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Abstract 

In this paper a game-theoretical model with self-interest pursuing consumers is introduced to assess how 

to design a least-cost distribution tariff under two constraints that regulators typically face. The first 

constraint is related to difficulties regarding the implementation of cost-reflective tariffs. In practice, so-

called cost-reflective tariffs are only a proxy for the actual cost driver(s) in distribution grids. The second 

constraint has to do with fairness. There is a fear that active consumers investing in distributed energy 

resources (DER) might benefit at the expense of passive consumers. We find that both constraints have 

a significant impact on the least-cost network tariff design, and the results depend on the state of the 

grid. If most of the grid investments still have to be made, passive and active consumers can both benefit 

from cost-reflective tariffs, while this is not the case for passive consumers if the costs are mostly sunk. 

Keywords 

Batteries, distributed energy adoption, distribution network tariff design, game-theory, non-cooperative 

behaviour 
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1. Introduction 

Pérez-Arriaga et al. (2017)1 discuss and Abdelmotteleb et al. (2017) show with simulations and 

numerical examples that in a new world with active consumers the least-cost distribution network tariff 

consists of a forward-looking-peak-coincident capacity charge plus a fixed charge. If the capacity-based 

charge is computed as the incremental cost of the network divided by expected load growth, the tariff is 

cost-reflective; consumers will make optimal choices with regard to the trade-off between their 

consumption levels and grid reinforcements. A fixed network charge complements the capacity-based 

charge to collect the remaining residual network cost in a non-distorting manner.  

However, there are many difficulties which constrain the implementation of this theoretical optimal 

tariff. Abdelmotteleb et al. (2017), Batlle et al. (2017) , Passey et al. (2017), Pollitt (2018), Pérez-Arriaga 

et al. (2017) and Simshauser (2016) discuss possible issues constraining the implementation of improved 

or more efficient distribution tariffs. In this paper, we go one step further by demonstrating quantitatively 

how such constraints affect tariff design. We focus on two often-discussed constraints which are of a 

different nature.  

The first constraint regards the implementation difficulties related to cost-reflective tariffs. In 

practice, so-called cost-reflective tariffs are only a proxy for the actual cost driver(s) in distribution grids 

because it would be too complex to consider all of them or because we simply lack the necessary 

information. Gómez (2013) describes how a distribution network is more difficult to oversee than a 

transmission network as it involves a much larger number and a wider variety of equipment and 

components. Cohen et al. (2016) use actual load and load growth data to show that grid usage is very 

heterogeneous in California. They also show that the costs of accommodating incremental 

demand/injection can be very location specific. Passey et al. (2017) analyse a dataset of 3,876 residential 

consumers in the Greater Sydney Area in Australia and observe that demand profiles and the timing of 

the network peaks vary widely across networks and at different voltage levels, depending on the mix of 

consumers connected. Designing a truly cost-reflective capacity-based charge is a challenging task. The 

coincident-peak of a distribution system, identified as the main network cost driver, is hard to target. 

Targeting the wrong network peak implies an efficiency loss, e.g. distributed energy resources (DER) 

adoption can be under- or over-incentivised without resulting in much change in the total grid costs.  

Pérez-Arriaga et al. (2017) and Pollitt and Anaya (2016) agree that from an efficiency point of view, 

a network tariff with very fine temporal and locational granularity would be needed. Examples are 

critical peak-pricing (mainly temporal) or even user-by-user charges as an extreme case (temporal and 

locational). However, such dynamic charges with fine locational granularity are hard to attain in the 

current context. This is mainly true due to a lack of information about the network flows in real-time, 

requiring significant investments in IT infrastructure. Moreover, even if the distribution network became 

extremely ‘smart’, the implementation constraint could persist as in most countries regulation requires 

that a uniform distribution tariff should be in place on a regional level or per area operated by a 

Distribution System Operator (DSO) (European Commission 2015). This regulatory requirement is 

mainly based on arguments of simplicity, predictability for the consumer and, as also described by e.g. 

Batlle et al. (2017) and Neuteleers et al. (2017), fairness, thereby leading us to the second constraint. 

There is a fear that network tariff reforms, which aim to increase efficiency, will result in an unfair 

allocation of the network costs, i.e. passive, often smaller or poorer, consumers would see their 

electricity bills increase. An important issue is the increase of fixed network charges. Pollitt (2018) notes 

that under some conditions, e.g. where there is an over-dimensioned network combined with low load 

growth, a limited possibility to fully disconnect from the grid and when all externalities are incorporated 

in the other components of the electricity bill, then it can be optimal from an efficiency point of view to 

                                                      
1 See e.g. also Box 4.6 (p. 115-116) in the Utility of the Future report by the MIT Energy Initiative (2016). 
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recover a large share of the network costs through fixed network charges. However, in many countries, 

there is a strong opposition to high fixed network charges. Borenstein (2016) states that a high uniform 

fixed charge always raises objections on equity and distributional grounds. It is often argued that if fixed 

network charges replaced the historic volumetric network charges, network costs would be shifted from 

often richer high-usage consumers to often poorer lower-usage consumers. Kolokathis et al. (2018) 

analyse the German case and show that, by introducing a high uniform fixed network charge, low-usage 

consumers can pay up to two and a half times as much per unit of energy compared to high-usage users. 

Such discrepancies in price per kWh could raise acceptability issues. As a consequence, increases in 

uniform fixed network charges are often rejected or capped.2 Although increased fixed network charges 

could be welcomed by DSOs as they would allow for a better alignment of the network tariff with the 

network cost structure, DSOs can also be averse towards the risk of raising fairness concerns. Political 

actions aimed at reducing such discontent could eventually put grid cost recovery in danger. 

However, if higher fixed network charges are not acceptable even when efficient, other network tariff 

components (volumetric or capacity-based) will be needed to recover the residual grid costs. By 

resorting to these, the network tariff will be distorted, implying that active consumers could exploit 

opportunities that might be beneficial in terms of reduced network charges but not necessarily optimal 

from a system point of view. Moreover, the benefits active consumers obtain could be at the expense of 

passive consumers. Brown and Sappington (2017a) estimate the welfare and distributional impact of a 

vertical utility not being allowed to recover its costs by raising fixed charges in addition to volumetric 

charges with net-metering. Indeed, they find that in a context with active consumers investing in solar 

PV, negative distributional and aggregate welfare effects can be more pronounced when the regulator is 

not allowed to raise fixed charges. In short, a trade-off exists between a fairness issue with increased 

fixed charges, i.e. raising the network charges of smaller households, and sustaining a distortion in the 

tariff which could finally also lead to a fairness issue due to active consumers reacting to the distortive 

network tariff.  

In this paper, a game-theoretical model is introduced to assess how the distribution network tariff 

departs from its theoretical least-cost design under the considered constraints. The model allows us to 

capture the interaction between network tariff design, decentralised decision making of self-interest 

pursuing active consumers investing in solar PV and batteries, and their aggregated effect on the network 

costs. The model has a bi-level structure. In the upper-level, a regulator can opt for a combination of 

capacity-based charges, volumetric charges (with or without net-metering) and fixed charges to recover 

grid costs. The regulator anticipates the reaction of consumers represented in the lower-level and the 

tariff is determined in a way that total system costs (incl. network costs, energy costs and DER 

investment costs by consumers) are minimised. Modelled consumers can be passive or active. Passive 

consumers are assumed not to react to prices; active consumers pursue their own self-interest, i.e. their 

objective is to minimise their cost to satisfy their electricity demand. They have the option to invest in 

two technologies: solar PV and batteries. 

The paper is structured as follows. In Section 2, we introduce the modelling approach. In Section 3, 

the setup and data for a numerical example are introduced. In Section 4 and 5, the two considered tariff 

design constraints are introduced, their modelling implication is described, and the results of a numerical 

example are presented to gain insights into their impact on network tariff design. Lastly, a conclusion is 

formulated.  

                                                      
2 For example, a media article published in November 2014 mentions that there were 23 ongoing ‘state fights’ between 

utilities and regulators over increased fixed charges in the US: https://www.utilitydive.com/news/the-fight-over-
solar-moves-from-net-metering-to-rate-design/327742/, accessed on 19/02/18.  

https://www.utilitydive.com/news/the-fight-over-solar-moves-from-net-metering-to-rate-design/327742/
https://www.utilitydive.com/news/the-fight-over-solar-moves-from-net-metering-to-rate-design/327742/
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2. Model formulation3 

In this section, the game-theoretical model, incorporating decentralised decision-making steered by the 

design of the network charges, is described. In theory, a centralised planner, optimising social welfare 

by deciding unilaterally on the optimal trade-off between the utilisation of the network and the adoption 

of DER by consumers, would lead to the lowest total system costs. However, in reality there is no central 

planner that has information about the network cost function and at the same time decides on behalf of 

the consumers what technology to install in order to minimise the total system costs. On the contrary, 

decision-making is decentralised.  

The relevant modelling literature is briefly summarised below. Also, the reasoning behind the use of 

this modelling approach for studying network tariff design is discussed. After that, the description of the 

implemented model is split into three parts. First, the upper-level problem is described. Then, the lower-

level problem is introduced. Last, the applied solution technique is explained. 

2.1 Literature and reasoning behind the modelling approach 

Relevant literature regarding the modelling approach includes the work of Brown and Sappington 

(2017a, 2017b, 2018). In their papers, they apply a welfare analysis to gain insights into the issue of 

optimal retail tariffs in a setting where consumers with a certain elasticity are adopting distributed 

generation (DG). An important difference with our work is that Brown and Sappington focus on the 

design of the entire retail tariff and model one vertically integrated utility responsible for generation, 

transmission and distribution. The advantage of their approach is that the cost of centralised generation 

is endogenised, while in this paper the energy price is considered as exogenous. The disadvantage of 

modelling a vertically integrated utility is that the collection of network charges is decoupled from 

network costs. Namely, in the work of Brown and Sappington cross-subsidisation between generation 

and network activities by the vertical utility is allowed, while in this paper network charges and network 

costs need to converge as is generally the case for an unbundled DSO. Another difference is that Brown 

and Sappington do not use inter-temporal data series. As a consequence, batteries at consumer level 

cannot be modelled. In Schittekatte et al. (2018) a welfare analysis is also conducted, taking into account 

self-interest pursuing active consumers reacting to network tariffs. The main difference is that the grid 

costs are assumed to be sunk in that work. This means the objective of a network tariff is mainly 

allocative, i.e. socialising the grid costs in a non-distortive and fair manner. While in this paper, reactions 

of the consumers in terms of consumption from the grid (or injection) affect the network cost and in its 

turn the network charges. This implies that the tariff should guide consumers to efficient behaviour apart 

from purely socialising network costs. 

The main advantage of modelling decentralised decision-making instead of centralised decision-

making or exogenously determined consumer investment decisions (as in Abdelmotteleb et al. (2017), 

Hledik and Greenstein (2016) and Simshauser (2016)) is that the decisions of consumers can result in 

an overall efficiency loss when price signals, in this case network charges, are not properly designed. 

