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Abstract

W e  derive the generating process o f tem porally aggregated variables, 

when the original variables follow a discrete tim e V A R I M A X  pro­

cess. W e consider different tem poral aggregation schemes, which are 
likely applied to generate the available data on m any economic vari­

ables.
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1 Introduction

It is quite common in econometrics to analyse temporally aggregated data, 
because the frequency of data collection is in general much lower than that 
of data generation. While the data generating process (DGP ) of the tem­
porally aggregated variables can be rather different from the original DGP, 
the usual aim of econometric studies is to make inference on the latter, in 
order to assess the reliability of a particular economic theory. Thus, it is 
important to determine what characteristics of the original DGP  are invari­
ant to temporal aggregation, and can therefore be tested with temporally 
aggregated data. As a more complete alternative, given the original DGP 
and the particular temporal aggregation scheme which has generated the 
available data, the theoretical temporally aggregated DGP  could be de­
rived. Its compatibility with the data would then provide an indirect check 
of the appropriateness of the hypothesised original DGP.

Dynamic economic models, at least in their reduced form representa­
tion, often imply that the variables are generated by a vector autoregressive 
model (VAR), possibly with moving average errors (V ARM A), integrated 
variables (VARIMA), exogenous conditioning variables (VARIMAX), and 
particular restrictions on the coefficients. These generating processes can 
also provide an adequate statistical characterization for many time series, 
and their adoption in applied econometrics has steadily grown since the pi­
oneering work of Sims (1980). A nice reconciliation between the economic 
and statistical justifications for these models can be found in Hendry and 
Mizon (1993), who suggest to evaluate economic models on the basis of their 
capacity to encompass a parsimonious and congruent statistical representa­
tion for the data under analysis.

Hence, in this paper we focus on the derivation of the DGP  of the 
temporally aggregated variables when the original variables are generated 
by a model in the discrete time V ARI MAX  class.1 For the univariate 
ARIMA  case, Brewer (1973), Wei (1981) and Weiss (1984) have shown that 
the aggregated process is still of the ARIMA  type, and they have derived 
the order and the coefficients of its AR and MA  components. A more

1Some recent references for the counterpart in continuous time are Christiano and 
Eichenbaum (1987), Bergstrom (1990), Marcet (1991) and Comte (1994).
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detailed analysis of particular cases is presented in Campos et al. (1990) 
and Granger and Siklos (1995). But to deal with economic models the 
multivariate case has to be considered. With reference to this, Liitkepohl 
(1987, ch.6) has shown that the class of VARIMA  processes is closed with 
respect to temporal aggregation, and has proposed upper bounds for the 
order of the AR and MA  components of the aggregated process.

In Section 2 we introduce an alternative method which lets us often 
derive more parsimonious representations of the aggregated process. Dif­
ferent temporal aggregation schemes are considered, and the whole analysis 
is conducted in the time domain, because this is the natural framework for 
economic models. In Section 3 we extend the discussion to VARIMAX  
models, while Section 4 presents some concluding remarks and directions of 
further research. The proofs of the Propositions in the text are contained 
in the Appendix.

2 Temporal aggregation of a V A R IM A pro­
cess

In this Section we derive the DGP of the aggregated process, for different 
temporal aggregation schemes, when the original n dimensional process, 
x =  {a q }^ , evolves according to the system of difference equations

G(L)xt =  S{L)ext, (1)

where L is the lag operator, G(L) — I  — G\L — G2 L2  — ... — GgL9, S{L) =  
I — SiL — S2 L2  —... — SsLs, the roots of |G(L)| =  0 and |S(L)| =  0 lie outside 
the unit circle and are not common, the Gs and Ss are n x n matrices of 
coefficients, ext ~  0,T X), and, for simplicity, the initial conditions are
set equal to zero. In the final subsection we also consider the possibility 
that the variables are integrated.

2.1 Point-in-time sampling

In the case of point-in-time sampling at frequency k, the temporally ag­
gregated process, Xk, is obtained by selecting only the kth elements of x. 
Hence, Xk — {x tk-j}^l 1; where j  is an integer in the interval [0, A; — 1], and 
this formulation lets us consider all the k possibly relevant subprocesses of x.

2
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For example, the elements of a quarterly process can be obtained by select­
ing the 3rd, 6th, 9th, ... elements of a monthly process. But, they could also 
consist of the 1st,4th,7th... or 2nd,5th,8th... elements of the same monthly 
process. We first assume that j  =  0, and then show that the results that 
we obtain are invariant to the choice of j.

Proposition 1. If it is possible to determine an n x n polynomial 
matrix of degree gk — g in the lag operator, B(L), such that the coefficients 
of the lags which are not multiple of k in the product B{L)G[L) are equal 
to zero, then the DGP of xk is the V ARM A model:

C(Z)xkt =  H(Z)ekxt, (2)

where Z =  Lk is a lag operator such that Zxkt — Xt-k =  x y - 1, the degree in 
Z of C(Z) and H(Z) are reported in Table 1, and their coefficients and the 
variance covariance matrix of the white noise errors skx, T kx, are derived in 
the proof. □

In order to provide a sufficient condition for the existence of B(L) and 
to determine its coefficients, we define the vectors of matrices

Bv =
l x g k - g

(Bl ,B2, : . ,B gk-g) and Gl — (Gi ,G2, ...,G9, 0,lxgk o)

and the matrix of matrices

( Gj g 2 ... 0 0 0 0 \
0 - I Gi ... Gg-1 Gg 0 0 0
0 0 - I ... G g—2 Gg- 1 Gg ... 0 0

