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ABSTRACT

This paper considers the dynamic evolution of algorithmic (recursive) learning 
rules in a normal form game. It is shown that the system — the population 
frequencies — is globally stable for any arbitrary A-player normal form game, if 
the evolutionary process is algorithmic and the ‘birth process’ guarantees that 
an appropriate set of ‘smart’ rules is present in the population. The result is 
independent of the nature of the evolutionary process; in particular it does not 
require in any way the dynamics of the system to be ‘monotonic in payoffs’ — 
those rules which do better in terms of payoffs grow faster than those who do 
less well. The paper also demonstrates that any limit point of the distribution 
of actions in such an evolutionary process corresponds to a Nash equilibrium 
(pure or mixed) of the underlying game if the dynamics of the system are 
continuous and monotonic in payoffs.
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1. Introduction

1.1. Motivation

Broadly speaking, in game theory there are two approaches to the justification 
of solution concepts such as Nash equilibrium. First, there is the classical game 

(decision) theory approach. Ken Binmore (Binmore 1987, Binmore 1988) calls this the 
‘eductive’ approach. The second is the learning/evolutionary approach —  ‘evolutive’ 
to use Binmore’s terminology again.

In the ‘eductive’ approach, agents are rational (Bayesian) optimizers. There is 

common knowledge of the structure o f the game, and the beliefs o f the agents are 

consistent (or even common knowledge). Agents work out ‘the solution’ to the game 

and play accordingly. There are no mistakes and ‘the solution’ is achieved through 

careful reasoning by the agents. In a way, the agents axe as ‘complex’ as the en

vironment in which they play and thus they can ‘solve’ the game (Aumann and 
Brandenburger 1995).

Clearly, this approach attributes too much in terms of computational ability, in
formation and knowledge to the agents. Moreover, it does not, on its own, offer an 

explanation as to why agents’ beliefs should be consistent or common knowledge. 
Finally, it has become commonly accepted that this approach on its own cannot be 

used convincingly to select among the multitude o f equilibria which often occur in 

game-theoretic models.

In the second approach, the agents do not necessarily have the ability, information 
and/or adequate beliefs to ‘solve’ the game. The system evolves by agents taking 

decisions, making mistakes, learning, imitating, revising their early decisions and so 

on. An equilibrium in this approach corresponds to a steady state of a dynamical 

process. Selection among the set o f equilibria can sometimes be achieved considering 

the stability (in some sense) o f the steady states of the system.

Not only the evolutionary models provide a natural setting for modelling bounded 

rationality, but they are often said to be necessarily models of bounded rationality. 

This is because in these models players, by assumption, sire less sophisticated than 

the environment they face. They make mistakes, learn and imitate. They do not
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(and cannot) ‘solve’ the game prior to playing it. The environment is too ‘complex’ 

for them.

This paper belongs to the evolutive approach. Our objective is to show that 
under general assumptions, deterministic evolutionary models with learning rules are 
globally stable if a sufficiently rich class of learning rules are present in the system. 
Although we do not introduce complexity considerations, an element of bounded 
rationality is explicitly present in the model we develop: we only consider learning 

rules which are algorithmic. Formally, these are rules which can be computed 1 by 

Turing machines.

1.2. Standard Evolutionary Models

The ‘standard’2 evolutionary model consists o f N  >  2 large (often infinite) popu

lations o f myopic and unsophisticated players (types) playing some underlying game 

repeatedly. At each period, every type x  belonging to some population i is randomly 

matched with some type of all other populations to play an underlying A'-player 
normal form game T =  {«4;, 7̂ } ^  where A i is the set o f actions available to types 

belonging to population i and 7 represents their payoffs at each period.

The ‘selection dynamics’ o f these models determine how the proportion of each 

type in each of the N  populations changes as a function of how well that type has 

done in the previous period in terms of payoff and the distribution o f payoffs o f all 

other types.3 The interpretation being that each type in population i represents 

(plays) an action a< €  A , and those actions/types who do well in terms of payoff 

grow faster. In the biological literature, payoffs represent fitness and therefore it 
is natural to assume that the proportions of types adjust in response to payoff dif

ferences. In a non-biological setting, the selection dynamics represent learning and

'Throughout the paper we use the terms (partial) recursive, algorithmic and computable in an 
interchangeable way. See Section 2 below for a general discussion of the computability framework.

2See the excellent surveys in VanDamme (1987), Hofbauer and Sigmund (1988) and Weibull 
(1992) (which also contain many original results). Marimon and McGrattan (1992) provide a survey 
o f the related literature on learning dynamics.

3Throughout the paper, we concentrate on deterministic selection dynamics, in the sense that 
we take the growth rate o f each type in each period to be deterministic. There is also a growing 
literature on stochastic selection dynamics, which has yielded very promising results, particularly 
concerning the problem o f selection among different Nash equilibria. Among others, we recall the 
work o f Foster and Young (1991), Kandori, Mailath, and Rob (1993) and Young (1993).
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imitation from past experience. Ideally, one would like to build up the selection dy

namics from an explicit theory of how individual players switch between different 

actions/types. There is a growing literature which analyses formal models of learning 
and imitation behaviour based on the information available to the players (Brown 

1951, Canning 1992a, Fudenberg and Kreps 1991, Fudenberg and Levine 1993a, Fu- 

denberg and Levine 1993b, Jordan 1991, Kalai and Lehrer 1993, Milgrom and Roberts 

1990, Milgrom and Roberts 1991, Selten 1991, to name just a few).

In many cases, the evolutionary approach has tried to avoid constructing a (pos
sibly arbitrary) theory of learning and imitation by placing assumptions directly on 
the selection dynamics and hoping that these properties are general enough to include 

processes produced by a variety of learning and imitation theories. A  general class 
o f selection dynamics which has been extensively studied, is the class o f monotonic 

dynamics. The chief feature of this class of selection dynamics is that at any time 
those types which do better in terms of payoff grow faster than those which do worse. 

A  special case o f monotonic dynamics (common in the biological literature) are the 

replicator dynamics (cf. Definition 14 below). In this case, the growth rate o f each 

type within a population is simply the difference (normalized) between that type’s 

payoff and the population’s average payoff.

Starting with the early example of Shapley (1964) on fictitious play, results on 

stability and convergence of evolutionary and learning models with no noise are not 
encouraging. Positive results on global convergence exist only for a very specific class 

of games, namely for ‘dominant solvable’ games (Nachbar 1990, Milgrom and Roberts 

1991).

In the next subsection we give an informal explanation for the stark difference 

between the results o f this paper —  global stability with a general A-player underlying 
game —  and the findings of the previous literature.

1.3. Outline o f Model and Results

In the standard evolutionary model, a type within population i is identified with 

an action a< 6  A i in the underlying game 4; a given type takes the same action at

4 See footnote 2 above. A  notable exception to the standard evolutionary model is the work of

3
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every period. A key difference between the model we develop in this paper and the 
previous literature lies in the definition o f type: in this paper we identify a type with 

an algorithmic learning rule. In our model, a type in population i is a computable 
map from some information set related to (but not necessarily coinciding with) the 

history of the system so far, into the set o f actions A ,. In the model we develop, the 

same type can take different actions at different times.

Our second departure from the existing literature is really a generalization of the 

standard evolutionary model. It concerns the way ‘new types’ may appear into the 
system at different times, and some types may become extinct in finite time. The 

dynamics of our model are given by three distinct elements: a standard (except for 

a computability assumption) selection dynamics, a birth process and a death process. 

The three sire modeled as separate parts purely for analytical convenience. The 

model starts with a finite set o f types in each population. The selection dynamics 

component of the model does not provide for the entry of new types or the extinction 
of any existing types in finite time: it only defines what the growth rate of each 

type would be in the absence of birth and death. The (computable) birth and the 

death processes determine which (finite) sets of types appear and disappear from the 
population at each time t. The birth process enables us eventually to bring into the 
evolutionary system a ‘sufficiently rich’ set o f types. This is crucial to our stability 

results as we will outline shortly.5 The death process is actually redundant from the 

point of view o f our results, and very few assumptions are made on it: it is enough 

that the ‘ top performers’ at t in terms of the selection dynamics do not go extinct 

between t and t +  1. We introduce it purely for reasons of symmetry with the birth 

process. We refer to the three components o f the dynamics (the selection dynamics, 

the birth process, and the death process) taken together as the overall dynamics o f 

the model.

The third difference between our model and the standard evolutionary model lies 

in our assumptions o f computability. In essence, we assume that the entire model is 

computable within Church’s thesis. This requires computability o f the initial distri

bution of types in each population, o f the selection dynamics, o f  the birth and death

Blume and Easley (1992). Their definition o f types is similar to  the one we propose here.
sIn Section 6.1, we outline how our results may hold with the birth and death processes replaced 

by an assumption o f ‘large (infinite) support’ on the initial distribution o f types.
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processes and o f the map between information and actions which defines each type.

This paper contains two sets of results. Very informally, the first set o f results 

say that the proportion of each type x  in population i at time t, denoted by P l(x ), 
converges if the birth process is guaranteed eventually to bring into each population 
a ‘sufficiently rich’ set o f types. We present two, related, sets of conditions which 

guarantee that the sufficiently rich ‘support’ condition we have just mentioned is 

satisfied. The second result says that if, in addition to the assumptions needed for 
stability, the selection dynamics are monotonic (those with higher expected payoff 
are rewarded with higher growth rates) and continuous, then every limit point of 

the distribution of actions (obtained from the distribution of types) corresponds to a 

Nash equilibrium (possibly mixed) of the underlying game.

Our stability results do not depend on any assumption on the shape of the selection 

dynamics, except that they should be algorithmic. They are even consistent with 

selection dynamics which reward those types which do badly in terms of payoff.

The second result is not so surprising and is very similar to those of Nachbar 

(1990) and Samuelson and Zhang (1992) among others. It is important to notice that 

although probabilities over types converge (the first result), probabilities over actions 
do not necessarily converge. This is because types can condition their actions on 

time and thus can take different actions at different times. Therefore, even when the 

first result holds, in the limit some (or all) types could be switching between different 
Nash equilibria o f the underlying game. An immediate corollary o f the second result 

is that if the underlying game has a unique Nash equilibrium then probabilities over 

actions converge as well (to the unique Nash equilibrium).

The key to the argument which underlies our first result (stability) can be in

tuitively outlined as follows. We start by establishing that for any profile o f initial 

distributions and overall dynamics, and for any population i , there exists a type x „  

referred to as the ‘smart’ type (or smart machine), which can grow as fast as any 

other type in population i at each time t. The existence o f the smart machine is 

proved by constructing another program which, upon receiving the initial distribu

tion as an input, simulates the entire evolutionary system and computes an action 

which maximizes the growth rate in each period. The smart machine produces the 

same output as this program in each period. Thus, in a sense, the smart machine

5
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behaves ‘as if ’ it simulated the dynamics in order to take an action which maximizes 

its growth rate at each time t.

Suppose now that the smart type, which takes a sequence of actions that ensures 

growth at the maximal rate for all f, either is in the support o f the initial distribution 
or appears into the system at some time through the birth process. Then the system 

converges because the probability o f the smart type is monotonically increasing and 

thus it can be used to play a role very similar to a Lyapunov function for the overall 

dynamics. The first step in the proof o f our stability results is in demonstrating the 
existence of smart types such as the ones we have just described informally. The 

argument is then closed making assumptions which ensure that the birth process (or 

the initial distribution) is such that the relevant smart types eventually appear into 
the system. We present two, related, sets o f conditions which ensure that this is the 

case. We start with a ‘grain of truth’ condition (which is reminiscent of Kalai and 

Lehrer (1993)) which simply states that the smart machine which behaves ‘as if ’ it 

simulated the actual dynamics must appear in the system at some point in time.