Although the rise of active consumers is rightly welcomed, the model takes into account the fact that it 

can also be a double-edged sword. On the one hand, the more consumers have the ability to react to 

price signals, the more welfare gains can be made from efficient consumer behaviour as an alternative 

to the historical practice of ‘fit-and-forget’ (Ruester et al. 2014). On the other hand, the more consumers 

are able to react to price signals, the more significant negative welfare impacts can result if these price 

signals are badly designed. Active consumers could be guided in ‘the wrong direction’ by inadequate 

tariff design, e.g. investing in DER which are profitable when viewed from their individual point of 

view but which do not reduce or even increase total system costs. The more consumers have the 

possibility to react to price signals, the more important it becomes to get the tariff design right. 

                                                      
3 Variables are represented in italics, parameters in standard style. 
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2.2 The upper-level regulator 

The upper-level of the model represents the tariff design problem of the regulator. The objective of the 

regulator is to minimise total system costs (here equivalent to maximising social welfare). It is assumed 

that the regulator can set the network tariff. This is a simplification, as in some European countries the 

National Regulatory Authority (NRA) is responsible for network tariff design, while in other European 

countries the NRAs and DSOs share the responsibility, however, the final approval remains with the 

NRA (European Commission, 2015). The objective function of the regulator is shown by Eq. 1. Total 

system costs consist of four components: energy costs, DER investment costs, grid costs, and other 

costs. Other costs represent taxes and levies recovered from consumers; it is assumed that the total level 

of these costs is invariant. The three variable components of the objective function are displayed by Eq. 

2-4. All costs are annualised and scaled per (average) consumer. All introduced variables are positive 

continuous variables. The nomenclature used can be found in Appendix A.1. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒  𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 + 𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 + 𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 +  SystemOtherCosts (1) 

The system net energy costs are calculated by Eq. 2. EBPt stands for the price to buy a kWh of electricity 

and ESPt is the price received when selling a kWh of electricity (purely energy, excluding grid or other 

costs). The index i stands for a representative consumer of type i, PC𝑖  is a parameter indicating the 

proportion of a consumer type relative to the total consumers. Further, 𝑞𝑤𝑡,𝑖 and 𝑞𝑖𝑡,𝑖 represents 

respectively the electricity withdrawn and injected from the network by consumer i and for a certain 

time step t. WDT is a factor to annualise the values and is a function of the length of the utilised time 

series (T). 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 =  ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDT N
𝑖=1

T
𝑡=1  (2) 

The total investment cost in solar PV and batteries by consumers is described by Equation 3. 𝑖𝑠𝑖 

stands for the capacity of solar PV (in kWp) installed by consumer i and 𝑖𝑏𝑖 is the capacity of batteries 

(in kWh) installed by consumer i. AICS and AICB are the annualised investment costs for respectively 

solar PV and batteries. No maintenance costs for the DER technologies is assumed.  

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 = ∑ PC𝑖 ∗ (𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB)N
𝑖=1  (3) 

Finally, the function describing grid costs is displayed by Eq. 4. Sunk grid costs are the costs of grid 

investments made in the past to be able to cope with electricity demand in the future. Sunk grid costs 

are represented by a parameter as these costs are unaffected by the utilisation of the network. In contrast, 

prospective grid costs (IncrGridCosts ∗ 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘) are variable and a function of the maximum 

coincident network utilisation of all consumers (𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘). The higher the coincident peak, the 

higher the network costs to be recovered. The parameter IncrGridCosts describes the cost per kW of 

increase/decrease in the coincident peak. This parameter resembles the incremental network cost as in 

MIT Energy Initiative (2016). 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘  (4) 

Abdelmotteleb et al. (2017), Pérez-Arriaga et al. (2017) and Simshauser (2016) describe that the 

coincident peak demand (or injection if higher) is generally considered as the main cost driver of a 

distribution network. Brown and Sappington (2018) apply a similar formula by stating that the network 
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costs are a function of the maximum potential demand for electricity supplied by centralised generation. 

In Brown and Sappington (2017a) a different approach is used, and it is assumed that the network costs 

are a function of the capacity of centralised generation and solar PV installed, with a higher weight for 

solar PV. Next to the coincident peak demand, other network cost drivers can be identified, such as 

thermal losses and investment cost to replace electronic components (e.g. protection) to deal with bi-

directional flows due to high concentrations in PV adoption (see e.g. MIT Energy Initiative (2015) and 

Cohen et al. (2016)). These other network cost drivers are not included in the current analysis.  

How the coincident peak demand (or injection) is obtained is shown by Eq. 5-7. 𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 

stands for the coincident peak demand, i.e. the maximum value of the sum of the consumer demands 

(𝑞𝑤𝑡,𝑖) minus injections (𝑞𝑖𝑡,𝑖  ) for a certain time step t. Please note that when at time step t the demand 

of consumer i (𝑞𝑤𝑡,𝑖) is positive, the injection (𝑞𝑤𝑡,𝑖) of that same consumer is zero and vice-versa. 

Similarly, the coincident peak injection of the network 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 is obtained. 

The 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 is determined as the maximum of the two.  

 

𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 = max (𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑, 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) (5) 

𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 ≥  ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖)
N
𝑖=1    ∀𝑡 (6) 

𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ≥  ∑ PC𝑖 ∗ (𝑞𝑖𝑡,𝑖 − 𝑞𝑤𝑡,𝑖)
N
𝑖=1    ∀𝑡 (7) 

The relative magnitude of the three variable system cost components (energy costs, DER investment 

costs and grid costs) are a function of how the electricity demand of the consumers is met, i.e. the mix 

of the energy sourced from the grid (coming from exogenous centralised generation) and the energy 

delivered directly from installed DER at the consumer side. A regulator cannot directly decide on the 

optimal trade-off. Instead, she can only indirectly influence the consumer decisions by setting a network 

tariff which anticipates their reactions. Eq. 8 expresses the need for grid costs to be equal to the total 

grid charges collected. With this formulation, a DSO recovers its grid costs with a combination of a 

volumetric charge 𝑣𝑛𝑡 (€/kWh), a capacity-based charge 𝑐𝑛𝑡 (€/kW) and a uniform fixed charge 𝑓𝑛𝑡 

(€/consumer). 𝑣𝑛𝑡, 𝑐𝑛𝑡 and 𝑓𝑛𝑡 are the decision variables of the upper-level, while 𝑞𝑤𝑡,𝑖, 𝑞𝑖𝑡,𝑖 and 

𝑞𝑚𝑎𝑥𝑖 are decision variables of the lower-level. 𝑞𝑚𝑎𝑥𝑖 is the maximum observed capacity (for 

withdrawal or injection) of consumer i over the considered time series. 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝑐𝑜𝑠𝑡𝑠 =  𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN
𝑖=1

T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 +  𝑓𝑛𝑡  (8) 

NM is a parameter and determines the type of volumetric charge. If NM is set as equal to 1, volumetric 

charges with net-metering are introduced. With NM set equal to 0, volumetric charges without net-

metering, solely charging for the total volume of electricity withdrawn are in place. The last variant can 

be obtained by setting NM equal to -1. In that case, bi-directional volumetric charges charging 𝑣𝑛𝑡 for 

each kWh withdrawn and injected are in place. Please note that for the latter two a bi-directional meter, 

measuring separately electricity withdrawn from and injected into the grid is a necessary requirement. 

Further, the capacity-based charge 𝑐𝑛𝑡 accounts for maximum observed capacity (for withdrawal or 

injection) of a consumer i (𝑞𝑚𝑎𝑥𝑖). The fixed network charge 𝑓𝑛𝑡 is assumed to be uniform for all 

consumers i. 

2.2.1 The lower-level consumers 

The objective of the individual consumers’ optimisation problems is to minimise the cost of serving 

their electricity demand. Active consumers are enabled to invest in solar PV or batteries to lower their 

dependency from the grid when they have the financial incentive to do so. The objective function of a 
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consumer i is represented by Eq. 9. The total electricity per consumer also consists of four components, 

similar to the upper-level, but now for an individual consumer: grid charges, the investment cost in DER, 

the energy cost and other charges, again representing taxes and levies. It is assumed that the amount of 

taxes and levies per consumer is not a function of its grid usage but recovered by a fixed charge per 

consumer. The other three components of the consumers’ electricity costs are variables. 

 

Minimise  𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 + 𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 + OtherCharges (9) 

Eq. 10-13 describe the different components of the total electricity costs in more detail. The grid charges 

are the sum of volumetric, capacity-based and fixed grid charges. The coefficients of the different grid 

charges are set by the upper-level regulator. The DER investment costs are the sum of the annualised 

investment cost of solar PV and batteries installed as shown in Eq. 12. Eq. 13 calculates the energy costs 

for a consumer. 

 

𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 ∗ NM) ∗ 𝑣𝑛𝑡 ∗ WDTT
𝑡=1 + 𝑞𝑚𝑎𝑥𝑖 ∗ 𝑐𝑛𝑡 +  𝑓𝑛𝑡      ∀ 𝑖 (10) 

with  𝑞𝑚𝑎𝑥𝑖 ≥  𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖        ∀𝑖, 𝑡 (11) 

𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 = 𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB       ∀ 𝑖  (12) 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDTT
𝑡=1       ∀ 𝑖 (13) 

A consumer is subject to a number of constraints; these constraints are demonstrated by Eq. 14-21. Eq. 

