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A b stra c t

We consider the possibility o f using simulated methods in order to compute 
test statistics for non-nested models, in the general framework represented 
by the encompassing principle. Simulation techniques are useful whenever the 
evaluation o f a test statistic involves a difficult integration problem, and repre­
sent a (simpler) alternative to numerical procedures. Focusing on the Cox test 
statistic, we extend a procedure proposed in the literature and calculate both 
its numerator and its denominator through simulation, getting a refinement of 
previous proposals which considered only simulation o f the numerator. Some 
Monte Carlo experiments are then conducted taking as an example the test 
of linear versus loglinear models. Our results suggest that simulating both 
the quantities in the numerator and the denominator leads to a finite sample 
distribution of the test statistic closer to the asymptotic one.

Keywords: Non-nested hypotheses, Cox test statistic, simulation.

*1 am indebted to my supervisor Grayham Mizon. I would also like to thank 
Stefan Dillmann, Massimiliano Marcellino and Stefano Nardelli for their suggestions 
on a previous version of this paper. Any remaining errors are mine.
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1 Introduction

Simulation methods have found important applications in econometrics 
since the availability of fast and powerful computers has allowed the re­
plication of drawings from a given experimental design. Traditionally, 
Monte Carlo experiments have been used to study the bias and the mean 
square error of an estimator or the size and power of a test statistic, in­
vestigating their finite sample properties by repeatedly drawing samples 
of simulated data1. The increasing power of computers has also been the 
basis for Bootstrap methods, which, starting from a model estimated on 
an observed sample of data, use the technique of resampling through si­
mulations to derive the empirical distribution of the statistic of interest1 2. 
A different use of Monte Carlo techniques has been widespread in Baye­
sian econometrics to calculate the posterior moments of the parameters 
of an econometric model3.

Recently, simulation methods have been introduced in the context 
of the classical inference process, to solve computational problems arising 
when the derivation of an estimator or a test statistic involves the cal­
culation of integrals which are difficult to evaluate or which do not have 
a closed form solution. Such computational difficulties characterise, for 
example, models that exhibit non-linear functional form or contain unob­
servable variables. The major advantage offered by simulation techniques 
is the possibility of replacing numerical integration with approximation 
methods whose properties can be easily derived in terms of statistical 
theory. This is possible because the source of approximation is the ge­
neration of pseudo-random values from specified statistical distributions 
and the integrals to be computed are interpreted as expectations of cer­
tain random variables.

While in the last few years the study and application of simulation

1See Hendry (1984) for a discussion on Monte Carlo experiments in econometrics.
2An up-to-date survey on the literature on the Bootstrap can be found in Bertail 

(1992).
Wan Dijk (1987) describes Monte Carlo procedures in Bayesian estimation.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



methods for estimation have received increasing attention4, there still 
seems to be a lot to be investigated with regard to the role of simulation 
methods in the context of hypothesis testing. In this paper we consider 
some simulation-based procedures to compute the Cox test statistic for 
non-nested models, taking as an example the choice of the functional form 
between a linear and a loglinear specification. This example, which has 
been widely investigated in the literature, involves, despite its apparent 
simplicity, difficult computational problems which can be overcome by 
resorting to simulation techniques. Such problems stem from the presence 
of an expected value in the numerator of the statistic, which is likely not 
to have analytical solution and has to be solved numerically.

Either calculated analytically (if possible) or numerically, the Cox 
statistic has a limiting distribution of reference which is an asymptotic 
one. The simulation approach introduces a further level of approximation 
in finite samples, which is justified on the ground of asymptotic proper­
ties. Understanding the validity of the approximations represented by the 
finite sample distribution of the statistics obtained through simulation is 
a fundamental step toward the legitimation of their application. Thus, 
we use some Monte Carlo experiments to investigate the finite sample 
behaviour of the simulated versions of the Cox test and to address the 
issue of evaluating the loss (if any) in terms of finite sample properties 
we incur when using simulation instead of numerical integration. Star­
ting from some of the simulated versions of the Cox statistic proposed 
by Pesaran and Pesaran (1993 and 1995), which rely on simulations only 
for the computation of the numerator of the statistic, we assess through 
a Monte Carlo experiment their performance in finite samples for the 
models under scrutiny and find it to be poor.

Then, generalizing a procedure suggested by Lu and Mizon (1990), 
we extend the use of simulations to the computation of both the numera­
tor and the denominator of the Cox statistic, getting a simulated version 
of it which has a satisfactory behaviour in small samples. Although con­
ditional on the specific Monte Carlo experiment considered, our findings

4See, for example Me Fadden (1989), Pakes and Pollard (1989), Gourieroux and 
Monfort (1991), Laroque and Salanie (1993).
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support the simulation of the covariance matrix in addition to simulating 
the numerator, since simulating both quantities leads to a finite sample 
distribution of the statistic closer to the asymptotic one.

The structure of the paper is as follows. Section 2 introduces non­
nested hypothesis testing and the importance of finding some compu­
tational procedure to extend the practical implementability of the Cox 
statistic. In section 3 we illustrate the motivations for a simulation ap­
proach to non-nested hypothesis testing in the general framework of the 
encompassing principle and describe different simulation techniques for 
the Cox test statistic. Section 4 is devoted to the Monte Carlo experiment 
and to the interpretation of the results. Section 5 concludes.

2 Testing non-nested hypotheses

To define the statistical framework in which econometric models are eva­
luated through hypothesis testing, assume that T  observations on the 
random variables yt and zt are available, and call this information set 
Wt — (yT,z T). Let the unknown conditional distribution characterising 
the data be h(yt | Xt] 9), where 6 6 0  represents a parameter vector and 
x, =  {zt,y t_1,z t_i) contains the conditioning variables (contemporaneous 
exogenous variables, zt, and lagged endogenous and exogenous variables 
from time 1 up to time t — 1, y and zt_ l). For the conditional density 
above to be the basis of valid inference about 8 the hypothesis of weak 
exogeneity of zt with respect to 9 must hold, meaning that the margi­
nal process (zt | yt-i, zt-\) can be ignored (see Engle et alias (1983)). 
Moreover, for the analysis of the following sections it is convenient to 
assume the condition of Granger non-causality of yt to hold (stating that 
there is no feedback from lagged values of y to zt) for the analysis of 
encompassing to be performed conditionally on x t (see Mizon and Ri­
chard (1986)). Let us define the class of probability distributions put 
forward by the econometrician as an adequate statistical representation 
of the data generating process, h(yt \ xt\ 9), be rn(yt \ xt;y ) ,y  g F (this 
corresponds to the statistical model in the terminology of Spanos (1986)).

3
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Given this setting, in the process of hypothesis testing a model is 
taken as null hypothesis. Ho, and is subject to statistical test against a 
rival model, taken as the alternative hypothesis, Hi, on the basis of a 
rule which indicates whether to accept or not H0 as valid according to 
the observed data.

In this general context the two concepts of nested and non-nested 
hypothesis testing are casted. In the first case, the two models under 
scrutiny are such that one can be obtained by imposing some parametric 
restrictions on the other, i.e. the hypothesis to be tested can be expres­
sed as 7 =  7*, with 7* € T* C T. In the usual practice, the above 
hypothesis is taken as the null, and the procedure aims at accepting 
as valid a simpler model, say m*(yt \ xt; 7*), than the alternative one, 
rn{yt | 27; 7). Following Spanos (1986), nested hypothesis testing per­
formed in this direction amounts to specification testing, as it is based 
on the assumption of correct specification of the more general statisti­
cal model under the alternative. It is well-known that there are three 
main asymptotically equivalent testing principles for nested hypotheses, 
namely the likelihood ratio test (LR), the Wald test (WALD) and the 
Lagrange multiplier test (LM). Such tests are applicable in the maximum 
likelihood framework, i.e. under the classical set of regularity conditions 
on the likelihood function ensuring the applicability of some central limit 
theorems and the use of Taylor series expansions 5.

On the other hand, in non-nested hypothesis testing the two rival 
models are such that neither can be obtained by imposing some parame­
tric restrictions on the other. This means that the modeler is interested 
in comparing two separate families of probability distributions, which 
are both statements about the data generating process h(yt | x t\ 9)6. Fol­
lowing the usual notation for non-nested hypotheses, let two statistical

5See Godfrey (1991) for an exhaustive presentation of the three tests.
6 It can be noticed that it is always possible to consider two non-nested models as 

obtained by imposing different parametric restrictions on a more general model, cfr. 
Lu and Mizon (1992) who describe how to build a model embedding two non-linear 
non-nested models.

4

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



models be defined by the following classes of probability distributions:

Mi : {}{Vt I xt;a ) ,a  e  A } (1)

M2 : {a(yt 1\ xt-6),6 e  A }. (2)
Non-nested hypothesis testing is to be seen as a way of checking the va­
lidity of Mi through the evidence provided by a rival model, M2, for the 
explanation of the same phenomenon. MacKinnon (1983) emphasizes 
that non-nested tests applied to two rival models are tests of misspe- 
cification of the model, in which the two models are taken in turn as 
the null hypothesis, with three possible outcomes: one can be rejected 
while the other cannot (providing evidence in favour of one model), both 
models can be rejected (indicating misspecification of both), or neither 
can be rejected (signaling that the information contained in the data is 
not enough for the models to be distinguished or that the models are 
observationally equivalent reparametrizations). In the econometric lite­
rature various theoretical approaches have been developed for testing a 
null model against one (or more) non-nested alternatives. A recent over­
view is given in McAleer (1995), which aims to evaluate the relevance of 
non-nested hypothesis testing in empirical modelling.

