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Abstract

Fictitious play and “gradient” learning are examined in the 
context o f  a large population where agents are repeatedly ran
dom ly matched. We show that the aggregation o f this learning 
behaviour can be qualitatively different from learning at the level 
o f  the individual. This aggregate dynamic belongs to the same 
class o f simply defined dynamic as do several formulations o f evo
lutionary dynamics. We obtain sufficient conditions for conver
gence and divergence which are valid for the whole class o f dy
namics. These results are therefore robust to most specifications 
o f  adaptive behaviour.

Journal of Economic Literature classification numbers: C72, D83. 

Keywords: Games, Fictitious Play, Learning, Evolution.
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1 Introduction

There has been an increasing interest in using evolutionary models to 
explain social phenomena, in particular, the evolution of conventions. A 
common assumption is that there is a large population where individuals 
are repeatedly randomly matched to play a game. This paper addresses 
two resulting issues. First, how do learning rules defined for individuals 
aggregate across such a population. Second, evolutionary models have 
not achieved universal acceptance. There has been some skepticism as 
to the degree to which evolutionary dynamics are relevant to economic 
situations. In an evolutionary system, nature chooses the individuals 
who embody superior strategies. In human society, individuals learn: 
they choose strategies that seem superior. There is no certainty that the 
dynamics generated by the two different processes are identical.

There are a number of potential responses. One adopted by Bin- 
more and Samuelson (1994) is to devise a learning scheme which ap
proximates the dynamics generated by evolution. Thus the results of 
evolutionary game theory could be recreated by learning. Another is to 
generalise the evolutionary dynamics by abandoning particular functional 
forms and looking at wide classes of dynamics which satisfy “monotonic
ity” or “order compatibility” (Nachbar, 1990; Friedman, 1991; Kandori 
et al., 1993). The hope is that even if learning behaviour is not identical 
to evolution, it is sufficiently similar to fall within these wider categories. 
However, in this paper, a different approach is taken. Rather than de
signing learning models to suit our purposes, we examine two existing 
models of learning behaviour current in the literature. This is done in 
the context of a large random-mixing population.

The question of aggregation of learning behaviour is of interest in 
its own right. As can be seen in for example, Crawford (1989) or Can
ning (1992), learning behaviour aggregated across a large population can 
be qualitatively different from behaviour at the level of the individual. 
Indeed, we show that aggregation can solve many of the problems en
countered in existing learning models. Secondly, the resultant dynamics
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are not in general identical to evolutionary dynamics on a similarly de
fined population. They may not even satisfy monotonicity. However, 
they all belong to a class of dynamics which for reasons that will be
come apparent we will call “positive definite” , and share much of their 
qualitative behaviour.

Fictitious play, our first learning model, was in fact introduced as 
a means of calculating Nash equilibrium, or in the terminology of the 
time in order to “solve” games (Brown, 1951; Robinson, 1951). Play 
was “fictitious” in that it was assumed to be a purely mental process by 
which agents would decide on a strategy. The fictitious play algorithm 
selects a pure strategy that is a best reply to the average past play of 
opponents. One can interpret this as though each player uses past play as 
a prediction of opponents’ current actions. This is, of course, in the spirit 
of the adjustment process first suggested by Cournot in the 19th century. 
While it might not be clear a priori where such a naive form of behaviour 
might lead, in fact, it has been shown, for example, that the empirical 
frequencies of strategies played approaches a Nash equilibrium profile in 
zero-sum games (Robinson, 1951) and in all 2 x 2 games (Miyasawa, 
1961).

More recently, fictitious play has again attracted interest, this time 
as a means of modelling learning1. This, however, is an interpretation 
that is problematic. The positive results noted above are qualified by the 
realisation that convergence of fictitious play is not necessarily consistent 
with the idea of players “learning” an equilibrium. Convergence to a 
pure strategy equilibrium is relatively straightforward: after a certain 
time, each player will keep to a single pure strategy. However, as Young 
(1993), Fudenberg and Kreps (1993), Jordan (1993) all note, convergence 
in empirical frequencies to a mixed Nash equilibrium may only entail that 
play passes through a deterministic cycle (of increasing length) through 
the strategies in its support. In one sense, players’ “beliefs” converge,

1Some of the many to have considered fictitious play or similar processes are 
Canning (1992), Fudenberg and Kreps (1993), Jordan (1993), Milgrom and Roberts 
(1991), Monderer and Shapley (1993), Young (1993).
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even if their actions do not, in that in the limit they will be indifferent 
between the different strategies in the support of the Nash equilibrium. 
However, if players’ beliefs are predictions of their opponents’ play, while 
correct on average, they are consistently incorrect for individual rounds 
of play. Implicit in fictitious play is also a strong degree of myopia. In 
choosing strategies, players take no account of the fact that opponents 
are also learning. Similarly, if as noted above, play converges to a cycle, 
players do not respond to the correlated nature of play. Finally, apart 
from the case of zero-sum games, there is no easy method of determining 
whether fictitious play converges.

There are other models of learning in games. We can identify a 
class of learning rules as being based on gradient-algorithms. The be
haviour postulated is perhaps even more naive than under fictitious play2, 
indeed, these models were first developed by psychologists and animal- 
behaviourists for non-strategic settings. More recently they have been 
applied to game-theory by Harley (1982), Crawford (1985; 1989), Borgers 
and Sarin (1993), Roth and Erev (1995). Unlike fictitious play-like pro
cesses agents do not play a single pure strategy which is a best-reply, 
agents play a mixed strategy. If a strategy is successful the probability 
assigned to it is increased, or in the terminology of psychologists, the “be
haviour is reinforced” . Thus such models are sometimes called “learning 
by reinforcement” or “stimulus learning” . As these models’ other name 
“gradient” suggests, behaviour is meant to climb toward higher payoffs. 
Adjustment is therefore slower and smoother than under fictitious play. 
However, the results obtained are not notably more positive. Crawford 
(1985) showing for example that all mixed strategy equilibria are unsta
ble.

Aggregation can help with these problems. Fudenberg and Kreps 
(1993) in fact propose the idea of a random-mixing population of players 
as a justification for the myopia of fictitious play-like learning processes. 
If there is sufficient anonymity such that each player cannot identify

2There are other models not considered here such as the more sophisticated 
Bayesian learning of Kalai and Lehrer (1993).
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his opponent and sufficient mixing, each player has a sequence of differ
ent opponents, then players may have little incentive to develop more 
sophisticated strategies. A population of players also offers a different 
interpretation of mixed-strategy equilibrium. The distribution of strate
gies in the population as a whole mimics a mixed-strategy profile. This 
is an equilibrium concept familiar from evolutionary game theory. This 
type of mixed equilibrium can be stable under either fictitious play or 
gradient learning.

The main contribution of this paper is to demonstrate that is pos
sible to obtain precise results on the aggregation of learning behaviour 
and that furthermore, that the aggregate dynamics thereby obtained are 
qualitatively very similar to evolutionary dynamics. In fact, we show that 
the replicator dynamics, in both pure and mixed strategy forms, the ag
gregate dynamics generated by fictitious play, and also the aggregate 
dynamics generated by gradient learning, all belong to a simply-defined 
class of dynamics. We then show that for all of this class that regular 
Evolutionary Stable Strategies (ESSs) are asymptotically stable in a de
terministic context and that a similar result holds for time averages in a 
stochastic context. Thus we show that refinements to Nash equilibrium 
based on evolutionary considerations are relevant also for learning mod
els. Secondly, unlike existing models of learning in large populations, 
such as Canning (1992) and Fudenberg and Levine (1993), explicit re
sults on the stability of particular equilibria are obtained. Perhaps most 
importantly we obtain results which are robust to different specifications 
of learning rules or evolutionary dynamics. Hence we can hope that these 
results have some predictive power.

