

EUI Working Paper ECO No. $95 / 39$

Temporal Aggregation of a VARIMAX Process

Massimilano Marceluno

EUROPEAN UNIVERSITY INSTITUTE

30001002208900

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 95/39

Temporal Aggregation of a VARIMAX Process MASSIMILIANO MARCELLINO

WP 330

BADIA FIESOLANA, SAN DOMENICO (FI)

All rights reserved.
No part of this paper may be reproduced in any form without permission of the author.
© Massimiliano Marcellino Printed in Italy in November 1995

European University Institute
Badia Fiesolana
I - 50016 San Domenico (FI)
Italy

Temporal Aggregation of a VARIMAX Process*

Massimiliano Marcellino
European University Institute

June 1995

Abstract

We derive the generating process of temporally aggregated variables, when the original variables follow a discrete time VARIMAX process. We consider different temporal aggregation schemes, which are likely applied to generate the available data on many economic variables.

Key words: Temporal Aggregation, VARIMA process, VARIMAX process.
JEL Classification: C32, C43, C5.

[^0]
1 Introduction

It is quite common in econometrics to analyse temporally aggregated data, because the frequency of data collection is in general much lower than that of data generation. While the data generating process $(D G P)$ of the temporally aggregated variables can be rather different from the original $D G P$, the usual aim of econometric studies is to make inference on the latter, in order to assess the reliability of a particular economic theory. Thus, it is important to determine what characteristics of the original $D G P$ are invariant to temporal aggregation, and can therefore be tested with temporally aggregated data. As a more complete alternative, given the original $D G P$ and the particular temporal aggregation scheme which has generated the available data, the theoretical temporally aggregated $D G P$ could be derived. Its compatibility with the data would then provide an indirect check of the appropriateness of the hypothesised original $D G P$.

Dynamic economic models, at least in their reduced form representation, often imply that the variables are generated by a vector autoregressive model $(V A R)$, possibly with moving average errors $(V A R M A)$, integrated variables ($V A R I M A$), exogenous conditioning variables $(V A R I M A X)$, and particular restrictions on the coefficients. These generating processes can also provide an adequate statistical characterization for many time series, and their adoption in applied econometrics has steadily grown since the pioneering work of Sims (1980). A nice reconciliation between the economic and statistical justifications for these models can be found in Hendry and Mizon (1993), who suggest to evaluate economic models on the basis of their capacity to encompass a parsimonious and congruent statistical representation for the data under analysis.

Hence, in this paper we focus on the derivation of the $D G P$ of the temporally aggregated variables when the original variables are generated by a model in the discrete time VARIMAX class. ${ }^{1}$ For the univariate ARIMA case, Brewer (1973), Wei (1981) and Weiss (1984) have shown that the aggregated process is still of the $A R I M A$ type, and they have derived the order and the coefficients of its $A R$ and $M A$ components. A more

[^1]detailed analysis of particular cases is presented in Campos et al. (1990) and Granger and Siklos (1995). But to deal with economic models the multivariate case has to be considered. With reference to this, Lütkepohl (1987, ch.6) has shown that the class of VARIMA processes is closed with respect to temporal aggregation, and has proposed upper bounds for the order of the $A R$ and $M A$ components of the aggregated process.

In Section 2 we introduce an alternative method which lets us often derive more parsimonious representations of the aggregated process. Different temporal aggregation schemes are considered, and the whole analysis is conducted in the time domain, because this is the natural framework for economic models. In Section 3 we extend the discussion to $V A R I M A X$ models, while Section 4 presents some concluding remarks and directions of further research. The proofs of the Propositions in the text are contained in the Appendix.

2 Temporal aggregation of a VARIMA process

In this Section we derive the $D G P$ of the aggregated process, for different temporal aggregation schemes, when the original n dimensional process, $x=\left\{x_{t}\right\}_{t=1}^{\infty}$, evolves according to the system of difference equations

$$
\begin{equation*}
G(L) x_{t}=S(L) \varepsilon_{x t}, \tag{1}
\end{equation*}
$$

where L is the lag operator, $G(L)=I-G_{1} L-G_{2} L^{2}-\ldots-G_{g} L^{g}, S(L)=$ $I-S_{1} L-S_{2} L^{2}-\ldots-S_{s} L^{s}$, the roots of $|G(L)|=0$ and $|S(L)|=0$ lie outside the unit circle and are not common, the $G \mathrm{~s}$ and $S \mathrm{~s}$ are $n \times n$ matrices of coefficients, $\varepsilon_{x t} \sim i . i . d .\left(0, \Upsilon_{x}\right)$, and, for simplicity, the initial conditions are set equal to zero. In the final subsection we also consider the possibility that the variables are integrated.

2.1 Point-in-time sampling

In the case of point-in-time sampling at frequency k, the temporally aggregated process, x_{k}, is obtained by selecting only the $k^{\text {th }}$ elements of x. Hence, $x_{k}=\left\{x_{t k-j}\right\}_{t=1}^{\infty}$, where j is an integer in the interval $[0, k-1]$, and this formulation lets us consider all the k possibly relevant subprocesses of x.

For example, the elements of a quarterly process can be obtained by selecting the $3^{\text {rd }}, 6^{\text {th }}, 9^{\text {th }}, \ldots$ elements of a monthly process. But, they could also consist of the $1^{\text {st }}, 4^{\text {th }}, 7^{\text {th }} \ldots$ or $2^{\text {nd }}, 5^{\text {th }}, 8^{\text {th }} \ldots$ elements of the same monthly process. We first assume that $j=0$, and then show that the results that we obtain are invariant to the choice of j.

Proposition 1. If it is possible to determine an $n \times n$ polynomial matrix of degree $g k-g$ in the lag operator, $B(L)$, such that the coefficients of the lags which are not multiple of k in the product $B(L) G(L)$ are equal to zero, then the DGP of x_{k} is the VARMA model:

$$
\begin{equation*}
C(Z) x_{k t}=H(Z) \varepsilon_{k x t}, \tag{2}
\end{equation*}
$$

where $Z=L^{k}$ is a lag operator such that $Z x_{k t}=x_{t-k}=x_{k t-1}$, the degree in Z of $C(Z)$ and $H(Z)$ are reported in Table 1, and their coefficients and the variance covariance matrix of the white noise errors $\varepsilon_{k x}, \Upsilon_{k x}$, are derived in the proof.

In order to provide a sufficient condition for the existence of $B(L)$ and to determine its coefficients, we define the vectors of matrices

$$
\underset{1 \times g k-g}{B^{v}}=\left(B_{1}, B_{2}, \ldots, B_{g k-g}\right) \text { and } \underset{1 \times g k}{G^{v}}=\left(G_{1}, G_{2}, \ldots, G_{g}, 0, \ldots, 0\right)
$$

and the matrix of matrices

$$
{ }_{g k-g \times g k}^{G_{g \times 0}^{m}}=\left(\begin{array}{cccccccccc}
-I & G_{1} & G_{2} & \ldots & G_{g} & 0 & 0 & \ldots & 0 & 0 \\
0 & -I & G_{1} & \ldots & G_{g-1} & G_{g} & 0 & \ldots & 0 & 0 \\
0 & 0 & -I & \ldots & G_{g-2} & G_{g-1} & G_{g} & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & G_{g} & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & G_{g-1} & G_{g}
\end{array}\right) .
$$

We also name G_{-k}^{v} and G_{-k}^{m} the $1 \times g k-g$ vector and $g k-g \times g k-g$ matrix which are obtained by deleting the $k^{t h}$ columns of G^{v} and G^{m}. Then we have,

Proposition 2. If $\left|G_{-k}^{m}\right| \neq 0$, then $B(L)$ exists, its coefficients are the elements of $B^{v}=G_{-k}^{v}\left(G_{-k}^{m}\right)^{-1}$, and the coefficients of $C(Z)$ are the elements of $G_{-k}^{v}\left(G_{-k}^{m}\right)^{-1} G^{m}-G^{v}$.

There can be cases where the $B(L)$ matrix in Proposition 1 does not exist, and the procedure to obtain the $D G P$ of the temporally aggregated
variables has to be modified. To this aim, it is useful to consider an alternative representation of (1), namely,

$$
\begin{equation*}
G^{*}(L) x_{t}=S^{*}(L) \varepsilon_{x t}, \tag{3}
\end{equation*}
$$

where $G^{*}(L)$ is a diagonal matrix whose elements on the diagonal are all equal to the determinant of $G(L), g(L)$, while $S^{*}(L)=G^{a}(L) S(L)$ and $G^{a}(L)$ is the adjoint matrix of $G(L)$. The degree in L of $G^{*}(L)$ and $S^{*}(L)$ are in general, respectively, $g n$ and $s+g(n-1)$.

Proposition 3. The DGP of x_{k} is the VARMA model:

$$
\begin{equation*}
C^{*}(Z) x_{k t}=H^{*}(Z) \varepsilon_{k x t}, \tag{4}
\end{equation*}
$$

the degree in Z of $C^{*}(Z)$ and $H^{*}(Z)$ can be obtained from Table 1 after substituting g with $g n$ and s with $s+g(n-1)$, and their coefficients and the variance covariance matrix of the white noise errors $\varepsilon_{k x}, \Upsilon_{k x}^{*}$, are derived in the proof.

There can also be intermediate situations where to obtain the aggregated $D G P$ it is not necessary to reparameterize the original $D G P$ as in (3), but it is sufficient to increase the degree in L of the matrix $B(L)$ in Proposition 1. This can also determine an increase in the order of the aggregate components in Table 1.

In order to identify the most parsimonious representation for the temporally aggregated $D G P$, the following strategy can be adopted. As a first step it has to be checked whether the condition in Proposition 1 can be satisfied. If it can, then Proposition 1 is applied to derive the aggregated $D G P$. Otherwise, the degree in L of $B(L)$ is increased up to $g k n-g n$, and it is verified whether it is possible to determine $B(L)$ so that the coefficients of the lags which are not multiple of k in the product $B(L) G(L)$ are equal to zero. In this case, a properly modified version of Proposition 1 can be applied. When this second step also fails, the original $D G P$ is reparameterized as in (3) and Proposition 3 is exploited to derive the temporally aggregated $D G P$.