Our second stability result relies on a ‘regularity’ assumption on the set o f Turing 

machines which define the overall dynamics of the system. Corresponding to the 

set o f overall dynamics which obey this restriction, we are able to identify a well 

behaved set o f ‘potential smart types’. We then obtain stability, provided that the 

overall dynamics obey the regularity restriction, and provided that the entire set o f 

potential smart types are eventually introduced into the system. We then go on to 
show that in order to ensure that the overall dynamics satisfy the regularity condition 

needed, it is enough to restrict attention to those dynamical systems which satisfy a 

‘provability’ condition which seems intuitively weak and hence particularly appealing. 
Very informally, the provability condition we impose amounts to restricting attention 

to those dynamics which can be computed by a set o f Turing machines and such that 

a ‘proof’ exists that the given set o f Turing machines compute the given dynamics.

To establish our stability results, we have departed from the standard evolutionary 

theory in two main ways: (i) we have allowed for types which can condition then- 

actions at least on time and (ii) we have assumed the entire model (the types, the 
overall dynamics and the initial distribution o f types) to be algorithmic. (We shall 

define the precise meaning of this statement shortly.)

6
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Are (i) and (ii) necessary for establishing our stability results? We think (i) is 
necessary because the smart type may need to take different actions at different times 

to ensure that it grows faster than others at different periods. Restricting the model 
to be algorithmic (ii) plays a three-fold role in the analysis below. Firstly, it makes 
the set o f all possible types a countable one. As a result, it is possible, at least in 
principle, that all possible smart types are eventually given strictly positive weight 
in the dynamics.6 Secondly, by appealing to the existence of the universal program, 

which can simulate all other programs, we can show that there exists a program 

which can simulate the entire model. Thirdly, we are able to appeal to a particular 

‘parameterization’ theorem which shows that we can find an algorithmic learning rule 

which behaves ‘as if ’ it simulates the entire model like the universal program. We 

return to these issues in the concluding section of the paper.

The outline of the paper is as follows. In Section 2 we introduce the recursive 

function framework which we use in the rest of the paper. In Section 3 we present 

the model in full detail. Section 4 contains our stability results. In Section 5 we show 
that, under some additional conditions, the limit points o f the action frequencies in our 

model correspond to the Nash equilibria of the underlying game. Section 6 concludes 
the paper discussing one extension and one possible alternative formulation o f our 

model, as well as offering some further remarks on the role which the computability 

framework plays in our analysis.

The paper has four appendices. In Appendix A  we present all the basic results 

from the computability literature which are used in the paper. For ease of exposition, 

most o f the proofs o f our results are not in the text, but can instead be found in 

Appendix B. Appendix C contains all the material concerning the ‘provability’ re
striction which we use in our second stability result. Finally Appendix D outlines 

how our results can be extended to the case of computable functions defined over 

‘computable reals’ . A  prefix of ‘A ’ , ‘B ’ , ‘C ’ or ‘D ’ in the numbering o f a defini

tion, theorem, equation etc. indicates that the relevant item is to be found in the 
corresponding appendix.

6With a continuum of types, it may be impossible to attach an ‘atom ’ o f  probability to  all 
potential smart types, since this set may also have the cardinality o f the continuum.
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2. A lgorithms, Computability and T uring M achines

Intuitively, an algorithm is a clerical (mechanical, deterministic) procedure which 

can be applied to a string of symbols as an input and which eventually yields a 

corresponding string of symbols as an output. Moreover, input and output come 

from a fixed alphabet, and the procedure is given as a set o f instruction o f finite size.

Turing machines are a means of formalizing o f the above intuitive notion. There 
have been many different formal characterizations o f the notion of algorithm, but all 

have turned out to be equivalent (Cutland 1980, Ch. 3). Turing machines (or their 

equivalent) represent what is widely regarded in mathematics as the appropriate 

notion of effective computability in the widest possible sense. They represent a ‘most 

powerful’ class of computing devices —  anything that a mathematician can compute 

can also be computed by a Turing machine (this claim is also known as Church’s 

thesis).

The idea that players in a game can be thought of as a computing devices is not 

new (Aumann 1981, Neyman 1985, Rubinstein 1986, Abreu and Rubinstein 1988, to 
name a few). Most of the available literature concentrates on a class of computing 
devices known as finite automata, and on the Nash equilibria of the ‘machine game’ . 
Following Binmore (1987) and Anderlini (1989), we take the view that Turing ma

chines (and thus general computability) are the appropriate class of programs for 

modelling many game-theoretic situations.7

A Turing machine is essentially identified by its ‘program’ . A  program is a finite 

string o f symbols from a fixed alphabet which obey some syntactical rules. It follows 

that, using a standard technique known as Godel numbering (see Theorem A .l)  the set 
of all Turing machines can be put in a one-to-one (computable) correspondence with 

the set o f natural numbers IN. The machines’ inputs and outputs are also finite strings 

of symbols from a fixed alphabet. It follows that the same technique can be used to 

code and decode the machines’ inputs and outputs into the naturals. The detailed 

specification of Turing machines is irrelevant to the analysis which follows.8 Following

7McAfee (1984), Megiddo (1986), Megiddo and Widgerson (1987), Howard (1988), Spear (1989), 
Anderlini (1990), Canning (1992b), and Anderlini and Sabourian (1995) also model players as Turing 
machines.

8A11 the relevant results on algorithmic functions can be found in Appendix A.
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standard notation in the computability literature ipx(y) will describe the result o f the 

computation of Turing machine with Godel number x  6  IN when applied to the input 

string coded by the Godel number y  £ IN. The notation <px(y) t  indicates that the 
computation q>x(y) does not halt (it loops), while the notation <px{y) 4- denotes the 
fact that the computation <px(y) does halt.

Definition 1 (Computable Function): A partial function C  from  INm to IN is said 

to be computable if  and only if 3c €  IN such that C (y i t . .  .y m) — y>c(yi, ■ ■ ■ ,Vm) 
V (yi, ...,2/nO €  INm, where the symbol ~  stands for  ‘defined on the same set and 
equal whenever defined’. A computable function which is defined for  every possible 
input is called a ‘total’ computable function. Throughout the paper, we adopt the 

notational convention o f denoting computable functions by capital letters. A Turing 

machine which computes a given function will be denoted by the same letter in lower 

case; thus machine c computes function C.

3. The Model

3.1. The Underlying Game, Histories and Types 

The A-player normal form game underlying our model is denoted by T =  { A i ,
N

where Ai is the set o f actions available to player i, A  denotes X A .  : A  —s► 1R
i=l

represents i ’s payoffs, and ir : A  —> IR7'’' represents the payoff vectors. Lastly, Ai and 

A  denote the cardinalities of *4, and A  respectively.

Time is discrete and is indexed by t =  0 ,1 , . . .  The evolutionary system consists 

of N  populations, one for each player i o f T. At every time period t, each population 

consists of a finite number of types to be defined shortly, although the set o f different 

types in each population can vary through time. Let the set o f types present in 

population i at time t be denoted by Tf, with cardinality we also let T t =  {7^ , 

... ,7^}, and iV‘ = £f=17V‘.

Given a type x  6  Tf, we denote by a‘ (x) e  A\ the action which type x  takes 

at time t. We also define a\ =  {a ‘ ( z ) } l€Ti to be the action profile o f all types in 
population i at time t. Finally, we let a1 =  { a j , . . .  ,a lN}  be the action profile o f all 

types in all populations at time t.

9
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The actual sets o f types present in each population at t will depend on the birth 
and death processes to be defined in Section 3.3 below. However, given a sequence 

of type sets {T ° , T 1, . . . } ,  we can already define the outcome path of the system up 
to t. An outcome path of the system of length t is denoted by hl =  {a 0, . . .  , a1-1}. 
By convention, we set h° =  0. The set o f all possible outcome paths of length t is 

denoted by 'HI, while the set o f all possible finite outcome paths (of any length) is 

denoted by H. Notice that since the type sets T 1 are all finite, the set o f all possible 

finite outcome paths can be coded into the natural numbers in a standard way (see 

Theorem A .l) . W ith a slight abuse of notation, throughout the paper we will use the 

same symbol for any outcome path h* and its code in IN; thus H  C IN.

We are now ready to define the information about hi which is given to the types 
at each period. We call this the information (about hi) which types receive at f, and 

we denote it by hi. The values o f h‘  define a partition o f the set o f all possible finite 

outcome paths, H . Therefore, for a given partition, the set of all possible values of 
hi, denoted by H, can also be viewed as a subset of the natural numbers IN. As for 

the outcome paths, with a slight abuse of notation we use the same symbol for any 

element of H  and its code in IN.

DEFINITION 2 (Information): The information which types receive at time t is deter

mined by some function Z  from H to H. In other words, at each t, each type receives 
as input a natural number h‘ =  Z(h l). The function Z  is called the information 

function o f the model.

Notice that, for the time being, we sire not imposing any assumptions on the infor

mation function Z. Indeed, Definition 2 above is consistent with both the possibility 
that hi coincides with hl and that of hl containing no information at all about hi. 

We restrict the form of Z  in Section 3.4 below (Assumptions 4 and 5).

Types are algorithms (Turing machines) which map the information which is given 

to them at date t into an action at t. It is therefore natural to restrict attention to 

Turing machines which, given any input, halt and yield an action in A*.

Definition 3 (Allowable Algorithms): A Turing machine x  G IN is an ‘allowable’
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machine (or type) fo r  population i if and only if

ipx{n) A i V n € IN

The set o f allowable machines for  population i is denoted by M i  throughout the paper.9

We are now ready to give a formal definition of types in our model.

DEFINITION 4 (Types): A type for  population i is an allowable Turing machine for  
population i; thus T f C M i  C IN for  all t =  0-, 1 . . .  and fo r  all i =  1 , . . . ,  N . The 

action o f  type x  6  T f at t is the output o f Turing machine x  on input hi; therefore 

a j ( i )  s  Vxih')-

Notice that given a sequence o f vectors o f type sets {T ° ,  T 1, .. •}, and an infor

mation function Z, the outcome path o f the system can be generated in a forward 
recursive way, similar to the procedure which generates the outcome path of a re

peated game. The outcome path o f length 1, h1 can be obtained by carrying out 
all the computations <fix(h°) for all x  € T?  and for all i. Given h1, the information 

function Z , yields h1. At this point the computations g>x(h}) can be carried out, for 
all x £ TT and for all i, in order to obtain h? and so on, forward through time.

Before we proceed any further, it is helpful to emphasize the following two points 

about the information function and types.

Remark 1: The types we have defined can condition their actions on hl. In the stan

dard evolutionary model, types are identified with a fixed action through time. In the 

model we have developed here this could be the case if  either the information function 
Z  is a constant function, or if the allowable Turing machines in each population, i, 

were restricted to machines which yield a constant output in Ai.

BNotice that Definition 3 above implies that we are excluding from the set o f possible types any 
non-halting Turing machines (cf. Section 2 above). This keeps matters simple but is by no means 
essential to our results. In previous versions of the paper we allowed for non-halting types and 
obtained similar results. This can be achieved assuming that non-halting types are not rewarded by 
the selection dynamics so that their extinction is guaranteed in the limit. In a different context, the 
analysis in Anderlini and Sabourian (1995) allows for non-halting Turing machines.
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Remark 2: We are implicitly assuming that information is symmetric in our model. 
This is because we have taken the information function Z  to be the same fo r  all types. 

This is not necessary for  our results. We discuss how this assumption can be relaxed 

in Section 6.1 below.

3.2. The Selection Dynamics

As we mentioned in Section 1.3, the overall dynamics of our model are made up of 

three components: the selection dynamics, the birth process and the death process. 

We introduce these separately, starting with the selection dynamics, purely for ease 

of exposition. First o f all we need some further notation.