0 0 0 ... 0 0 0 ... 0 0
0 0 0 ... 0 0 0 ... Gg 0

l  0 0 0 0 0 0 ... Gg-l Gg J

We also name Gv_k and G™k the 1 x g k —g vector and gk — gxgk  — g matrix 
which are obtained by deleting the kth columns of Gv and Gm. Then we 
have,

Proposition 2. If ^  0, then B(L) exists, its coefficients are the 
elements of Bv =  GüJt(G^fc)_1, and the coefficients of C(Z) are the elements 
of Gv_k(G™k)~lGm -  Gv. □

There can be cases where the B(L) matrix in Proposition 1 does not 
exist, and the procedure to obtain the DGP of the temporally aggregated

3
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variables has to be modified. To this aim, it is useful to consider an alter­
native representation of (1), namely,

G'(L)xt =  S*(L)sxt, (3)

where G*(L) is a diagonal matrix whose elements on the diagonal are all 
equal to the determinant of G(L), g(L), while S*(L) — Ga(L)S(L) and 
Ga{L) is the adjoint matrix of G(L). The degree in L of G*(L) and S*(L) 
are in general, respectively, gn and s +  g(n — 1).

Proposition 3. The DGP of xk is the VARMA  model:

C'(Z)xkt =  H'(Z)ekxt, (4)

the degree in Z of C*(Z) and H*{Z) can be obtained from Table 1 after 
substituting g with gn and s with s+g(n — 1), and their coefficients and the 
variance covariance matrix of the white noise errors ekx, T*kx, are derived in 
the proof. O

There can also be intermediate situations where to obtain the aggre­
gated DGP it is not necessary to reparameterize the original DGP  as in (3), 
but it is sufficient to increase the degree in L of the matrix B(L) in Propo­
sition 1. This can also determine an increase in the order of the aggregate 
components in Table 1.

In order to identify the most parsimonious representation for the tem­
porally aggregated DGP, the following strategy can be adopted. As a first 
step it has to be checked whether the condition in Proposition 1 can be 
satisfied. If it can, then Proposition 1 is applied to derive the aggregated 
DGP. Otherwise, the degree in L of B(L) is increased up to gkn — gn, and 
it is verified whether it is possible to determine B(L) so that the coefficients 
of the lags which are not multiple of k in the product B(L)G(L) are equal 
to zero. In this case, a properly modified version of Proposition 1 can be 
applied. When this second step also fails, the original DGP  is reparam­
eterized as in (3) and Proposition 3 is exploited to derive the temporally 
aggregated DGP.

If we now consider the other point-in-time temporally aggregated pro­
cesses xk =  j  € [1, k — 1], their DGP  is obtained by multiplying
both sides of (2) or (4) by IP. Thus both the orders and the coefficients of 
the AR and MA  components are invariant to the choice of j.

4
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The presence of a constant or of a deterministic trend in the DGP  of 
x does not change the conclusions because these deterministic regressors are 
simply transferred into the DGP  for xk, even if with different coefficients. 
More complicate models with time varying parameters and non i.i.d. er­
rors can be handled in a similar manner. Once a proper B(L) matrix is 
found, the characteristics of the resulting temporally aggregated DGP  can 
be studied. In these cases the choice of j  can also affect the resulting DGP.

Finally, it can be worthwhile noticing that an aggregated V ARM A 
model might result from temporal aggregation of a non V ARM A model or 
of different V ARM A models, and this problem is the counterpart of aliasing 
in the frequency domain analysis of time series, see, e.g., Koopmans (1974).2

2.2 Average sampling

From an economic point of view, point-in-time sampling seems suited for 
stock variables but not for flow variables, whose aggregated values are repre­
sented by partial sums of the original data. Moreover, there are cases where 
partial weighted averages of the original observations are analysed, and we 
now have to deal with these more general situations. Hence, we introduce 
average sampling, which can be thought of as a two step procedure. In the 
first step a linear filter, u>(L) =  (a>o +  cjiL +  ... +  ojk-\Lk~l), is applied to 
the elements of x in order to obtain a new process x*, x* =  {u>(L)xt}^lk. In 
the second step, point in time sampling is applied to x*, i.e., only the kth 
elements of x* are retained and they are used to construct the process xk, 
xk =  where j  is an integer in the interval [0, k — 1],

This formulation lets us consider all the subprocesses of x that can 
be obtained by linearly aggregating and then selecting its elements. For 
example, if all the weights are equal to one or one over k, then the elements 
of xk are, respectively, non overlapping partial sums and averages of those 
of x. If instead the weights are all equal to zero except one, the different 
possibilities of point-in-time sampling are obtained. We have already seen 
that the DGP  of a point-in-time sampling temporally aggregated process 
is invariant to the choice of j ,  so that average sampling, which boils down

2Consider for example the two VAR(l) processes xt =  Ax t - 1  + £ ( and xt =  —Axt-\ +  
£( where £t ~  i.i.d.(0 ,1). After point in time sampling with k =  2 both of them become 
%kt — A2Xkt-\ + £**, where ekt ~  i.i.d.(0,1+AA'). This issue has interesting implications 
for the estimation of missing observations, see Marcellino (1995a).
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to point-in-time sampling from x*, is also invariant to this choice, and from 
now on we assume j  — 0. for ease of notation.

