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Rules of thumb and local interaction*
Akos Valentinyi 

European University Institute 
May, 1995

Abstract
This paper studies an econom y where boundedly rational agents 
choose one o f two technologies. Agents ask some o f their neigh­
bors about their experiences and, in addition, may receive an ex­
ogenous signal. Using this information, they apply an exogenous 
rule o f thumb to determine the better option. The non-trivial 
behavior o f the econom y is generated by the explicitly modeled 
neighborhood relation. Considering various rules of thumb, the 
paper shows that it is not true that agents will infer the better 
technology almost surely. If they receive an exogenous signal in 
addition to communicating with some neighbors, the signal deter­
mines the steady state o f the economy. In contrast, if  there is no 
exogenous signal, it is shown that the econom y has two station­
ary states: the better technology may die out or it may drive out 
the worse one. The latter result is in sharp contrast to previous 
articles where almost sure convergence to the better technology 
can be ensured by certain conditions.

Keywords: Technology choice; local interaction; bounded ratio­
nality.
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1 Introduction

Recently some authors have studied simple learning rules called rules 
of thumb. This line of research includes Ellison and Fudenberg (1993, 
1995), and Banerjee and Fudenberg (1994). The simplicity of rules of 
thumb basically follows from two assumptions: first, current experience 
of different agents is the only source of information, and, secondly, there 
is no strategic interaction among agents. Typically an individual asks 
some members of the population about their current experiences and then 
chooses the option which seems to be better. The question of interest 
is whether such a naive exogenously given learning rule can lead to a 
socially optimal decision. The answer usually found is positive: while 
the economy does not always converge to the better state, there are 
parameter values for which it almost surely does, the crucial parameter 
being the number of agents each decision maker talks to. In summary, 
it is argued in recent articles that naive myopic rules can lead to the 
optimal decision if each agent communicates with a certain number of 
other agents.

Studying rules of thumb is of interest for essentially three reasons. 
First, they seem to be more realistic than complicated fully rational 
learning rules, for example Bayes rule. Secondly, accounting for personal 
communication is important since it is often the major source of indi­
vidual information acquisition. And finally, the aggregate behavior of 
the economy can explicitly be derived from the simple individual deci­
sion rules. This leads to microfoundations of aggregate behavior that go 
beyond the standard paradigm of a representative agent.1

While the present paper shares the view that it is interesting to 
analyze naive learning rules, it argues that the results found by Elli­
son and Fudenberg (1993, 1995) and Banerjee and Fudenberg (1994)

1 Despite the fact that nobody has ever met a representative agent, this paradigm 
seems to survive all challenges. For a discussion of problems with this approach see 
Kirman (1992); Kirman (1994) provides a survey of alternative models.
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are not robust. Crucial features of their frameworks are that there is 
a continuum of agents and that interaction between any two agents in 
the population is feasible. While the continuum of agents approach is 
a convenient modelling device in various economic contexts, one must 
not take for granted that it is always justified to use it. It needs to be 
shown that working with a continuum of agents is not too much of an 
abstraction, that is, that the results found do not crucially depend on 
this assumption. The other standard assumption of the above papers is 
that interaction is global: everybody can communicate with everybody 
else in the population with equal probability. There certainly are plenty 
of economic situations where this is a reasonable assumption. For ex­
ample, interaction in centralized markets is extensively global since all 
market participants can interact with each other. However, assuming 
global interaction seems rather odd in a context where personal commu­
nication crucially matters. In Ellison and Fudenberg’s (1993) example 
of a farmer’s production technology choice, for instance, agents can ob­
serve the average payoff across the whole population. However, personal 
communication realistically is restricted to a small number of other indi­
viduals, such as, friends or neighbors.

Since both of the above assumptions can be questioned, this paper 
investigates the same or similar rules as Ellison and Fudenberg (1993, 
1995) and Banerjee and Fudenberg (1994) in a set-up with a countable 
infinity of individuals and with local interaction. The structure of the 
economy follows from the application of the theory on interacting par­
ticle systems.2 More precisely, each of the countably infinite number of 
individuals is assumed to be able to communicate with a large but fi­
nite number of other agents, who are his neighbors. The agent’s decision 
problem is to infer from the current experiences of the neighbors which

2The systematic mathematical treatment of the models used can be found in 
Liggett (1985) and Durrett (1988). A nice informal introduction is presented by Dur- 
rett and Levine (1994b). Follmer (1974) appears to have been the first who used such 
a model to describe economic phenomena. More recently, economists have shown in­
creasing interest in this approach; see, for example, An and Kiefer (1993, 1994), Bak, 
Chen, Scheinkman, and Woodford (1993), Blume (1993), Durlauf (1993) and Foley 
(1994). The importance of this kind of approach for economic theory was emphasized 
by Brock (1991).
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of two available technologies is better to use in the future. The explicit 
description of the neighborhood relation is a novelty in the literature. 
Moreover, the results found are in strict contrast to those derived by El­
lison and Fudenberg (1993, 1995) and Banerjee and Fudenberg (1994). 
While they could always find conditions for almost sure convergence to 
the better state, this economy converges to the good state with a posi­
tive probability less than one. Hence the long run outcome can be “bad” 
when boundedly rational rules guide decisions in a locally interacting 
environment.

Before going into detail, a methodological remark should be made. 
The precise derivation of the macroeconomic behavior from individual 
decisions requires an extensive use of the mathematical techniques devel­
oped to study interacting systems. In order to avoid the technical details 
that are not necessary to follow the analysis, I am going to present the 
model and the proofs rather informally. Hence the emphasis is put on 
the economic interpretations. However, the appendix contains the formal 
description of the model and the theorems and lemmas that are used in 
the paper.

The rest of the paper is organized as follows. Section II outlines 
informally a model of local interaction. Section III considers various rules 
of thumb, namely, rules with and without an exogenous signal. In both 
cases the long run aggregate behavior of the economy is derived. Section 
IV compares the results of the previous section with the findings of other 
works on mouth-to-mouth communication and herd behavior. Finally, 
section V concludes.

2 A model of local interaction

There is a countable infinity of agents living on a d dimensional integer 
lattice Zd for some d > 1. An agent with address x  € is connected with 
his nearest neighbors, where the set of neighbors is defined by JV(x) =  
{y  : \x — y\ — 1}. This definition implies that an agent has 2d neighbors 
and that the neighborhood relation is symmetric: if y is a neighbor of

4

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



x then £ is a neighbor of y. Each agent can take two possible actions 
denoted by 0 and 1. The state of an agent at a particular location is 
defined by his current action. More precisely, let q : Z d — ♦ {0 ,1 } be 
a map and denote the family of q by E, then q(x) gives the state of 
agent x while q describes the state of the whole economy. Let E  be also 
endowed with an ordering defined by q <  £ for q, (  £ E  if and only if 
q(x) <  C,{x) for all x £ U l. In addition, equipping E  with the standard 
a field, the evolution of the economy over time t £ [0, oo) is determined 
by the mapping c : Zd x E  — > R+ such that the process at time t qt £ E  
will satisfy

P (q t+At{x) ^  Vt(x)\qt =  V) =  c(x ,q )A t +  o(At) (1)

p  (Vt+At(x) ±  rjt(x), qt+At{y) ±  rjt{y)h  =  y) =  o(A t) (2)

as At | 0 Vx\ y £ Zd satisfying x  ^  y, and \/q £ E.

The revision rate c(x, q) defines a spin economy as a continuous 
time strong Markov process qt on the product space E. The Markov 
property implies that qt is uniquely determined for any initial state q. 
This construction departs substantially from the traditional Markovian 
universe. Since agents always interact with the same neighbors, the deci­
sions are naturally correlated. Therefore, the evolution of one individual 
decision is no longer Markovian. Such models are usually avoided in 
economic theory by either assuming random matching schemes or by in­
troducing some noise which suppress the correlation among individuals. 
In contrast, our model of local interaction remains tractable despite the 
correlation across agents because the state of the whole economy qt is a 
Markov process.

The definition of the process is rather informal because no argument 
is presented as to how qt can be uniquely constructed from the revision 
rate such that qt is right-continuous in and has a left limit at each t >  0. 
The formal arguments can be found in appendix A.

Several assumptions are made in order to maintain tractability of 
the analysis. First, the model is formulated as a continuous time Markov 
process where at any point in time only one agent has the opportunity

5
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to revise. The “lucky” person who can revise is chosen randomly from 
Z d according to a Poisson process as stated by equations (1) and (2). 
Secondly, some regularities are imposed in order to obtain a “nicely” be­
haved Markov process. In particular, c(x, ?/) is taken to be bounded in the 
sense that any single agent’s effect on the entire economy be finite. This 
feature will be ensured by the assumption that the revision rate depends 
on the state of the nearest neighbors, each of them having a finite effect 
on the economy. It should be noted, however, that any agent is connected 
with all other agents through a chain of neighborhood structures. This 
means that any agent’s decisions are affected either directly or indirectly 
by all decisions of other agents. The other important assumption on the 
revision rate is that it is spatially homogeneous, meaning that if the ini­
tial state of the economy is shifted then the time evolution shifts only in 
space. [This property is also called translation invariance.] The previous 
assumption is convenient since it makes agents identical in the sense that 
each individual follows the same decision rule. However, it is also clear 
that the results of any two decisions differ according to how the states of 
the agents in the two neighborhoods vary.