14 shows the demand balance for consumer i. The demand Dt,i is determined exogenously and can be 

satisfied by the electricity withdrawn from the grid (𝑞𝑤𝑡,𝑖), a discharging battery (𝑞𝑏𝑜𝑢𝑡𝑡,𝑖) or electricity 

produced by installed solar PV (𝑖𝑠𝑖 ∗ SYt,i). Electricity can also be injected into the grid (𝑞𝑖𝑡,𝑖) or used 

to charge the battery (𝑞𝑏𝑖𝑛𝑡,𝑖). Meeting the electricity demand is a hard constraint. Eq.  15-17 describe 

the battery balance, where 𝑠𝑜𝑐t,𝑖 is the state of the battery at time step t, EFC the charge efficiency, EFD 

the discharge efficiency and LR the leakage rate of the battery. DT is the time step as a fraction of 60 

minutes used to convert all numbers to kWhs. Eq. 18-20 constrain the battery in terms of energy stored 

and instantaneous (dis)charging. BRD/BRC stands for the ratio of the maximum instantaneous battery 

discharge/charge over its maximal energy stored. Eq. 21 indicates that all consumer variables must be 

non-negative.4 

 

Dt,i = 𝑞𝑤𝑡,𝑖 + 𝑖𝑠𝑖 ∗ SYt,i + 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖     ∀ 𝑖, 𝑡 (14) 

𝑠𝑜𝑐1,𝑖 = 𝑞𝑏𝑖𝑛1,𝑖 ∗ EFC ∗ DT −  (𝑞𝑏𝑜𝑢𝑡1,𝑖 EFD)⁄ ∗ DT + SOC0  ∀ 𝑖 (15) 

𝑠𝑜𝑐𝑡,𝑖 = 𝑞𝑏𝑖𝑛𝑡,𝑖 ∗ EFC ∗ DT − (𝑞𝑏𝑜𝑢𝑡t,𝑖 EFD⁄ ) ∗ DT + 𝑠𝑜𝑐𝑡−1,𝑖 ∗ (1 − LR ∗ DT)   ∀ 𝑖, 𝑡 ≠ 1 (16) 

𝑠𝑜𝑐𝑇,𝑖 = SOC0  ∀ 𝑖 (17) 

𝑠𝑜𝑐𝑡,𝑖 ≤ 𝑖𝑏𝑖     ∀ 𝑖, 𝑡 (18) 

𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 ≤ 𝑖𝑏𝑖 ∗ BRD  ∀ 𝑖, 𝑡  (19) 

𝑞𝑏𝑖𝑛𝑡,𝑖 ≤ 𝑖𝑏𝑖 ∗ BRC     ∀ 𝑖, 𝑡 (20) 

𝑞𝑤𝑡,𝑖 , 𝑞𝑖𝑡,𝑖 , 𝑠𝑜𝑐𝑡,𝑖, 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 , 𝑞𝑏𝑖𝑛𝑡,𝑖, 𝑖𝑠𝑖 , 𝑖𝑏𝑖 ≥ 0  ∀ 𝑖, 𝑡 (21) 

                                                      
4 No binary variables are introduced to ensure that no electricity is withdrawn/injected and that the battery is not 

charged/discharged at the same time step. Instead, it is checked ex-post whether these conditions are violated. 
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2.2.2 Solving the bi-level optimisation problem 

In order to solve the bi-level problem, it is first reformulated as a Mathematical Problem with 

Equilibrium Constraints (MPEC); for a full overview of the properties of MPECs see e.g. Gabriel et al. 

(2012). The reformulation to a single level problem is done by including the Karush-Kuhn-Tucker 

(KKT) conditions of the linear and thus convex lower-level as constraints to the upper-level problem. A 

non-linear MPEC results. The non-linearities in Eq. 8 are discretised using the technique described in 

Momber (2015, p. 102), and the complementarity constraints are transformed into disjunctive constraints 

using the technique described in Fortuny-Amat and McCarl (1981). A Mixed Integer Linear Program 

(MILP) results that can be solved by off-the-shelf optimisation software. The reformulation of the bi-

level problem can be found in Appendix A.2.  

3. Numerical example: data and setup 

In this section, the setup and data of a numerical example are described. The numerical example is used 

in the subsequent sections to gain insights from the model when introducing the implementation and 

fairness constraints. This section is split into four parts, dividing key data into four different groups. 

3.1 Consumer types, demand and solar yield 

Two consumer types are modelled for simplicity: passive and active consumers, as is also done in Brown 

and Sappington (2017a, 2017b, 2018). The passive consumer does not have the option to invest in solar 

PV and batteries, unlike an active consumer, who can opt to invest in DER. Passive consumers are 

uninformed about the possibility to invest in DER. They either do not have the financial means, are 

strongly risk averse or simply do not have space. Active consumers minimise their costs to meet their 

electricity demand and may invest in DER to do so. The (original) consumer demand profiles and yield 

of PV are represented using a time series of 48-hours with hourly time steps and is shown in Figure 1.  

Figure 1: Original 48-hour demand profiles (left) and PV yield profile (right) 

 
 

Household demand for electricity shows for both modelled days a small peak in the morning and a 

stronger peak in the evening, the typical ‘humped-camel shape’ (Faruqui and Graf 2018). For both 

consumer types the shape of the demand profile is identical; however, it is scaled differently. As a result, 

passive consumers have a slightly lower electricity demand than active consumers. The passive 

consumer has an annual consumption of 5,200 kWh with a peak demand of 3.2 kW and the active 

consumer a 7,800 kWh annual consumption with a peak demand of 4.8 kW. In Europe, average annual 

electricity consumption per household ranged from 20,000 kWh (Sweden) to 1,400 kWh (Romania) in 

2015. In the same year, the average electricity consumption per household in the USA was about 10,800 

kWh (EIA 2016). The idea behind this difference in the level of consumption is that active consumers 

are expected to be more affluent than passive consumers and that affluent consumers have higher 

electricity needs. This statement is a simplification of reality, but evidence for that is found in the 



Tim Schittekatte and Leonardo Meeus 

8 Robert Schuman Centre for Advanced Studies Working Papers 

literature. Borenstein (2017) analyses Californian data and finds that the income distribution of solar PV 

installations is heavily skewed towards the wealthy, but adds that the gap is narrowing with time. It is 

also found that PV adopters have slightly higher energy consumption levels and peak demand. 

Borenstein (2016) also confirms that wealthier households consume more electricity, but adds that 

although this claim is accurate, it is often overstated. Hledik et al. (2016) analyse data from Great Britain 

and confirm that lower-income consumers are also smaller consumers of electricity, although the 

correlation appears to be somewhat limited. 

The yield per kWp PV installed scales up to 1,160 kWh per year. As a reference, this level is similar 

to the average yield in the territory of France (Šúri et al. 2007). Seasonality is introduced in the PV yield 

profile by having a daily average PV yield of 40% of either side of the annual mean. The peak demand 

coincides with the day with the low PV yield. Letting the peak demand day coincide with the day with 

lower solar irradiation and vice-versa produces two effects. First, a high capacity of PV installed does 

not necessarily mean that the peak demand can be reduced. Faruqui and Graf (2018) investigate load 

profiles in Kansas and find that after the installation of PV systems, logically the net energy consumption 

reduces; nevertheless, the peak demand is virtually left unchanged. Second, if a high capacity of PV is 

installed, the injection peak of active consumers can become significant. 

3.2 Consumer bills 

Table 1 shows the default electricity bill, paid by the consumers when no one installs any DER 

technology. If active consumers decide to invest in DER, the relative proportion and absolute values of 

the bill components can change for both the active and the passive consumers. The annual electricity 

cost for the active and passive consumer equals respectively 1,340 €/year (0.172 €/kWh delivered) and 

971 €/year (0.187 €/kWh delivered). This total cost is near to the average electricity cost for EU 

households in 2015, which was estimated at around 0.21€/kWh (Eurostat 2016). In the USA, the average 

electricity cost in 2015 was around 0.125€/kWh (EIA 2016). The consumer bill is based on information 

from the Market Monitoring report by ACER and CEER (2016). There, the breakdown of the different 

components of the electricity bill for an average consumer in the EU for the year 2015 is presented. The 

energy component in the EU in 2015 is estimated to be 37%. In absolute terms, this means a cost of 

0.077 €/kWh. Further, 26% of the bill consisted of network charges and 13% is made up of RES and 

other charges. Finally, an important chunk of the bill (25%) consists of taxes. A value-added tax (VAT), 

averaging 15%, must be paid and additional (ecological) taxes, averaging 10%, are raised in some 

countries. In this work, the VAT is integrated into the three components of the bill. Please note that a 

typical consumer bill varies from one country to another (see e.g. ACER and CEER (2016) for the EU).  

Table 1: Consumer bill in the default case (no investment in DER by active consumers)  

 

Recovery 

Cost per year 

Bill component Active Passive 

Energy costs  0.08 €/kWh 624 €/year (46 %) 416 €/year (43 %) 

Network charges  
Default: 0.062 €/kWh 

In the analysis: least-cost network tariffs 
485 €/year (36 %) 324 €/year (33 %) 

Other charges  Fixed fee (no interference with the analysis) 231 €/year (17-24 %) 

Total electricity 
cost  

 1340 €/year 

 (0.172 €/kWh) 

971 €/year  

(0.187 €/kWh) 

The energy price is set at 0.08 €/kWh.5 Other charges are recovered through a fixed fee and as such do 

not interfere with the analysis. However, this is not always the case. How to collect such charges, or 

                                                      
5 In this work, the energy price component is modelled exogenously. In case of high PV adoption, this might be a 

simplification as a higher PV penetration can depress the wholesale prices and thus the final energy price a retail consumer 

has to pay (see e.g. Darghouth et al. (2016)). 
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whether they belong in the electricity bill at all, is beyond the scope of this work, see e.g. the paper of 

Bohringer et al. (2017) in which the German case is discussed.  

The network charges are in the default case recovered through (net-metered) volumetric charges 

equal to 0.062 €/kWh. In the recent past, with highly inelastic consumers, it was less an issue to recover 

grid costs with volumetric charges. Limited inefficiencies were introduced as consumers had few 

options to serve their electricity needs other than from the grid. Also, as discussed, high-usage and thus 

higher network contributions correlated rather well with richer households, making such practice 

acceptable. How to adapt network tariff design when dealing with active consumers is the main 

contribution of this paper and is discussed in Sections 4 and 5. 

3.3 DER investment cost and technical parameters 

Two DER technologies are assumed at the disposition of active consumers in this work: solar PV and 

batteries. A scenario with low PV and battery investment costs can be expected to materialise soon as 

pointed out by many studies (Lazard 2016a, 2016b; MIT Energy Initiative 2016; RMI 2015). In the 

Utility of the Future Study by the MIT Energy Initiative (2016), it is quoted that PV developers and 

industry analysts expect the installed cost of utility-scale PV to fall below $1000 per kW before the end 

of this decade, and that one major US car manufacturer projects that lithium-ion battery cell costs will 

drop below $100 per kWh by 2022—an order of magnitude less costly than 2010 costs. The levelised 

cost of energy (LCOE) of solar PV is 0.083 €/kWh6, slightly higher than the price for energy from the 

grid (excluding grid and other charges). No investment subsidy for PV is introduced in this work and no 

reduced social losses from environmental externalities due to the installation of solar PV are accounted 

for. Batteries are assumed to cost 200 €/kWh with a C-rate of 1, i.e. the battery can fully (dis)charge in 

one hour. The function of the battery, shifting power demand from the grid in time, could also be 

provided by demand response (DR) through smart devices for which it is harder to put a price tag on. 

Koliou et al. (2015) analyse a tariff-based DR programme and find that it can result in reduced overall 

costs both for the DSO and consumers. The other DER parameters are shown in Table 2. Technical DER 

data is in line with Schittekatte et al. (2016).  

Table 2: Financial and technical DER data 

Parameters PV related Value Parameters battery related Value 

Investment cost 

Lifetime PV 

1300 €/kWp 

20 years 

Investment cost (C-factor=1) 

Lifetime battery 

200 €/kWh 

10 years 

Discount factor PV  5 % Discount factor battery 5 % 

Maximum solar capacity installed 5 kWp Maximum battery capacity installed No limit 

Price received for electricity injected (% of 
energy price) 

90 % Efficiency charging & discharging 

Leakage rate 

90 % 

2 % 

3.4 Grid cost structure and setup 

Determining the grid cost structure is no easy task. Pollitt (2018) states that if we attribute energy losses 

to retailers perhaps 80% or more of distribution network costs are fixed in the medium-run for a given 

set of connections and probably cannot be reduced significantly within a five to ten-year period. 

