
EUI Working Paper ECO No. 96/15

Accelerating
New Product Development by

Overcoming Complexity Constraints

Spyros V assilakis

EUI WORKING PAPERS

EUROPEAN UNIVERSITY INSTITUTE

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

EUROPEAN UNIVERSITY INSTITUTE

3 0001 0026 6941 6

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE

ECONOMICS DEPARTMENT

EUI Working Paper ECO No. 96/15

Accelerating New Product Development
by Overcoming Complexity Constraints

Spyros vassilakis

BADIA FIESOLANA, SAN DOMENICO (FI)

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

All rights reserved.
No part of this paper may be reproduced in any form

without permission of the author.

© Spyros Vassilakis
Printed in Italy in May 1996

European University Institute
Badia Fiesolana

I - 50016 San Domenico (FI)
Italy

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Accelerating new product development

by overcoming complexity constraints

Spyros Vassilakis*

Abstract

The economic theory of technological change is a theory of investment.
Agents invest in an activity called research; a black box process returns a value
for a variable that shifts the production function. This paper proposes a way to
open the black box. It is motivated both by theoretical arguments for opening this
box, and by recent empirical literature on new product development that stresses
the importance of nontraditional factors in determining firm performance. An
example of the former is Solow (1994, p. 52): "... the production of new
technology may not be a simple matter of inputs and outputs. I do not doubt that
high financial returns to successful innovation will divert resources into R&D.
The hard part is to model what happens then”. An example of the latter is Baily
and Gersbach (1995, p. 347), who discuss the determinants of operating efficiency
of firms “Traditional determinants, such as capital intensity and scale were found
to play a role. But innovations such as design for manufacturing and workplace
organization turned out to be even more important”.

This paper considers technological change, and in particular new product
and process development, from a new perspective, that of complex problem­
solving. Technological change is made possible by organizational techniques that
reduce the complexity of problem-solving; differences in the technological
performance of firms are attributed to their different problem-solving styles.

I would like to thank Mark Salmon and Alan Kirman for the opportunity to present earlier versions of this work in
their workshops; Ed Green for a useful conversation; B. Visser, A. Savkov, H. Sabourian and seminar participants at
CORE, EU1 and the University of Pittsburgh for useful comments. All errors are mine. Three appendices to this
paper are available from the author on request.

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

(continuation of abstract)

More specifically, this paper proposes the formalism of constraint
satisfaction problems (CSP) as (a) expressive enough to capture design problems,
including design for manufacturing, listening to the voice of the customer, and
robust design; and (b) tractable enough to be fully decidable, i.e. to possess an
algorithm that will always correctly generate a solution, or the set of all solutions.
This algorithm produces too much rework; in fact, rework is the main reason and
symptom of slow new product development, both on theoretical and empirical
grounds. To minimize rework, this paper proposes three distinct techniques. A
technique to order decisions; a technique to make more specific the goals of
design by communication prior to decision-making; and a problem-partitioning
technique that minimizes subproblem size subject to the constraint of not creating
extra extendability or coordination problems. The three techniques together
provably minimize rework and thus accelerate decision-making.

The problem-partitioning technique in particular associates with each design
problem a tree of subproblems; the size of the largest subproblem is an index of
the degree of difficulty of the design problem. The nature of the technical and
marketing constraints faced by product designers determines both the
organizational form (the tree of subproblems) appropriate for the design problem
and the speed of reaching a solution (an exponential term whose exponent is the
size of the largest subproblem). This organizational form is reusable because it
depends only on structural information, i.e. on which variables enter which
constraints, not on the values that satisfy each constraint. The cost of building this
organizational form is quadratic in the size of the design problem, i.e. other
things being equal, larger firms with many interdependent products face
disproportionately larger costs of adjusting their organizational forms to changes
in the underlying structural information. If the underlying structure remains the
same, though, an incumbent firm that has already computed its organizational
form can amortize it over many different NPD efforts, and will develop new
products faster than a new entrant who still has to figure out how to organize for
new product development.

The empirical literature on new product development stresses the
importance of design in determining operational efficiency. The empirical
literature by itself, however, cannot pinpoint exactly how fast product developers
differ from slow product developers; a result of this is that it is not clear to slow
developers what they should be imitating to become fast product developers.
Ward et al. (1995) make this point clearly in their discussion of Toyota’s NPD
organization, which they call set-based concurrent engineering: “We do not know
enough about how set-based concurrent engineering is or should be performed.

2

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Toyota’s approach is not well-defined or documented”, and “Since there is no
proven formal methodology, learning the process will be slow and error-prone”.

Furthermore, the empirical literature has not established causal
relationships between time and problem-solving techniques; only associations have
been documented. Ward et al. (1995) state “Each advantage of set-based
concurrent engineering described earlier represents a hypothesis - that there is a
causal relationship between Toyota’s success and its use of set-based concurrent
engineering. An important task for further research is therefore to demonstrate
this causal link more carefully. Unfortunately such causes are difficult to show in
complex organizations”. Seen in this light, this paper contributes a well-defined
set of techniques that provably accelerate NPD; these techniques could, therefore,
provide a starting point for filling this gap in the literature.