Having outlined the model, a couple of observations can be made. 
First, the lattice should be regarded as a communication rather than a 
spatial structure. Clearly, we are not living in a d-dimensional space, 
but we certainly communicate with a lot of people. Communication is 
likely to be more intensive before a decision is made. In the model, 
this is captured by the neighborhood structure. Secondly, the decision 
of an agent, which is defined by his revision rate, is clearly boundedly 
rational. This comes about because agents base their decisions only on 
current payoffs rather than on the expected present discounted value of 
future ones. However, as noted by Blume (1993), myopic rules may be 
fully rational if the mean waiting time between two revisions is large 
compared to the discount rate. In addition, bounded rationality also 
follows from the assumption that the rules of thumb are not optimal 
learning rules. They are simply given exogenously.3 Finally, an agent

3 However, such a rules could also be derived from optimizing behavior. Rosenthal 
(1993) presents examples of how players choose between different rules according to
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cannot revise his decision at any time. After a decision, the time of 
waiting for a new decision opportunity is distributed exponentially with 
parameter one. The resulting commitment to a chosen technology may 
be justified by the presence of some decision costs (rather than by the 
laziness of the agents). For example, there may exist costs of collecting 
information, switching costs from one action to another, or adjustment 
costs of any other form. Alternatively, one might think of agents with 
an exponentially distributed lifetime, who decide once and for all at the 
beginning of their lives about the preferred action. When an agent dies, 
he then gives birth to one offspring, who can choose an action again.

In summary, all agents have i.i.d. Poisson “alarm clocks” [Copy­
right Lawrence E. Blume], An agent located at a given site chooses one 
of the two possible actions and commits himself to stick to it until his 
alarm clock goes off. At this moment he looks at his neighbors and re­
vises the previous decision according to some rule. The decision rule is 
defined by the revision rate. The main goal of the subsequent analysis of 
this spin economy is to characterize the long run macroeconomic behav­
ior of the system. In particular, the interest is in determining the set of 
invariant distributions for the process ry, and in deriving conditions for 
the ergodicity of this process.4

Finally, there is an important class of revision rates which shall play 
an important role in the sequel. Its formal definition goes as follows:

Definition 1 A spin economy with revision rate c(x, 77) is attractive if 
whenever tj <  £ E E, then for all x E U l

c(x , h) <  c (x , ( )  if y(x) =  C(x) =  0, and
c(x,Tj) >  c (x ,( )  if T](x ) =  C{x) — 1.

Agents applying such a decision rule are more likely to adopt an action 
the more of their neighbors do it already. Since individuals attract the de­
cisions of each other, the revision rate is called attractive. Alternatively,

their cost of use.
4 A process is called ergodic if it converges to a unique invariant distribution for 

any initial 77.
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we can say that this decision rule incorporates popularity weighting, i.e. 
the more popular option is more likely to be adopted by the decision 
maker.

3 Rules of thumb on a lattice

Following the literature on rules of thumb, it is assumed that the two 
states of the spin economy are associated with two technologies that 
have payoffs u1 and u° . The superscript 1 [0] refers to the state of an 
agent at time t, that is, if rit(x) =  1 [r/,(x ) =  0], the agent x uses the first 
[second] technology at time t. The agent has to decide which technology 
to use. The difference between the stochastic payoffs is given by

u1 — u° =  6 +  ej — , (3)

where 9 is a nonnegative constant and the e\ are normally distributed 
idiosyncratic shocks with zero mean and standard deviation a, that is, 
e\ ~  Ar(0, cr). The expected payoff difference is 9. However, the users 
of both technologies face random shocks, which are independent across 
technologies and agents. This means that agents working with the same 
technology may well earn different profits at the same time.

As noted before, the long run behavior of the spin economy depends 
heavily on the decision rule applied. In the next two subsections some 
different rules of thumb are analyzed.

3.1 Rules of thumb with an exogenous signal

It is assumed that the set of available technologies is common knowledge, 
that is, each agent knows the existence of the two technologies even if 
he has only used one of them. At time zero an initial state rj is set ex­
ogenously. At any time t >  0 an exogenous signal arrives at a randomly 
chosen location x. This signal tells agent x which technology is better. 
The signal reports, with probability a, that Efu1) > E(u°) and with

8
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probability 1 — a  that E(u°) >  E (m1). Individuals do not necessarily 
trust in the signal, therefore agent x follows it only with probability A 
which is assumed to satisfy 0 < A < 1. However, with probability 1 — A, 
he asks for the opinion of one of his neighbors. He does so because he 
thinks that a technology is more likely to be better today if it performed 
better yesterday, and if it performed better yesterday, it is more likely 
to be used by the neighbors. This conjecture results in imitation regard­
less of whether the imitated technology performs currently better in the 
neighborhood or not. Hence, I call this decision rule pure imitation. The 
probability of meeting an agent who is using the better technology ini­
tially is Pj\f(x),i — (l/2d ) £yeAf(x )V(y)i while the probability of meeting 
one using the worse technology is Pjg(x),o =  1 — Pm(x),i -

According to the description above, the rate of revision for agent x 
can be written as

aA +
c(x,t]) =

1 -  A 
2d Z  y(y) if r/(x) =  0

(1 — a)A +
yCAt(x)
1 -  A

2d Y1 (! -  v(y)) if v(x) =  1,
(4)

yC.M(x)

where 0 <  A < 1. Moreover, it should be noted that the population 
is homogeneous in the sense that each agent applies the same decision 
rule where both a  and A are the same for all agents. However, the 
actual value of c{x. rf) varies from agent to agent since it depends on 
the particular neighborhood structure. The long run behavior of this 
economy is described by the following proposition:

P roposition  1 The spin economy resulting from the rule of thumb with 
pure imitation and an exogenous signal is ergodic. It converges with 
exponential rate A from any initial distribution to the product measure 
v {r ] : g{x) =  1} =  a.

P roof: A rigorous proof of the proposition can be obtained by simple ap­
plication of lemma 1 as given in appendix C. A less formal proof goes as 
follows. The assumption of spatial homogeneity is satisfied since c(x,g) 
depends on x through g only. In addition, the above decision rule defines
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a spin economy in which an agent is more likely to switch to an alterna­
tive technology, the more of his neighbors use this technology. Such an 
economy is also called attractive. For an attractive, spatially homoge­
neous economy, theorem 7 in appendix B applies. It says that starting 
from the state where everybody uses the worse (better) technology, the 
joint probability of using the better one is increasing (decreasing) over 
time and has a limit in both cases. This implies that a spin economy is 
ergodic if and only if the two limits for these probabilities are the same.

To show this, let if be the state in which everybody uses the 
worse technology at time 0, fi°t the distribution of the process at time 
t starting from r f , and 6° the pointmass on r f . Since everybody uses the 
same technology, 6° is spatially homogeneous. Furthermore, the strong 
Markov property of y, ensures that y°t has the same characteristic Vf >  0. 
Roughly speaking, the micro behavior of the economy is compatible with 
the macro one for all f >  0 in such a way that the probability that an 
arbitrary agent uses the better technology is the same for any agent. For­
mally, the marginal distribution of //)' denoted by p° =  //)'{r/ : rfx) =  1} 
is independent of x. Moreover, the spatial homogeneity also implies that 
Q°(x,y) =  P°t{v  ■ n(x) =  M (y )  =  0} =  p\{q : y(x) =  0,y(y) =  1} for 
any x, y £ Z rf.

While the marginal distribution is constant across agents, it evolves 
over time. At any moment pt changes because of the decision of one and 
only one agent whose “Poisson alarm clock” rang. Given the state of 
his neighbors y £ Af(x) at t. the probability that agent x use the better 
technology at time t +  At is

Pt+ At =  ( W ? )

+  Pt

(aA +  ( l _ A) f e l )
-L — PiPt

At

(1 - « ) * + ( ! - » ) % * !  i a *
Pt

-l-o(At). (5)

The first term, on the right hand side is the probability that an agent 
using the worse technology switches to the better one in a short period 
of time. Looking at the details, we can see that arA is the probability 
that the individual receives and follows a signal which favors the better
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technology. In addition, if he does not follow the signal, he still has 
a chance to meet someone using the better technology. If a; is a worse 
technology user, this event occurs with probability (1 — \)g°(x, y)/(l — p°t). 
The first term now simply is the sum of these probabilities multiplied by 
At. Let us turn now to the second term on the right hand side which is 
the probability that an agent using the better technology does not switch 
to the worse one in a short period of time. The wrong signal is followed 
with probability (1 — a) A. Moreover, if the agent does not follow the 
signal, he may run into a neighbor who operates the worse technology. 
The likelihood that this happens is (1 —A)g°(x.y)/p°t if the agent uses the 
better technology. Adding the two terms and multiplying by At provides 
the probability that a user of the better technology switches to the worse 
one in a short period of time. Since we are interested in the complement 
event, we subtract this expression from 1 which yields the second term

Since the ergodic distribution is invariant over time, it can be obtained 
by setting the left hand side of (7) equal to zero and solving the resulting 
equation for p\. This obviously leads to the desired result.

It is also easy see that the arguments of equation (5) do not depend 
on the state from which the economy started from. Hence (5) remains 
valid if p\ is replaced by p\, which is defined the same way for T]1 as p\ 
for »7°. This implies

in (5).