Simshauser (2016) assumes, based on Crawford (2014) and Hanser (2013), that the distribution network 

has a cost structure which comprises approximately 20% fixed operating costs, 60% sunk capital costs, 

                                                      
6 In the model applied, the LCOE of solar PV is a function of the investment cost of the PV panel, lifetime, discount factor, 

the PV system performance ratio and imporantly the solar irradiation profile, which is location dependendent. 
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and 20% variable operating costs. Jenkins and Pérez-Arriaga (2017) provide a more detailed discussion 

of the different network costs components.  

When conducting the analysis in Sections 4 and 5 using this numerical example, three different grid 

cost structures are considered. First, grid costs are assumed to be 100% sunk, a short-term vision, i.e. 

the grid is over-dimensioned, and the electricity usage of consumers has no effect on the total grid costs. 

In some countries also policy costs are recovered through the network charges, which from a cost 

allocation point of view is no different than recovering sunk network costs. Second, half of the grid costs 

are considered sunk and the other half prospective, i.e. driven by the coincident consumer peak demand. 

Lastly, the grid costs are assumed to be driven completely by the coincident consumer peak demand. In 

the very long run grid costs are also variable. The network capacity will adjust to the coincident peak 

demand need from the consumers. If the coincident peak demand augments, the increase in grid costs 

could be seen as the cost of reinforcements or additional capacity. If the coincident peak demand is 

reduced, the decrease in grid costs could be seen as the avoided cost for replacing existing capacity or 

maintenance. In all cases, short-run marginal costs, e.g. energy losses, are not considered as they 

typically only contribute to a small proportion of the total cost of a network operator. Different network 

cost functions could be introduced in future work. 

The values for the parameters of the grid cost function (Eq. 4), SunkGridCosts and IncrGridCosts, are 

derived from the ‘default’ network costs of the modelled consumers (shown in Table 1) and are a 

function of the proportion of active and passive consumers. At one extreme, all consumers can be 

passive, as in the recent past. At the other extreme, all consumers can be active, i.e. install DER when it 

can reduce their overall electricity cost. Reality presumably lies in the middle. Some consumers will 

remain passive for a number of reasons. Other consumers could be installing DER even when they do 

not financially profit from it, but because of other reasons which are harder to monetise, e.g. 

independence from the grid, sustainability motives etc. In the numerical example, it is assumed that 50% 

of all consumers are active and 50% are passive. With these proportions, the (scaled) coincident 

consumer peak demand equals 4 kW in the ‘default case’ when no active consumer installs DER, and 

the average grid costs equal 404 €/consumer.7 In the first case, grid costs are assumed 100% sunk, the 

parameters SunkGridCosts and IncrGridCosts in Equation 2 are set as equal to € 404 and 0 €/kW 

respectively. In the second case, 50% of the costs are assumed sunk and 50% perspective, 

SunkGridCosts equals € 202 and IncrGridCosts is set to 50.5 €/kW.8 In the third case, SunkGridCosts 
is zero and IncrGridCosts are set to 101 €/kW. As a reference, Brown et al. (2015) assume the 

(annualised) cost to be 75 $ for a kW of incremental household demand. Please note that another 

implementation constraint would be a correct estimation of the incremental network cost, or the network 

cost function in general, next to inaccuracy of the network cost driver proxy.  

4. Incorporating an implementation constraint: revisiting the model, results and 

discussion 

In this section, the model described in Section 2 is used to provide insights into the impact of the 

implementation constraint, i.e. the inaccuracy of the network cost driver proxy. The section consists of 

two parts. First, the modelling implication is pointed out. Second, the obtained results, using the 

numerical example as introduced in the previous section, are shown and discussed.  

4.1 Revisiting the model 

A simple, yet effective change has been made to Eq. 4 to incorporate inaccuracy around the network 

cost driver in our model. This change reduces the impact of the optimised coincident peak demand, i.e. 

                                                      
7 4kW = 0.5*4.8 kW + 0.5*3.2 kW and 404 € = 0.5*485 € + 0.5*324 € 

8 50.5 €/kW = 0.5*404 €/4kW 
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the coincident peak demand after DER adoption by active consumers, on total grid costs. Eq. 22 shows 

the updated version of Eq. 4 after taking into account inaccuracy of the network cost driver proxy. DPeak 

is a parameter and stands for the default coincident peak demand, i.e. the coincident peak demand in the 

case no consumer installs DER, and 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 is a variable and stands for the optimised 

coincident peak demand, i.e. the coincident peak demand after active consumers installed DER when 

profitable. The parameter WF represents a weighting factor.  

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ (DPeak − WF ∗ (DPeak − 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘)) (22) 

The weighting factor can be interpreted as the inaccuracy of the network cost driver proxy. If there is 

high inaccuracy (a low value for WF), it would mean that even though some active consumers adapt 

their individual peak demand, total grid costs are not affected much. This effect would be witnessed if 

consumers were being incentivised to lower their demand at a certain time which does not coincide with 

the time of the system peak. In the extreme, the actions of the consumers have no effect on the total grid 

costs (WF equals zero). Such a situation resembles the scenario with 100% sunk costs from a cost 

allocation point of view, although the nature of the grid costs, hard-to-target prospective grid costs 

versus sunk grid costs, is different. Alternatively, if there is little inaccuracy in the network cost driver 

proxy, the actions of active consumers will have a stronger effect on the total grid costs. In the extreme, 

we end up with a fully cost-reflective tariff as implied by Eq. 2 in Section 2 (WF equals 1). 

By introducing Eq. 22 also the assumption of identically shaped demand profiles is relaxed. Namely, 

with Eq. 22 the impact of the optimised coincident peak demand on total grid costs is reduced. A similar 

effect could be witnessed with heterogeneous demand profiles optimising their individual peak demand 

under an (individual) capacity-based charge. Passey et al. (2017) find low correlation coefficients in the 

range of 0.48 to 0.62 between consumer payments under a monthly capacity-based charge and the 

responsibility for the network peak. The correlation increases to 0.82 if only in months containing the 

system peaks are included instead of all months.  

Finally, please note that the implication of Eq. 22 could also be interpreted from a reliability point of 

view. Namely, it is difficult to assume that DER at a consumer’s premise can be a perfect substitute for 

the grid. There could be moments when technology fails, leaving the electricity need of consumers 

unmet. A reliability margin might be built into the grid to accommodate such extreme or unlikely 

conditions. Pollitt (2018) argues that the impact of DERs on network costs can be overestimated (and 

over-rewarded) for any network cost reductions. He bases this opinion on the fact that conventional 

networks may have 99.99% (one hour per year of lost load) or more availability, whereas individual 

asset availability may struggle to reach 98%. From a modelling point of view this means that even 

though the optimised peak demand might drive the network investment, the DSO will still make sure 

that there is spare network capacity available, thus dampening the impact of consumer actions on grid 

investment. 

4.2 Results and discussion 

First, a run is done without inaccuracy in the network cost driver proxy (WF equals 1). The results for 

the least-cost tariff design are shown in Figure 2 and Table 3. In Table 3, two metrics are calculated for 

the different grid cost structures. First, the change in total system costs compared to the ‘default 

situation’ when no consumer installs DER is shown. Second, the change in network charges paid by the 

passive consumers is shown, with as reference the amount of volumetric network charges paid by the 

passive consumer in the ‘default situation’ (as shown in Table 1). This metric is a proxy for fairness. 

The higher the increase in network charges for the passive consumer compared to the past, the more 

unfair a network tariff is perceived. 
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Figure 2 and Table 3: Tariff components and grid costs (Figure 2). Total system costs and 

increase network charges per passive consumer (Table 3). Results are relative to the default 

situation with no active consumers and volumetric network tariffs. Sensitivity for three grid 

states and no inaccuracy in the network cost driver proxy assumed. 

 

 

In Figure 2, the least-cost tariff consists of a capacity-based charge equal to the incremental grid cost 

parameter (IncrGridCosts in Eq. 4) and a fixed charge equal to the sunk grid costs (SunkGridCosts in 

Eq. 4).9 This corresponds to the tariff structure described by Abdelmotteleb et al. (2017) and the MIT 

Energy Initiative (2016).  

When grid costs are 100% sunk, the least-cost design consists solely of a non-distortive uniform 

fixed charge (Figure 2), and there is no impact on the total system cost (Table 3). Active consumers are 

indeed not incentivised to install DER: batteries would not reduce the total grid costs, and the LCOE of 

PV is slightly higher than the energy price of electricity sourced from the grid. However, due to the high 

uniform fixed network charge smaller passive consumers see their network charges significantly 

increase as some of the network costs, previously allocated to larger consumers by volumetric charges, 

are shifted to them.  

With 100% prospective grid costs, it is efficient to ‘steer’ consumer behaviour with higher cost-

reflective capacity-based charges, and each self-interest pursuing active consumer installs a battery of 

3.7 kWh. Again, no solar PV is installed as the LCOE of PV is slightly higher than the energy price of 

electricity and solar PV can only weakly help to reduce the network charges. From an active consumer’s 

point of view, installing more or less DER would result in a higher (individual) total electricity cost. A 

total system cost reduction of almost 7% results, as shown in Table 3. In this case, the active consumers 

reduce their grid charges proportionally with the reduction in total system costs and the passive 

consumers do not see any change in the grid charges paid.  

  

                                                      
9 There can exist an interval around the value of the coefficients of the least-cost tariff structures for which the total system 

costs are the same. This interval contains the theoretical least-cost tariff. The reasoning behind this is that if a capacity-

based/volumetric charge is set slightly higher or lower it might not impact consumer decisions and thus the total system 

costs. The richer the data (e.g. number of consumer types or the length of the time series) the more sensitive consumer 

decisions and thus the total system costs are to a minor change in the network tariff. 

50 % active consumers –  

Results compared to default 

 (=no DER & volumetric network charges)  

No 
inaccuracy in 
network cost 
driver proxy 

Total system costs  

100 % Sunk grid costs 0.0 % 

50 % Sunk & 50 % Prospective -1.4 % 

100 % Prospective grid costs -6.8 % 

Network charges 
passive consumer  

100 % Sunk grid costs 25.0 % 

50 % Sunk & 50 % Prospective 12.6 % 

100 % Prospective grid costs 0.0 % 
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Figure 3 and Table 4: Tariff components and grid costs (Figure 3). Total system costs and 

increase network charges per passive consumer (Table 4). All results are relative to the default 

situation with no active consumers and volumetric network tariffs. Sensitivity for three grid 

states and 25% inaccuracy in the network cost driver proxy assumed. 

