

EUI WORKING PAPERS IN ECONOMICS

EUI Working Paper ECO No. 95/27

Cointegration, Codependence and Economic Fluctuations

Giampiero M. Gallo
and Hubert Kempf

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 95/27

Cointegration, Codependence and Economic Fluctuations

GiAmpiero M. Gallo and
Hubert Kempf

All rights reserved.
No part of this paper may be reproduced in any form without permission of the authors.
© Giampiero M. Gallo and Hubert Kempf
Printed in Italy in July 1995
European University Institute
Badia Fiesolana
I - 50016 San Domenico (FI)
Italy

Cointegration, Codependence and Economic Fluctuations *

Giampiero M. Gallo

Dip. di Statistica "G. Parenti"
Università di Firenze
Viale Morgagni, 59
I-50134 Firenze, Italy and

Economics Department
European University Institute
GALLOG @ DATACOMM.IUE.IT

Hubert Kempf
MAD, Université de Paris I
Pantheon-Sorbonne
90, Rue de Tolbiac
75013 Paris, France and

Economics Department
European University Institute
KEMPF @ DATACOMM.IUE.IT

May 1995

Abstract

The transmission of innovations to macroeconomic variables is traditionally studied concentrating on their permanent effects. Yet, there is no conclusive evidence that only the long-term dynamics should be of interest. In this paper we offer a method based on the notion of codependence to identify the structural innovations contributing to the stationary part of a vector of cointegrated (1,1) variables. To achieve this, we introduce the notion of common cycles of order i and of a complete set of common cycles, whose implications for economic fluctuations are fully derived and discussed.

[^0]
1 Introduction

In their seminal paper on the sources of fluctuations in the presence of trends common to a set of nonstationary variables, King, Plosser, Stock and Watson ([9], henceforth KPSW) offered a method to identify the influence of "structural" innovations on the dynamics of a set of variables, on the basis of an estimated VAR system. This method proved to generate quite challenging results for macroeconomists. A major conclusion reached by KPSW is in fact that a structural innovation satisfying the usual assumptions associated to a real productivity shock seems to have a much smaller contribution to economic fluctuations than advocated by a standard real business cycle model. This is a point which is even more forcefully proposed by Cochrane ([3]), who presents a very skeptical view on the existing evidence in the literature.

However, in spite of its novelty and interest, this method is restricted to the identification of "permanent" structural innovations, that is innovations having a nonstationary impact on the economic variables, as it concentrates on the common trends representation. Mellander, Vredin and Warne ([12], henceforth MVW) extending the work of KPSW have suggested a method to be applied to transitory innovations, but have been unable to implement it empirically, recognizing that the "question about the nature of the transitory shocks deserve further study" (MVW, p.376).

The issue is clearly of major importance for applied macroeconomics, since it hinges around important debates such as the one on short term neutrality of money (King and Watson, [10]), on the importance of short run price stickiness (Ball and Mankiw, [1]), or on the dynamics of the deviations from purchasing power parity (MacDonald and Taylor, [11]).

The purpose of this paper is to offer a method for the identification of an economic system's responses to transitory innovations, totally consistent with the data. The method we propose draws heavily on the
notion of codependence offered by Gourieroux and Peaucelle ([7]) and Engle and Kozicky ([6]), and applied to a nonstationary environment by Vahid and Engle ([15] - VE1, [16], VE2). There is a close parallel between the notions of cointegration and codependence, and between the notions of common trends and common cycles. There is codependence among stationary series when at least one linear combination of them exists which is of smaller moving average order than others. As shown by VE1, a strong form of codependence (or serial correlation common feature as defined by Engle and Kozicki, [6]) among the first differences of cointegrated variables implies that a linear combination of the variables is a pure white noise, or, which is the same, that part of their stationary dynamics is generated by common shocks. In other words, these variables share common cycles.

In this paper we shall develop the concept of a complete set of common cycles, showing how it allows us to totally identify the dynamics generated by transitory innovations. This is so because, when the data exhibit a complete set of common cycles, the variables can be decomposed into two components, namely common trends and common cycles. Interestingly, the notion of a complete set of common cycles implies that all common cycles need not be defined for the same period.

To avoid ambiguities since the concept of "structure" has several meanings in economics and econometrics, it has to be stressed that the identification of structural innovations, be they permanent or transitory, by no means corresponds to identifying "the" structural model of an economic system, nor to characterizing these innovations from an economic point of view such as "money supply" shocks or "wage shocks", and so on.

The aim of an identification exercise is just to make explicit the dynamic effects of a given (and unobservable) disturbance on a set of variables when the empirical evidence provides testable restrictions which need to be taken into account. It is the task of economic theory to offer plausible explanations of these effects, through suitable economic reasoning and modelling. Once this is done, the identification exercise allows for the assessment of the relative importance of several economic innova-
tions, the way these are suggested and labelled according to the theory, which is impossible to do directly from the estimated relationships.

The structure of the paper is as follows: Section 2 summarizes some results from KPSW and MVW, showing the implications for the identification of innovations (or, equivalently, on the system's response to innovations). In Section 3, we develop the tools related to codependence which shall be used later. In Section 4, we show how the results on the identification of shocks to the permanent and transitory components of the variables change when both cointegration and codependence are taken into account. The method allows us to understand the relative contribution of each shock to the dynamics of a given economic system. Concluding remarks follow.

2 The Representation of Economic Fluctuations

2.1 Reduced Form Representation

Let us denote the ($n \times 1$) vector of nonstationary $\mathrm{I}(1)$ variables, whose dynamic evolution is of interest, as \mathbf{x}_{t}. We will assume that these variables are cointegrated of order $(1,1)$ and that a stationary Wold representation exists for the first differences of the variables

$$
\begin{equation*}
\Delta \mathbf{x}_{t}=\mathbf{C}(L) \boldsymbol{\varepsilon}_{t} \tag{1}
\end{equation*}
$$

where $\mathbf{C}(L)$ is a $(n \times n)$ matrix polynomial in the lag operator $L\left(L^{j} z_{t}=\right.$ $\left.z_{t-j}\right)$, namely $\left(\mathbf{C}(L)=\mathbf{I}+\mathbf{C}_{1} L+\mathbf{C}_{2} L^{2}+\ldots\right)$, with $\sum_{j=0}^{\infty} j\left|\mathbf{C}_{j}\right|<$ $\infty, \varepsilon_{t} \sim$ i.i.d. $(\mathbf{0}, \boldsymbol{\Sigma})$ and serially uncorrelated ${ }^{1}$. The matrix $\mathbf{C}(1)=$ $\sum_{j=0}^{\infty} \mathbf{C}_{j}$ represents the long-run impact matrix and summarizes the longrun stochastic dynamics of the system. Its meaning is clear when deriving the corresponding expression for the levels of the variables by backward

[^1]recursive substitution,
\[

$$
\begin{equation*}
\mathbf{x}_{t}=\mathbf{x}_{0}+\mathbf{C}(1) \sum_{j=0}^{t-1} \varepsilon_{t-j}+\mathbf{C}^{*}(L) \varepsilon_{t} \tag{2}
\end{equation*}
$$

\]

where $\mathbf{C}(1)=\sum_{j=1}^{\infty} \mathbf{C}_{j}$ and $\mathbf{C}_{j}^{*}=\sum_{i>j} \mathbf{C}_{i}$. In fact, assuming the presence of $0<r<n$ vectors of cointegration arranged in a matrix $\boldsymbol{\alpha}$ of dimension ($n \times r$) implies (by definition) that

$$
\begin{align*}
\boldsymbol{\alpha}^{\prime} \mathbf{C}(1) & =\mathbf{0} \tag{3}\\
\operatorname{rank}[\mathbf{C}(1)] & =n-r \equiv k \tag{4}
\end{align*}
$$

The restrictions implied by cointegration are detected (e.g. Johansen, [8]) from a finite order $\operatorname{VAR}(\mathrm{p})$ model for $\mathbf{x}_{t}=\Pi_{1} \mathbf{x}_{t-1}+\ldots+\Pi_{p} \mathbf{x}_{t-p}+\varepsilon_{t}$, reparameterizing it into a vector error-correction model (VECM) to read

$$
\begin{equation*}
\Delta \mathbf{x}_{t}=\Pi_{1}^{*} \Delta \mathbf{x}_{t-1}+\ldots+\Pi_{p-1}^{*} \Delta \mathbf{x}_{t-p-1}+\Pi \mathbf{x}_{t-p}+\varepsilon_{t}+\varepsilon_{t} \tag{5}
\end{equation*}
$$

where $\Pi_{i}^{*}=-\mathbf{I}+\Pi_{1}+\ldots+\Pi_{i}$ and $\boldsymbol{\Pi}=-\left(\mathbf{I}-\Pi_{1}-\ldots-\Pi_{p}\right)$. The presence of cointegration is such that the $(n \times n)$ matrix Π is of reduced rank r and can be expressed as the outer product of the two $(n \times r)$ matrices of rank r

$$
\begin{equation*}
\Pi=\beta \alpha^{\prime} \tag{6}
\end{equation*}
$$

where $\boldsymbol{\beta}$ is a matrix of loadings representing the impact of the stationary combinations $\boldsymbol{\alpha}^{\prime} \mathbf{x}_{t-1}$ on $\Delta \mathbf{x}_{t}$ (cf. Johansen, [8]).