2 Learning and Evolutionary Dynamics

We will examine learning in the context of two-player normal-form games, 
G =  ( {1 ,2 } , / ,  J, A, B). I  is a set of n strategies available to player 1, 
J a set of m strategies for player 2. Payoffs are determined by A, a

4

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



n x m matrix of payoffs, and B, which is m x n. A has typical ele
ment a.ij, which is the payoff an agent receives when playing strategy 
i against an opponent playing strategy j .  However, we will largely 
be dealing with games that are “symmetric” in the evolutionary sense, 
that is, games for which A =  B3. Generalisations to the asymmetric 
case are straightforward. We will often be dealing with a population 
of players, each playing a single pure strategy. In this case, the distri
bution of strategies within the population will be described by a vector 
x € Sn — {x  =  (x i , . ..,£ „) 6 R n : Ex,- =  l ,x ;  >  0 for i — l ,.. . ,n } . 
As, in this paper, vectors will be treated ambiguously as either rows or 
columns, to avoid any further confusion, the inner product will be care
fully distinguished by the symbol that is, the result of x -x  is a scalar.

We follow Shapley (1964) and implement the fictitious play al
gorithm in the following way. A player places a weight on each of 
her strategies (we can think of these as beliefs as to the relative effec
tiveness of the different strategies) which we can represent as a vector 
w  =  (wi,w2, —,'wn) and at any given time plays the strategy which is 
given the highest weight. Each player updates these weights after each 
round of play so that if her opponent played strategy j ,

Wi(t +  1) =  u)i(t) +  a.ij for i — 1, n. (1)

Players can also be modelled as maintaining a vector of relative frequen
cies of opponents’ past play (as in Fudenberg and Kreps, 1993; Young, 
1993). They then choose strategies that maximise expected payoffs as 
though this vector represented the current (mixed) strategy of their op
ponents. The two methods are entirely equivalent. Note that the weights 
here are (less initial values) simply the relative frequencies multiplied by 
payoffs.

Up to now we have contrasted learning and evolution purely on the 
basis of their origins, one being a social, the other a natural process.

3And all players are drawn from the same population. For a fuller discussion of 
the difference between symmetric and asymmetric contests see van Damme (1991) or 
Hofbauer and Sigmund (1988).
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Xt+1

1

(a)
Xt x,

Figure 1: Dynamics: (a) best response (b) replicator dynamics

However, they are also often modelled in contrasting fashion. Fictitious 
play and Cournotian dynamics both assume that agents play some kind 
of best response. This can involve discontinuous jumps in play. Taking 
as an example the following game which is variously known as “chicken” , 
“hawk-dove” or “battle of the sexes” ,

0 a
1 — a 0

1 > a >  0 , ( 2)

Figure la gives the simple best-reply function for (2),where each agent 
in a large population plays a best-reply to the current distribution of 
strategies4. Here x represents the proportion of the population playing 
the first strategy. If x is greater than (respectively less than) a, then 
the whole population switches to strategy 2 (strategy 1). Hence, there 
is a discontinuity at the point (x =  a) where the players are indifferent 
between their two strategies (there is no particular consensus in the lit
erature about how players should behave when indifferent between two 
or more strategies).

In contrast, the evolutionary replicator dynamics, whether in con
tinuous or discrete time, are derived on the basis that the proportional

4This is a dynamic as used by, for example Kandori, Mailath and Rob (1994). 
This is fictitious play with a one-period memory.
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rate of growth of each strategy is equal to the difference between its pay
off (A x); (the ith element of the vector in parentheses) and the average 
payoff in the population5 x  • Ax. D  is a positive constant.

x { =  x,[(Ax),- -  x • Ax] or x{(t +  1) =  + D  ^

Clearly, both dynamics axe continuous, the system moving smoothly to
ward the strategies earning the highest payoff. The replicator dynamic 
(in discrete time) for the game (2) is drawn in Figure lb. The interior 
mixed equilibrium is a global attractor, the pure equilibria at x =  0, 1 
being unstable.

Important in evolutionary theory is the idea of an Evolutionary 
Stable Strategy, that is, “a strategy such that, if all members of a pop
ulation adopt it, then no mutant strategy could invade the population 
under the influence of natural selection.” (Maynard Smith, 1982, plO). 
For a large random matching population the conditions are

Definition: An Evolutionary Stable Strategy (ESS) is a strategy 
profile q  that satisfies the Nash equilibrium condition

q ■ Aq > x  • Aq (4)

for all x  £ Sn and for all x such that equality holds in (4), q must also 
satisfy the stability condition

q • Ax > x • Ax (5)

The first condition states that to be an ESS, a strategy must be a 
best-reply to itself. Were it not so, a population playing that strategy 
could easily be invaded by agents playing the best reply. The second 
condition demands that if there are a number of alternative best replies,

5 In a biological context, this arives from relative reproductive success (see Hofbauer 
and Sigmund, 1988) but may also be an appropriate assumption in modelling learning 
in a human population (for example, Binmore and Samuelson, 1994).

7

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



than the ESS must be better against them than they are against them
selves. Thus if a mutant strategy which was an alternative best reply 
were to enter the population, those agents playing it would on average 
have a lower payoff than those playing the ESS and therefore would not 
grow in number.

There is a strong connection between stability under evolutionary 
dynamics and the static concept of ESS.

P roposition  1 Every ESS is an asymptotically stable equilibrium for the 
continuous time replicator dynamics but the converse is not true. That 
is, there are asymptotically stable states for the replicator dynamics which 
are not ESSs.

P roof: See, for example, van Damme (1991, Theorem 9.4.8). □

Fictitious play can also converge on the mixed equilibrium of (2), 
but in a rather different manner. Setting a =  0.5, imagine two players 
both with initial weights of (0.25,0). That is, they both prefer their first 
strategy for the first round of play. Both consequently receive a payoff 
of 0. Each players observe which strategy the opponent chose. They 
then update the weights/beliefs according to the payoffs that they would 
receive against that strategy. Thus according to (1), weights now stand 
at (0.25,0.5). They now both prefer the second strategy. One can infer 
that player 1 believes that her opponent will continue to play her first 
strategy, and likewise for player 2. After the second round of play, in 
which again both players receive 0, the vectors stand at (0.75,0.5). It 
can be shown that, firstly, that the players continually miscoordinate, 
always receiving a payoff of 0, and that, secondly, in the limit, both play 
their first strategy with relative frequency 0.5, and their second with 
frequency 0.5. This corresponds to the mixed strategy equilibrium of (2). 
However, the players’ behaviour seems to correspond only tangentially 
with the idea of a mixed-strategy equilibrium.

The concept of a mixed strategy equilibrium in use in evolutionary 
game theory seems more intuitive. It is also an average but not across

8
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time but across the differing behaviour of a large population: the aggre
gate strategy distribution is a mixed strategy equilibrium. One might 
hope that if each individual used a learning rule that like the replicator 
dynamics was a continuous function of payoffs, similarly well-behaved re
sults could be obtained. However, Crawford (1985; 1989) demonstrates 
that in fact mixed strategy equilibria, and hence many ESSs, are not sta
ble for a model of this kind. However, while these results are correct, they 
do not tell the whole story in the context of a random-mixing population. 
The mixed strategy of individuals will not approach the equilibrium of 
the two player game, nonetheless, we are able to prove convergence for 
the mean strategy in the population for all regular ESSs.

What we are going to show is that with a large population of players 
who are continually randomly matched, this type of outcome is possible 
even under fictitious play. This does not follow automatically from aggre
gation. In particular, if all players in the population have the same initial 
beliefs, the time path for the evolution of strategies will be the same as 
for fictitious play with two players6. Imagine in the above example, there 
were an entire population of players with initial weights of (0.25,0). No 
matter with whom they are matched they will meet an opponent playing, 
strategy 1. Hence, all players will update their beliefs at the same rate, 
and the same cycle is reproduced. However, this is only possible given 
the concentration of the population on a single point. If instead there 
is a non-degenerate distribution of weights across the population, it may 
be that not all the population will change strategy at once.

Imagine now that the players have initial weights or beliefs (b, 0) 
where b is uniformly distributed on [0,1]. Only those in the population 
with 6 <  0.5, that is half the population, will change strategy after 
the first round of play. In fact, we have arrived immediately at the 
population state equivalent to the mixed strategy equilibrium with half 
the population playing each strategy. It is easy to check that under 
random matching, in such a state, there is no expected change in each

6A fact which Fudenberg and Kreps (1993) exploit. They do not consider the case 
where, within a population of players, individuals possess differing beliefs.
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player’s strategy. In this case, aggregation has had a smoothing effect 
because there was sufficient heterogeneity in the population. We will go 
on to make a somewhat more precise statement about convergence of 
fictitious play in a random matching environment. A necessary first step 
is to consider the modelling of random matching itself in more detail.