If we now consider the other point-in-time temporally aggregated processes $x_{k}=\left\{x_{t k-j}\right\}_{t=1}^{\infty}, j \in[1, k-1]$, their $D G P$ is obtained by multiplying both sides of (2) or (4) by L^{j}. Thus both the orders and the coefficients of the $A R$ and $M A$ components are invariant to the choice of j.

The presence of a constant or of a deterministic trend in the $D G P$ of x does not change the conclusions because these deterministic regressors are simply transferred into the $D G P$ for x_{k}, even if with different coefficients. More complicate models with time varying parameters and non i.i.d. errors can be handled in a similar manner. Once a proper $B(L)$ matrix is found, the characteristics of the resulting temporally aggregated $D G P$ can be studied. In these cases the choice of j can also affect the resulting $D G P$.

Finally, it can be worthwhile noticing that an aggregated VARMA model might result from temporal aggregation of a non VARMA model or of different VARMA models, and this problem is the counterpart of aliasing in the frequency domain analysis of time series, see, e.g., Koopmans (1974). ${ }^{2}$

2.2 Average sampling

From an economic point of view, point-in-time sampling seems suited for stock variables but not for flow variables, whose aggregated values are represented by partial sums of the original data. Moreover, there are cases where partial weighted averages of the original observations are analysed, and we now have to deal with these more general situations. Hence, we introduce average sampling, which can be thought of as a two step procedure. In the first step a linear filter, $\omega(L)=\left(\omega_{0}+\omega_{1} L+\ldots+\omega_{k-1} L^{k-1}\right)$, is applied to the elements of x in order to obtain a new process $x^{*}, x^{*}=\left\{\omega(L) x_{t}\right\}_{t=k}^{\infty}$. In the second step, point in time sampling is applied to x^{*}, i.e., only the $k^{\text {th }}$ elements of x^{*} are retained and they are used to construct the process x_{k}, $x_{k}=\left\{x_{t k-j}^{*}\right\}_{t=1}^{\infty}$, where j is an integer in the interval $[0, k-1]$.

This formulation lets us consider all the subprocesses of x that can be obtained by linearly aggregating and then selecting its elements. For example, if all the weights are equal to one or one over k, then the elements of x_{k} are, respectively, non overlapping partial sums and averages of those of x. If instead the weights are all equal to zero except one, the different possibilities of point-in-time sampling are obtained. We have already seen that the $D G P$ of a point-in-time sampling temporally aggregated process is invariant to the choice of j, so that average sampling, which boils down

[^2]to point-in-time sampling from x^{*}, is also invariant to this choice, and from now on we assume $j=0$, for ease of notation.

Proposition 4. If it is possible to determine an $n \times n$ polynomial matrix of degree $g k-g$ in the lag operator, $B(L)$, such that the coefficients of the lags which are not multiple of k in the product $B(L) G(L)$ are equal to zero, then the $D G P$ of the average sampling temporally aggregated process x_{k} is the VARMA model:

$$
\begin{equation*}
C(Z) x_{k t}=P(Z) \varepsilon_{k x t} \tag{5}
\end{equation*}
$$

where the degree in Z of $C(Z)$ and $P(Z)$ are reported in Table 1, and their coefficients and the variance covariance matrix of the white noise errors $\varepsilon_{k x}$, $\Upsilon_{k x}$, are derived in the proof.

Notice that the aggregated $A R$ component is still of order g. Moreover, it is independent of the weighting scheme and therefore, in particular, it is equal to that for point-in-time sampling. This result is due to the equality of the $A R$ components in the $D G P$ of x and x^{*}. A further implication of such an equality is that the sufficient condition for the existence of $B(L)$ in Proposition 2 is valid also for average sampling.

When the condition in Proposition 4 can not be satisfied, we have to reparameterize the original $D G P$ as in (3). Then,

Proposition 5. The $D G P$ of x_{k} is the VARMA model:

$$
\begin{equation*}
C^{*}(Z) x_{k t}=P^{*}(Z) \varepsilon_{k x t}, \tag{6}
\end{equation*}
$$

the degree in Z of $C^{*}(Z)$ and $P^{*}(Z)$ can be obtained from Table 1 after substituting g with $g n$ and s with $s+g(n-1)$, and their coefficients and the variance covariance matrix of the white noise errors $\varepsilon_{k x}, \Upsilon_{k x}^{*}$, are derived in the proof.

The $A R$ component is still independent of the weighting scheme and equal to that for point-in-time sampling, when the latter is obtained from Proposition 3.

[Table 1 about here]

As for point-in-time sampling, there can be intermediate situations where the aggregated $D G P$ can be obtained by premultiplication of the
original $D G P$ by a $B(L)$ matrix whose degree in L is larger than $g k-g$. To determine the most parsimonious VARMA representation of the average sampling temporally aggregated variables, the strategy in the former subsection can be adopted.

It is valuable pointing out that there can be particular cases where the coefficients of the predicted highest lags in the $A R$ and $M A$ components in the $D G P$ of x_{k} turn out to be zero. Hence, the order of the components in Table 1 are more properly upper bounds. ${ }^{3}$

The method to derive the temporal aggregated $D G P$ that we have proposed can be seen as an extension to the multivariate case of that in Brewer (1973). Actually, for the univariate case the results in Propositions 1 and 4 coincide, respectively, with those in Propositions 3 and 5, and they are equal to those in Brewer (1973), Wei (1981) and Weiss (1984). But these authors consider only point-in-time and average sampling with unit weights and $j=0$, while we have shown that the choice of j and of the weights is irrelevant as long as all the weights are different from zero and only the order of the aggregated $A R$ and $M A$ components is of interest. Moreover, the results for the multivariate case with reference to the order of the aggregated components turn out to be equal to those for the univariate case when the conditions in Propositions 1 and 4 are satisfied, as can be verified from Table 1.

This is in general no longer true when we have to reparameterize the original model as in (3) to aggregate it. In this case, the order of the $A R$ component, $g n$, coincides with that in Lütkepohl (1987, ch. 6), while that of the MA component is still often lower. We think that a major advantage of our method with respect to Lütkepohl's one is just that it provides a more parsimonious representation of the aggregated process for a large range of cases. ${ }^{4}$

[^3]
2.3 Mixed sampling

Up to now we have assumed that the same temporal aggregation scheme is applied to all the variables. However, there can be cases where a different aggregation scheme is required for different variables. Imagine, for example, that flow and stock variables such as consumption and wealth are jointly analysed, or that we only have averaged data for a variable and end of period data for another one. We refer to these situations as mixed sampling, and in this subsection we study how the $D G P$ for this type of temporally aggregated variables can be obtained.

To start with, let us substitute the $\omega(L)$ operator in the first step of average sampling with the $n \times n$ diagonal matrix

$$
\Omega(L)=\left(\begin{array}{cccc}
\omega_{1}(L) & 0 & \ldots & 0 \\
0 & \omega_{2}(L) & \ldots & 0 \\
\ldots & & & \\
0 & 0 & \ldots & \omega_{n}(L)
\end{array}\right)
$$

where $\omega_{i}(L) x_{i}=\left(\omega_{i 0} x_{i}+\omega_{i 1} L x_{i}+\omega_{i 2} L^{2} x_{i}+\ldots+\omega_{i k-1} L^{k-1} x_{i}\right)$ leads to the desired aggregation of the $i^{\text {th }}$ variable in x, x_{i}^{*}, for $i=1, \ldots, n$. Hence, we have $x^{*}=\left\{\Omega(L) x_{t}\right\}_{t=k}^{\infty}$ and we wish to determine the $D G P$ of $x_{k}=\left\{x_{t k}^{*}\right\}_{t=1}^{\infty}$

Proposition 6. If it is possible to determine an $n \times n$ polynomial mas trix of degree $g^{* *} k-g^{* *}$ in the lag operator, $B(L)$, such that the coefficient of the lags which are not multiple of k in the product $B(L) G^{* *}(L)$ are equa to zero, where $G^{* *}(L)$ is the $A R$ component in the $D G P$ of x^{*} and $g^{* *}$ it \S degree in L, then the $D G P$ of the mixed sampling temporally aggregated process x_{k} is the VARMA model:

$$
\begin{equation*}
Q(Z) x_{k t}=R(Z) \varepsilon_{k x t} . \tag{7}
\end{equation*}
$$

The degree in Z of $Q(Z)$ and $R(Z)$ can be obtained from the column of Table 1 which is referred to point-in-time sampling, after substituting g and s with $g^{* *}$ and $s^{* *}$, where $s^{* *}$ is the degree in L of the MA component in the $D G P$ of $x^{*}, S^{* *}(L) \cdot g^{* *}, s^{* *}$, the coefficients of $Q(Z)$ and $R(Z)$, and the variance covariance matrix of the white noise errors $\varepsilon_{k x}, \Upsilon_{k x}$, are derived in the proof.

[^4]If the $D G P$ of x is substituted with that of x^{*}, the sufficient condition for the existence of $B(L)$ in Proposition 2 can be also applied to mixed sampling.

When the condition in Proposition 6 is not satisfied,
Proposition 7. The $D G P$ of x_{k} is the VARMA model:

$$
\begin{equation*}
C^{*}(Z) x_{k t}=R^{*}(Z) \varepsilon_{k x t}, \tag{8}
\end{equation*}
$$

the degree in Z of $C^{*}(Z)$ and $R^{*}(Z)$ can be obtained from the column of Table 1 which is referred to point-in-time sampling, after substituting g with $g n$ and s with $s+g(n-1)+k-1$, and their coefficients and the variance covariance matrix of the white noise errors $\varepsilon_{k x}, \Upsilon_{k x}^{*}$, are derived in the proof.

Notice that the $A R$ component in (8) is independent of the choice of the mixed sampling weighting scheme and, therefore, it is equal to that for average and point-in-time sampling. In general, this is not true for Proposition 6. Moreover, when $k>g+1$ and all the weighting schemes are different, aggregation of the reparameterized original $D G P$ leads to a more parsimonious aggregated $D G P$.

To conclude, also in this case there can be intermediate situations where an increase in the degree in L of $B(L)$ lets the aggregated $D G P$ to be derived without reparameterizing the original model. When $k<$ $g+1$, application of the strategy of Section 2.1 yields the most parsimonious representation for the $D G P$ of the mixed sampling temporally aggregated variables.