2.2 Structural Form Representation

Let us consider that economic variables are the outcome of the dynamic propagation of economically interpretable shocks through the system. Some shocks are termed permanent since they are the only to contribute to the long-run dynamics of the variables \mathbf{x}_{t} and others are termed transitory, since they contribute just to the short-run dynamics. Therefore, we will assume, following the analysis by Blanchard and Quah ([2]) and KPSW that there exists a data generating process such that

$$
\begin{equation*}
\Delta \mathbf{x}_{t}=\Gamma(L) \boldsymbol{\eta}_{t} \tag{7}
\end{equation*}
$$

where $\boldsymbol{\eta}_{t}$ is a $(n \times 1)$ vector of underlying structural shocks, unobserved random variables characterized by zero mean, identity variancecovariance matrix ${ }^{2}$ and serial uncorrelation, with $\Gamma(L)=\Gamma_{0}+\Gamma_{1} L+\ldots$. In fact, (1) can be seen as a reduced form representation in which the ε_{t} vector represents a mixture of $\boldsymbol{\eta}_{t}$.

In order for (7) to be identified we need to adopt the following restrictions

$$
\begin{align*}
\boldsymbol{\varepsilon}_{t} & =\boldsymbol{\Gamma}_{0} \boldsymbol{\eta}_{t} \tag{8}\\
\boldsymbol{\Gamma}(1) & =\left(\tilde{\boldsymbol{\Gamma}}_{g} \mid \mathbf{0}\right) \tag{9}
\end{align*}
$$

where Γ_{0} is an invertible matrix and $\tilde{\Gamma}_{g}$ is a $(n \times k)$ matrix ${ }^{3}$. Pairwise comparison between (1) and (7) shows that

$$
\begin{equation*}
\mathrm{C}_{i} \boldsymbol{\Gamma}_{0}=\boldsymbol{\Gamma}_{i} \quad \forall i>1 \tag{10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathbf{C}(L) \boldsymbol{\Gamma}_{0}=\boldsymbol{\Gamma}(L) \quad \text { and } \quad \mathbf{C}(1) \boldsymbol{\Gamma}_{0}=\boldsymbol{\Gamma}(1) \tag{11}
\end{equation*}
$$

Again, we can write the structural form representation for the levels which provides a clear interpretation on the nature of the shocks. Let us partition the vector $\boldsymbol{\eta}_{t}$ into two subvectors $\boldsymbol{\eta}_{1 t}(k \times 1)$ and $\boldsymbol{\eta}_{2 t}(r \times$ 1), respectively. Correspondingly, the matrix Γ_{0} can be partitioned by column as $\boldsymbol{\Gamma}_{0}=\left(\boldsymbol{\Gamma}_{0 g} \mid \boldsymbol{\Gamma}_{0 s}\right)$ of suitable dimensions. We have,

$$
\begin{align*}
\mathbf{x}_{t} & =\boldsymbol{\Gamma}(1) \sum_{j=0}^{t-1} \boldsymbol{\eta}_{t-j}+\boldsymbol{\Gamma}^{*}(L) \boldsymbol{\eta}_{t} \\
& =\mathbf{x}_{0}+\tilde{\boldsymbol{\Gamma}}_{g} \sum_{j=0}^{t-1} \boldsymbol{\eta}_{1, t-j}+\boldsymbol{\Gamma}^{*}(L) \boldsymbol{\eta}_{t} \tag{12}
\end{align*}
$$

[^2]with $\boldsymbol{\Gamma}(1)$ and $\boldsymbol{\Gamma}^{*}(L)$ defined analogously as $\mathbf{C}(1)$ and $\mathbf{C}^{*}(L)$. The expression (12) can be written in the more familiar common trend representation (Stock and Watson, [13]) which highlights the contributions of the elements of $\boldsymbol{\eta}_{t}$ to the dynamics of \mathbf{x}_{t}. We have
\[

$$
\begin{equation*}
\mathbf{x}_{t}=\mathbf{x}_{0}+\tilde{\Gamma}_{g} \boldsymbol{\tau}_{t}+\Gamma^{*}(L) \boldsymbol{\eta}_{t} \tag{13}
\end{equation*}
$$

\]

where

$$
\boldsymbol{\tau}_{t}=\boldsymbol{\tau}_{t-1}+\boldsymbol{\eta}_{1 t}=\boldsymbol{\tau}_{0}+\sum_{j=0}^{t-1} \boldsymbol{\eta}_{1, t-j}
$$

is the common trend component which is nonstationary $I(1)$ and of size $k<n$. From (13) it is clear, that the first term is $I(1)$ and the second is $I(0)$. Thus the subvector $\boldsymbol{\eta}_{1 t}$ contains the innovations contributing to the permanent component $\boldsymbol{\tau}_{t}$ of \mathbf{x}_{t} (sometime called the permanent innovations) while $\boldsymbol{\eta}_{2 t}$ contains the innovations not contributing to the permanent component $\boldsymbol{\tau}_{t}$ of \mathbf{x}_{t} (sometime called the temporary innovations). The latter denomination is somewhat misleading since the transitory $I(0)$ component $\boldsymbol{\Gamma}^{*}(L) \boldsymbol{\eta}_{t}$ is determined by both $\boldsymbol{\eta}_{1 t}$ and $\boldsymbol{\eta}_{2 t}{ }^{4}$. The short-run dynamics is clearly determined by all structural shocks, so that if we want to obtain the dynamic multipliers of $\boldsymbol{\eta}_{t}$ to \mathbf{x}_{t}, we need to identify all the Γ_{j} matrices $(j \geq 0)$. On the basis of (10), the problem then reduces itself to the study of the matrix Γ_{0}, since the matrices \mathbf{C}_{j} can be estimated.

It is important to identify these matrices because they allow us to obtain the structural impulse-response functions, since they are defined as

$$
\frac{\partial \Delta x_{i, t+h}}{\partial \eta_{j t}}=\gamma_{i j}^{h}
$$

where $\gamma_{i j}^{h}$ is the i, j - th element of the matrix $\boldsymbol{\Gamma}_{h}$.

[^3]
2.3 Cointegration and the Identification of the Structural Innovations

In this subsection we will recall the formulas for the identification of shocks to the permanent and transitory components, as derived by KPSW and MVW under the hypothesis of the presence of just cointegration. We will see in section 4 that considering the presence of codependence alters substantially these results.

Recall that the conditions (8) and (9) ensure that there is no other structural innovation vector $\boldsymbol{\eta}_{t}^{*}$ giving rise to the same reduced form (1). Hence, let us consider the expression linking structural and reduced-form shocks

$$
\begin{equation*}
\Gamma_{0}^{-1} \varepsilon_{t}=\boldsymbol{\eta}_{t} \Longleftrightarrow\binom{\mathrm{G}}{\mathrm{~K}} \varepsilon_{t}=\binom{\boldsymbol{\eta}_{1 t}}{\boldsymbol{\eta}_{2 t}} \tag{14}
\end{equation*}
$$

where the ($k \times n$) matrix \mathbf{G} represents the inverse mapping from \Re^{n} to \Re^{k}, disentangling the shocks contributing to the permanent component and the ($r \times n$) matrix \mathbf{K} represents the inverse mapping from \Re^{n} to \Re^{r}, disentangling the shocks contributing just to the transitory component.

When considering just the implications of cointegration, the expression for \mathbf{G} can be found under the hypothesis of an identity variancecovariance matrix for $\boldsymbol{\eta}_{t}$ by following MVW. The matrix \mathbf{G} is given by 5

$$
\begin{equation*}
\mathbf{G}=\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \mathbf{C}(1) \tag{16}
\end{equation*}
$$

${ }^{5}$ In fact, from (11) and (14) we have

$$
\left\{\begin{array}{l}
\tilde{\boldsymbol{\Gamma}}_{\boldsymbol{r}} \boldsymbol{\eta}_{1 t}=\mathbf{C}(1) \varepsilon_{t} \tag{15}\\
\mathbf{G} \boldsymbol{\Sigma} \mathbf{G}^{\prime}=\mathbf{I}_{k}
\end{array}\right.
$$

we have that

$$
\begin{aligned}
\tilde{\boldsymbol{\Gamma}}_{g} \tilde{\boldsymbol{\Gamma}}_{g}^{\prime} & =\mathbf{C}(1) \boldsymbol{\Sigma} \mathbf{C}(1)^{\prime} \\
\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g} \tilde{\Gamma}_{\boldsymbol{\Gamma}}^{\prime} \tilde{\mathbf{I}}_{g} & =\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \mathbf{C}(1) \boldsymbol{\Sigma C}(1)^{\prime} \tilde{\boldsymbol{\Gamma}}_{g} \\
\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\mathbf{\Gamma}}_{g}^{\prime} \mathbf{C}(1) \boldsymbol{\Sigma C}(1)^{\prime} \tilde{\mathbf{\Gamma}}_{g}\left(\tilde{\mathbf{\Gamma}}_{g}^{\prime} \boldsymbol{\Gamma}_{g}\right)^{-1} & =\mathbf{I}_{k}
\end{aligned}
$$

There is another way to see how the common trend representation arises. Considering

$$
\mathbf{x}_{t}=\mathbf{x}_{0}+\mathbf{C}(1) \sum_{j=0}^{t} \varepsilon_{t-j}+\mathbf{C}^{*}(L) \varepsilon_{t}
$$

and noticing that $\mathbf{C}(1)$ is of reduced rank k, we can rewrite it as $\tilde{\Gamma}_{g} \mathbf{G}$ and hence represent \mathbf{x}_{t} as

$$
\mathbf{x}_{t}=\mathbf{x}_{0}+\tilde{\Gamma}_{g} \mathbf{G} \sum_{j=0}^{t} \varepsilon_{t-j}+\mathbf{C}^{*}(L) \varepsilon_{t} .
$$

Then, from (13), it is clear that

$$
\boldsymbol{\tau}_{t} \equiv \mathrm{G} \sum_{j=0}^{t} \varepsilon_{t-j} \equiv \sum_{j=0}^{t} \boldsymbol{\eta}_{1, t-j}
$$

which highlights in a more direct way the nature of the common trends as random walks from zero mean, unit variance, uncorrelated random shocks, and the fact that the matrix \mathbf{G} acts as to map $\varepsilon_{t} \subset \Re^{n}$ into $\tau_{t} \subset \Re^{k}$.

