tobin’s Q causes high I/K) and thè argument that Modigliani-Miller’s Proposition I 
does not hold, to explain thè perceivable positive relationship between cash flow and investment. 
To test thè null-hypothesis of perfect capitai markets (Proposition I), we need to estimate thè Q- 
model of investment and decide whether cash flow has significant explanatory power in addition to 
Tobin’s Q.

5.6.1 Estimation Results, Euler Equation

Table 5.3 (see Appendix 2) reports thè results conceming thè first and second step of thè 
estimation procedure outlined in Section 5.5. At first sight, thè empirical performance of thè Euler 
equation is poor. Only thè output capitai ratio enters thè Euler equation with thè correct sign on a 
significant coefficient. The coefficient on cash flow is positive and significantly different from zero 
contrary to thè prediction of equation (5.22). This result might be interpreted as evidence for thè 
failure of Modigliani and Miller’s Proposition I. Evidently, if capitai markets are not perfect, then 
cash flow can have a positive influence on thè choice of thè level of investment. The robust Pagan- 
Vella tests do not reject thè assumption of homoskedastic error terms. In fact, correcting thè GM 
estimates for heteroskedasticity does not substantially alter thè outcomes (compare column 1 with 
column 2). The Frees test informs us about thè independency of thè observations by examining thè 
cross-sectional correlation which appears statistically insignificant. The generalized Durbin-Watson 
statistic, though, indicates that thè residuals are first-order autocorrelated.12 We remark, in view of 
thè discussion of section 2.6.1, that thè upper and lower bounds as reported by Bhargava, Franzini 
and Narendranathan (1982) apply since in our case relatively few outliers are present in thè data. 
Column 3 contains thè heteroskedasticity and autocorrelation corrected GM estimates, which are 
not very different from thè unadjusted counterparts. Adding thè fixed effects to thè econometrie 
model is cruciai for thè parameter estimates as is revealed by thè Wu-Hausman test. The coeffi­
cients from thè level regressions are significantly different from thè first difference or within 
parameter estimates. This result might reflect variations in thè user cost of capitai among 
corporations. Finally, thè within estimates for their part differ significantly from thè first difference 
estimates, thereby, calling for instrumental variable estimation techniques.

In order to gain efficiency, we only instrument those explanatory variables which are 
conceivably simultaneously determined with thè investment capitai ratio of time t. Considering thè 
information structure and thè decision process faced by thè manager at time t-1, we include thè 
lagged debt to capitai ratio squared, thè lagged investment capitai ratio and its square in this

12 The generalized Durbin-Watson statistic tends to 2 for large samples (in n) under thè null-hypothesis 
of zero autocorrelation only in case of thè "within" regressions. In thè case of first difference regression we 
do not test for autocorrelation.

Wagenvoort, Rien J.L.M. (1998), Robust estimation of panel data : with an application to investment equations 
European University Institute

 
DOI: 10.2870/75660



Part II. Investment and Financial Policy 125

category. A priori, it is less clear whether thè lagged cash flow to capitai and output to capitai 
ratio’s are endogenous. Our estimation results of Table 5.4 indicate that these latter ratio’s can be 
taken as exogenous variables. Hansen’s test on overidentifying restrìctions rejects thè appropriate- 
ness of thè first-lag instruments. Instruments with time labels t-2 and t-3, though. fullfill thè 
necessary conditions to be considered as valid instruments (see Chapter 3). Outside instruments do 
not seem to be necessary. Note that adding thè t-3 instruments restricts thè sample period to one 
year. Thus, correction for autocorrelation in thè second round of thè B-robust GMM method is no 
longer feasible. With this end in view, we realize that thè coefficients of column 3 might be more 
precisely estimated by leaving out thè t-3 instruments but including thè year 1989 in thè sample 
period. The estimation results of this exercise are presented in Table 5.5. The performance of thè 
Euler equation does not really improve.13 Having sufficient internai funds and being a monopoiis- 
tic competitor on thè output market seem to be of great importance for thè investment behaviour of 
Dutch manufacturing firms. We compute thè F-statistic

(5.27)

to test thè nuli hypothesis that thè coefficients on cash flow and debt are equal to zero, R$KGMM = 0 , 
and conclude that Proposition I is rejected. As usuai, thè matrix R defines thè J  restrìctions on thè 
parameters p. Neither thè standard nor thè robust Wu-Hausman test rejects thè equivalence of thè 
classic and robust GMM estimates which is in accordance with thè observation that thè parameter 
estimates of columns 2 and 3 of Table 5.5 are very similar. However, thè Doomik-Hansen test 
rejects normality in thè classic case whereas it does not indicate possible misspecification of thè 
econometrie model in thè robust regression case. Just a few outliers might be held responsible for 
thè excessive value of thè classical Doomik-Hansen statistic.