Rearranging equation (5) gives

( 6)

Taking the limit for A t \ 0 leads to

P\ =  OL\-\p\. (7)

p\ =  a \ -\ p \ . (8)

The proof of the proposition is completed by noting that v{rj : rj(x) =  
1} =  linii^oo fi  =  liuif^oo p\ =  a and that both (7) and (8) are simple
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differential equation that converge to the steady state with rate A. □

This result is somewhat surprising since it asserts that pure imita­
tion may not matter in the long run if there is a small exogenous proba­
bility that an agent revises his choice independently from his neighbors. 
In this case the effect of the neighbors on the decision of the agent van­
ishes in the long run. The exogenous signal or exogenous information 
is thus essential for the long run behavior of the system. In particular, 
the economy converges almost surely to the steady state where the better 
technology is operated if and only if the exogenous signal almost surely is 
true. This result implies that any institution that provides correct infor­
mation globally might be more important for reaching the better state 
than the neighborhood communication. Imitation has no effect on the 
steady state, but it affects the transitional dynamics. If an agent puts 
more weight on the imitation (i.e. lowers A), then he lowers the rate 
of convergence to the steady state and the economy needs more time 
to converge. Hence the speed of convergence has similar characteristics 
to that obtained by the traditional learning models. Namely, if agents 
rely less on their private signal, the less information is available at the 
aggregate.[Compare Vives (1993)]

I modify now the previous structure in order to analyze the robust­
ness of the result. The most natural way to alter the pure imitation 
model is to assume that agent x receives the same exogenous signal as 
before, but that he gathers more information from the neighbors than 
in the case of pure imitation. As previously, he receives an exogenous 
signal and talks to a randomly chosen neighbor. However, now he asks 
not only which technology is used by this neighbor but also how the tech­
nology performs currently. Knowing the neighbor’s payoff, he compares 
it with his return. If the randomly chosen neighbor operates the same 
technology as he does, nothing happens. In the other cases, he switches 
to the alternative opportunity if the neighbor earns more money than he 
currently does. Therefore this decision rule is called imitation of success. 
In order to formulate the revision rate, we need the following probabili­
ties: As before, the probability of meeting somebody operating the better 
technology is Ptf(x),\. In addition to the previous rule of thumb, the prob­
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ability that the payoff to agent x is lower than that of a randomly chosen 
y € Af(x) is

P =  P (A  - « ? >  # -V(x) =  0, rj(y) =  1,2/ € JV(*))

because ej — e°t ~  JV (0, a/\/2j. Since 6 >  0, p > 1/2, it follows that the 
probability of meeting a neighbor who works with the better technology 
and whose technology is really performing better at this moment in time 
is p Pm’(x),i - Similarly, the probability of meeting someone with the worse 
technology that actually performs better at that time is (1 — p )(l — 
P tf(x ) ,l) ‘

Defining a and A as before, the revision are of the afore described 
decision rule is given by

P( 1 ~ X)oA
c(x,T))=<

2d J2 rtv) if T)(x) =  0
yeATfa:)

( 1  -  a)A + ■ 1- - Pl ^ .. (1 -v(y))  if i](x) =  1,
(9)

2d yeM'(x)

where 0 <  A < 1.

Although we were not able to characterize the ergo die distribution 
explicitly, we found the following boundaries for the set of stationary 
measures:

P roposition  2 The economy resulting from the rule of thumb with imi­
tation of success and with an exogenous signal has a stationary distribu­
tion that satisfies the following inequality:

a  <  v{rj : rj(x) =  1 }  < 1  — 1 — Q:

1 +  (2p — 1)—
( 10)

P roof: Since the set of stationary measures is a non-empty convex set 
by construction [as stated in the appendix B], it has to be shown only 
that the above inequalities hold. The proof is based on the idea that if 
there is a certain relation between the revision rates of two stochastic 
processes which are defined on the same probability space, then a similar

13

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



relationship holds between their probability measures. This is stated 
formally in theorem 6 in appendix B. Intuitively, if 7/( is more likely 
than ( t to reach state A, but is less likely than Q to leave A , then the 
probability that ?/, is in A is at least as high as the probability that Q is 
in .4.

In order to prove the inequalities, define two processes and ("  
with the following revision rates:

P{ 1 -  X)

c'(x ,C ) =

QfA -{-
2d Z  C'(y) if ? ( x )  =  o

y€Ar(x)

( 1 - « ) A  +  ^ = ^  £  ( l - C '( y ) )  if C'(*) =  i-

and

c"(*,C") =

aA +  ( 2 p - l ) ( l - A )  +

y£Af(x)

( l - p ) ( l - A )
2d Y ,C (y )  if C"(*) =  o

yeAf(x)

(1 — a)A +  (1 p)} }  - ^ £ ( 1  —c "(y)) ifC "(*) =  l-2d ye.V(x)

It is easy to see that there is a certain relation between these two revision 
rates, namely, if C < V <  C  ■ then

c'(a:,(') < c(x , t/) <  c"(xX ")  if >l{x) — ( (* )  =  0, and
d (x ,C )  > c(x,n) >  d'{x,Q") if y(x) =  C(x) =  1.

Theorem 6 in appendix B implies that if <̂' <  77 < £" then p!t <  fit <  p" 
for all t > 0 where p!t, fit ■ p" are the distributions of the corresponding 
processes at time t. It follows that if (I ((" )  is ergodic then its ergodic 
distribution is the lower (upper) bound for the set of stationary measures 
for T]t

To prove the proposition, we can follow similar arguments as in 
the proof of the previous proposition [rigorous result can be obtained 
again by lemma 1 in appendix C] because the revision rates are spatially 
homogeneous and attractive. Let us consider the process first. The 
distribution of at time t is given by //)' where i =  {0 ,1 } refers to 
the initial state which is either y° or rjl. Let p\' =  p\'{ri : r](x) — 1} 
which is independent of x  due to the spatial homogeneity for all t >  0. 
Given a state at, if the “Poisson alarm clock” of one agent rings and t, 
the conditional probability that agents use the better technology at time
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14- A t is

P\+At — (1 P't) aX +  p( 1 -  A) P''(x,y)'
1  - f t .

At

+PV 1 -  ( (1 -  Or)A +  p (l -  ) At
ftt

+  o(A t), (11)

where gl,(x ,y ) is defined similarly to g°(x,y ) in the proof of proposition 
1. Rearranging, dividing by A t and taking the limit as A t j  0 results in

f i  =  «A -  A (12)
By the arguments in the previous proposition, it follows immediately that 
the ergodic distribution of the process Q is given by

S {C  : C'(x) =  1} =  a. (13)

We can redo the above exercise for ( "  which gives the following equations 
for i =  {0 ,1 }

, y)f t +At =  (1 -  f t )  «X  +  (2p -  1)(1 -  A) +  (1 -  p )(l -  A ) ^ ^
1 ~ P t .

J"{x,y)
+ p t 1 -  ( l - a ) A  +  ( l - p ) ( l - A ) l

f t
At

At

+  o(At), (14)

where gl" (x ,y ) is defined similarly to g(x,y) in the proof of proposition 
1. As At | 0, this turns out to be

g\" =  aX +  (2p -  1)(1 -  A) -  [A +  (2p -  1)(1 -  X ))ft . (15)

It follows directly that the unique invariant distribution of the process 
Ct" is given by

v " {C  : C"(x) =  1} =
aA +  (2p — 1)(1 — A) 
A +  (2p -  1)(1 — A) • (16)

Having found the ergodic distributions n {( ' : Ç'(x) =  1} and n{£" : 
C'(x) — 1), the proof of the proposition clearly follows. □

Not surprisingly, the result implies that if an agent imitates the suc­
cessful neighbors, he reaches a state which is at least as good as the state 
he can reach by pure imitation. In addition, similar to the case of pure 
imitation, the exogenous signal has a crucial influence on the long run
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behavior of the economy, namely, the economy converges almost surely 
to the steady state where everybody operates the better technology if and 
only if the exogenous signal is true almost surely. If the probability, a, 
that the signal is true, is close to 1, the long run equilibrium will thus be 
close to the situation where every agent uses the better technology with 
probability one. However, if a  is small, because the institutions providing 
information for the public operate badly, then the ergodic distribution of 
the process is bounded away from 1.

As in the previous rule of thumb example, the exogenous signal 
turned out to be important, since in both cases its has an essential role 
in determining the long run outcome. In particular, the role of the ex­
ogenous signal becomes more important if the economy is very noisy. If 
a f  oo, thenp —* 1/2, hence u{ tj : y(x) — 1} —► a, that is, in a high noise 
regime the intuitive result is that the exogenous signal is the only reliable 
piece of information, governing the long run behavior of the economy.

3.2 Rules of thumb without an exogenous signal

Until up this point, individuals have benefited from the exogenous signal. 
It is natural to ask whether there is a significant difference between the 
regimes with or without an exogenous signal. As we will see, without an 
exogenous signal a qualitatively different economy results.

I assume now that there is a finite set of agents at time 0 who 
have got the idea for a superior technology. One can think that this set 
of agents is able to produce new ideas while the remaining part of the 
economy is only able to adopt these ideas. However, the agents that have 
ideas are also not sure whether the new technology is really better than 
the prevailing one. A neighbor using an old technology might convince 
him that the new idea is not good. After the initial date an agent switches 
to the alternative technology if and only if he talks to a neighbor who 
earns more than he does. The probability that a worse technology user 
meets a neighbor that uses the better technology and has a higher than 
him is pPjv(x),i- Similarly, with probability (1 — p )(l — Pjy(x),i), he meets 
a neighbor that uses the worse technology and more successful than him.
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if T](x) — 0
This rule of thumb results in the revision rate 

2d ^  ?/(2/)
C(X,r j ) = {  r _ T w

Y  (l ~v(y)) if y(x) =  i.
y€ A/"(i)

(17)
2d

This process is clearly non-ergodic. If each agent uses the worse 
technology, there is no chance to observe how the better technology per­
forms, thus no agent wants to switch. Of course, the same is true for 
the state where everybody uses the better technology. In this respect, 
this model is very interesting because we can look for conditions under 
which the economy converges the better state if initially the number of 
agents using the better technology is small. Our main interests are to 
look at the survival probability of the new idea, to determine the limit 
distribution of the process, and to understand how it spreads out.

P roposition  3 In the spin economy resulting from the rule of thumb 
with imitation of success and without an exogenous signal, the probability 
that the better technoloqv survives is qiven by(î y (18)
where k„ is the number of agents originated the new idea, r =  inf{f : 
At — 0 }  and At =  {x  : r/t(x ) =  1} C

P roof: Let consider the process At and Act where and A‘j =  {a- : rjt(x ) =  
0} C Clearly, no revision takes place in the interior of either A t 
or A1 since a revision requires communication between agents having a 
different opinion. Let dAt =  { (x ,y )  : \x — y\ =  1, x £ At,y  & A t} and 
\At\ =  { f fx  : x E At], If a revision opportunity has arrived for agent 
v E 0At for the (n +  l)th  time and v changes his technology, then the 
transition between |A<|„+i and \At'\n for some t' <  t is given by 

I a | f |4t'|n +  l with probability p
( n+1 \ \At> |n — 1 with probability 1 — p,

which is an asymmetric random walk. Let rm =  inf{ /  : \At\ >  m } and 
Pk,m =  P (Tm < r : k — |̂ 40| < m). If the economy is in a state where the 
probability that the better technology survives, is Pk,m, then at the next
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transition it goes either with probability p to Pk+\,m or with probability 
1 — p to p ,_ lm. The law of total probability implies that

Pk.m =  pPk+l,m +  (1 -  P)Pk-l,m (20)
with boundary conditions P()m =  0 and Pmm =  1. The first bound­
ary condition comes from the assumption that if nobody uses the better 
technology, nobody can adopt it. The second one follows from the defi­
nition of Pa,. The above equation is well known in probability theory as 
a difference equation for the gambler’s ruin problem.