Still under the hypothesis of cointegration alone, the matrix \mathbf{K} can be derived form the condition of orthogonality between $\boldsymbol{\eta}_{1 t}$ and $\boldsymbol{\eta}_{2 t}$, that is,

$$
E\left(\boldsymbol{\eta}_{1 t} \boldsymbol{\eta}_{2 t}^{\prime}\right)=E\left(\mathbf{G} \varepsilon_{t} \varepsilon_{t}^{\prime} \mathbf{K}^{\prime}\right)=\mathbf{G} \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{0}
$$

which shows that \mathbf{G} and \mathbf{K} are orthogonal to each other relative to the metric defined by $\boldsymbol{\Sigma}$. Substituting the expression for \mathbf{G} we get

$$
\begin{equation*}
\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \mathbf{C}(\mathbf{1}) \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{0} \tag{17}
\end{equation*}
$$

Recalling (6) and the result documented in Yoo ([17]) that $\mathbf{C}(\mathbf{1}) \boldsymbol{\beta}=\mathbf{0}$, a solution for \mathbf{K} can be found (cf. MVW p.376) by substitution in (17)

$$
\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \mathbf{C}(\mathbf{1}) \boldsymbol{\beta}=\mathbf{0}
$$

Hence, a solution for \mathbf{K} (taking only cointegration into account) takes the form

$$
\begin{equation*}
\mathbf{K}=\mathbf{Q}^{\prime} \boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma}^{-1} \tag{18}
\end{equation*}
$$

where \mathbf{Q} is a nonsingular $(r \times r)$ matrix, chosen as to fulfill the last requirement, namely the identity variance covariance matrix of $\boldsymbol{\eta}_{2 t}$, that is,

$$
\mathbf{K} \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{I}
$$

or

$$
\begin{equation*}
\left.\mathbf{Q}^{\prime} \boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta} \mathbf{Q}=\mathbf{I} \Leftrightarrow\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}\right)\right)^{-1}=\mathbf{Q Q}^{\prime} \tag{19}
\end{equation*}
$$

that is, \mathbf{Q} can be uniquely obtained from the Cholesky decomposition of $\left(\boldsymbol{\beta}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}\right)^{-1}$. Remark that the lower triangularity of \mathbf{Q} does not entail establishing a hierarchy among the structural errors, since the matrix \mathbf{K} is not lower triangular.

MVW call for further analysis about the interpretation of the nature of the shocks contributing to the temporary component. In what follows we will argue that in the presence of codependence such an interpretation can be provided, and that the solution proposed by MVW for \mathbf{K} must be modified.

Another way of looking at (18) is by recalling that the decomposition of $\mathbf{A}(1)=\boldsymbol{\beta} \boldsymbol{\alpha}^{\prime}$ is not unique, since we can choose a nonsingular \mathbf{Q} such that $\Pi=\boldsymbol{\beta} \mathbf{Q Q}^{-1} \boldsymbol{\alpha}^{\prime}$. In the present case we are able to provide a meaningful normalization based on the need for normalizing the variance-covariance matrix of the structural shocks hence choosing the

The derivation of the matrix $\boldsymbol{\Gamma}_{0}$ follows in a straightforward way. In fact, recall that from $\boldsymbol{\varepsilon}_{t}=\Gamma_{0} \boldsymbol{\eta}_{t}$ we get $\boldsymbol{\Sigma}=\Gamma_{0} \Gamma_{0}^{\prime}$, and hence

$$
\begin{aligned}
(\mathbf{H} \mid \mathbf{J}) \equiv \mathbf{\Gamma}_{0}= & \boldsymbol{\Sigma}\left(\mathbf{\Gamma}_{0}^{\prime}\right)^{-1} \equiv \boldsymbol{\Sigma}\left(\mathbf{G}^{\prime} \mid \mathbf{K}^{\prime}\right) \\
& \Rightarrow \quad\left\{\begin{array}{l}
\mathbf{H}=\boldsymbol{\Sigma} \mathbf{G}^{\prime}=\Sigma \mathbf{C}(\mathbf{1})^{\prime} \tilde{\mathbf{\Gamma}}_{g}\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \\
\mathbf{J}=\boldsymbol{\Sigma} \mathbf{K}^{\prime}=\boldsymbol{\beta} \mathbf{Q}=\boldsymbol{\beta}^{*}
\end{array}\right.
\end{aligned}
$$

from which the impulse response functions and the confidence intervals around them can be constructed following the procedure suggested by MVW.

3 Codependence and Common Cycles

The idea of codependence was first suggested by Gourieroux and Peaucelle ([7]) as a way to extend the concept of cointegration to stationary variables. In fact, we have codependence among a set of stationary variables when the order of a moving average of the vector stationary process is decreased by taking a linear combination of the variables.

VE1 were the first to embed the notion of codependence (called cofeature by Engle and Kozicki [6]) into a nonstationary environment and then offered the notion of common cycles later extended to the definition of non-synchronous common cycles (VE2, building on the concept of Scalar Component Models suggested by Tiao and Tsay, [14]) as the consequence of the presence of codependence in the stationary part.

In the case of a common trend representation, the idea of codependence would be applied to the stationary part $\mathbf{C}^{*}(L) \varepsilon_{t}$, an $\mathrm{MA}(\infty)$ as such, but a linear combination of which might be of a smaller order. In what follows we propose to use the notion of common cycles of order i, where $i \geq 0$

3.1 Common Cycles of Order 0

A common cycle of order 0 is what VE1 call common cycle, and can usefully be defined starting from the definition of Scalar Component Model (Serial Correlation Common Feature in the terminology of VE1).

Definition 1 Let us consider again the Wold MA representation of the reduced form model

$$
\Delta \mathbf{x}_{t}=\mathbf{C}(\mathbf{L}) \varepsilon_{t}
$$

We have a Scalar Component Model of order $(0,0)$ in the terminology of Tiao and Tsay ([14]) if there exists a $\left(n \times s_{0}\right)$ matrix $\tilde{\boldsymbol{\alpha}}_{0}$ such that

$$
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{C}(L)=\tilde{\boldsymbol{\alpha}}_{0}^{\prime}\left(\mathbf{I}+\mathbf{C}_{1} L+\mathbf{C}_{2} L^{2}+\ldots\right)=\tilde{\boldsymbol{\alpha}}_{0}^{\prime}
$$

that is, $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ forms a basis for the intersection of the left nullspaces of \mathbf{C}_{1}, C_{2}, etc. since it sets them all to zero.

Definition 2 The matrix $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ is called cofeature matrix of order 0 .

A different way of looking at the $\operatorname{SCM}(0,0)$ is to consider the common trend representation (in structural form)

$$
\begin{align*}
\mathbf{x}_{t} & =\mathbf{x}_{0}+\tilde{\Gamma}_{g} \sum_{j=0}^{t-1} \boldsymbol{\eta}_{t-j}+\Gamma^{*}(L) \boldsymbol{\eta}_{t} \\
& =\mathbf{x}_{0}+\tilde{\Gamma}_{g} \boldsymbol{\tau}_{t}+\mathbf{c}_{t} \tag{20}
\end{align*}
$$

we have $\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \Gamma^{*}(L) \equiv \tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{C}^{*}(L)=0$ or, which is the same, $\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{c}_{t}=\mathbf{0}$, so that $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ spans the nullspace of \mathbf{c}_{t} and hence the rank of \mathbf{c}_{t} is equal to $n-s_{0}$. The implication is that

$$
\begin{equation*}
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \Gamma_{j}^{*}=0 \quad \text { and } \quad \tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{C}_{j}^{*}=0 \quad \forall j \geq 0 \tag{21}
\end{equation*}
$$

Note that the matrix $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ has opposite characteristics to the $\boldsymbol{\alpha}^{\prime}$ cointegration matrix. In fact, the latter transforms a nonstationary $I(1)$ vector \mathbf{x}_{t} into lower dimension $(r<n)$ combinations which are stationary. The former, instead, transforms \mathbf{x}_{t} into lower dimension ($s_{0}<n$) combinations of pure nonstationary elements (without cyclical components). As we will see, there might be intermediate cases of other combinations where the nonstationary component is preserved, but in which the stationary component \mathbf{c}_{t} has a lower order MA representation.