The classification of thè firms by thè debt to capitai ratio appears to work well. As can be 
verified in Table 5.6, thè F-test rejects Proposition I for thè liquidity constrained (group 2) 
companies but does not reject thè separability of thè financial policy and thè investment choices of 
thè group 1 firms. This time, at least for thè case of thè group 2 regression, we reap thè harvest of 
having developed thè robust estimation techniques in thè first part of thè thesis, since thè robust 
GMM estimator produces significantly different estimates from thè classic one. Not a single 
coefficent is significantly different from zero for thè regression which uses thè observations on thè 
unconstrained group of firms. We remark that for this case thè normality of thè weighted residuals 
is rejected which once again stresses thè relative success of thè empirical Euler equation.

13 Adding thè dividend capitai ratio to thè econometrie specification or instrumenting all thè explanatory 
variables does not lead to basically different conclusions.
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5.6.2 Estimation Results, Q-model

In contrast with thè Euler equation, thè Q-model fits thè Dutch investment data extremely well. 
The GM estimates are shown in Table 5.7. AH coefficients enter significantly different from zero. 
Only thè debt to capitai ratio is thè black sheep of thè explanatory variables with a coefficient of 
thè wrong sign. As follows from Tables 5.8-5.11 this odd result might be explained by thè 
endogeneity problem. Indeed, thè Wu-Hausman test rejects thè equality of thè first difference and 
thè within estimates in case of thè heteroskedasticity and autocorreiation adjusted GM regressions. 
If we instrument thè debt to capitai ratio then its influence on thè investment capitai ratio becomes 
negligible. By anology with Table 5.3, thè specification tests report similar econometrie issues 
which need to be handled: thè generalized Durbin-Watson statistics indicate that thè residuals are 
not free of autocorreiation and firm specific effects can not be left out of thè econometrie model. 
This time thè robust Pagan-Vella tests reject thè nuli hypothesis of homoskedastic errors. From thè 
t-values associated with thè GM estimates of thè second column one notices a small gain in 
efficiency on account of thè correction for muhiplicative heteroskedasticity. The Frees test 
legitimatizes thè fact that we consider thè cross-sectional units to be independent. Compared with 
previous empirical studies, thè ability of Tobin’s Q to predict thè investment capitai ratio is 
remarkably good.

Initially we make an orthogonal projection of Tobin’s Q, thè lagged debt to capitai ratio 
squared and thè current output capitai ratio on their instruments. Instruments of period t-1 are again 
found to be invalid (see Table 5.8). Using t-2 and t-3 instruments only ensures that thè robust 
GMM method produces consistent estimates if thè lagged cash flow capitai ratio is also included in 
thè set of endogenous regressors. This result can be checked by comparing thè robust Hansen 
(1982) statistic of thè third with thè fourth column.

The efficiency gain from leaving out thè t-3 instruments but adding 1989 to thè sample 
period is considerale which follows from a comparison of thè last column of Table 5.8 with thè 
second column of Table 5.9. For thè full sample of firms, thè conditions of thè standard Q-model 
without financial regimes can not be rejected, if we consider all explanatory factors of equation 
(5.26). However, after leaving out thè debt to capitai ratio, thè coefficient on thè output capitai 
ratio and cash flow capitai ratio tum out to be significant. Again, liquidity constraints and thè 
degree of competition in thè output market are important determinants of thè investment decisions 
of at least some manufacturing firms of thè sample.14 The weighted robust regression residuals 
are strongly autocorrelated but follow a normal distrìbution as is revealed by thè generalized 
Durbin-Watson and thè Doomik-Hansen tests respectively. The classic GMM procedure completely 
breaks down. Its dramatic decay is demonstrated by a substantia] loss in thè precision of thè 
estimates, and hence also thè t-values, and thè relatively high values of thè standard and robust

14 Including thè current cash flow capitai ratio to thè Q-model does not substantially change thè reported 
estimation results and thè corresponding added coefficient appears not significanti different from zero.
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:ut-off values determining leverage points and vertical outliers are yXo»:s(5) = 3.58 and 2.5‘ 
ively. The robust distances of thè predicted explanatory variables and thè scaled 2SGM-resic 
horizontal and vertical axis respectively.

ìusman statistics. These vulnerable GMM estimates result from just a few very large 
data set as is shown in Figure S.l where thè robust distances of thè predicted expl 
es are plotted against thè scaled 2SGM residuals (see Chapter 1 for a detailed expos 
ns of this sort). The leverage points especially corrupt thè classic GMM results si 
tionally large horizontal outliers also appear to be vertically outlying. The company 
>onding to thè five smallest and largest residuals and thè ftve largest robust distan
i in Table 5.10. Combining Table 5.10 with Figure 5.1 leads us to conclude that c 
nies put a stick in thè wheel of thè GMM estimator. It cannot be emphasized enouj 
ant it is to consider outlying observations in micro data. According to thè classic 
es, Tobin’s Q does not explain much variation in thè investment capitai ratio whei 
iust GMM regression case this is thè most important explanatory variable.
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Table 5.10. Vertical Outliers and Leverage points, 
detected by 2SGM