3 Matching Schemes

Any study of the recent literature on learning and evolution will reveal, 
firstly, that random matching within a large population of players is a 
common assumption, and secondly, that there are several ways of mod
elling such interaction. This diversity is in fact important both in terms of 
what it implies for theoretical results and in what cases are such results 
applicable. For example, there are some economic or social situations 
where random matching might seem a reasonable approximation of ac
tual interaction, others where it will not. Only in some cases will agents 
be able to obtain information about the result of matches in which they 
were not involved, and so on.

Fudenberg and Kreps (1993) suggest three alternative schemes. As
suming a large population of potential players (they suggest 5000 as a 
reasonable number), they propose the following:

“Story 1. At each date t , one group of players is selected to 
play the game...They do so and their actions are revealed to 
all the potential players. Those who play at date t are then 
returned to the pool of potential players.

Story 2. At each date t there is a random matching of all 
the players, so that each player is assigned to a group with 
whom the game is played. At the end of the period, it is 
reported to all how the entire population played....The play 
of any particular player is never revealed.

Story 3. At each date t there is a random matching of the 
players, and each group plays the game. Each player recalls
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at date t what happened in the previous encounters in which 
he was involved, without knowing anything about the identity 
or experiences of his current rivals.”

Fudenberg and Kreps (1993, p333)

It is worth drawing out the implications of these different matching 
schemes. We will argue that Story 3 is the most appropriate basis for 
a model of fictitious play in a population of players. It is the “classic” 
scheme assumed as a basis for the replicator dynamics. The population is 
assumed to be infinite and hence, despite random matching, the dynamics 
axe deterministic (this has been rigorously analysed by Boylan, 1992). 
It is also decentralised and does not require, as do Stories 1 and 2, any 
public announcements of results by some auctioneer-like figure. However, 
there are other procedures similar to Story 2 which do not require such 
a mechanism. These include,

Story 2a. In each round7, the players are matched according 
to Story 1 or Story 3 an infinite number of times.

Story 2b. In each round there is a “round-robin” tournament, 
where each player meets each of his potential opponents ex
actly once.

Stories 2a and 2b have been used in the learning literature princi
pally for reasons of tractability8. They ensure a deterministic result to 
the matching procedure even when population size is finite. The infinite 
number of matchings in Story 2a, by the law of large numbers, ensures 
that a proportion equal to the actual frequency over the whole population 
of opponents playing each strategy will be drawn to play. What Stories 
2, 2a and 2b have in common is that all players know the exact distri
bution of strategies in the population when choosing their next strategy.

7The “round” is the time-unit of, in evolutionary models, reproduction, in learning 
models, decision. That is, strategy frequencies are constant within a round, even if 
the round contains many matches.

8See for example, Kandori et al. (1993), Binmore and Samuelson (1994).
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There is little room for the diversity of beliefs one might expect in a large 
population.

In contrast, under Story 3, as the overall distribution of strategies 
is not known, it makes more sense to use past matches to estimate the 
current distribution. Furthermore, depending upon with which oppo
nent they are matched, different players will receive different impressions 
about the frequency of strategies in the population of opponents. Under 
Story 3, if the population is finite, even if players use a deterministic rule 
to choose their strategy, such as the fictitious play algorithm, the evo
lution of the aggregate strategy distribution is stochastic. We therefore 
develop two models, one deterministic and one stochastic, which describe 
the aggregate behaviour of the population under the different schemes.

4 Population Fictitious Play

The next stage is to examine population fictitious play (PFP) where 
learning takes place in a large random-mixing population. We will deal 
both with the case where the population is large but finite, and with 
the case where the population is taken to be a continuum of non-atomic 
agents (an assumption familiar from evolutionary game theory). While 
the beliefs of a given individual can be represented by point, the beliefs of 
the population will be represented by a distribution over the same space. 
We investigate how the distribution of beliefs, and therefore how the 
distribution of strategies, changes over time. It will help to create some 
new variables. Let pt] =  Wj — wt, j  ^  i. Thus, p, is a vector of length 
n — 1. We will use this to work in R n_1 instead of R ". For example, 
if a player has to choose between two strategies, we can summarise her 
beliefs by the variable p12. If Pn <  0 she prefers her first strategy, if 
P12 >  0 her second, and if pn — 0 she is indifferent. A player’s decision 
rule or reaction function can then be considered as a mapping from the 
space of beliefs to strategies, i.e. R n_1 —> Sn, that is, the n-simplex. 
This mapping will not, in general be continuous for individual players:
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the fictitious play assumption limits players to pure strategies. See also 
Figure la.

Let Fi be the population distribution function of p, over R n_1. 
Agents will play a strategy if it is the strategy given the highest weight 
in their beliefs. In other words, the beliefs of those playing strategy i must 
be in Ei — {p , £ R n_1 : pij < 0,V j  ^  i} . What if agents are indifferent 
between two or more strategies, that is, if their beliefs, for some j  are such 
that =  0 ? One way to finesse this problem is to assume that payoffs 
and/or initial beliefs are given by irrational numbers. Another method 
is to assume that beliefs are given by a continuous distribution on R " -1 , 
(F  is absolutely continuous). If this is case then, if the proportions of the 
population playing each of the n strategies is given by the vector x  £ Sn, 
Xi — Fi(0), where 0 is a vector of zeros of length n — 1. For example, if 
all agents have the beliefs p^ <  0 V j  then £, =  F)(0 ) =  1.

At the basis of the deterministic model of PFP is the assumption 
that agents update their beliefs as if they knew x  £ £„, the true current 
distribution of strategies in the population. This could be supported 
by Story 3 in an infinite population or by Story 2 in a finite or infinite 
population. We are, however, going to treat each x; as a continuous 
variable and assume that the probability of meeting an opponent playing 
strategy i is x,-.9 For example, over a period of length At, each agent is 
matched within a single large population. If this matching is repeated an 
arbitrarily large number of times in each period (Story 2a), each agent 
will meet a proportion x, of opponents playing strategy i. According to 
(1), which describes the fictitious play algorithm, we have for each agent

w(t +  At) =  w(t) +  Ax. (6)

Similarly we can derive a system of difference equations for p, the vector 
of the agent’s beliefs,

p<(t +  At) =  r (p i,x ) =  p i( t )+  [(Ax)i# j -  (Ax),], (7)

9 These are both approximations if the population is finite. We treat finite popu
lations with greater accuracy in Section 7.
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Figure 2: Change in the distribution of beliefs

where ( i x ) ^ .  is a vector of length n—1, constructed of all the elements of 
Ax. except (Ax),.. We will be interested in the properties of the inverse of 
the function T with respect to p; to be written r _ 1(p;). Given that r (.) 
is a simple linear function the existence of T-1 is therefore guaranteed. 
In fact, we have

r 1(p«) = Pi(f) + [(Ax); -  (dx) ,̂.] (8)

To illustrate the properties of the deterministic model with a sim
ple example, we consider 2 x 2 symmetric games, that is, games where 
every player must choose between the same two strategies. Let Ft(p) be 
the cumulative distribution of p =  p12 =  —p2i on R . This distribution of 
beliefs determines the distribution of strategies. As the t subscript indi
cates, this distribution will change endogenously over time, as the beliefs 
of each agent are updated according to (7). This is shown in Figure 2, 
(in the figure, a density function /  =  dF/dp is assumed; its existence is
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not necessaxy to the analysis of this section). In particular,

r-'Cp) >  P ■ F t+ A t(p )  =  Ft(p) +  dF =  Ft{T -\p))
T~\p) <  p : Ft+At(p) =  F (p )  -  / rp. I(p) dF =  Ft(T~\p))

Any agents possessing beliefs equal to T~1 (0) will update their beliefs to 
Po. If r _1(0) >  0, as is the case in Figure 2, F (0) will increase by the 
proportion of agents who possessed beliefs on the interval [0, r - 1(0)]. The 
linear nature of (7) implies that the whole distribution simply shifts to 
the left or to the right. This in turn will have an effect on the distribution 
of strategies. For example, an agent whose beliefs change from p =  1 to 
p — — 1 will change from her second to her first strategy. By definition, 
if F  is continuous at p =  0, that is, there is no mass of agents indifferent 
between strategies, aq — F (0) and hence

Xi(t +  A t) =  F ,(r_1(0)) -  FHKAx)! -  (A x)2]). (10)

That is, in Figure 2, X\ increases by an amount equal to the shaded area. 
It is not difficult to extend this analysis to games of n strategies. In a 
time interval of length At, the change in x, is given by

Xi(t +  A t) =  Ft(T -\ 0 ))  =  Ti<([(Ax)i -  (Ax) .*.]) , (11)

where F) is the joint cumulative distribution function of p,- on R " '1. 
Clearly, if a strategy i currently has a higher expected payoff than any 
other strategy, then the proportion of the population playing that strat
egy Xi is increasing. We can state that more formally as:

Lem m a 1 If (A x); >  (Ax); V j  ^  i then pij is strictly decreasing at 
a rate bounded away from zero V j  ^  i and x,- is increasing. If (A x)i — 
(Ax)j V j  then V j  ^  i, and x,- V i. are constant.