We denote by P f{x )  the probability (or frequency) o f type x  e  I f  in population i 
at time t. Throughout the paper the symbol A* denotes the unit simplex in IRfc, and 

intA* denotes its interior. The probability distribution over population i at time t is 

denoted by P ‘ =  {P- (x ) } ieTt 6  in tA ^ '. The probability distribution profile over all 
populations at time t is denoted by P l =  {P,‘ , . . . ,  P lN}  6  intAw\

We will assume that the growth rate of each type at time t depends in a rather 

general way on that type’s action and on the distribution o f actions in all populations 

at time t. Let VV‘ (oj) =  { z  6  Tf \ ‘px(ht) =  a, 6  d ,  }. The probability (or frequency) 

o f action a,- in population i at time t is then simply given by Q ‘ (a*) =  S iew q»,) P ‘ (x )- 
It is now possible to define the probability distribution over actions in population i 

at time t as Q ‘{ =  {Q ^ c q ) } ^ ^  € A '4'. Finally the profile o f probability distributions 

over actions at time t is defined as Q ‘ =  {Q \,. . . ,  €  A '1.

Excluding the effect o f birth and death at t +  1, the growth rate of an existing 
type, x , in population i between time t and t +  1 is denoted by g\(x). The general 

form of the selection dynamics which we use below is the following, for all i

g ‘ (x) =  G, [a‘ ( i ) ,  Q ‘] V x 6  V  V t =  0 ,1 , . . .  (1)

with the restriction that

g\(x) >  — 1 and P f(x )g ti (x) =  0 V i =  1, . . . , N  V t =  0 ,1 , . . .  (2)
x€7?
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so that the dynamics ‘remain in the simplex’ at all times.

We denote by G  the vector o f  functions {G i , . . . ,  Gjv} for the rest o f the paper. 

Note that equation (1), together with Definitions 2 and 4, implies that g\(x) depends 
on the distribution over types P* (via Q l), on the value of ht (since a ‘ (x) =  tpx{h‘ )), 

and therefore on the outcome path h'  and on the information function Z. Before pro

ceeding any further, it is worth emphasizing one key feature o f the selection dynamics 

implicit in (1 ).

Remark 3 (Anonymous Selection Dynamics): The selection dynamics defined by 
(1) and (2) are anonymous in the sense that the growth rate a tt o f a particular type x  
does not depend directly on the type’s identity; only the action which x  takes at time t 

matters in terms o f its growth rate. This is crucial fo r  the possibility o f  constructing 
the ‘smart types' mentioned in Section 1.3, since otherwise the selection dynamics 
could be constructed to ‘punish’ (in terms o f growth rate) the potential smart types on 

the basis o f their identity, whatever the action taken.

3.3. Birth, Death and the Overall Dynamics

As we discussed in Section 1.3, the possibility o f  new types entering the system 

through time is crucial to our results. This is because our stability results rests on 

the appearance o f a sufficiently rich set o f types in each population. We model both 

birth and death at time t as functions of the outcome path o f the system o f length t.

The set of newborn types at t in population i is characterized by a finite subset 

B\ o f M i  (cf. Definition 3) and associated positive numbers which represent the 

frequencies (or probabilities) o f each new type in B\.

DEFINITION 5 (Birth Function) : A birth function fo r  population i is a map Bi which 

fo r  each outcome path hi yields a (possibly empty) finite subset B\ o f M i , and an array 

o f positive frequencies {P / ( x ) } i6B!, one for each element ofB\, satisfying J)X€S< P /(x ) 

<  1. By convention, the map Bi on input h° yields the ‘initial pair’ { 7)°, P)1} , with 

B° =  T ?  ^  0 and J2xcb9 P ?(x ) — 1- Moreover, fo r  analytical convenience, a birth 
function is assumed to be such that B\ PI T f~ l =  0. In other words, a birth function 

is precluded from introducing into the dynamics any type which is already present in
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the system. The vector o f birth functions { B i , . . . ,  B ^ } is denoted by B  fo r  the rest 

of the paper.

The death function of the model simply maps outcome paths into subsets of existing 

types, which then disappear from the system.

Definition 6 (Death Function): A death function fo r  population i is a map Di 

which fo r  each outcome path h‘ yields a (possibly empty) subset, V\, o f T?~l ■ By 

convention, the map D{ on the empty outcome path yields the empty set. Moreover, 

for  analytical convenience, a death function is assumed to be such that Di(h‘ ) n  B\ 
=  0 for  all h‘ . In other words a death function cannot eliminate from the system any 

type which is being introduced into the system by the birth function at the same time. 

Finally, a death function cannot eliminate all existing types, so that D\ must be a 
strict subset o f T f for all t. The vector o f death functions {D \ ,. . . ,  D n }  is denoted 

by D  fo r  the rest o f the paper.

Combining the two definitions we have just given, we can define the ‘birth rate’ 

and the ‘death rate’ o f the system at t in a straightforward way.

Definition 7 (Birth and Death Rates): Given a set o f  selection dynamics, a set of 

birth functions and a set o f death functions, the birth rate o f population i at time t 

is defined as b‘ =  2 xeB' P {{x )> whereas the death rate of population i at time t is 
defined as d\ =  5I-ex>' P /(x ). Finally, it is convenient to define the ‘net normalized 

birth rate ’ o f  population i at time t as

n
6' - d |  
1 - d j (3)

We are now ready to put together the selection dynamics, the birth function, the death 

function and the information function which we have defined above. This yields the 

overall dynamics o f our model. We combine these three elements with each other in 
an obvious way: P )+l(x) will be set equal to ( l  +  g‘ (x ))P f(x ), and then appropriately 

‘normalized’ to take into account the birth and death of types between t and t +  1 .

Definition 8 (Overall Dynamics): A vector o f overall dynamics fo r  the model is a 

quadruple F  - {G , B ,D ,Z }  consisting o f a vector o f selection dynamics (G ), a vector
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o f birth functions (B ), a vector o f death functions (D ), and an information function 

(Z ). Given a vector o f overall dynamics, an outcome path hl and profile o f probability 

distributions over types P l, the profile o f probability distributions P ,+l is defined by 

the following. For all i =  1 , . . . ,  N

P ‘+ l(x) =  (1 -  n|+1) ( l  +  g ‘ (x ))P ‘ (x) if x e V  and x  V ‘+1 (4)

where g\{x) is defined as in (1), and n ‘+1 is as in (3 ).10 Moreover, P ‘+ l(x) is given 
by the birth function whenever x  6 £>‘+1, and finally P$+ l(x) =  0 if  x  €  T>‘+1, and for  

all x  B‘+ l.

Given a vector of overall dynamics, F, and a Turing machine i  6  IN, we denote 

the birth date of type x  in population i by t,(x ). Formally, t;(x) is the least t such that 

x e V -  Notice that t,(x) is not defined if type x  is never introduced in population 

i by the birth function Bt. Notice also that P ^ x\ x)  is the birth probability o f x  in 

population i.

At this point, it is useful to observe that, given a vector o f  overall dynamics, F, 

the entire history of the system (including frequencies) can be obtained by forward 

recursion through time in a way analogous to the outcome path h‘ (see Section 3.1 

above).

Given h°, the vector of birth functions B  yields the vector of type sets T °, and 

the profile o f probability distributions over types P °. Given 7~°, the computations 

ipx(h°) can be carried out for all x  €  7 ?  and for all i =  1 , . . . ,  N . This yields the 

outcome path of length 1, ft1, and the distribution of actions Q°. Given hl , and Q°, 

the selection dynamics and the vectors o f birth and death functions now yield the 
profile o f probability distributions over types P 1. The information function yields h1 

given h1, so that the actions of all types in T 1 in period t =  1 can be computed next. 

Clearly, this procedure can be repeated any number o f times to obtain the complete 

history of the system up to any arbitrary t.

10Given (3) and (2), it is immediate to check that E , e-C / n r ' ( l - " ! +1) ( l + s ‘ W ) P ‘ W  =  l - 6 j +1.
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Proof OF Remark 5: The claim is a trivial consequence of the Rice-Shapiro theorem 
(Theorem A.9), and hence we only provide a sketch of the argument. Suppose, by way of 
contradiction, that T  is r.e. Then the Rice-Shapiro Theorem, directly implies that F  must 
contain some /  such that, say, 61 is a Turing machine which computes a finite function (see 
Definition A.3). But this is clearly impossible given the definition of Computable Overall 
Dynamics.

Q.E.D.

Proof of Remark 6: Recall that F  C 1N3,V+1 is the set of bases for computable overall 
dynamics. Let AC, be the image of F  under A , so that

AC; =  { i  e  IN | 3 f & F  such that x =  K i( f ) }  (B.12)

By way of contradiction assume now that AC, is r.e. By Definition A .l this implies that for 
some q € IN we have that x  € AC; <=!• ipq(x) |. Let now a € IN be such that

M f )  -  V>,(Ki(f)) V /  6 IN3A,+l

and recall that K\ is a total computable function. It follows that <p„(/) /  € A, which
implies that F  is r.e and hence contradicts Remark 5. This is enough to prove the claim.

Q.E.D.

PROOF OF Remark 7: Let a vector F  of computable overall dynamics be given, and let 
/  be a basis for F. Consider now a Turing machine c, which, given input x, performs the 
following computations. Compute S (f,t)  for successively larger values of t, beginning with 
t =  0, where 5  is the computable function of Remark 4. As the computation proceeds for 
each value of f, check whether x  is born in population t, at t (x € B\). If this is ever the 
case, then stop and print an output of, say, 1. If x does not ever appear in population i the 
computation goes on forever and hence does not halt. Clearly, by construction tp  ̂(x) 4- if 
and only if x € £(. By Definition A .l this is enough to prove the claim.

Q.E.D.
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A ssumption 1 (Computable Birth): For each population i =  1, . . . ,  N , the birth 

function Bi is a computable from  IN to IN. Thus Bi(h() gives the code of the probability 
array representing the set o f newborn types in population i, B\ and their rational 
probabilities {P (x )  } l 6Bt.

The assumption o f computability o f the vector o f death functions takes the fol

lowing form.

A ssumption 2 (Computable Death): For each population i =  1, N , the death 
function D, is a computable function from  IN to IN. Thus D i(h ‘ ) gives the code o f the 

subset V ‘  o f existing types in T?-1 , which disappear (have probability zero) at time t.

Let a finite computable probability distribution over types P( be given. By Def

inition 9, the corresponding probability distribution over actions, Q\, is also a finite 

probability distribution over the naturals since each action in A\ can also be given a 

code in IN. This makes it possible to state our assumption of computable selection 
dynamics in the following form.

A ssumption 3 (Computable Selection Dynamics): For each population i =  1, ,

N , the selection dynamics Gi are given by a computable function from  JNW+1 to IN. 

Thus G, [a|(x), Q \,. . . ,  Q{N] is the code o f the (rational) growth rate o f  type x  in pop-
G

ulation i, at time t.

The last element o f the model on which we place a computability assumption is 

the information function of Definition 2.

ASSUMPTION 4 (Computable Information): The information function Z o f Defini

tion 2 is a computable function from  IN to IN.

Assumption 4 is not sufficient for our global stability result to hold. The reason is 
that (as we explained intuitively in Section 1.3) we need our algorithmic types to be 

able to condition their actions on time at least. Neither Definition 2 nor Assumption 

4, guarantee that the information hl received at t, actually contains the date t. This 

is the reason for introducing our next assumption.
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Assumption 5 (Computable Time): The computable information function Z is such 

that the date can always be extracted computably from hl. Formally, Z  is such that 
there exists a total computable function T  which satisfies T (h ‘ ) =  t fo r  all h‘ 6  'H.

Throughout the rest o f the paper, we call a vector o f overall dynamics which 

satisfies all our computability assumptions a vector of computable overall dynamics.

We conclude this Section with an observation. Recall that in Section 3.3 we 
remarked that given the overall dynamics of the model, the complete history o f the 

system up to any arbitrary finite date t can be obtained by forward induction through 
time. The computability requirements we have imposed on the system in this Section 
ensure that this property holds in a computable way for computable overall dynamics. 

It is useful to establish a name for a set o f Turing machines which compute all the 
elements of a vector of computable overall dynamics.