Total Number of Outliers = 6 6  
Out of 190 Observations

Company Year

Larcest Positive Residuai. Total Number of Vertical Outliers = 23

1 VIBA 1989

2 A'dam Rubber 1990

3 A’dam Rubber 1989

4 Emba 1990

5 VRG 1989

Smallest Negative Residuals. Total Number of Vertical Outliers = 23

1 Emba 1989
2 VIBA 1990

3 Econosto 1990
4 ACF 1989
5 VRG 1990

Lareest Robust Distances. Total Number of Leveraee ooints = 59

1 A’dam Rubber 1989

2 Emba 1989
3 Emba 1990
4 A’dam Rubber 1990

5 VIBA 1989

Table 5.11 was drawn up from robust estimation of thè Q-model seperately for two 
different financial regimes. The non-significance of thè coefficient on thè cash flow to capitai ratio 
is conspicuous for thè group of borrowers with relatively low debt levels. However, when we leave 
out thè cash flow from thè regression model then thè explanatory power of Tobin’s Q diminishes 
considerably. This result might indicate that thè group 1 firms do not want to borrow on thè capitai 
markets, although they have free access, until they finish their internai available funds. Notice that 
for this class of firms, thè coefficient on Tobin’s Q is substantially higher than thè ones reported 
for thè liquidity constrained companies. Naturally, for thè filli set of firms (see Table 5.9) thè 
parameter on Q approximates thè average value. Tobin’s Q-model is less accurate for thè group 2 
borrowers which is in accordance with our comment of Section 5.2.2. If a corporation is liquidity 
constrained then thè measure of Q as dictated by equation (5.25) can be uninformative about thè 
firm’s reai investment oppottunities. Thus, although there seems to be no direct reason to reject 
Proposition I for thè group 1 firms (thè F statistic is far below thè criticai value 3), thè Lagrange
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multiplier of thè fmancing constraint may stili not equal zero since Tobin’s Q may not be not a 
perfect image of thè marginai value of extending thè capitai stock with one extra unit. But thè 
empirical observation is that average Q remains thè most importane driving force behind thè capitai 
goods expenditures of thè group 1 borrowers.

These results are reversed for thè liquidity constrained companies. In this case, cash flow 
has more explanatory power than Tobin’s Q and thè F-test rejects thè debt irrelevance theorem. 
Although we stili do not find a significant relationship between thè relative indebtedness of thè 
company with respect to thè capitai stock and thè investment capitai ratio. One could argue that 
there is a lack of clarìty about thè existence of extemal fmancing barriers but thè fact that internai 
fmancing constraints draw a bill on thè investment choice is eminently clear. Even within thè 
group of highly leveraged companies, firms, on average, do not suffer substantially from under- 
investment in their production processes because a high debt to capitai ratio position putting them 
in a state of financial distress.

The output capitai ratio is especially relevant for thè group 1 regressions. Why monopolis- 
tic competitors would choose lower debt to capitai ratio’ s is not at all immediately obvious. We 
leave this empirical finding unexplained.

For all regressions presented in Table 5.11, thè Doomik-Hansen test does not reject thè 
hypothesis that thè weighted residuals are normally distributed. These results render thè successful 
performance of thè Q-specification of thè neoclassical investment model under consideration. Once 
again, thè generalized Durbin-Watson tests report severe first-order autocorreiation in thè 
regression residuals. Recali that we deal with this problem by making a correction for autocor­
reiation with Zellner’s solution (see Chapter 3).

Section 5.7 Conclusion

The explanatory power of empirical Q-models recently presented in thè literature is often low. We 
argue that, among other reasons, outlying observations in thè employed panel data sets can be 
blamed for comipting standard econometrie techniques resulting in misleading conclusions on thè 
impact of Tobin’s Q. Estimating thè Q-model of investment with a Robust GMM estimator retums 
plausible results for a sample of 95 Dutch manufacturing companies. The RGMM estimator did 
convincingly solve thè problem of securing consistent relatively efficient estimates in a model with 
conceivable simultaneity and autocorrelated errors.

We conclude by giving a reply to thè questions which were raised in thè introduction to 
this chapter. At least some of thè firms of our Dutch panel data set are (intemally) liquidity 
constrained when setting their investment objectives since cash flow plays an important role as an 
explanatory variable of thè level of investment expenditures of group 2 borrowers in addition to 
Tobin’s Q. These companies may raise their expected value by adopting an active hedging policy 
to lower thè risk of having insufficient funds, when cash flow is temporarily low, to finance new
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investment opportunities. In many cases, off-balance sheet hedging instruments such as options, 
futures and other financial derivatives can be exploited to diminish thè capricious nature of thè 
cash flow. Though it remains questionable whether thè relatively highly leveraged companies are 
barred from thè capitai markets. Financial distress, as measured by thè debt to capitai ratio, does 
not have major consequences for thè investment decisions of thè majority of thè Dutch corpora- 
tions. The reason for thè positive impact of cash flow on thè investment choice may be imputed to 
thè motive that managers of Dutch manufacturing companies prefer intemally generated funds 
above extemal funds as a source of financing investment projects (pecking order argument). The 
estimation results associated with thè Q-model reject Modigliani and Miller's Proposition I which 
stems from thè difference between thè extemal and internai costs of finance while at thè same time 
firms have free access to thè capitai markets.