 

 

Figure 3 shows the least-cost tariff structure when introducing an implementation constraint in the form 

of a 25% of inaccuracy in the network cost driver proxy. Two observations can be made when comparing 

the tariff structure with and without an implementation constraint.  

First, the results do not change for the case with 100% sunk network costs. There is indeed no value 

in information about the grid cost driver as the grid costs are assumed to be independent of grid use. 

Second, when a proportion of the grid costs are prospective, the non-distortive fixed charges are 

increased at the expense of the ‘steering’ capacity-based charge. This leads to an overall slightly lower 

grid cost reduction when compared to the case without implementation constraint and less DER installed 

by the consumer.  

The reason for this change in the network tariff when introducing the implementation constraint can 

be deducted from the results in Table 4. Two result columns are introduced for the runs with 25% 

inaccuracy in the network cost driver proxy. First, the regulator is free to optimise the tariff structure 

which would lead to a lowest total system cost (first column). The tariff structure shown in Figure 3 

results from this run. This can be viewed as the case where the regulator is aware of the inaccuracy in 

the network cost driver proxy. After, a run is computed in which the capacity-based charge is set as 

equal to the incremental grid cost (second column). This would be the situation when the regulator 

ignores the inaccuracy in the network cost driver proxy. It is evident that by taking into account the 

inaccuracy and departing from the theoretical least-cost tariff, a lower total system cost can be obtained. 

The intuition behind these results is the following: if the capacity-based charge is set as equal to the 

incremental grid costs, batteries are over-incentivised. An individual consumer installs batteries as they 

are profitable from his individual perspective. However, the grid costs decrease less than the cost of the 

DER investment. Overall, in that case, total system costs are higher than when active consumers install 

fewer batteries, demonstrating what Pollitt (2018) and Pérez-Arriaga et al. (2017) mean by distortive 

tariff design, that is, it might appear privately beneficial but can result in a deadweight loss for society. 

Further, the grid costs, which did not decrease significantly due to the inaccuracy in the cost driver 

proxy, need to be recovered.  

As a consequence, non-cooperative active consumers compete with each other to escape from high 

grid costs by installing more and more batteries. Higher grid charges for passive consumers result, not 

only due to the introduction of uniform fixed charges but also due to distortive tariff design, leading to 

active consumers benefiting from higher reductions in their grid charges than the reduction in total grid 

costs they are responsible for. This is clearly illustrated by comparing the increase of the network 

50 % active consumers – 

25 % inaccuracy in network cost driver proxy  

Results compared to the default  

 (=no DER & volumetric network charges) 

Least-
cost 
tariff  

Capacity-
based charge 
= incremental 

grid cost 

Total system 
costs  

100 % Sunk grid costs 0.0 % 0.0 % 

50 % Sunk & 50 % Prospective -0.3 % -0.1 % 

100 % Prospective grid costs -4.0 % -3.7 % 

Network 
charges passive 
consumer  

100 % Sunk grid costs 25.0 % 25.0 % 

50 % Sunk & 50 % Prospective 15.6 % 15.9 % 

100 % Prospective grid costs 7.0 % 10.9 % 
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charges of the passive consumer for the 100% prospective grid cost structure. In that case, the grid 

charges for the passive consumer increase quite significantly (3.9 percentage points) due to the distorted 

tariff design. Notably increased grid charges for smaller passive consumers can lead to fairness issues, 

as described in the next section. 

5. Adding a fairness constraint: revisiting the model, results and discussion 

The previous section has shown that pursuing a least-cost network tariff design can lead to significant 

distributional effects. In this section, a fairness constraint, in the form of a cap on the increase of grid 

charges for the smaller passive consumers, is added to the model described in Section 2 and amended 

in Section 4. The section consists of four parts. First, the modelling implication is pointed out. Second, 

the results obtained with a fairness constraint, using the same numerical example as introduced in the 

previous section, are shown and discussed. Third, results are discussed when jointly applying the 

fairness and implementation constraint. Lastly, the policy implication of the results is discussed. 

5.1 Revisiting the model 

In order to assess least-cost tariff design with a cap on the increase of network charges paid by passive 

consumers, Eq. 23 is added to the upper-level problem. The index ‘i2’ stands for the passive consumer 

type and DGC′i2′ are the network charges paid by the passive consumer in the ‘default case’. With the 

parameter Cap′𝑖2′ it can be decided how high the increase in network charges paid by the passive 

consumer is allowed to be when compared to the default network charges paid. If the cap is set very 

high, the fairness constraint will not be binding and thus will not influence the least-cost tariff design. 

If the cap is set very low, the model can become unfeasible, i.e. there is no network tariff that can lead 

to cost-recovery for the DSO while taking into account the reactions of the active consumers to the 

network tariff and at the same time respecting the fairness constraint.  

 

𝑣𝑛𝑡 ∗ ∑ (𝑞𝑤𝑡,′i2′ − NM ∗ 𝑞𝑖𝑡,′i2′) ∗ WDT𝑇
𝑡=1 + 𝑐𝑛𝑡 ∗ 𝑞𝑚𝑎𝑥′𝑖2′ + 𝑓𝑛𝑡 ≤  DGC′i2′ ∗ (1 + Cap′i2′) (23) 

5.2 Results and discussion with a fairness constraint 

In this section, the results for the numerical example are discussed. Figure 4 illustrates that the state of 

the grid determines to what extent the incentives given to active customers via distribution network 

tariffs result in system benefits and/or whether these benefits are shared with passive customers. The 

results are completely different for the three illustrated grid states.  
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Figure 4: Total system cost reduction trade-off with the increase of grid charges of passive 

consumers for the three grid states. All results are relative to the default situation with no active 

consumers and volumetric network tariffs. No inaccuracy in the network cost driver proxy 

assumed. 

 
 

The first state of the grid is 100% sunk costs. In this state of the grid, the least-cost distribution network 

tariff is a fixed charge, which significantly increases the costs for small passive consumers. By reducing 

the fixed component and adding a volumetric and/or capacity charge it is possible to improve the 

fairness, but it comes at a cost because self-interested active customers will react to the incentives by 

installing more solar PV and/or batteries. The irony is that they end up paying for it themselves because 

passive consumers do pay less for small deviations from the pure fixed charge. Of course, there is a 

point where the model becomes infeasible. By pushing the model towards fairer tariffs, we are increasing 

total system costs, which eventually also increases the costs for passive customers so that the model 

cannot find a solution that satisfies all constraints. In the numerical example that we use in this paper, 

we can improve fairness from 15% cost increase for passive consumers (the lowest possible cost increase 

for the passive consumer without the active consumers reacting to the tariff) towards 7%, but beyond 

that point, the model becomes infeasible. Note that the significant improvement in fairness comes at a 

relatively small increased total system cost.  

The second state of the grid is 100% prospective costs. In this case, a cost-reflective tariff can achieve 

a lot of cost savings thanks to the incentives given to active consumers. These system benefits also lead 

to a price reduction for passive consumers. It is possible to push the model towards a tariff structure that 

sacrifices some of the system benefits for an outcome that is even better for passive consumers, but it is 

unlikely that this would occur in practice as there is no perceived unfairness in this case.  

The third state of the grid is 50-50 sunk and prospective costs. In our numerical example, the negative 

effects we see in the first state of the grid for passive consumers dominate the positive effects we see in 

the second state of the grid. Even though the system is better off, the passive consumers pay more. This 

means that the active consumers are winning twice: they are getting all the system benefits and they are 

pushing some of the costs towards passive consumers. It is possible to engineer a tariff that somewhat 

softens the unfairness for passive consumers, but they are always worse off in this case.  

Figure 5 illustrates how the model deviates from the least-cost network tariff design to improve 

fairness. We illustrate this for one of the points in Figure 4, i.e. the model outcome for a fairness 
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constraint with a maximum cost increase of 10% for passive customers. As we know from Figure 4, this 

constraint is not binding in the case of 100% prospective costs, but it is binding for the other two cases. 

Figure 5, confirms what we discussed above, namely that the model reacts to a binding fairness 

constraint by moving away from the least-cost tariff structure to a structure that is fairer. We also know 

from Figure 4, that the 10% constraint is feasible in our numerical example.  

As can be seen from Figure 5, the fairer tariff structure is a three-part tariff combining fixed with 

capacity and volumetric components. Volumetric charges without net-metering, only charging for the 

electricity withdrawn from the network, are opted for by the regulator. With volumetric charges with bi-

directional charges, paying a charge for each kWh withdrawn and injected, similar results are obtained 

for the numerical example. Volumetric charges with net-metering lead to a higher system cost and create 

a fairness issue as they strongly over-incentivise PV adoption.  

Figure 5: Tariff components and grid costs. Results without and with 10 % cap on the increase 

in network charges for the passive consumers relative to the default situation with no active 

consumers and volumetric network tariffs. No inaccuracy in the network cost driver proxy 

assumed. 

 

5.3 Results and discussion with a fairness and implementation constraint 

Figure 6 is even more sobering for passive consumers than the results in the previous section. If we 

cannot get the cost-driver right, we risk passive consumers are worse off in all cases. The results for the 

case of 100% sunk costs do not change, of course. If all costs are sunk, there is no cost driver, so the 

inaccuracy of the cost driver does not apply to that case. In the other two cases, the inaccuracy of the 

cost driver makes the system, and also the passive consumers, relatively worse off. In the case of 100% 

prospective costs, the impact is most significant for passive consumers: they end up losing instead of 

sharing the benefits with active consumers. In other words, the two issues that we discussed separately 

in this paper strongly interact with each other. 
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Figure 6: Total system cost reduction trade-off with the increase of grid charges of passive 

consumers for the three grid states. All results are relative to the default situation with no active 

consumers and volumetric network tariffs. Results with 25 % and without inaccuracy in the 

network cost driver proxy shown. 

 

5.4 Policy implication: overcoming the limitations of standard tariff design 

We found that if the regulator only has the three options available that we consider in this paper, it will 

be difficult to implement a fair tariff design. However, in practice, our results regarding fairness might 

be overestimated as such issues can be improved through other solutions than standard tariff design. 

Negative distributional effects could be remedied through specific low-income programmes as described 

by Wood et al. (2016). Another solution would be not to implement uniform fixed network charge as in 

our analysis, but differentiate the fixed network charges per consumer or consumer groups without 

distorting the use of electricity, e.g. by income, property value, property size, kW connection capacity 

(Pollitt 2018; MIT Energy Initiative 2016; Abdelmotteleb et al. 2017). It might also be possible to 

improve fairness by introducing some form of taxation for active consumers. However, taxation is also 

difficult to implement and could conflict with other public policy goals. In the case of high sunk grid 

costs, under-recovery of the grid costs could be an option as full cost recovery leads to inefficiencies. 

Not recovered sunk network costs could be recuperated through other means than the electricity bill, an 

option also discussed in the report by the MIT Energy Initiative (2016). An alternative could be to let 

taxpayers pay for these costs, as is done for roads in some countries. 