While the state variable of the PFP process is the distribution of 
agents’ beliefs, our main focus of interest is the distribution of strategies. 
We therefore define a fixed point for the PFP process as a population 
strategy profile which is unchanging under the dynamic specified by (7),
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even though beliefs may continue to change. We find a one-to-one corre
spondence between fixed points and strategy distributions that are Nash 
equilibria of the game. Mixed strategies are supported by the appropriate 
distribution of pure strategies across the population.

P roposition  2 A strategy profile q in the simplex Sn is a fixed point for 
the deterministic PFP dynamic if and only if it is a Nash equilibrium.

P roof: We can start by observing that if q is a Nash equilibrium 
then from (4) above, if 70 Q J is the set of strategies in the support of q, 
then

V i , j  G Jo (-4q); =  (.4q)j > (Aq)* V k £ I0 (12)

(a) If. If an agent plays i, she must prefer it. That is, u>i >  Wj V j . From 
Lemma 1 and (12), no agent will change preference either between the 
strategies in the support of q or toward any other strategy.

(b) Only if. Let q now denote a rest point which is not a Nash 
equilibrium. Let I0 C I  be the set of strategies in its support. If q  is 
not a Nash equilibrium then there must be a set of strategies /*. such 
that 3 i € J0 (Aq), < (Aq)*, V k £ /*. From (7), for each agent playing 
strategy i , w* — «;*, must be decreasing at a constant rate as long as the 
system is at q. Within finite time, a positive measure of agents playing 
i must switch to a strategy in Ik- Hence the system is no longer at q. □

The following propositions are also immediate consequents. 

P roposition  3 All pure strict Nash equilibria are asymptotically stable.

P roof: A pure strict Nash equilibrium is a state q 6 S„ with one 
strategy i in its support such that there exists an open ball B with centre 
q such that in Br\Sn, (Ax); > (A x)j V j  fi i. Clearly, if the system enters 
B  by the previous Lemma it cannot leave. While in B , for all agents, 
each pij V j  ^  i is decreasing at a non-vanishing rate. In finite time, all 
agents play i. □
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P roposition  4 All strictly dominated strategies have zero population 
share in finite time.

P roof: This follows immediately from Lemma 1. □

These results are hardly surprising given that we have a population 
of agents that play only best replies, but they are sufficient to show 
convergence for many games. However, because mixed strategy equilibria 
are never strict, to deal with them we will need to change our approach.

5 Positive Definite Dynamics

We will now modify our existing model in two important ways. First, we 
will move from discrete to continuous time. This is not a neutral step. 
Our defence is that a discrete time model implies that all players are 
matched, and hence update their behaviour, simultaneously, a degree of 
coordination unlikely in a large population. Second, it is necessary to 
impose additional assumptions to ensure that the distribution of beliefs 
is continuous. For example, if there were mass points, discontinuous 
jumps in the value of x would be possible as positive measures of players 
switched beliefs. As we have seen the deterministic cycles of normal ficti
tious play are possible even in the large population model, but only with 
extreme restrictions on initial beliefs. Indeed, any perturbation to the 
distribution of beliefs will change the dynamic behaviour substantially.

Zeeman (1981) faced a similar problem in modelling mixed-strategy 
evolutionary dynamics. We follow the same strategy of assuming that the 
distributions we consider are subject to noise. For Zeeman, who was con
sidering a biological model this was caused by mutations. Here, we can 
either assume that players make idiosyncratic, independently distributed 
mistakes in updating their beliefs, or, in the spirit of purification (see 
also Fudenberg and Kreps, 1993), we can imagine that each individual 
payoffs are subject to idiosyncratic shocks. More formally, we imagine a
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once-off shock of the form:

w (f +  At) =  w (t) +  77, (13)

where 77 is a vector of normally-distributed independent random variables 
each with zero mean and finite variance. This would rule out the pos
sibility of mass points of agents holding exactly the same beliefs. For 
example, in the two strategy case, if p =  -1  for all agents, that is, they 
all prefer their first strategy, with the addition of the noise, beliefs would 
instead be normally distributed with mean -1. We can choose the vari
ance of 77 sufficiently small such that the new distribution approximates 
the old arbitrarily closely. Indeed, as Zeeman notes, distributions which 
satisfy our conditions are open dense in the set of all distributions. We 
state these conditions in more detail:

A ssum ption o f  Continuity: the distribution of beliefs is such 
that Fi is absolutely continuous with respect to p ,. There exist continu
ously differentiable density functions f rj =  f ]t =  dFi/dpij on R "~1 such 
that fij >  0 everywhere on R n_1.

The last inequality in turn implies that aq(t) >  0 V 7, t. However, 
it is possible for the system to approach the boundary of the simplex 
asymptotically. Consider the case where there is a single strictly dom
inant strategy i. In the previous section, we saw that, without noise, 
within a finite time only that strategy would be played. Here, the noise 
means that some agents will always prefer other strategies, but over time 
the numbers doing so will drop away to zero. The reason is that, from 
(13), we have E\j>xj(t  +  At) -  Pij(t)] <  0 V j  ^  i, the strength of pref
erence for the dominated strategies is always decreasing. The result 
is that, lim^oo Pr [wj +  rjj >  w, +  77;] =  0. Hence, lim^oo x} — 0 and 
lim^oo F (0) =  1.

We are now going to take the continuous time limit. Returning to 
Figure 2, in discrete time, all agents with beliefs in the interval [0, 1 (0)]
changed strategy. As we will see, moving to continuous time is equivalent
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of taking the limit r_1(0) —► 0. That is, the rate of change at any given 
point in time is going to depend on the number of agents who are, at that 
instant, passing from preference of one strategy to preference of another. 
In other words, the rate of change will be proportional to the density of 
agents at the point of indifference, in Figure 2, /(0 ). Subtracting x, from 
both sides of (11),

Xi(t +  At) -  Xi(t) =  Fit( [ (Ax),. -  (A x )^ J  ) -  Fit(0 ). (14)

Given the presence of a random disturbance in (13), the reader may be 
surprised to see none in the above formula. The errors, however, have 
been subsumed in the distribution function F,-. Next, we divide through 
by A t and take the limit A< —► 0 to obtain

*.■ = E  K^x)i -  (^x)il /y(°)- (15)

If there is any doubt about this derivation, note that, it satisfies the chain 
rule dFi/dt =  dFt/dpx ■ dpi/dt, where the last term is the continuous 
time limit of (8). It is also consistent with the theory of surface integrals 
which scientists and engineers use to calculate the flow of fluid (in this 
case, beliefs) across a surface. It will be useful to write (15) in matrix 
form,

x =  Q(F(t) )Ax.  (16)

(For the sake of simplicity, we will often suppress the extra arguments 
that follow Q). Clearly, (15) is very close to the continuous-time replica
tor dynamics (3) and the linear dynamics proposed by Friedman (1991),