The rest of the proof is purely algebraic. Equation (20) implies
k

Pt+l.m — Pk — — ~ ~  (Pk.m ~  P k -l .m )
1 - p

(P l,m -P 0,m)■ (21)

Taking the sum of the series of equations (21) for k =  0, ...,m — 1 and 
using the boundary conditions yields

m—1
1 =  Pl,m E

1
=  Pl, 1 - [ ( 1 ~ p ) / p Y

fc=o \ P )  1 -  (1 -  p)/p
Moreover, using (21) with the boundaries gives

m —1 m— l / i  ki

1 ~ Pko — ^ 2 (P k + l ,m ~ P k ,m ) — P.mE
k̂ kf) k=0

Combining (22) and (23) yields

1
-  Pi,mE

1

“ o\ P

( 22)

(23)

PkMm < T ) =  Pt0,m =  1 - [(1 -P)/P]k° ~ [(1 ~P)/P}m 
!  — [ ( ! — P)/p\m

(24)

As m | oc, rra | oo implying that Pt0,m(rm < r) —► Pfco(r =  oo). The 
limit of the right hand side of (24) yields the desired formula. □

This result says that there is positive probability that new idea 
always survives \p >  1 — p by assumption]. However, this probability is 
always less than one. This is bad news because it means that similar to 
the cases with an exogenous signal, simple rules of thumb do not lead to a 
good long run outcome with probability one. In addition, it is interesting 
to observe that the probability of spreading out is an increasing function 
of the number of agents being able to originate new ideas at time 0.

The model might also be viewed as providing an explanation for
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why there are differences between economies in the long run. In the 
present rule of thumb environment, it is always a matter of luck whether 
an economy is successful or not. The luck in terms of probabilities can 
be increased or decreased by initial conditions. However, even economies 
with the same initial state can end up in different long run steady states. 
This uncertainty disappears if and only if there is no noise in the economy, 
that is, a j  0 provided that initially only a finite number of agents 
uses the better technology. However, if an infinite number of agents use 
the superior technology, then it almost surely drives out the worse one 
[lim ^oo Pk0(r =  oo) =  1] provided o  < oo.

Now we can characterize the stationary distribution of the process 
and understand how the number of agents using the better technology 
changes over time. To do this we recall two important mathematical 
results. The first one is called the “complete convergence theorem” and 
the second one the “general shape theorem” . They can be found in 
Durrett (1988). Applying these theorems to our case, we obtain the 
following proposition:

P roposition  4 The finite dim.ensi.onal distribution of the spin economy 
resulting from the rule of thumb with the imitation of success and without 
an exogenous signal converges to a set of stationary distributions given 
by

rjt = >  b°P(r < oo) +  6lP (r  =  oo),

where 6° and P denote the point masses on the states rj° and i f , respec­
tively. Moreover, if the better technology survives, the set of agents using 
the better technology grows linearly, that is

limt—f OO
\A-t
td

=  C,

where C is a constant independent of At.

P roof: The proof is lengthy and it follows immediately from the re­
sults of Chapter 3 and Chapter 11c in Durrett (1988), therefore it is not 
presented here. □
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The proposition says that the process has two stationary distri­
butions: the point masses on the states rf and if. In economic terms 
this means that the better technology either dies out or survives. In 
addition, if the process survives, it grows linearly. The rate of growth 
depends positively on the dimension of the lattice. Thus, the richer the 
structure of the communication across agents, the faster the new tech­
nology spreads out. The convergence also depends on C . This constant 
is easy to determine for the one dimensional case. If the process starts 
from a finite interval [ai,a2], then the two endpoints independently fol­
lows an asymmetric random walk. Therefore, by the law of large numbers 
(a2 — a\)/t —► 2(2p — 1) almost surely on the event { r  =  00} implying
C =  2(2p -  1).

It is also interesting to look at the case where the two technologies 
are equally good, that is, 6 — 0 implying p =  1/2. Then there is nothing 
to learn, although agents do not know this. The behavior of this economy 
is described by the following proposition:

P roposition  5 In the spin economy resulting from the rule of thumb 
with imitation of success and without an exogenous signal, there is a 
positive probability that the two technologies coexist provided that the two 
technologies are equally efficient, the initial state is random and d >  3.

P roof: The proof follows Durrett (1988, Chapter II). Formally, we have 
to prove that

P{rit(x) #  Vt(y)) > 0  Vx,i1 e Z d,x  ^  y, Vt > 0, (25)
given that at t — 0 each agent is assigned to the worse technology with 
probability q0 >  0 and to the better one with probability 1 — q„ indepen­
dently from the other agents.

To prove this, we construct the dual of the original process. Let 
X f l be the process that traces the origin of the opinion of agent x  at time 
t. Let X f*  =  x, that is, the process for s =  0 just provides the address of 
the agent of interest. If agent x has last changed his opinion at some time 
t — s1? then he has adopted the technology used by one of his neighbors 
ui £ Af(x), that is, X f f  — v\. At some earlier time t — s2, where s2 > s 1,
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t. 0

9
8
7
6

5
4
3
2

1

-  9
-  8
-  7
-  6
-  5 

■- 4
-  3
-  2 
-  1

3 = 0 s = t

Figure 1: The dual of the technology adoption process

V\ has switched to the technology operated successfully by v2 € Af(vi), 
that is, Xf'* =  v2. Working backwards until t — s, X * ’1 =  v shows who 
originated the opinion of agent x at time 0. Notice that along such a 
path all agents use the same technology. If v used the worse technology 
at time 0, then all agents supplied by X * ’* work with the worse option. 
Figure 1 shows one possible realization of the dual process for a subset 
of agents in one dimension. We see that the opinion of agent 4 and 6 at 
time 0 was adopted by all nine agents. For example, agent 5 has adopted 
the opinion of agent 4, who has earlier followed agent 5, who has looked 
at agent 6 and so on until time 0.

The construction of X % and X f l implies — as it is also suggested 
by the figure —  that agents x and y are using different technologies at 
time t, if and only if their opinions were induced by different agents 
having used different technologies at time zero. Therefore, equation (25) 
can be rewritten in the form:

P{'h(x ) ¥= Vt(y)) =  P  { X ^ X l 1) (g0( l - ? o )  +  (l-go)5o) Vi > 0. (26)

The probability in (26) has two terms. The first term on the right hand
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side is the probability that x and y trace their opinions back to different 
agents at time 0. The next term is the probability that the two origins 
worked with different technologies.

Since q„ >  0 by assumption, we need to show that P (X ?'1 ^  X ? ’*) >  
0. Clearly, X*'1 is a random walk. It stays at a location for a mean one 
exponential amount of time, then with probability 1/2 it does not change 
its position and with probability 1/4d it jumps to a randomly chosen 
adjacent coordinate. This transition rule follows from the assumption 
that X*'1 does not jump if the decision maker earns a higher profit than 
the randomly chosen neighbor and it jumps if the neighbor earns more. 
Since both events occur with probability 1/2, we get the above random 
walk. The proof is now easy because lemma 2 in appendix D establishes 
that X * ’* behaves like a simple symmetric random walk, that is, it is 
transient for d >  3. Since two transient random always avoid each other 
with positive probability [P (A '/’( ^  X f'1) >  0], we have proved our claim. 
□

The result asserts that two equally efficient technologies may coexist 
forever. There is no force in the economy which would almost surely drive 
out one of the two technologies since they are equally good. However, 
it might seem surprising that coexistence can occur even if q0 is small, 
that is, if only a small fraction of the whole society uses technology 0. 
In this case the assumption of the countable infinity of agents and of the 
neighborhood structure ensures that even unpopular technologies may 
survive.

Clearly, the above defined rule without an exogenous signal does 
not utilize all the information available in this environment. Instead 
of talking to one neighbor, he could also visit all of his neighbors. The 
sample averages would contain more information than a payoff realization 
of a single neighbor. For this reason, it is assumed now that agent x 
travels around and asks all neighbors about how much money they made. 
After having finished the trip, he computes the averages for the two 
different technologies [including himself]. He then chooses the technology 
which earns more on average at this particular moment. Of course, if 
nobody operates the alternative technology, he cannot sample anybody
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who does something else as he does something different from him. The 
decision rule just described results in the following revision rate:

0 if E y(y) — 0 and y(x) — 0
•)

IV s| o if E y(y) > 0 and y{x) = 0
yeA/t 2•)

0 if E d - y(y)) = 0 and r](x) = 1
y e A /V )

P  (u1 < u°) if E d - y(y)) > 0 and rj(x) = 1,
y£A'(jc)

(27)
where P  (u1 >  u°) [.P (u1 < 77°)] is the probability that the mean payoff 
to the agents using the better [worse] technology exceeds the payoff to 
agent x using the worse [better] technology. This construction results 
a complicated revision rate since for example an agent using the worse 
technology [r](x) — 0] the distribution of the average payoff difference is 
given by

(e1 — e°) ~  AT 0, a +  ■
1 ~b X)yCA/’(x)(^ rj(y)) L̂y£j\f(x)

1-1
2

Nevertheless, it is still possible to characterize qualitatively the asymp­
totic behavior of the process by using coupling techniques as stated by 
the following proposition:

P roposition  6 In the spin economy resulting from the rule of thumb 
with imitation of success by sampling and without an exogenous signal, 
the better technology always dies out with positive probability if initially 
a finite number of agents use the better technology, i.e. 3e >  0 such that 
P (tv <  oo) >  e where A% =  { s  : r]t{x) =  1} C Zd, \Af \ =  {# x  : x € A?} 
and r,, =  inf{f : Avt =  0 } .