Proposition 4. If it is possible to determine an n x n polynomial 
matrix of degree gk — g in the lag operator, B(L), such that the coefficients 
of the lags which are not multiple of k in the product B(L)G(L) are equal to 
zero, then the DGP of the average sampling temporally aggregated process 
xk is the V ARM A model:

C(Z)xkt =  P(Z)ekxt (5)

where the degree in Z of C(Z) and P[Z) are reported in Table 1, and their 
coefficients and the variance covariance matrix of the white noise errors £kx, 
Tkx, are derived in the proof. □

Notice that the aggregated AR component is still of order g. Moreover, 
it is independent of the weighting scheme and therefore, in particular, it is 
equal to that for point-in-time sampling. This result is due to the equality 
of the AR components in the DGP of x and x*. A further implication of 
such an equality is that the sufficient condition for the existence of B(L) in 
Proposition 2 is valid also for average sampling.

When the condition in Proposition 4 can not be satisfied, we have to 
reparameterize the original DGP  as in (3). Then,

Proposition 5. The DGP  of xk is the V ARM A model:

cr(Z)xu =  P'(Z)£kxt, (6)

the degree in Z of C*(Z) and P*{Z) can be obtained from Table 1 after 
substituting g with gn and s with s +  g(n— 1), and their coefficients and the 
variance covariance matrix of the white noise errors £kz, Y£x, are derived in 
the proof. □

The AR component is still independent of the weighting scheme and 
equal to that for point-in-time sampling, when the latter is obtained from 
Proposition 3.

[Table 1 about here]

As for point-in-time sampling, there can be intermediate situations 
where the aggregated DGP  can be obtained by premultiplication of the

6
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original DGP  by a B(L) matrix whose degree in L is larger than gk — g. 
To determine the most parsimonious VARMA  representation of the aver­
age sampling temporally aggregated variables, the strategy in the former 
subsection can be adopted.

It is valuable pointing out that there can be particular cases where the 
coefficients of the predicted highest lags in the AR and MA  components in 
the DGP  of Xk turn out to be zero. Hence, the order of the components in 
Table 1 are more properly upper bounds.1’

The method to derive the temporal aggregated DGP  that we have 
proposed can be seen as an extension to the multivariate case of that in 
Brewer (1973). Actually, for the univariate case the results in Propositions 
1 and 4 coincide, respectively, with those in Propositions 3 and 5, and 
they are equal to those in Brewer (1973), Wei (1981) and Weiss (1984). 
But these authors consider only point-in-time and average sampling with 
unit weights and j  =  0, while we have shown that the choice of j  and of 
the weights is irrelevant as long as all the weights are different from zero 
and only the order of the aggregated AR and MA  components is of interest. 
Moreover, the results for the multivariate case with reference to the order of 
the aggregated components turn out to be equal to those for the univariate 
case when the conditions in Propositions 1 and 4 are satisfied, as can be 
verified from Table 1.

This is in general no longer true when we have to reparameterize the 
original model as in (3) to aggregate it. In this case, the order of the AR 
component, gn, coincides with that in Liitkepohl (1987, ch. 6), while that of 
the MA  component is still often lower. We think that a major advantage of 
our method with respect to Lutkepohl’s one is just that it provides a more 
parsimonious representation of the aggregated process for a large range of 
cases.3 4

3This happens, for example, when G(L) — G(Lk), or when G(L) can be factored 
into G**(L)u>(L). In the latter case the aggregated AR components for point-in-time 
and average sampling can be different. Stram and Wei (1986) provide conditions for 
the reduction in the order not to take place in the univariate case. It is also a priori 
possible that a singular variance covariance matrix for the original errors is transformed 
into a non singular variance covariance matrix for the temporally aggregated errors, and 
viceversa.

4Lutkepohl’s procedure requires to apply a particular deterministic selection matrix to 
a reparameterized version of the original DGP. Its details are not reported to save space. 
It can also be applyed to mixed sampling, which is considered in the next subsection, 
and similar comments apply. On the other hand, Lutkepohl’s method can be simply

7
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2.3 Mixed sampling

Up to now we have assumed that the same temporal aggregation scheme is 
applied to all the variables. However, there can be cases where a different 
aggregation scheme is required for different variables. Imagine, for example, 
that flow and stock variables such as consumption and wealth are jointly 
analysed, or that we only have averaged data for a variable and end of 
period data for another one. We refer to these situations as mixed sampling, 
and in this subsection we study how the DGP  for this type of temporally 
aggregated variables can be obtained.

To start with, let us substitute the w(L) operator in the first step of 
average sampling with the n x n diagonal matrix

( M L )

Q(L) =
0

0
U>2(L)

0 \ 
0

V 0 0 ... wn(L) )

where u — (â ox,* +  iOnLxi T X; -I-... -1- tOik—\L̂  x̂̂ ) leads to the 
desired aggregation of the ith variable in x, x*, for i -- 1 Hence, we
have x* — {^ (L jx f }^  and we wish to determine the DGP  of x*, =  { x ^ } ^ .

Proposition 6 . If it is possible to determine an n x n  polynomial ma­
trix of degree g**k — g** in the lag operator, B(L), such that the coefficients 
of the lags which are not multiple of k in the product B{L)G**{L) are equal 
to zero, where G**(L) is the AR component in the DGP  of x* and g** its 
degree in L, then the DGP  of the mixed sampling temporally aggregated 
process x*, is the VARMA  model:

Q(Z)xu =  R{Z)ekxt. (7)

The degree in Z of Q(Z) and R(Z) can be obtained from the column of 
Table 1 which is referred to point-in-time sampling, after substituting g 
and s with g** and s**, where s** is the degree in L of the MA  component 
in the DGP of x*, S,*(L). g**, s**, the coefficients of Q(Z) and R(Z), 
and the variance covariance matrix of the white noise errors ekx, T kx, are 
derived in the proof. □

modified to deal with aggregation over agents, while our proposal is specific for temporal 
aggregation.
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If the DGP  of x is substituted with that of x*, the sufficient condition 
for the existence of B(L) in Proposition 2 can be also applied to mixed 
sampling.