Most of the literature on non-nested hypothesis testing is based on 
a procedure proposed by Cox in two seminal papers (1961,1962), which 
generalizes the LR test for the case of non-nested hypotheses. Extension 
of the LM and WALD principles is also possible, as shown by Gourieroux 
and Monfort (1983). The role of the WALD test for non-nested hypothe­
ses has been emphasized in the framework of the encompassing theory 
(Mizon and Richard (1986)), which is mainly based on a Wald Encom­
passing Test (WET). We will see in the next section that the Cox test 
statistic, which is the focus of our attention throughout the paper, can 
be interpreted as a particular case of the WET.

The proposal of Cox starts from the consideration of the usual LR 
test. Since, in case of non-nested hypotheses, the LR test divided by the 
sample size tends to a non zero limit, this limit is consistently estima­
ted and used to to ’’ center” the LR statistic. The Cox test presents the 
great advantage of being very broadly applicable, allowing, for example,
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the comparison of linear and non linear regression models characteri­
sed by different joint distributions of the relevant variables and therefore 
by different distributions of the error terms. The assumptions required 
for the validity of the Cox test statistic are set out in White (1982): 
the framework in which the models to be compared are cast is still the 
maximum likelihood one7. Unfortunately, however, simplicity of imple­
mentation does not correspond to the theoretical generality of the Cox 
procedure. Actually, the computational difficulties arising in the calcu­
lation of the Cox test statistic limited considerably its application. The 
main developments of the Cox test statistic are made by Pesaran (1974), 
who derives its analytical expression for the case of univariate regression 
models with normal- distributed errors, and Pesaran and Deaton (1978), 
who extend the calculation of the statistic to nonlinear and possibly mul­
tivariate normal regression models. Another interesting extension of the 
Cox test statistic is proposed by Aneuryn-Evans and Deaton (1980) for 
the case of the test of linear versus loglinear regression models, which we 
will consider in section 4.

3 Simulation approaches to encompassing 
for non-nested models

3.1 Motivations for a simulation approach

The encompassing principle is concerned with the capability of an econo­
metric model to explain the characteristics of rival models, and has been 
formalized by Mizon (1984) and Mizon and Richard (1986) to develop 
a test-generating procedure unifying the literature on nested and non­
nested hypothesis testing. The role of the encompassing principle as a 
provider of a comprehensive framework for the comparison of non-nested

7The assumptions include the regularity conditions needed for consistency and 
asymptotic normality of quasi-maximum likelihood estimators, i.e. estimators obtai­
ned maximizing a likelihood function which may not correspond to the joint density 
of observations.
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models is of interest for the following analysis because it covers situations 
in which computational problems are likely to arise. Consider the two 
rival models introduced in (1) and (2) of the previous section. Generally 
speaking, M\ is said to encompass M2 if it can explain the results obtai­
ned by M2. It follows that the evaluation of a given encompassing test for 
M l, against M2 involves the estimation of the expected value of a certain 
statistic of interest within the context of M2 under M\. Therefore, an 
integration problem has to be solved, the degree of complexity of which 
will depend on the form of the densities characterising the two models.

Given that model Mi, as well as model M2, is only an approxi­
mation of the unknown process which has generated the sample y^, its 
usefulness can be assessed by asking whether it can mimic the data ge­
nerating process in being able to predict the behavior of statistics which 
are of interest in the analysis of M2. Indicating by a  and <5 the pseudo 
maximum likelihood estimators (PML)8 obtained by maximizing the lo- 
glikelihood functions corresponding respectively to the densities in (1) 
and (2), the statistic of interest within M2 is denoted by b =  b(WT. 6), 
its expectation under M\ by ba =  Ea(b) and a consistent estimator of 
the latter is given by =  E„{b), obtained by evaluating the expected 
value at a =  a. ba is called the pseudo-true value of b. Notice that 
ba depends on the sample size T, its and its evaluation requires that all 
the variables involved in the expression of 6 are given a status in M\. 
Letting b =  Es(b), the encompassing hypothesis is given by b — ba — 0. 
Such hypothesis can be tested by the difference:

<f> =  b — ba (3)

which, if Mi encompasses M2 with respect to b, should not differ signi­
ficantly from zero. That is, the estimate of the prediction of b made by 
Mi, ba, should coincide with the observed statistic in M2, b. Mizon and 
Richard (1986) indicate the conditions under which <j> has a limiting nor­
mal distribution with zero mean and variance Va((l>) under Mi, and define

8See Gourieroux, Monfort and Trognon (1984). Briefly, PML are MLE estimators 
allowing for the possibility that the likelihood function which is maximized does not 
correspond to the joint density of observations.
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the Wald encompassing test statistic (WET), as the quadratic form:

r]W(b) =  T<t>'Va(4>)+j> (4)

(where Va((/>)+ indicates a generalized inverse) has a limiting 0) 
distribution under Mi, with v =  rankfM (</>)).

The above definition of WET is the most general one. It includes 
the case of complete parametric encompassing (CPE), when b =  6 and, 
more relevantly for our purposes, the Cox test statistic, when the choice 
of b is:

bcox =  bCox(W T,6) =  j ;[Lf (a) -  Lg{6)], (5)

where L /(.) and Lg(.) denote the loglikelihood functions associated with 
the whole sample in the respective models. Such a choice of &(.) gives:

&Cox — Ĉ'ox E(\ f bcox}

=  ± [L f ( a ) - L g( 6 ) \ - E ~ [ L f ( a ) - L g(6)\. (6)

It is well known that the Cox test statistic, say Scoxi it is asymptotically 
distributed under Mi as a standard normal, that is:

^ C o x  —
V ricox  d_̂

V a ((j>C ox)* Ml
N( 0,1). (7)

It is now clear that what motivates the use of simulation techniques 
for the evaluation of the WET in (4) is the computation of the pseudo- 
true value ba — Ea(h) when the integration of the statistic b under Mi 
is difficult, or even impossible to perform analytically. Analogously, a 
problem can arise for the computation of Ea(bc0x) when the test Scox 
in (7) has to be evaluated. Such computational difficulty is likely to 
put a binding constraint on the complexity of the formulation of the 
models to be compared, forcing the application of non-nested testing 
and encompassing for non-nested hypotheses to linear or simple non­
linear models.

The first proposal of a simulation approach to encompassing was 
made by Hendry and Richard (1987), and focused on the objective of
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obtaining the empirical distribution of <b with reference to the case of 
CPE (i.e. taking as statistic of interest in M2 the estimate of the para­
meter 6, and <p — 8 — 6&). Following their suggestion, it is possible to get 
a simulated version of the pseudo-true value 8„. The idea is to replace 
8a =  E&(6), by an approximation obtained by averaging over a certain 
number of replications of the statistic <5, calculated on observations arti­
ficially generated under Mi and in correspondence to the PML estimator 
a. This suggestion was implemented for the Cox test statistic by Pe- 
saran and Pesaran (1989, 1993, 1995). Lu and Mizon (1990) extended 
the method to the simulation of the covariance matrix of V T i,  always 
referring to the case of CPE. Gourieroux and Monfort (1995) analyse the 
WET for CPE for non nested dynamic models assuming explicitly that 
the true distribution of the data does not belong to one of the competing 
models and propose some simulated versions of it relying on analytical 
expressions of the asymptotic covariance matrices.

Generally speaking, the simulation approach to encompassing is 
valid under fairly general conditions, and can be useful for a vast range 
of ’’ complex” models exhibiting non-linear functional form. Beside the 
generality over the kind of models considered, we want to stress the gene­
rality that the simulation procedure can reach across the number of test 
statistics that can be used in the comparison of two models. The simu­
lation approach can in fact be extended from the CPE case to the more 
general case of the WET, considering different choices for the statistic of 
interest b. The remainder of the paper will deal with the particular case 
represented by the Cox test statistic.

3.2 Simulation techniques for the Cox test statistic

Before turning to the description of the simulation procedures it is con­
venient to introduce some notation. For simplicity restate models (1) 
and (2) of section 2 as:

Ho : /,(a )

Hi : gt(6)

9
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t =  1 ,T  and focus on the case in which xt =  zt, i.e. the two models 
are static, and the stochastic process {yt,x t} is i.i.d.. We assume in 
the following analysis that the regularity conditions set out in White 
(1982) on the densities / ( . )  and g(.) hold, in order to ensure that the 
PML d and 6 converge to appropriate limits and have asymptotic normal 
distributions when appropriately normalized. We also define the average 
loglikelihood functions corresponding to the two models as:

L f  =  L g =  ^ ^ l o g 5 , ( 6 ) .
1 t- i 1 t= i

The probability limits under Ho of a  and 6 are indicated respectively 
by: ao =  plim ^d and 6ao =  plimffo6; the latter being the asymptotic 
pseudo-true value of 6 under H09. The test statistic we consider is Sc0x in 
(7), but we drop henceforth the subscript ” Cox” from both the numerator 
and the denominator to simplify the notation, i.e. we refer to:

Vfj>  
va „(<£)*

(8)

Gourieroux and Monfort (1992) show that the test based on the critical 
region:

CT =  S <  ua,

where ua is the quantile of order a of the standard normal, is asympto­
tically of level a. The one-sided nature of the critical region stems from 
the fact that, under the alternative model Hi, <j> tends to — oo.

3.2.1 Simulation of <j)

Let us write the quantity in the numerator of the Cox test statistic as:

<h =  {Lf ( a ) - L g( 6 ) \ - E , { L f ( a ) - L g(6)\. (9)

Notice that the first term in (9), is the loglikelihood ratio, and that its 
probability limit under H0 is non zero in the non-nested case:

9Cfr. Gourieroux and Monfort (1983)
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Lf (a) -  Lg{8) £  Eao log f ( a 0) -  logg{8ao).