P roof: It is first proven that a process Q exists on E  such that if r/ < ( ,  
then rjt <  ( t with probability one for all t >  0. Moreover, it is shown 
that the better technology dies out with strictly positive probability in 
( t■ The proof is completed by noting that e =  P (t( <  oo) < P (r , <  oo)
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[otherwise P(ijt <  Q\v < C) =  1 would be violated for some <].

According to Theorem 6 in appendix B, it suffices to construct a 
process Q with a revision rate satisfying the condition of the theorem. 
Let the following probabilities be considered

P» =  sup I P (u1 -  ü° > 0) : ?7(.r) =  0. ^  <(*/)> 0>
neE [ » e V ( * )  J

p'i =  i n f  I  P(v° —  u 1 >  0 )  : r/(x) — 1 ,  ( x ~  C ( 2 / ) )  >  0  
neE I ye^(x)

Since the sample size is finite [2d +  1 < oo], and both 0 <  P {u l — u° > 
0) < 1 and 0 <  P(u° — u1 > 0) <  1 for all finite d. we can conclude that 
the probabilities p\ and ps exist satisfying 0 < p\ <  pa < 1. Using these 
probabilities, Q shall be defined by the revision rate

Ps Ct(y) if <(*) =  0

M  (28)
Pi (1 _ C(y)) if <0*0 =  1,

y€A/r(x)

where p, — p'i/(2d). This revision rate is well defined for Q since it is 
nonnegative, spatially homogeneous and depends only on the opinion 
of finitely many other neighbors. Comparing the revision rate for r)t in 
equation (27) with the one for ( t in (28), it is easy to verify that the 
revision rate for Q satisfies the desired condition. That is, whenever 
V <  C f°r 7/, C G E, then for all x 6 Zd

c(at, 77) < c'(x ,Q  if rj(x) =  ( (x )  =  0, and
c(x,rj) > ^ (x ’ 0  if »?(x) =  C(x ) =  1-

Therefore, i)t <  (i Vf >  0 with probability one if the initial state satisfies 
V <  C-

To finish the proof, we have to show that Q dies out with positive 
probability. Let Aj — {x  : Ct(x ) =  1} C Z d, |A*| =  { # x  : x 6 At} 
and dA\ =  {(x,?/) : |x — y\ =  1, x € A (,y  (jL A\}. So, the number of
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agents using the better technology evolves over time according to a birth- 
and-death process. During any short time interval \At'l | increases by rate 
pa|dA\| and decreases by rate pi\dA\\. Under such a transition rules 
the process |A||n becomes an asymmetric random walk with transition 
probabilities:

l^iln+1 —
|Â |n +  l with probability ------—

Ps +  Pi

l/U L — 1 with probability — ——-
Ps +  Pi

(29)

for some s <  t, where n refers the nth change of |Â |n. However, we know 
already that starting from a finite set |.4(;| the probability that such a 
process dies out is

P (tq < oo)

Since pi < ps, P (tq <  oo) is clearly positive. This implies that the better 
technology in rp also dies out with a strictly positive probability. □

As we see, spending some money on a trip to visit the neighbors 
may increase the probability of success. Unfortunately, it will be still 
bounded away from one implying that the economy might not converge 
to the better state. This implies that our previous result remained robust 
against altering the decision rule.

One may naturally ask how robust are our the results about the 
impossibility of the almost sure convergence in a spin economy. The 
next theorem establishes an impossibility condition for a broader class of 
decision rules.

T heorem  1 Let c(x, rj) be a spatially homogeneous revision rate. Sup­
pose that c{x, rf) =  0 if and only if r/(y) =  0 Vy € N {x ) and for any 
x £ T,d. Then starting from a finite number of better technology users, 
the better technology dies out with positive probability.

P roo f: To prove the theorem, two processes (I and ( "  will be constructed 
satisfying P(gt < Q\r/ < ( ' )  =  ! for all t >  0. It follows that if if the
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process £t' dies out with positive probability, then so does r/(.

Let as and a\ be defined as

as =  sup {c(x , tj) : c(x, r/) > 0, rj(x) — 0}
r]E.E

a!: =  inf {c(x , rj) : c(x , 77) >  0, r](x) — 1} .ri£E

Since 0 <  c(x,rj) <  00 by assumption, a\,as satisfying 0 < a\ < as <  00 
exist. Let £(' be defined by

Y  C't(y) if C'M = 0
y€Mx) (30)

ai Y  (f  — C'(:y)) if C W ' =  i,
y£Al'(x)

where a,- =  a(/2d. Since a,- <  as and c'(a:, C') =  0 if and only if c(x, rj) =  0, 
c'(x, ()') satisfies the condition of Theorem 6 in appendix B implying 
P(f]t <  CtIV <  C) =  1- Therefore, we have to show that if =  k0 < 
00 then (l —> C0' with positive probabilityt where \A\ | =  {# x  : x £ 
Zd,rj(x) =  1} and £*' =  { ( '  : ('(x) — 1 Vx £ Zd}. However, by the 
arguments of proposition 6, | turns out to be an asymmetric random
walk. It survives with a probability given by

where k0 is the number of better technology users at time zero. Since 
a,- <  as by construction, Pk0{Tc't <  °° )  >  0- which proves the theorem. □

The above theorem describes qualitatively the convergence behavior 
of any decision rule which satisfies some relative weak conditions. On 
one hand, spatial homogeneity of the revision rate is required which was 
assumed throughout the paper and discussed already. On the other hand, 
the revision rate has to satisfy two further conditions. First, an agents 
cannot change his opinion without talking to a neighbor who is doing 
something else as he does. This means that if all of his neighbors share 
his view, he can talk to nobody having different opinion, therefore he
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continues doing the same action as before \c(x. rf) =  0]. Secondly, if at 
least one of his neighbors has different opinion as he has, he may adopt it 
[.c(x,r]) > 0], Recall, the positivity of the revision rate does not express 
necessity, it expresses possibility. If the decision maker does not meet or 
sample a neighbor who has different opinion, he continues working with 
the previous technology.

It is easy to construct examples for which the above theorem does 
and does not hold. It holds for example if an agent takes samples of size 
n < 2 d  and he adopts the technology which performed better on average 
in his sample. More generally, if an agent is more likely to adopt the more 
popular technology, and he adopts a technology with positive probability 
provided that at least one of his neighbors uses it, the above theorem 
describes the technology adoption process. However, the theorem also 
holds for decision rules without popularity considerations. For example, 
if each agent asks his neighbors sequentially, he stops at the first one who 
uses different technology and he adopts it provided its payoff is higher 
than that of his technology, the conditions of the theorem are satisfied. 
Clearly, the popularity of the two different options does not matter in this 
decision algorithm. It does only matter whether one neighbor is doing 
something else as the decision maker or not. In contrast for example, if 
an agent adopts a technology if and only if at least k of his neighbors 
using the alternative technology achieve a higher payoff than he does, 
then the theorem does not apply.

4 Discussion

4.1 Rules of thumb and word-of-mouth communi­
cation

The importance of analyzing simple naive learning rules has recently been 
popularized by Ellison and Fudenberg (1993, 1995), and Banerjee and 
Fudenberg (1994). Seemingly, the heart of these models are some simple 
assumptions, namely, that agents guide their decisions by observing other
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individuals, that there is no strategic interaction, and finally that agents 
can revise choices as many times as the probabilistic structure allows. 
These frameworks provide conditions for almost sure convergence to the 
better state. Although the model of this paper clearly satisfies these three 
assumptions.5 the results exhibit the striking difference that almost sure 
convergence does not occur. In this sense, none of the results of the three 
closely related papers can he replica,ted in our framework except for trivial 
cases. It will be now discussed now what the origins of this difference 
are.

Our model differs from the previous ones in three important as­
pects. First, in the present model there is only a countable infinity of 
interacting agents while in the other models a continuum of agents is 
assumed. This assumption makes it possible to analyze the behavior of 
one agent. Clearly, this is not possible in a continuum of agent model 
where the probability that one individual [one point on the line] under­
takes an action is zero. Secondly, our individuals can communicate only 
with their nearest neighbors unlike in the other models, where an agent 
can interact with anybody else in the population. This assumption for­
mulates explicitly a locally interacting setting which essentially generates 
the differences. Finally, it is also an important difference that our agents 
are distributed in a communication space represented by the points on 
d-dimensional integer lattice. As we have seen in proposition 5, the the 
parameter d plays an important role in determining the long run behavior 
of the economy.

As we have shown, under the above assumptions the better tech­
nology dies out with positive probability if initially finitely many agents 
are using the inferior technology. It might well happen that the finite 
number of better technology user observe only worse technology user who 
earn higher payoff than they do. Since such an event occurs with positive 
probability in finite time, the better technology may die out. It should 
be noted that without local interaction this problem does not arise at all. 
If agents can observe anybody else in the population, they would observe

5The assumption of randomly arriving revision opportunities can be regarded as a 
limit of the case when a fraction of the individuals revise their decision in any period.
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the performance of bad technologies with probability one. This comes 
about because the superior technology is used by finitely many agents 
while the inferior one by infinitely many ones.

Having discussed the differences in the structure of the models and 
the main result of this paper, we can compare our results with those 
of the related works. Since these papers focus on decision problems 
without an exogenous signal, we also concentrate on this case in the 
comparison.6 Ellison and Fudenberg (1993) consider the simple decision 
problem that agents have to choose one of two available technologies 
having an expected payoff difference 0. The random shock to the payoff 
difference is uniformly distributed on the interval [—a, cr] and is the same 
for everybody. Agents change their opinion whenever the average payoff 
difference is larger than a weight m multiplied by the relative popularity 
of the alternative technology. Ellison and Fudenberg show that a carefully 
determined m ensures the almost sure convergence to the better state. 
We can replicate this result in our setup by assuming that the payoff 
realizations are publicly available information. Intuitively, this is the 
same assumption as allowing agents to observe the average payoffs in a 
continuum of agent framework, which is the assumption of Ellison and 
Fudenberg or to observe any other individual in the population. Since 
this decision rule is not related directly to the rules of thumb analyzed 
before, we state our claim formally:

Proposition 7 Assuming that the payoff realization is publicly revealed, 
the spin economy of the rule of thumb with popularity weighting is ergodic 
if m < a — 9. Its unique invariant distribution is the product measure

H r - *,(*) =  i )  =  \ +  <31>

Furthermore, the economy converges from any initial distribution with

6However, it should be mentioned that a continuum of agent model with global 
interaction and a framework of local interaction with countable infinity of individuals 
give similar results if an exogenous signal is present. For example, the long run 
outcome of the pure imitation case would be the same in both models.
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exponential rate
g — m

(3 2 )
a

If a — 0 < m < cr +  9, the spin economy converges with probability one 
to the state where everybody is using the better technology. If m > a +  6, 
the economy is non-ergodic.