*< =  ^ E [ ( ^ x )>- ~  (A x)il (17)
n j&

In particular, if the distribution of beliefs is symmetric, such that /y  =  
fik, V j ,k ,  then the continuous time PFP is identical to the linear dy
namics. However, if the distribution is such that /y  =  XjXj, then the 
replicator dynamics are reproduced. In any case, without placing any re
strictions on the shape of the distribution, we have the following results

Lem m a 2
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1. Every element of Q is continuously differentiable in x,

2. limXi_ 0Qij =  0 V j ,

3. Qu =  0, where u denotes the vector (1,1,..., 1),

4- Q is positive semi-definite. That is, if A x is not a multiple of u
then A x ■ Q Ax >  0,

5. Q is symmetric.

P roof: Q has a diagonal Qa =  f2j^i fij and off-diagonal QtJ =  
Qji =  —fij. Satisfaction of Conditions 1 and 2 is guaranteed by the 
Continuity Assumption. Hence at a vertex of Sn, Q consists of zeros. 
Clearly Qu =  u Q — 0 . However, x • Qx =  fij(x i -  xj )2 > 0. □

Geometrically, the operator Q maps the vector of payoffs Ax from 
R n to the subspace R q = { z E R n : u • z =  0} (if the vector QAx did 
not add to zero then x would cease to add to one). It has nullspace u. 
That is, at a mixed Nash equilibrium where payoffs are equal (Ax is a 
multiple of u), x =  0. For other Nash equilibria, if a strategy j  is not in 
the support of q, then at q, f,j — 0. Because Q is positive definite the 
angle between Ax and Q Ax  is less than 90°. This last property is what 
Friedman (1991) calls “weak compatibility” .

Definition: Any dynamic of the form x  =  QAx, where the matrix 
Q, satisfies the above 5 conditions, we call a positive definite dynamic.

We can demonstrate that evolutionary concepts are important in 
the context of population fictitious play. In particular, we can show that 
all ESSs are asymptotically stable. First we need a preliminary result,

Lem m a 3 Any ESS q  is negative definite with respect to the strategies 
in its support. That is, (x — q) • A(x — q) <  0 for all x  with the same 
support as q (see van Damme, 1991; Theorem 9.2.7).
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The following lemma and proposition are based upon work of Hines 
(1980), Hofbauer and Sigmund (1988) and Zeeman (1981). However, the 
result obtained here generalises the above results and indeed extends 
beyond the continuous time PFP process to any dynamics which are 
symmetric positive definite transformations of the vector of payoffs Ax.

Lem m a 4 If A is negative definite when constrained to Rp (that is, 
x ■ Ax <  0 V x G R-q ), then QA is a stable matrix (i.e. all its eigenvalues 
have negative real parts when QA is constrained to RJJ).

P roo f: The eigenvalue equation is QAx =  Az for some z E CJ =  
{z  =  X\ +  Z2i € C n : z1; Z2 G R q}. We can construct a vector y such 
that z =  Qy, where z E Cj[. By the symmetry of Q. we have y c ■ Q =  xc 
where zc is the conjugate of the complex vector z. This gives us

y cQAz =  zc • Az =  Ayc • z =  Ayc • Q y  (18)

As Q is symmetric positive definite, y c • Qy is real and positive. The real 
part of zc ■ Az is negative, hence the real part of A is negative. Since all 
its eigenvalues are negative or have negative real part for eigenvectors in 
R q , QA  is a stable matrix on that space. □

A strategy profile q  is a regular ESS if it is an ESS that satisfies 
the additional requirement that all strategies that are a best reply to q 
are in its support. We are now able to prove

P roposition  5 All regular ESSs are asymptotically stable for any posi
tive definite dynamic.

P roof: Let q  be a fully mixed ESS. Differentiating Q (x)A x with 
respect to x and evaluating at q, we obtain Q(q)A  +  dQ/dx Aq. At a 
Nash equilibrium Q Ax  =  0. It follows that for each x t, dQ/dXi Aq =  0. 
Thus the Jacobian of the system at q is given by Q(q)A. By Lemma 4 
all its eigenvalues have real part negative.
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If a regular ESS q is on a face Sq C S„, that is, q, > 0 if and only 
if i; 6 Iq C I, then it is also asymptotically stable under the continuous 
time positive definite dynamic. Because it is an ESS, A is a negative 
definite form on Sq, and so is QA  is stable on Sq. It remains to show 
that the dynamic will approach Sq from the interior of Sn.

We adapt the proof of Zeeman (1981). Define A =  u q • A q—Aq. 
This is a vector whose tth element is zero for i E Iq and positive for 
i (f: Iq. Hence, we can define the function A =  A • x  > 0, with equality 
on Sq, and A =  A ■ QAx.. We choose an e such that for all x  in some 
neighbourhood of q, x =  q +  £ with | £, |< e, and | Qij \< e for i £ Iq by 
Conditions 1 and 2 of the definition of a positive definite dynamic. Then

ii = Qn(Aci) j + £<2,,A>*6
j iA

Now, if i ^ Iq then the first term of the above is of order e, the second is 
of the order e2. Thus, in the neighbourhood of q we can approximate A 
by A • Q (u q ■ Aq — A) =  —A • Q\ < 0 . □

What is particularly attractive about this result is that to deter
mine stability one no longer has to examine the potentially complicated 
function Q(x).  Instead, one can confine attention to the properties of A 
alone. For example, for the PFP dynamics it is not necessary to know the 
shape of the distribution of beliefs. The last two conditions on Q are the 
substantive ones. Positive definiteness is a necessary condition for stabil
ity. (If there is a y  such that y  ■ Qy <  0, set z =  Qy  and consider (18). 
If A is negative definite QA  must have at least one positive eigenvalue.) 
It becomes sufficient when combined with symmetry. Why this should 
lead to asymptotic stability for ESSs can be seen in the traditional eco
nomic terms of convexity and concavity. A “positive definite” dynamic 
is a gradient-climber. The negative definiteness of ESSs of course im
plies concavity. Any positive definite dynamic will move “uphill” toward 
the ESS. Condition 1 is the necessary condition for an unique solution 
to the differential equation (16). Condition 2 ensures that the dynamic 
remains upon the simplex. Of course, both the replicator dynamics and
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Friedman’s linear dynamics satisfy these conditions (the latter only on 
the interior of the simplex).

The importance of symmetry can be illustrated by comparing pos
itive definiteness with the Friedman’s (1991) concept of order compati
bility or the monotonicity of Nachbar (1990) and Samuelson and Zhang 
(1992). Monotonicity requires that Xi/x, >  ij/xj iff (Ax); >  (A x)j, and 
order compatibility, x, > i j  iff (Ax); > (A x ) j . It is easy to check that 
if a dynamic can be written x =  Q(x)Ax  both monotonicity and order 
compatibility imply the positive definiteness of Q (as Friedman points 
out order compatibility implies weak compatibility which is equivalent 
to positive definiteness). However, monotonicity and order compatibility 
do not imply symmetry. The existence of asymmetric order-compatible 
dynamics is what enables Friedman (1991) to demonstrate that ESSs may 
be unstable under order compatible dynamics. Similarly, there are dy
namics which are monotonic but which diverge from ESSs. Conversely, 
there are positive definite dynamics which are not monotone or order 
compatible.

In the case of only two strategies, for any such positive definite 
dynamic, we have

x\ =  <5n[(Ax)! -  (Ax )2] (19)

For 2 x 2  games, the orbits produced by the positive definite dynamics 
will, after a suitable rescaling, be identical.

P roposition  6 For 2 x 2  games, all positive definite dynamics generate 
orbits which are identical up to a change in velocity.

P roo f: Continuous dynamical systems are invariant under positive 
transformations, which represent a change in velocity (see for example, 
Hofbauer and Sigmund, 1988, p92). By positive definiteness Qn  is posi
tive on the relevant state space. □
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6 Mixed Strategy Dynamics

The replicator dynamics do not allow individuals the use of mixed strate
gies. As van Damme (1991) notes it would be preferable to examine 
mixed strategy dynamics which permit this possibility. The problem is 
that they are less tractable than the replicator dynamics which they gen
eralise. In this section, we are able to show that they also fall within 
the class of positive definite dynamics. Furthermore, we show that the 
aggregation of gradient learning can be treated in a similar manner.