The definition of common cycle of order 0 (or synchronous in VE1) follows.

Definition 3 (Common Cycle of Order 0) If the rank of \mathbf{c}_{t} is $n-s_{0}$, then $\mathbf{c}_{t}=\mathbf{F} \tilde{\mathbf{c}}_{0 t}$ where \mathbf{F} is a $\left(n \times n-s_{0}\right)$ matrix and the vector $\tilde{\mathbf{c}}_{0 t}$ includes the lower dimension $\left(n-s_{0}\right)<n$ common cycles of order 0 .

Let us examine some of the implications of this (fairly restrictive) class of common cycles in detail.

For the reduced form, we have the result by VE1 (Proposition 2)

$$
\mathrm{C}_{0}^{*} \equiv \sum_{j>0} \mathrm{C}_{j} \equiv(\mathbf{I}-\mathbf{C}(1)) \Rightarrow \tilde{\boldsymbol{\alpha}}_{0}^{\prime}\left(\sum_{j>0} \mathrm{C}_{j}\right)=0 \Leftrightarrow \tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{C}(1)=\tilde{\boldsymbol{\alpha}}_{0}^{\prime}
$$

showing that $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ are the eigenvectors associated to unit eigenvalues of $\mathrm{C}(1)^{6}$.For the structural form we have

$$
\begin{aligned}
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \Gamma_{0}^{*} & =0 \Leftrightarrow \tilde{\boldsymbol{\alpha}}_{0}^{\prime}\left(\sum_{j>0} \boldsymbol{\Gamma}_{j}\right)=0 \Leftrightarrow \tilde{\boldsymbol{\alpha}}_{0}^{\prime} \boldsymbol{\Gamma}_{0}=\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \boldsymbol{\Gamma}(1) \\
& \Leftrightarrow\left\{\begin{array}{l}
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \boldsymbol{\Gamma}_{0 g}=\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g} \neq 0 \\
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \boldsymbol{\Gamma}_{0 s}=0
\end{array}\right.
\end{aligned}
$$

Summing up, $\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{c}_{t}=\mathbf{0}$ has a powerful meaning in terms of the constraints imposed on the structural form.

1. it makes the combination of instantaneous effects of shocks to the permanent component equal to the same combination of their long term impact;
2. it makes the combination of aggregate delayed effects of shocks to the permanent component equal to zero;
3. it makes the combination of aggregate delayed effects of shocks to the temporary component equal to zero.

A Special Case: $s_{0}=k$. This case arises when the matrix $\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$ is of order $(n \times k)$. By analogy with the usual notation for the cointegration space and the space orthogonal to it which are denoted by $s p(\boldsymbol{\alpha})$, respectively, $s p\left(\boldsymbol{\alpha}_{\perp}\right)$, we will denote
the space spanned by the cofeature vectors as $s p\left(\tilde{\boldsymbol{\alpha}}_{0}\right) \subset \Re^{k}$, and

[^4]the space orthogonal to it as $\operatorname{sp}\left(\tilde{\boldsymbol{\alpha}}_{0 \perp}\right) \subset \Re^{n-k}$.
Then we have the following proposition which shows that $\tilde{\boldsymbol{\alpha}}_{0} \subset$ $s p\left(\boldsymbol{\alpha}_{\perp}\right)$, and that $\boldsymbol{\alpha} \subset s p\left(\tilde{\boldsymbol{\alpha}}_{0 \perp}\right):$

Proposition 4 We have

$$
\tilde{\boldsymbol{\alpha}}_{0 \perp}^{\prime} \mathbf{C}(1) \boldsymbol{\Gamma}_{0} \equiv \tilde{\boldsymbol{\alpha}}_{0 \perp}^{\prime} \boldsymbol{\Gamma}(1)=\mathbf{0}
$$

since $\tilde{\boldsymbol{\alpha}}_{0 \perp}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}=0$.
Proof. The cofeature space is spanned by $\tilde{\boldsymbol{\alpha}}_{0}$ (the eigenvectors associated with the unit eigenvalues of $\mathbf{C}(1)$. The orthogonal space to it is associated with the zero eigenvalues of $\mathbf{C}(1)$ and hence belongs to the cointegration space. Hence $\tilde{\boldsymbol{\alpha}}_{0 \perp}=\boldsymbol{\alpha} \mathbf{Q}$, with \mathbf{Q} nonsingular $(r \times r)$ matrix, and $\tilde{\boldsymbol{\alpha}}_{0}=\boldsymbol{\alpha}_{\perp} \mathbf{P}$, with \mathbf{P} nonsingular $(k \times k)$ matrix.

Remark that, since the cofeature vectors of order 0 are the eigenvectors associated to the unit eigenvalues of $\mathbf{C}(1)$, when $s_{0}=k$, the matrix $\mathbf{C}(1)$ is idempotent. Hence there are k eigenvalues equal to 1 and r eigenvalues equal to 0 , with $r+k=n$. As a consequence, note that starting from $\mathbf{x}_{t}=\mathbf{C}(1) \sum_{j=0}^{\infty} \varepsilon_{t-j}+\mathbf{C}^{*}(L) \varepsilon_{t}$, premultiplying by $\mathbf{C}(1)$, and simplifying we get

$$
\mathbf{C}(1)\left(\mathbf{x}_{t}-\mathbf{C}^{*}(L) \boldsymbol{\varepsilon}_{t}\right)=\left(\mathbf{x}_{t}-\mathbf{C}^{*}(L) \boldsymbol{\varepsilon}_{t}\right)
$$

which shows how the presence of cofeature of order 0 is associated to the presence of unit eigenvalues when subtracting from \mathbf{x}_{t} the short term dynamics $\mathbf{C}^{*}(L) \boldsymbol{\varepsilon}_{t}$.

3.2 Common Cycles of Higher Order

The extension to the concept of cofeatures of higher order (giving rise to non-synchronous common cycles in the terminology of VE2) is fairly straightforward, and more adherent to the original idea by Gourieroux and Peaucelle ([7]). Let us start from the following

Definition 5 From the Wold MA representation of the reduced form model, the Scalar Component Model of order ($0, i$) in the terminology of Tiao and Tsay ([14]) if there exists a $\left(n \times s_{i}\right)$ matrix $\tilde{\boldsymbol{\alpha}}_{i}$ such that
$\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \mathbf{C}(L) \equiv \tilde{\boldsymbol{\alpha}}_{i}^{\prime}\left(\mathbf{I}+\mathbf{C}_{1} L+\mathbf{C}_{2} L^{2}+\ldots\right)=\tilde{\boldsymbol{\alpha}}_{0}^{\prime}\left(\mathbf{I}+\mathbf{C}_{1} L+\mathbf{C}_{2} L^{2}+\ldots+\mathbf{C}_{i} L^{i}\right)$
that is, the cofeature matrix $\tilde{\boldsymbol{\alpha}}_{i}^{\prime}$ of dimension $\left(n \times s_{i}\right)$ forms a basis for the intersection of the left nullspaces of $\mathbf{C}_{i+1}, \mathbf{C}_{i+2}$, etc. since it sets them all to zero.

Definition 6 The matrix $\tilde{\boldsymbol{\alpha}}_{i}$ is called cofeature matrix of order i.
It is then straightforward, extending the results previously obtained for $\tilde{\boldsymbol{\alpha}}_{0}$, to see that any of the following is true

$$
\begin{array}{rl}
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \mathbf{C}_{j}^{*} & \boldsymbol{0} \forall j \geq i \\
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \mathbf{C}_{j} & =\mathbf{0} \forall j>i \\
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \boldsymbol{\Gamma}_{j}^{*}=\mathbf{0} \forall j \geq i \\
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \boldsymbol{\Gamma}_{j}=\mathbf{0} \forall j>i \tag{25}
\end{array}
$$

Let us spell out in detail the implications for the structural form of (24). We have
1.

$$
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \sum_{j=0}^{i} \boldsymbol{\Gamma}_{j g}=\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}
$$

that is, the combination of impacts up to lag i bearing on the permanent component is equal to the combination of long-run impacts. No relevant long-run dynamics is added for the combination after i.
2.

$$
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \sum_{j=0}^{i} \boldsymbol{\Gamma}_{j s}=\mathbf{0}
$$

that is, the combination of impacts up to lag i bearing on the transitory component is equal to zero.