The empirical performance of thè Euler equation is unsatisfactory for our panel data set 
which comprises only 117 Dutch firms.

We recali that thè Euler equation and thè Q-model are well specified only for companies 
with a particular financial regime. It is for future work to take up thè challenge to develop an 
investment model which characterizes thè optimal level of investment of thè financially restricted 
firms in terms of direct observable explanatory factors.
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Appendix A5.1 Data and Variable Construction

C (cash)

Y (output)
= net profits plus depreciation 

= sales

= net investment in plant, property and equipment 
= thè capita] stock

= market value of thè net capitai stock 

= Tobin’s Q

= market value of equity 

= book value of total debt 

= deflator for investment 

= producer price index 

= dividend

= depreciation of thè capita] stock

= financial assets, this includes fixed interest securities, shares, investment in 

associates, partnerships and so on.

I

K

NK

Q
E

B

P*

P
D

DEPR

F

Table A5.1 contains thè codes corresponding to thè variables on which data is supplied by 

REACH. The originai data set contains 142 companies over thè ten-year period 1981-1990 and 

represents well thè Dutch manufacturing industries which are quoted on thè Amsterdam stock 

exchange. Note that intemational corporations such as Royal Dutch Ptl. (Shell), Philips, Unilever 

and Akzo Nobel are excluded. Maximizing thè number of observations under thè restriction that 

thè resulting data set is balanced, leaves 117 companies in thè case of thè Euler equation approach 

and 95 companies in thè case of thè Q-model for thè five-year period 1986-1990.

In order to convert thè book value of thè net capitai stock into its market value, we use thè 
perpetuai inventory method (see Ward (1976) and Salinger and Summers (1983) ):

The market value of thè net capita] stock for thè first year is set equal to thè book value NKl9t6j. 

The data set does not break down thè capitai stock into its components such as buidings, 

machinery, utility plants in Service and transport equipment which prevents thè application of 

different depreciation rates to different types of capitai goods. Moreover, we are not able to 

construct thè market value of thè gross capitai stock since we lack thè figures on cumulative (over 

time) depreciaton. Therefore, we anticipate that thè replacement value of thè capitai stock will be 

substantially higher than thè one provided by A5.1. As a result, Tobin’s Q, (I/K) etc. will generally

(A5.1)
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Table A5.1. Codes in Financieel Economisch Lexicon (FEL)

Variatile FEL Code

Capital Stock M

Sales AA

Investment WIB

Short Debt U

Long Debt T

Cash Flow WH

Dividend KA

Financial Assets N

Deoreciation WG

be overstated (see Table 5.2). Since thè conceivable undervaluation of thè capitai stock affects 

monotonically both sides of thè investment equations it does not obscure thè estimation of thè deep 

parameters of thè investment models.

Output is approximated by sales which do not reflect thè changes in thè stock of finished 

goods. Our data on inventories include raw materials etc. and for this reason can not be used to 

construct a closer approximation for output.

The total amount of debt (B) of a firm is equal to thè sum of thè firm’s short and long 

debt. Short-term debts are debts with maturities of less than one year. The book value of debt may 

differ from thè market value because interest rates fluctuate. This difference in value seems 

especially relevant for long-term debt. Since additional information on thè maturities of thè long- 

term debts is not available, we cannot compute thè market value of total debt.13 However for thè 

firms under investigation, on average, only approximately 20% of thè level of debt can be ascribed 

to long-term debt. Schaller (1993) notes that his estimation results do not differ substantially if 

Tobin’s Q is calculated with thè market value of debt instead of thè book value. The market value 

of equity (E) is calculated as thè end of year share price multiplied by thè number of ordinary 

shares in issue (datatype (MV) in DATASTREAM). Using thè book value of financial assets (F) 

we calculate Q as

( B + E - F ,  \p .'

15 Whited (1992) uses thè method of Brainard, Shoven and Weiss (1980) to construct thè maturity 
distribution of book debt. Our data set does not cover enough years to apply this method successfully.
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The median margina] value of one unit of capitai (dVfòK ^) (see section 5.2.2) associated with 

measure (A5.2) ranges approximately from 0.97 in 1988 to 1.18 in 1990. These numbers are in 

conformity with thè neoclassica! theory of investment which predicts that dV/dKt_t will oscillate 

around one. Q is a highly simplified measure of thè investment opportunities of a firm since, 

among other things, individuai tax parameters are not taken into account. See Summers (1981) and 

Hayashi (1982) for a derivation of a tax-adjusted Q .16 Perfect and Wiles (1994) compare different 

estimators of Tobin’s Q to determine whether empirica! analyses are sensitive to alternative 

constructions of Q and conclude that thè simple Q-ratio, defìned by thè sum of thè firm’s common 

stock, thè estimated market value of preferred stock and thè book value of total debt divided by thè 

bookvalue of total assets, produces empirical results that differ from four alternative relatively 

more complex estimators.