On the other hand, our results could underestimate the difficulties with least-cost and fair distribution 

network tariff in practice. We did assume policy costs not to interfere with the analysis, but the share of 

these costs in the electricity bill is increasing year by year in most countries, and the way these costs are 

recuperated from consumers, mostly volumetrically, can seriously distort network tariff design and 

aggravate efficiency and fairness issues. 

6. Conclusion 

In this paper, we have applied a game-theoretical model to analyse the impact of an implementation and 

fairness constraint on least-cost distribution network tariff design. The game-theoretical model takes 
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into account decentralised decisions of self-interest pursuing active consumers enabled to invest in solar 

PV and batteries. 

First, we find that both constraints have a significant impact on the least-cost network tariff design. 

In theory, the least-cost distribution network tariff design has a fixed component that is proportional to 

the sunk costs, and a capacity component to reflect the costs of grid investments that still have to be 

made and that can be partly avoided if it is cheaper for active customers to invest in DER. In practice, 

departing from volumetric charges towards higher fixed charges is often perceived as unfair as their 

introduction would mean that low-usage passive consumers, who are often also less wealthy consumers, 

would pay similar charges as high-usage active consumers, who are often richer. Also, in practice, the 

individual capacity or individual peak is often a relatively weak approximation of the actual cost 

driver(s) of the network. As a result, a three-part tariff combining fixed, capacity, and volumetric charges 

may be more suitable, even though in theory, volumetric is not to be considered for a least-cost 

distribution network tariff design. 

Second, we find that there is a strong interaction between the two constraints we analysed. If 

regulators do not anticipate that their implementation of cost-reflective tariffs will be imperfect, the 

system costs will increase, and the fairness issues will also aggravate. It is therefore important to have 

realistic estimations of what we know and do not know about the cost-drivers of distribution networks. 

Limited information is available, suggesting that we need to be careful in setting strong incentives. This 

is especially true with high shares of active consumers. 

Third, the results depend on the state of the grid. If most of the grid investments still have to be made, 

passive and active consumers can both be made to benefit from cost-reflective tariffs, while this is not 

the case for passive consumers if the costs are mostly sunk. The standard network tariff design options, 

i.e. volumetric, capacity, and fixed charges, do not suffice to transfer part of the welfare gains of the 

active consumers to compensate the passive consumers. Other solutions than standard tariff design 

would have to be introduced to reach a fairer outcome, examples are specific low-income programmes, 

differentiated instead of uniform fixed charges, the recuperation of sunk network costs through other 

means than the electricity bill or the taxation of active customers, which has its own issues. 

Regarding future work, it would be interesting to include electric vehicles and heat pumps in the 

analysis. Taking into account these (mainly) electricity consuming technologies could present new 

insights. More granular network tariffs could become increasingly important to limit the efficiency loss 

caused by inaccurate tariffs. Finally, the interaction between network tariff design, public policies (e.g. 

energy efficiency and DER subsidies) and taxation deserves further analysis. 
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A. Appendix: the mathematical model 

A1. Overview of the used sets, parameters and variables 

Sets 

i : 1,..,N: Consumers types 

t: 1,..,T: Time steps with a certain granularity 

 

Parameters  

Upper level 

SunkGridCosts: Sunk annualised grid costs, scaled per average consumer [€] 

IncrGridCosts: Incremental annualised grid cost per kW increase/decrease of the coincident peak 

demand/injection, scaled per average consumer [€/kW] 

DPeak: (Default) coincident peak demand before investment in DER by active consumers, scaled per 

average consumer [kW] 

WF: Weighting factor, indicating the inaccuracy in the network cost driver [-] 

NM: Factor indicating whether net-metering (1) or no net-metering (0) or bi-directional volumetric 

charges (-1) are in place [-] 

PC𝑖 : Proportion of consumer type i 

SystemOtherCosts: all other costs paid through the electricity bill, e.g. policy costs, annualised and 

scaled per consumer [€] 

DGC𝑖 : Default volumetric grid charges paid before investment in DER for consumer type i [€] 

Cap𝑖: Cap on the increase of grid charges paid for consumer type i [%] 

 

Lower level 

WDT: Scaling factor to annualise, dependent on length of the used time series and time step [-] 

DT: time step, as a fraction of 60 minutes [-] 

D𝑡,𝑖: Original demand at time step t of agent i [kW] 

MS𝑖 : Maximum solar capacity that can be installed by agent i [kW] 

MB𝑖 : Maximum battery capacity that can be installed by agent i [kWh] 

SY𝑡,𝑖: Yield of the PV panel at time step t of agent i [kWh/kWpeak] 

EBP𝑡: Energy price to be paid by agent for buying from the grid [€/kWh] 

ESP𝑡: Energy price received by agent for buying from the grid (feed-in tariff) [€/kWh] 

AICS: Annualised investment cost solar PV [€/kWpeak] 

AICB: Annualised investment cost battery [€/kWh] 

BDR: Ratio of max power output of the battery over the installed energy capacity [-]  

BCR: Ratio of max power input of the battery over the installed energy capacity [-]  

EFD: Efficiency of discharging the battery [%] 

EFC: Efficiency of charging the battery [%] 

LR: Leakage rate of the battery [%]  

SOC0: Original (and final) state of charge of the battery [kWh] 

OtherCosts: other costs paid through the electricity bill, e.g. policy costs [€] 

 

Variables 

UL decision variable 

𝑣𝑛𝑡 : Volumetric network tariff [€/kWh] 

𝑐𝑛𝑡: Capacity network charge [€/kWpeak] 

𝑓𝑛𝑡: Fixed network charge [€/connection] 

𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘: The coincident (aggregated) peak demand after optimisation (highest absolute of 

value of the positive/negative coincident peak), scaled per average consumer [kW] 

𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑: Positive coincident peak demand after optimisation, scaled per average consumer 

[kW] 
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𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛: Negative coincident peak demand after optimisation, scaled per average consumer 

[kW] 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡: Total annualised grid cost, scaled per average consumer [€] 

𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠: Total annualised investment cost in DER, scaled per average consumer [€] 

𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠: Total annualised energy cost, scaled per average consumer [€] 
 

LL decision variable 

𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖: Annualised grid charges for agent i [€] 

𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖: Annualised investment cost in DER for agent i [€] 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖: Annualised energy cost for agent i [€] 

𝑝𝑤𝑡,𝑖: Energy bought at time step t by agent i [kW] 

𝑝𝑖𝑡,𝑖: Energy sold at time step t by agent i [kW] 

𝑝𝑚𝑎𝑥𝑖: Peak demand of agent i over the length of the considered time series [kW] 

𝑠𝑜𝑐𝑡,𝑖: State of charge of the battery of agent i at step t [kWh] 

𝑝𝑏𝑜𝑢𝑡𝑡,𝑖: Discharge of the battery of agent i at step t [kW] 

𝑝𝑏𝑖𝑛𝑡,𝑖: Power input into the battery of agent i at step t [kW] 

𝑖𝑠𝑖: Installed capacity of solar by agent i [kW] 

𝑖𝑏𝑖: Installed capacity of the battery by agent i [kWh] 

A2. Original optimisation problems 

The upper-level problem for a total system cost minimising regulator 
Objective function, the minimisation of total system costs: 
Minimise  𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 + 𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 + 𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 + SystemOtherCosts (A.1) 
 

With its components being: 
𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ (DPeak − WF ∗ (DPeak − 𝑂𝑃𝑒𝑎𝑘))  (A.2) 

𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 = ∑ PC𝑖 ∗ (𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB)N
𝑖=1  (A.3) 

𝑆𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 =  ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDT N
𝑖=1

T
𝑡=1  (A.4) 

 

Finding the aggregated peak demand in absolute value: 
𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 = max (𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑, 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) (A.5) 
𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 ≥  ∑ PCi ∗ (𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖)𝑁

𝑖=1    ∀𝑡 (A.6) 

𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ≥  ∑ PC𝑖 ∗ (𝑞𝑖𝑡,𝑖 − 𝑞𝑤𝑡,𝑖)𝑁
𝑖=1    ∀𝑡 (A.7) 

 

Cost recovery Eq. of the upper-level with a cap on the increase of grid charges of the passive 

consumer (i2): 
𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝑐𝑜𝑠𝑡𝑠 =  𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN

𝑖=1
T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 + 𝑓𝑛𝑡  (A.8) 

𝑣𝑛𝑡 ∗ ∑ (𝑞𝑤𝑡,′𝑖2′ − NM ∗ 𝑞𝑖𝑡,′𝑖2′) ∗ WDT𝑇
𝑡=1 + 𝑐𝑛𝑡 ∗ 𝑞𝑚𝑎𝑥′𝑖2′ + 𝑓𝑛𝑡  ≤  DGC′i2′ ∗ (1 + Cap′i2′) (A.9) 

The lower level problem for an electricity cost minimising consumer 
Objective function per consumer type i, the minimisation of individual electricity cost: 
Minimise  𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 + 𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 + OtherCharges  (A.10) 

 

With:  

𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 ∗ NM) ∗ 𝑣𝑛𝑡 ∗ WDTT
𝑡=1 + 𝑞𝑚𝑎𝑥𝑖 ∗ 𝑐𝑛𝑡 +  𝑓𝑛𝑡   ∀i (A.11) 

𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 =  𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB   ∀i (A.12)  

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDTT
𝑡=1    ∀i (A.13) 

 

Constraints (including duals): 

𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 + 𝑖𝑠𝑖 ∗ SYt,i + 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖  −  Dt,i = 0    ∀ 𝑖, 𝑡    (𝜇𝑡,𝑖
𝑎 )   (A.14) 

𝑠𝑜𝑐1,𝑖 − 𝑞𝑏𝑖𝑛1,𝑖 ∗ EFC ∗ DT + (𝑞𝑏𝑜𝑢𝑡1,𝑖 EFD)⁄ ∗ DT − SOC0 = 0    ∀ 𝑖 (𝜇1,𝑖
𝑏 )   (A.15) 
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𝑠𝑜𝑐𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 ∗ EFC ∗ DT + (𝑞𝑏𝑜𝑢𝑡t,𝑖 EFD⁄ ) ∗ DT − 𝑠𝑜𝑐𝑡−1,𝑖 ∗ (1 − LR ∗ DT) = 0   ∀ 𝑖, 𝑡 ≠ 1 (𝜇𝑡≠1,𝑖
𝑏 )   (A.16) 

𝑠𝑜𝑐𝑇,𝑖 − SOC0     = 0  ∀ 𝑖 (𝜇𝑖
𝑐)   (A.17) 

−𝑞𝑚𝑎𝑥𝑖 + 𝑞𝑤𝑡,𝑖+𝑞𝑖𝑡,𝑖  ≤ 0                    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑎 )   (A.18) 

𝑠𝑜𝑐𝑡,𝑖−𝑖𝑏𝑖   ≤   0       ∀ 𝑡, 𝑖  (𝜆𝑡,𝑖
𝑏 )   (A.19) 

𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑖𝑏𝑖 ∗ BDR ≤ 0   ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑐 )   (A.20) 

𝑞𝑏𝑖𝑛𝑡,𝑖 − 𝑖𝑏𝑖 ∗ BCR ≤  0  ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑑 )   (A.21) 

−𝑞𝑤𝑡,𝑖 ≤ 0  ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑒 )   (A.22) 

− 𝑞𝑖𝑡,𝑖  ≤ 0    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑓

)   (A.23) 

−𝑠𝑜𝑐𝑡,𝑖 ≤ 0    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑔

)   (A.24) 

−𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 ≤ 0 ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
ℎ )   (A.25) 

−𝑞𝑏𝑖𝑛𝑡,𝑖 ≤ 0 ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑖 )   (A.26) 

𝑖𝑠𝑖 − MS𝑖  ≤ 0    ∀ 𝑖 (𝜆𝑖
𝑗
)   (A.27) 

𝑖𝑏𝑖 − MB𝑖  ≤ 0   ∀ 𝑖 (𝜆𝑖
𝑘)   (A.28) 

− 𝑖𝑠𝑖  ≤ 0  ∀ 𝑖 (𝜆𝑖
𝑙)   (A.29) 

− 𝑖𝑏𝑖  ≤ 0 ∀ 𝑖 (𝜆𝑖
𝑚)   (A.30) 

− 𝑞𝑚𝑎𝑥𝑖  ≤ 0 ∀ 𝑖 (𝜆𝑖
𝑛)   (A.31) 

𝜆𝑡,𝑖
𝑎 , 𝜆𝑡,𝑖

𝑏 , 𝜆𝑡,𝑖
𝑐 , 𝜆𝑡,𝑖

𝑑 , 𝜆𝑡,𝑖
𝑒 , 𝜆𝑡,𝑖

𝑓
, 𝜆𝑡,𝑖

𝑔
, 𝜆𝑡,𝑖

ℎ , 𝜆𝑡,𝑖
𝑖  ≥ 0 ∀ 𝑡, 𝑖 (A.32) 

𝜆𝑡,𝑖
𝑗

, 𝜆𝑡,𝑖
𝑘 , 𝜆𝑡,𝑖

𝑙 , 𝜆𝑡,𝑖
𝑚 , 𝜆𝑡,𝑖

𝑛 , ≥ 0 ∀ 𝑖 (A.33) 

Eq. (A.31) is noted down for completeness, the constraint is implied by Eq. A.18, A.22 and A.23. 

A.3 MPEC reformulation as a MILP 

 

Newly introduced sets, parameters and variables 
Sets 

k: 1…K: Index of auxiliary binaries (𝑏𝑘
𝑎) needed to discretise the bilinear product (including 𝑣𝑛𝑡) in 

Eq. (A.8) 

l: 1…L: Index of auxiliary binaries (𝑏𝑙
𝑐) needed to discretise the bilinear product (including 𝑐𝑛𝑡) in Eq. 

(A.8) 

 

Parameters 

δ: Allowed band wherein the grid costs charges can differ from the grid charges collected as a 

percentage of the total grid costs [%] 

Δγ: Step of 𝑣𝑛𝑡 when discretised [-] 

Δ ∂: Step of 𝑐𝑛𝑡 when discretised [-] 

MDa: Large scalar used to discretise the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) [-] 

MDb: Large scalar used to discretise the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) [-] 

Ma, Mb, Mc, Md, Me, Mf, Mg, Mh, Mi, Mj, Mk, Ml and Mm: Large scalars used to transform 

complementarity constraints (A.62-A.74) into disjunctive constraints [-] 

 

Variables 

𝑏𝑘
𝑎: Binary variables used to discretise the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) 

𝑏𝑙
𝑏: Binary variables used to discretise the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) 

𝑧𝑘
𝑎: (Pos.) continuous variables used to represent the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) 

𝑧𝑙
𝑏: (Pos.) continuous variables used to represent the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) 

𝑟𝑡,𝑖
𝑎 , 𝑟𝑡,𝑖

𝑏 , 𝑟𝑡,𝑖
𝑐 , 𝑟𝑡,𝑖

𝑑 , 𝑟𝑡,𝑖
𝑒 , 𝑟𝑡,𝑖

𝑓
, 𝑟𝑡,𝑖

𝑔
, 𝑟𝑡,𝑖

ℎ , 𝑟𝑡,𝑖
𝑖 , 𝑟𝑖

𝑗
, 𝑟𝑖

𝑘 , 𝑟𝑖
𝑙  and 𝑟𝑖

𝑚: Binary variables used to transform 

complementarity constraints (A.62-A.74) into disjunctive constraints [-] 
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Model transformations 
Transformation of the grid cost recovery equality of the upper level 

For easier convergence of the model, the grid cost recovery Equality (A.8) is replaced by two constraints 

(A.32-33) making sure that the network charges collected from the consumers are within a band (1±δ) 

of the grid costs to be recovered. In the performed runs δ is set to 0.1%. 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 − δ) − 𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤
𝑡,𝑖

− NM ∗ 𝑞𝑖
𝑡,𝑖

) ∗ WDTN
𝑖=1

T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥

𝑖
N
𝑖=1 + 𝑓𝑛𝑡 ≤ 0      

(A.34) 

−𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 + δ) + 𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN
𝑖=1

T
𝑡=1 + 𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 + 𝑓𝑛𝑡 ≤

0  (A. 35) 

Discretising the bilinear products (of two positive continuous variables) to turn the NLP in a MIP 

Formulation based on Momber (2015), page 102, Eq. 4.60-4.63. We define: 
𝑞𝑡𝑜𝑡 = ∑ ∑ PCi ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDT𝑁

𝑖=1
𝑇
𝑡=1      (A.36)        and     𝑞𝑚𝑎𝑥𝑡𝑜𝑡 = ∑ PCi ∗ 𝑞𝑚𝑎𝑥𝑖

𝑁
𝑖=1            (A.37)         

𝑣𝑛𝑡 =  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑏𝑘

𝑎                                                     (A.38)        and     𝑐𝑛𝑡 =  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑏𝑙

𝑏      (A.39)         

 

It follows that: 
𝑞𝑡𝑜𝑡 ∗ 𝑣𝑛𝑡 = 𝑞𝑡𝑜𝑡 ∗  Δγ ∗ ∑ 2𝑘−1

𝑘 ∗ 𝑏𝑘
𝑎  =  Δγ ∗ ∑ 2𝑘−1

𝑘 ∗ 𝑧𝑘
𝑎  (A.40) 

𝑞𝑚𝑎𝑥𝑡𝑜𝑡 ∗ 𝑐𝑛𝑡 = 𝑞𝑚𝑎𝑥𝑡𝑜𝑡 ∗  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑏𝑙

𝑏  =  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏  (A.41) 

with: 

 
𝑧𝑘

𝑎    ≥ 0                                            ∀ 𝑘        (𝐴. 42)            and           𝑧𝑙
𝑏    ≥ 0                                                      ∀ 𝑙 (A.43) 

𝑧𝑘
𝑎     ≤ MDa ∗ 𝑏𝑘

𝑎                            ∀ 𝑘        (𝐴. 44)            and           𝑧𝑙
𝑏      ≤ MDb ∗ 𝑏𝑙

𝑏                                     ∀ 𝑙 (A.45) 
𝑞𝑡𝑜𝑡 − 𝑧𝑘

𝑎  ≥ 0                                 ∀ 𝑘        (𝐴. 46)            and           𝑞𝑚𝑎𝑥𝑡𝑜𝑡 − 𝑧𝑙
𝑏 ≥ 0                                   ∀ 𝑙 (A.47) 

𝑞𝑡𝑜𝑡 − 𝑧𝑘
𝑎  ≤ MDa ∗ (1 − 𝑏𝑘

𝑎  )     ∀ 𝑘        (𝐴. 48)           and           𝑞𝑚𝑎𝑥𝑡𝑜𝑡 −  𝑧𝑙
𝑏  ≤ MDb ∗ (1 − 𝑏𝑙

𝑏   )    ∀ 𝑙 (A.49) 
 

Karush-Kuhn-Tucker conditions of the lower level 

WDT ∗ (EBP𝑡 + 𝑣𝑛𝑡) + 𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 − 𝜆𝑡,𝑖
𝑒 = 0                                              ∀ 𝑡, 𝑖 (A.50) 

−WDT ∗ (ESP𝑡 + NM ∗ 𝑣𝑛𝑡) −  𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 − 𝜆𝑡,𝑖
𝑓

= 0  ∀ 𝑡, 𝑖 (A.51) 

𝑐𝑛𝑡 − ∑ 𝜆𝑡,𝑖
𝑎

𝑡 = 0    ∀ 𝑖 (A.52) 

𝜇𝑡,𝑖
𝑏 − 𝜇𝑡+1,𝑖

𝑏 ∗ (1 − LT ∗ DT) + 𝜆𝑡,𝑖
𝑏 −  𝜆𝑡,𝑖

𝑔
  = 0   ∀ 𝑡 ≠ {T}, 𝑖 (A.53) 

𝜇𝑇,𝑖
𝑏 + 𝜇𝑖

𝑐 + 𝜆𝑇,𝑖
𝑏 − 𝜆𝑇,𝑖

𝑔
= 0                                                           ∀ 𝑡 = T, 𝑖  (A.54) 

𝜇𝑡,𝑖
𝑎 +

𝜇𝑡,𝑖
𝑏

EFD
∗ DT + 𝜆𝑡,𝑖

𝑐 − 𝜆𝑡,𝑖
ℎ  = 0      ∀ 𝑡, 𝑖 (A.55) 

−𝜇𝑡,𝑖
𝑎 − 𝜇𝑡,𝑖

𝑏 ∗ EFC ∗ DT + 𝜆𝑡,𝑖
𝑑 − 𝜆𝑡,𝑖

𝑖  = 0  ∀ 𝑡, 𝑖 (A.56) 

AICS + ∑ 𝜇𝑡,𝑖
𝑎 ∗ SYt,i 𝑡 +  𝜆𝑖

𝑗
− 𝜆𝑖

𝑙 = 0     ∀ 𝑖 (A.57) 

AICB − ∑ 𝜇𝑡,𝑖
𝑏

𝑡 − ∑ 𝜆𝑡,𝑖
𝑐 ∗ BDR𝑡  −  ∑ 𝜆𝑡,𝑖

𝑑 ∗ BCR𝑡 + 𝜆𝑖
𝑘 − 𝜆𝑖

𝑚 = 0     ∀ 𝑖 (A.58) 

𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 + 𝑖𝑠𝑖 ∗ SY𝑡,𝑖 + 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 − D𝑡,𝑖 = 0                                𝜇𝑡,𝑖
𝑎 𝑓𝑟𝑒𝑒  ∀ 𝑡, 𝑖 (A.59) 