Definition 10 (Basis): Consider a vector o f overall dynamics, F , which satisfy the 

computability assumptions 1, 2, 3, f  and 5. A vector o f natural numbers f  6  IN3,V+1 

is called a ‘basis ’ fo r  the computable overall dynamics F  if  it is o f the form  { 31, . . . ,  

gn, 61, . . . ,  6/y, d\, . . . ,  d s , z } ,  where g,, bi, d, and z are Turing machines which 

compute Gi, Bi, Di, and Z  respectively. The set o f  3N  +  1 -dimensional vectors of 

natural numbers which constitute a basis fo r  some computable overall dynamics is 

denoted by T  throughout the rest o f the paper.

We can now state formally the property of computable overall dynamics which we 

mentioned above.

Remark 4 (Forward Computable Dynamics): There exists a computable function S 

from  IN3™  to IN with the following properties. Given any pair { / ,  t }  with t €  IN and 

f  6  J- a basis for  some computable overall dynamics F , S ( f , t )  outputs (the code of)  

the pair {ft1, P ‘ )  corresponding to F  at t.

PROOF: It is enough to notice that, by Theorem A.3 and by Church’s Thesis, till the 

steps of the forward induction through time up to date t described at the end of
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Section 3.3 can be performed by a Turing machine given the input pair { / ,  t } .

Q.E.D.

Note that since the proof o f Remark 4 relies on a simulation argument, if /  is 

not a basis for a vector of computable overall dynamics ( /  £  F )  then the output 
o f S ( f , t )  need not be defined; for example, some (or all) o f  the elements o f /  could 

be machines which do not halt on some (or all) o f the relevant inputs. Hence any 
attempt to simulate the dynamics forward would yield a computation which does not 

halt.

4. Stability Results 

4-1. Preliminaries

Intuitively, there are two minimal conditions which we need to impose on the 
computable overall dynamics for the ‘smart machine’ argument which we outlined in 

Section 1.3 to work. Firstly, the rates of birth and death should not be too high so 

that the birth and death processes alone should not be able to determine the long- 

run behaviour o f the dynamics, and hence prevent convergence. Secondly, the death 

process should be precluded from eliminating from the system the smart types: our 
stability results hinge on the presence of the smart machines.

To avoid the birth and death processes taking over the long-run behaviour of the 

system, it is enough to concentrate on the class of overall dynamics which guarantee 
that the sum over time of the birth and death rates in each population remains 

bounded. Throughout the rest o f the paper we maintain the following assumption. 

Assumption 6 (Bounded Total Birth and Death): The overall dynamics, F , are as

sumed to have ‘bounded total birth and death’ in the sense that <  00 and

D ” 0 d\< oo fo r  all i =  1, . . . ,  N.

To ensure that the death process does not interfere with the presence o f smart types, 

for the rest o f the paper we assume that, in any period, the top performers in terms 

of growth in each population are not eliminated by the death function. Since we are
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not restricting attention to dynamics which are monotonic, or even payoff based, the 

property that the top performers should not be killed off by the death function is not 

stated with reference to the top payoff, but with reference to the top growth rate.

Assumption 7 (Preservation o f  Top Performers): The overall dynamics, F , are as

sumed to ‘preserve the top perform ers’ in the sense that, fo r  each population i, the 

death function D, does not eliminate from the system at t any type which achieved 

the maximal growth rate in its population at time t  — 1. Formally, let

Q\ =  argmax g\(x) V i =  1 , . . . ,  N  Vt =  0 , 1 . . .  
xeTf

Then, the overall dynamics are assumed to be such that, fo r  all t =  0,1, . . . ,  n  

Q\ =  0, for  all i =  1 , . . . ,  N.

It is convenient to parameterize the overall dynamics by the vector of type sets 

which are introduced into the system, through time, by the vector o f birth functions.

DEFINITION 11 (Support Sets): A vector of overall dynamics, F , is said to have the 

vector of support sets C =  {C\, . . . ,  C n ) (or simply to have support C ) if and only if, 

fo r  each population i, the birth function B, introduces, through time, into the system 

a set o f types equal to C, C M ,. Formally, the overall dynamics F  are said to have 
the vector o f support sets C, with C, C M , fo r  all i =  1, . . . ,  N , if and only if 

C, =  U“ 0 f or all i =  1, . . . ,  N.  We will also say that the overall dynamics have

support at least C, =  { £ j , . . . ,  if and only if C, C U^ 0 f or all i =  1, . . . ,  N.

The stability results which we present in Sections 4.2 and 4.3 below hinge on different 

versions o f the smart machine argument which we outlined in Section 1.3. They 

are, in essence, different ways to ensure that the smart machines appear in the N  

populations at some point in time. The existence of a smart machine which takes an 

action that is optimal for population i for all t, is a preliminary result common to all 

our stability results. Therefore we present it here, before the actual theorems below.

Some further notation is needed: we denote by ~g‘  the growth rate excluding birth 

and death in population i at time t which is maximal within the existing set o f types,
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Ti . Thus,

g\ =  maxg,-(x) V i = ,  1 , . . . ,  JV V f  =  0 , 1 , . . .  (5)

The growth rate defined in (5) is maximal among the existing types. Since it could 

be that T f  does not contain a set of machines which take all possible different actions 

in Ai at t, it could be that ~g\ is not the maximal growth rate excluding birth and 
death which any machine could guarantee at t. We denote the latter by g\. Hence

=  max Gj [ai, Q ‘ l V i = , 1 , . . .  , N  Vt =  0 , 1 , . . .  (6)

Note that by definition g‘  >  ~g\ for all i and t. Finally, we let

"% =  [a te  Ai I Gi [dj, Q‘] =  } (7)

The following is a direct consequence o f Remark 4, o f the so-called ‘ s -m -n ' the

orem (Theorem A .2) and of the existence o f a ‘universal Turing machine’ (Theorem 

A .3)

LEM M A 1 (Existence o f  Smart Types): For all i =  1 , . . . ,  N  there exists a total com

putable function Ki : ]N3W+1 —> IN with the following properties. Let F  be a vector of 
computable overall dynamics, and f  be a basis for it. Then, K i ( f )  is the Godel num

ber o f a Turing machine in M i which, given any h‘ , yields the action that maximizes 

growth at t excluding birth and death in population i. Formally, K i is such that if 

f  €  fF is a basis for  F , then

G i[p K iu){.h, ),Q t}= g \  V t  = 0,1 , .. .  (8)

where h1 and Q l are the information and distribution o f actions at t generated by F . 

P r o o f : See Appendix B.

Note that since the proof o f Lemma 1 relies on the forward simulation argument 

which proves Remark 4, the output of need not be defined if /  is not a

basis for a vector o f computable overall dynamics.

21

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



We are now ready to present our global stability results. Theorems 1, 3 and 4 em

body different sets of conditions which guarantee that all the population frequencies 

converge to a well defined limit. However, before we proceed, it is useful to emphasize 

the following point. Since each type in each population can take different actions at 

different times, clearly convergence o f the population frequencies does not imply con
vergence of the action frequencies. We study the limit points of the action frequencies 

in Section 5, and find that under some additional conditions, they correspond to the 

Nash equilibria of the underlying game.

4.2. Global Stability with a ‘Grain o f Truth’

Consider a vector o f computable overall dynamics F  and let /  be a basis for the 

system. Suppose further that for each population i, the birth function Bi is such that 
machine K i ( f )  is introduced into the system at some point in time (the birth date 

t , ( K , ( f ) )  is defined). Then the population frequencies must all converge to a well 
defined limit (Theorem 1 below). We call this result ‘stability with a grain of truth’ , 

since the assumption that machine K i ( f ) must appear in F  at some point in time has 

a flavour similar to the main result o f Kalai and Lehrer (1993). The overall dynamics 

F  must give positive probability of birth to a machine which behaves ‘as if ’ it knew 

the true nature of system and used this computation to arrive at an optimal action 

at each t.

The intuition behind this result is simple to outline; the time path o f the frequency 
of the smart machine is sufficiently close to being monotonically increasing11 to ‘pin 

down’ the entire dynamics of the system. As we mentioned in Section 1.3 this can be 
viewed as an argument analogous to a Lyapunov stability result. A  complementary 

way to understand intuitively what drives the result is the following. Lemmas B .l 

and B.2 guarantee that if it is not the case that all population frequencies converge 

to a well defined limit, then the product riiSo(l +  9*)(1 — n‘ +1) diverges to infinity 
for some population i. Notice now that, provided U{ Ki { f ) )  is defined, then it follows 

from K i ( f )  having maximal growth rate that the frequency in population i o f machine

“ Because o f the birth and death processes, the frequency o f a type which takes an action in A\ 
for all t is not actually guaranteed to be monotonically increasing. See (4) above.
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K iU )  at any t >  * ( /& ( / ) )  is given by P ^ KiU)){ K{{ f ) )  •
It then follows that if some o f  the population frequencies do not converge to a well 

defined limit, for t large enough, the frequency o f K i ( f )  would have to exceed one, 
giving an obvious contradiction.

T heorem 1 (Stability with a Grain o f lb i th ) :  For any vector o f computable overall 

dynamics F  with support L, there exists a vector o f  ‘smart types’ x  =  { x i , . . . ,  rr^} 

such that i f x e  C, then all the population frequencies converge to a well defined limit 

in the sense that limt-*,» Pi(x) exists fo r  all x  €  IN and for  all i =  1 , . . . ,  N . Moreover, 

the vector o f smart types x  can be effectively computed from a basis f  fo r  the overall 

dynamics F .

PROOF: See Appendix B.

The proof o f Theorem 1 involves setting Xi =  K i ( f )  for all i =  1, . . .  , N .  Therefore, 
the following guarantees that Theorem 1 applies to a non-empty set o f computable 
overall dynamics.

T heorem 2 (Existence with a Grain o f  Truth): There exists a vector o f computable 
overall dynamics F  such that, fo r  some basis f  fo r  F , we have

K {( f )  6  C, V t =  l , . . . , AT  (9)

PROOF: The claim follows directly from the proof o f Theorem 5 below.

Q.E.D.

4.3. Global Stability with a ‘Provability’ Restriction

The grain of truth assumption which drives Theorem 1 above is unsatisfactory since it 

is not a primitive assumption. As we define a vector of computable overall dynamics 

F , we implicitly define the corresponding vector x  o f  smart types. If x  happens to 
be in the support £  of F , then Theorem 1 applies, otherwise it does not. Clearly, it 

would be desirable to find a set o f primitive conditions on F  which guarantee that the 

smart types are in the support of F  and hence can drive convergence o f the population 
frequencies as in Theorem 1.
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Since the set o f possible bases for computable overall dynamics is a countable one, 
it would seem tempting to proceed in the following way. For each /  which is a basis 

for a vector o f computable overall dynamics (for each /  6  T ),  define the vector of 
smart types { i j , . . .  , x n }  =  { K \ ( f ) , ■■., K f j ( f ) } .  If we consider all possible bases we 
then get a countable set o f possible smart types. One could then assume that the 
support of the computable overall dynamics should contain the entire set o f possible 

smart types which we have just defined. Clearly Theorem 1 would apply to any such 
computable overall dynamics. Unfortunately, this way of proceeding is flawed for the 

following reason. The set o f all possible bases for computable overall dynamics lacks 

a ‘regularity condition’ known as ‘recursive enumerability’ (see Definition A. l ) ;  its 
elements cannot be exhaustively listed in a computable way. As a consequence, the 

set o f possible smart types is not recursively enumerable either. On the other hand, 
the computability of the birth functions directly implies that the support sets of any 

computable overall dynamics are recursively enumerable (henceforth abbreviated r.e.) 

sets.

It is useful to state the above three facts formally for future reference.

Remark 5 (Set o f Bases): The set T  of 3N  +  1-tuples o f natural numbers which 

constitute a basis fo r  computable overall dynamics as in Definition 10 is not r.e. 
according to Definition A.l .

Proof: See Appendix B.

R emark 6 (Set o f  Smart 'Types): The set o f all possible smart types is not r.e. in 

the sense that for  all i =  1 , . . . ,  N  the image under K < o f the set T  o f all possible 

bases of computable overall dynamics is not r.e. according to Definition A.l .

PROOF: See Appendix B.