The Economics Codes in DATASTREAM of thè producer price index (p:) and thè price 

deflator of gross fixed capitai formation (/>/) for The Netherlands are NLI63...F and NLIPDINV 

respectively.

Variable Defmitions:

Euler Equation Q-model

16 Since data on thè present value of thè tax allowances associated with investments made before 1986 is 
not available we do not compute a tax-adjusted Q.
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Appendix A5.2 Tables Containing thè Estimation Results 

Table 53  Generalized M-Estimates of thè Euler Equation*

11. = &,<//*),_„ -  + U W ,.u -  P5(B/*tf-u + <t», -  T|. +erj
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c 0 L .

"Within", Sample Period 1987-1990, 468 observations

(I/K),., 0.028 (0.25) 0 . 0 1 2  (0 .1 2 ) 0.132 (0.98)

(I/K)V, -0.014 (-0.005) -0 . 0 0 2  (-0 .0 1 ) -0.202 (-0.74)

(C/K),., 0.232 (5.19) 0.265 (5.80) 0.267 (4.99)
(Y/K),., 0.024 (4.39) 0.026 (4.74) 0.022 (3.88)
(B/K)2,., -0.001 (-2.59) -0.001 (-1.55) -0 .0 0 1  (-1.80)
Adjusted R2 0.26 0 . 2 2 0 . 2 2

Heteroskedasticity, Robust Pagan-Vella (1989) 11.47
Cross-sectional Correlation, Frees (1995) -0.23 -0 .0 0 1 -0.31
Generalized Durbin-Watson, Bhargava et al. (1982) 1.69 1.76 1.77
Doomik-Hansen (1994). Weighted Residuals 2.25 4.61 25.55
Wu (1973) - Hausman (1978) (Within «-» Constant) 43634.29 1989.67 57.39

First Difference, Sample Period 1988-1990 351 Observations

(I/K),., -0.345 (-3.05) -0.310 (-2.68) -0.270 (-2.51)
0.267 (1.22) 0.197 (0.89) 0.173 (0.86)

(C/K)m 0.238 (5.44) 0.230 (4.90) 0.225 (4.55)
(Y/K),., 0.021 (2.95) 0:021 (3.15) 0.019 (3.04)
(B/K)2., 0.001 (1.91) 0.001 (1.35) 0 .0 0 1  (1 .1 2 )
Adjusted R2 0.28 0 . 2 2 0 . 2 0

Heteroskedasticity, Robust Pagan-vella (1989) 10.80
Doomik-Hansen (1994), Weighted Residuals 0.04 3.62 22.47
Wu (1973)-Hausman (1978) (First Dif. <-* Constant) 904.72 261.14 378.33
Wu (1973)-Hausman (1978) (Within First Dif.) 143.35 44.60 49.71

*t-values are within parentheses, t(°°)002J = 1.96. The robust Pagan-Vella statistic and thè Wu-Hausman test 
statistics are asymptotically %2(8 ) distributed. The Wu-Hausman (within/first difference *-* Constant) statistic 
compares thè within/first difference estimates with thè estimates of thè originai model (5.22) where thè fixed 
effects are left out but a Constant is included. The lower bound and upper 95th percentile of thè Frees 
statistic are respectively -0.67 and 1.21. The Doomik-Hansen test has a jf-distribution with two degrees of 
freedom, X2o<»(2) = 5.99, jfooiW = 15.51. The Bhargava test statistic tends to 2 for large samples (in n) 
under thè null-hypothesis of zero autocorrelation. The time-dummies <)», are not reported. The estimator 3 ^  
corrects for heteroskedasticity whereas thè estimator corrects for both heteroskedasticity and
autocorrelation according to thè procedures which are outlined in Chapter 2.
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Table 5.4 Robust GMM Estimates of thè Euler Equation; 
Determining thè Optimal Set of Instruments*

! ±  = &</'*),-« -  W 'V l u  -  + 04<W*)-U -  PsW K )lu + 4», + T1( +E„

Sample Period 1989-1990 1990

Instruments t-1 , t- 2 t-2. t-3

(WCVi. ( W - . .(B/K),,
(I/K),„ 0/K)v„ 

(B/K)3,,

Number of Observations 234 117

"Within"
(I/K),., 0.426 (1.46) 0.080 (0.13)
(I/K)2,., -0.317 (-0.31) -0.066 (-0.04)
(C/K),., 0.269 (1.52) 0.178 (2.50)
(Y/K),., 0.043 (1.60) 0.033 (1.68)
(B/K)3,., -0.011 (-0.53) -0 . 0 1 2  (-0.62)