When the condition in Proposition 6 is not satisfied,

Proposition 7. The DGP of xk is the VARMA  model:

C'(Z)xkt =  R*(Z)ekxU (8)

the degree in Z of C*(Z) and R*(Z) can be obtained from the column of 
Table 1 which is referred to point-in-time sampling, after substituting g 
with gn and s with s +  g(n — 1) +  k — 1, and their coefficients and the 
variance covariance matrix of the white noise errors ekx, Y£x, are derived in 
the proof. □

Notice that the AR component, in (8) is independent of the choice 
of the mixed sampling weighting scheme and, therefore, it is equal to that 
for average and point-in-time sampling. In general, this is not true for 
Proposition 6. Moreover, when k > g +  1 and all the weighting schemes are 
different , aggregation of the reparameterized original DGP  leads to a more 
parsimonious aggregated DGP.

To conclude, also in this case there can be intermediate situations 
where an increase in the degree in L of B(L) lets the aggregated DGP 
to be derived without reparameterizing the original model. When k < 
<7 +  1, application of the strategy of Section 2.1 yields the most parsimonious 
representation for the DGP  of the mixed sampling temporally aggregated 
variables.

2.4 Integrated variables

Up to now we have dealt with stationary processes, but the methods that 
we have discussed can be also applied when the variables are integrated of 
order d, 1(d). Actually, we have not used the hypothesis on the roots of the 
AR component in the proofs of Propositions 1, 4, and 6, which therefore 
are valid even for explosive processes.

A similar result holds for Propositions 3, 5 and 7. Actually, when the 
variables are 1(d), we can assume that their DGP  is the VARIMA(g , d, s) 
model

G ( L ) ( l - L ) dxt =  S(L)ex tov
G*” (L)xt =  S'"(L)exU U

9
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where G***(L) is a diagonal matrix whose terms are g(L)( 1 — L)d. and 
S***(L) =  Ga(L)S(L). Hence, we can apply Propositions 3, 5 and 7 under 
the assumption that the original DGP  is (9) instead of (3).

Notice that B(L) and B*(L) are equal to those for the stationary case 
multiplied by (1 +  L +  L2... +  Lk~l)d. Thus, the AR components of the 
aggregated process are C(Z)( 1 — Z)d or C*(Z)( 1 — Z )d, and Xk are still 
1(d). Moreover, d need not be an integer number, so that also fractional 
integration, see, e.g., Hosking (1981), is preserved through temporal aggre­
gation.

The case where the variables are not only integrated but also coin­
tegrated is examined in details in Marcellino (1995b). If the condition in 
Propositions 1, 4 and 6 is satisfied, then no further modifications are re­
quired. Otherwise, the original DGP can be transformed into an equivalent 
stationary restricted VARMA  process, as in Mellander et al. (1992), whose 
representation with a diagonal AR component substitutes (3) in Proposi­
tions 3, 5, and 7. In both cases, the cointegration rank and vectors are 
invariant to temporal aggregation.

3 Temporal aggregation of a V A R IM A X  pro­
cess

In this Section we derive the generating process of Xk, when Xk is obtained 
by means of one of the three temporal aggregation schemes, and the DGP 
of the original process x is

G(L)xt =  F(L)yt +  S(L)£xt, (10)

where y is an r dimensional vector of exogenous variables, F(L) — Fg — 
FiL — ... — F f V , the Fs are n x r matrices and, for simplicity, the relevant 
initial conditions are set equal to zero.

If the values of y were known for every period, we could simply follow 
the approach in the former Section, namely, premultiply both sides of (10) 
by a proper matrix, B(L). Unfortunately, the values of y are also in general 
not known for time periods which are not multiple of k, so that many terms 
in the product B(L)F(L)yt are unknown. Hence, we have to explicitly state 
a DGP  also for y and a fairly general specification is the VARIMA  model

M(L)yt =  D(L)eyt, (11)
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where M(L) =  I -  MXL -  ... -  MmLm. D(L) =  I  -  DXL -  ... -  DdLd, 
the Ms and Ds are r X r matrices, the roots of \M(L)\ =  0 lie outside or 
on the unit circle and are not in common with those of \D(L)\ — 0, which 
lie outside the unit circle, while eyt ~  0, Yy) and, for simplicity, it is
assumed that they are uncorrelated with £xt - i  for all i and that the relevant 
initial conditions are equal to zero.

Thus, we focus on the effects of temporal aggregation on the joint 
process {x t,yt}-

3.1 Point-in-time sampling

It is convenient to rewrite (10) and (11) as

=®-( T  S'
( 12)

Then, we have

Proposition  8 . If it is possible to determine an (n + r) X (n +  r) 
matrix B(L), which can be partitioned into

B ( L )  =

B\{L) B2(L)
n xn  n xr

0 B3{L)
rxn  rx r

and is such that the coefficients of the lags which are not multiple of k in the 
product B(L)G(L) are equal to zero, then the DGP  of the point-in-time 
temporally aggregated process {x tk,ytk} is the VARIMAX  model:

C(Z)zu =  H(Z)ekzt.