1. Introduction

The economic theory of technological change is a theory of investment.
Agents invest in an activity called research; a black-box process returns a value
for a variable that shifts the production function. Economic analysis focuses on
the appropriability of the returns to investment in research, i.e. on reasons why
the social returns to investment in research might differ from private returns, and
on policy measures designed to bring them closer together. This line of research
was initiated by Nelson (1959) and Arrow (1962). It is also the theory
underlying models of endogenous growth.

The investment/appropriability perspective is valuable; a lot of progress has
been made exploring its implications in models where the divergence between
private and social returns is generated by spillovers, imperfect competition,
public goods, or asymmetric information. It is also clear from the literature that
more is involved in the determination of technological change. Solow (1994, p.
52) states:"... the 'production' of new technology may not be a simple matter of
inputs and outputs. I do not doubt that high financial returns to successful
innovation will divert resources into R&D. The hard part is to model what
happens then".

Rosenberg (1989) expands on this point: "The critical factor for
commercially successful innovation, however, may well be the utilization of the
results of R&D. The market-failure analysis must be supplemented by an analysis
of the conditions affecting the utilization of the results of R&D. Utilization of the
results of research is heavily influenced by the structure and organization of the
research system within an economy, a topic on which the neoclassical theory is
either silent or incorrect". Romer (1994, pp. 9-21) reaches similar conclusions,

3

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

and Solow (1994, p. 53) concludes his survey of Growth Theory: "...I think the
best candidate for a research agenda right now would be an attempt to extract a
few workable hypotheses from the variegated mass of case studies, business
histories, interviews, expert testimony, anything that might throw light on good
ways to model the flow of productivity - increasing innovations and
improvements".

New product development (NPD) is a good place to start taking Solow's
advice. There is a growing empirical literature on it that does offer a few
workable hypotheses to start with: Clark and Fujimoto (1991), Wheelwright and
Clark (1992), Clausing (1994), Ulrich and Eppinger (1995). This literature
emphasizes, concurrent product and process development; I will discuss both
under the NPD heading. The mathematical model introduced in this paper is
directly motivated by it; I will spend some time describing its main points.

The first point is that most NPD involves application of already existing,
widespread knowledge, not a scientific breakthrough or any significant new
learning. Gomory (1989) states: "There is another process of innovation, which
is far more critical to commercializing technology profitably. Its hallmark is
incremental improvement, not breakthrough. It requires turning products over
again and again; getting the new model out, starting work on an even newer one.
There is no brand new product here, no revolutionary technology.... It is
competition among ordinary engineers in bringing established products to
market". I will concentrate on such routine NPD and I will call mature the
industries with a well-established stock of relevant scientific and technological
principles known to all firms in the industry. The automobile industry is an
example.

The second point is that in mature industries NPD cannot deliver long-
lasting monopoly positions. The critical performance variables are, instead, the
cost, variety, quality and time-to-market of the new products. All sources agree
on this so I will just refer to Blackburn (1991, Ch. 5), Stalk and Hout (1990, Ch.
4) and Womack et al. (1989, Ch. 5). The ability to develop new products faster
than competitors do, in particular, has a number of strategic advantages. Demand
and technology change in unpredictable ways; fast NPD reduces the risk of
coming up with a product no longer in demand. Graham (1986) for example,
describes the development of the Selectavision video disc by RCA; it took 15
years of work, and when it was introduced in 1981, “ . . . as the expected
generator of $7.5 billion in annual retail sales by 1990, it was the legitimate hope
for the future of all RCA” (Graham, 1986, p. 26). Instead, videodisc production
was discontinued in 1984, RCA lost 580 million USD, and soon after ceased being
an independent company. RCA managers explained the failure in the following
terms. “Our mistake was we were late. Five years earlier it would have been a

4

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

huge success, three years earlier it would have been a good success.” (ibid., p.
217). The videodisc lost to the then new VCR. Similar cases are described in
Stalk and Hout (1990, Chs. 2 and 4). Note that the strategic advantage of fast
NPD does not depend on customers’ preferences for wide variety or frequent
model upgrades. Womack, et al (1989, p. 127) make the point. “The producers
in full command of these techniques can use the same development budget to offer
a wider range of products or shorter model cycles — or they can spend the
money they save by implementing an efficient development process for
developing new technologies. And in every case, the shorter development cycle
will make them more responsive to sudden changes in demand. The choice, and
the advantage, will always lie with lean producers.”

The third point is that some firms seem to be systematically faster in
developing new products; and that their speed advantage cannot be reasonably
attributed to extra effort, better engineers, more computing power, less complex
products, or chance. In fact, the most surprising result of the Clark and Fujimoto
(1991) and Womak et al (1989, Ch. 5) studies was that the faster product
developers were also those using significantly less engineering effort, even after
adjusting for differences in the products developed. The companies studied were
all world-class, with open access to the best available resources. In fact, Clausing
(1994, p. 5) emphasizes that there are no significant differences in the quality of
engineers in the countries covered by the studies (US, Japan, Germany). The
fastest product developers (Honda, Toyota) have since demonstrated, by designing
products outside their home markets (Florida, (1993, p. 121)) that their speed
advantage is not related to regional differences; and wide firm differences within
each region (Toyota and Nissan are frequently cited) have reinforced this point.
Furthermore, the speed advantage of the fastest product developers was not
achieved by sacrificing low production cost or high product quality. In fact,
Honda and Toyota are pioneers of quality function deployment (QFD), design for
manufacturing, and robust design, techniques that accelerate design of new
products taking into account quality and cost targets. Finally, faster product
developers were not merely luckier product developers. They have repeated their
success across time and across different markets. They use distinctly different
NPD techniques; when these techniques were adopted by other firms (Clausing
(1994, p. 47) cites Ford and Xerox as “early outstanding successes”) development
time was drastically reduced.