Generalized Durbin-Watson, Bhargava et al. (1982) 1.24

Doomik-Hansen (1994), Weighted Residuals 0.79 1.74

Test on Overidentifying Restrictions, 
Robust Hansen (1982)

18.56 2.38

Wu (1973) - Hausman (1978) 
(RGMM <-)• GMM. Standard/Robust)

238.36, 36.84 0.02, 6.79

*t-values are within parentheses, t(°<>)0025 = 1.%. The robust Hansen test on overidentifying restrictions is 
asymptotically X2(3) distributed. The standard Wu-Hausman statistic has asymptotically a x2(6 ) distrìbution 
for column 2 (1 lime dummy) and a X2(5) distrìbution for column 3 (no time dummy). The Doomik-Hansen 
test has a x2*distribution with two degrees of freedom, X‘ohs(2) = 5.99, X2oos(3) = 7.81, x2oos(5) = 11.07, 
X 20 0 } ( 6 )  = 12.59. The Bhargava test statistic tends to 2 for large samples (in n) under thè null-hypothesis of 
zero autocorreiation. The time-dummies are not reported.
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! i .  « 0,(//*)_u -  VM/ioiu -  p3(c//o^,J * P4( > v * u  -  P5(*/*o;-, + +  n, %  
«

Sample Period 1989-1990 Robust GMM Gassic GMM

Instruments t- 2
(I/Kl,, (VK)V, 

(B/K)

t- 2
(I/KW (I/K)2,., 

(è/K)2,.,
Number of Observations 234

"Within”

(I/K),., -0.072 (-0.19) 0.152 (0.80)
(I/K)2,., 0.547 (0.77) 0.286(1.06)
(C/K),., 0.200 (2.77) 0.221 (7.68)
(Y/K),., 0.033 (4.39) 0 . 0 1 2  (2 .2 2 )
(B/K)v, -0.005 (-1.82) -0.0003 (-0.72)

Generalized Durbin-Watson, Bhargava et al. (1982) 1.15 1.13

Doomik-Hansen (1994), weighted residuals 1.14 105.75

F-test (Pj»P5-0) 4.41 29.93

Wu (1973) - Hausman (1978) (RGMM GMM, 
Standard/Robust)

9.65, 11.88 9.65, 11.88

‘t-values are within parentheses, t( ° % 0 2 5  = 1-^6 The standard Wu-Hausman statistic has asymptotically a 
X 2 ( 6 )  distribution. The Doomik-Hansen test has a jf-distribution with two degrees of freedom, ICa&P-) -
5.99, X2oos(6 ) = 12.59. The Bhargava test statistic tends to 2 for large samples (in n) under thè null- 
hypothesis of zero autocorrelation. The time-dummies 4>t are not reported. F005(2,°°) = 3.00.
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Table 5.6 Robust GMM Estimates of thè Euler Equation, Group 1 and Group 2’

Y -  = -  W K l u  - HCIK),-u * U W r u  -  W ' V l u  * 0, ♦ H, +e„

Sample Period 1989-1990 Group 1 
Low Debt

Group 2 
High Debt

Instruments t- 2 t- 2

(I/K)u , (I/K)2,., 
(fe/K)2,,

(I/KW (I/K)2,., 
(B/K)2..,

Number of Observations 118 116
"Within"

(I/K),, -0.650 (-1.43) 0.296(1.34)
(I/K)2,., 1.457 (1.73) -0.112 (-0.35)
(C/K)„, 0.281 (1.41) 0.150(1.26)
(Y/K),., 0.052 (0.87) 0.023 (2.54)
(B/K)2,., 0.005 (0.03) -0.002 (-2.46)

Generalized Durbin-Watson, Bhargava et al. (1982) 0 .% 1 .1 0

Doomik-Hansen (1994), Weighted Residuals 10.47 0.16

F-test (P3-P,«0) 1 .0 1 10.13

Wu (1973) - Hausman (1978) (RGMM «-» GMM, 
Standard/Robust)

1.13, 2.90 62.49, 17.09

‘t-values are within parentheses, t(«>)aQ25 = 1.96. The standard Wu-Hausman statistic has asymptotically a 
X : ( 6 )  distribution. The Doomik-Hansen test has a j f - d i s t r i b u t i o n  with two degrees of freedom, x20 m(2) =
5.99, xVo5(6 ) = 12.59. The Bhargava test statistic tends to 2 for large samples (in n) under thè null- 
hypothesis of zero autocorrelation. The time-dummies are not reponed. FOOJ(2,<») = 3.00.
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Table 5.7 Generalized M-Estimates of thè Q-model of Investment*

A  = P,e, - tyB/K)iu -  P,(Y/K)B *  p4(a*)_w * 0, ♦ n, -  E.