C(Z) can be partitioned into

C(Z) =
Ci(Z)

nxn

o

(13)

where the degree in Z of Ci(Z), C2{Z), and C3(Z) are still y, / ,  and m. The 
required degree in L of B\(L), B^L), and B3{L), the degree in Z of H(Z), 
the coefficients of G(Z) and H(Z), and the variance covariance matrix of 
the white noise errors ekz, T kz, are derived in the proof. □
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In order to provide a sufficient condition for the existence of B(L), we 
define the vectors

B\ =  Bv , G\ =  G\

=  (B21,B22, —iBïgk-g+f-m), Gv2 =  (G2l,G22,—,G2gk-g+f),
lxg k —g + f —m Ixgk—g + f

Bl = ( B sl,B32,...,Bmk- m), G% — (Mi, M2, M m,0,
1 xmk—m 1 xmk

where the ith column of Gîj is the coefficient of L‘ in Bi(L)F(L), and the 
matrices

G™ =  Gm,

(  ~ J

M x m 2 ... Mm 0 0 0 0 \

0 - I M i ... Mm_ 1 M m 0 0 0
0 0 - I ... Mm- 2 Afm_! M m 0 0

II
g k - g + f - m x g k - g + f 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ... M m 0
l  0 0 0 0 0 0 ... M m - l Mlv lm /

( Mi M2 ... M m  0 0 0 0 \
0 - /  M l  ... M m - l  M m 0 0 0
0 0 —I  ... M m- 2  M m- l M m 0 0

G?  =
mk—mxmk 0 0 0 ... 0 0 0 0 0

0 0 0 ... 0 0 0 ... M m 0

l  0 0 0 ... 0 0 0 ... M m — 1 M m )

We name Gv,-k'<% -k- Lfc, and G^_k the 1 x gk - 2  5 4- /  and 1 x mk -k
vectors and gk — g +  f  — m x g k  — 2g +  f  and mk — m x mk — k matrices 
which are obtained by deleting the kth columns of G2, G3, G™, and G™. 
G%I;;, and G™fk are the vectors and matrices which result from deleting only 
the first m kth columns of G\ and GT.f. For simplicity, we state and prove 
the condition for m < g, and a similar result can be obtained by increasing 
the order of B%, Gjj, and G™ as it is indicated in the proof of Proposition 8.
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Proposition 9. If m =  g, |G™*| ^  0, \G2_k\ ^  0, and |G™-/tl ^  0, 
then B(L) exists and it is B\ =  G lk(G^k)~\ Bv2 =  Gv2_k{G"2_k)~\ B3" =  
G\-k{G™_J -1 . If it is m < g, Glj-jfc and G™_k have to be substituted with 
GIU and G?_Y □

The coefficients of the components C\(Z), Cz(Z), and Ci(Z) are, re­
spectively, those in the kth columns of the vectors G\_k(G™_k)~lG™ — G3,
G U i G ^ r 'G ?  -G S , and GS_*(G?_*)- 1G?  -  G2 or G2—k(G k)-xG T  -
G2*- When the condition \G™*k \ ^  0 is not satisfied, the matrices G2*_k and 
G™k can be obtained by deleting m different kth columns of G2 and G™. 
In this case, if the proper determinant is different from zero, the highest lag 
of yk in the DGP  of xk will be larger than m.h

We now consider an equivalent representation of the system (10), (11) 
which is useful when the condition in Proposition 8 cannot be satisfied. If 
the expression for yt in (11) is substituted in (10), the VARIMA  process

~ FiL"

-(\L) F̂ ) { Z h ŝ ‘
(14)

is obtained, see, e.g., Lutkephol (1991).
Hence, we can reparameterize the original DGP  of {xi,yt} as in (14), 

and then apply the method in Section 2.1 or 2.4 to obtain the DGP  of 
the aggregated process {xkt, ykt}- Unfortunately, it is then difficult to de­
termine in general whether the resulting VARIMA  model still admits a 
VARIMAX  representation.5 6

Finally, as for the VARIMA  case, there can be intermediate situations 
where an aggregated VARIMAX  process can be obtained by increasing the 
degree in L of B(L) in Proposition 8.

3.2 Average sampling

The generating process of {x t,yt} is still represented by (12) but this time 
temporal aggregation requires the application to all the elements of the

5The order of the AR and MA  components, and of the highest lag of yk in the DGP 
of xk should be considered as upper bounds because, in particular cases, lower orders 
could be obtained.

6Tiao and Wei (1976) analyse a bivariate model and notice that temporal aggregation 
often destroys the VARIMAX  structure.
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filter ui(L) =  w0 +  U\L +  ... +  0Jk-\Lk~l in a first step, which leads to the 
process {x^yi} .  Then, point in time sampling at frequency k from {x*t ,y^} 
determines the desired temporally aggregated process {xkt.ykt}-

The first step generates the system

(G (L )  -F (L )  \ (  x*t \ (  S(L) 0 W u / ( L ) e „ \
V  0 M(L) A  V't ) V O  D(L) ) \ u(L)£yt ) •

Notice that the matrix of coefficients in the left hand side is independent of 
the choice of u{L) and is equal to that in (12). The consequence is that the 
matrix B(L) which is required for the second step, point-in-time sampling 
from {x*t , y(*}, is exactly equal to that in the former subsection. Hence, when 
such a matrix exists, we can apply Proposition 8 with (15) as the original 
DGP  in order to derive the VARIMAX DGP  of the average sampling 
temporally aggregated process {xkt,ykt}- When it does not exist, we can 
reparameterize (15) as in (14), and then apply the method in Section 2.1 or 
2.4.

In both cases, the resulting aggregated AR component is equal to 
that for point-in-time sampling and, more generally, it is independent of 
the weights, while there are differences in the MA  component.