It is instructive to write the common trend representation as

$$
\begin{align*}
\mathbf{x}_{t} & =\tilde{\boldsymbol{\Gamma}}_{g} \boldsymbol{\tau}_{t}+\mathbf{c}_{t} \equiv \tilde{\boldsymbol{\Gamma}}_{g} \boldsymbol{\tau}_{t}+\boldsymbol{\Gamma}^{*}(L) \boldsymbol{\eta}_{t} \\
& \equiv \tilde{\boldsymbol{\Gamma}}_{g} \boldsymbol{\tau}_{t}+\boldsymbol{\Gamma}^{* i}(L) \boldsymbol{\eta}_{t}+\overline{\boldsymbol{\Gamma}}^{* i}(L) \boldsymbol{\eta}_{t} \equiv \tilde{\boldsymbol{\Gamma}}_{g} \boldsymbol{\tau}_{t}+\mathbf{c}_{t}^{i}+\overline{\mathbf{c}}_{t}^{i} \tag{26}
\end{align*}
$$

where the matrix polynomial $\Gamma^{*}(L)$ is divided into two parts, $\Gamma^{* i}(L) \equiv$ $\left(\Gamma_{0}^{*}+\Gamma_{1}^{*} L+\ldots+\Gamma_{i-1}^{*} L^{i-1}\right)$ and $\bar{\Gamma}^{* i}(L) \equiv\left(\Gamma_{i}^{*} L^{i}+\Gamma_{i+1}^{*} L^{i+1}+\ldots\right)$ to visualize immediately the meaning of common cycles of higher order (the upper bar indicates the part of the polynomial which is set to zero by the cofeature matrix). The two terms \mathbf{c}_{t}^{i} and $\overline{\mathbf{c}}_{t}^{i}$, in fact, represent the stationary part affecting, respectively, up to (and not including) period i in the future, and from period i on. The presence of cofeature of order i, therefore, shows that the influence of the shocks starting from period i draws on a smaller number of shocks. In fact, the matrix $\tilde{\boldsymbol{\alpha}}_{i}$ is such that $\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \Gamma^{* i}(L) \neq 0$, but $\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \bar{\Gamma}^{* i}(L)=0$, so that $\tilde{\boldsymbol{\alpha}}_{i}^{\prime}$ is defined as spanning the left nullspace of $\bar{\Gamma}^{* i}(1)$, (intersection of the left nullspaces of $\Gamma_{i}^{*}, \Gamma_{i+1}^{*}, \ldots$), establishing a linear dependence among the columns of $\bar{\Gamma}^{* i}(1)$. Hence, in reference to (26), we can derive the following

Proposition 7 Given that $\bar{\Gamma}^{* i}(L)$ has reduced rank, it is possible to write

$$
\overline{\mathbf{c}}_{t}^{i}=\overline{\boldsymbol{\Gamma}}^{* i}(L) \boldsymbol{\eta}_{t}=\mathbf{F}^{(i)} \tilde{\boldsymbol{\Gamma}}^{* i}(L) \boldsymbol{\eta}_{t} \equiv \mathbf{F}^{(i)} \tilde{\mathbf{c}}_{t}^{i}
$$

where $\mathbf{F}^{(i)}$ is an $\left(n \times n-s_{i}\right)$ matrix and $\tilde{\Gamma}^{* i}(L)=\left(\tilde{\Gamma}_{i}^{*} L^{i}+\tilde{\Gamma}_{i+1}^{*} L^{i+1}+\ldots\right)$. The matrices $\tilde{\Gamma}_{j}^{*}, j \geq i$ are each of order $\left(n-s_{i} \times n\right)$.

Proof. It parallels the argument of VE1 p. 344 .
Assuming that there are no common cycles up to order $i-1$, this proposition means that, starting form period i, the n shocks $\boldsymbol{\eta}_{t}$ do not exert their influence independently of each other.

Definition 8 (Common Cycles of Order i) The common cycles of order i are defined as the $\left(n-s_{i} \times 1\right)$ vector $\tilde{\mathbf{c}}_{t}^{i}$.

Note that, unlike the case of the decomposition implied by common trends into shocks contributing to the permanent and transitory components, since $n-s_{i}>n-k$, the contribution of the two kinds of shocks to the common cycle cannot be explicitly derived.

3.3 The Relationship between Common Cycles of Different Orders

Of course, nothing precludes the data from exhibiting common cycles of different orders. In other words, there may be more than one non-zero s_{i}, the detection of which is left to the estimation and testing procedure. Nevertheless, we can derive some theoretical characteristics that common cycles of different orders must obey to. First, we can propose the following:

Lemma 9 The spaces spanned by $\tilde{\boldsymbol{\alpha}}_{i}^{\prime}$ and $\tilde{\boldsymbol{\alpha}}_{j}^{\prime}$ with $i \neq j$ have zero intersection.

Proof. W.l.o.g. assume that $i<j$. Recall that $\tilde{\boldsymbol{\alpha}}_{i}^{\prime}$ spans the intersection of the left nullspaces of $\mathbf{C}_{h}^{*}, h \geq i$, while $\tilde{\boldsymbol{\alpha}}_{j}^{\prime}$ spans the intersection of the left nullspaces of $\mathrm{C}_{h}^{*}, h \geq j$.

$$
\left\{\begin{array}{l}
\tilde{\boldsymbol{\alpha}}_{i}^{\prime} \mathbf{C}_{l}^{*}=0 \\
\tilde{\boldsymbol{\alpha}}_{j}^{\prime} \mathrm{C}_{l}^{*} \neq 0
\end{array} \text { for } i \leq l \leq j .\right.
$$

Corollary $10 \bigcup_{i=0}^{\infty} s p\left(\tilde{\boldsymbol{\alpha}}_{i}^{\prime}\right)$ has dimension $\sum_{i=0}^{\infty} s_{i}$.

We then get the following theorem which generalizes Theorem 18 in VE1:

Theorem 11 The dimension of the union of the spaces spanned by the cofeature vectors of all order is equal to k.

Proof. It follows from the definition of a cofeature vector, which is orthogonal to any cointegrating vector. The union of spaces spanned by vectors orthogonal to the cointegrating vectors is equal to the orthogonal complement ($\alpha_{\perp} \in \Re^{k}$) to the cointegrating space.

3.4 The Complete Set of Common Cycles

By definition of cointegration space, it must be $\sum_{i=0}^{\infty} s_{i}=k$. For all practical purposes, one may expect that there exists a finite h such that $\sum_{i=0}^{h} s_{i}=k$.

In such an instance, let us denote by $\widetilde{\boldsymbol{\alpha}}_{*}^{\prime}$ the $(k \times n)$ matrix obtained by stacking all cofeature matrices ${ }^{7}$

$$
\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \equiv\left(\begin{array}{c}
\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \tag{27}\\
\tilde{\boldsymbol{\alpha}}_{1}^{\prime} \\
\vdots \\
\tilde{\boldsymbol{\alpha}}_{h}^{\prime}
\end{array}\right) .
$$

Again, we will present the results for the structural form, recalling that the results apply also to the reduced form. The matrix $\tilde{\boldsymbol{\alpha}}_{*}^{\prime}$ has the property that

$$
\left\{\begin{array}{l}
\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \Gamma_{h-1}^{*} \neq \mathbf{0} \\
\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \Gamma_{i}^{*}=0 \quad \forall i \geq h
\end{array}\right.
$$

We are now able to define a complete set of common cycles $\tilde{\mathbf{c}}_{t}^{\Lambda}$. Let us rewrite (26) as

$$
\begin{equation*}
\mathbf{x}_{t}=\tilde{\boldsymbol{\Gamma}}_{g} \boldsymbol{\tau}_{t}+\mathbf{c}_{t} \equiv \tilde{\Gamma}_{g} \boldsymbol{\tau}_{t}+\mathbf{\Gamma}_{\Lambda}^{*}(L) \boldsymbol{\eta}_{t}+\bar{\Gamma}_{\Lambda}^{*}(L) \boldsymbol{\eta}_{t} \equiv \tilde{\Gamma}_{g} \boldsymbol{\tau}_{t}+\mathbf{c}_{t}^{\Lambda}+\overline{\mathbf{c}}_{t}^{\Lambda} \tag{28}
\end{equation*}
$$

with an obvious extension of notation with respect to (26). It is clear that, next to the common trends element, there is a part, $\mathbf{c}_{t}^{\boldsymbol{A}}$, which does not disappear upon premultiplication by $\tilde{\boldsymbol{\alpha}}_{*}^{\prime}$, whereas $\overline{\mathbf{c}}_{t}^{\Lambda}$ does. We then offer the following definition of a complete set of common cycles.

Definition 12 The complete set of common cycles is defined as an ($n-$ $k \times 1$) vector $\tilde{\mathbf{c}}_{t}^{\Lambda}$ representing combinations of the original shocks giving rise to $\overline{\mathbf{c}}_{t}^{\Lambda}$ through the $(n \times n-k)$ matrix $\mathbf{F}^{(\Lambda)}$.

$$
\overline{\mathbf{c}}_{t}^{\Lambda}=\mathbf{F}^{(\Lambda)} \tilde{\mathbf{c}}_{t}^{\Lambda}
$$

$\tilde{\mathbf{c}}_{t}^{\Lambda}$ is called a complete set, because the corresponding stacked cofeature matrix defines all the available space as belonging to \Re^{k}.

[^5]
4 Codependence and Identification of Structural Innovations

We are now in the position of showing how the identification of structural shocks is achieved when the restrictions implied by both cointegration and codependence are taken into account. Recall the expression (14) linking structural and reduced-form shocks

$$
\Gamma_{0}^{-1} \varepsilon_{t}=\boldsymbol{\eta}_{t} \Longleftrightarrow\binom{\mathrm{G}}{\mathrm{~K}} \varepsilon_{t}=\binom{\boldsymbol{\eta}_{1 t}}{\boldsymbol{\eta}_{2 t}}
$$

with the ($k \times n$) matrix \mathbf{G} pertaining to the permanent component of \mathbf{x}_{t} and the $(r \times n)$ matrix \mathbf{K} pertaining to the transitory component. Let us see now how the presence of a complete set of common cycles, i.e $\sum_{i=0}^{h} s_{i}=k$, modifies the procedures outlined in section 2.3 to derive \mathbf{G} and \mathbf{K}. Since Γ_{0} is not known, we will make use of the implications of cofeature matrices on the reduced form.