Remark 7 (Recursively Enumerable Support Sets): Given any vector o f computable 
overall dynamics F , for  all i — 1 , . . . , N  the support set C, is r.e. according to 

Definition A. l .  It follows from Remark 6 that there does not exist a computable 

overall dynamics with support sets equal to the sets o f all possible smart types.

Proof: See Appendix B.
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Two possible ways to overcome the ‘regularity problem’ we have outlined naturally 

come to mind. The first is to set the support o f the overall dynamics equal to the 

set o f all possible Turing machines. This is easily seen to be impossible since we 
have ruled out from our allowable algorithms (Definition 3) any non-halting Turing 

machines.12

The second is to set the support of the overall dynamics equal to the sets of 

allowable algorithms o f Definition 3. The problem with the latter possibility is that 
the set o f allowable algorithms is not r.e. since the set o f Turing machines which 

compute a total function is not r.e.13

R e m a r k  8  (Non-Halting and Allowable Algorithms): There does not exist a com

putable overall dynamics with support sets equal to the set o f all possible Turing ma

chines. Moreover, fo r  any i — 1, . . . ,  N , the set o f allowable algorithms is not r.e. 

It follows that there does not exist a computable overall dynamics with support sets 

equal to the sets o f allowable algorithms fo r  each population ( Ci =  M i  for  all i ).

P r o o f : See Appendix B.

The last possibility to overcome the regularity problem above, without resorting 

to further assumptions, would be to find (at least) one vector of computable overall 

dynamics with support sets which, for all i =  1, . . .  ,1N, are strictly contained in the 
set o f allowable algorithms, and which strictly contain the set o f all possible smart

12 Changing the definition o f allowable algorithms to allow all possible Turing machines as admissi
ble types would make it impossible to simulate the system forward as in Remark 4 since the simula
tion o f a non-halting Turing machine does not halt in general (this is the so-called ‘halting’ problem 
for Turing machines (Cutland 1980, Ch.6)). In a model of repeated games, Anderlini and Sabourian 
(1995) allow some non-halting Turing machines as admissible types, but proceed to exclude them 
from any simulation o f the model which is required. Introducing non-halting machines exactly as in 
Anderlini and Sabourian (1995) is nt possible here since the ‘simulation requirements’ are different 
between the two models (‘finite’ forward simulation is sufficient in Anderlini and Sabourian (1995) 
but it is not sufficient here). It is clear, however, that the nature o f the regularity problem we have 
identified would clearly change if we did not insist on ruling out all non-halting algorithms from the 
set o f allowable types. Therefore, it is possible that different formulations o f our basic model, which 
treat differently non-halting Turing machines, may behave substantially differently from the present 
one in relation to the regularity problem above.

13The fact that the set on Turing machines which compute a total function is not r.e. is in turn 
a direct consequence o f the Rice-Shapiro theorem (Theorem A .9).
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types o f Remark 6. We have attempted to show the existence of such dynamics and, 

as a result, we conjecture that such construction is impossible.14

Overcoming the regularity problem above, is sufficient to obtain stability by in
troducing all possible smart types in the support of the computable overall dynamics. 

This is confirmed by our next theorem; if one is willing to restrict attention to an r.e. 

subset of the set of bases T , then it is possible to find a corresponding vector o f recur

sively enumerable sets of smart types which guarantees stability o f the computable 

overall dynamics.

Consider any r.e. subset 7Z o f the set o f bases T . Since TZ is r.e. we can find a 
3N  +  1-tuple <j3JV+1}  of Turing machines which enumerates it as in Theorem

A .4. For all i =  1 , . . . ,  N  now set

Ci(K)  =  Range Ki(<pq ifin „ +1(v )) (10)
v£lN

where Ki  is the total computable function of Lemma 1. Thus, £,(72) is the set of 

smart machines for population i corresponding to the set o f bases TZ C IF. Note that 

£;(72) is an r.e. set by Theorem A .6 and let £ (TZ) =  { £ ((7 2) , . . . ,  £/y(72)}.

Consider any subset TZ of T .  Let $(72) represent the set o f overall dynamics 
corresponding to the set o f bases TZ. In other words, given any TZ C. TF,

F  6  $(72) 3 /  6  72 with /  a basis for F

We are now ready to state our next result.

THEOREM 3 (Stability with R.E. Bases): Consider any recursively enumerable set of 

bases TZ C IF. Suppose that F  £E $(72) has support at least £(72.). Then all the 

population frequencies corresponding to such F  converge to a well defined limit in the 

sense that limt-»,*, Pf(x)  exists fo r  all i and fo r  all x  € IN.

14 While we do not have a proof o f this claim, it is dear that it would be consistent with what is 
known from the computability literature. In the jargon of recursive function theory, we conjecture 
that, for all i =  1 , . . . ,  N t the complement in 17 of the set o f allowable algorithms, and the set 
of all possible smart types are ‘effectively inseparable’ . (See, for instance, Cutland (1980) Ch.7 
and particularly exercise 7.3.13(9), or Rogers (1967) exercise 2.30 and Ch.7, particularly Definition 
7.7.4.)
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Proof: See Appendix B.

Before proceeding any further, it is helpful to emphasize the following point.

Remark 9 (Lower Bounds): Recall that in Definition 11 of support sets we say that 
F  has support at least C, if C is a vector of ‘lower bounds’ on the type sets which are 

introduced into the system by the vector o f birth functions. It follows that Theorem 

3 guarantees stability o f any computable overall dynamics F  6 <f>(72.) with support C  
such that Cj(TZ) C C\ fo r  all i — 1, . . . ,  N , which satisfy the other hypotheses of 

the Theorem. Finally, note that the observation we have just made about Theorem 3 

applies, mutatis mutandis, to Theorem 4 below.

Theorem 3 applies to any r.e. set o f bases 1Z C  IF. One such set is the set o f 

/  6 T  for which a ‘proof’ o f the fact that /  is indeed a basis for a set o f computable 

overall dynamics is available. The notion of ‘provability’ , o f course, has to be treated 

with care for this line o f argument to be meaningful. In Appendix C we provide an 
outline of the relevant definitions and results. The key feature o f provability which 
Theorem 4 uses is that if a proof exists that /  6 T ,  then it must be possible to 

check, computably, that this is indeed the case. This gives us the required recursive 

enumerability o f the set of bases we use in the theorem.

THEOREM 4 (Stability with Provability): Let a Recursively Axiomatized Formal Sys

tem, A, be given (see Definition C.2). Assume that the class o f statements f  6 T  is 

representable in A (see Definition C.4). Let V. be the set o f f  e  1N3,',+1 such that the 

statement f  6 IF is provable within A (see Definition C.2). Then all the population 

frequencies o f any computable overall dynamics F  6 $(77) which has support at least 

C(TZ), converge to a well defined limit in the sense that lim^,*, P ‘ (x) exists fo r  all i 

and fo r  all x  6  IN.

PROOF: By Theorem C.3, TZ as defined is an r.e. set contained in T . Hence Theorem 
3 applies directly to establish the result.

Q.E.D.
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The following shows that Theorem 4 applies to a non-empty set o f  computable 

overall dynamics when A is chosen to be the formal system which is most ‘natural’ 

in the present context.

T heorem 5 (Existence with Provability): Let A* be the Recursively Axiomatized 
Formal System known as Formal Number Theory (see Definition C.3 and Theorem 
C.2). Let 'll" be the set o f bases such that the statement f  € T  is provable within A”, 
and note that 'll" is recursively enumerable by Lemma C.2. Then there exists a set o f 
Computable Overall Dynamics F ’  6 $(77*) which has support at least C(H ").

Proof: See Appendix C.

The proof o f Theorem 5 is rather lengthy, but not difficult to outline intuitively. 

The proof is constructive and displays a vector of overall dynamics which satisfies 
the requirements o f the Theorem, and which, for simplicity, is taken to have a trivial 

death process which does not kill off any existing types at any time. For simplicity 

again, the selection dynamics of the overall dynamics constructed in the proof are 

taken to be the ‘replicator dynamics’ o f Definition 14 below. Given that the set 77* of 
the statement of Theorem 5 is r.e., it is not hard to show that the sets o f smart types 

corresponding to 11", namely £ ;(  11"), are also r.e. The next step in the proof is to 

show that, for each i, there exists a Turing machine 6* which enumerates £;(77*) (as 
in Theorem A.5), and which is such that there exists a proof within Formal Number 

Theory of the fact that b" enumerates the set €,(11"). This step is feasible since the 

procedure which yields each b" is entirely constructive. The proof is then concluded 

setting the birth process of the overall dynamics to be just the enumeration of C>(H") 

given by b" for each i =  1 , . . . ,  N . The only type born in each population i at time t 
is precisely the t-th element in the enumeration of £i(77*) given by b", and its birth 

probability is set to 1/2*.

Once Theorem 5 is established, using Remark 9 and Theorem A .7 it is immediate 

to see that Theorem 4 applies to a countable infinity of different computable overall 

dynamics. We state the following without proof.

COROLLARY 1: Let A", H ’  and $(1l") be as in Theorem 5. Then there exists a 

countable infinity o f distinct vectors o f computable overall dynamics F  such that F  € 

$(77*) and F  has support at least C(H ").
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5. T he L imit P oints of the A ction Frequencies

5.1. Continuous, Payoff-Based, Monotonic and Replicator Dynamics

The definition o f selection dynamics which we have given in Section 3.3 is very 
general; it encompasses an extremely wide variety of possible selection dynamics. For 

instance, it is consistent with a system which rewards those types which do badly 

in terms of payoffs. In fact, (1) is clearly consistent with the widest possible range 

of selection dynamics which depend on the distribution o f payoffs in each period. 

To see this, notice that we can define the expected (or average) payoff to type x  in 
population i at time t as

where the expectation is taken over a_, =  { a i , . . . ,a j_ i  a,+1, . . . , a ^ }  according 15 

to the probability distribution s  {Q \,. . . ,  Q i_1 Q ‘+1, . . . .  Q ln}. Given a profile 
o f probability distributions over actions at t, it is possible to define the probability 

distribution over payoffs in population i at time t; we denote the latter by Ilj, and 
the profile o f probability distributions over payoffs at t by 11* =  { TE', . . . ,  11^}.

In order o f decreasing generality, two classes o f selection dynamics which are 

consistent with (1), are as follows.

Definition 12 (Payoff-Based Dynamics): The selection dynamics G are said to be 

payoff-based dynamics if  and only if the vector o f functions G can be written in the 

following form : for  all i =  1 , . . . ,  N

Definition 13 (Monotonic Dynamics): The selection dynamics G are said to be mo

notonic in payoffs (or simply monotonic) if and only if  they are payoff-based and they 

satisfy

Il‘ (x) = EQti { TTj [a|(z), a_j] }

15Here, and throughout the rest of the paper, we follow the standard notation of denoting by a 
subscript of — i a vector without its i-th component.
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fo r  all i =  1,..., N

A special case of monotonie dynamics is the ‘replicator dynamics’ which have been 
extensively studied in previous literature (VanDamme 1987, Hofbauer and Sigmund 

1988, Weibull 1992, among others). One possible definition of replicator dynamics, 

which we state for future reference, is the following.

Definition 14 (Replicator Dynamics): The selection Dynamics are said to be the 

replicator dynamics if and only if the vector of growth functions G takes the following 

form

Gi [a‘ (x),Q‘] = A E  n ' ( z ' ) ^ V )
x 'e T ‘

V x e T f  v i  =  i , . . . , j v  (1 1 )

where X is a ‘small’ positive constant which ensures that the dynamics do not yield 

‘negative probabilities ’ at any time

One further class of selection dynamics in which we will be interested below is the 

following.

Definition 15 (Continuous Dynamics): The selection dynamics G are said to be 

continuous if  and only if, fo r  all i and for  any given a, £ A i, Gì is continuous in Q, 
for  all Q 6 A'*.

We conclude this section by noting that the replicator dynamics we have just 

defined are clearly continuous.