2.4 Integrated variables

Up to now we have dealt with stationary processes, but the methods that we have discussed can be also applied when the variables are integrated of order $d, I(d)$. Actually, we have not used the hypothesis on the roots of the $A R$ component in the proofs of Propositions 1, 4, and 6, which therefore are valid even for explosive processes.

A similar result holds for Propositions 3,5 and 7. Actually, when the variables are $I(d)$, we can assume that their $D G P$ is the $\operatorname{VARIMA}(g, d, s)$ model

$$
\begin{gather*}
G(L)(1-L)^{d} x_{t}=S(L) \varepsilon_{x t} \text { or } \tag{9}\\
G^{* * *}(L) x_{t}=S^{* * *}(L) \varepsilon_{x t},
\end{gather*}
$$

where $G^{* * *}(L)$ is a diagonal matrix whose terms are $g(L)(1-L)^{d}$, and $S^{* * *}(L)=G^{a}(L) S(L)$. Hence, we can apply Propositions 3,5 and 7 under the assumption that the original $D G P$ is (9) instead of (3).

Notice that $B(L)$ and $B^{*}(L)$ are equal to those for the stationary case multiplied by $\left(1+L+L^{2} \ldots+L^{k-1}\right)^{d}$. Thus, the $A R$ components of the aggregated process are $C(Z)(1-Z)^{d}$ or $C^{*}(Z)(1-Z)^{d}$, and x_{k} are still $I(d)$. Moreover, d need not be an integer number, so that also fractional integration, see, e.g., Hosking (1981), is preserved through temporal aggregation.

The case where the variables are not only integrated but also cointegrated is examined in details in Marcellino (1995b). If the condition in Propositions 1, 4 and 6 is satisfied, then no further modifications are required. Otherwise, the original $D G P$ can be transformed into an equivalent stationary restricted VARMA process, as in Mellander et al. (1992), whose representation with a diagonal $A R$ component substitutes (3) in Propositions 3,5 , and 7 . In both cases, the cointegration rank and vectors are invariant to temporal aggregation.

3 Temporal aggregation of a VARIMAX pro

 cessIn this Section we derive the generating process of x_{k}, when x_{k} is obtained by means of one of the three temporal aggregation schemes, and the $D G P$ of the original process x is

$$
\begin{equation*}
G(L) x_{t}=F(L) y_{t}+S(L) \varepsilon_{x t}, \tag{10}
\end{equation*}
$$

where y is an r dimensional vector of exogenous variables, $F(L)=F_{0}$ $F_{1} L-\ldots-F_{f} L^{f}$, the $F \mathrm{~s}$ are $n \times r$ matrices and, for simplicity, the relevant initial conditions are set equal to zero.

If the values of y were known for every period, we could simply follow the approach in the former Section, namely, premultiply both sides of (10) by a proper matrix, $B(L)$. Unfortunately, the values of y are also in general not known for time periods which are not multiple of k, so that many terms in the product $B(L) F(L) y_{t}$ are unknown. Hence, we have to explicitly state a $D G P$ also for y and a fairly general specification is the VARIMA model

$$
\begin{equation*}
M(L) y_{i}=D(L) \varepsilon_{y t}, \tag{11}
\end{equation*}
$$

where $M(L)=I-M_{1} L-\ldots-M_{m} L^{m}, D(L)=I-D_{1} L-\ldots-D_{d} L^{d}$, the $M \mathrm{~s}$ and $D \mathrm{~s}$ are $r \times r$ matrices, the roots of $|M(L)|=0$ lie outside or on the unit circle and are not in common with those of $|D(L)|=0$, which lie outside the unit circle, while $\varepsilon_{y t} \sim i . i . d .\left(0, \Upsilon_{y}\right)$ and, for simplicity, it is assumed that they are uncorrelated with $\varepsilon_{x t-i}$ for all i and that the relevant initial conditions are equal to zero.

Thus, we focus on the effects of temporal aggregation on the joint process $\left\{x_{t}, y_{t}\right\}$.

3.1 Point-in-time sampling

It is convenient to rewrite (10) and (11) as
$\bar{G}(L) z_{t}=\left(\begin{array}{cc}G(L) & -F(L) \\ 0 & M(L)\end{array}\right)\binom{x_{t}}{y_{t}}=\left(\begin{array}{cc}S(L) & 0 \\ 0 & D(L)\end{array}\right)\binom{\varepsilon_{x t}}{\varepsilon_{y t}}=\bar{S}(L) \varepsilon_{z t}$.
Then, we have
Proposition 8. If it is possible to determine an $(n+r) \times(n+r)$ matrix $\bar{B}(L)$, which can be partitioned into

$$
\bar{B}(L)=\left(\begin{array}{cc}
B_{1}(L) & B_{2}(L) \\
n \times n & n \times r \\
0 & B_{3}(L) \\
r \times n & r \times r
\end{array}\right),
$$

and is such that the coefficients of the lags which are not multiple of k in the product $\bar{B}(L) \bar{G}(L)$ are equal to zero, then the $D G P$ of the point-in-time temporally aggregated process $\left\{x_{t k}, y_{t k}\right\}$ is the VARIMAX model:

$$
\begin{equation*}
\bar{C}(Z) z_{k t}=\bar{H}(Z) \varepsilon_{k z t} . \tag{13}
\end{equation*}
$$

$\bar{C}(Z)$ can be partitioned into

$$
\bar{C}(Z)=\left(\begin{array}{cc}
C_{1}(Z) & C_{2}(Z) \\
n \times n & n \times r \\
0 & C_{3}(Z) \\
r \times n & r \times r
\end{array}\right),
$$

where the degree in Z of $C_{1}(Z), C_{2}(Z)$, and $C_{3}(Z)$ are still g, f, and m. The required degree in L of $B_{1}(L), B_{2}(L)$, and $B_{3}(L)$, the degree in Z of $\bar{H}(Z)$, the coefficients of $\bar{C}(Z)$ and $\bar{H}(Z)$, and the variance covariance matrix of the white noise errors $\varepsilon_{k z}, \Upsilon_{k z}$, are derived in the proof.

In order to provide a sufficient condition for the existence of $\bar{B}(L)$, we define the vectors

$$
\begin{aligned}
\underset{1 \times g k-g+f-m}{B_{2}^{v}} & =\left(B_{21}, B_{22}, \ldots, B_{2 g k-g+f-m}\right), \quad \underset{1 \times g k-g+f}{G_{2}^{v}}=\left(G_{21}, G_{22}, \ldots, G_{2 g k-g+f}\right), \\
\underset{1 \times m k-m}{B_{3}^{v}} & =\left(B_{31}, B_{32}, \ldots, B_{m k-m}\right), \quad \underset{1 \times m k}{G_{3}^{v}}=\left(M_{1}, M_{2}, \ldots, M_{m}, 0, \ldots, 0\right),
\end{aligned}
$$

where the $i^{\text {th }}$ column of G_{2}^{v} is the coefficient of L^{i} in $B_{1}(L) F(L)$, and the matrices

$$
\begin{gathered}
G_{1}^{m}=G^{m}, \\
\underset{{ }_{g k-g+f-m \times g k-g+f}}{G_{m}^{m}}=\left(\begin{array}{ccccccccc}
-I & M_{1} & M_{2} & \ldots & M_{m} & 0 & 0 & \ldots & 0 \\
0 & -I & M_{1} & \ldots & M_{m-1} & M_{m} & 0 & \ldots & 0 \\
0 & 0 & -I & \ldots & M_{m-2} & M_{m-1} & M_{m} & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & M_{m} \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & M_{m-1}
\end{array}\right. \\
\underset{m k-m \times m k}{G_{3}^{m}}=\left(\begin{array}{cccccccccc}
-I & M_{1} & M_{2} & \ldots & M_{m} & 0 & 0 & \ldots & 0 & 0 \\
0 & -I & M_{1} & \ldots & M_{m-1} & M_{m} & 0 & \ldots & 0 & 0 \\
0 & 0 & -I & \ldots & M_{m-2} & M_{m-1} & M_{m} & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & M_{m} & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & M_{m-1} & M_{m}
\end{array}\right) .
\end{gathered}
$$

We name $G_{2-k}^{v}, G_{3-k}^{v}, G_{2-k}^{m}$, and G_{3-k}^{m} the $1 \times g k-2 g+f$ and $1 \times m k-k$ vectors and $g k-g+f-m \times g k-2 g+f$ and $m k-m \times m k-k$ matrices which are obtained by deleting the $k^{\text {th }}$ columns of $G_{2}^{v}, G_{3}^{v}, G_{2}^{m}$, and G_{3}^{m}. $G_{2-k}^{v *}$ and $G_{2-k}^{m *}$ are the vectors and matrices which result from deleting only the first $m k^{t h}$ columns of G_{2}^{v} and G_{2}^{m}. For simplicity, we state and prove the condition for $m \leq g$, and a similar result can be obtained by increasing the order of B_{2}^{v}, G_{2}^{v}, and G_{2}^{m} as it is indicated in the proof of Proposition 8.

Proposition 9. If $m=g,\left|G_{-k}^{m}\right| \neq 0,\left|G_{2-k}^{m}\right| \neq 0$, and $\left|G_{3-k}^{m}\right| \neq 0$, then $\bar{B}(L)$ exists and it is $B_{1}^{v}=G_{-k}^{v}\left(G_{-k}^{m}\right)^{-1}, B_{2}^{v}=G_{2-k}^{v}\left(G_{2-k}^{m}\right)^{-1}, B_{3}^{v}=$ $G_{3-k}^{v}\left(G_{3-k}^{m}\right)^{-1}$. If it is $m<g, G_{2-k}^{v}$ and G_{2-k}^{m} have to be substituted with $G_{2-k}^{v *}$ and $G_{2-k}^{m *}$.