4.1 The Identification of Permanent Innovations

We have already obtained an identifying expression for the matrix G given in 2.3 above starting from the reduced rank of $\mathbf{C}(1)$ and its decomposability as $\widetilde{\Gamma}_{g} \mathbf{G}$. The existence of a complete set of common cycles implies that $\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathbf{C}(1)=\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathbf{C}_{A}$ so that, by substituting, we get

$$
\begin{equation*}
\mathbf{G}=\left(\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathbf{C}(1)=\left(\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathbf{C}_{\Lambda} \tag{29}
\end{equation*}
$$

Since the cofeature matrix $\tilde{\boldsymbol{\alpha}}_{*}^{\prime}$ does not alter the long-run properties of the system, the expression for \mathbf{G} is equivalent to the one in MVW, although here the presence of codependence is explicitly taken into account.

4.2 The Identification of Transitory Innovations

The other submatrix \mathbf{K} can now be derived. Let us first establish the following

Lemma 13 The matrix \mathbf{C}_{Λ} is invertible.

Proof. We build our proof on two basic results:

1. The matrix $\tilde{\boldsymbol{\alpha}}_{*}^{\prime}$ defines the left nullspace of $\overline{\mathbf{C}}_{\Lambda}$, i.e.

$$
\begin{equation*}
\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathrm{C}_{\Lambda} \neq \mathbf{0} ; \quad \tilde{\boldsymbol{\alpha}}_{*}^{\prime} \overline{\mathrm{C}}_{\Lambda}=\mathbf{0} \tag{30}
\end{equation*}
$$

2. The matrix $\boldsymbol{\alpha}$ defines the left nullspace of $\mathbf{C}(1)$, i.e.

$$
\begin{equation*}
\boldsymbol{\alpha}^{\prime} \mathbf{C}(1) \equiv \boldsymbol{\alpha}^{\prime} \mathrm{C}_{\Lambda}+\boldsymbol{\alpha}^{\prime} \overline{\mathrm{C}}_{\Lambda}=\mathbf{0} \tag{31}
\end{equation*}
$$

Because of the orthogonality between $\widetilde{\boldsymbol{\alpha}}_{*}$ and $\boldsymbol{\alpha}$, we can deduce that given the second expression in (30), $\boldsymbol{\alpha}^{\prime} \overline{\mathbf{C}}_{\Lambda}$ cannot be equal to 0 , so that $\boldsymbol{\alpha}^{\prime} \mathbf{C}_{\Lambda}$ must be $\neq \mathbf{0}$. Hence

$$
\binom{\tilde{\boldsymbol{\alpha}}_{*}^{\prime}}{\alpha^{\prime}} \mathrm{C}_{\Lambda} \neq 0
$$

which establishes the result given that the matrix $\binom{\widetilde{\alpha}_{4}^{\prime}}{\alpha^{\prime}}$ spans \Re^{n}.

On the basis of this crucial result we can then prove the following

Theorem 14 In the presence of cointegration and codependence

$$
\mathbf{K}=\mathbf{P} \boldsymbol{\alpha}^{\prime}\left(\mathbf{C}_{\Lambda}^{\prime}\right)^{-1} \boldsymbol{\Sigma}^{-1}
$$

where \mathbf{P} is a $(r \times r)$ invertible matrix chosen as to normalize the variance covariance matrix of $\boldsymbol{\eta}_{2 t}$ to be the identity matrix.

Proof. The orthogonality condition between $\boldsymbol{\eta}_{1 t}$ and $\boldsymbol{\eta}_{2 t}$ is expressed as

$$
\mathbf{G} \boldsymbol{\Sigma} \mathbf{K}^{\prime} \equiv\left(\tilde{\boldsymbol{\alpha}}_{*}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\alpha}}_{*}^{\prime} \mathbf{C}_{\Lambda} \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{0}_{(k \times n-k)}
$$

from which the result follows (up to a rotation matrix \mathbf{P}) given the orthogonality between $\tilde{\boldsymbol{\alpha}}_{*}$ and $\boldsymbol{\alpha}$. $■$

A Special Case: Common Cycles of Order 0. In the case of k common cycles of order 0 , recall that $\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \mathbf{C}(1)=\tilde{\boldsymbol{\alpha}}_{0}^{\prime}$, so that the relevant orthogonality condition $\mathbf{G} \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{0}$ takes on a simpler form

$$
\mathbf{G} \boldsymbol{\Sigma} \mathbf{K}^{\prime} \equiv\left(\tilde{\boldsymbol{\alpha}}_{0}^{\prime} \tilde{\boldsymbol{\Gamma}}_{g}\right)^{-1} \tilde{\boldsymbol{\alpha}}_{0}^{\prime} \boldsymbol{\Sigma} \mathbf{K}^{\prime}=\mathbf{0}_{(k \times n-k)}
$$

from which

$$
\mathbf{K}=\mathbf{P} \alpha^{\prime} \Sigma^{-1}
$$

It is to be stressed that the identification of \mathbf{K} is achieved without having to resort to any a priori assumption on the behavior of the economy. In other words, the data will tell us in each instance whether a complete set of common cycles is achievable. Some of the evidence produced in the literature do point to the existence of such complete sets ${ }^{8}$.

The derivation of the matrix Γ_{0} follows again also in the presence of cointegration and codependence.

$$
\Gamma_{0}=(\mathbf{H} \mid \mathbf{J}) \text {, where }\left\{\begin{array}{l}
\mathbf{H}=\boldsymbol{\Sigma} \mathbf{G}^{\prime}=\boldsymbol{\Sigma} \mathbf{C}_{\Lambda}^{\prime} \tilde{\boldsymbol{\alpha}}_{*}\left(\tilde{\boldsymbol{\Gamma}}_{g}^{\prime} \tilde{\boldsymbol{\alpha}}_{*}\right)^{-1} \\
\mathbf{J}=\boldsymbol{\Sigma} \mathbf{K}^{\prime}=\left(\mathbf{C}_{\Lambda}\right)^{-1} \boldsymbol{\alpha} \mathbf{P}^{\prime}
\end{array}\right.
$$

This will enable us to derive the correct impulse response functions for both the shocks to the permanent and to the transitory components, with suitable modifications for deriving the confidence intervals around them. Only when no common cycles are detected, does the procedure suggested by MVW seem appropriate.

[^6]
5 Concluding Remarks

In this paper, we have shown how the codependence characteristics obtained from an estimated VAR system could be used, and under which conditions, to address the issue of the impact of structural innovations on the system.

In order to fulfill this objective, we defined two crucial notions : the notion of common cycle of order i on the one hand, and the notion of a complete set of common cycles on the other hand. We then proved that, when such a set exists (a common occurrence in practice), and taking into account the restrictions provided by cointegration, it is possible to fully identify the contribution of innovations to the system, be they innovations to the non stationary part of the system or, more importantly, the innovations contributing only to the stationary part. In other words, the impulse-response functions of the endogenous variables to all innovations are then obtained.

The discussion presented here has been entirely theoretic, with the purpose of focusing on some analytical implications of the procedure. The implementation of the analysis starting from an estimated VAR model taking into account the set of restrictions imposed by the presence of cointegration and common cycles will allow for a better understanding of a macroeconomic system. In particular, it will allow to effer new insights on the relative importance and the dynamic impact of permanent innovations (customarily labelled "real") and transitory ("monetary") innovations.

References

[1] L. Ball and N.G. Mankiw. A sticky-price manifesto. NBER WP 4677, 1994.
[2] O.J. Blanchard and D. Quah. The dynamic effects of aggregate supply and demand disturbances. American Economic Review, 79:65573, 1989.
[3] J.H. Cochrane. Shocks. NBER WP 4698, 4/94
[4] R.F. Engle and J.V. Issler. Common trends and common cycles in Latin America. UCSD DP, 1992.
[5] R.F. Engle and J.V. Issler. Estimating common sectoral cycles. Journal of Monetary Economics, 35:83-114, 1995.
[6] R.F. Engle and S. Kozicky. Testing for common features. Journal of Business and Economic Statistics, 11:369-79, 1993.
[7] C. Gourieroux and I. Peaucelle. Series codependantes: application a l'hypothése de paritè du pouvoir d'achat. 1991.
[8] S. Johansen. Statistical analysis of cointegrated systems. Journal of Economic Dynamics and Control, 12:231-54, 1988.
[9] R. King, C.Plosser, J.H. Stock, and M. Watson. Stochastic trends and economic fluctuations. American Economic Review, 81:819-40, 1991.
[10] R. King, and M Watson. Testing long run neutrality. NBER WP 4156.
[11] R. MacDonald and M.P. Taylor. Exchange Rate Dynamics. IMF Staff Papers, 39:1-27, 1992.
[12] E. Mellander, A. Vredin, and A. Warne. Stochastic trends and economic fluctuations in a small open economy. Journal of Applied Econometrics, 7:369-94, 1992.
[13] J.H. Stock and M.W. Watson. Testing for common trends. JASA, 83(404):1097-107, 1988.
[14] G.C. Tiao and R.S. Tsay. Model specification in multivariate time series. Journal of the Royal Statistical Society, 51:157-213, 1989.
[15] F. Vahid and R.F. Engle. Common trends and common cycles. Journal of Applied Econometrics, 8:341-60, 1993.
[16] F. Vahid and R.F. Engle. Non-synchronous common cycles. UCSD DP, 1994.
[17] B.S. Yoo. Multi-cointegrated time series and generalized error correction models. 1986.
© The Author(s). European University Institute.
Digitised version produced by the EUI Library in 2020. Available Open Access on Cadmus, European University Institute Research Repository.