f*L s*r’KSVK
"Within", Sample Period 1987-1990 380 observations

Q, 0.100 (3.74) 0 . 1 1 0  (8.16) 0.102 (7.84)
(B/K)2,, 0.009 (2.18) 0.004 (2.94) 0.004 (3.30)
(Y/K), -0.039 (-4.88) -0.038 (-5.53) -0.038 (-5.64)
(C/KX-. 0.248 (5.06) 0.297 (5.78) 0.295 (5.41)
Adjusted R: 0.42 0.40 0.43
Heteroskedasticity, Robust Pagan-Vella (1989) 19.40
Cross-sectional Correlation, Frees (1995) 0.16 0.63 0.15
Generalized Durbin-Watson, Bhargava et al. (1982) 1.54 1.56 1.61
Doomik-Hansen (1994), Weighted Residuals 2.03 5.45 21.83
Wu (1973) - Hausman (1978) (Within Constant) 42.99 32.10 50.59
First Difference, Sample Period 1988-1990 285 observations

Q, 0.133 (6.13) 0.138 (8.67) 0.134 (8.90)
(B/K)2,., 0.009 (2.04) 0.011 (2.64) 0.009 (2.32)
(Y/K), -0.046 (-6.96) -0.050 (-7.93) -0.048 (-8.16)
(C/K)„ 0.245 (4.43) 0.260 (5.00) 0.284 (5.54)
Adjusted R" 0.51 0.46 0.54
Heteroskedasticity, Robust Pagan-vella (1989) 17.03
Doomik-Hansen (1994), Weighted Residuals 0.42 5.21 21.09
Wu (1973)-Hausman (1978) (First Dif. Constant) 68.94 89.12 88.31
Wu (1973)-Hausman (1978) (Within «-» First Dif.) 24.77 2.61 23.81

‘t-values are within parentheses. t(oo)a025 = l,%. The robust Pagan-Vella statistic and thè Wu-Hausman test
statistics are asymptotically £2(7) distributed. The Wu-Hausman (within/first difference «-* Constant) statistic
compares thè within/first difference estimates with thè estimates of thè originai model (5.26) where thè fixed
effects are left out but a Constant is included. The lower bound and upper 95th percentile of thè Frees
statistic are respectively -0.67 and 1.21. The Doomik-Hansen test has a x:-disiribution with two degrees of
freedom, xJoW(2) = 5.99, x:o.osO) = 14.07. The Bhargava test statistic tends to 2 for large samples (in n)
under thè null-hypothesis of zero autocorreiation. The time-dummies <(), are not reported. The estimator $HCU
corrects for heteroskedasticity whereas thè estimator corrects for both heteroskedasticity and
autocorreiation according to thè procedures which are outlined in Chapter 2.
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Table 5.8 Robust GMM Estimates of thè Q-model of Investment; 
Determining thè Optimal Set of Instruments*

A  -  p ,e „  -  ^B/Kìlu ~ P ,(™ 0 „  + P / g ^ U  + ♦, * n, ♦ e .

Sample Period 1989-1990 1990 1990
Instruments t-1 , t- 2 t-2. t-3 t-2, t-3

Q„ (B/K)2..,, 
(Y/K),

Q,. (B/K)2,.,, 
(Y/K),

Qr (B/K)2,.,, 
(Y/K)„ (C/K),,

Number of Observations 190 95 95
"Within"

Q, 0.131 (4.49) 0.074 (0.02) 0.110(1.83)
(B/K)2,., 0.012 (0.49) -0.005 (-0.001) -0.001 (-0.04)
(Y/K), -0.054 (-1.67) -0 .0 2 1  (-0 .0 2 ) -0.029 (-1.71)
(C/K),., 0.393 (1.42) 0.184 (0.14) 0.112 (1.07)

Generalized Durbin-Watson, Bhargava et al. (1982) 0.90

Doomik-Hansen (1994), Weighted Residuals 2.13 1.15 0.80

Test on Overidentifying Restrictions, Robust 
Hansen (1982)

16.47 10.45 8.38

F-test (0,*fìJ!"O) 4.06 1.35 0.87

Wu (1973) - Hausman (1978) 
(RGMM GMM, Standard/Robust)

36.44, 50.93 4.67, 4.18 12.08, 4.75

't-values are within parentheses, t( ° ° )oa25 = 1.96. The robust Hansen test on overidentifying restrictions is 
asymptotically xJ(3) and x2(4) distributed in case of column 2, 3 and 4 respectively. The standard Wu- 
Hausman statistic has asymptotically a X'(5) distribution for column 2 (I time dummy) and a x2(4) 
distribution for columns 3 and 4 (no time dummy). The Doomik-Hansen test has a x2-distribution with two 
degrees of freedom, x W 2) = 5.99, x W 3) = 7.81, x W 4) = 9.49, x W 5) = 11 07. The Bhargava test 
statistic tends to 2 for large samples (in n) under thè null-hypothesis of zero autocorrelation. The time- 
dummies <)>, are not reported. F005(2,«») = 3.00.
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140 Chapter 5. Empirical Evidence Regarding thè Sensitivity of Dutch
Corporate Investment to thè Financial Environment