The fourth point reinforces the third. There was a large difference in the
initial condition, of Honda or Toyota on the one hand, and Ford and GM on the
other. In the early ‘50’s, Toyota produced in a year what GM produced in a day.
Ford was the firm that made automobiles affordable by introducing mass
production techniques. GM was the ideal company, managed so effectively it had
been able to overtake Ford by offering larger variety and an annual model change

5

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

at affordable prices. These two firms were the repositories of all knowledge on
mass-production automobile manufacturing and management; others learned
about automobiles either through publicly available channels (engineering
textbooks) or by visiting Detroit. (In such a visit, T. Ohno, later Toyota’s chief
engineer, estimated that Detroit firms had a 10-to-l productivity advantage over
Toyota; see Ohno (1988, p.68). According to the investment/appropriability
theories of technological change, their larger volume should have provided
Detroit firms with the advantages of scale economies and leaming-by-doing;
drawing from the same labor market should have provided the advantages of
technological spillovers and of cross-pollination of ideas; recruiting from the top
universities in the world should have provided the advantages of human capital;
and outspending their rivals in R&D, and having a larger stock of knowledge to
begin with, should have provided the advantages of accumulated knowledge
capital. Despite these accumulated advantages, Detroit firms lost market share to
firms (like Toyota and Honda) that were able to offer simultaneously lower cost,
higher quality, more variety and faster model replacement. Womack et al (1989)
document this story and provide the following example as an illustration of the
fact that faster product development is not due to the “usual suspects” of more
knowledge or more capital. They describe how Toyota in the ‘70's redesigned 4-
cylinder engines to maximize their power, and in the process changed its image
among consumers from a “low-tech weakling” to a “high-tech wonder”. They
conclude (ibid., p. 132) “This perception on the part of consumers was
enormously frustrating to engineers in many of the mass-production companies
who knew that all these “innovations” had been around the motor industry for
decades . . . What’s more, when they tried to copy these “innovations” on a wide
scale, the weaknesses of their engineering systems were exposed. In many cases it
took years to introduce a comparable feature, and often it was accompanied by
drivability problems or high production costs. GM, for example, lagged Toyota
by four years in introducing many of the features we just listed in its Quad Four
engine; it needed two more years to teach a high level of refinement.” (Womak,
et al. (1989, p. 116)).

The fifth point is that NPD is a problem-solving activity. In particular,
NPD is not merely a special case of the theory of investment under uncertainty.
Wheelwright and Clark (1992, p. 218) state "... in the final analysis, when we
search for an understanding of truly outstanding development, we must eventually
get down to the working level where individual designers, marketers and
engineers work together to make detailed decisions and solve specific problems.
The magic of an outstanding product is in the details. Thus, detailed problem
solving is at the core of outstanding development".

The sixth point is that NPD is a complex problem-solving activity. In
Clausing’s (1994, p. 57) words, “in developing a complex product, there may be

6

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

10 million decisions. Although individuals can make most decisions, the most
critical decisions (roughly 1,000 to 10,000 for large, complex products) require
more attention, and most of them do not lie entirely within the experience of any
individual or group.” Ulrich and Eppinger (1995, p. 4) state that “ . . . very few
products can be developed in less than a year, many require three to five years,
and some take as long as ten years.” Developing the Chrysler Concorde car, for
example, requires the design of 10,000 unique (to this car) parts, 2,250 people,
3.5 years and one billion dollars (ibid., p. 6). Clark and Fujimoto (1991, p. 73)
find that, on average, a new car design takes 2.5 million engineering hours, spent
over a period of 54 months.

The seventh point is that fast and slow developers differ in their approach
to solving complex problems; and that this shows up in the amount of rework
(iteration, backtracking, design revision) they generate. Slow developers divide a
NPD problem into sub-problems functionally, i.e. using the technical nature of
the decisions as a dividing criterion. For example, all customer-related decisions
like styling and features are made by marketing; all product engineering-related
decisions are made by design; and all process engineering decisions are made by
manufacturing. Slow developers typically order their decisions sequentially.
Technology-driven firms start with the decisions that produce a technically
feasible, functioning product, and worry about manufacturability and customer
appeal later; styling-driven firms start with the decisions that produce an
attractive product, and worry about technical feasibility later. Finally slow
developers limit communication between sub-problems to occur when a functional
group delivers a complete design, or a request for a change in a complete design,
to another such group; this is usually called “throwing the design over the wall” to
another group.