Proof: See Appendix E.

These results are essentially the same as derived by Ellison and 
Fudenberg, except that they do not determine the rate of convergence. 
Clearly, there exists an optimal m. notably m — a — 0, for which the 
economy converges to the better technology with probability one. How­
ever, this is trivial because if m. =  o — 0. then an agent switches to 
the worse technology if and only if at least one of his neighbors uses 
it. On the other hand, if he operates the worse technology, he changes 
with a strictly positive rate to the better one even if no neighbor uses it. 
[This follows from equation (E.13) in appendix E.] Since the effect of the 
neighbors on the revision rate in either direction is the same, the result 
of convergence is not surprising. We may also notice that the economy 
converges faster if m < cr — 0, that is, it is then easier to reach a worse 
than a better state.

Ellison and Fudenberg (1995) considered a slightly different frame­
work. The payoff difference is assumed to face both aggregate and id­
iosyncratic shocks and agents try to infer the better technology by taking 
samples. Therefore agents adopt the alternative technology with positive 
probability only if they sample such a technology. Ellison and Fudenberg 
concluded that if the sample size is small, the economy converges to a 
consensus where everybody uses the same technology. Furthermore, if the 
sample size is too large, the economy fluctuates between the two options. 
However, at an intermediate sample size the economy converges to the 
better technology with probability one. This finding is comparable with 
our impossibility result of theorem 1 because such a decision rule satisfies 
the condition of the theorem. As was shown, coexistence never occurs 
and starting from a finite set the economy never converges to consensus
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with probability one. These results are in sharp contrast to Ellison and 
Fudenberg. However, starting from an infinite set a broad class of deci­
sion rules without popularity consideration can lead to the better state. 
Ellison and Fudenberg also look at the case where the expected payoff 
difference is zero. The comparison of their result with our in proposition 
5 also highlights the difference between a model with a countable infin­
ity of agents and with explicit neighborhood structure, on the one hand, 
and, one the other hand, a model with a continuum of agents and global 
interaction. Ellison and Fudenberg found that if only a small fraction 
of agents revises their decisions at any period and agents sample only 
one other agent, then the economy converges to consensus. In contrast, 
if the sample size is at least two, the two technologies will coexists. In 
contrast, in our framework coexistence of two equally good technologies 
always occurs with positive probability if the number of neighbors is at 
least six. The intuition of Ellison and Fudenberg, namely, that small 
samples make adopting a product with a very little market share less 
likely, does not work here. Although the intuition turns out to be valid, 
the explicitly formulated neighborhood structure does not allow that this 
small probability [small q0 in our model] vanishes in the long run.

The third model closely related paper is presented by Banerjee and 
Fudenberg (1994). Their model differs from the two setups discussed 
previously because now rational agents in the Bayesian sense have to 
choose between the two technologies. Which technology is better depends 
on the states of the world. Agents are in different states of the world 
and achieve the efficient outcome, that is, adopt the technology that 
performed better in this state of the world. Banerjee and Fudenberg 
have shown that the economy converges to the efficient outcome if each 
person in the population is equally likely to be sampled. The argument 
is based on the feasibility of proportional sampling which clearly fails to 
be satisfied in a spin economy. In such a framework only the nearest 
neighbors can be sampled. However, we could reconsider their Bayesian 
agent in our framework. A Bayesian has some priors about which option 
is better and determines his posterior beliefs by asking the neighbors 
about their payoffs. Then he chooses the technology which has a higher
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expected payoff according to his posterior beliefs. The probability that 
his posterior belief favors a technology, typically depends on how many 
agents use currently the two technologies in the neighborhood. We could 
use our impossibility theorem to show that both technologies may die 
out implying that there is no almost sure convergence to any of the two 
states.

4.2 Herd behavior

The model of this paper is also related to the herding or cascade litera­
ture. In these models rational agents have to choose sequentially one of 
two available options. The decisions are irreversible: if an agent has al­
ready undertaken an action, he cannot change his mind. The information 
of any individual consists of the observation of all decisions made in the 
past and the individual’s private information. Herding arises naturally in 
such environment, that is, agents neglect their private information and 
simply copy the decision their predecessors.' The results on herding im­
ply that even rational agents may decide for the worse option. However, 
one can certainly find examples for irreversible decisions or cases in which 
it is feasible to observe the whole history, there are several situations in 
which it is not the case. Agents often cannot observe the whole history 
and do not know the sequence of the past decisions. Moreover, it is easy 
to find real world examples for strong “once and for all” commitments 
which finally do not last forever.7 8

Our framework offers a possibility of how herding may emerge in a 
stochastic environment if agents can revise their decisions after a while. 
Let us consider a situation where agents simple imitate one of their ran­
domly chosen neighbors. [They may do so because of some rational 
reasons exogenous to the analysis.] Such a model is known as the voter 
model in the theory of interacting particle systems and was extensively

7The herding and cascades idea was recently analyzed in a formal model by Baner- 
jee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) and generalized by Lee 
(1993) and Smith and S0 rensen (1994)

8Orlean (1995) also argues that the assumption of sequential decisions is strong 
and proposes a model to relax it.
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reviewed by Liggett (1985, Chapter V) and by Durrett (1988, Chapter 
II). The behavior of the voter model crucially depends on the process 
X * w h ich  describes how a particular opinion reaches agent x between 
time t — s and time t as in proposition 5. In this case, X * ’1 is a sim­
ple symmetric random walk which is well known to be recurrent in one 
and two dimensions and transient in higher dimensions.9 Hence, it fol­
lows that the society herds on one opinion almost surely if the number 
of neighbors is less than four. However, if there are at least six, then 
the two different opinions may coexists with positive probability. This 
implies that the imitation of the others is not sufficient to obtain herding 
in the present setup.

Finally, it is also useful to compare our results with those of Kirman 
(1993). He analyzes the behavior of agents who imitate the others with 
a given probability. However, each agent may choose an option indepen­
dently from the others [called mutation] with some small likelihood. The 
ergodic distribution of this economy turns out to depend on the small 
probability of mutation. This is a similar result as obtained in propo­
sition 1 where the ergodic distribution is determined by the exogenous 
signal. However, as proposition 5 suggests, steady fluctuations between 
two states can be generated without mutation if countable agents com­
municate in a virtually spatial environment.

5 Concluding remarks

Recently several authors [Ellison and Fudenberg (1993, 1995), Banerjee 
and Fudenberg (1994)] have found that under certain conditions naive 
learning rules can almost surely lead to an optimal decision. This paper 
has argued that their attractive result crucially depends on the frame­
work they used. Our analysis suggests that Ellison and Fudenberg’s 
finding changes qualitatively if one removes the assumptions about both

9 A proof is presented for example by Durrett (1991, Chapter III) who also also 
tells the following very intuitive observation of Kakutani: “A drunk man will find his 
way home but a drunk bird may get lost forever” . Essentially, this mechanism works 
in neighborhood communication too.
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the continuum of agents and the global interaction. The setup of this 
paper has considered a countable infinity of agents with local interaction 
where communication is possible only with nearest neighbors. The analy­
sis of two different rules of thumb suggests that if an imperfect exogenous 
signal is available about the better option, then the long run outcome 
is essentially determined by this signal. In particular, the economy con­
verges almost surely to the better state if and only if the exogenous signal 
is true with probability one. As noted previously, the two frameworks 
deliver similar results in this case. In contrast, if the exogenous signal 
is absent, we have demonstrated above that none of the results of the 
previous papers can be replicated in this framework for other than trivial 
cases.10 Every outcome occurs with positive probability, that is, the good 
technology may either die out or may drive out the worse one, implying 
that there is no almost sure convergence to the better state.

This result suggests that given neighborhood communication is im­
portant and agents use simple exogenous rules for their decisions, the 
aggregate outcome might be a matter of luck only. Some good ideas 
may die out while some bad ones may be adopted by the whole soci­
ety. There are famous real world examples for this phenomenon such as 
the selection between competing typewriter machines or video systems 
of different quality.

Fortunately, societies are sometime able to discover ideas again, a 
famous example being the early history of genetics. Mendel’s idea about 
how characteristics are inherited was of so little interest to the public 
years age that even he stopped his research on the topic. It took fifty 
years until Morgan popularized the issue. Another, more recent example 
is provided by the history of neural networks. There was a certain interest 
in studying artificial neurons in the 1960s, but, in 1969 two researchers

10A similar results were obtained recently by other authors as well. Durrett and 
Levine (1994a) have shown about coexistence and survival of different strategies in the 
context of evolutionary biology that the prediction of the models in which individuals 
have an equal probability of interaction may differ considerable from the prediction of 
models where it is not the case. Ellison (1993) has demonstrated that the convergence 
behavior of a model with local interaction is different from that of a model with global 
interaction.
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demonstrated some learning difficulties in such assemblies. As a result 
the interest in the subject died relatively fast, twenty years later it turned 
out that the previous difficulties can be resolved.

Appendix

A The formal definition of the spin economy

Give a two element set W  =  {0 ,1 } the discrete topology and E =  W ^ “ 
the product topology, where Z d for some d >  1 denotes the d-dimensional 
integer lattice. W  is compact in the discrete topology, E is compact in 
the product topology, and both are separable and metrizable. The state 
of the economy is given by the mapping rj : Zd — > W . Consequently, 
the state of the economy is denoted by rj E E  while the state of agent 
x E Z d is given by t]{x).