5.2. Nash Equilibria

The second main result o f this paper is that, under certain additional conditions, the 

presence o f smart types in the support o f the overall dynamics not only guarantees 
convergence o f the population frequencies, but it also implies that alt the limit points 

of the frequencies of actions in each population will coincide with the Nash equilibria 

(pure or mixed) o f the underlying game T.

30

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



The next remark clarifies why we are referring to all the limit points o f Ql rather 

than simply to the limit o f Q ‘ .

REMARK 10: Because types in our model can take different actions at different dates, 
convergence o f the population frequencies is not sufficient to guarantee convergence of 

the sequence Q ‘ .

Besides those which guarantee convergence of the population frequencies, to guar

antee convergence to Nash16 the selection dynamics o f the model must be continuous 

and monotonic (see Definitions 15 and 13).

We are now ready to state formally our second main result.

THEOREM 6 (Nash Equilibria): Suppose that the Computable Overall Dynamics, F , 

are such that the selection dynamics are continuous and monotonic. Let f  be a basis 

fo r  F . Suppose also that F  is such that fo r  all i =  1 the smart type K ,( f )

o f  Lemma 1 is in the support Ci o f population i. Then, all the limit points o f Q l are 

Nash equilibria (pure or mixed) o f the underlying game T.

PROOF: See Appendix B.

It is worth dwelling on the statement o f Theorem 6 by means o f a diagram. For 
illustrative purposes only, imagine that T is a two-by-two game so that the action 
frequencies in each population can be measured by a single number. Imagine also 

that T has multiple Nash equilibria.

In Figure 1 we measure the action frequencies in population i on the vertical 

axis, with NEi representing one Nash equilibrium, and NE2 representing another 

Nash equilibrium o f T. On the horizontal axis we measure time. The points in the 

diagram, depict a possible sequence o f Q\ which does not converge, but which has

16 As we mentioned in Section 1.3, these conditions axe analogous to those found in several previous 
contributions (Nachbar 1990, Samuelson and Zhang 1992, among others).
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two subsequences, one converging to NEU and the other converging to NE?.

Action
Frequencies

We conclude this section with an observation.

R emark 11 (Unique Nash Equilibrium): Under the hypotheses of Theorem 6 every 

convergent subsequence o f Q l will converge to a Nash equilibrium (pure or mixed) of 

the underlying game T. It naturally follows that if T has a unique Nash equilibrium 
(pure or mixed), then the sequence Q ‘ converges to such equilibrium.

6. Concluding R emarks

6.1. Alternative Formulations and Extensions

It is worth mentioning one possible extension o f our model, and an alternative way 
to formulate the model itself.

In Remark 2 above, we emphasized that information is implicitly assumed to be 

symmetric in our model. This is because all types receive the same information at
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t, namely Z (h ‘ ). It is not difficult to see how this assumption can be relaxed to 

allow for asymmetric information, without affecting the main results of the paper. 
Suppose that the information which type x  in population i receives at t were written 
as Zi(x, hl), so that dependence on type and population is allowed. Suppose also 
that Zi is a computable function of both it arguments. Then clearly, it would still be 

possible to simulate any vector o f computable overall dynamics by forward recursion 

as in Remark 4; it follows that all the main results o f the paper can be extended to 

this case with relatively small changes.

We have formulated our model insisting that only a finite set o f types be actually 

present in the system at any time <; although the birth function can make the support 

sets o f the overall dynamics actually infinite. This makes the forward simulation o f any 

computable overall dynamics a relatively straightforward matter. At the expense of 

some considerable complication, using some o f the techniques described in Appendix 
D, we could have formulated our model as an infinite one; overall dynamics with an 

infinite set o f types in the initial distribution and no birth or death through time. 
This would make our model closer to the standard17 evolutionary model. It would 
however, complicate considerably the forward simulation of any computable overall 

dynamics. This is simply because, with an infinite set o f types present from the start, 

it would be impossible to simulate the entire model forward. Any finite approximation 
to the true model can still be simulated, however. Including more and more o f  the 

infinite set o f types in the finite approximation would then make the simulation more 

and more precise, and in the limit, exact. It follows that by treating the required 

levels of approximation with sufficient care, the (approximately) ‘smart types’ can be 

constructed for the infinite model as well. It then follows relatively easily, that all the 

main results of this paper can be reformulated mid hold for a model o f computable 

dynamics with an infinite initial distribution which includes an appropriately ‘rich’ 

set o f types.18

17See footnote 2 above.
18Earlier versions of this paper analysed a model with an infinite initial distribution and no birth 

or death.
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6.2. The Role of Computability

We conclude the paper with a further discussion of the role which the assumptions 
of computability play in our stability19 results.

In Section 1.3 above, we mentioned the three features of the computability frame

work which are essential to the proofs o f our results: a countable set o f possible 

types, the existence o f the universal programme, and the s-m-n  parameterization 
theorem. At a more general level, in our view there are two crucial consequences of 

the computability assumptions which we have made above. The first is that restrict
ing attention to algorithmic types and computable dynamics (selection, birth, death 

and information), makes the model automatically a ‘closed’ model in the following 

sense.

Suppose that instead of considering the set o f allowable algorithms of Definition 

3, we considered an arbitrary set o f functions (maps from information into actions) as 

our possible types. Suppose also that instead o f restricting attention to computable 
dynamics we allowed for an arbitrary class of dynamical systems. We could then 

attempt to replicate the simplest of our convergence results (the grain of truth result 
o f Theorem 1) by constructing the vector of smart types A \ (/) o f Lemma 1 for the 
given dynamical system identified by / ,  and then assuming that these types are in the 

support of the system itself. The difficulty would be that the range o f the function 

Ki may well not be contained in the arbitrary set o f types which we started off with 

making the operation impossible. Our computability assumptions guarantee that the 

model is closed in the sense that staring with computable types, the smart types 

which we construct are always guaranteed to be precisely computable maps from 
information into actions, and hence allowable types.

An obviously tempting route to avoid having to make any computability assump

tions and force the model to be closed in the sense we have described would be to 

allow for the largest possible set o f types in the first place. However, the set of all 

maps from information into actions has the cardinality of the continuum. This may 

make the set o f possible smart types a continuum as well. In turn, this would preclude 

the way to any stability result o f the ‘large support’ variety (as opposed to the grain

19It is clear that Theorem 6 above does not depend on our computability assumptions.
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of truth variety) since it would be impossible to give an atom of probability to all 

possible smart types.

The second crucial consequence o f the computability framework is to make the 

provability restriction o f Theorems 4 and 5 a ‘natural’ one to consider. This plays 

an essential role in the possibility o f establishing our ‘large support’ stability results. 

As we mentioned in Section 4.3, as soon as we attempt to construct a vector of 
computable overall dynamics which has a support that contains all possible smart 

types, we run up against the following difficulty: the support o f  any computable 
overall dynamics is r.e., while the set o f all possible smart types is not r.e. Restricting 

attention to those dynamical systems which satisfy our provability restriction solves 
the problem since it makes the set o f corresponding possible smart types an r.e. set.

The provability restriction jointly with our computability assumptions make it 
possible to find a class o f dynamical systems which simultaneously satisfy the two 

requirements of being closed in the sense we have outlined, and o f containing in their 

support all the relevant possible smart types.
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A P P E N D IX  A

We start with some results which are standard in the literature on recursive function theory. 
All the results which we state without proof can be found, for instance, in Davis (1958), 
Rogers (1967) or Cutland (1980).

THEOREM A .l (Godel Numbering): Let a fixed set of symbols S° =  {5 j, S?, . . .  , 5 j , . . . }  be 
given. Consider the set of finite first order’ strings of symbols of the type Sl =  {S jl? . . . ,  
SjK}  with K  >  2. Let this be denoted by 5 1. Next, by induction, define the set of finite 
‘n-th order strings’ for any n E IN as follows. Given the set of finite ‘n — 1-th order’ strings, 
5 n_1 with typical element SJ*-1 , define the set of finite ‘n-th order’ strings, Sn, as the set of 
objects of the type {5JJ-1, . . . ,  with K  >  2, with typical element SJ1. Finally, let the

set of finite strings of any order, S, be defined as UnelN Then there exists a one-to-one 
total computable function (the ‘coding’ function) C : S lN which assigns a unique code in
IN to each element of S. Moreover, C can be inverted in a computable way in the sense that 
there exists a one-to-one total computable function (the ‘decoding’ function) D : IN —> S 
such that D (C(S)) =  S for all S E S.

THEOREM A .2 (s-m-n): For each m >  0 and n >  1 there exists a total computable function 
of m +  1 variables, W , such that V e E IN and V {h\^ • • • • • ,hm+n} E INm+n we
have

• • • , /lm+n) — "  * » ̂ m+n)

THEOREM A .3 (Universal Turing Machine): Given any m >  1, there exists a number um, 
such that

V>um(.n,ei, =: <pn(ei, ■ ■ ■, em) V {n .e j, • • •, em} € ]Nm+1

DEFINITION A .l (Recursively Enumerable Set): A set S C INm is recursively enumerable 
(abbreviated r.e.) if and only if it is equal to the domain of a computable function of m 
variables. Formally, S C lNm is r.e. if and only if for some k E IN we have <Pk{eu • • •»em) 4- 
<=> { e j , . . . , e m} E S. (The empty set is r.e. since the function ‘nowhere defined’ is
computable.)
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THEOREM A.4: A non-empty set S  C lNm is r.e. if and only if it is the range of an m- 
tuple of total computable functions. Formally S  C ]Nm is r. e. if and only if there exists an 
m-tuple of Turing machines { k i , . ..  ,km}  computing total computable functions such that

{ e i , . . . , e m} € S ** such thatipkl(v) =  el t . . .  ,ipkm(v) =  em (A.l)

Given an r.e. set S, an m-tuple of Turing machines {A.'i, . . . ,  km} with the property in 
(A .l) is said to ‘enumerate’ S. We refer to . . .  ,iptm(v)} as the v-th element in the

enumeration of S.

THEOREM A.5: An infinite set S C ]Nm is r.e. if and only if it is the range of an m-tuple 
of Turing machines [k i , . . .  ,km} as in Theorem A.4, with the additional property that

v ^ v '  => {ipkl(v ),...,ip ,tm(u)} ^

Turing machines {k\} . .. ,km} are said to enumerate S ‘without repetitions’.

THEOREM A.6: The range of a computable function of m variables is r.e.

THEOREM A.7: The intersection of two r.e. sets is r.e. The union of two r.e. sets is r.e.

DEFINITION A.2 (Recursive Set): A set S C ]Nm is recursive if and only if it is recursively 
enumerable and its complement is recursively enumerable.

DEFINITION A .3 (Finite Function): A partial function C from IV to IN is said to be a finite 
function if and only if C(e) is defined only for a finite set of values of e.

THEOREM A.8: Any finite function is computable.

THEOREM A.9 (Rice-Shapiro): Let C be a set of computable functions from IN to IN such 
that the set

C =  {c € lN  I 3 C e c  such that <pc(e) -  C(e) V e € IN} (A.2)

is recursively enumerable. Then C  € C if and only if there exists a finite function C' € C 
such that C'(e) J. => C'(e) =  C(e).
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A P P E N D IX  B

PROOF OF Lem m a  1: Using Theorem A.3, we start by constructing a function Cj from 
N'3'v+2 to IN as follows. Given an input pair { / ,  /i1}, the function C, is described by 
the following sequence of steps. First of all compute T(h‘ ), where T  is the computable 
function of Assumption 5 (Computable Time), so that T(h‘ ) =  t. After this computation 
is completed, Cj computes the output of where S is the computable function of
Remark 4, so that S (f ,t ) is (the code of) the pair {A(,P ‘ }. Given P l it is now feasible 
to compute Q‘ . Using Assumption 3 (Computable Selection Dynamics), C, can now go on 
to compute the growth rates Gj[aj,<3‘ ] for all a, € A,. Picking out the actions which give 
the maximal growth rates now yields the set A Finally, Cj outputs an arbitrarily chosen 
element of Therefore we have that if /  € T , then for all i =  1 , . . . ,  N , and for all hl

Since Cj is a computable function, for each t there exists a Turing machine Cj such that 
f a (/,/**) — C j(/,A ‘ ). We can now apply Theorem A.2 ( s-m -n ) to obtain a total com
putable function W : 1N3W+2 -y IN such that tpw(ci,f){ht) — V c,(/,h1) — C j(/,/i ‘ ). Setting 
K {(})  ~  W  (c„ / )  finally yields

Lemma B.l: Let a vector of overall dynamics, F , be given. For all i =  1 , . . . ,  N , if there 
exists an i  € IN such that lim^oo P*(x) does not exist, then =  +oo.