The coefficients of the components $C_{1}(Z), C_{3}(Z)$, and $C_{2}(Z)$ are, respectively, those in the $k^{t h}$ columns of the vectors $G_{1-k}^{v}\left(G_{1-k}^{m}\right)^{-1} G_{1}^{m}-G_{3}^{v}$, $G_{3-k}^{v}\left(G_{3-k}^{m}\right)^{-1} G_{3}^{m}-G_{3}^{v}$, and $G_{2-k}^{v}\left(G_{2-k}^{m}\right)^{-1} G_{2}^{m}-G_{2}^{v}$ or $G_{2-k}^{v *}\left(G_{2-k}^{m *}\right)^{-1} G_{2}^{m *}-$ $G_{2}^{v *}$. When the condition $\left|G_{2-k}^{m *}\right| \neq 0$ is not satisfied, the matrices $G_{2-k}^{v *}$ and $G_{2-k}^{m *}$ can be obtained by deleting m different $k^{t h}$ columns of G_{2}^{v} and G_{2}^{m}. In this case, if the proper determinant is different from zero, the highest lag of y_{k} in the DGP of x_{k} will be larger than $m .^{5}$

We now consider an equivalent representation of the system (10), (11) which is useful when the condition in Proposition 8 cannot be satisfied. If the expression for y_{t} in (11) is substituted in (10), the VARIMA process

$$
\begin{gather*}
\widehat{G}(L) z_{t}=\left(\begin{array}{cc}
G(L) & -F(L)(I-M(L)) \\
0 & M(L)
\end{array}\right)\binom{x_{t}}{y_{t}}= \tag{14}\\
=\left(\begin{array}{cc}
S(L) & F(L) D(L) \\
0 & D(L)
\end{array}\right)\binom{\varepsilon_{x t}}{\varepsilon_{y t}}=\widehat{S}(L) \varepsilon_{z t}
\end{gather*}
$$

is obtained, see, e.g., Lütkephol (1991).
Hence, we can reparameterize the original $D G P$ of $\left\{x_{t}, y_{t}\right\}$ as in (14), and then apply the method in Section 2.1 or 2.4 to obtain the $D G P$ of the aggregated process $\left\{x_{k t}, y_{k t}\right\}$. Unfortunately, it is then difficult to determine in general whether the resulting VARIMA model still admits a VARIMAX representation. ${ }^{6}$

Finally, as for the VARIMA case, there can be intermediate situations where an aggregated VARIMAX process can be obtained by increasing the degree in L of $\bar{B}(L)$ in Proposition 8.

3.2 Average sampling

The generating process of $\left\{x_{t}, y_{t}\right\}$ is still represented by (12) but this time temporal aggregation requires the application to all the elements of the

[^5]filter $\omega(L)=\omega_{0}+\omega_{1} L+\ldots+\omega_{k-1} L^{k-1}$ in a first step, which leads to the process $\left\{x_{t}^{*}, y_{t}^{*}\right\}$. Then, point in time sampling at frequency k from $\left\{x_{t}^{*}, y_{t}^{*}\right\}$ determines the desired temporally aggregated process $\left\{x_{k t}, y_{k t}\right\}$.

The first step generates the system

$$
\left(\begin{array}{cc}
G(L) & -F(L) \tag{15}\\
0 & M(L)
\end{array}\right)\binom{x_{t}^{*}}{y_{t}^{*}}=\left(\begin{array}{cc}
S(L) & 0 \\
0 & D(L)
\end{array}\right)\binom{\omega(L) \varepsilon_{x t}}{\omega(L) \varepsilon_{y t}} .
$$

Notice that the matrix of coefficients in the left hand side is independent of the choice of $\omega(L)$ and is equal to that in (12). The consequence is that the matrix $\bar{B}(L)$ which is required for the second step, point-in-time sampling from $\left\{x_{t}^{*}, y_{t}^{*}\right\}$, is exactly equal to that in the former subsection. Hence, when such a matrix exists, we can apply Proposition 8 with (15) as the original $D G P$ in order to derive the VARIMAX DGP of the average sampling temporally aggregated process $\left\{x_{k t}, y_{k t}\right\}$. When it does not exist, we can reparameterize (15) as in (14), and then apply the method in Section 2.1 or 2.4 .

In both cases, the resulting aggregated $A R$ component is equal to that for point-in-time sampling and, more generally, it is independent of the weights, while there are differences in the $M A$ component.

3.3 Mixed sampling

When a different temporal aggregation scheme is applied to the variables under analysis, it is convenient, as a first step, to premultiply both sides of (12) by a diagonal matrix whose terms are given by the product of the different aggregation schemes. It is obtained that

$$
\begin{equation*}
\Omega(L) \bar{G}(L) z_{t}=\Omega(L) \bar{S}(L) \varepsilon_{z t} . \tag{16}
\end{equation*}
$$

with

$$
\underset{n+r \times n+r}{\Omega(L)}=\left(\begin{array}{ccc}
\prod_{i=1}^{n+r} \omega_{i}(L) & & 0 \\
& \cdots & \\
0 & & \prod_{i=1}^{n+r} \omega_{i}(L)
\end{array}\right),
$$

where $\omega_{i}(L)=\left(\omega_{i 0}+\omega_{i 1} L+\omega_{i 2} L^{2}+\ldots+\omega_{i k-1} L^{k-1}\right)$ leads to the desired aggregation of the $i^{\text {th }}$ variable in z, z_{i}^{*}.
(16) can then be rewritten as

$$
\left(\begin{array}{cc}
G^{* *}(L) & -F^{* *}(L) \tag{17}\\
0 & M^{* *}(L)
\end{array}\right)\binom{x_{t}^{*}}{y_{t}^{*}}=\left(\begin{array}{cc}
S^{* *}(L) & 0 \\
0 & D^{* *}(L)
\end{array}\right)\binom{\varepsilon_{x t}}{\varepsilon_{y t}},
$$

and the second step consists in applying point-in-time sampling to (17), which is still a VARIMAX model. Hence, the approach in Section 3.1 can be adopted to obtain the $D G P$ of the mixed sampling temporally aggregated variables.

4 Conclusions

The adoption of temporally aggregated data in empirical analysis renders it important to study the relationship between the DGPs of the original and aggregated variables, and this is the leading theme of this paper. We have considered three main types of temporal aggregation, point-in-time, average and mixed sampling, under the assumption that the original $D G P$ belongs to the VARIMA or VARIMAX type of processes in discrete time. Hence, we have provided concise formulae to determine the $D G P$ of the temporally aggregated variables for each of these cases.

The original and aggregated $D G P$ s can be rather different, and this suggests that when theoretical economic models are confronted with real data, some attention should be paid to the relationship between the theoretical data generating frequency and their actual observation frequency. In particular, when economic models imply that the variables are generated by a VARIMAX process, as it is often the case, and explicitly state their hypothesised generating frequency, the results in this paper can be applied to obtain the theoretical aggregated generating model. If the latter is compatible with the available aggregated data, then the original model is corroborated.

As an alternative, it can be analysed whether some particular characteristics of the original $D G P$ are invariant to temporal aggregation and can therefore be tested with aggregated data. This is also relevant when the original generating frequency is left unspecified or when the particular aggregation scheme that has generated the available data is uncertain. In a related paper, Marcellino (1995b), we have studied the effects of temporal aggregation on such characteristics as common trends, common cycles, Granger noncausality and different notions of exogeneity. The main result is that only those features which are related to the long run, such as the cointegration rank and vectors, are in general invariant to temporal aggregation, while there can be substantial modifications in the other characteristics, and
the methods in the present paper permit the determination of these modifications. Such a result reinforces the idea that it is important to match the theoretical and actual generating frequency of the data before testing an economic model. ${ }^{7}$

Thus, an interesting subject of future research can be the analysis of the effects of temporal aggregation on a more general original $D G P$ and for other temporal aggregation schemes, e.g., non linear models and average sampling with time varying weights could be considered.

[^6]
Appendix

Proof of Proposition 1.

Premultiplication of both sides of (1) by $B(L)$ leads to

$$
\begin{gather*}
\left(I-B_{1} L-\ldots-B_{g k-g} L^{g k-g}\right)\left(I-G_{1} L-\ldots-G_{g} L^{g}\right) x_{t}=B(L) S(L) \varepsilon_{x t} \text { or } \\
\left(I-C_{1} L^{k}-C_{2} L^{2 k}-\ldots-C_{g} L^{k g}\right) x_{t}=N(L) \varepsilon_{x t} \text { or, } \\
\left(I-C_{1} Z-C_{2} Z^{2}-\ldots-C_{g} Z^{g}\right) x_{k t}=u_{x t} \tag{18}
\end{gather*}
$$

Thus, the $A R$ component in the $D G P$ of x_{k} is still of order g, and its coefficients are those which are not equal to zero in the product $B(L) G(L)$.

The autocovariance function of the hypothesised aggregated $M A$ component is:

$$
\Gamma_{k}(j)=\operatorname{cov}\left(u_{x t}, u_{x t-j k}\right)=\begin{array}{cc}
\sum_{i=0}^{\alpha-j k} N_{i+j k} \Upsilon_{x} N_{i}^{\prime}, & \text { for } j \in N: \alpha \geq j k \\
0 & \text { for } j \in N: \alpha<j k
\end{array},
$$

with $\alpha=g k-g+s, N(L)=\left(I-N_{1} L-\ldots-N_{\alpha} L^{\alpha}\right), N_{0}=I$. Actually, this is the autocovariance function of an $M A(h)$ process, where h is the highest value of j such that $\Gamma_{k}(j)>0$. The value of h depends on g, s, and k and the different possibilities are summarised in Table 1. The coefficients of the $M A$ component $H(Z)=\left(I-H_{1} Z-\ldots-H_{h} Z^{h}\right)$ and $\Upsilon_{k x}$ are the solutions of the nonlinear system:

$$
\Gamma_{k}(j)=\sum_{i=0}^{h-j} H_{i+j} \Upsilon_{k x} H_{i}^{\prime}, \quad \text { for } j=0,1, \ldots, h,
$$

with $H_{0}=I$.
Hence, we have fully characterised the $D G P$ of the point-in-time temporally aggregated variables x_{k}, which is the VARMA model

$$
C(Z) x_{k t}=H(Z) \varepsilon_{k x t} .
$$

Proof of Proposition 2.