Let C(E)  be the set of of all real valued continuous functions /  on 
E, regarded as a Banach space under the sup norm ||/|| =  supr(€E 
Moreover, let E  be endowed with a measurable structure given by the <r- 
algebra of Borel sets. The set of all probability measures on these Borel 
sets is denoted by V(E).  Give 'P(E) the topology of weak convergence, 
that is, pn —* fi in V(E)  if and only if f  fdpn —> /  fdfi for all /  E C(E).  
V(E)  is compact in this topology because E  is compact.

Definition 2 Let Z?e[0, oo) be the set of all functions rjt on [0, oo) with 
values in E  which are right continuous and have left limit at all f >  0. 
Moreover, let T  be the smallest <r algebra on D/,[(), oo) relative to which 
all the mappings t]t are measurable and T s the smallest (7-algebra on 
D e [0, oo) relative to which all the mappings i/s' for s' <  s are measurable. 
A  Markov process on E  is a collection of probability measures { P ’1, r/ E E } 
with the following properties:

(a) P(rit E D £ [0,oo)|//0 =  rj) =  E D E[0,oo)) =  1 for all t >  0 
and rj E E,

(b) for all A  E T  and t >  0 the mapping t) i— > P r' (p, E A) from E  to 
[0, 1] is measurable,
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(c) P ’?(?/s+s- G A\T,) =  P^iris+s' € A\r]s) for every 77 G E  and A G T  
for all s' >  0.

Definition 3 A one parameter family {S(t) : t >  0} of bounded linear 
operators on C(E)  is called a semigroup if 5(0) equals the identity oper­
ator on C(E)  and S(t +  s) =  S(t)S(s) V.s-. t >  0. It is called contraction 
semigroup if ||5(f)/|| < ||/|| for all /  G C ( E ) and t > 0. In addition, a 
semigroup is said to be a Markov semigroup if it satisfies the conditions:

(a) S(t) f  G C(E)  (Feller property),
(b) S(t) f  : [0,oo) — ► C ( E ) is right continuous at all t G [0,oo) and 

V / G C(E),
(c) S(t +  s ) f  =  S(t )S(s)f  V / G C(E)  and V s ,t. >  0,
(d) S(t) 1 =  1 Vt > 0,
(e) S(t) f  >  0 for all nonnegative /  G C(E),

A semigroup is strongly continuous if lim(^ 0 S(t) f  =  f  V / G C(E).

Definition 4 A linear operator Q on C{E)  is a linear mapping whose 
domain P(Q ) C C(E)  and whose range V(Q)  C C(E).  is said to be 
closed if its graph G(Q) =  { ( / . f t / )  : /  G X>(SI)} is a closed subset of 
C(E) x C(E) .  The generator of a semigroup S(t) on C(E)  is a linear 
operator SI defined by

Si/ =  lim<—o
S(t) f  -  /

t

for all /  G C(E)  for which this limit exists. Finally, D  C X>(Si) for a 
closed linear operator Q is said to be a core for S! if Q is the closure of 
its restriction to D.

Definition 5 Let a shift transformation u>y be defined for x. y G Z '( by 
uyg{x) — rj(y +  x ) and for all /  on E  by a>yf{g )  — f { u yy). The revision 
rate c(x, rj) is said to be translation invariant if c(x +  y, iXyT]) — c(x , rj) for 
all y G E. In addition, p G 'P(E) is called translation invariant denoted 
by ujyp =  p if /  fd[ajyp} =  I  uJyf dp =  J fdp  for all y € E.
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Theorem 2 Let gx(y) =  y(y) for x ^ y and gx(y) = 1 — g(y) for x =  y 
V x ,y  £ Zd. Let c : Zd x E  — > M+ be a continuous mapping which 
satisfies

(a) translation invariance,
(b) supiezJ c(x, rf) <  oo,
(c) M  =  SUPl£Zd EneZ'i SUp^E |c(x,Tl) -  c{x,T}u)\ <  OO.

Moreover, let C'(E)  C C(E) be the collection of functions depending only 
on finitely many coordinates,

^f (h )  =  Y ,  c(x ^ v ) ( f M  -  f ( v) )  and
xCZd

e =  inf \c(x,r]) — c(x,gx)\ < oo.
x£“Z.d,rĵ E

Then, the closure Q of ft is a Markov generator of a Markov semigroup 
and C'(E) is a core for  ft. Moreover, if f  £ C'(E), then S(t ) f  £ C'(E)

V* ^ 0 and 115(0/11 < exp[(M -  6)f]||/||. (A .l)
Finally, if f  £ P ( f l), it follows that S(t ) f  £ X>(ft) and d/(dt)S(t)f —
ftS (t)/ =  S(t)Vf .

Proof: See Liggett (1985) Theorem 2.9. and Theorem 3.9. in Chapter 
I, Ethier and Kurtz (1986) Chapter I.

Theorem 3 Suppose {S(t),t, >  0} is a Markov semigroup on C(E) .  
Then there exists a unique Markov process gt such that

E[f(Vt)\Vo = v ]  =  S(t ) f (y)  (A.2)
for all f  £ C(E) , rj £ E, and t >  0. Moreover, let // be the initial 
distribution associated with g, then the finite dimensional distribution of 
the process is given by

E =  j  S(t)f(g)p(dg).  (A.3)

Proof: Ethier and Kurtz (1986) Proposition 1.6 and Theorem 2.7. in 
Chapter IV.

Definition 6 Suppose {S(t) , t  > 0} is a Markov semigroup. Given /< £  

V{E),  pS(t) £ V{E)  is defined by f  fd[pS(t)\ =  f  S(t) fdp  V / £ C(E) .
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1(E)  is called the set of stationary distributions if 1(E)  — {// : p G 
V(E),  pS(t) =  pVt >  0}.

Definition 7 The Markov process with semigroup S(t) is said to be 
ergodic if T(E) — {n}  is a singleton and lim^,*, pS(t) =  v V p G V(E).

Definition 8 The partial order on E  is defined by the relation that T] <  (  

VrjX G E  if and only i](x) < C,(x) Vx G Z J. In addition, { ( 77,£) G E  x E  : 
r) <  £} is a closed subset of E x E  endowed with the product topology. 
Two probability measures px and //2 on E are said to be ordered p\ < p2 
if /  /("//< i <  /  /(f //2 for all continuous monotone increasing functions on 
E.

B Theorems about the ergodic properties of a spin 
economy

Theorem 4 1(E)  is a non empty compact, convex subset ofV(E) .  More­
over,

(a) p G 1(E) if and only if

J  S(t)fdp =  j  f  dp

for all f  G C(E),
(b) if v =  Hmt^ocpSft) exists for some p G E(E)  then u G 1,
(c) ifÜ  is a Markov generator of S(t) and f  G D C T>(Cl) where D is 

dense in T>(Cl), then

1(E)  =  { p  G V(E)  : j  V f  dp =  0 V /  G £>}.

Proof: see Liggett (1985) Proposition 1.8. and 2.13. in Chapter III.

Theorem 5 Suppose pi and p2 are probability measures on E. A neces­
sary and sufficient condition for p t <  //2 is that there exists a probability 
measure n on E  x E which satisfies

v { ( v , 0  ■ *1 € A }  =  pi (A)  and v{ (r ) ,0  ■ C € A }  =  p2(A)
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for all Borel sets A £ E and v{{gt,(t) ■ ht <  (t\v <  C} =  1 -

Proof: See Liggett (1985) Theorem 2.4 in Chapter II.

Theorem 6 Suppose c\(x,g), c2{x, Q  are the revision rates for the Mar­
kov processes r]t and Q such that whenever g < ( ,

ci(x,r/) <  c2(x , Q  if r](x) =  ( ( x )  =  0 ,  and
Cl(x,Tj) > C2(x,C) if Tf(x)=C(x) =  1.

Then V g, f  £ E satisfying g < (  and Vi > 0

P(m < Q\vo =  =  0  =  i-

Moreover, if p\ and p2 are probability measures on E associated with g 
and (  and satisfying p\ <  p2, then

P\Si(t) < p2S2(t) Vi >  0.

Proof: See Liggett (1985) Theorem 1.5. and Corollary 1.7. in Chapter 
III.

Theorem 7 Let g' =  {77: t?(x ) = i Vx £ Zd}. Moreover, let b° and 6' be 
the point masses at g° and g1 and S(t) be the Markov semigroup for an 
attractive spin economy. Then

(a) 6°S(s) < 6'S(t) for Q <  s < t,
(b) S1S(s) > ES(t) for 0 <  a < t,
(c) 6aS{s) <  pS(t) <  ES{t) for all t > 0 and p £ V{E),
(d) v_ — limt^oob0S(t) and V =  limt-*<x,E S{t),
(e) if p £ V(E),  tn —> 00, and v — lim^oapS^n), then v < p < v .

Furthermore, the attractive spin economy is ergodic if and only if v =  V.

Proof: see Liggett (1985) Theorem 2.3. and Corollary 2.4. in Chapter 
III.
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C A lemma for ergodicity of a special spin economy

Lem m a 1 Suppose that the revision rate for a spin economy has the 
form:

c(x, 77)

Q
a + Y. niv) */ nix) = 0

y eA f(x )

b + ~h 5Z (! -  niy)) n(x) = 1 
2d

such that a >  0, b >  0, a +  b >  0. c >  0. This spin economy is ergodic. 
It converges with exponential rate a +  b to the product measure

: Vix) =  1} =
a

a +  b

P roof: This spin economy is clearly attractive. Therefore by Theorem 7 
in the previous appendix it is sufficient to show that v =  lim^oo 6° S ft) — 
lim*—oc S'Sft) where 5° and 6' denote the point masses at if and at if.