Zeeman (1981, Section 5) examines the properties of the mixed- 
strategy replicator dynamics (see also Hines, 1980). The main assump
tion is that there is an infinite random-mixing (Story 3) population whose 
individuals play mixed strategies. Thus each individual can be repre
sented by a vector y 6 Sn. The population is summarised by a distribu
tion F  on Sn. The mean strategy in the population is given by x  =  /  y  dF 
and the symmetric covariance matrix Qm =  f ( x  — y )(x  — y) dF (m is for 
mixed-strategy dynamic). Zeeman worked only with distributions that 
were full, that is, distributions for which Qm has maximal rank amongst 
those populations having the same mean x. As noted above, Zeeman jus
tified this restriction by appealing to mutations. Summarising his results, 
we have

Lem m a 5 If x  is in the interior of Sn then z • Qmz >  0 for any z which 
is not a multiple of u. (Zeeman 1981, p265).

Assuming as for the pure strategy replicator dynamic that the pro
portional growth rate of a strategy is equal to the difference between its 
and the average payoff gives

/(y) = /(y)[y-Ax-x-Ax]

and hence

Lem m a 6 The dynamic for the mean mixed strategy satisfies x  — QmAx. 
(Zeeman 1981, p266).
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We can find similar results for the type of learning dynamics con
sidered by Harley (1982), Borgers and Sarin (1993), Crawford (1989) and 
Roth and Erev (1995). This may seem strange in that, first, Borgers and 
Sarin rightly point out this learning process when aggregated across a 
population of players is not identical to the replicator dynamics for ei
ther pure or mixed strategies, and that, second, Crawford proves that in 
such a large population, under such dynamics the mixed-strategy equi
librium of a simple game like (2) is unstable. However, Crawford’s def
inition of a mixed-strategy equilibrium is the state where every agent 
plays the equilibrium mixed-strategy, that is, in game (2), they all play 
their first strategy with probability a. However, I would argue that in a 
random-mixing population this definition is over-strict. It is possible to 
have a state where the average strategy in the population, and hence, the 
expected strategy of an opponent, is equal to the mixed strategy equi
librium, although no agent plays the exact mixed strategy equilibrium 
profile. For example, the ith member of the population could play her 
first strategy with probability a +  e, with ( t — 0.

We assume, as for fictitious play, that each player has a vector 
w , each element representing the “confidence” placed on each strategy. 
However, rather than choosing the strategy with the highest weight, each 
player plays strategy i with probability

W, W{

yi =  E?=i «;,• =  W '

Thus, here, in a similar way to the model of Zeeman, we can represent 
each individual as a point y  £ S„, distributed according to a function 
F. However, here we have to take account of the magnitude of W , the 
sum of an agents’ weights. We assume that they are distributed on R  
according to a function G, and let H be the joint distribution function 
(incorporating F  and G) on Sn x R . And again, in a large random-mixing 
population, the probability of meeting an opponent playing strategy i will 
be Xi, where again we define the population mean as x  =  /  y  dF. How
ever, rather than strategy distributions being changed according to an 
evolutionary process, each individual learns by adjusting the probability
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that she plays each strategy in relation to the payoff that the strategy 
earns. If a strategy is chosen, and playing that strategy yields a positive 
payoff, then the probability of playing that strategy is “reinforced" by 
the payoff earned. In particular, if an individual plays strategy i against 
an opponent playing strategy j .  then the zth element of w is increased 
by the resulting payoff

Wi(t +  At) = Wi(t) +  a,ij.

However, all other elements of w  remain unchanged. This is the “Basic 
Model” of Roth and Erev (1995), who give a number of reasons why 
this may be a reasonable approximation of human learning. Thus the 
expected change is given by,

E [wi(t +  Af)] =  yi (Wi{t) +  (Ax){) +  (1 -  yi)wi(t). (20)

There are three important differences between this learning rule and ficti
tious play. First, it is stochastic, not deterministic. Second, while under 
fictitious play, agents have a limited capacity for assessing what they 
might have received if they had used some other strategy, here agents 
only consider what actions they actually play and what payoffs they 
actually receive (this type of learning model was developed to analyse 
animal behaviour). Third, for the probabilities to remain well defined, 
we must require all payoffs to be non-negative10, and that all agents start 
with all elements of their vector w strictly positive. From (20), we can 
obtain

E [yi(t +  At) -  yi(t)\ =
yi ((-Ax)j — y • Ax) 

W  +  y • Ax
( 21)

This is a special case11 of the RPS rule of Harley(1982). Crawford (1989) 
characterises individual behaviour in a large population of players by the

10Either we consider only games with positive payoffs, or we add a positive constant 
to all payoffs sufficiently large to make them positive. Clearly such a transformation 
would make no difference to a game’s strategic properties, though, in a dynamic 
context it can change the rate of adjustment. See the discussion of discrete time 
processes in the next section.

11 The equation (21) can be obtained by setting what Harley calls the “memory 
factor” to 1, and taking the continuous time limit.

26

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



deterministic continuous time equation,

V i = 2/i[(^x)i - y  • Ax]. (22)

Borgers and Sarin (1993) show that by using a slightly different spec
ification of the updating rule one can obtain a continuous time limit 
similar to Crawford’s equation (22)12. The advantage of the approach of 
Borgers and Sarin and Crawford is that learning behaviour is easier to 
characterise, but only at the cost of additional assumptions.

In any case, the next step is to derive an expression for the evolution 
of the population mean. If we think of the change made by each agent as a 
draw from the distribution that describes the population, r,-(f+A t)—x,(f) 
is then the sample mean. Hence, the variance of the change in x, is 
decreasing in the number of agents. Thus, if the population is infinite, 
then the evolution of the population mean will be deterministic (the case 
of a finite population will be dealt with in the next section). We have

Xi(t +  A t) -  X i ( t )  =  f  E[y{(t +  At) -  yi(t)] dH
= / 2/i[(-4x)i -  y ■ Ax]/(W +  y • Ax) dH 
= -  y]/(W + y ■ Ax) dH ■ Ax.

where e, is a vector of zeros except for a 1 in the ith position and W  +  
y  • Ax > 0 (by the assumption of non-negative payoffs). We take the 
continuous time limit. This in turn gives us,

x = QgAx  (23)

where the ^-subscript is for gradient learning. The diagonal of Qg has 
the form /  ?/;(l — yi)/(W +  y ■ Ax) dH, the off-diagonal -  /  yiyj/(W +  
y • Ax) dH. Hence Qg is symmetric and Qgu =  0. Clearly z • Qgz =  
Yji^j I  yiVj/(W +  y • Ax) dH (zt- — zj)2 >  0. Consequently Qg is positive 
semi-definite. To obtain the model of either Borgers and Sarin (1993) or 
Crawford(1989) it simply necessary to set W  +  y • Ax =  1 for all agents. 
Clearly this would not change the conclusion that although Qg ^  Qm,

12It would be the same if Borgers and Sarin considered as did Crawford a single 
random-mixing population.
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P roposition  7 The mean of the mixed strategy replicator dynamic and 
the mean of the gradient learning process are positive definite dynamics.

This, together with Proposition 5, extends the existing results on 
gradient dynamics.

A n  Exam ple. Take the game (2), assume a — .5, that F (yf) =  y\, 
and hence X\ =  2/3. Under the mixed strategy replicator dynamics, we 
have f (y i)  =  2j/1[l/9  — j/i/3]. That is, those agents playing the first strat
egy with probability less than one third, and hence far from the equilib
rium strategy, are increasing in number. For the gradient dynamics, we 
have y i =  —J/x(1 — yi)/(6W +  2 — J/i)- In words, all agents are decreasing 
the weight they place on their first strategy. This also demonstrates the 
difference between the two dynamics. The evolutionary dynamic replaces 
badly-performing agents by better performers13, under the gradient dy
namics, all agents respond to the situation by changing strategy. As 
Crawford (1989) discovered, the state where all agents have y\ =  0.5 is 
not going to be stable. In this example, the agents who are currently 
playing the “equilibrium” mixed strategy (y\ =  0.5) are respectively dy
ing off and moving away from it. However, for both dynamics we have 
i i  =  Qu [1/2 — xj], and hence the mean strategy clearly approaches the 
equilibrium14.