The second term in (9) is a consistent estimate of the above probability 
limit and is needed to center the asymptotic distribution of the statistic.

Simulations can be used to compute the estimated pseudo-true va­
lue 8s, =  Ea8 and Ea[Lf (a) -  Lg(8)}. Both quantities involve the eva­
luation of an estimate of an expected value under Ho, i.e. with respect 
to the conditional density function ftia). Such an expected value can 
be replaced by a sample mean of ’’ objects” generated by drawing from 
the distribution f t(a). Under H0, and in correspondence of the PML 
a, a sample of T  simulated observations for y, y^, can be independently 
generated H  times, keeping xT fixed10 11. For each h =  1 , . . . ,  H, it is then 
possible to use y£  to compute the PML of 8, say 8a, where the depen­
dence on a is induced by the simulated observations, y ,̂. Averaging 8\ 
over the H  replications leads to a simulated estimate of the pseudo-true 
value 8s,:

(io)
n  h= 1

For the following developments about the statistical properties of 
the simulated pseudo-true value it is convenient to introduce some further 
notation and definitions. Let e be the error term characterising the model 
under H0 and express the PML 8 under Hu as 8 =  8(x,e,a), evidencing 
the error term as the source of randomness 11. Moreover, we henceforth 
treat x as fixed regressor as far as we study the statistical properties 
linked with the ’’ simulation dimension” H12. Defining the error term of 
the model in such a way that it is independent of the parameter vector

l0Taking as an example the nonlinear regression model Ho : yt =  h(xt\ t?) +  ,
where e( ~  N.I.D.(0, cr2), y* is computed as h(xt; tf) +  e*, t =  1, . . .  ,T  by drawing ef 
from JV(0,<r2). This is then independently repeated H  times.

11 When Ho is true y is a function of (x,e, a).
12This assumption is in line with the actual procedure followed to obtain the si­

mulated observations, since for the generation of y£,h =  1 , . . . , H ,  Xt is kept fixed 
throughout the H  repeated drawings of the error term. Equivalently, one can consider 
the following analysis as performed conditionally on x.
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a, call <p(e) the (known) distribution of e for given x. The estimated 
pseudo-true value of 6 is then redefined as:

6,i — E„6 =  j6(x,e,a)<p(e)de.

With the above notation, it is possible to define the concept of 
unbiased simulator, adapting to our case the definition of Gourieroux 
and Monfort (1994).

Definition 1

Conditionally on a and under Ho, let <5 =  6(x, e; d) be a simulator of 64. 
6(x, e; a) is said to be an unbiased simulator of 6a if:

Ee6 =  J^6(x,e,a)(p(e)de =  6a.

The following propositions, proved in the Appendix, provide some 
finite sample and asymptotic properties of the simulated pseudo-true 
value under H0.

Proposition 1

<*>£, the PML estimator of 6 evaluated in ŷ ., is an unbiased simulator of 
6&Vh =  l , . . . , H .

This finite sample property is an immediate consequence of Defi­
nition 1 and it allows to state the following asymptotic property of the 
simulated pseudo-true value.

Proposition 2

As H  tends to infinity 6% converges in probability to 6„-

Proposition 2 states that for H  going to infinity the effect of simu­
lation on 6?  disappears, so that the usual asymptotic theory for T  going 
to infinity on the estimated pseudo-true value can be safely applied for 
H  sufficiently high.

As far as the properties for T going to infinity when H  is kept fixed 
are concerned, the main result is consistency of the simulated pseudo- 
true value for 6ao, while a finite value of H  involve a loss of efficiency,

12
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as stated by the two following propositions. To obtain these two results 
concerning the asymptotics for T  when H is kept fixed it is appropriate to 
(temporarily) abandon the assumption of x being fixed regressor and to 
consider the available observations as generated by the stochastic process
{y t ,x t}.

Proposition 3

As T  tends to infinity, 8"  converges in probability to 8ao for each value 
of H.

Proposition 4

6?  is T -asymptotically normal around 8ao for each value of H : 

V T ( 6 ? - 6 ao) ±  N (0 ,V H(6ao)),
1 —*oo

where the asymptotic covariance matrix is given by:

v H(6ao) =  J - ' [ ^  +  (i + 1 )igfJ j } i gf]J;g\

with the matrices I,j, — /,g defined with usual notation for the
asymptotic covariance matrix of PML estimators (â, 6) under given 
in the Appendix.

From the result in the above proposition it is apparent that the 
loss of efficiency tends to zero as H  is increased without bound, and that 
<5? and 8 à are asymptotically equivalent as both H  and T  go to infinity, 
having asymptotic covariance matrix equal to J~j Igf Jjj Ifg 13 14.

Pesaran and Pesaran (1993) proposed to use the simulated obser­
vations under H0, ŷ ,, h =  1 ,. . .  . H and the simulated pseudo-true value 
8F to get the following simulated version of 4>i-. in which an empirical 
mean replace an expected value under H0 again, cfr. (9):

' =  [Lf (&) -  Lg( 8 ) \ [Zj(«) -  Lhg{8 f)\ , (11)
n  h= 1

13 See, for example, Mizon and Richard (1986).
14cfr. the results on the asymptotics of the analytical estimated pseudo-true value 
of Gourieroux, Monfort and Trognon (1983).
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where Lhf (a) =  j, £ f=1 log f (y ? ;a )  and Lg(6?) =  £ f =1 l° 8 (/(&!''■ && )■

To investigate the properties of the simulated numerator, it is useful 
to analyse the dependence of di on the error term e under H0. Express 
first the estimated loglikelihood ratio associated with the single observa­
tion as:

log /((d ) -  log gt{6) =  b(xt,et,a ;a ,S). (12)

Its simulated version under Ho is:

log f(yt\d) -  logg(y?',6?) =  bh{xt,e^,a;&,6?). (13)

Substituting (12) in (9), <t>\ is expressed under H0 as:

1 T
=  r  5Z “ I “ > 5) -  E&b(xt, et, a ; d, <£)] , (14)

1  t- 1

where:
Ec,~b(xt,et, a\ d, SA) =  b(xt, e, d; d, <5d)<p(e)d£.

From (11) and (13) the simulated analogue of (14) can be written as:

1 t= 1
b(xt, et, a; d, 6) -  — &A(x(, e", d; d, 6?)

/l= l

=  ^ £ [ M M ) - & " ( d , 6 £ ) ] .
<=1

(15)

The following propositions, proved in the Appendix, guarantee that the 
above simulated numerator converges to its analytical counterpart as H 
is increased without bound, keeping T  fixed, providing the theoretical 
justification for the simulation procedure.

Proposition 5

bh(x, eh, d; d, 6â) is an unbiased simulator of Es,b(x, e, a; d, 6â).

Proposition 6

As H tends to infinity, bH(d, 6% ) converges in probability to Eâb(x, e, a; d, 6„).
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Pesaran and Pesaran (1989) indicated an asymptotically equivalent 
expression for (9), obtained by simplifying the terms involving L j(a ) in 
the expression of (f>i, as the probability limit of their difference is zero 
under H0, i.e.:

(j>2 =  E&Lg(6) -  Lg(S). (16)

Accordingly, the simulated version of it they proposed is:

t f  =  ^ Z L h9( % ) - L g(6). (17)
n  h= 1

Moreover, they noticed that it is possible to avoid the two stages descri­
bed above by getting firstly 6jj, secondly Lhg(S'J). Two further possibi­
lities are then given by the following ” 1 step” versions of the simulated 
numerator:

K u te ,  =  [Lf ( a ) - L gC 6 ) ] - ^ j : i L hf ( a ) - L hgm ,  (18)
n  h= i

Kx .up = ̂ jlLhM ) - L g(b (19)
n  h=1

However, from the propositions above it is clear that these one-step 
choices are not convenient in finite samples. In fact, they result in a loss 
of efficiency, since the asymptotic variance of 6£ is minimal when H  
tends to infinity. Notice that expressions (11), (17), (18), (19), although 
asymptotically equivalent when both H  and T  go to infinity, might be 
in practice the source of different behaviours of the simulated Cox test 
statistic as a consequence of the finite size of the sample, T, and of a 
finite number, H, of simulations of the endogenous variable.

3.2.2 The analytical estimators of vaM )

The derivation of the the asymptotic variance of VT(j> under Ho, say 
Vao ((f)), can be found in Gourieroux and Monfort (1987). Pesaran and Pe-
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saran (1989,1993) suggest a consistent estimator of it which does not re­
quire any simulation. Letting bt =  log f t(â) — log gt{6) and b =  ^ W, 
the estimator has the form:

V($) =  i  £ ( b t -  b)2 -  #'r (d, S)Fr ( â ) - ^ T(â, 6), (20)
1 t =  1

where:

^ t (^, 6)
i f ;  d log ft(a)
T  —  1 da \a=â

1_ 91og/<(a) g lo g /t(q
T  —  3a 3a' |«:

In a more recent paper, Pesaran and Pesaran (1995) put forward two 
further possibilities, asymptotically equivalent to (20) for estimating the 
denominator of the test statistic15.

One estimator, which wre will denote 1 (<j>), corresponds to (20) 
when evaluated in the simulated pseudo-true value 6% instead of the 
PML 5 and considers a small sample correction by substituting T for 
T  — kf — 1, kf being the number of explanatory variables of the model 
H0.

The third estimator of the variance ignores the second part of (20), 
corresponding to the sampling uncertainty associated with the parameter 
estimates and it is given by:

Vc(j>) 1
T -  1 B * » - * ) 2-*=i

with b and b evaluated in 6?.