The coefficient of L^{i} in the product $B(L) G(L)$ is given by $\sum_{h, j} B_{h} G_{j}$ for all h and j such that $h+j=i, i>0$. Hence, this coefficient coincides with the $i^{t h}$ column of the $1 \times g k$ vector $B^{v} G^{m}-G^{v}$.
$B(L)$ has to be such that the coefficients which are not referred to a multiple of L^{k} in $B(L) G(L)$ are equal to zero. These coefficients can be grouped in the $1 \times g k-g$ vector $B^{v} G_{-k}^{m}-G_{-k}^{v}$ and, therefore, the elements of $B(L)$ have to satisfy the linear system

$$
B^{v} G_{-k}^{m}-G_{-k}^{v}=0
$$

If $\left|G_{-k}^{m}\right| \neq 0$, then the former system can be solved and it is $B^{v}=$ $G_{-k}^{v}\left(G_{-k}^{m}\right)^{-1}$. The coefficients of the aggregated $A R$ component, $C(Z)$, are those in the $k^{\text {th }}$ columns of the vector $G_{-k}^{v}\left(G_{-k}^{m}\right)^{-1} G^{m}-G^{v}$.

Proof of Proposition 3.

We wish to show that for the representation of the process in (3) there always exists a $B^{*}(L)$ matrix of degree $g k n-g n$ in L such that the coefficients of the lags which are not multiple of k in the product $B^{*}(L) G^{*}(L)$ are zero. If this is true, then we can apply Proposition 1 to completely characterise the $D G P$ of x_{k}.

Given that $g(L)$ is a scalar polynom of degree $g n$ in L, it can always be factored into

$$
g(L)=\prod_{i=1}^{g n}\left(1-\gamma_{i} L\right) .
$$

Let us introduce a scalar polynom of degree $g k n-g n$ in $L, b(L)$, with

$$
b(L)=\prod_{i=1}^{g n}\left(\sum_{j=0}^{k-1} \gamma_{i}^{j} L^{j}\right)
$$

It turns out that

$$
b(L) g(L)=\prod_{i=1}^{g n}\left(1-\gamma_{i}^{k} L^{k}\right)=c\left(L^{k}\right)=c(Z) .
$$

Thus, $B^{*}(L)$ is a diagonal matrix whose terms on the diagonal are all equal to $b(L)$. The autoregressive component of the aggregated $D G P$, $C^{*}(Z)$, is then of degree $g n$ in Z, it is also diagonal and its terms on the diagonal are all equal to $c(Z)$.

The order of the MA component, h^{*}, corresponds to the highest j such that $\Gamma_{k}^{*}(j)>0$, with

$$
\Gamma_{k}^{*}(j)=\operatorname{cov}\left(u_{x t}, u_{x t-j k}\right)=\begin{array}{cc}
\sum_{i=0}^{\alpha-j k} N_{i+j k}^{*} \Upsilon_{x} N_{i}^{* \prime}, \quad \text { for } j \in N: \alpha \geq j k \\
0 & \text { for } j \in N: \alpha<j k
\end{array},
$$

where $\alpha=g k n-g n+s+g(n-1), u_{x t}=N^{*}(L) \varepsilon_{x t}, N^{*}(L)=\left(I-N_{1}^{*} L-\right.$ $\left.N_{2}^{*} L^{2}-\ldots-N_{\alpha}^{*} L^{\alpha}\right)=B^{*}(L) G^{*}(L), N_{0}^{*}=I$. The different possible values of h^{*} are actually those in Table 1 when g and s are substituted with $g n$ and $s+g(n-1)$. Finally, the coefficients of the MA component and $\Upsilon_{k x}^{*}$ are the solutions of the nonlinear system

$$
\Gamma_{k}^{*}(j)=\sum_{i=0}^{h^{*}-j} H_{i+j}^{*} \Upsilon_{k x}^{*} H_{i}^{* \prime}, \quad \text { for } j=0,1, \ldots, h^{*},
$$

with $H_{0}^{*}=I$.

Proof of Proposition 4.

To derive the generating process of x_{k}, we premultiply both sides of (1) before by $\omega(L)=\left(\omega_{0}+\omega_{1} L+\ldots .+\omega_{k-1} L^{k-1}\right)$ and then by $\left(I-B_{1} L-\ldots-\right.$ $\left.B_{g k-g} L^{g k-g}\right)$. It follows that:

$$
\begin{gather*}
\left(I-B_{1} L-\ldots-B_{g k-g} L^{g k-g}\right)\left(I-G_{1} L-\ldots-G_{g} L^{g}\right) \omega(L) x_{t}= \\
=B(L) S(L) \omega(L) \varepsilon_{x t} \text { or } \\
\left(I-C_{1} L^{k}-C_{2} L^{2 k}-\ldots-C_{g} L^{k g}\right) x_{t}^{*}=M(L) \varepsilon_{x t} \text { or, } \tag{19}\\
\left(I-C_{1} Z-C_{2} Z^{2}-\ldots-C_{g} Z^{g}\right) x_{k t}=u_{x t} .
\end{gather*}
$$

Thus, the aggregated $A R$ component is still of order g and it is independent of the weighting scheme.

The autocovariance function of the hypothesised aggregated $M A$ component is:

$$
\Gamma_{k}(j)=\operatorname{cov}\left(u_{x t}, u_{x t-j k}\right)=\begin{array}{cc}
\sum_{i=0}^{\alpha-j k} M_{i+j k} \Upsilon_{x} M_{i}^{\prime}, & \text { for } j \in N: \alpha \geq j k \\
0 & \text { for } j \in N: \alpha<j k
\end{array}
$$

where $\alpha=g k-g+s+k-1, M(L)=\left(I-M_{1} L-\ldots-M_{\alpha} L^{\alpha}\right), M_{0}=I$. This is the autocovariance function of an $M A(p)$ process, where p is the highest value of j such that $\Gamma_{k}(j)>0$. The actual value of p depends on g, s, and k and the different possibilities are summarised in Table 1. The coefficients of the $M A$ component $P(Z)=\left(I-P_{1} Z-\ldots-P_{p} Z^{p}\right)$ and $\Upsilon_{k x}$ are the solutions of the nonlinear system:

$$
\Gamma_{k}(j)=\sum_{i=0}^{p-j} P_{i+j} \Upsilon_{k x} P_{i}^{\prime}, \quad \text { for } j=0,1, \ldots, p .
$$

with $P_{0}=I$.

Hence, we have fully characterised the $D G P$ of the average sampling temporally aggregated process x_{k}, which is the VARMA model

$$
C(Z) x_{k t}=P(Z) \varepsilon_{k x t} \text {. }
$$

Proof of Proposition 5.

The demonstration for the $A R$ component is equal to that in the proof of Proposition 3, when x is substituted with x^{*}.

The order of the $M A$ component, p^{*}, is equal to the highest j such that $\Gamma_{k}^{*}(j)>0$, with

$$
\Gamma_{k}^{*}(j)=\operatorname{cov}\left(u_{x t}, u_{x t-j k}\right)=\begin{array}{cc}
\sum_{i=0}^{\alpha-j k} M_{i+j k}^{*} \Upsilon_{x} M_{i}^{* \prime}, & \text { for } j \in N: \alpha \geq j k \\
0 & \text { for } j \in N: \alpha<j k
\end{array},
$$

where $\alpha=g k n-g n+s+k-1+g(n-1), u_{x t}=M^{*}(L) \varepsilon_{x t}, M^{*}(L)=$ $\left(I-M_{1}^{*} L-M_{2}^{*} L^{2}-\ldots-M_{\alpha}^{*} L^{\alpha}\right)=B^{*}(L) G^{*}(L) \omega(L), M_{0}^{*}=I$. The different possible values for p^{*} are actually those in Table 1 when g and s are substituted with $g n$ and $s+g(n-1)$. Finally, the coefficients of the $M A$ component and $\Upsilon_{k x}^{*}$ are the solutions of the nonlinear system

$$
\Gamma_{k}^{*}(j)=\sum_{i=0}^{p^{*}-j} P_{i+j}^{*} \Upsilon_{k x}^{*} P_{i}^{* \prime}, \quad \text { for } j=0,1, \ldots, p^{*},
$$

with $P_{0}^{*}=I$.

Proof of Proposition 6.

Premultiplying both sides of (1) by $\Omega(L)$, we obtain:

$$
\begin{equation*}
\Omega(L) G(L) x_{t}=\Omega(L) S(L) \varepsilon_{x t} . \tag{20}
\end{equation*}
$$

However, in this formulation x_{i}^{*} depends on $\omega_{i}(L) x_{j}$ with $i, j=1, \ldots, n$ and $j \neq i$. But we want x_{i}^{*} to depend on x_{j}^{*} and not on $\omega_{i}(L) x_{j}$. Therefore, we have to premultiply both sides of (20) by another diagonal matrix, $\Omega_{x x}(L)$, with

$$
\Omega_{x x}(L)=\left(\begin{array}{cccc}
\prod_{i \neq 1} \omega_{i}(L) & 0 & \ldots & 0 \\
0 & \prod_{i \neq 2} \omega_{i}(L) & \ldots & 0 \\
\ldots & 0 & \ldots & \prod_{i \neq n} \omega_{i}(L)
\end{array}\right)
$$

so that

$$
\begin{equation*}
G^{* *}(L) x_{t}^{*}=\Omega_{x x}(L) \Omega(L) G(L) x_{t}=\Omega_{x x}(L) \Omega(L) S(L) \varepsilon_{x t}=S^{* *}(L) \varepsilon_{x t} \tag{21}
\end{equation*}
$$

In general, the degree in L of $G^{* *}(L), g^{* *}$, is $g+(k-1)(n-1)$, while that of $S^{* *}(L), s^{* *}$, is $s+(k-1) n$. A lower degree is obtained when some of the weighting schemes are equal, the extreme cases being average sampling, where all the weighting schemes are equal and $\Omega_{x x}(L)=I$, and point-intime sampling, where they are all equal to one and $\Omega_{x x}(L)=\Omega(L)=I$.

Once the VARMA DGP of x^{*} is obtained, that of x_{k} can be derived by applying Proposition 1 with (21) instead of (1) as the original $D G P$.

Proof of Proposition 7.