A typical result of such a process is that the first functioning design is too
costly to make, so manufacturing returns the design to engineering for rework; or
that the first functioning design does not appeal to customers, so marketing
returns the design to engineering for rework. Changes to accommodate
manufacturing are typically not consistent with those that please marketing, so
further rework typically occurs. Fast product developers, on the contrary, use
the degree of interaction among decisions, not membership in a skill category, as
the criterion of assigning decisions into sub-problems. If a marketing decision
like car height interacts with an engineering decision like engine power (and
therefore size), then these decisions must belong to the same sub-problem, even if
they belong to different functional specialities. Sub-problems are usually
identified with teams, because each sub-problem is the responsibility of a
dedicated team. In Clausing’s (1994, p. 40) word, “Many critical interfaces have
a dedicated team. Teams are formed wherever they are needed to achieve an
integrated approach to the development of the new product. The formation of the

7

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

best interlocking structure of teams is a key success factor.” This is the subject of
parts 5 and 6 of this paper.

Problem partitioning is made necessary by complexity; incorrectly done, it
generates rework. Similarly, complexity dictates that decisions have to be made
one at a time, due to working memory limitations. The order of making
decisions matters. Earlier decisions constrain later ones, thus reducing search
effort; but earlier decisions could constrain later ones by eliminating the desirable
options, thus generating rework. Two of the “cash drains of traditional product
development” described by Clausing (1994, pp. 19-20) are examples of incorrect
ordering of decisions. They are “technology push” (clever technology is
developed that does not satisfy any significant customer need); and “disregard for
the voice of the customer”. Clausing (1994, p. 20) states “The first step in the
development of a specific new product is the determination of the customer’s
needs. In traditional product development the product has often been doomed to
mediocrity before the completion of the needs activity. The biggest culprit has
been the deployment of the voices of corporate specialists, rather than the voice of
the customer”. Fast developers, instead of starting with how to make a technically
satisfactory, functioning product, start with making decisions on the values of the
variables that are directly relevant to customers. This is usually called concept
generation and selection. See Ulrich and Eppinger (1995, p. 79, exhibit 2).
Technical considerations are used at this stage to guide the concept generation and
selection process, not to make technical decisions. The ordering of decisions is
considered in part 3 of this paper.

The need for communication in NPD is also dictated by complexity.
Decisions made in different sub-problems have to be checked for consistency; and
earlier decisions have to be checked for consistency with later decisions. Lack of
consistency implies revision of already made decisions, i.e. rework. Slow
developers are characterized by infrequent communication between decision­
makers, relatively late in the NPD process. Fast developers are characterized by
a large amount of communication early in the NPD process. Womack et. al.
(1989, p. 115) state “In the best team projects, the numbers of people involved are
highest at the very outset. As development proceeds, the number of people
involved drops as some specialities are no longer needed. By contrast, in many
mass-production design exercises, the number of people involved is very small at
the outset but grows to a peak very close to the time of launch, as hundreds or
even thousands of extra bodies are brought in to resolve problems that should
have been cleared up in the beginning.” Communication in slow NPD groups
takes place after design decisions have been made on a large part of the product;
these decisions are “thrown over the wall” to a group responsible for another set
of decisions. Communication in fast NPD groups takes place before, as well as
after, design decisions have been made. Communication before decision-making

8

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

does not intend to render already taken decisions consistent: but to render more
concrete the goals of NPD by eliminating values of variables that are not
consistent with any values of other variables, and thus avoid rework in the future.
For example, the goal of achieving durability of a part may be achieved by gold-
plating it; if this is consistent with none of the allowed values of the total cost
variable, the gold-plating option can be eliminated before design begins: gold-
plating could never be part of an acceptable design. Ulrich and Eppinger (1995.
p. 93) classify this kind of communication in their concept generation phase of
NPD (they give an example of excluding from the beginning the nuclear power
option for supplying with energy a hand-held nailer, even though the design team
knew of nuclear devices used to power artificial hearts). This paper discusses
communication in section 4.

The literature cited suggests that rework is the characteristic symptom of
slow NPD; and that what makes the difference between fast and slow product
developers is their problem-partitioning, decision-ordering, and communication
techniques. The present paper presents a causal relation between such techniques
and the amount of rework; it is organized as follows.

Part 2 will define product development as a constraint satisfaction problem
(CSP), and will show that constraint satisfaction problems are sufficiently
expressive to capture the concerns of product developers (listening to the voice of
the customer, design for manufacturing, robust design, . . .). Part 3 will present
the main algorithm for solving constraint satisfaction problems, and will explain
why it generates rework. Part 4 will present a special class of constraint
satisfaction problems (binary, tree-structured ones) for which a decision-ordering
technique and a communication technique are sufficient to eliminate rework (no
problem partitioning is needed).

Parts 5 and 6 consider arbitrary CSP’s and their transformation into binary,
tree-structured CSP’s. This transformation depends on a particular problem
partitioning method. Part 5 considers the properties of each individual
subproblem. Part 6 explains how the subproblems are linked to each other to
form a tree; and how this tree is used to transform the original CSP into a binary
tree-structured one, so that the methods of section 4 can be applied to eliminate
rework between subproblems. Part 7 discusses the costs and benefits of these
methods. Part 8 concludes.