3.3 Mixed sampling

When a different temporal aggregation scheme is applied to the variables 
under analysis, it is convenient, as a first step, to premultiply both sides 
of (12) by a diagonal matrix whose terms are given by the product of the 
different aggregation schemes. It is obtained that

U.(L)G{L)zt =  fi(L)3(L)<rrt. (16)

with

Q(L) =
n + r x n + r

f n R U M

V 0
where u>i(L) — (w,o +  î\L +  u^L2 +  ... +  u>ik-\Lk T) leads to the desired 
aggregation of the ith variable in z, z*.

(16) can then be rewritten as

G**(L) -F**(L)
0 M**(L) Vt

S” {L) 0
0 D“ (L)

- x t

£yt

14
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and the second step consists in applying point-in-time sampling to (17), 
which is still a VARIMAX  model. Hence, the approach in Section 3.1 can 
be adopted to obtain the DGP  of the mixed sampling temporally aggregated 
variables.

4 Conclusions

The adoption of temporally aggregated data in empirical analysis renders it 
important to study the relationship between the DGPs of the original and 
aggregated variables, and this is the leading theme of this paper. We have 
considered three main types of temporal aggregation, point-in-time, average 
and mixed sampling, under the assumption that the original DGP  belongs 
to the V ARI M  A or V ARI M AX  type of processes in discrete time. Hence, 
we have provided concise formulae to determine the DGP  of the temporally 
aggregated variables for each of these cases.

The original and aggregated DGPs can be rather different, and this 
suggests that when theoretical economic models are confronted with real 
data, some attention should be paid to the relationship between the the­
oretical data generating frequency and their actual observation frequency. 
In particular, when economic models imply that the variables are gener­
ated by a V ARI M AX  process, as it is often the case, and explicitly state 
their hypothesised generating frequency, the results in this paper can be 
applied to obtain the theoretical aggregated generating model. If the latter 
is compatible with the available aggregated data, then the original model is 
corroborated.

As an alternative, it can be analysed whether some particular char­
acteristics of the original DGP  are invariant to temporal aggregation and 
can therefore be tested with aggregated data. This is also relevant when 
the original generating frequency is left unspecified or when the particular 
aggregation scheme that has generated the available data is uncertain. In 
a related paper, Marcellino (1995b), we have studied the effects of tempo­
ral aggregation on such characteristics as common trends, common cycles, 
Granger noncausality and different notions of exogeneity. The main result is 
that only those features which are related to the long run, such as the coin­
tegration rank and vectors, are in general invariant to temporal aggregation, 
while there can be substantial modifications in the other characteristics, and
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the methods in the present paper permit the determination of these mod­
ifications. Such a result reinforces the idea that it is important to match 
the theoretical and actual generating frequency of the data before testing 
an economic model.'

Thus, an interesting subject of future research can be the analysis of 
the effects of temporal aggregation on a more general original DGP and for 
other temporal aggregation schemes, e.g., non linear models and average 
sampling with time varying weights could be considered. 7

7Marcellino (1995b) also presents theoretical and empirical examples which highlight 
the practical relevance of the temporal aggregation issue.
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Appendix

P ro o f o f  Proposition  1.

Premultiplication of both sides of (1) by B(L) leads to

(7 -  BXL -  ... -  Bgk- gL<>k-<>)(I -  GiL -  ... -  GgLa)xt =  B(L)S{L)ext or 
(7 -  CxLk -  C2L2k -  ... -  CgLkg)xt =  N(L)ext or,

(7 -  C,Z  -  C2Z2 -  ... -  CgZ9)xkt =  uxl.
(18)

Thus, the AR component in the DGP  of xk is still of order g, and its 
coefficients are those which are not equal to zero in the product B{L)G{L).

The autocovariance function of the hypothesised aggregated MA  com­
ponent is:

Tk(j) =  cov(uxt,uxt- jk) -
E a—jk

i=0 N i + jk t xn ; ,

0
for j  E N : a > jk  
for j  E N : a < jk

with a =  gk — g +  s, N(L) =  ( I — N\L — ... — NaLa), No =  I. Actually, this 
is the autocovariance function of an MA(h) process, where h is the highest 
value of j  such that Tk(j) >  0. The value of h depends on g, s, and k and 
the different possibilities are summarised in Table 1. The coefficients of the 
MA  component H(Z) =  (7 — HXZ — ... — HkZh) and Tkx are the solutions 
of the nonlinear system:

h - j

r k(j) =  £  Hi+jr kxH'i, for j  =  0,1,..., h,
i=0

with Hq =  I.

Hence, we have fully characterised the DGP  of the point-in-time tem­
porally aggregated variables xk, which is the V ARM A model

C(Z)xkt =  H(Z)ekxt. □

P ro o f o f  Proposition  2.

The coefficient of L‘ in the product B(L)G(L) is given by Y,h,j BhGj for all 
h and j  such that h +  j  =  i, i > 0. Hence, this coefficient coincides with 
the ith column of the 1 x gk vector BvGm — Gv.
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B(L) has to be such that the coefficients which are not referred to a 
multiple of Lk in B(L)G{L) are equal to zero. These coefficients can be 
grouped in the 1 x gk — g vector BvG™k — Gv_k and, therefore, the elements 
of B(L) have to satisfy the linear system

BvG™k -  Gv_k =  0.

If IGü l̂ ^  0, then the former system can be solved and it is Bv = 
G'jk(G™k)~1. The coefficients of the aggregated AR component, C(Z ), are 
those in the kth columns of the vector G'i_k(G™k)~1Gm — Gv. □

P ro o f o f  Proposition 3.

We wish to show that for the representation of the process in (3) there always 
exists a B*(L) matrix of degree gkn — gn in L such that the coefficients of 
the lags which are not multiple of k in the product B* (L)G*(L) are zero. If 
this is true, then we can apply Proposition 1 to completely characterise the 
DGP  of xk.