7 A Stochastic Model

It is clear that the assumptions of continuous time and an infinite popu
lation have smoothed the path toward the results that we have obtained. 
However, how much can be maintained without them? This matters

13 Though perhaps this type of dynamic could be reproduced in a population that 
learns by imitation.

14Harley (1982, p624) reproduces two graphs of the results he obtained from sim
ulations of a similar game using his learning model. Two things are apparent: the 
population mean approaches the mixed strategy equilibrium, the strategy of individ
ual players (typically) does not.
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if we want, for example, to use this type of model, as do Gale et al. 
(1995) and Roth and Erev (1995), to predict the outcome of experimen
tal games. It is possible to recreate our assumption of random-matching 
in an experimental environment. Perhaps it is possible to repeat the 
matching sufficiently rapidly to approximate continuous time. However, 
a typical research budget is not adequate to support an infinite number 
of experimental subjects.

First, let us consider learning dynamics in discrete time. Consider 
a positive definite dynamic such that

x (i + 1 )  =  x(t) +  Q A x , (24)

where Q again satisfies the five conditions outlined above. In this case, 
pure strategies which are regular ESSs will be asymptotically stable, the 
second part of the proof of Proposition 5 applying equally well in discrete 
time. The problem is, as always, with mixed strategies. From (24), the 
linearisation at a fully mixed fixed point q  will be

I + Q(q) A  (25)

As we have shown, the eigenvalues of QA  axe negative. If however, they 
are too “large” , the absolute values of the eigenvalues of I  +  QA  will be 
greater than one. So it is possible for a discrete time positive definite 
process to diverge from a mixed ESS. This is going to depend on the 
magnitude of the change in strategy distribution made each period. In 
the case of a pure strategy equilibrium, it must be true that || x — q ||<|| 
QAx. || otherwise the dynamic would jump over the fixed point and out of 
the simplex. In contrast, unless the rate of change is sufficiently slow, it is 
possible to shoot right past a mixed-strategy equilibrium. Note that, for 
example, for the discrete time replicator dynamics given in (3), the rate of 
adjustment is decreasing in the constant D. Hence, stability of ESSs can 
be assured if D  is sufficiently large. In the case of gradient learning, the 
rate of change is decreasing over time as the size of individuals’ weights 
(W  in the notation of the last section) increases.

29

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



We now examine the relationship between the results obtained in 
Section 5 in a deterministic setting and those obtainable when the evolu
tion of play is stochastic. Learning and evolutionary systems with noise 
have been studied intensively in the recent literature, for example by 
Canning (1992), Kandori et al. (1993), Young (1993), Binmore et al. 
(1993). However, while these models are driven by mistakes or muta
tions, the noise in this model presented in this section is a consequence 
of the matching mechanism and the consequential heterogeneity of infor
mation. We assume a population of N  players repeatedly (we continue 
to work in discrete time) randomly matched according to Story 3. Under 
the decentralised matching scheme, Story 3, when the population of play
ers is finite, each player may have a different estimate of the frequencies 
of strategies in the population according to his random history of oppo
nents. We show, using the PFP process, that this produces significantly 
different results than the noise produced by mistakes.

In this context, gradient learning and fictitious play part company. 
A state q is absorbing if Pr(x(t +  1) ^  q | x (f)=  q) =  0. That is, if 
the system reaches an absorbing state, it will never leave. For gradient 
learning the vertices of the simplex are absorbing: if an agent plays any 
strategy with probability one, she can learn no new strategies. This is not 
the case for fictitious play. In a deterministic setting (Section 4), there 
was a one-to-one relationship between fixed points and Nash equilibria, 
but now only a subset of Nash equilibria are absorbing.

P roposition  8 A state q is absorbing for the stochastic PFP if and only 
if for any strategy i in the support of q,

1. an >  aji V j  and

2. an <  V k in the support of q.

That is, an absorbing state must be a Nash equilibrium in pure 
strategies or an element of a continuum of Nash equilibria between two 
or more pure Nash equilibria.
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P roof: If there is only one strategy i in the support of q, then 
clearly Condition 1, which is also the condition for i to be a Nash equi
librium strategy, is necessary and sufficient for a state to be absorbing. 
This follows as if all agents play i , they must prefer it. Further encoun
ters with opponents playing i, since it is a best reply to itself, can only 
reinforce that preference. If Condition 1 fails, and hence there exists an
other strategy j  which is a better reply to i, then for all players Wj — w, 
will increase monotonically and at a constant rate. Within finite time, at 
least one agent will change strategy. If there is more than one strategy 
in the support of q, if Conditions 1 and 2 hold, no sequence of matches 
will change any player’s relative preference over strategies either in or not 
in the support of q. However, for any agent playing strategy k (in the 
support of q) there is a non-zero probability of being matched m times in 
succession with opponents playing some other strategy i in the support 
of q. Clearly, there is a finite m such that this player will switch to i, if 
Condition 2 fails, and to j  if Condition 1 does not hold. □

One implication of this result is that the stochastic PFP process 
selects against weakly-dominated strategies in a way that evolutionary 
or learning processes that depend on the aggregate state of the popu
lation, do not. In (26) there is a game taken from Samuelson (1994). 
The strategy T (weakly) dominates M. However, there is a continuum 
of Nash equilibria, where a weight up to one half is placed on M . In 
Samuelson (1994), agents respond to the expected return to the differ
ent strategies, that is, the current overall state of the population. The 
matching scheme is Story 2 in our terminology. Hence all the elements 
of the continuum are fixed points of the adjustment process. Samuelson 
shows that even the introduction of noise generated by mistakes will not 
eliminate the play of the weakly dominated strategy M. However, by 
the above proposition, the only absorbing state for the PFP process is 
the pure strategy equilibrium. This is because the noise produced by the 
matching process implied by Story 3 in a finite population is different 
than that generated by mistakes or mutations. In the case of (26), when 
there is a mixture of T  and M  in the population, there is always a pos
sibility, by meeting sufficient times, an opponent playing strategy M , for
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a player to switch to strategy B. This causes selection against strategy 
M.

T M B
T 1 1 1
M 1 1 0
B 0 2 0

(26)

We turn now to the question of stability of equilibria. Obviously, 
it is not possible to obtain the same type of convergence result as we 
did in a deterministic setting. What we can achieve is a result on the 
time averages of the learning process. Without the assumption of an 
infinite population the mean of the gradient learning process in a finite 
population satisfies15,

E [x(t +  1) -  x(t)] =  QgAx. (27)

We can expect the evolution of x to be similar to the deterministic case, 
particularly as it is already an average, whose variance is decreasing in 
the size of the population.

For fictitious play, the problems are worse. For example, one impli
cation of Proposition 8 is that mixed ESSs are not absorbing16. Worse, 
they may not even exist. For example, it is not easy to support a mixed 
strategy equilibrium of (1 /3 ,1 /3 ,1 /3 ) when N  is not divisible by 3. In 
the case of the PFP for each agent the expected change in beliefs will 
be the same as the actual change in beliefs in the deterministic model. 
That is, from (7),

E\pi(t +  1)] =  Pi(t) +  [{Ax)jlti -  (Ax);].

If we maintain the Continuity Assumption, from (14) we have

E[xi(t +  1) -  x{(t)} es £  [(Ax); -  (Ax)_,] fij{0). (28)
jf r

15This is obtained simply by integrating (21) across the population.
16Mixed ESSs are always isolated and are never linear combinations of two pure 

strategy equilibria.

32

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



This approximation may be less than perfect. Hence, we assume

x(t +  1) -  x(t) =  QAx +  o(x). (2 9 )

This last object is a vector of random variables of length n, in which is 
wrapped up the errors generated by the approximation (28), the random 
element introduced by the matching scheme, and the inaccuracies intro
duced by representing a discrete state space (N  players) by a continuous 
variable x. We assume o(x) • u =  0 (this is necessary simply to insure 
that the dynamic is well defined and remains within the simplex), and 
i?[0(x) • o(x)] is finite. That is, all the o, have finite variance. Finally, 
we need lim3:i_*o 0» >  0, again to ensure that the dynamic does not leave 
the simplex. However, it also reflects the fact that in a state where only 
one strategy is played, the noise caused by a random matching process 
is non-existent. We do not assume that i?[o(x)] =  0, but the somewhat 
weaker condition that lim;r_00 j, Y1 o(x) =  0. That is, all the errors dis
cussed are in the long-run unbiased. Note that (29) includes (27) as a 
special case.