Table 5.9 Classic and Robust GMM Estimates of thè Q-model of Investment*

-  P,G„ -  H B K lu  - H W ,  + PJiOK)„u + * , + * , +  £„

Sample Period 1989-1990 Robust GMM Robust GMM Classic GMM

Instruments t- 2 t- 2 t- 2

Q., (B/K)2,.,, 
(Y/KX. (C/K),.,

Q, (Y/K),, 
(C/K),.,

Q,. (B/K):,.„ 
(Y/K)„ (C/K),,

Number of Observations 190
"Within"

Q, 0.143 (4.94) 0.109 (3.89) 0.008 (0.32)
(B/K)2,, 0.002 (0.38) -0.0003 (-0.93)
(Y/K), -0.029 (-1.56) -0.041 (-2.59) -0.007 (-0.73)
(C/K),_, 0.195 (1.48) 0.324 (2.00) 0.305 (2.32)

Generalized Durbin-Watson, 
Bhargava et al. (1982)

0.96 1 .01 0.91

Doomik-Hansen (1994), Weighted Residuals 1.69 2.46 105.74

F-test (P2=P4=0) 1.56 3.12

Wu (1973) - Hausman (1978)
(RGMM «-» GMM. Standard/Robust)

59.78, 97.40 12.56, 30.99 59.78, 97.40

't-values are within parentheses, t(°°)002J = 1.%. The standard Wu-Hausman statistic has asymptotically a 
XJ(4) distribution for column 3 and a x2(5) distribution for columns 2 and 4. The Doomik-Hansen test has a 
X2-distribution with two degrees of freedom, X W 2> = 5" -  X W 4) = 949- X2o.os(5) = 1 , 07- The Bhargava 
test statistic tends to 2 for large samples (in n) under thè null-hypothesis of zero autocorrelation. The time- 
dummies 0 , are not reported. F005(2,«°) = 3.00.
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Table 5.11 Robust GMM Estimates of thè Q-model of Investment, 
Group 1 and Group 2*

J l. -  p,e.. -  UB!K)lu - 3j(J7/0„ -  P4(C//0f.„  +  ♦ ,  *  T | ,  -  E ,

Sample Period 1989-1990 Group 1, Low Debt
Instruments t- 2

Q, (B/K)2,.,, 
(Y/K)„ (C/K),.,

t-2
Q,. (B/K)2,.,, 

(Y/K),

t- 2  
Q,. (Y/K),, 

(C/K),.,
Number of Observations 96

"Within"

Q, 0.340 (4.51) 0.311 (0.92) 0.297 (4.04)
(B/K)2,., -0.021 (-0.25) 0.004 (0.02)
(Y/K), -0.136 (-3.04) -0.119 (-1.49) -0.121 (-2.27)
(C/K),., 0.306 (1.39) 0.241 (1.19)
Bhargava et al. (1982) 1.04 1 .0 2 0.97
Doomik-Hansen (1994) 0.85 1.49 2.26

F-test (P,=P4*0) 0.98

Wu (1973) - Hausman (1978) 
(RGMM GMM, Standard/Robust)

-1.36, 1.56 -5.18, 2.50 -3.28, 16.40

Sample Period 1989-1990 Group 2, High Debt

Instruments t- 2
Q,. (B/K)2.,, 

(Y/K)„ (C/K),.,

t- 2  
Q,. (Y/K)„ 

(C/K),.,

t- 2
Q,. (B/K):,.„ 

(C/K),.,

Number of Observations 94

"Within"

Qi 0.054 (0.56) 0.036 (0.91) 0.045 (2.28)
(B/K):,_, 0.004 (0.16) -0.002 (-0.29)
(Y/K), -0.013 (-0.26) -0 . 0 1 2  (-0 .6 6 )
(C/K),., 0.330(1.35) 0.338 (3.08) 0.358 (2.01)
Bhargava et al. (1982) 0.94 1.09 1.13
Doomik-Hansen (1994) 0.70 2.55 2.97

F-test (P2-P4 -0) 2.30 4.18

Wu (1973) - Hausman (1978) 
(RGMM <-> GMM. Standard/Robust)

-3.13, 1.78 1.29, 2.01 27.71, 27.94

’t-values are within parentheses, t(«)oa2! = 1.96. The standard Wu-Hausman statistic has asymptotically a 
X:(4) distribution for column 3 and 4, and a x2(5) distribution for column 2. The Doomik-Hansen test has a 
X2-distribution with two degrees of freedom, X2a<»(2) = 5.99, XJoos(4) = 9.49, X2oos(5) = 11 -07. The Bhargava 
test statistic tends to 2 for large samples (in n) under thè null-hypothesis of zero autocorrelation. The time- 
dummies 4», are not reported. F00J(2,») = 3.00.
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