Given that g(L) is a scalar polynom of degree gn in L. it can always 
be factored into gn

g(L) =  H ( l - i iL).

Let us introduce a scalar polynom of degree gkn — gn in L, b(L), with

gn k- 1
& w  =  n Œ : ^ ) .

*=1 J=0

It turns out that
gn

b(L)g(L) =  I IU  -  7i Lk) =  c(Lk) =  c(Z).
i= 1

Thus, B*(L) is a diagonal matrix whose terms on the diagonal are 
all equal to b(L). The autoregressive component of the aggregated DGP , 
C*(Z), is then of degree gn in Z, it is also diagonal and its terms on the 
diagonal are all equal to c(Z).

The order of the MA  component, h*, corresponds to the highest j  
such that T£(_;) >  0, with

b'fc(j) — COv(u xt, U xt—j k ') —
v a ~j k AT* T  JV*1Z>!=0 lyi+jk 1 Zivi Î

0
for j  G N : a >  jk 

for j  £ N : a < jk  ’
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where a =  gkn — gn +  s +  g(n — 1), uxt =  N*(L)£xt, N*(L) =  (I — N*L — 
N2L2 — ... — N*La) =  B*(L)G’ (L), Nq — I. The different possible values 
of h* are actually those in Table 1 when g and s are substituted with gn 
and s +  g(n — 1). Finally, the coefficients of the MA  component and 
are the solutions of the nonlinear system

r IU) =  E  for j  =  o, 1, h*,
i=0

with Hq = I. □

P ro o f o f  Proposition  4.

To derive the generating process of xk. we premultiply both sides of (1) 
before by uj(L) — (wo +uj\L +  .... +uik-iLk~l) and then by (I — B\L — ... — 
Bgk-gL9k~a). It follows that:

(I -  BXL -  ... -  Bgk-gU k~9){I -  GXL -  ... -  GgL9)u(L)xt =  
-  B(L)S(L)cj(L)ext or

(I -  C,Lk -  C2L2k -  ... -  CgLk»)x\ =  M(L)ext or,
( /  -  CXZ -  C2Z2 -  ... -  CgZ9)xkt -  uxt.

Thus, the aggregated AR component is still of order g and it is independent 
of the weighting scheme.

The autocovariance function of the hypothesised aggregated MA  com­
ponent is:

Tk{j) -  cov(uxt,uxt- jk) =
£f=o * Mi+jkTxM[, for j  € N  : a  >  jk  

0 for j  € N  : a < jk

where a =  gk — g +  s +  k — 1, M(L) =  ( /  — M\L — ... — MaLa), Mq =  I. 
This is the autocovariance function of an MA(p) process, where p is the 
highest value of j  such that Tk{j) > 0. The actual value of p depends on 
g, s , and k and the different possibilities are summarised in Table 1. The 
coefficients of the MA  component P(Z) — (I — P\Z — ... — PpZp) and 
are the solutions of the nonlinear system:

r* 0 ‘) =  E * + jT * « t f ,;=o
for j  =  0, 1, ...,p.

with Pq =  I-
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Hence, we have fully characterised the DGP  of the average sampling 
temporally aggregated process xk, which is the VARMA  model

C{Z)xkt =  P(Z)ekxt. □

P ro o f o f  Proposition  5.

The demonstration for the AR component is equal to that in the proof of 
Proposition 3, when x is substituted with x*.

The order of the MA  component, p\ is equal to the highest j  such 
that T*k(j) > 0, with

r *k(j) =  cov{uxUuxt-jk) =
E a—jk 

1=0 M>+jkr xM*\
0

for j  6 N  : a > jk 
for j  € N  : a  < j  k

where a -  gkn — gn +  s +  k — 1 +  g(n — 1), uxt =  M*(L)£xt, M*(L) =  
(7 -  M;L -  M ;L 2 -  ... -  M ’ La) =  B*{L)G*(L)w{L), M; =  7. The dif­
ferent possible values for p* are actually those in Table 1 when g and s are 
substituted with gn and s +  g(n — 1). Finally, the coefficients of the MA 
component and T*kx are the solutions of the nonlinear system

rlU) -  E  for j  = o, l,...,/,
i= 0

with P0* = 7 . □

P ro o f o f  Proposition  6 .

Premultiplying both sides of (1) by fi(L), we obtain:

Q{L)G(L)xt =  Q(L)S(L)£xt. (20)

However, in this formulation x* depends on with i,j =  1, ...,n and
j  ^  i. But we want x* to depend on x* and not on u>i(L)xj. Therefore, we 
have to premultiply both sides of (20) by another diagonal matrix, QXX(L), 
with

( n # i ^ (L ) 0 0 \

nxx(L) = 0 11:̂ 2 • 0

l  0 0 ■ n )
so that

G**{L)x't -  to„{L)Q(L)G(L)xt =  nxx(L)Q(L)S(L)£xt =  S'*{L)ext. (21)
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In general, the degree in L of G” (L), g**, is g +  (k — 1 )(n — 1), while that 
of S” (L), s’ *, is s +  (k — l)n. A lower degree is obtained when some of 
the weighting schemes are equal, the extreme cases being average sampling, 
where all the weighting schemes are equal and Çlxx(L) — I, and point-in- 
time sampling, where they are all equal to one and QXX(L) =  Cl(L) =  I.

Once the VARMA DGP  of x* is obtained, that of xk can be derived 
by applying Proposition 1 with (21) instead of (1) as the original DGP. □

P ro o f o f  Proposition  7.