That is, m ir  is the time average of x  over the periods 1 to T. Then,

If T  is “large” , the last term in the above equation should tend to zero. In 
other words, as time goes by the behaviour of the time average m  of the 
discrete time stochastic process should approximate the evolution of the 
strategy frequencies x under the deterministic discrete time process (24) 
ever more closely. As for the deterministic process, stability will depend 
on the rate of adjustment. Thus, we state the next result as a conjecture 
as we cannot prove that, even for an ESS, that given the linearisation 
(25), that all eigenvalues have absolute value less than one.

Let

miT+i — m or +  P Am 0T -I- ^  o(x)
J +  i  no

(30)
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C onjecture 1 If a game possesses an unique mixed ESS, q, then under 
fictitious play or gradient learning, from any fully-mixed initial condi
tions, lim^oo m lf =  q.

This is on one level a very weak claim. With gradient learning dy
namics, for example, even though a game possesses an unique mixed ESS, 
all we ask is that the time average of the average strategy should converge 
to the equilibrium. Thus we would not (necessarily) have convergence 
for either individual players or individual time periods. However, it is a 
result that can be tested by experiment, particularly in the sense that, 
as we will now see, there are games which possess an unique Nash equi
librium yet for which even this weak form of convergence will not hold.

Figure 2 graphs the time averages of play produced by simulations 
of the PFP process in a population size of 12. The game played was

a ;A  > 0 , * =  1,2,3 (31)

which possesses an unique mixed equilibrium at (1 /3 ,1 /3 ,1 /3 ). Sim
ulation (a) was produced with a, =  3,6, =  1 i =  1,2,3, and (b) with 
a,- =  1, b\ =  3. In case (a), the equilibrium is negative definite and there is 
convergence, but in case (b), even the time averages diverge. We explain 
this result in the next section.

0 a i - 6 1

— 6 2 0 a 2

d 3 —  6 3 0

8 Games without ESSs

Since the concept of an ESS is a strong refinement on Nash equilibrium 
and consequently there are many games which do not possess any equi
librium which satisfies its conditions, one might wonder how positive 
definite dynamics perform in these cases. For any constant-sum game 
for any x, x ■ A x =  v, where v is the value of the game. It follows, if the 
game has a fully mixed equilibrium q, that (x — q) • A (x — q) = 0 . From 
Proposition 5 and in particular (18) we have that,
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0.5 -

0.2 -

0 10 20 30 40 50 60 70 80 90 100
(a)

Figure 3: Time averages (m u ’) of play from a simulation of fictitious 
play in a random mixing population.
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C orollory 1 The eigenvalues of any differentiable positive definite sys
tem at a fully mixed Nash equilibrium of a zero-sum game have zero real 
part.

This result unfortunately is of the “anything can happen” type. For 
the linear dynamics (17), because they are linear, the Corollary implies 
that such an equilibrium must be a neutrally stable centre (it is easy 
to check that V  =  |(x — q) • (x — q) is a constant of motion in this 
case). For non-linear dynamics the fact that their linearisations have 
zero eigenvalues may hide asymptotic stability or instability.

Secondly, there are games which possess equilibria which are pos
itive definite. It is an obvious corollary of Proposition 5 that positive 
definite dynamics diverge from such equilibria. This can prove useful in 
terms of equilibrium selection. Unstable positive definite equilibria can 
be rejected in favour of stable ESSs. This works well in games with both 
ESSs and positive definite equilibria. But the game (31) has an unique 
equilibrium which, for example, for a; =  1,6; =  3, i =  1,2,3 is positive 
definite. Hence, no positive definite dynamic can converge. This might 
seem problematic, but in fact it offers a strong empirical prediction. For 
rational players under the full-information assumptions of conventional 
game theory, for a game with an unique Nash equilibrium it should not 
matter whether it is positive or negative definite. However, we can con
jecture that in a random-matching environment under experimental con
ditions, the strategy frequencies of human subjects would converge if, 
for example, a,- =  3 and 6; =  1 but not if a, =  1 and 6; =  3 (Figure 2 
shows the results of simulations of fictitious play for these parameter val
ues). This conjecture we can make with a degree of confidence because 
so many different specifications of adaptive learning are consistent with 
positive definite dynamics. Furthermore, in discrete time, if q is a posi
tive definite equilibrium, and hence QA  has positive eigenvalues, then all 
the eigenvalues of the linearisation (25) are clearly greater than one and 
the equilibrium will most certainly be unstable. Such divergence is not 
necessarily “irrational” or “myopic” . Indeed, if a,- =  1,6; =  3, i =  1,2,3
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average payoffs are at a minimum at the mixed equilibrium. Divergence 
increases average payoffs.

The robustness of these results, however, does depend on the prop
erty of positive or negative definiteness. For equilibria which axe neither 
positive neither negative definite, it is possible for stability properties to 
vary according to the exact specification of the dynamics. Such equilib
ria can be attractors or repellors. Using (31) again as an example, the 
pure strategy replicator dynamics converge iff aia2a3 > bib2b3, the linear 
dynamics iff ffli +  a2 +  a3 > b\ +  b2 +  63, while simulation suggests that 
the PFP dynamics will converge to any equilibrium of the game which is 
not positive definite.

9 Conclusion

There has been some debate as to whether the replicator dynamics, in 
spite of their biological origins, can serve as a learning dynamic for human 
populations. The results obtained here on one level give some support 
to the skeptics. The aggregation of learning behaviour across a large 
population is not in general identical to the replicator dynamics, in either 
their pure or mixed strategy formulation. However, it is clear that all 
these dynamics, whether of learning or evolution, share many of the same 
properties.

This is valuable in that, as the literature on learning and evolu
tion has been growing at a significant rate over the past few years, there 
has been a proliferation of different models and consequently different 
results. The hope here is that we have obtained a result that is rea
sonably robust: ESSs are asymptotically stable for many apparently dif
ferent adaptive processes when these processes are aggregated across a 
large random-mixing population. An ESS is quite a strong refinement 
on Nash equilibrium. Furthermore, it has been discredited in the eyes 
of some because it does not correspond exactly to asymptotic stability 
under the pure strategy replicator dynamics (Proposition 1). However,
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these are not the only dynamics of interest, and for results on stability 
that are robust to different specifications, the concept of ESS is the one 
that is relevant. In extending existing results on fictitious play, gradient 
learning and mixed-strategy replicator dynamics, it has been the negative 
definiteness of ESSs which has been essential.

Researchers have begun to test the predictions of models of learn
ing and evolution by carrying out experiments. The results presented 
in this paper may be relevant in several ways. First, Mookherjee and 
Sopher (1994), for example, attempt to determine whether fictitious play 
or gradient type rules best describe the learning behaviour of their sub
jects. As we have shown, the differences between these two types of 
model, in a random-matching environment at least, are smaller than 
previously thought. Our results would also point to a reason why Gale 
et al. (1995), using the replicator dynamics, and Roth and Erev (1995), 
using a gradient type learning process obtain similar results in trying 
to simulate the behaviour of experimental subjects playing the ultima
tum bargaining game. Second, there has been some debate (Brown and 
Rosenthal, 1990; Binmore, Swierzbinski, and Proulx, 1994) about what 
constitutes convergence to equilibrium in experimental games. What we 
show here is that it may be foolish to expect more than convergence in 
the average strategy in a population of players. Thirdly, we offer further 
predictions to be tested. Games which possess ESSs should converge. 
For games which possess positive definite equilibria, our predictions are 
equally clear. Learning processes should not converge to such equilibria.

Finally, as we noted in Section 1, under fictitious play for some 
mixed strategy equilibria there is convergence in beliefs without conver
gence in play. In the random-mixing models considered here, the opposite 
is possible. The distribution of strategies in the population matches ex
actly the equilibrium strategy profile. However, individual agents play 
any mix over the strategies in its support, including a single pure strategy. 
One might say that none has “learnt” the mixed strategy equilibrium, but 
equally, given the assumption of random matching none has an incentive 
to change strategy.
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