3.2.3 Simulation of Vao(<j>)

In this section we generalize the method proposed by Lu and Mizon 
(1990) for the simulation of the covariance matrix of the CPE test stati­
stic. The proposal we make to simulate the asymptotic variance of \[T(j>

15Pesaran and Pesaran indicate a third ’’ outer product” version of the variance 
matrix, which we neglet given that it need not be non-negative.
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consists in replicating H times the evaluation of the simulated 6H un­
der Ho, according to whatever expression chosen among the ones above 
presented. The asymptotic variance can then be approximated by the 
empirical variance of the H  replications of <pH, appropriately scaled by 
T to approximate the asymptotic value. We now describe the simula­
tion procedure for the variance when the numerator is simulated by <j>i , 
in (15), which is the one involving the greater number of steps. The 
procedure for the other versions of the simulated numerator is similar.

STEP 1 Following the procedure indicated in section 3.2.1, the simu­
lated observations y£, h =  1 obtained conditionally on a,
are used to evaluate: firstly, 8? ,  secondly, the quantities:

bt =  bh{xu eht ,a-,a,6?),

finally, the estimates ah, h =  1 ,H , using the observations j/J, 
in the PML formula for a.

STEP 2 Conditionally on each ah obtained at step 1, M values , 
m — 1 , . . . , M  are generated by drawing independently e™, rri =  
1, . . .  , M. Similarly to what indicated to evaluate expression (10), 
these artificial samples are used to compute the PML 8™h. Ave­
raging over the M replications obtained for each h, we have the 
analogue of (10), that is:

6 %

1 M
=  M ^ i “

The quantities obtained above are then used to evaluate: 
 ̂ m

thM  x \ A t/im / ̂  ~ h . c-h cA
bt . «  ; «  , °a

1 1 m=1

STEP 3 Combining the outcomes of step 1 and step 2, the h-th repli­
cation of the simulated numerator is (compare with (15)): 1

1 t=i

17
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STEP 4 Repeating step 2 H  times, we get H  replications of the quantity 
in step 3, which are used to estimate Vao((j)) through the sample 
variance:

v Hû i ) = t \~ £ ( < r ) 2 - ( 4 Ê  (2i)
n  h=1 n  h=l

The following proposition, proved in the Appendix, states consistency of 
the simulator of the variance of the Cox test statistic.

Proposition 7

For M, H. T  going to infinity, V H(<j>i) is a consistent estimate of Vaa{(j)).

4 Some Monte Carlo experiments on the 
simulated Cox statistic

4.1 Testing linear versus loglinear models

As a specific example of application of the methods described above, we 
consider a case which has been widely investigated in the literature, i.e. 
the testing of linear versus loglinear models. In applied econometrics, 
when specifying a regression model in which the dependent variable is 
always positive, the logarithmic transformation is very often applied in 
order to achieve stabilization of the variance. Therefore, some methodo­
logy allowing a rigorous (post-estimate) evaluation of both models per­
formed on statistical grounds is advocated.

The hypotheses to be tested are given by:

H0 : yt =  +  et et ~  N.I.I.D.(0,u2) .
Hi : log yt =  z[0 +  vt vt ~  N.I.I.D.(0, r2)

t =  1, . . .  ,T, where x t and zt are vectors k x 1 containing an intercept 
and k-1 explanatory variables at time t, and the variables in zt are the 
logarithms of the variables in xt. Notice that the hypothesis of normality 
in Ho is, in principle, untenable as, for the comparison with H\ to be
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sensible, the linear model cannot generate negative values of yt. The 
distribution of the error term et in (18) has to be chosen so that it ensures 
that the model cannot generate negative values, for example truncated 
normal. In this case it is often assumed that the effect of truncation can 
be neglected and that the distribution of e< becomes well approximated 
by the normal.

Choosing one of the above options implies acceptance of quite 
strong assumptions, relevant from the point of view of economic theory, 
on the relationship between the y and x variables. Namely in the first 
case we assume constancy of the response of y to changes of x (constant 
slope), while in the second one we assume constant elasticity of y to x. 
This is the reason why in the econometric literature a number of diffe­
rent methods for testing the linear and the loglinear specifications against 
each other have been developed. Given the existence of a number of pos­
sibilities on the way of performing the test and the difficulty encountered 
in understanding the finite sample properties of the different test stati­
stics, an interesting experiment has been conducted by Godfrey, McAleer 
and McKenzie (1988) (GMM), with the aim of examining the properties 
of various tests for linear and loglinear models. They include among the 
examined tests the Jarque and Bera (1980)(JB) normality test on the 
residuals. A remarkable result is that this test seems not to be able to 
reject the hypothesis of normality of the error term whenever this hy­
pothesis should be rejected16. This indicates that the JB normality test 
has no power as a test of this form of functional form misspecification, 
contrary to other possible procedures. Alternative procedures include ar­
tificial nesting approaches based on the Box-Cox (1964) regression model 
(embedding the linear and the log-linear specifications as special cases), 
tests of functional form misspecification like the Reset17 test beside the 
Cox test statistic. An analytical comparison of the asymptotic powers 
of several tests of linear and loglinear regression models is provided by 
Kobayashi and McAleer (1995), who show that the Lagrange Multiplier 
test in the Box-Cox model framework (Godfrey and Wickens, 1981) has

16It is evident that if Ut is normal, Vt can’t be normal and vice versa.
17Ramsey (1969).
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the highest power, while the Cox test can be ranked before the PE test 
of MacKinnon, the test of Bera and McAleer (1989) and the Andrews 
test (1971). The Cox test statistic for the models in (18) has been par­
ticularly investigated by Aneuryn-Evans and Deaton (1980) (AD), who 
derive its form assuming symmetric truncation of the normal distribution 
of et. The calculations required in order to implement the test axe quite 
complicated and very specific for the case under scrutiny. For the test of 
Hi versus Hg an analytical expression (albeit complicated) is obtainable, 
while numerical integration is required in order to perform the test in the 
opposite direction. AD find through a Monte Carlo experiment that the 
small sample behaviour of the Cox test statistic is close to the asympto­
tic one and that the test can detect misspecification of the model even 
when the null hypothesis is not taken as the true mechanism generating 
the data. In order to compare the performance of this test with that of 
alternative methods, GMM consider in their simulation the same data 
generating processes as AD18, and reach the conclusion that the compu­
tational effort required by the Cox statistic is a sufficient justification to 
prefer other approaches to the problem, although they present different 
drawbacks in terms of statistical properties. Simulating the Cox test 
statistic, although it requires some programming, represents a simplifi­
cation of the calculation and provides a method whose applicability is 
extendible to a broad class of models. What it is to be investigated is 
the dimension of the loss in terms of finite sample properties that the 
simulated procedure implies. This is the object of the following Monte 
Carlo experiments.

4.2 Monte Carlo experiments and results

4.2.1 The data generating processes

In our experiment we generate the data as in two of the experiments 
(DGP 1, DGP 2) performed by AD (1980), for comparison purposes. 
The models considered are:

18The results concerning the Cox test statistic are directly taken from the AD 
results.
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Ho : yt — +  fl\xt +  et e< ~  N.I.I.D.(0, <r2)
Hi : log yt -  /30 +  f t  log xt +  vt vt ~  N.I.I.D.(0, r 2) (23)

When the linear model is true, the series {y t,x t,t =  1, . . .  ,T }  are 
generated by letting:
DGP 1: d0 =  500; =  5;<r =  31; a:* =  10+0.9:r<_i-l-Ui; ut ~  N(0,82);
DGP 2: d0 =  500; f t  = 5 \a — 61;x t =  10 +  0.9:Ei_i +  ut:ut ~
iV(0,162).
The above choice of the parameters justifies the assumption of normality 
on the residuals of H019. The following analysis is limited to the case of 
testing the linear model, H0, against the loglinear one, Hi, as it is for 
this case that numerical integration is needed even for this simplest spe­
cification. When evaluating the power of the test, the data are generated 
under Hi, setting:
DGP la: (30 =  4.6; ft  =  0.5; r =  0.031; log xt =  0.46 +  0.9 log x t- X +
wt\
wt ~  N {0,0.082);
DGP 2a: f t  =  4.6; f t  =  0.5; r =  0.061; log x t =  0.46 +  0.9 log xt_i +
Wt\

wt ~  N (0,0.162).

The same experiments are used in Pesaran and Pesaran (1995) to 
evaluate the finite sample performances of some simulated versions of the 
Cox test statistic based on the analytical expressions of the asymptotic 
variance in section 3.2.2 which we will compare with the Cox test ob­
tained by simulation of both the numerator and its variance following 
the procedure in section 3.2.3. We would like to emphasize that the 
autoregressive nature of xt in the above DGPs violates the assumption 
of i.i.d. processes formulated in section 3.2. However, stationarity and 
ergodicity of the series xt should ensure the validity of the properties of 
the simulation procedure above stated.

19i.e. the distribution of et can in princple assumed to be truncated normal, but the 
truncation needed to ensure the positiveness of yt is negligible.
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4.2.2 Summary of previous results

The interest in examining the possibility of improving the performance 
in finite samples of the simulated Cox test statistic derives from a pre­
vious simulation experiment (Monfardini, 1994) conducted with the same 
models20. Three simulated versions of the Cox statistic were considered, 
using respectively expressions d>i , <j>$, ^utep  f°r the numerator (see sec­
tion 3.2.1). The denominator in the three cases was not simulated, but 
based on the consistent estimate of Vao(4>) given in section 3.2.2. The ex­
periment evidenced a very different behaviour of the three test statistics 
in finite sample, enabling us to draw the following conclusions:

1. the performance of the statistic, in terms of closeness to the stan­
dard normal distribution, improves when the two stages characte­
rising the calculation of are used, i.e. the statistic using cj)%, 
performs better than the statistic using <Â istep!