2. Design problems as constraint satisfaction problems

To define the design problem mathematically, 1 will first borrow a
description of the design problem from the literature on "quality function

9

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

deployment"; see Hauser and Clausing (1988). Wheelwright and Clark (1992. p.
229), and Clausing (1994). Suppose that the design task is the development of a
gear system for the automatic film rewinder of a camera. The consumer of a
camera cares about some of its attributes: speed of rewinding, sound, reliability.
cost, size..... Each of these attributes can be represented by a variable that takes
values in some finite domain. The values of the variables are restricted by
consistency constraints: for example, a camera of some size and reliability cannot
cost less than some amount. To deliver the attributes valued by the customer,
engineers have to decide on a number of engineering attributes: number of gears.
diameter of gears, number of teeth per gear..... Engineering attributes can also
be represented by variables that take values in some finite domain. There are also
consistency constraints between engineering and customer attributes: for example
two gears of a certain size and tooth profile cannot generate a sound lower than
some level. Finally, there are consistency constraints between the engineering
attributes themselves: for example, the weight and size of gears are related. In a
similar way, one can link engineering attributes to production process attributes,
and therefore to cost, quality and variety attributes. Finally, the objectives of
design can also be represented by a relation (a constraint) between attributes: for
example, deliver a rewind system that costs less than a certain amount, rewinds in
less than a certain amount of time, and will not break down before it is used a
certain number of times. In the words of Chandrashekaran (1990, p. 65):
"Formally, all design can be thought of as constraint satisfaction".

The considerations of section 1 motivate the study of the following problem

Definition 1: A constraint satisfaction problem (CSP) is a tuple (X, D, R,s,e)

• X = (x j,.. . x n} is a finite set of variables;
• D = (Dj ... Dn} is a tuple of finite sets;
Dj is the domain of variable x t .

• R is a tuple of relations (constraints). Each relation c e R is defined by its
scope s(c) ç X, i.e. the variables it involves, and its extent e(c) ç I~[D ,, i-e - the

i'ej(c)
tuples that satisfy c.

Definition 2: A solution of a CSP (X, D, R, s,e) is a tuple u = (u1...un) such that

• Uj e D,for all i = 1 ..., n

10

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

• for each constraint c e R with scope s(c) = {.vn ... x ik}, we have
(unuik)ee(c) , i.e. all constraints are satisfied by u.

This formulation of the product design problem is sufficiently expressive to
capture not only the basics, but also design for manufacturing, and robust design.
Design for manufacturing takes into account manufacturing cost at the time the
product is designed; seemingly minor design details can have a major impact on
cost. For example, there is usually some room to vary the number of components
that make up a product, and a number of options as to how the components will
be attached to each other. More components imply less fabrication cost but
greater assembly cost; using screws to attach components to each other increases
assembly time, but facilitates product disassembly for repair and maintenance.
These concerns can be captured in a CSP by introducing extra variables for the
number of components of the product, and for the method of attachment; and
extra constraints to capture the relations between the values of these extra
variables and other variables appearing in the CSP (e.g. Cost). Design for
manufacturing is discussed in Whitney (1988), and Ulrich and Eppinger (1995.
Ch. 9) and their references. Robust design takes into account the fact that product
performance is conditional on the values of variables not controlled by the
customer; it aims to deliver the same product performance over a wide range of
the values of these variables, i.e. to deliver “robust quality” (Taguchi and
Clausing (1990)). This increases the value of the product to the customer and,
according to Clausing (1994, p 74), “robustness also greatly shortens development
time by eliminating much of the rework that is known as build, test and fix.” An
example of the kind of variables that affect product performance but are not
under customer control is given by Clausing (1994, p. 75) “A lemon is a car that
has excessive production variations. To overcome this, the production process
has to be robust so that they produce less variation, and the car design has to be
more robust so that its performance is less sensitive to production variations. The
customers also want a car that will start readily in winter and not overheat during
the summer; that is, they want a car that is robust with respect to the variations of
customer use conditions.” Robustness considerations can be expressed by a CSP if
each variable is replaced by a set of variables, each of which expresses the same
attribute in a different state of nature. Robustness is imposed by requiring that all
these variables take the same value, i.e. by extra constraints. Still more
constraints can express the relation of attributes in different states of nature.

The finiteness of the domains of a CSP ensures that we can always decide
whether a given CSP has a solution or not. The method is called generate and test
(GT): for each tuple u in FID,, test if each constraint c in R is satisfied. If yes,
declare a solution. If no, generate another tuple u and test it. There are only
finitely many tuples in ITD,, so GT will eventually terminate. GT is obviously

11

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

grossly inefficient, and we cannot expect to solve any CSP of reasonable size
using it. Formally, the number of steps GT takes to compute all solutions to a
CSP is an exponential function of the number of variables in the problem
(Mackworth (1992), p. 6). Perhaps surprisingly, it is not known whether there
exists or not an algorithm that solves the CSP in a number of steps that is a
polynomial function of the number of variables ("in polynomial time"). What is
known is that if such an algorithm exists, then many other combinatorial
problems will have such an algorithm (CSP is NP-complete). Such problems are
widely believed to be intractable, i.e. not solvable by an algorithm in polynomial
time. For solving such problems, therefore, it is imperative to have good
structuring techniques (problem-partitioning and solution-integration techniques)
that reduce the complexity of problem-solving, search techniques more efficient
than generate-and-test, and "decision-ordering" and "communication" techniques
that reduce the amount of rework.