Premultiplying both sides of (3) by $\Omega(L)$ we get:

$$
\begin{gather*}
\Omega(L) G^{*}(L) x_{t}=\Omega(L) S^{*}(L) \varepsilon_{x t} \text { or } \tag{22}\\
G^{*}(L) x_{t}^{*}=T^{*}(L) \varepsilon_{x t} .
\end{gather*}
$$

Hence, we can apply Proposition 2 with (22) instead of (3) as the original $D G P$.

Proof of Proposition 8.

If both sides of (12) are premultiplied by $\bar{B}(L)$, it is obtained that

$$
\begin{gather*}
\left(\begin{array}{cc}
B_{1}(L) G(L) & -B_{1}(L) F(L)+B_{2}(L) M(L) \\
0 & B_{3}(L) M(L)
\end{array}\right)\binom{x_{t}}{y_{t}}= \\
=\left(\begin{array}{cc}
B_{1}(L) S(L) & B_{2}(L) D(L) \\
0 & B_{3}(L) D(L)
\end{array}\right)\binom{\varepsilon_{x t}}{\varepsilon_{y t}} \tag{23}
\end{gather*}
$$

and

$$
\bar{B}(L) \bar{G}(L)=\bar{C}(L)=\left(\begin{array}{cc}
C_{1}(Z) & C_{2}(Z) \\
0 & C_{3}(Z)
\end{array}\right)
$$

It is immediate that $B_{1}(L)$ must be equal to $B(L)$ which implies $C_{1}(Z)=C(Z)$, and the $A R$ component in the $D G P$ of x_{k} is still of order g. Similarly, $B_{3}(L)$ is required to have degree $m k-m$ in L so that $C_{3}(Z)$, which is the $A R$ component in the $D G P$ of y_{k}, is of degree m.

The determination of the required degree of $B_{2}(L)=\left(B_{21} L+B_{22} L^{2}+\right.$ $\left.\ldots+B_{2 \beta} L^{\beta}\right)$ and of the degree of $C_{2}(Z)$ is instead slightly more complicate because some subcases must be considered. We discuss in details two of them, and the other ones can be dealt with in a similar manner. In the first subcase, it is assumed that $g \leq f, f-g<k, g \geq m$. The degree in L of $B_{1}(L) F(L)$ is $g k-g+f$ and β has to be equal to $g k-g+f-m$, so that the degree of $-B_{1}(L) F(L)+B_{2}(L) M(L)$ is $g k-g+f$. The number
of matrices of coefficients in $B_{1}(L) F(L)$ and $B_{2}(L) M(L)$ whose power in L is not a multiple of k is $g k-g+f-g$, which is smaller than number of matrices in $B_{2}(L), g k-g+f-m$. Therefore, under the maintained existence hypothesis, it is possible to choose the elements of $B_{2}(L)$ in such a way that all the terms in $-B_{1}(L) F(L)+B_{2}(L) M(L)$ whose power in L is not a multiple of k have zero coefficients. But there would still be $(g-m) n r$ degrees of freedom in the choice of the elements of $B_{2}(L)$. Thus, further restrictions are needed for $B_{2}(L)$ to be univocally determined, and we assume that it is possible to equate to zero the matrices of coefficients of the $g-m$ highest power in L^{k} in $-B_{1}(L) F(L)+B_{2}(L) M(L)$. It follows that the degree in L of $C_{2}\left(L^{k}\right)=-B_{1}(L) F(L)+B_{2}(L) M(L)$ is $k m$, that of $C_{2}(Z)$ is m, and this is also the highest lag of y_{k} in the DGP of x_{k}.

If instead it is still $g \leq f, f-g<k$, but $g<m$, then the number of matrices of coefficients in $B_{1}(L) F(L)$ and $B_{2}(L) M(L)$ whose power in L is not a multiple of $k, g k-g+f-g$, is larger than the number of matrices in $B_{2}(L), g k-g+f-m$. In this case we are short of $(m-g) n r$ conditions and to find these we have to increase the degree in L of $B_{2}(L)$ by $(m-g) k .{ }^{8}$ The degree of $B_{2}(L)$ becomes $m k-g+f-m$, that of $C_{2}\left(L^{k}\right) m k$, and the highest lag of y_{k} in the $D G P$ of x_{k} is again m.

For other combinations of g, f, m, and k the required degree of $B_{2}(L)$ can be determined as in the former cases, while it turns out that the highest lag of y_{k} in the DGP of x_{k} is still m.

The order of $\bar{H}(Z)$, the MA component in the $D G P$ of z_{k}, is equal to the highest lag of L^{k} among those in $B_{1}(L) S(L), B_{2}(L) D(L)$, and $B_{3}(L) D(L)$, Actually, it can be easily shown that this value, h, is such that the autocovariance function of the aggregated error process is different from zero for lower lags than h, and equal to zero for higher ones. The coefficients of $\bar{H}(Z)$ and $\Upsilon_{z k}$ can be determined as in Proposition 1, namely, by solving the nonlinear system which is obtained by equating the autocovariance function of the aggregated error process to that of an $M A(h)$ process.

Proof of Proposition 9.

The proof of the existence of $B_{1}(L)$ and $B_{3}(L)$ and of the formula for their coefficients is equal to that in Proposition 2. $B_{2}(L)$ has to be such that

[^7]the coefficients which are not referred to a multiple of L^{k} in $-B_{1}(L) F(L)+$ $B_{2}(L) M(L)$ are equal to zero. If $m=g$ and we group these coefficients in the $1 \times g k-2 g+f$ vector $B_{2}^{v} G_{2-k}^{m}-G_{2-k}^{v}$, the elements of $B_{2}(L)$ have to satisfy the linear system
$$
B_{2}^{v} G_{2-k}^{m}-G_{2-k}^{v}=0 .
$$

When $\left|G_{2-k}^{m}\right| \neq 0$, such a system can be solved and it is $B_{2}^{v}=G_{2-k}^{v}\left(G_{2-k}^{m}\right)^{-1}$.
If $m<g$, then the number of rows in G_{2-k}^{m} is larger than that of columns. Hence, G_{2-k}^{m} has to be substituted with the square matrix $G_{2-k}^{m *}$. $\left|G_{2-k}^{m *}\right| \neq 0$ implies $B_{2}^{v}=G_{2-k}^{v *}\left(G_{2-k}^{m *}\right)^{-1}$.

References

[1] Bergström, A.R. (1990), "Continuous Time Econometric Modelling", Oxford: Oxford University Press.
[2] Brewer, K.R.W. (1973), "Some Consequences of Temporal Aggregation and Systematic Sampling for ARMA and ARMAX models", Journal of Econometrics, 1, pp. 133-154.
[3] Campos, J., Ericsson N.R. and Hendry D.F. (1990), "An Analogous Model of Phase Averaging Procedures", Journal of Econometrics, 43. pp. 275-292.
[4] Christiano, L.J. and Eichenbaum M. (1987), "Temporal Aggregation and Structural Inference in Macroeconomics", Carnegie-Rochester Conference Series on Public Policy, 26, pp. 63-130.
[5] Comte, F. (1994): "Discrete and Continuous Time Cointegration", W.P. \# 9442, CREST.
[6] Granger, C.W.J. and Siklos P.R. (1995), "Systematic Sampling, Temporal Aggregation, Seasonal Adjustment, and Cointegration. Theory and Evidence", Journal of Econometrics, 66, pp. 357-369.
[7] Hendry, D.F. and Mizon G.E. (1993), "Evaluating Dynamic Econometric Models by Encompassing the VAR", in Phillips P.C.B. (Ed.), "Models, Methods, and Applications of Econometrics", Oxford: Basil Blackwell.
[8] Hosking, J.R.M. (1981), "Fractional Differencing", Biometrika, 68, pp. 165-176.
[9] Koopmans, L.H. (1974), "The Spectral Analysis of Time Series", New York: Academic Press.
[10] Lütkepohl, H. (1987), "Forecasting Aggregated Vector ARMA Processes", Berlin: Springer-Verlag.
[11] Lütkepohl, H. (1991), "Introduction to Multiple Time Series Analysis", Berlin: Springer-Verlag.
[12] Marcellino, M. (1995a), "A Note on the Estimation of Systematically Missing Observations", mimeo, European University Institute.
[13] Marcellino, M. (1995b), "Some Consequences of Temporal Aggregation of a VARIMA process", mimeo, European University Institute.
[14] Marcet, A. (1991), "Temporal Aggregation of Economic Time Series". in Hansen L.P. and Sargent T.J., "Rational Expectations Econometrics", Boulder: Westview Press.
[15] Mellander, E., Vredin A. and Warne A. (1992), "Stochastic Trends and Economic Fluctuations in a Small Open Economy", Journal of Applied Econometrics, 7, pp. 369-394.
[16] Sims, C.A. (1980), "Macroeconomics and Reality", Econometrica, 48, pp. 1-48.
[17] Stram, D.O. and Wei W.W.S. (1986), "Temporal Aggregation in the ARIMA Process", Journal of Time Series Analysis, 7, pp.279-292.
[18] Tiao, C.C. and Wei W.S. (1976), "Effect of Temporal Aggregation on the Dynamic Relationship of Two Time Series Variables", Biometrika, 63, pp. 513-523.
[19] Wei, W.W.S. (1981), "Effect of Systematic Sampling on ARIMA Models", Communications in Statistical-Theoretical Mathematics, 10, pp. 2389-2398.
[20] Weiss, A.A. (1984), "Systematic Sampling and Temporal Aggregation in Time Series Models", Journal of Econometrics, pp. 271-281.

Table 1: DGP of x_{k} when x is VARMA(g,s) and B(L) exists.