 EUI WORKING PAPERS

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge - depending on the availability of stocks - from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Publications of the European University Institute

Department of Economics Working Paper Series

To Department of Economics WP European University Institute Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
E-mail: publish@datacomm.iue.it Italy

From Name

\square Please enter/confirm my name on EUI Economics Dept. Mailing List
 \square Please send me a complete list of EUI Working Papers
 \square Please send me a complete list of EUI book publications
 \square Please send me the EUI brochure Academic Year 1995/96

Please send me the following EUI ECO Working Paper(s):
No, Author
Title:
No, Author
Title:
No, Author
(Please print)

Title:
No, Author
Title:

Working Papers of the Department of Economics Published since 1993

ECO No. 93/1
Carlo GRILLENZONI
Forecasting Unstable and Non-Stationary
Time Series
ECO No. 93/2
Carlo GRILLENZONI
Multilinear Models for Nonlinear Time Series

ECO No. 93/3
Ronald M. HARSTAD/Louis PHLIPS
Futures Market Contracting When You Don't Know Who the Optimists Are

ECO No. 93/4
Alan KIRMAN/Louis PHLIPS
Empirical Studies of Product Markets
ECO No. 93/5
Grayham E. MIZON
Empirical Analysis of Time Series:
Illustrations with Simulated Data
ECO No. 93/6
Tilman EHRBECK
Optimally Combining Individual
Forecasts From Panel Data
ECO NO. 93/7
Víctor GÓMEZ/Agustín MARAVALL Initializing the Kalman Filter with Incompletely Specified Initial Conditions

ECO No. 93/8
Frederic PALOMINO
Informed Speculation: Small Markets
Against Large Markets
ECO NO. 93/9
Stephen MARTIN
Beyond Prices Versus Quantities
ECO No. 93/10
José María LABEAGA/Angel LÓPEZ
A Flexible Demand System and VAT
Simulations from Spanish Microdata

ECO No. 93/11
Maozu LU/Grayham E. MIZON
The Encompassing Principle and
Specification Tests

ECO No. 93/12
Louis PHLIPS/Peter MØLLGAARD
Oil Stocks as a Squeeze Preventing
Mechanism: Is Self-Regulation Possible?
ECO No. 93/13
Pieter HASEKAMP
Disinflation Policy and Credibility: The Role of Conventions

ECO No. 93/14
Louis PHLIPS
Price Leadership and Conscious
Parallelism: A Survey
ECO No. 93/15
Agustín MARAVALL
Short-Term Analysis of Macroeconomic Time Series *

ECO No. 93/16
Philip Hans FRANSES/Niels HALDRUP
The Effects of Additive Outliers on Tests for Unit Roots and Cointegration

ECO No. 93/17
Fabio CANOVA/Jane MARRINAN
Predicting Excess Returns in Financial Markets

ECO No. 93/18
Iñigo HERGUERA
Exchange Rate Fluctuations, Market
Structure and the Pass-through
Relationship
ECO No. 93/19
Agustín MARAVALL
Use and Misuse of Unobserved
Components in Economic Forecasting
ECO No. 93/20
Torben HOLVAD/Jens Leth
HOUGAARD
Measuring Technical Input Efficiency for
Similar Production Units:
A Survey of the Non-Parametric
Approach

ECO No．93／21
Stephen MARTIN／Louis PHLIPS
Product Differentiation，Market Structure and Exchange Rate Passthrough

ECO No 93／22
F．CANOVA／M．FINN／A．R．PAGAN
Evaluating a Real Business Cycle Model
ECO No 93／23
Fabio CANOVA
Statistical Inference in Calibrated Models
ECO No 93／24
Gilles TEYSSIERE
Matching Processes in the Labour Market
in Marseilles．An Econometric Study
ECO No 93／25
Fabio CANOVA
Sources and Propagation of International
Business Cycles：Common Shocks or
Transmission？
ECO No．93／26
Marco BECHT／Carlos RAMÍREZ
Financial Capitalism in Pre－World War I
Germany：The Role of the Universal
Banks in the Financing of German
Mining Companies 1906－1912
ECO No．93／27
Isabelle MARET
Two Parametric Models of Demand，
Structure of Market Demand from
Heterogeneity
ECO No．93／28
Stephen MARTIN
Vertical Product Differentiation，Intra－
industry Trade，and Infant Industry
Protection
ECO No．93／29
J．Humberto LOPEZ
Testing for Unit Roots with the k －th
Autocorrelation Coefficient
ECO No．93／30
Paola VALBONESI
Modelling Interactions Between State and Private Sector in a＂Previously＂Centrally Planned Economy

ECO No．93／31
Enrique ALBEROLA ILA／J．Humberto LOPEZ／Vicente ORTS RIOS
An Application of the Kalman Filter to the Spanish Experience in a Target Zone （1989－92）

ECO No．93／32
Fabio CANOVA／Morten O．RAVN
International Consumption Risk Sharing
ECO No．93／33
Morten Overgaard RAVN International Business Cycles：How much can Standard Theory Account for？

ECO No．93／34
Agustín MARAVALL Unobserved Components in Economic Time Series＊

ECO No．93／35
Sheila MARNIE／John
MICKLEWRIGHT
Poverty in Pre－Reform Uzbekistan：
What do Official Data Really Reveal？＊
ECO No．93／36
Torben HOLVAD／Jens Leth
HOUGAARD
Measuring Technical Input Efficiency for Similar Production Units：
80 Danish Hospitals
ECO No．93／37
Grayham E．MIZON
A Simple Message for Autocorrelation
Correctors：DON＇T
ECO No．93／38
Barbara BOEHNLEIN
The Impact of Product Differentiation on Collusive Equilibria and Multimarket Contact

ECO No．93／39
H．Peter MØLLGAARD
Bargaining and Efficiency in a Speculative Forward Market

米米米

ECO No. 94/1
Robert WALDMANN
Cooperatives With Privately Optimal
Price Indexed Debt Increase Membership
When Demand Increases
ECO No. 94/2
Tilman EHRBECK/Robert
WALDMANN
Can Forecasters' Motives Explain
Rejection of the Rational Expectations
Hypothesis?
ECO No. 94/3
Alessandra PELLONI
Public Policy in a Two Sector Model of Endogenous Growth *

ECO No. 94/4
David F. HENDRY
On the Interactions of Unit Roots and Exogeneity

ECO No. 94/5
Bernadette GOVAERTS/David F. HENDRY/Jean-François RICHARD Encompassing in Stationary Linear Dynamic Models

ECO No. 94/6
Luigi ERMINI/Dongkoo CHANG Testing the Joint Hypothesis of Rationality and Neutrality under Seasonal Cointegration: The Case of Korea

ECO No. 94/7
Gabriele FIORENTINI/Agustín MARAVALL
Unobserved Components in ARCH
Models: An Application to Seasonal
Adjustment*

ECO No. 94/8

Niels HALDRUP/Mark SALMON
Polynomially Cointegrated Systems and their Representations: A Synthesis

ECO No. 94/9
Mariusz TAMBORSKI
Currency Option Pricing with Stochastic
Interest Rates and Transaction Costs:
A Theoretical Model
ECO No. 94/10
Mariusz TAMBORSKI
Are Standard Deviations Implied in Currency Option Prices Good Predictors of Future Exchange Rate Volatility?

ECO No. 94/11
John MICKLEWRIGHT/Gyula NAGY How Does the Hungarian Unemployment Insurance System Really Work?