Proof: By (5), we have

(B.l)

*>*(,)(/»') = :C j(/,A ‘ ) V / V A * (B.2)

This, together with (B .l), is clearly enough to prove the claim.

Q.E.D.

PHx)g‘i ( x ) < P ‘ (x )g \ < g ‘ V * € 7 ?  Vt =  0 , l , . . .  V» =  1,...,JV  (B.3)

Suppose now that, for some j, t, and x € Tf

P ‘ (x)gHx) < - t (B.4)
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then, since SxeT* P,! (x ) =  1 “ d Hi > 0, we would have that

Pt(x)g\(x) < - f ,  Y .
x/erfix

Therefore, using again the fact that g\ is maximal,

Pf(x)gti[x)<- Y  t f ( * W >  
x‘eT>/x

and hence

Y  # (*)«{(*) < « (B.5)
*€7?

Since (2) must hold, (B.5) is a contradiction. We can then conclude that (B.4) must be 
false. Using this fact and (B.3), we have that

|j?(*)<?‘ (z)| < ? !  V x e l ?  Vt =  0 , l , . . .  Vi =  l , . . . , jV (B.6)

Since —1 <  P ‘ (x)g‘ (x) <  1, using (4) we get

|i?+1( x ) - ( I  +  s{(x))/?(x)|  <  |n|+ l| V x € 7 j*  V t =  0 ,1 ,...  V : =  l ,. . . ,J V  (B.7)

By the triangular inequality, we also have

|f?+1(x) -  J?(x)| < |S,‘ (*)f?(x)| +  |Pf+1(x.) -  (1 +  «}(x))Jf(x)| (B.8)

Finally, substituting (B.6) and (B.7) into (B.8) we obtain

|p‘+1( x ) - ^ ( x )| < s S  +  |n‘+ ,| V x € 7 ?  Vt =  0 , l , . . .  V i =  l ,. . . ,J V  (B.9)

Simple algebra shows that |nj| < 6‘+1 +  dJ+1/(  1 — d‘+ l), for all i and t. Moreover, for any 
x £  7)*, by definition of b{+1, we must have |p,<+1(x) — P/(x) | <  6|+1. Therefore, using 
inequality (B.9) and the fact that by definition g‘ >  0, we have

jt+i
|Pt+\ x) -  Pf{x)\ <g\ +  b‘+l +  t _ ’ rft+1 V x 6 IN V t =  0 ,1 ,...  Vi =  1 ,...  ,1V (B.10) 

Suppose now that S S o ffi <  oo. By Assumption 6 (bounded total birth and death)
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Y.tLa M < 00 and S £ o d i / ( l  — d|) < 00. Therefore, using (B.10), we must have that 
£ “ o |Pf+l(x) — P ‘ {x)\ <  00, for all a; € IN. By standard results (Apostol 1974, Thm. 8.10) 
this implies that limi-,,*, P ‘ (x) exists for all 1  € IN. This is clearly enough to prove the 
claim.

Q.E.D.

Lemma B.2: Let a vector of overall dynamics, F , be given. Suppose that =  + °°-
Then n £ o ( l  +55K1 -  n,t+1) =  +00

PROOF: By standard results (Apostol 1974, Thm. 8.52), the fact that — + °°  and
~g\ >  0 implies that I"I£o(l +3<) =  + 00. Note next that nj+1 < 1 for all i and t. Moreover, 
by bounded total birth and death (Assumption 6), lni+'l <  00. By standard results 
(Apostol 1974, Thm. 8.54) this implies that the product IT£o(l — nl+1) converges to some 
k >  0. Taking the product of the two infinite products we have just evaluated, it is now 
clear that I l £ i ( l  +  fi*)(l — n{+1) =  + 00.

Q.E.D.

Proof OF T heorem 1: Let F  be a vector of computable overall dynamics with bounded 
total birth and death (Assumption 6), and /  be a basis for F. For all t =  1 , . . . ,N , set X{ 
=  K i(f)  where K, is the total computable function of Lemma 1. Since Xj € U{xi) is 
defined and P ^ '\ x i )  >  0 for all i. By Assumption 7 (Preservation of Top Performers), 
Xj € Tf for all t >  <j(xi). Since for all t >  fi(xi) we also have that ipx^h1) € 35', it follows 
that g\ — for all such values of T. Therefore, by (4)

t
P ‘ (xi) =  Pli(îi)(x,) [J  ( l + 9 3 ) ( l - < +1) V t > f j ( i i )  V i =  l , . . . ,A f  (B .ll)

r=lj(ïj)

Suppose now that limt-K*, P ‘ (x) does not exist for some x € IN. Then by Lemma B.2, and 
using (B .ll), there must exist a t >  t,-(xi) such that P /(xj) >  1. This contradiction is clearly 
enough to establish the convergence claim. The fact that the vector x can be effectively 
computed from / ,  follows automatically from the fact that we have set Xi =  7Q(/) for all t.

Q.E.D.
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3.4- Computability Assumptions

Intuitively, our computability assumptions ensure that the forward recursion of 

the overall dynamics which we have just described in Section 3.3 is computable. 

Since some o f the elements of the history o f the system are, in general, vectors of 

real numbers, there are a number of ways to formulate a set o f assumptions which 
are sufficient to ensure computability o f  the overall dynamics of the model. In this 

Section we describe the set o f  computability assumptions which we use for the rest 

o f the paper. This is by no means the most general formulation possible. We use 

it purely for analytical convenience. Appendix D describes a much weaker set o f 
computability assumptions under which the results o f the paper are still valid.

In essence, the computability restrictions we work with, boil down to assuming 
that all probabilities in the history o f the dynamical system are rational numbers, that 

all the components o f the overall dynamics o f the model are computable functions, 

and that the information function is computable.

We start with the formal Definition o f a finite computable probability distribution 

and probability array over natural numbers.

DEFINITION 9 (Computable Probability Distributions and Arrays): A finite com

putable probability distribution over the natural numbers is a finite subset o f the nat

urals { i j ,  . . . ,  x k )  and corresponding probabilities given by the rational numbers 

{ P ( i i ) ,  . . . ,  P (x k ) } ,  where P ( i ; )  >  0 for  all i =  1, . . . . K  and P (x j) =  1. A 
finite computable probability array is defined as a finite computable distribution with

out the constraint that probabilities must add up to one. Thus, fo r  a finite computable 

probability array it may be the case that P (x i) <  1. Note that by Theorem A .l  a 
finite computable probability distribution (or array) can always be coded into a single 
natural number. With a slight abuse o f notation, fo r  the rest o f the paper we will use 

the same symbol to indicate a finite computable probability distribution (or array) and 

its code in IN.

Both finite computable probability arrays and the system’s possible outcome paths 

(cf. Section 3.1 above) can be coded into the natural numbers. Therefore, it is now 

easy to state our assumption of computability of the vector of birth functions B.
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Proof OF Remark 8: The first claim is an obvious consequence of the fact that not all 
Turing machines are allowable algorithms according to Definition 3 (e.g. some machines do 
not halt on some or all inputs). The second claim is obvious once we know that the set M i 
of allowable algorithms is not r.e. for any i. The non recursive enumerability of each of the 
sets M i  is an easy consequence of the Rice-Shapiro theorem (Theorem A.9). We omit the 
details.

Q.E.D.

Proof OF Theorem 3: Let F  be a vector of computable overall dynamics in (7Z). By 
assumption there exists an /  such that /  is a basis for F  and /  € Ti. By (10), there 
exists a v € IN such that /  =  {ipqi (v ),. . .  <PnN+i(v)}- Using (10) again, we conclude that 
if F  € 4>(7J) then there exists an /  which is a basis for F  and such that K i( f ) € Ci(K), 
for all i =  1 , . . . ,  jV. Since the support of F  contains £(TZ), the proof of Theorem 1 applies 
unchanged to show that all population frequencies converge to a well defined limit. This is 
enough to prove the claim.

Q.E.D.

Proof of Theorem 6: Let F  be a vector of overall dynamics with continuous and
monotonic selection dynamics, and let /  be a basis for F. Since for all i the smart type 
K i(f)  is in the support set £,, Theorem 1 is enough to guarantee that limt-»oo R/OO is 
well defined for all t =  1 , . . . ,  Ar and for all a € IN. Let Q‘ be the action frequencies 
associated with F, and let Q‘m with m =  0 ,1 ,... be a convergent subsequence of Q‘ . Let 
also Q =  limm_,oo Q*™.

We proceed by contradiction. Suppose that the action frequencies Q are not a Nash 
equilibrium (pure or mixed) of P. Then for some i =  1 , . . . ,  TV, there exists a[ € A, and 
a" 6 A, such that Q,(a") >  0 (that is, action a" is given positive probability in population 
i by the distribution Q), and

n, (a', Q_i) > n i(a", (?_,.) (B.13)

where the left and right-hand side of (B.13) represent the expected payoff of a[ and a" 
respectively, against the probability distribution Q_(. Using the fact that the selection
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dynamics are monotonic in payoffs (see Definition 13), (B.13) implies

G ifa ',0 ]  > G i [«?,<?] (B.14)

Since G,[a,, QJQ^a.) =  0, (B.14) and Q,(a") >  0 imply that for some d, 6 .4, we
have

G i[di,Q ] > 0  (B.15)

Using the fact that the selection dynamics are continuous in Q (see Definition 15), (B.15) 
can easily be seen to imply that

3 m 3 E >  0 such that Gi JdoQ1” ] >  e V m > m (B.16)

Recall now that we are assuming that K x(f)  e  Ci. It follows from (B.16) that, for m > m, 
we have

^  £ (B.17)

But, using (4) and Assumption 6 (Bounded Total Birth and Death), (B.17) can easily 
be seen to contradict the fact that limi-.c*, P$(Ki(f)) is well defined, as required. This 
contradiction is enough to establish the result.

Q.E.D.

A P P E N D IX  C

We begin this Appendix with a very brief introduction to the notion of ‘provability’ which 
we use in Section 4.3. We report it here for the sake of completeness only. We follow closely 
Cutland (1980, Ch. 8). Bell and Machover (1977, Ch. 7) and Mendelson (1964, Chs. 1-3), 
among others, provide a comprehensive treatment.

DEFINITION C .l (Language): Let a set of symbols 5° as in Theorem A .l be given. A 
‘language’ (based on S°) is the set of first order strings S1 derived from S° as in Theorem 
A .l. We denote by G1 C S 1, with typical element 81 the set of ‘meaningful’ first order 
strings. The meaningful strings of the language are simply the strings which obey some
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well defined set of syntactical rules. The elements of 6 1 are known as the formulae’ or 
‘statements’ of the language 5 1. We assume that the elements of 0 1 can be coded into the 
natural numbers as in Theorem A .l. With some abuse of notation we use the same symbol 
for each element 9l of G1 and its code in IN.

DEFINITION C.2 (Formal System): A Recursively Axiomatized Formal System A consists 
of a quadruple {«S1, G1, T ,'I '}  with the following meaning. S l is a language and G1 is the 
set of formulae of S 1 as in Definition C.l. T  is a recursive subset of G1 (see Definition A .2) 
and is interpreted as the set of ‘axioms’ of A; any formula in T is assumed to be true in A. 
Finally, is a definition of what constitutes a ‘proof’ of a statement in Q 1 from the axioms 
Y. Note that a ‘proof’ is a finite sequence of statements in G1. Let the set of all possible 
finite sequences of elements of G be denoted by G2, with typical element 92 =  {0 } , . . . ,  9^}. 
Clearly (Theorem A .l), the elements of G2 can be give a code in IN in a standard way. 
Abusing notation again, we use the same symbol for an element 92 of G2 and its code in IN.