𝑠𝑜𝑐1,𝑖 − 𝑞𝑏𝑖𝑛1,𝑖 ∗ EFC ∗ dt + 
𝑞𝑏𝑜𝑢𝑡1,𝑖

EFD
∗ DT − SOC0 = 0                                   𝜇1,𝑖

𝑏   𝑓𝑟𝑒𝑒 ∀ 𝑖 (A.60) 

𝑠𝑜𝑐𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 ∗ EFC ∗ dt +  
𝑞𝑏𝑜𝑢𝑡𝑡,𝑖

EFD
∗ DT − 𝑠𝑜𝑐𝑡−1,𝑖 ∗ (1 − LR ∗ DT) = 0     𝜇𝑡≠1,𝑖

𝑏  𝑓𝑟𝑒𝑒    ∀ 𝑡 ≠ 1, 𝑖 (A.61) 

𝑠𝑜𝑐𝑇,𝑖 − SOC0  = 0 𝜇𝑖
𝑐 𝑓𝑟𝑒𝑒 ∀ 𝑖 (A.62) 

0 ≤ 𝑞𝑚𝑎𝑥𝑖−𝑞𝑤𝑡,𝑖  −𝑞𝑖𝑡,𝑖   ⊥  𝜆𝑡,𝑖
𝑎  ≥ 0 ∀ 𝑡, 𝑖 (A.63) 

0 ≤ 𝑖𝑏i − 𝑠𝑜𝑐𝑡,𝑖      ⊥  𝜆𝑡,𝑖
𝑏  ≥ 0  ∀ 𝑡, 𝑖 (A.64) 

0 ≤ 𝑖𝑏i ∗ BDR − 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖      ⊥  𝜆𝑡,𝑖
𝑐  ≥ 0  ∀ 𝑡, 𝑖 (A.65) 

0 ≤ 𝑖𝑏i ∗ BCR − 𝑞𝑏𝑖𝑛𝑡,𝑖         ⊥  𝜆𝑡,𝑖
𝑑  ≥ 0  ∀ 𝑡, 𝑖 (A.66) 
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0 ≤ 𝑞𝑤𝑡,𝑖                    ⊥  𝜆𝑡,𝑖
𝑒  ≥ 0  ∀ 𝑡, 𝑖 (A.67) 

0 ≤ 𝑞𝑖𝑡,𝑖                    ⊥  𝜆𝑡,𝑖
𝑓

 ≥ 0    ∀ 𝑡, 𝑖 (A.68) 

0 ≤ 𝑠𝑜𝑐𝑡,𝑖                   ⊥  𝜆𝑡,𝑖
𝑔

 ≥ 0  ∀ 𝑡, 𝑖 (A.69) 

0 ≤ 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖            ⊥  𝜆𝑡,𝑖
ℎ  ≥ 0    ∀ 𝑡, 𝑖 (A.70) 

0 ≤ 𝑞𝑏𝑖𝑛𝑡,𝑖               ⊥  𝜆𝑡,𝑖
𝑖  ≥ 0  ∀ 𝑡, 𝑖 (A.71) 

0 ≤ MS𝑖 − 𝑖𝑠𝑖                           ⊥  𝜆𝑖
𝑗

 ≥ 0  ∀ 𝑖 (A.72) 

0 ≤ MB𝑖 − 𝑖𝑏𝑖              ⊥  𝜆𝑖
𝑘  ≥ 0    ∀ 𝑖 (A.73) 

0 ≤ 𝑖𝑠𝑖                       ⊥  𝜆𝑖
𝑙   ≥ 0  ∀ 𝑖 (A.74) 

0 ≤ 𝑖𝑏𝑖                       ⊥  𝜆𝑖
𝑚 ≥ 0  ∀ 𝑖 (A.75) 

Final model formulation 
The final model formulation is composed of Eq. (A.1-7) and (A.9). Eq. (A.8) is turned into two 

constraints described by Eq. (A.34-A.35) and further transformed to (A.76- A.77) which is the final 

form of Eq. (A.8) included in the model formulation. Eq. (A.36-A.39) and Eq. (A.42-A.49) are included 

to complete the discretisation of the bilinear products. MDa and MDb are well calibrated and 𝛥𝛾 (0.0001) 

and 𝛥𝜕 (0.01) are chosen to balance precision and computational time. 

 

𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 − δ) −  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑧𝑘

𝑎 +  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏 + 𝑓𝑛𝑡 ≤ 0  (A.76) 

−𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 + δ) −  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑧𝑘

𝑎 +  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏 + 𝑓𝑛𝑡 ≤ 0  (A.77) 

 

Further, the lower level problem is incorporated in the MILP by Eq. (A.50-A.62) and (A.78-A.103). Eq. 

(A.78-A.103) are disjunctive constraints replacing the complementarity constraints (A.63-A.75) using 

the method described in Fortuny-Amat and McCarl (1981). Alternatively, a transformation using SOS1 

variables as explained in Siddiqui and Gabriel (2013) or can be implemented as indicator constraints 

(GAMS 2018). In the final formulation, we can also substitute 𝜆𝑡,𝑖
𝑒  , 𝜆𝑡,𝑖

𝑓
, 𝜆𝑡,𝑖

ℎ , 𝜆𝑡,𝑖
𝑖 , 𝜆𝑖

𝑙 and 𝜆𝑖
𝑚 out. 

 
𝑞𝑚𝑎𝑥𝑖−𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 ≤ Ma ∗ (1 − 𝑟𝑡,𝑖

𝑎 )       ∀ 𝑡, 𝑖   (A.78)  and   𝜆𝑡,𝑖
𝑎 ≤  Ma ∗ 𝑟𝑡,𝑖

𝑎    ∀ 𝑡, 𝑖 (A.79) 

𝑖𝑏𝑖 −  𝑠𝑜𝑐𝑡,𝑖  ≤ Mb ∗ (1 − 𝑟𝑡,𝑖
𝑏  )    ∀ 𝑡, 𝑖   (A.80)  and   𝜆𝑡,𝑖

𝑏 ≤  Mb ∗ 𝑟𝑡,𝑖
𝑏   ∀ 𝑡, 𝑖 (A.81) 

𝑖𝑏𝑖 ∗ BDR − 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖  ≤ Mc ∗ (1 − 𝑟𝑡,𝑖
𝑐  )  ∀ 𝑡, 𝑖   (A.82)  and   𝜆𝑡,𝑖

𝑐 ≤  Mc ∗ 𝑟𝑡,𝑖
𝑐                    ∀ 𝑡, 𝑖 (A.83) 

𝑖𝑏𝑖 ∗ BCR − 𝑞𝑏𝑖𝑛𝑡,𝑖  ≤ Md ∗ (1 − 𝑟𝑡,𝑖
𝑑 )      ∀ 𝑡, 𝑖   (A.84)  and   𝜆𝑡,𝑖

𝑑 ≤  Md ∗ 𝑟𝑡,𝑖
𝑑               ∀ 𝑡, 𝑖 (A.85) 

𝑞𝑤𝑡,𝑖  ≤ Me ∗ (1 − 𝑟𝑡,𝑖
𝑒 )     ∀ 𝑡, 𝑖   (A.86)  and   WDT ∗ (EBPt + 𝑣𝑛𝑡) +   𝜇𝑡,𝑖

𝑎 + 𝜆𝑡,𝑖
𝑎 ≤  Me ∗ 𝑟𝑡,𝑖

e    ∀ 𝑡, 𝑖 (A.87) 

𝑞𝑖𝑡,𝑖  ≤ Mf ∗ (1 − 𝑟𝑡,𝑖
𝑓

)   ∀ 𝑡, 𝑖   (A.88)  and  

 −WDT ∗ (ESPt + 𝑣𝑛𝑡 ∗ NM) − 𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 ≤ Mf ∗ 𝑟𝑡,𝑖
𝑓

   ∀ 𝑡, 𝑖 (A.89) 

𝑠𝑜𝑐𝑡,𝑖  ≤ Mg ∗ (1 − 𝑟𝑡,𝑖
𝑔

)   ∀ 𝑡, 𝑖   (A.90)  and     𝜆𝑡,𝑖
𝑔

≤  Mg ∗ 𝑟𝑡,𝑖
𝑔

  ∀ 𝑡, 𝑖 (A.91) 

𝑞𝑏𝑜𝑢𝑡𝑡,𝑖  ≤ Mh ∗ (1 − 𝑟𝑡,𝑖
ℎ )  ∀ 𝑡, 𝑖   (A.92)  and    𝜇𝑡,𝑖

𝑎 +
𝜇𝑡,𝑖

𝑏

EFD
∗ DT + 𝜆𝑡,𝑖

𝑐 ≤  Mh ∗ 𝑟𝑡,𝑖
ℎ   ∀ 𝑡, 𝑖 (A.93) 

𝑞𝑏𝑖𝑛𝑡,𝑖  ≤ Mi ∗ (1 − 𝑟𝑡,𝑖
𝑖 )    ∀ 𝑡, 𝑖   (A.94)  and    −𝜇𝑡,𝑖

𝑎 − 𝜇𝑡,𝑖
𝑏 ∗ EFC ∗ DT + 𝜆𝑡,𝑖

𝑑  ≤  Mi ∗ 𝑟𝑡,𝑖
𝑖  ∀ 𝑡, 𝑖 ∀ 𝑡, 𝑖 (A.95) 

MS𝑖 −  𝑖𝑠𝑖  ≤ Mj ∗ (1 − 𝑟𝑖
𝑗
)      ∀ 𝑖      (A.96)   and     𝜆𝑖

𝑗
≤  Mj ∗ 𝑟𝑖

𝑗
  ∀ 𝑖 (A.97) 

MBi −  𝑖𝑏𝑖  ≤ Mk ∗ (1 − 𝑟𝑖
𝑘)          ∀ 𝑖      (A.98)   and     𝜆𝑖

𝑘 ≤  Mk ∗ 𝑟𝑖
𝑘  ∀ 𝑖 (A.99) 

𝑖𝑠𝑖  ≤ Ml ∗ (1 − 𝑟𝑖
𝑙)    ∀ 𝑖      (A.100)   and    AICS + ∑ 𝜇𝑡,𝑖

𝑎 ∗ SY𝑡,𝑖  𝑡 + 𝜆𝑖
𝑗

≤ Ml ∗ 𝑟𝑖
𝑙 ∀ 𝑖(A.101) 

𝑖𝑏𝑖  ≤ Mm ∗ (1 − 𝑟𝑖
𝑚)     ∀ 𝑖      (A.102) and 

AICB − ∑ 𝜆𝑡,𝑖
𝑏

𝑡 − ∑ 𝜆𝑡,𝑖
𝑐 ∗ BDR𝑡  −  ∑ 𝜆𝑡,𝑖

𝑑 ∗ BCR𝑡 + 𝜆𝑖
𝑘 ≤ Mm ∗ 𝑟𝑖

𝑚        ∀ 𝑖 (A.103) 
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