Point-in-time sampling

$$
\begin{gathered}
\text { VARMA }(g, g-1-q) \\
\text { for } q k<g-s \leq(q+1) k \\
q=0,1, \ldots, g-1
\end{gathered}
$$

$$
V A R M A(g, g)
$$

$$
\text { for } g=s
$$

Average sampling

$$
\begin{gathered}
\operatorname{VARMA}(g, g-q) \\
\text { for } q k<g-s+1 \leq(q+1) k \\
q=0,1, \ldots, g
\end{gathered}
$$

$$
V A R M A(g, g)
$$

$$
\text { for } g=s
$$

$$
\begin{array}{cc}
\operatorname{VARMA}(g, g+q) & \operatorname{VARMA}(g, g+1+q) \\
\text { for } q k \leq s-g<(q+1) k & \text { for and } q k \leq s-1-g<(q+1) k \\
q=0,1, \ldots & q=0,1, \ldots
\end{array}
$$

EUI WORKING PAPERS

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge

- depending on the availability of stocks - from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Publications of the European University Institute

Department of Economics Working Paper Series

To	Department of Economics WP European University Institute Badia Fiesolana I-50016 San Domenico di Fiesole (FI) E-mail: publish@datacomm.iue.it Italy
From	Name
	Address.
	(Please print)
\square Please व Please I Please \square Please	nter/confirm my name on EUI Economics Dept. Mailing List end me a complete list of EUI Working Papers nd me a complete list of EUI book publications nd me the EUI brochure Academic Year 1996/97

Please send me the following EUI ECO Working Paper(s):
No, Author
Title:
No, Author
Title:
No, Author
Title:
No, Author
Title:

Working Papers of the Department of Economics Published since 1993

ECO No. 93/1
Carlo GRILLENZONI
Forecasting Unstable and Non-Stationary
Time Series
ECO No. 93/2
Carlo GRILLENZONI
Multilinear Models for Nonlinear Time Series

ECO No. 93/3
Ronald M. HARSTAD/Louis PHLIPS Futures Market Contracting When You Don't Know Who the Optimists Are

ECO No. 93/4
Alan KIRMAN/Louis PHLIPS
Empirical Studies of Product Markets
ECO No. 93/5
Grayham E. MIZON
Empirical Analysis of Time Series:
Illustrations with Simulated Data
ECO No. 93/6
Tilman EHRBECK
Optimally Combining Individual
Forecasts From Panel Data
ECO NO. 93/7
Víctor GÓMEZ/Agustín MARAVALL
Initializing the Kalman Filter with
Incompletely Specified Initial Conditions
ECO No. 93/8
Frederic PALOMINO
Informed Speculation: Small Markets
Against Large Markets
ECO NO. 93/9
Stephen MARTIN
Beyond Prices Versus Quantities
ECO No. 93/10
José María LABEAGA/Angel LÓPEZ
A Flexible Demand System and VAT
Simulations from Spanish Microdata
ECO No. 93/11
Maozu LU/Grayham E. MIZON
The Encompassing Principle and
Specification Tests

ECO No. 93/12
Louis PHLIPS/Peter MØLLGAARD
Oil Stocks as a Squeeze Preventing Mechanism: Is Self-Regulation Possible?

ECO No. 93/13
Pieter HASEKAMP
Disinflation Policy and Credibility: The
Role of Conventions
ECO No. 93/14
Louis PHLIPS
Price Leadership and Conscious
Parallelism: A Survey
ECO No. 93/15
Agustín MARAVALL
Short-Term Analysis of Macroeconomic
Time Series *
ECO No. 93/16
Philip Hans FRANSES/Niels
HALDRUP
The Effects of Additive Outliers on Tests for Unit Roots and Cointegration

ECO No. 93/17
Fabio CANOVA/Jane MARRINAN
Predicting Excess Returns in Financial Markets

ECO No. 93/18
Iñigo HERGUERA
Exchange Rate Fluctuations, Market
Structure and the Pass-through Relationship

ECO No. 93/19
Agustín MARAVALL
Use and Misuse of Unobserved
Components in Economic Forecasting
ECO No. 93/20
Torben HOLVAD/Jens Leth

HOUGAARD

Measuring Technical Input Efficiency for Similar Production Units:
A Survey of the Non-Parametric Approach

ECO No．93／21
Stephen MARTIN／Louis PHLIPS
Product Differentiation，Market Structure
and Exchange Rate Passthrough
ECO No 93／22
F．CANOVA／M．FINN／A．R．PAGAN
Evaluating a Real Business Cycle Model
ECO No 93／23
Fabio CANOVA
Statistical Inference in Calibrated Models
ECO No 93／24
Gilles TEYSSIERE
Matching Processes in the Labour Market in Marseilles．An Econometric Study

ECO No 93／25
Fabio CANOVA
Sources and Propagation of International Business Cycles：Common Shocks or Transmission？

ECO No．93／26
Marco BECHT／Carlos RAMÍREZ
Financial Capitalism in Pre－World War I
Germany：The Role of the Universal
Banks in the Financing of German
Mining Companies 1906－1912
ECO No．93／27
Isabelle MARET
Two Parametric Models of Demand， Structure of Market Demand from Heterogeneity

ECO No．93／28
Stephen MARTIN
Vertical Product Differentiation，Intra－ industry Trade，and Infant Industry Protection

ECO No．93／29
J．Humberto LOPEZ
Testing for Unit Roots with the k－th
Autocorrelation Coefficient

ECO No．93／30

Paola VALBONESI
Modelling Interactions Between State and Private Sector in a＂Previously＂Centrally Planned Economy

ECO No．93／31
Enrique ALBEROLA ILA／J．Humberto LOPEZ／Vicente ORTS RIOS
An Application of the Kalman Filter to the Spanish Experience in a Target Zone （1989－92）

ECO No．93／32
Fabio CANOVA／Morten O．RAVN International Consumption Risk Sharing

ECO No．93／33

Morten Overgaard RAVN
International Business Cycles：How much can Standard Theory Account for？

ECO No．93／34
Agustín MARAVALL
Unobserved Components in Economic Time Series＊

ECO No．93／35
Sheila MARNIE／John

MICKLEWRIGHT

Poverty in Pre－Reform Uzbekistan：
What do Official Data Really Reveal？＊
ECO No．93／36
Torben HOLVAD／Jens Leth HOUGAARD
Measuring Technical Input Efficiency for Similar Production Units：
80 Danish Hospitals
ECO No．93／37
Grayham E．MIZON
A Simple Message for Autocorrelation
Correctors：DON＇T
ECO No．93／38
Barbara BOEHNLEIN
The Impact of Product Differentiation on Collusive Equilibria and Multimarket Contact

ECO No．93／39
H．Peter MØLLGAARD
Bargaining and Efficiency in a
Speculative Forward Market

米米米

ECO No. 94/1
Robert WALDMANN
Cooperatives With Privately Optimal
Price Indexed Debt Increase Membership When Demand Increases

ECO No. 94/2
Tilman EHRBECK/Robert WALDMANN
Can Forecasters' Motives Explain Rejection of the Rational Expectations Hypothesis?

ECO No. 94/3
Alessandra PELLONI
Public Policy in a Two Sector Model of Endogenous Growth *

ECO No. 94/4
David F. HENDRY
On the Interactions of Unit Roots and Exogeneity

ECO No. 94/5
Bernadette GOVAERTS/David F.
HENDRY/Jean-François RICHARD
Encompassing in Stationary Linear
Dynamic Models
ECO No. 94/6
Luigi ERMINI/Dongkoo CHANG Testing the Joint Hypothesis of Rationality and Neutrality under Seasonal Cointegration: The Case of Korea

ECO No. 94/7
Gabriele FIORENTINI/Agustín MARAVALL
Unobserved Components in ARCH
Models: An Application to Seasonal
Adjustment *
ECO No. 94/8
Niels HALDRUP/Mark SALMON
Polynomially Cointegrated Systems and their Representations: A Synthesis

ECO No. 94/9
Mariusz TAMBORSKI
Currency Option Pricing with Stochastic Interest Rates and Transaction Costs:
A Theoretical Model
ECO No. 94/10
Mariusz TAMBORSKI
Are Standard Deviations Implied in Currency Option Prices Good Predictors of Future Exchange Rate Volatility?

ECO No. 94/11
John MICKLEWRIGHT/Gyula NAGY
How Does the Hungarian Unemploy-
ment Insurance System Really Work? *
ECO No. 94/12
Frank CRITCHLEY/Paul
MARRIOTT/Mark SALMON
An Elementary Account of Amari's
Expected Geometry
ECO No. 94/13
Domenico Junior MARCHETTI
Procyclical Productivity, Externalities
and Labor Hoarding: A Reexamination of
Evidence from U.S. Manufacturing
ECO No. 94/14
Giovanni NERO
A Structural Model of Intra-European
Airline Competition
ECO No. 94/15
Stephen MARTIN
Oligopoly Limit Pricing: Strategic
Substitutes, Strategic Complements
ECO No. 94/16
Ed HOPKINS
Learning and Evolution in a
Heterogeneous Population
ECO No. 94/17
Berthold HERRENDORF
Seigniorage, Optimal Taxation, and Time Consistency: A Review

ECO No. 94/18
Frederic PALOMINO
Noise Trading in Small Markets *
ECO No. 94/19
Alexander SCHRADER
Vertical Foreclosure, Tax Spinning and Oil Taxation in Oligopoly

ECO No. 94/20
Andrzej BANIAK/Louis PHLIPS La Pléiade and Exchange Rate PassThrough

ECO No. 94/21
Mark SALMON
Bounded Rationality and Learning;
Procedural Learning

ECO No. 94/22
Isabelle MARET
Heterogeneity and Dynamics of Temporary Equilibria: Short-Run Versus Long-Run Stability

ECO No. 94/23

Nikolaos GEORGANTZIS
Short-Run and Long-Run Cournot
Equilibria in Multiproduct Industries

ECO No. 94/24

Alexander SCHRADER
Vertical Mergers and Market Foreclosure: Comment

ECO No. 94/25
Jeroen HINLOOPEN
Subsidising Cooperative and NonCooperative R\&D in Duopoly with Spillovers

ECO No. 94/26
Debora DI GIOACCHINO
The Evolution of Cooperation: Robustness to Mistakes and Mutation

ECO No. 94/27
Kristina KOSTIAL
The Role of the Signal-Noise Ratio in Cointegrated Systems

ECO No. 94/28
Agustín MARAVALLVVíctor GÓMEZ
Program SEATS "Signal Extraction in ARIMA Time Series" - Instructions for the User

ECO No. 94/29
Luigi ERMINI
A Discrete-Time Consumption-CAP
Model under Durability of Goods, Habit
Formation and Temporal Aggregation
ECO No. 94/30
Debora DI GIOACCHINO
Learning to Drink Beer by Mistake
ECO No. 94/31
Víctor GÓMEZ/Agustín MARAVALL
Program TRAMO "Time Series
Regression with Arima Noise, Missing
Observations, and Outliers" -
Instructions for the User

ECO No. 94/32
Ákos VALENTINYI How Financial Development and Inflation may Affect Growth

ECO No. 94/33
Stephen MARTIN
European Community Food Processing Industries

ECO No. 94/34
Agustín MARAVALL/Christophe
PLANAS
Estimation Error and the Specification of
Unobserved Component Models
ECO No. 94/35
Robbin HERRING
The "Divergent Beliefs" Hypothesis and the "Contract Zone" in Final Offer Arbitration

ECO No. 94/36
Robbin HERRING
Hiring Quality Labour
ECO No. 94/37
Angel J. UBIDE
Is there Consumption Risk Sharing in the EEC?