2. avoiding the simplification in the numerator characterising <j>2 gives 
rise to a better behaviour of the statistic, i.e. the statistic using <j>f 
performs better than the statistic using cj)̂  ■

Such considerations are in favour of approximating the numerator of 
the test statistic using ^ , a choice supported also by the theoretical 
argument concerning the efficiency presented in Proposition 4.

4.2.3 Monte Carlo results

In this section we present various results corresponding to different Monte 
Carlo experiments whose detailed description is given below case by case. 
The routines to generate the series {y t, xt, t, =  1, . . . ,  T }  and to calculate 
the different versions of the simulated Cox test statistic are written in 
Gauss 3.0 and use its pseudo-random (normal) number generator on a

20The data generating process was the same as above except from the variances of 
the error terms et and vt, i.e. we had a =  61 and r =  0.061. We have verified that 
this change has a minor effect on the results.
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Hewlett Packard 700/RX machine operating under Unix. For each sam­
ple, the first 80 observations of the autoregressive process xt were discar­
ded to eliminate the effect of the choice of the initial values. Under DGP 
2, as the probability of drawing negative values of xt is slightly different 
from zero, repeated drawing from the distribution of xt conditional on 

has been performed until a positive value was obtained 21.

Indicating by Sn, n =  1, . . .  ,5000, the nth replication of the simu­
lated test, the closeness of the finite sample distribution of the simulated 
test to the standard normal (i.e. the asymptotic distribution) is judged 
on the basis of the following indicators:

• -Po.05* percentage of rejections at a 5% nominal level, based on the 
rule Sn < —1.64;

• Po.oi: percentage of rejections at a 1% nominal level, based on the 
rule Sn <  —2.33;

• Po 025" percentage of values falling to the left of U0.0251 the 2.5% 
quantile of the normal distribution, based on the rule Sn <  —1.96;

• -Po 025- percentage of values falling to the right of —u0.025 > based on 
the rule Sn > 1.96;

• mean: mean of the values of the test statistic over the 5000 repli­
cations;

• s.d.: standard deviation of the values of the test statistic over the 
5000 replications;

• t-value (mean): test t for the hypothesis that the mean is equal to 
zero;

• P(sk): observed p-value of the Doornik-Hansen (1994) (DH) test of 
normality based on the skewness, performed on the N replications 
of the test statistic;

2'The number of the cases in which such redrawing was necessary was negligible.
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• P(ku): observed p-value of the DH test of normality based on the 
kurtosis;

• P(j): observed p-value of the Doornik-Hansen (1994) (DH) test of 
normality based on the joint consideration of skewness and kurtosis.

Tables 1 and 2 display some evidence on the performance in finite 
samples for DGPs 1 and 2 of the simulated tests statistics which do 
not resort to simulation of the denominator, according to the analytical 
expressions described in 3.2.2, namely:

5 =  5 a =  y/Tj? Sc =
V(<j>) 2 1 Va(4>)* 1 VC((j>) 2

Different experiments have been conducted for different values of the sam­
ple size, T, and of the number of drawings of pseudo-random numbers 
used for its computation, H. The results concern the distribution of the 
test under H0, so that the empirical rejection frequencies are estimates of 
the size of the test. For both the DGPs under study, in correspondence 
of T =  80 the empirical rejection frequency is considerably (almost two 
times) higher than the size, at both the 5% and the 1% level, for each 
value of H  considered. An unsatisfactory pattern can also be found in 
the asymmetry of the empirical distribution of the statistic revealed by 
the values of P lf) 025 and P0r025, as r ̂ e first one is systematically greater 
than the latter. An explanation for that seems to be the negative, and si­
gnificantly different from zero, mean of the empirical distribution. When 
the sample size is increased to 200, the frequencies of rejection get closer 
to the theoretical levels, but the discrepancy between the empirical dis­
tribution of the statistic and the asymptotic distribution still appears to 
be large. The DH normality tests confirm that the empirical distribution 
is significantly different from the theoretical one in all cases. Beside the 
bad performance of this simulated test for finite T, results in Tables 1 
and 2 evidence that it is the sample size, T , and not the level of accuracy 
of the approximation of the test statistic, H, the fundamental dimension 
to be augmented in order to approach the asymptotic distribution. This 
characteristic is taken into account in the following experiments, which 
investigate the impact of increasing T  on the performance of the test.
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Tables 3 to 8 are devoted to the comparison of the test as calcula­
ted in Tables 1 and 2, and the version of the test which uses both the 
simulated numerator and the simulated variance, as described in section 
3.2.3. Moreover, we consider a further possibility, given by replacing the 
empirical variance in (21) with an empirical second moment of the rep­
licated numerator, given its null expected value under H0. Calling this 
alternative simulator of the variance V H'a{<pi), the two ’’new” versions of 
the simulated Cox test are:

s  =  y/T*?  Sa =  V T t f
2 2 v H-a(4> i ) i ‘

In order to perform an efficient comparison, the five test statistics are 
computed at each replication on the same sample {y t,x t,t =  1, . . .  , T }n, n — 
1 , . . . ,  5000. To reduce the variance across the experiments corresponding 
to different sample sizes, we generated samples of the maximum dimen­
sion considered, i.e. T  =  280, and then selected appropriate subsamples 
of 200, 80, 4022. Moreover, we apply this variance reduction techni­
que not only to the generation of samples of different sizes, but also to 
the generation of the set of drawings used to simulate the test statistic. 
Because of the high computational time and the indication of the experi­
ments in Tables 1 and 2, we keep the number of random drawings needed 
to approximate both the numerator and the denominator quite low, by 
fixing:

• H =  50 for SltSl,Sl,

• i f  =  50, M  =  50 for S2,S%.

More interestingly, we consider the finite sample distribution in corre­
spondence of a greater range of values of T.

Tables 3 and 4 display the results concerning the distribution 
of the test under H0 for DGP 1 and DGP 2 respectively. The results 
we get are quite interesting: the test statistics S'2s in fact systematically 
outperform the test statistic S[s as far as the empirical distribution under

22 See Hendry (1983) for this variance reduction technique.
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H0 is concerned. The empirical rejection frequencies and the estimated 
quantiles are much closer to the theoretical values than the correspondig 
ones obtained through 5j, especially for small values of T (T =  40,80). 
Moreover, the empirical distribution of S'2s have a mean which is more 
often accepted to be significantly closer to zero, and the normality tests 
on S'2s do evidence less problems than the ones on S[s in both tables. 
A remarkable feature concerning Sj is that limiting the analysis to the 
estimated 5% quantile or to the sum of the areas in columns labelled Pj 025 
and Pq 025 (the latter corresponding to the choice of giving a two-sided 
nature to the test, contrary to what stated in section 3.2) leads to judge 
satisfactory its behaviour, while the pattern emerging from Tables 3 and 4 
clearly indicates that the distribution of this statistic is seriously skewed 
to the left. This argument also applies to the Monte Carlo results in 
Pesaran and Pesaran (1995), from which Sf appears to perform relatively 
well.

As far as the estimated standard deviation of the statistics is concer­
ned, notice that for 51 and S“ it remains greater than one and considera­
bly far from it compared with the other test statistics for T  =  40, T =  80. 
This suggests that the particularly bad performance of these two stati­
stics is linked to the expression of the estimate of the variance they 
involve. In order to understand better the ability of the different estima­
tes of the variance in the denominator of the test to capture the actual 
variation of its numerator and other features of the statistics, some mea­
sures have been computed which are contained in Tables 5 and 6. The 
figures in the columns are, in order, the mean (1), the standard deviation 
(2) and the variance (3) of <t>̂  over the 5000 replication, the t-test (4) 
for the hypothesis that (1) is equal to zero, the average over the 5000 
replications of the estimated standard errors (5)23, the average of the 
estimated variance (6) 24, the ratio (7) between (2) and (5), the ratio (8) 
between (3) and (6) (both ratios are wanted as close as possible to one)’ 
and, finally, the value of the test statistic -approximately distributed as

23calibrated by division for \/T to get comparability with the quantity in column 
( 2 ).

24devided by X for comparability with the value in column (3).
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a a normal- for the hypothesis that the estimated probability is equal 
to its nominal value of 0.05. The results appears to be quite different 
between the two DGPs considered. For DGP 1 (Table 5) the mean of the 
numerator is reasonably close to zero, the ratios in columns (7) and (8) 
signal that the formulas for the variance used by Si and 5 “ lead serious 
underevaluation of the actual standard deviation of 4>\ for small T. This 
tendence disappears as T  is increased. The other three statistics exhibit 
similar outcomes as far as the estimated variance is concerned. The last 
column confirms the results already emerged by Tables 3 and 4, indica­
ting in favour of the new simulated versions of the test. In case of DGP 
2 (Table 6) the most striking feature is that all analytical expressions 
tend to overevaluate the variance of the numerator for high T, while the 
simulated ones keep closest for all values of T. From such considerations 
it can be concluded that, although with different effects across the DGPs 
considered simulating the variance of the statistics leads to better results.

In Tables 7 and 8 we let the data generating processes to follow the 
loglinear model, getting the empirical distribution of the statistic under 
Hi, and therefore some ’’power” results. The rejection frequencies of the 
false model Ho, indicating the power of the test, have been calculated 
using the 5% quantile of the standard normal distribution. This seems 
a reasonable choice for S2 and 5f, whose distribution approximates the 
standard normal quite well, while in the case of the statistics Si s, the 
quantile should be corrected in order to ensure the control on the first- 
type error. However, it must be stressed that after such a correction the 
rejection frequencies of the two tests may become closer. Therefore, the 
result of 52 ’s having apparent less power than S i’s (particularly evident 
for DGP1) could be even reversed. Notice the failure of acceptance of 
normality of the distribution in all cases but one.