Since c(x,g)  depends on x  through // only, this economy is transla­
tion invariant. In addition, the two point masses are also trivially trans­
lation invariant. Therefore, the semigroup property the distribution of 
the process at time t given by /<} =  6‘S(t) is also translation invariant 
for all t >  0 and i =  0.1. This implies that p\ =  6'S{t){g : g(x) =  1} 
is independent from x. Let us pick up an arbitrary agent v £ Zd and 
let f (g )  =  77(c) implying that /  is monotone in 77. The generator of the 
process, which is given in Appendix A. can be written as

Sl f( ri )=c (V,r,)i 1 - 2 7 7 (c)). (C.4)
Writing the revision rate in closed form

c(v,g) =  a - ( a - b ) g ( v )  +  ( l - 2 g ( v ) ) ^ ~  ^  77(77), (C.5)
yZM(v)

and taking into account that (77(c))* =  77(c) and (1 — 277(c ))2* =  1, the 
generator of the process can after some manipulation be shown to equal

Qfig)  =  a -  (a +  b)rj(v) +  ^  (g(y) -  tj(v) \  (C.6)
yeA T(u) v  '

Let us consider the case that the economy starts from the state 77°, then
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f(jj) =  rj°(v) at time zero. Integrating (C.6) with respect to b°S(t) yields

J  ft f[d6° 5(f)] =  a — (a +  b) J  fd[6°S{t)}

+Yd £  ( f r ) ° (y )d [6 °S ( t ) ] -J fd [6°S ( t ) } ) .  (C.7)

The two parts of the last term in equation (C.7) refer to the same prob­
ability measures at different locations. However, due to the translation 
invariance of 6°S(t) the last term in equation C.7 vanishes. Moreover, 
from theorem 2 in appendix A it follows that equation (C.7) can equiv­
alently be transformed to

j / t  =  j  nfd[6°S(t)} =  a -  (a +  b)p°. (C.8)

Since d/dtp0t =  0 for any stationary distribution, which is stated in the­
orem 4 in appendix B, it follows that

lim p't
a +  b

(C.9)

Clearly, the same algebra could be done for the process starting at if since 
the generator is the same for both cases. Therefore i' =  lim<^00 6°S(t) — 
lim^oo 6lS(t).

The statement that the rate of convergence is a +  b follows directly 
from (C.7), which is a simple differential equation. □

D The lemma for the proof of proposition 5

Lemma 2 Let X n be the location of a random walker on l '1 after the nth 
step. At each step he stays where he is with probability 1/2 and jumps to 
each of the 2d adjacent coordinates with probability 1 /4d. This random 
walk is transient for d >  3, that is, the random walker returns to his 
initial location with probability less than one.

Proof: Let Pn be the probability that Xo =  X n for a given coordinate.
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A random walk is transient if and only if Pn < oo. [For a proof 
see for example Durrett (1991, Chapter III).] Therefore, it will be proved 
that our random walk satisfies this condition.

Xo =  X n if and only if the random walker goes as many steps 
forward in any direction as backward. Let [x] =  {the largest integer <  x }  
For a given sequence of steps (£ jL  1ni < [n/2]), we can compute the 
probability that after n steps the walker returns his original location. 
We also have to take into account that in some steps (n — 2 X)f=1 n,) he 
did not move. However, to determine Pn, all such possible sequences 
should be considered. Using combinatorial arguments we get

The last part of the second term is the probability that a simple symmet­
ric random walk on Z d returns to its initial position after 2k steps. This 
probability is of order k~dP  as k —* oo [See Durrett (1991, Chapter III)], 
that is, it is approximately Ck~d/2, where C is some constant. Therefore 
equation (D.10) can be rearranged as follows:

/ l \ n 4Cn>'2 [̂ ] f n  +  2 \ n \ n+2{2k +  l)(2k +  2 ) n V T -
~ \ 2 J + (n +  l ){n +  2 ) ^ 1 \2k +  2 ) \ 2 j  nl/*k3/2 U J

If d > 3, we obtain

4 2
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Pn <

<

<

<

/ 1\" 4C n1'2 ^  ( n  +  2\ / l \ n+2
V2)  +  (n +  l )(n +  2) ^ \ 2 k  +  2)  \2J

/ l \ n 4Cn1/2 ["^J/ n  + 2\ / l \ n+2
V2/ + (n + l)(n + 2) E  1 ^  + 2/ UJ
/ 1 \ "  4 C n1'2
\2j + (n + l)(n + 2)
/ 1 \ "  4C 
V2/ n3/2

(2fc +  l)(2fc +  2)
n l/2 fc3 /2

(D.l l)

However, this means that
oo °o / 1  \ n
E ^ <  E  Q  +n n—n \ ̂  /

4C
n 3/2 <  OO. (D-12)

n=0 n=0
Thus, our random walk behaves similarly to the classic simple symmetric 
random walk, that is, it is transient for d >  3 and recurrent for d < 2 . 0

E The proof of proposition 7

Before beginning the proof some notation has to be introduced. Accord­
ing to the definitions of the decision rule, the revision probabilities can 
be written as Px 0i (u1 — u° >  m01) if agent x uses the worse technology 
and is thinking switching to the other one, and Px 10 (V  — u° <  m10) if 
the agent uses the better technology, moi and m1(| denote the weight on 
the relative popularity on the better and worse technology, respectively. 
It follows that

Px.oi =  P  (u1 - u °  > m01) =  1 -  P  (e <  m0i -  0) =  

Px,io =  P  (u° - u l >  m10) =  P  (e <  m10 -  9) =

a +  9 -  m01 
2a '

a — 9 — m10 
2a '

The parameters of the popularity weighting obey the following functional 
forms:

m01 m I 1 1
d E  *i(y)

yeAT(x)

4 3
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mm10 = Y  ( !  -  v(y))
y€J\f(x)

where m >  0 is a constant set by agent x and measured in the same units 
as the payoffs are. m represents the strength of the popularity weighting. 
If m =  0, agents rely entirely on the observation of the last period’s 
payoffs. Furthermore, if exactly half of the neighbors use a technology, 
the popularity has no informational content. In this case moi and mw 
become zero and we get a decision rule which behaves as if agents used 
the information on the payoffs only. So far the decision rule has the same 
characteristic as that in Ellison and Fudenberg (1993). Now, the revision 
rate can be written as

c(x, if)

a — m +  0 
~ 2 a

a — m — 6
2 a

+  t t -  Y  y(y) i f  v(x) =  0
2da y t% )

+ £ r  Y  t t -  niy)) i f  y{x) =  1.
2da yeM(x)

(E.13)

Notice that this revision rate is not correctly defined since m could be set 
so high that c(x. i]) becomes negative which is not possible by assumption. 
For this reason, I impose the following constraint: if 3 r) 6 E for a given m 
such that c(x,T],rn) =  0, then c(x,i)\m ) =  0 Vj/' >  rj satisfying ?/ £ E. 
In addition, if /Br] £ E  for a given m such that c(x,r),m) >  0, then 
c(x,7/,m) =  0 V 7] £ E.

The form of the revision rate reveals that we need the assumption 
on the neighbor-independent publicly available information about the 
payoff realization.

Proof: If m < a — 0, the revision rate attractive, spatially homogeneous 
and has no absorbing state. Hence we can use the arguments and method 
of Proposition 1. Given a state at t , if the “Poisson alarm clock” rings, 
the conditional probability that agents use the better technology at time 
t +  At  is

Pt+&t (1 ~P\)
( a  +  0
V 2a

m eKx^y) _
l - A  )

At

4 4
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+p\
Tj z l  i HL ( ^ ^ { x ,y)  _ , 
2a  2(7 V P\

At +  o(At),  (E.14)

where p\ is the marginal of p\ and g'(x,y) — p\{i) : y(x) =  1 ,rj(y) =  
0} =  p‘t{r] : t](x) =  0,r/(y) — 1} for any x ,y  G Z rf. Recall, i is either 0 
or 1 depending on whether the initial state is rf or r)1. Rearranging and 
taking the limit At J. 0 yield the following pair of differential equations 
for i =  0 or i =  1:

Pt
a — m +  9 a m

2(7 -Pt- (E.15)

If one sets the left hand side equal to zero and solves the resulting equa­
tion for p\. the statement about the ergodic distribution and about the 
rate of convergence follows directly.

If c7 — 9 < m < a +  9, the result can be obtained by applying simple 
coupling technique. Let ( t a process on E  with the revision rate

c'(abC)

(7 -  m +  9 m „  . .
+ ^  E  vM rf2(7 yeM(x)

m 
2 da H  (1 -  v(y))

yZAf(x)
if

77(37) =  0 

y(x)  =  1.
(E.16)

Comparing the revision rate of r) in (E.13) with that of (  in (E.16), we 
can observe that if (  <  rj and a — 9 < m < a +  9, then

<  0 ( 3 7 , 7 7) if 7 7( 3 7 ) =  0 and 
d ( x , Q  >  c(x ,rj) if r](x) =  1.

This is due to the assumption that if 3 // G E  for a given m such that 
c(x, g, rri) =  0, then c(x,r]',m) — 0 Vr/' >  7/ satisfying if G E. Moreover, 
if 77 G E  for a given m such that c(x,i],rn) >  0, then c(x,rj,rn) — 0 
V tjG E.

The state ( '  is an absorbing state. Moreover, according to Theo­
rem 6 in Appendix B, if (  <  rj, then (< <  % V f >  0 with probability 
one. Hence, it is sufficient to show that ( t is ergodic and converges with 
probability one to the state (°. Then rg is also ergodic and converges to
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rf. Now given a state at time t, the conditional probability that an agent 
uses the better technology at time t +  At  is

„0t 11 _0/\
Pt+At ~  (1 Pt)

<? +  0 , m y)
2(7 +  2(7

-  1

+P°t' 2(7
0 ™_ f . , 9''(x-y)

2(7 V" 1 -  P°'

1 -P°t'

1 \) A t

At

+  o{At),  (E.17)

where p°t' and gl'(x, y) are defined for ( t in the usual way. Rearranging 
(E.17) and taking the limit At  J. 0 provide

,0/ (7 — m +  9 a -  m +  6 ol
Pt 2(7 ~Pt (E.18)

Setting the left hand side of the equation equal to zero and solving it for 
p°t' deliver the desired result.

If (7 +  0 < m, both state becomes absorbing. In this case the process 
is non-ergodic. □
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