ECO No. 94/12
Frank CRITCHLEY/Paul MARRIOTT/Mark SALMON
An Elementary Account of Amari's
Expected Geometry
ECO No. 94/13
Domenico Junior MARCHETTI
Procyclical Productivity, Externalities and Labor Hoarding: A Reexamination of Evidence from U.S. Manufacturing

ECO No. 94/14
Giovanni NERO
A Structural Model of Intra-European
Airline Competition
ECO No. 94/15
Stephen MARTIN
Oligopoly Limit Pricing: Strategic
Substitutes, Strategic Complements
ECO No. 94/16
Ed HOPKINS
Learning and Evolution in a
Heterogeneous Population
ECO No. 94/17
Berthold HERRENDORF
Seigniorage, Optimal Taxation, and Time
Consistency: A Review
ECO No. 94/18
Frederic PALOMINO
Noise Trading in Small Markets *
ECO No. 94/19
Alexander SCHRADER
Vertical Foreclosure, Tax Spinning and Oil Taxation in Oligopoly

ECO No. 94/20
Andrzej BANIAK/Louis PHLIPS
La Pléiade and Exchange Rate PassThrough

ECO No. 94/21
Mark SALMON
Bounded Rationality and Learning;
Procedural Learning

ECO No. 94/22
Isabelle MARET
Heterogeneity and Dynamics of
Temporary Equilibria: Short-Run Versus
Long-Run Stability
ECO No. 94/23
Nikolaos GEORGANTZIS
Short-Run and Long-Run Cournot Equilibria in Multiproduct Industries

ECO No. 94/24
Alexander SCHRADER
Vertical Mergers and Market Foreclosure: Comment

ECO No. 94/25
Jeroen HINLOOPEN
Subsidising Cooperative and NonCooperative R\&D in Duopoly with Spillovers

ECO No. 94/26
Debora DI GIOACCHINO
The Evolution of Cooperation:
Robustness to Mistakes and Mutation
ECO No. 94/27
Kristina KOSTIAL
The Role of the Signal-Noise Ratio in Cointegrated Systems

ECO No. 94/28
Agustín MARAVALL/Víctor GÓMEZ Program SEATS "Signal Extraction in ARIMA Time Series" - Instructions for the User

ECO No. 94/29
Luigi ERMINI
A Discrete-Time Consumption-CAP
Model under Durability of Goods, Habit
Formation and Temporal Aggregation
ECO No. 94/30
Debora DI GIOACCHINO
Learning to Drink Beer by Mistake
ECO No. 94/31
Víctor GÓMEZ/Agustín MARAVALL Program TRAMO "Time Series
Regression with ARIMA Noise, Missing
Observations, and Outliers" -
Instructions for the User

ECO No. 94/32
Ákos VALENTINYI
How Financial Development and Inflation may Affect Growth

ECO No. 94/33
Stephen MARTIN
European Community Food Processing Industries

ECO No. 94/34
Agustín MARAVALL/Christophe PLANAS
Estimation Error and the Specification of Unobserved Component Models

ECO No. 94/35
Robbin HERRING
The "Divergent Beliefs" Hypothesis and the "Contract Zone" in Final Offer Arbitration

ECO No. 94/36
Robbin HERRING
Hiring Quality Labour
ECO No. 94/37
Angel J. UBIDE
Is there Consumption Risk Sharing in the EEC?

ECO No. 94/38
Berthold HERRENDORF
Credible Purchases of Credibility
Through Exchange Rate Pegging:
An Optimal Taxation Framework
ECO No. 94/39
Enrique ALBEROLA ILA
How Long Can a Honeymoon Last?
Institutional and Fundamental Beliefs in the Collapse of a Target Zone

ECO No. 94/40
Robert WALDMANN
Inequality, Economic Growth and the
Debt Crisis
ECO No. 94/41
John MICKLEWRIGHT/
Gyula NAGY
Flows to and from Insured
Unemployment in Hungary

ECO No．94／42
Barbara BOEHNLEIN
The Soda－ash Market in Europe：
Collusive and Competitive Equilibria
With and Without Foreign Entry
ECO No．94／43
Hans－Theo NORMANN
Stackelberg Warfare as an Equilibrium Choice in a Game with Reputation Effects

ECO No．94／44
Giorgio CALZOLARI／Gabriele FIORENTINI
Conditional Heteroskedasticity in
Nonlinear Simultaneous Equations
ECO No．94／45
Frank CRITCHLEY／Paul MARRIOTT／
Mark SALMON
On the Differential Geometry of the Wald
Test with Nonlinear Restrictions
ECO No．94／46
Renzo G．AVESANI／Giampiero M．
GALLO／Mark SALMON
On the Evolution of Credibility and
Flexible Exchange Rate Target Zones

米米米

ECO No．95／1
Paul PEZANIS－CHRISTOU
Experimental Results in Asymmetric
Auctions－The＇Low－Ball＇Effect
ECO No．95／2
Jeroen HINLOOPEN／Rien
WAGENVOORT
Robust Estimation：An Example
ECO No．95／3
Giampiero M．GALLO／Barbara PACINI
Risk－related Asymmetries in Foreign
Exchange Markets
ECO No．95／4
Santanu ROY／Rien WAGENVOORT
Risk Preference and Indirect Utility in
Portfolio Choice Problems
ECO No． $95 / 5$
Giovanni NERO
Third Package and Noncooperative Collusion in the European Airline Industry

ECO No．95／6
Renzo G．AVESANI／Giampiero M． GALLO／Mark SALMON
On the Nature of Commitment in Flexible
Target Zones and the Measurement of Credibility：The 1993 ERM Crisis

ECO No．95／7
John MICKLEWRIGHT／Gyula NAGY Unemployment Insurance and Incentives in Hungary

ECO No．95／8
Kristina KOSTIAL
The Fully Modified OLS Estimator as a System Estimator：A Monte－Carlo Analysis

ECO No．95／9
Günther REHME
Redistribution，Wealth Tax Competition and Capital Flight in Growing Economies

ECO No．95／10
Grayham E．MIZON
Progressive Modelling of
Macroeconomic Time Series：The LSE Methodology

ECO No．95／11

Pierre CAHUC／Hubert KEMPF
Alternative Time Patterns of Decisions
and Dynamic Strategic Interactions
ECO No．95／12
Tito BOERI
Is Job Turnover Countercyclical？
ECO No．95／13
Luisa ZANFORLIN
Growth Effects from Trade and Technology

ECO No．95／14
Miguel JIMÉNEZ／Domenico
MARCHETTI，jr．
Thick－Market Externalities in U．S．
Manufacturing：A Dynamic Study with Panel Data

ECO No．95／15
Berthold HERRENDORF
Exchange Rate Pegging，Transparency， and Imports of Credibility

ECO No. 95/16
Günther REHME
Redistribution, Income cum Investment Subsidy Tax Competition and Capital Flight in Growing Economies

ECO No. 95/17
Tito BOERI/Stefano SCARPETTA
Regional Dimensions of Unemployment in Central and Eastern Europe and Social Barriers to Restructuring

ECO No. 95/18
Bernhard WINKLER
Reputation for EMU - An Economic
Defence of the Maastricht Criteria
ECO No. 95/19
Ed HOPKINS
Learning, Matching and Aggregation
ECO No. 95/20
Dorte VERNER
Can the Variables in an Extended Solow Model be Treated as Exogenous?
Learning from International Comparisons Across Decades

ECO No. 95/21
Enrique ALBEROLA-ILA
Optimal Exchange Rate Targets and Macroeconomic Stabilization

ECO No. 95/22
Robert WALDMANN
Predicting the Signs of Forecast Errors
ECO No. 95/23
Robert WALDMANN
The Infant Mortality Rate is Higher where the Rich are Richer

ECO No. 95/24
Michael J. ARTIS/Zenon G.
KONTOLEMIS/Denise R. OSBORN
Classical Business Cycles for G7 and European Countries

ECO No. 95/25
Jeroen HINLOOPEN/Charles VAN MARREWIJK
On the Limits and Possibilities of the Principle of Minimum Differentiation

ECO No. 95/26
Jeroen HINLOOPEN
Cooperative R\&D Versus R\&D-
Subsidies: Cournot and Bertrand Duopolies

ECO No. 95/27
Giampiero M. GALLO/Hubert KEMPF
Cointegration, Codependence and Economic Fluctuations

[^0]: *Without implicating, we would like to thank Renato Leoni and Massimiliano Marcellino for many useful discussions.

[^1]: ${ }^{1}$ We will neglect for simplicity the presence of drift parameters $\boldsymbol{\mu}$, which translate into the presence of a deterministic time trend in the representation for the levels (cf. Stock and Watson, [13], p.1098), or of dummy variables as in MVW.

[^2]: ${ }^{2}$ We prefer to adopt this convention (as in MVW), rather than leaving the diagonal variance-covariance matrix unrestricted as in KPSW, since the latter unloads a need for normalization onto the Γ_{0} matrix. In fact, assuming the presence of a shock with standard deviation of σ and impact of γ, is equivalent to assuming the presence of a shock with unit variance and impact of $\gamma \sigma$.
 ${ }^{3} \tilde{\boldsymbol{\Gamma}}_{g}$ is subject (as in KPSW or MVW) to identifying restrictions necessary in any VAR model to interpret the results: in this case we will assume that its top ($k \times k$) submatrix is lower triangular.

[^3]: ${ }^{4}$ As a matter of terminology, we will refer in what follows to $\boldsymbol{\eta}_{1 t}$ and $\boldsymbol{\eta}_{2 t}$ as innovations to the permanent, respectively, transitory components of \mathbf{x}_{t}.

[^4]: ${ }^{6}$ Put it differently, the presence of common cycles of order 0 , implies that $\mathbf{C}(1)$ has r zero eigenvalues (with $\boldsymbol{\alpha}$ associated eigenvectors), s_{0} unit eigenvalues and $k-s_{0}$ eigenvalues different from 1 or from 0 .

[^5]: ${ }^{7}$ It is not necessary that all orders between 0 and h are represented.

[^6]: ${ }^{8}$ For example, VE1 find in their first example (two variables) one common trend and one common cycle of order zero; and in their second (five variables) three common trends and two common cycles of order zero. Engle and Issler ([5]) find six common trends and two common cycles of order zero for eight variables, while Engle and Issler ([4]) find two common trends and one common cycle for three variables.