A brief reference to the results of AD (1980) is of interest for our 
analysis: the case corresponding to our DGP l 25, they get an empirical 
rejection frequency equal to 0.053 for T =  40 and to 0.066 for T =  80 (to 
be compared, for example with 0.045 and 0.060 obtained for S2 in Table

25The results concerning DGP 2 are not presented in their paper.
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326). It seems therefore, at least in the particular case analysed, that the 
simulation method we propose for the Cox test statistic does not present 
disadvantages with respect to the numerical procedure used by AD27.

Tables 9 to 12 contain some results on alternative tests which 
could be used to perform the comparison between Hq and H\. The first 
possibility (Tables 9 and 11) is simply to run a normality test on the 
residuals of the estimated models. We would like to be able to reject 
the normality of the residuals of the loglinear model when the data are 
generated by the linear one. The DH test of normality (distributed asym­
ptotically as a xl) appears to have very little discriminatory power for 
DGP l,with the rejection frequency of the hypothesis of normality incre­
asing only sligtly with T . The power is higher for DGP 2, probably due 
to the fact that it is associated with a non null probability of negative 
values of the dependent variable in the linear model. On the other hand, 
when the data are generated according to the loglinear model, the rejec­
tion frequencies of the true hypothesis are close to the nominal size of 
the test for each T for both DGPs. The second possibility we consider 
(Tables 10 and 12) is the Reset test of functional misspecification form. 
In particular we calculate the Reset (1) (distributed as an F\ t- z in our 
case), which is a test for adding the square of the estimated dependent 
variable to the model in H0. When the linear model is true, the test re­
jects the hypothesis of correct specification of H0 with a frequency close 
to the size. On the other hand, the rejection frequencies of the same 
hypothesis when the true model is the loglinear one indicate the lower 
power of the Reset test with respect to the Cox one.

5 Conclusions

Simulation-based methods represent a useful tool for the extension of the 
encompassing to a vast range of non-nested models, allowing the model­

26 These values are obtained by summing Rj 025 and Po.o2s> in order to be compa­
rable with AD findings, referred to a. two-sided critical region.

27Their experiment differs from ours in the number of replications, they put equal 
to 500.
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ler to escape the limit of considering only simple specifications and to 
avoid numerical integration. Although such methods require intensive 
computation, the increasing power of computers make their implementa­
tion feasible. However, before they can be used for applied econometrics, 
a better understanding of their finite sample properties is needed. In this 
paper we focus on a particular encompassing test statistic, the Cox test 
statistic, and examine different possibilities of computing it by simulation 
suggested in the literature. We then indicate how to simulate both the 
numerator of the test and its denominator, i.e. its standard error. The 
method obtained can be easily extended to encompassing test statistics 
for non-nested models other than Cox. A Monte Carlo experiment on a 
particular case of non-nested models, that is linear versus loglinear mo­
dels, shows that simulating the denominator beside the numerator leads 
to a finite sample distribution of the test statistic considerably closer to 
the asymptotic one. Although very specific to the Monte Carlo experi­
ment considered, our results suggest that simulating the variance could 
be important even in cases when an analytical expression and a consi­
stent estimate for it is available. Moreover, comparison with previous 
Monte Carlo results on the same models supports the conclusion that 
our simulation-based procedure seems not involve any loss with respect 
to numerical methods.
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Table 1: DGP 1. Finite sample behaviour of Si,5j.5{. Size results.

H0 is true ! !
Po.05 Pom Pl■*0.025 PT■*0.025 mean s.d. t-value

(mean)
P(sk) P(ku) p o ) j

T=80 ..
H=50
Si 0.107 0.044 0.071 0.046 -0.077 1.246 -4.355 0.000 0.185 0.000
S i 0.117 0.051 0.079 0.030 -0.134 1.225 -7.726 0.000 0.140 0.000
S t 0.083 0.025 0.054 0.015 -0.103 1.061 -6.836 0.000 0.000 0.000
H=250
S i 0.106 0.043 0.071 0.044 -0.094 1.233 -5.383 0.000 0.198 0.000
S i 0.115 0.050 0.080 0.027 -0.150 1.214 -8.723 0.000 0.155 0.000
S i 0.088 0.027 0.053 0.014 -0.118 1.063 -7.872 0.000 0.000 0.000
H=500
S i 0.107 0.043 0.072 0.043 -0.098 1.232 -5.626 0.000 0.256 0.000
S i 0.115 0.051 0.080 0.026 -0.154 1.212 -8.958 0.000 0.087 0.000
Si 0.090 0.027 0.053 0.014 -0.122 1.064 -8.107 0.000 0.000 0.000

■■■ ....—1
1

T=200
H=50
S i 0.084 0.028 0.053 0.025 -0.079 1.110 -5.024 0.000 0.840 0.000
Si 0.091 0.035 0.063 0.013 -0.123 1.110 -7.825 0.000 0.002 0.000
Si 0.075 0.020 0.045 0.011 -0.096 1.024 -6.608 0.000 0.000 0.000
H=250
S i 0.084 0.026 0.052 0.023 -0.088 1.098 -5.676 0.000 0.907 0.000
Si 0.093 0.034 0.060 0.013 -0.132 1.099 -8.474 0.000 0.001 0.000
S i 0.076 0.019 0.045 0.009 -0.105 1.016 -7.320 0.000 0.000 0.000
H=500
S i 0.084 0.026 0.053 0.023 -0.090 1.096 -5.803 0.000 0.916 0.000
Si 0.094 0.034 0.060 0.013 -0.133 1.097 -8.598 0.000 0.002 0.000
S i 0.075 0.020 0.044 0.009 -0.107 1.015 -7.459 0.000 0.000 0.000
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Table 2: DGP 2. Finite sample behaviour of 5i,S®,Sf. Size results.

H0 is true | ______ 1_______
Po.os Pom Pi-*0.025 P q.025 mean s.d. t-value P(sk) P(ku) P ( j )

(mean)
T=80

..... . ...

H=50 _________ 1_______
h5 T “ 0.124 0.054 0.086 0.028 -0.171 1.252 -9.645 0.000 0.953 0.000

Si 0.144 0.073 0.107 0.011 -0.298 1.276 -16.535 0.000 0.000 0.000
s i 0.100 0.348 0.062 0.005 -0.196 1.032 -13.455 0.000 0.000 0.000
H=250
Si 0.120 0.053 0.083 0.026 -0.177 1.241 -10.091 0.000 0.876 0.000
Si 0.140 0.072 0.103 0.009 -0.302 1.268 -16.894 0.000 0.000 0.000
Si 0.101 0.036 0.062 0.005 -0.201 1.028 -13.866 0.000 0.000 0.000
H=500
Si 0.120 0.054 0.085 0.026 -0.180 1.241 -10.232 0.000 0.802 0.000
Si 0.140 0.072 0.104 0.009 -0.304 1.266 -17.014 0.000 0.000 0.000
Si 0.100 0.036 0.063 0.005 -0.203 1.027 -13.974 0.000 0.000 0.000

T=200
H=50
Si 0.080 0.031 0.050 0.008 -0.143 1.011 -10.004 0.000 0.250 0.000
Si 0.105 0.047 0.075 0.002 -0.251 1.095 -16.203 0.000 0.000 0.000

Si 0.076 0.026 0.047 0.001 -0.178 0.920 -13.705 0.000 0.000 0.000
H=250
Si 0.079 0.029 0.051 0.007 -0.145 1.000 -10.256 0.000 0.728 0.000

Si 0.103 0.048 0.071 0.002 -0.251 1.083 -16.415 0.000 0.000 0.000

Si 0.076 0.024 0.045 0.002 -0.180 0.911 -13.950 0.000 0.000 0.000
H=500
Si 0.079 0.029 0.050 0.007 -0.146 1.000 -10.329 0.000 0.706 0.000

Si 0.103 0.048 0.073 0.002 -0.252 1.083 -16.479 0.000 0.000 0.000

Si 0.076 0.024 0.045 0.002 -0.181 0.911 -14.020 0.000 0.000 0.000
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Table 3: DGP 1. Finite sample behaviour of S\, Sf. S{. S?, S%. Size results.

H 0 is true 1 1 1

P o o s Po.oi Pi
'0 . 0 2 5 PT'0 . 0 2 5

—
m e a n s .d . t -v a lu e P (s k ) P (k u ) P ( j )  j

(m e a n ) 1
T=40
S i 0.131 0.060 0.094 0.078 -0.044 1.425 -2.198 0.000 0.541 0.002
S i 0.133 0.060 0.095 0.052 -0.108 1.361 -5.607 0.000 0.293 0.000
S'l 0.084 0.025 0.049 0.015 -0.084 1.072 -5.576 0.000 0.000 0.000
S 2 0.048 0.010 0.023 0.022 -0.009 0.981 -0.621 0.227 0.809 0.468
S i 0.046 0.009 0.021 0.019 -0.009 0.962 -0.629 0.229 0.970 0.483

T=80
S i 0.107 0.044 0.071 0.046 -0.077 1.246 -4.355 0.000 0.185 0.000
S I 0.117 0.051 0.079 0.030 -0.134 1.248 -7.726 0.000 0.140 0.000
S i 0.083 0.025 0.054 0.015 -0.103 1.061 -6.836 0.000 0.000 0.000
S i 0.059 0.013 0.030 0.030 -0.025 1.040 -1.716 0.801 0.157 0.357
Ca
d 2 0.056 0.012 0.028 0.027 -0.025 1.020 -1.701 0.790 0.135 0.316

T=200
Si 0.084 0.028 0.053 0.025 -0.079 1.110 -5.024 0.000 0.840 0.000
Si 0.091 0.035 0.063 0.013 -0.123 1.111 -7.825 0.000 0.002 0.000
Si 0.075 0.020 0.045 0.011 -0.096 1.024 -6.608 0.000 0.000 0.000
Si 0.058 0.012 0.030 0.030 -0.017 1.050 -1.122 0.828 0.002 0.010
Sai 0.056 0.011 0.028 0.028 -0.016 1.028 -1.106 0.676 0.004 0.016

T=280
Si 0.085 0.028 0.051 0.020 -0.097 1.087 -6.323 0.000 0.726 0.000
Si 0.093 0.035 0.062 0.012 -0.137 1.091 -8.934 0.000 0.000 0.000
Si 0.079 0.023 0.046 0.011 -0.113 1.021 -7.S03 0.000 0.000 0.000
Si , 0.063 0.015 0.035 0.031 -0.033 1.052 -2.216 0.966 0.004 0.014
Si 0.059 0.013 0.033 0.029 -0.032 1.031 -2.203 0.876 0.005 0.020
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Table 4: DGP 2. Finite sample behaviour of Si, 5“, Sf, S2, SJ. Size results.