We require the definition ^  of a formal proof to have the property that given a statement 
91 6 G 1 and a ‘candidate proof’ 92, it must always be possible to ‘check’, in a computable 
way, whether 92 is in fact a proof of 91 from the axioms T according to the definition 'll. In 
other words we require that there exists a total computable function C  : IN2 —► {0,1 } such 
that

C (9\92)
1 if 92 is a proof of 01 from the axioms T 
0 if 92 is not a proof of 91 from the axioms T

(C.l)

Given a Recursively Axiomatized Formal System, A, a statement 91 € Q 1 is said to be 
‘provable within A ’ if and only if there exists a finite sequence of statements 92 such that 
C(9l ,92) — 1, where C (•,•) is as in (C.l).

THEOREM C .l (Set o f Provable Statements): In any Recursively Axiomatized Formal Sys
tem the set of provable statements is recursively enumerable.20

DEFINITION C.3 (Formal Number Theory): LetS1* be the language of ordinary arithmetic, 
with formulae G1* C S 1*. Let T* be the Peano axioms for ordinary arithmetic, and 

be the definition of proof of first order predicate calculus. Then the quadruple A* = 
{S 1*, G1*, Y*, '£*} is referred to as Formal Number Theory.

^See, for instance, Cutland (1980) Lemma 8.2.3.

44

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



THEOREM C.2 (Axiomatized Number Theory): Formal Number Theory is a Recursively 
Axiomatized Formal System.21

DEFINITION C.4 (Representability): Given a Recursively Axiomatized Formal System A, 
we say that the class of statements f  is a basis for a set of Computable Overall Dynamics ’ 
( f  € F )  is representable in A if and only if the following holds. For each f  € IN:i v ' 1 there 
exists a statement 0} € 0* with the properties that: a) if Oj is provable in A then f  £ F, 
b) if -'Oj ( ‘not ’)  is provable in A then f  & F , and c) 0j can be obtained in a computable 
way from the input f .

THEOREM C.3: Let A be a Recursively Axiomatized Formal System in which the class of 
statements f  € IF is representable. Then the set of f  € F  such that the corresponding 
statement 0j is provable within A is recursively enumerable.

Proof: Let A be a Recursively Axiomatized Formal System in which the class of statements 
/  € F  is representable. From Definition C.4 we know that there exists a Turing machine 
a 6 IN such that <A>(/) =  0} where Oj is the (code of the) counterpart of the statement 
f  £ F  in A. Since A is a Recursively Axiomatized Formal System, Theorem C.l tells us 
that, the set of provable statements within A is r.e. By Definition A .l, we then know that 
there exists a Turing machine 6 € IN such that ’•pb{01) i  if and only if 9* is (the code of) 
a provable statement in A. By Church’s thesis and by Theorem A.3 there exists a Turing 
machine d € IN such that ipd{f) — Vb(lPa(f)) for all /  € lN3iv+1. By construction it is clear 
that g>d(f) I  if and only if both }  € F  and there exists a proof within A of the corresponding 
statement Of. By Definition A .l this is enough to prove the claim.

Q.E.D.

The following is a straightforward consequence of the way we have defined the notion 
of Computable Overall Dynamics (see Section 3.4). However, a full proof would require a 
large amount of extra notation and space. For this reason we omit the details.

LEMMA C.l: The class of statements f  is a basis for a set of Computable Overall Dynamics’ 
is representable within Formal Number Theory.

An obvious consequence of Theorem C.2, C.3, and Lemma C.l is the following.

21 See, for instance, Mendelson (1964) Proposition 3.5.3.33 and Corollary 3.5.3.34.
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LEMMA C.2: The set of f  E IN37V+1 such that f  € T  and the corresponding statement 0} 
is provable within Formal Number Theory is r.e.

For reasons of space, we take it as given that the statement to which the next lemma 
refers is representable within Formal Number Theory (where representability is defined, 
mutatis mutandis, as in Definition C.4), and we omit a full proof.

L e m m a  C.3: Let C(TV) =  { £ i (7 £ * ),...,£ at(7£*)} be the vector of support sets of Theorem 
5. For all i and 6» € 1N let 0J be the statement of Formal Number Theory corresponding 
to the statement ‘Turing machine 6» enumerates the set without repetitions’. Then
there exists a vector of Turing machines {6* ,... ybmN} with the following properties. For all 
i, b* enumerates the set without repetitions and the statement 0J. is provable within
Formal Number Theory.

Lemma C.3 above is a straightforward consequence of the following facts. Firstly, both 
the function S of Remark 4 and the functions C{ of the proof of Lemma 1 are ‘construc
tive’ in the sense that once a complete specification of the computing devices used (Turing 
machines), and of the coding procedure used (cf. Theorem A .l), an actual G5del number 
for Turing machines computing 5  and C{ for all i can be computed. Secondly, again once 
machines and coding are fully specified, and actual Godel number for a Turing machine 
computing the function K  of the s-m-n theorem (Theorem A.2) can be computed. Finally, 
by standard results (Rogers 1967, Corollary 5.2.V(c)) and by Theorem C.3, once machines 
and coding are fully specified again, the actual Godel number of a Turing machine which 
enumerates without repetitions (cf. Theorem A.5) the set TV of Theorem 5 can be com
puted. In other words, the Godel numbers 6J,. . .  ,6^ can be effectively computed using a 
procedure which can be recognized to yield precisely such Godel numbers. It follows that a 
‘proof’ is then available that, for each i, Turing machine 6* has the required properties.

Lemmas C.4, C.5, C.6 and C.7 which follow are all direct consequences of the form of 
the particular statements of Formal Number Theory to which they refer. For reasons of 
space, we take it as given that these statements are all representable within Formal Number 
Theory. Full formal proofs would involve a very large amount of extra notation and space. 
For this reason, we omit the details.

Lemma C.4: For all b{ 6 IN let 0  ̂ be the statement of Formal Number Theory corre

sponding to the statement ‘Turing machine 6» computes a birth function which at each time
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t =  0 ,1 ,...  gives birth only to machine with probability l /(2 t+1) ’ (where 6* is as in
Lemma C.3, for all i). Then there exists a vector of Turing machines 6* =  {6J ........*Sr}
with the following properties. For each i , b* computes a birth function as described, and the 
statement 9\.. is provable within Formal Number Theory.

Lemma C.5: Let 0* be the statement of Formal Number Theory (see Definition C.3) cor

responding to the statement ‘Turing machine z computes an information function Z such 
that Z(hl) =  t for all hti. Then there exists a Turing machine z* which computes the above 
information function and such that 0\• is provable within Formal Number Theory.

Lemma C.6: Let 9\ be the statement of Formal Number Theory corresponding to the state

ment (Turing machine d computes the (code of the) empty set for any input n ’. Then there 
exists a Turing machine d* such that <Pd{n) is the (code of the) empty set for a// n € IN, 
and such that the statement 9\. is provable within Formal Number Theory.

LEMMA C.7: Let 9*. be the statement of Formal Number Theory corresponding to the state

ment ‘Turing machine gi computes the function G{ of equation (11) of Definition 14 (Repli
cator Dynamics)\ Then for all i there exists a Turing machine g* which computes the 
function G{ of equation (11) and such that the statement 9lg. is provable within Formal 
Number Theory.

Proof of Theorem 5: Let F * be the set of Computable Overall Dynamics supported 
by the basis /*  =  <7Jy, z*}, where the elements of /*  are as
in Lemmas C.4, C.5, C.6 and C.7. By construction F * satisfies all the requirements of the 
statement of the Theorem.

Q.E.D.

A P P E N D IX  D

The set of computability assumptions we have stated in Section 3.4 above are more restric
tive than needed for our results. In essence, they can be relaxed to deal with ‘computable
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real numbers’ instead of restricting all variable in the model to be rational numbers. Han
dling real numbers in a computable framework is — to some extent at least — possible, but 
requires some special care.

For the sake of completeness, we outline here how our working computability assump
tions of Section 3.4 can be modified to handle probabilities and growth rates which may 
not be rational numbers. There are many alternative ways to treat computable real-valued 
functions, which turn out to be broadly equivalent; we do not give any detail about this 
issue, but simply refer to the comprehensive work of Pour-El and Richards (1989), and to 
the contribution of Megiddo (1989) on computable beliefs, among others.

DEFINITION D.l (Computable Reals): A real number r is a computable real number if there 
exists a Turing machine which can compute its value up to any arbitrary degree of precision. 
Formally, r 6 1R is a computable real if and only if there exists a Turing machine k € IN
such that, for any q € IN, Ivit?) — r| <  —.

9

The notion of computable reals justifies the following alternative definition of a com
putable probability distribution.

Definition D.2 (Real Computable Probabilities): A probability distribution over the nat
ural numbers, P  =  {P (0), . . . ,  P(n), . . . }  is said to be a real computable probability distri
bution if and only if there exists a Turing machine p € IN such that \ipp(n,q) — P(n)\ <  — 
for all n and q in IN.

Notice that any probability distribution satisfying Definition 9 above, is also a real com
putable probability distribution according to Definition D.2. Notice further that a proba
bility distribution over the natural which has finite support and such that all probabilities 
are computable real numbers, is automatically a real computable probability distribution 
according to Definition D.2. This is not necessarily true for a probability distribution over 
the natural numbers with an infinite support. The reason is that Definition D.2 automat
ically makes the support of P  a recursively enumerable set (the proof is similar to that of 
Remark 7).

To extend the notion of computable selection dynamics to real-valued growth rates and 
real-valued probability distributions over actions, we need to extend the notion of com
putability to real-valued functions of real-valued vectors in 1RM. The notion of computable 
real vectors is an obvious extension of the notion of computable real numbers of Definition 
D.l. A vector r =  {r i, . . . ,  r j / }  in IR'W is a computable real vector if and only if there
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exists a Turing machine k (E IN such that, for any q € IN, tpk{q) is the code of a vector 
rq =  {r j, . . . ,  rgM} in such that |rj — r;| < - ,  for all t =  1, . . . ,  M . Informally, for a 

function C : 1RM —> 1R to be called computable we require the feasibility of two, related, 
computations. Firstly, given a computable real vector r and a desired level of approxima
tion for C(r), we must be able to compute a corresponding level of approximation for r, 
and secondly, given a vector which approximates r to this given level, we must be able to 
compute the actual value of C (r) up to the desired level of approximation. Formally, we 
have the following.

DEFINITION D.3 (Computable Real Function): A function C  : 1RM —¥ 1R is said to be a 
computable real function if and only if there exist two Turing machines ci and eg with 
the following properties. For any r € IH which is a computable real vector, for any 
Turing machine k which computes approximations to r as above, and for any q in IN, 
<Pci(q) computes the necessary degree of approximation for r, while ¥>«(•) computes the 
approximate value of C (with precision l/q), given the approximate value of r yielded by 

q>ci (9) • Formally

|C(r) -  v?ca(v>fc(v’c1(9)))l < —
9

The purpose of presenting here Definitions D .l, D.2 and D.3 is to argue informally that 
the results of this paper are still valid when, instead of computable rational probabilities 
and computable rational growth rates, we assume that the selection dynamics are a set of 
computable real functions and all probabilities are computable real probabilities.

The key to the argument is that Remark 4 holds in an approximate form when the se
lection dynamics are a set o f computable real functions and all probabilities are computable 
reals. The difficulties involved in this generalization are entirely related to the fact that 
in the construction of the ‘smart machines’ we described in Section 1.3, we would have to 
‘keep track’ of several ‘approximation terms’ in the simulation of the overall computable dy
namics. The approximation terms would have to be kept ‘sufficiently small’ throughout the 
simulation of the system forward through time, in order to ensure that the smart machine 
is able to take an action which is (approximately) optimal given a set of real computable 
overall dynamics.
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