3. Rework

Generate-and-test is inefficient because it first generates a complete vector
of values u1,...un and then checks for consistency. If inconsistency between, say,
u2 and tt3 could be detected before ui is generated, then we would not need to
check the whole vector for consistency (nor expand it beyond w4). This idea is
captured by depth-first search of the search-tree generated by the CSP in
question.

Definition 3.1: Let (X,D ,R ,s ,e) be a CSP. Order X = {a'j ... a„ } and each
domain D, in an arbitrary way. The search tree generated by (X , D, R, s, e) is
defined to be a rooted tree; the children of the root are the elements of D, in
ascending order; they are called first-level nodes. The children of any i-th level
node, l< /< n -l, are the elements of D1+, in ascending order. Level n nodes are
leaves, i.e. have no children. A path from the root to a leaf is a complete
assignment (of values to variables). A path from the root to an internal node at
level i is a partial assignment up to level i.

Definition 3.2: A partial assignment up to level i is consistent if it satisfies all the
constraints whose scope is a subset of {x j, x 2,.. . , x ,}.

Assignments, partial or complete, can be thought of as analytical
prototypes. Ulrich and Eppinger (1995, p. 219) define a prototype “as an
approximation of the product along one or more dimensions of interest.

12

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Analytical prototypes represent the product in a non tangible, usually
mathematical, manner”. The backtracking (BT) algorithm builds an analytical
prototype gradually, by successively assigning values to variables and checking
for consistency.

When no variable has been assigned a value, the algorithm is at level 0 (at
the root of the search tree). The algorithm starts by assigning to r ,, the first
variable in x, its first value; it is then at level 1. Suppose that the algorithm has
built up a partial assignment u1u2 ...uk up to level k, l<k<n. If k=n, the
algorithm terminates with success. If k<n, the algorithm picks the first value uk+l
in Dk+1 consistent with u1...uk', and extends the assignment by setting x k+l = uk+1.
If no such value of xM exists, the algorithm destroys the assignment xk=ut, i.e. it
backtracks to level k - 1; and creates the assignment xk = successor of uk, thus
returning to level k. If uk has no successor (because it is the last element of the
domain of xk), the algorithm backtracks to level k- 2 by destroying the assignment
xk f=uk,\ as well; it then returns to level k- 1 by setting xt_ {- successor of uk_x\ and
it checks this assignment for consistency with values in Dk. If the algorithm
backtracks to level zero, and u, has no successors, then the algorithm terminates
with failure.

The BT algorithm will always terminate, since it traverses a finite search
tree (depth-first). It is sound, in the sense that if it terminates with success, then
the complete assignment associated with successful termination is in fact a solution
of the CSP by construction; and if it terminates with failure, the CSP has in fact
no solution, since all branches of the search tree have been examined without
finding a solution. It is complete in the sense that if the CSP has a solution, the
algorithm will terminate with success; and if the CSP has no solution, the
algorithm will terminate with failure. These properties, together with its
superiority over the generate-and-test algorithm, motivate its use.

The BT algorithm generates rework every time it backtracks; a previously
made decision is changed, and additional constraint checks take place. What is the
importance of rework in determining development time? To see this, let r = \R\
be the number of constraints, and K = max|D, the number of values in the largest

i
domain. A solution obtained without rework requires at most rKn constraint
checks. (The BT algorithm in this case never encounters a non-extendable partial
assignment. At each level it checks at most K values of x,+ l for consistency with
the existing assignment up to level t. There are r constraints, so at each level at
most rK checks take place. And there are n levels, so at most rKn checks take
place overall.) A solution in general, however, can require up to rKn constraint

13

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

checks. This is because in the worst possible case, all K n possible complete
assignments will have to submit to at most r consistency checks each. The
difference rlC-rKn is due entirely to rework, and is huge even for moderate
values of n; for r=l, K=2, «=54, and assuming a million constraint checks per
second, the difference is a thousand years. Minimization of rework is thus
practically equivalent to minimization of total development time. The three
techniques introduced later on reduce the “effective” K, n and r respectively. The
communication technique reduces the size of the domains by eliminating options.
The problem partitioning technique reduces the number of variables. The
decision-ordering technique reduces the number of constraint checks. I start with
an important special case.

4. Binary, tree-structured constraint satisfaction problems

A CSP is binary if the scope of each constraint contains at most two variables. It
is tree-structured if its primal graph is a tree, i.e. a connected, acyclic graph.

Definition 4.1: The primal graph of a binary CSP (X.D .R ,s ,e) has X as its node
set; and there is an edge (x,y) in the primal graph if and only if there is a
constraint in R with scope {jc. v }.

The main result in this section is that a decision-ordering and a
communication technique applied to a binary, tree-structured CSP, allow the BT
algorithm to find a solution without rework. The two techniques themselves are
easy to apply, in a well-defined sense. The next example illustrates the
importance of a correct ordering of the variables.