H0 i s  true

Pom P o .o i Pi
* 0 .0 2 5 PT■*0.025 mean s.d. t-value P(sk) P(ku) P(j)

(mean) _____
T=40 1
Si 0.155 0.075 0.116 0.063 -0.162 1.481 -7.744 0.000 0.000 0.000
5? 0.166 0.085 0.126 0.052 -0.296 1.425 -14.698 0.000 0.000 0.000
Sf 0.109 0.041 0.072 0.009 -0.198 1.108 -12.670 0.000 0.000 0.000
s 2 0.062 0.016 0.033 0.023 -0.065 1.035 -4.477 0.026 0.175 0.034
Si 0.058 0.014 0.031 0.021 -0.065 1.012 -4.532 0.015 0.174 0.020

T=80
Si 0.124 0.054 0.086 0.028 -0.171 1.252 -9.644 0.000 0.953 0.000
Si 0.144 0.073 0.107 0.011 -0.298 1.275 -16.535 0.000 0.000 0.000
Si 0.100 0.035 0.062 0.005 -0.196 1.032 -13.455 0.000 0.000 0.000
S2 0.062 0.015 0.038 0.028 -0.047 1.053 -3.157 0.118 0.001 0.002
Si 0.059 0.014 0.034 0.025 -0.047 1.030 -3.201 0.082 0.002 0.002

T='200
Si 0.080 0.031 0.050 0.008 -0.143 1.011 -10.004 0.000 0.250 0.000
Si 0.105 0.047 0.075 0.002 -0.251 1.095 -16.203 0.000 0.000 0.000
Si 0.076 0.026 0.047 0.001 -0.178 0.920 -13.705 0.000 0.000 0.000
Si 0.063 0.015 0.034 0.027 -0.033 1.058 -2.195 0.466 0.054 0.120
On
° 2 0.057 0.014 0.029 0.025 -0.032 1.034 -2.219 0.334 0.176 0.251

.....
T='280
Si 0.063 0.025 0.040 0.006 -0.136 0.936 -10.277 0.000 0.468 0.000
Si 0.087 0.041 0.060 0.002 -0.229 1.014 -15.978 0.000 0.000 0.000
Si 0.064 0.025 0.041 0.001 -0.173 0.875 -13.963 0.000 0.000 0.000
Si 0.064 0.016 0.036 0.027 -0.035 1.059 -2.398 0.042 0.555 0.106
Si 0.060 0.015 0.034 0.034 -0.036 1.036 -2.430 0.020 0.622 0.058
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Table 5: DGP 1. Analysis of the test staitistics under H0.

Ho  is true (1 ) (2) (3) (4 ) (5) (6) (7) (8) (9)

M e a n (o ^ ) S D ( ò f ) V 'ar(óff ) t -  v a l( O i) S D / V f F V r / T (2 ) / (5 ) (3 ) / (6 ) T (P oos)

T = 4 0
S i -0.00046 0.02626 0.00069 -1.22692 0.01765 0.00039 1.48799 1.77390 17.0065

S f * * * * 0.01879 0.00045 1.39772 1.53019 17.2527

S f * * *
* 0.02247 0.00063 1.16877 1.09303 8.75023

s 2
* * * 0.02458 0.00071 1.06875 0.98148 -0.79704

s s
* * * * 0.02506 0.00073 1.04823 0.94337 -1.35018

T = 8 0
S i -0.00056 0.02294 0.00053 -1.71313 0.01775 0.00038 1.29243 1.39479 13.07394

S f * * * * 0.01839 0.00041 1.24805 1.27295 14.67340
Sf * * * * 0.02027 0.00050 1.13209 1.05012 8.54198
s 2

* * * * 0.02079 0.00049 1.10337 1.06700 2.81201

s s * * * * 0.02121 0.00051 1.08197 1.02534 1.78675

T = 2 0 0
S i -0.00028 0.01707 0.00029 -1.17811 0.01513 0.00026 1.12840 1.10396 8.62550

S f * * * * 0.01540 0.00027 1.10818 1.04586 10.1584

Sf * * * * 0.01617 0.00030 1.05571 0.94793 6.80231
S 2 * * * * 0.01570 0.00027 1.08740 1.07393 2.47661

S S
* * * * 0.01602 0.00028 1.06577 1.03174 1.78675

T = 28 0 '

S i -0.00046 0.01524 0.00023 -2.14607 0.01386 0.00022 1.10001 1.06060 8.87423

S f * * * * 0.01405 0.00023 1.08520 101574 10.3918

Sf * * * * 0.01460 0.00025 1.04402 0.93892 7.60221

S 2 * * * * 0.01397 0.00021 1.09121 1.09608 3.67795

S S
* * * * 0.01425 0.00022 1.06980 1.05385 2.81201
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Table 6: DGP 2. Analysis if the test statistics under Ho-

H o is tr u e (1) (2) (3) W (5 ) (6) ( " ) (8) (9) |

Mean(4> {*) S D ( i f ) V a r ( i ^ ) t -  i> a /(0 f )

" "  -  . 

S D / n/ T V T r / T (2 ) / (5 ) ( 3 ) / (6 ) T fP c  os) ;
T = 4 0
S , -0.00039 0.05851 0.00342 -4.72522 0.03905 0.00199 1.49853 1.72050 20.54370
S i * * * * 0.04313 0.00263 1.35660 1.30033 22.04480
S i * * * * 0.05134 0.00364 1.13966 0.93957 13.45620
S i * * * * 0.05216 0.00319 1.12165 1.07277 3.57186
S i * * * * 0.05332 0.00334 1.09734 1.02488 2.42011

T = 8 0
Si -0.00222 0.05082 0.00258 -3.08537 0.04384 0.00258 1.15922 0.99936 15.81260
S i * * * * 0.04707 0.00325 1.07972 0.79356 18.93190
S i * * * * 0.05279 0.00397 0.96260 0.65016 11.74840
S i * * * * 0.04607 0.00240 1.10306 1.07601 3.57186
S i * * * * 0.04708 0.00250 1.07951 1.02997 2.70089

.. 1
T =200
S, -0.00132 0.03958 0.00157 -2.35728 0.04936 0.00341 0.80191 0.45823 7.90553

S i * * * * 0.05103 0.00386 0.77566 0.40599 12.65100

S i * * * * 0.05441 0.00427 0.72754 0.36622 7.02749

S i * * * * 0.03671 0.00145 1.07817 1.07945 3.67795

S i * * * * 0.03754 0.00151 1.05441 1.03187 2.19235

T = 2 8 0

Si -0.00107 0.03592 0.00129 -2.10103 0.05146 0.00373 0.69791 0.34584 3.78345

S { * * * * 0.05280 0.00410 0.68023 0.21463 9.36398

S i * * * * 0.05545 0.00443 0.64769 0.29120 3.99273

S i * * * * 0.03336 0.00118 1.07655 1.09240 3.99273

S i * * * * 0.03411 0.00123 1.05294 1.04445 3.03228
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Table 7: DGP la. Finite sample behaviour of 5j, Sf, 5J, 5|. Power results.

H i is true |
p■*0.05

.... “mean s.d. P(sk) P(ku) P ' j )
T—80

■ —

Si 0.544 -1.817 1.370 0.002 0.000 0.000

S'l 0.560 -1.975 1.557 0.000 0.000 0.000
Si 0.480 -1.574 1.141 0.431 0.138 0.244
Si 0.462 -1.563 1.204 0.000 0.003 0.000
SI 0.452 -1.533 1.181 0.000 0.002 0.000

' ............ .... --------1

T=200
1

Si 0.864 -3.066 1.324 0.000 0.879 o . o o o  !
Si 0.873 -3.417 1.632 0.000 0.151 0.000

S i 0.846 -2.796 1.146 0.343 0.252 0.331
Si 0.846 -2.977 1.373 0.000 0.827 0.000

S i 0.838 -2.918 1.344 0.000 0.664 0.000

T=280
Si 0.949 -3.721 1.321 0.000 0.482 0.000

Si 0.953 -4.170 1.670 0.000 0.017 0.000

Si 0.942 -3.416 1.150 0.000 0.045 0.000
Si 0.942 -3.702 1.436 0.000 0.171 0.000
Cad2 0.940 -3.630 1.409 0.000 0.344 0.000
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Table 8: DGP 2a. Finite sample behaviour of Si. 5{', Si, Si, Sj. Power results.