ECO No. 94/38
Berthold HERRENDORF
Credible Purchases of Credibility
Through Exchange Rate Pegging:
An Optimal Taxation Framework
ECO No. 94/39
Enrique ALBEROLA ILA
How Long Can a Honeymoon Last?
Institutional and Fundamental Beliefs in the Collapse of a Target Zone

ECO No. 94/40
Robert WALDMANN
Inequality, Economic Growth and the Debt Crisis

ECO No. 94/41
John MICKLEWRIGHT/
Gyula NAGY
Flows to and from Insured
Unemployment in Hungary

[^8]ECO No．94／42
Barbara BOEHNLEIN
The Soda－ash Market in Europe： Collusive and Competitive Equilibria
With and Without Foreign Entry
ECO No．94／43
Hans－Theo NORMANN
Stackelberg Warfare as an Equilibrium
Choice in a Game with Reputation Effects
ECO No．94／44
Giorgio CALZOLARI／Gabriele FIORENTINI
Conditional Heteroskedasticity in
Nonlinear Simultaneous Equations
ECO No．94／45
Frank CRITCHLEY／Paul MARRIOTT／
Mark SALMON
On the Differential Geometry of the Wald
Test with Nonlinear Restrictions
ECO No．94／46
Renzo G．AVESANI／Giampiero M．
GALLO／Mark SALMON
On the Evolution of Credibility and
Flexible Exchange Rate Target Zones＊

米米米

ECO No．95／1
Paul PEZANIS－CHRISTOU
Experimental Results in Asymmetric
Auctions－The＇Low－Ball＇Effect
ECO No．95／2
Jeroen HINLOOPEN／Rien
WAGENVOORT
Robust Estimation：An Example
ECO No．95／3
Giampiero M．GALLO／Barbara PACINI
Risk－related Asymmetries in Foreign
Exchange Markets
ECO No．95／4
Santanu ROY／Rien WAGENVOORT Risk Preference and Indirect Utility in Portfolio Choice Problems

ECO No．95／5
Giovanni NERO
Third Package and Noncooperative Collusion in the European Airline Industry

ECO No．95／6
Renzo G．AVESANI／Giampiero M． GALLO／Mark SALMON
On the Nature of Commitment in Flexible Target Zones and the Measurement of Credibility：The 1993 ERM Crisis＊

ECO No．95／7
John MICKLEWRIGHT／Gyula NAGY Unemployment Insurance and Incentives in Hungary

ECO No．95／8
Kristina KOSTIAL
The Fully Modified OLS Estimator as a System Estimator：A Monte－Carlo Analysis

ECO No．95／9
Günther REHME
Redistribution，Wealth Tax Competition and Capital Flight in Growing Economies

ECO No．95／10
Grayham E．MIZON
Progressive Modelling of
Macroeconomic Time Series：The LSE Methodology＊

ECO No．95／11
Pierre CAHUC／Hubert KEMPF
Alternative Time Patterns of Decisions and Dynamic Strategic Interactions

ECO No．95／12
Tito BOERI
Is Job Turnover Countercyclical？
ECO No．95／13
Luisa ZANFORLIN
Growth Effects from Trade and Technology

ECO No．95／14
Miguel JIMÉNEZ／Domenico
MARCHETTI，jr．
Thick－Market Externalities in U．S．
Manufacturing：A Dynamic Study with Panel Data

ECO No．95／15
Berthold HERRENDORF
Exchange Rate Pegging，Transparency， and Imports of Credibility

ECO No. 95/16
Günther REHME
Redistribution, Income cum Investment
Subsidy Tax Competition and Capital
Flight in Growing Economies
ECO No. 95/17
Tito BOERI/Stefano SCARPETTA
Regional Dimensions of Unemployment in Central and Eastern Europe and Social Barriers to Restructuring

ECO No. 95/18
Bernhard WINKLER
Reputation for EMU - An Economic
Defence of the Maastricht Criteria
ECO No. 95/19
Ed HOPKINS
Learning, Matching and Aggregation
ECO No. 95/20
Dorte VERNER
Can the Variables in an Extended Solow Model be Treated as Exogenous?
Learning from International Comparisons
Across Decades
ECO No. 95/21
Enrique ALBEROLA-ILA
Optimal Exchange Rate Targets and
Macroeconomic Stabilization
ECO No. 95/22
Robert WALDMANN
Predicting the Signs of Forecast Errors
ECO No. 95/23
Robert WALDMANN
The Infant Mortality Rate is Higher where the Rich are Richer

ECO No. 95/24
Michael J. ARTIS/Zenon G.
KONTOLEMIS/Denise R. OSBORN
Classical Business Cycles for G7 and
European Countries
ECO No. 95/25
Jeroen HINLOOPEN/Charles VAN MARREWIJK
On the Limits and Possibilities of the Principle of Minimum Differentiation

ECO No. 95/26
Jeroen HINLOOPEN
Cooperative R\&D Versus R\&D-
Subsidies: Cournot and Bertrand
Duopolies
ECO No. 95/27
Giampiero M. GALLO/Hubert KEMPF Cointegration, Codependence and Economic Fluctuations

ECO No. 95/28
Anna PETTINI/Stefano NARDELLI
Progressive Taxation, Quality, and
Redistribution in Kind
ECO No. 95/29
Ákos VALENTINYI
Rules of Thumb and Local Interaction
ECO No. 95/30
Robert WALDMANN
Democracy, Demography and Growth
ECO No. 95/31
Alessandra PELLONI
Nominal Rigidities and Increasing
Returns
ECO No. 95/32
Alessandra PELLONI/Robert
WALDMANN
Indeterminacy and Welfare Increasing
Taxes in a Growth Model with Elastic
Labour Supply
ECO No. 95/33
Jeroen HiNLOOPEN/Stephen MARTIN
Comment on Estimation and
Interpretation of Empirical Studies in Industrial Economics

ECO No. 95/34
M.J. ARTIS/W. ZHANG

International Business Cycles and the ERM: Is there a European Business Cycle?

ECO No. 95/35
Louis PHLIPS
On the Detection of Collusion and Predation

ECO No. 95/36
Paolo GUARDA/Mark SALMON
On the Detection of Nonlinearity in Foreign Exchange Data

ECO No. 95/37
Chiara MONFARDINI
Simulation-Based Encompassing for
Non-Nested Models: A Monte Carlo
Study of Alternative Simulated Cox Test
Statistics
ECO No. 95/38
Tito BOERI
On the Job Search and Unemployment Duration

ECO No. 95/39
Massimiliano MARCELLINO
Temporal Aggregation of a VARIMAX
Process

[^0]: *I wish to thank Giampiero Gallo, Marco Lippi, Grayham Mizon and Mark Salmon for helpful comments on an earlier version of this paper. I alone am responsible for remaining errors. Correspondence to: Massimiliano Marcellino, European University Institute, I-50016, San Domenico, Firenze, Italy. E-mail: marcelli@datacomm.iue.it .

[^1]: ${ }^{1}$ Some recent references for the counterpart in continuous time are Christiano and Eichenbaum (1987), Bergstrom (1990), Marcet (1991) and Comte (1994).

[^2]: ${ }^{2}$ Consider for example the two $V A R(1)$ processes $x_{t}=A x_{t-1}+\varepsilon_{t}$ and $x_{t}=-A x_{t-1}+$ ε_{t} where $\varepsilon_{t} \sim i . i . d .(0, I)$. After point in time sampling with $k=2$ both of them become $x_{k t}=A^{2} x_{k t-1}+\varepsilon_{k t}$, where $\varepsilon_{k t} \sim$ i.i.d. $\left(0, I+A A^{\prime}\right)$. This issue has interesting implications for the estimation of missing observations, see Marcellino (1995a).

[^3]: ${ }^{3}$ This happens, for example, when $G(L)=G\left(L^{k}\right)$, or when $G(L)$ can be factored into $G^{* *}(L) \omega(L)$. In the latter case the aggregated $A R$ components for point-in-time and average sampling can be different. Stram and Wei (1986) provide conditions for the reduction in the order not to take place in the univariate case. It is also a priori possible that a singular variance covariance matrix for the original errors is transformed into a non singular variance covariance matrix for the temporally aggregated errors, and viceversa.
 ${ }^{4}$ Lütkepohl's procedure requires to apply a particular deterministic selection matrix to a reparameterized version of the original $D G P$. Its details are not reported to save space. It can also be applyed to mixed sampling, which is considered in the next subsection, and similar comments apply. On the other hand, Lütkepohl's method can be simply

[^4]: modified to deal with aggregation over agents, while our proposal is specific for temporal aggregation.

[^5]: ${ }^{5}$ The order of the $A R$ and $M A$ components, and of the highest lag of y_{k} in the $D G P$ of x_{k} should be considered as upper bounds because, in particular cases, lower orders could be obtained.
 ${ }^{6}$ Tiao and Wei (1976) analyse a bivariate model and notice that temporal aggregation often destroys the VARIMAX structure.

[^6]: ${ }^{7}$ Marcellino (1995b) also presents theoretical and empirical examples which highlight the practical relevance of the temporal aggregation issue.

[^7]: ${ }^{8}$ Notice that an increase in the degree of $B_{2}(L)$ determines also an increase in the number of terms of $B_{2}(L) M(L)$ which are not a multiple of L^{k}, and therefore have to disappear. Thus, it is not enough to increase the degree of $B_{2}(L)$ by exactly $m-g$.

[^8]: *out of print