Example 4.1: Consider the CSP problem with X= { jc,^c2̂ c3 }, D,={0,1},
/?={cn,c23} s(c0)={xij:j }, e(cl2)= { 0 0 ,l l}, e(c23)={01,10}. Its primal graph is a
tree. Consider first what happens if the variables are searched in the order x ,-x 3-
x2. The BT algorithm first sets x,=0,x3=0 (there are no constraints linking x, to
x3). It then performs the constraint checks c12(0,0) c23(0,0) c 12(0 ,l), and discovers
that x,=0 x3=0 is not consistent with any value of x2. Hence it backtracks, sets
x3= l, and performs the constraint checks c12(0,0), c23(0,l), both successful. In the
ordering jc, ,jc2,jc3, however the assignment x,=0 is immediately followed by the
constraint check c l2(0,0), since x, and x2 are linked by a constraint. This being
successful, the BT algorithm performs the test c23(0,0), which fails. It then tests
c23(0 ,l), which succeeds. Hence, in the ordering x ,-x 3- x 2 a solution was found
with five constraint checks, while in the ordering x ,-x2- x 3, with only three.

14

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Note that in the ordering x - x }- x 2, x2 is linked by an edge to two of the
variables preceding it, forcing two constraint checks of each extension of a partial
assignment that requires checking. In the ordering x ,-x 2-x „ however, each
variable is linked by an edge to at most one variable preceding it, so that pruning
of the search tree is more gradual and starts earlier than in the ordering x ,-x ,-x 2;
in the latter, no constraint limits that (x,, x3) assignments, and all pruning takes
place when all but one variable have been assigned values, thus negating the
advantage of backtracking over generate-and test. This motivates

Definition 4 .2: A total order < on the nodes of a graph has width one if for each
node u there is at most one v<u such that (w,v) or (v,«) is an edge of the graph.

The nodes of a tree can be ordered with a width-one ordering in time
proportional to the number of nodes in the tree. One way to construct such an
ordering is to pick a node and designate it as the root of the tree; then rank its
successors; then rank the successors of its successors, . . ., until the children of all
nodes are ranked. Then visit the nodes depth-first, starting from the root, and
from the first child of each node. Define w<v if u is visited before v; < is a total
order.

Fact 4 .1: The ordering on the nodes of a tree generated by depth-first search if
of width one.

Proof: Suppose, for contradiction, that this ordering is not of width one. Then
there is a node u that is linked by tree edges (n,v,) and (u , v2) to two of its
predecessors in the ordering generated by depth-first search of the tree. Since <
is a total order, assume without loss of generality that v,<v2<u, i.e. v, is visited
before v2, and v2 before u. Since v,<« and (v,, u) is an edge of the tree, depth first
search will visit it immediately after it visits all the children of v, ranked before
u. Since v ,< v2< m, v2 must be a child of v, ranked before u, or a descendant of such
a child. In either case, there is a tree edge (v^w,), with w, ranked before u , and
tree edges (w,,w2) (w2,w3). (ny^vv,) with wk=v2k> 1. But then the tree contains the
path (m,v i) (v 1,w]) . . . (w iM ,v2) (v2,h) , i.e. a cycle, while trees are acyclic.

This decision-ordering technique is designed to reduce the number of
constraint checks needed to find a solution. The communication technique I
discuss next aims to reduce the size of the domains before search begins by
eliminating the “gold-plating” options discussed in the introduction; formally it
aims to achieve directed arc consistency (DAC), a property I define next.

Definition 4,3: (Dechter and Pearl (1989)) Let B be a binary, tree-structured
CSP with a width-one ordering of its variables. B is directionally arc consistent if

15

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

for any constraint c with scope {x„a;;} and x,<xr every value a in D, is supported
by some value b in i.e. (a,b) belong to the extent of constraint c.

The next fact shows why Definitions 4.2 and 4.3 are interesting.

Fact 4.2: Let B be a binary, tree-structured, width-one ordered, directionally arc
consistent CSP. Then the BT algorithm will find a solution without rework.

Proof: Rework occurs only at a dead-end, i.e. when a partial assignment v,...v,
cannot be consistently extended to the next variable. I show by induction on i that
a dead-end can never occur. For /'= 1, this is guaranteed by DAC. For general i.
the assignment v,...v, already satisfies all constraints with scopes in the set

by definition of the BT algorithm. There is at most one constraint
with scope containing x,+1 and some xp 1 <j<i (width - one ordering guarantees
this); call this constraint cjM. By DAC there is a value v1+, in Di+t that supports v.;
hence v,...v,v1+1 is a consistent extension of v,...v,, and no rework will ever take
place.

The next fact states that cost of solving a CSP without rework.

Fact 4.3: Let B be a binary, tree-structured, width-one ordered, directionally arc
consistent CSP. The BT algorithm will find a solution of B after at most nk
constraint checks (k is the size of the largest domain of B).

Proof: The search tree has n levels. By fact 4.2, the BT algorithm will proceed
from one level to the next without rework. At each level, there is at most one j<i
such that (j,i+1) is the scope of some constraint. Hence Vj needs to be tested for
consistency with some value in D1+l at most k times (until its support in £>,+1 is
found). Hence, at most nk constraint checks will be performed.