Premultiplying both sides of (3) by Cl(L) we get:

Ü{L)G\L)xt =  n(L)S*(L)ext or
G*(L)xt* =  T*(L)£xt. [

Hence, we can apply Proposition 2 with (22) instead of (3) as the original
DGP. □

P ro o f o f  Proposition 8 .

If both sides of (12) are premultiplied by B(L), it is obtained that

t  Bi(L)G(L) - B 1(L)F(L) +  B2(L)M(L) \ f  xt \ = 
l  0 B3(L)M(L) A  V t)  (23)

= (  Bl(L)S(L) B2(L)D(L) \ (  ext \ K 1
{  0 B3(L)D(L) A /  ’

and

g g ) -
It is immediate that B\(L) must be equal to B{L) which implies 

C i(Z ) =  C(Z), and the AR component in the DGP  of Xk is still of or­
der g. Similarly, B3(L) is required to have degree mk — m in L so that 
C3(Z), which is the AR component in the DGP  of jjk, is of degree m.

The determination of the required degree of B2(L) =  (B2\L +  B22L2 +  
... +  B2fjL3) and of the degree of C2(Z) is instead slightly more complicate 
because some subcases must be considered. We discuss in details two of 
them, and the other ones can be dealt with in a similar manner. In the 
first subcase, it is assumed that g < f ,  f  — g < k, g > m. The degree in L 
of Bi(L)F(L) is gk — g +  /  and (3 has to be equal to gk — g +  /  — m, so 
that the degree of —B\(L)F{L) +  B2(L)M(L) is gk — g + f . The number
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of matrices of coefficients in B\(L)F(L) and B2 (L)M(L) whose power in L 
is not a multiple of k is gk — g +  f  — g, which is smaller than the number 
of matrices in B2(L), gk — g +  /  — m. Therefore, under the maintained 
existence hypothesis, it is possible to choose the elements of B2(L) in such 
a way that all the terms in —B\{L)F(L) +  B2{L)M{L) whose power in 
L is not a multiple of k have zero coefficients. But there would still be 
(g — m)nr degrees of freedom in the choice of the elements of B2(L). Thus, 
further restrictions are needed for B2(L) to be univocally determined, and 
we assume that it is possible to equate to zero the matrices of coefficients 
of the g — m highest power in Lk in —B\{L)F{L) +  B2(L)M(L). It follows 
that the degree in L of C2(Lk) — -Bi(L)F(L) +  B2(L)M(L) is km, that of 
C2(Z) is m, and this is also the highest lag of t/* in the DGP  of Xk-

If instead it is still g <  / ,  /  — g < k, but g < m, then the number of 
matrices of coefficients in Bi(L)F(L) and B2(L)M(L) whose power in L is 
not a multiple of k, gk — g +  f  — g, is larger than the number of matrices 
in B2(L), gk — g +  f  — m. In this case we are short of (m — g)nr conditions 
and to find these we have to increase the degree in L of B2(L) by (m — g)k.8 
The degree of B2(L) becomes mk — g +  /  — rn, that of C2{Lk) mk, and the 
highest lag of jjk in the DGP  of aq. is again m.

For other combinations of g, / ,  m, and k the required degree of B2(L) 
can be determined as in the former cases, while it turns out that the highest 
lag of yk in the DGP  of Xk is still m.

The order of H(Z), the MA  component in the DGP  of z*, is equal to 
the highest lag of Lk among those in Bi(L)S{L), B2(L)D(L), and B2{L)D{L) 
Actually, it can be easily shown that this value, /i, is such that the auto­
covariance function of the aggregated error process is different from zero 
for lower lags than h, and equal to zero for higher ones. The coefficients 
of H(Z) and T zk can be determined as in Proposition 1, namely, by solv­
ing the nonlinear system which is obtained by equating the autocovariance 
function of the aggregated error process to that of an MA(h) process. □

P ro o f o f  Proposition  9.

The proof of the existence of B\{L) and Bz(L) and of the formula for their 
coefficients is equal to that in Proposition 2. B2(L) has to be such that

8Notice that an increase in the degree of B2{L) determines also an increase in the 
number of terms of B2(L)M(L) which are not a multiple of Lk, and therefore have to 
disappear. Thus, it is not enough to increase the degree of B2(L) by exactly m — g.
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the coefficients which are not referred to a multiple of Lk in —B\(L)F(L) +  
Bi{L)M(L) are equal to zero. If m =  g and we group these coefficients in 
the 1 x gk — 2g +  /  vector B2G™_k — G2_k, the elements of B2{L) have to 
satisfy the linear system

Bv2G?_k -  GIL* =  0.

When \G™_k\ ^  0, such a system can be solved and it is B% =  G ^^G Jl*.)-1 .

If m < g, then the number of rows in G%Lk is larger than that of 
columns. Hence, G™_k has to be substituted with the square matrix G™lk. 
\G?:k\ Ï  0 implies B\ =  G ^ k(G ^ k)-\  □
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Table 1: DGF of Xk when x is VARMA(g,s) and B(L) exists.

Point-in-time sampling Average sampling

V ARMA{g,g — 1 — q) 
for qk < g — s < (q +  1 )k 

q =  0, 1,..., 5 -  1

VARMA(g, g -  q) 
for qk < g — s +  1 <  (q +  1 )k 

q =  0, 1,..., g

V ARMA(g,g) 
for g — s

V ARM A(g, g) 
for g =  s

VARMA(g,g +  q) 
for qk < s — g < (q +  1 )k 

q =  0, 1,...

V ARM A(g, g +  1 +  q) 
for and qk < s — 1 — g < {q +  1 )k

q =  0, 1,...
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