Hi is true ------------------- j------------------

_______ i______
P3.05 m e a n s.d. P(sk) P(ku) P ( j )

T=80
Si 0.891 -3.590 1.658 0.000 0.000 0.000
Si 0.901 -4.539 2.537 0.000 0.000 0.000
Si 0.864 -3.044 1.346 0.000 0.000 0.000
Si 0.850 -3.280 1.686 0.000 0.000 0.000
Si 0.843 -3.215 1.651 0.000 0.000 0.000

T=200
Si 0.998 -6.002 1.739 0.000 0.146 0.000
Si 0.998 -8.158 3.140 0.000 0.000 0.000
Si 0.998 -5.169 1.446 0.000 0.422 0.000
S2 0.997 -6.265 2.242 0.000 0.000 0.000
Ca
°2 0.997 -6.140 2.193 0.000 0.000 0.000

T=280
Si 1.000 -7.224 1.765 0.000 0.956 0.000
Si 1.000 -10.028 3.354 0.000 0.000 0.000
Si 1.000 -6.178 1.499 0.000 0.001 0.000
Si 1.000 -7.778 2.471 0.000 0.000 0.000
Si 1.000 -7.635 2.425 0.000 0.000 0.000
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Table 9: DGP 1, DGP la. Rejection frequencies of the DH normality test
on the residuals of the loglinear model.

H0 is true
(power results)

p D H
M 3.05

T=40 0.055
T=80 0.067 j
T=200 0.117
T=280 0.137 |

|
| Hi is true
1 (size results)
1
1

p D H
•*0.05

| T=80 0.044
S T=200 0.053

T=280 0.053
f & f  is the rejection frequency of the DH test at a 59E nominal level, based on the \  2 distribution.

Table 10: D G P  1, D G P  la . R ejection  frequencies o f  the Reset(l) test.

H 0 is  tr u e
( size results)

-P(T05

T = 40 0.053

T = 8 0 0.054

| T = 2 0 0 0.049

j T = 2 8 0 0.052

1
! H i  is  t r u e
| (power results)

p R
r 0-05

| T = 8 0 0.218

| T = 2 0 0 0.565

| T = 2 8 0 0.729

P0r05 is the rejection frequency of the Reset (1) test at a 5% nominal level, based on the / j . r - 3  

distribution.
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Table 11: DGP 2, DGP 2a. Rejection frequencies of the DH normality test
on the residuals of the loglinear model.

H0 is true
(power results)

1 p D H
i •‘ 0.05

T=40 0.101
T=80 0.233
T=200 0.598
T=280 0.731

Hi is true
(size results)

p D H  I•*0.05 |
T=80 0.044
T=200 0.054
T=280 0.053

Po.,ol is the rejection frequency of the DH test at a 5% nominal level, based on the y j distribution.

Table 12: D G P  2, D G P  2a. Rejection  frequencies o f  the Resef(l) test.
| H o  is true 
| ( s iz e  r e su lts )

^0T)5

' T = 4 0 0.056

\ T = 8 0 0.048

j T = 2 0 0 0.060

| T = 2 8 0 0.049

! H i is true 
| ( p o w e r  r e su lts )

1
p R
“ 0.05

| T = 8 0 0.538 j

| T = 2 0 0 0.924 j

| T = 2 S 0 0.981 |

Toos is the rejection frequency of the Reset (1) test at a 5% nominal level, based on the F i t - 3  

distribution.
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Appendix

Proof of Proposition 1

b£ =  b(x, eh, à) = >  E(h6 =  f  b(x, eh, â)ip{eh)deh =  bà,
J(h

as the error terms eh axe identically distributed for Wh =  1, . . . ,  H.

Proof of Proposition 2

From the independence and identical distribution of the drawings 
eh,h — it follows that the terms 6% are i.i.d. conditionally on
à. Hence the Weak Law of the Large Numbers and Proposition 1 imply:

%  = ^  ^  i  H * , e \ à ) V {eh)deh =  S& .
h = l

Proof of Propositions

Consider the definitions of the following matrices:

=  JI f f —  ExEa 0

I f  9 =  E xE aa

I99 = ExEa 0

I  as =  ~ E xEao

Slog ft{a) Slog ft(a )
da da'

Slog ft(a) d\oggt(6)
da db'

Sloggt(6) dloggt(6)
db db'

f h

S2 log gt(6) 
d m '

evaluated respectively in a0 and baa and where the expectations are taken 
with respect to the true density generating the x and the true conditional 
density of y given x, i.e. f t(ao)- Notice that when /((a ) and gt(b) are
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replaced by their simulated counterparts, i.e. /*  =  / (y f  (a); a) and (ft =  
g(yt(a): 6), the expected value of the above quantities is unchanged. The 
first order conditions (f.o.c.) to get the PMLE are:

= Q
36 16=6*

valid Va. Expanding these f.o.c. (multiplied by y/T) around the pseudo- 
true value Sao we have:

L  — $an +
1 Z L id log  g{y?(a0);6ao)

VT 99 VT 36 +  op(l),

where:

t- i 1 T,J=idlogg{y^(a0y,6ao) 
99 s j f  36

This allows us to write:

* $ .= * « . + °p(VT)'

On the other hand, expansion of 6% around 6£o gives:

â — ?>ao +  ~  a°) +

where the second term in the right handside is Op(Vp) 28 , so that sub­
stituting for the expression above found we can write:

« $ = * 0 0 + O p ( ^ ) ,

showing that 6£ is consistent for 6ao as T  goes to infinity for one single 
drawing of the the simulated observation (H =  1). It is now evident that 
the same consistency result applies to 6% =  ft J2h=i â f°r every value of 
H.

28cfr. Gourieroux, Monfort and Trognon (1983).
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Starting from the case of H  =  1, combining the two expansions of 
the previous proof we have the expression:

Proof of Proposition 4

V f(6 hà- 6 a 0) =  Jt
1 HÏ=id\ogg {y^ a 0y,6ao) t d6,

99 V f 86 + -Q ^ '/ r (â —ao)+°p(i),

where:

V f (â  — a0) =  J
1 Ef=i dlog f ( y t;a 0) 

V f  da
+  op(l).

J-,  1 S a i i a ü ï i i î s l  i  jv fo .jT /).
V r  <9a r - o o  / /

Recalling that the asymptotic variance of the first term of the expan­
sion of V f{6 l  -  6ao) is JgglggJgg, the equality =  J~lIgf  29 implies 
that the second term of the same expansion has asymptotic variance 
JgglgfJjf IfgJggi an(  ̂that the latter expression is also equal to the asym­
ptotic covariance matrix between the two above mentioned terms. This 
leads to the result:

-  <U  ^  N( 0, J - \ I „  +  3 I g fJ f f l fg )^ ) .

Consider now the case of H  greater than one, in which, combining again 
the two expansions of the previous proof, the simulated pseudo-true va­
lue, 6% — jj i V  can be written as:

V f f â  -  6at) =  ± £  V f (6 hao -  6ao) +  ^ V f ( a  -  a0) +  op(l),
h= 1

where the first term has a T —asymptotic variance equal to J~glIgg.7“; 1, 
the asymptotic variance of the second one is given above, and the asym­
ptotic covariance matrix between the two is given by jjJ^IgfJjflfgJgg1- 
It follows that:

V f f â  -  6ao) jv(o, J ;g [ ~  +  (i +  ~ ) ig fJ j } i fg\J;gx).

29cfr. Gourieroux, Monfort, Trognon (1983).
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Proof of Proposition 5

Eehbh(x ,eh,oe\a,8a) =  [  bh(x ,eh,a-,a,6a)(p(eh)deh — Eab(x,e,a, a\8a). 
Jeh

as the error terms eh are identically distributed for Vh =  1, . . . ,  H.

Proof of Proposition 6

From the independence and identical distribution of the drawings 
eh, h =  1 , . . . ,  H, it follows that the terms bh(â, b£) are i.i.d. conditionally 
on à and 8". Hence the Weak Law of the Large Numbers, Proposition 
5 and Slutzky theorem imply:

bH(â,6f )  Eàb(x,e,a;â,6à).
H —*oo

Proof of proposition 7

Conditionally on âh, given the result:

1 M
c M  ^ \  '  c m
°&h ~  17 2L °&hm=1 Af—nx>

valid with arguments similar to the ones of Proposition 2, for the Weak 
Law of Large Numbers and the Slutzky theorem, for M tending to infinity 
the following convergence in probability holds (cfr. Proposition 5):

bhM ■£* [  bhrn(x ,ern,â h;â h,6âK)<p(em)dem =  E&kb(x,e,a ;âh ,6àu).
M —*00 J €m

Accordingly, call (j>J* the probability limit of as M  -*  00:

1 M—>oo 1
h* I T „

-  Eàkb(x,e,a ;âh,6âk)).
1 t=1
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Write (21) as V H(<j>\) — T V HM, and V HM =  T where
<j>¥ =  ~  J2h= 1 M- Then Slutzky theorem implies:

V"“  i  =
M- ° °  ft=l

where <t>\ =  jj Ylh=i ■ Notice that V H* is a function of H PMLE 
ah,h =  1 This results in a problem if the limit in probability
of V H* for II —* oc is taken. To overcome this, recalling that . 
h =  1, . . . ,  H are function of eh and a, it is possible to express them as 
<0j(d), h — 1 ,.. .  ,H , i.i.d. terms for given a. Call their variance for finite 
T V T(<j>i(a). Letting H tend to infinity we have then:

v H* fr  v t (m « )) .

Finally, we have to cope with the sample size T , the dependence from 
which is implicit in the notation of the above quantities. Note that as T 
goes to infinity <j>\* and cj) (̂a) have the same limit in probability as the 
numerator of the Cox test statistic <j>i in formula (9), say <pi(ot0), whose 
asymptotic variance is Vao Therefore, summarizing the above results 
we have:

T V T(M & ) V M .
M M —* oo T —oc
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