These three facts suggest the following strategy for solving a binary, tree-
structured CSP; (a) compute a width-one ordering of its variables; (b) make B
directionally arc consistent; and (c) find a solution using the BT algorithm. It
remains to be seen how task (b) is done; the algorithm that makes B DAC is our
communication technique. I present it in two steps. Suppose first that there is an
algorithm g that takes as inputs pairs of domains (D„D) and outputs the set of
elements of D) that are supported by some element of D,; if there is no constraint
whose scope is the set {x,^}, g outputs Dr The algorithm, call it C, that achieves
DAC uses g as a subroutine. It works on a binary, tree-structured, width-one
ordered CSP as follows. Start with the last variable xn in the width-one ordering.
Find its parent, i.e. the unique variable preceding it in this ordering and linked to

16

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

it by an edge of the primal graph. (Each variable has a unique parent because the
primal graph is a tree and the ordering is width-one.) Replace D parent(n) by g (D„,
DpalcMn)), i.e. eliminate from the domain of parent(n) all those values not
supported by some value in D„. Repeat for

Fact 4.4: Algorithm C transforms a binary, tree-structured width-one ordered
CSP B into an equivalent CSP B' with the DAC property.

Proof: Let c be a constraint in R with scope {x^j} and xt<xr Let a be a value in
the domain of xi generated by the C algorithm. I show that a has support in

D'y First note that x, is the parent of Xj in the width-one ordering. Hence, at step
j of the C algorithm, all values in the domain of xf without support in the domain
of Xj are eliminated. The domain of x, can only shrink or remain the same after
step j, hence all its values when C terminates have support in the domain of xr
since the latter never changes after step j of algorithm C.

Algorithm C uses subroutine g; the latter can be described as follows. It
starts with the domains of two variables, D, and Dr that are linked by a constraint.
It takes the first value in Dp and checks whether there is a value in D, that
supports it; this step takes at most ID,I constraint checks. If the answer is yes, it
declares this value supported, and proceeds to the second value of D;. If the
answer is no, it deletes this value from D/ and proceeds to its second value. It
repeats until all the values of Dy have been either deleted or declared to be
supported.

Algorithms C and g are in fact communication techniques; at each step j of
g, someone responsible for decision x; asks someone responsible for decision
Xparenuj) whether x=a is consistent with some value of xpaientlJl. The answers are
then codified by algorithm C, which deletes unsupported values. How costly is
communication? This is answered by

Fact 4.5: A binary, tree-structured, width-one ordered CSP can be turned into a
DAC CSP with at most nk2 constraint checks.

Proof: Algorithm C goes through n stages; at each stage i it runs the subroutine g
(D„ D parent(l)). Algorithm g checks each value of D, for consistency with some
value of Dpan,„t(ll; at most k1 such checks are needed to find support for every value
of Dparent(1) that has such support, and delete the rest.

Facts 4.1 to 4.5 show that the total cost of solving a binary, tree-structured
CSP without rework is n+nk+nk2. Note that no problem-partitioning technique is

17

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

needed to eliminate rework in this special case. In this sense, a binary, tree-
structured CSP has optimal structure. The purpose of problem partitioning is to
transform an arbitrary CSP into an equivalent binary, tree-structured CSP.

5. Problem partitioning

This section and the next deal with arbitrary CSP’s. They show how
arbitrary CSP’s can be transformed into equivalent binary, tree-structured CSP's;
so that the techniques of section 4 can be applied to obtain a solution without
rework. The peculiar feature of the transformed CSP's is that their “variables"
are subproblems of the original CSP; the domains of the “variables” are the
solution sets of the corresponding subproblems; and all the constraints are binary,
equality ones that enforce that each variable of the original CSP is assigned the
same value in any two subproblems. Recall that in order to solve a CSP with n
variables, r constraints, and domains containing up to k values, one may need up
to rk" constraint checks. Hence, any problem decomposition seems likely to
generate large time savings, since rk"' + rk”2 is smaller than rk"'+n'- when n x and
n, are close to each other. Problem decomposition, however, creates two new
problems, namely extendability and coordination.

A solution of a subproblem may not be extendable to a full solution; and the
solutions of two subproblems may be extendable to full solutions, but not to the
same full solution. This is illustrated by the following example.

Example 5.1: Consider the CSP defined by X ={xl,x-,,x„x4,x5), D, = {a,fi,y ,8},
/?={c]24 ,c,3 ,c45 ,c234}, the obvious scopes, i.e. j (c,2)={x,̂ c2), and extents given by
e(c, 24) = {a<5<5, fiya, yfiy, Say) , e(cl3) = {a<5, fiy, yfi),
e(c234) = {<5(5<5, yya, fifty, aay),
e(c45) = {8a,fiy,a8}.

In what follows, I will represent each constraint by its scope, i.e. 12 will
stand for c 12. The subproblem {124, 234} has four solutions, namely
x xx 2x 3x 4 = a888,fiyya,yfifiy,8aay. The subproblem {124,13,234} is satisfied
only by the first three of these. The original problem has two solutions, namely
x l x 2x 3x i x 5 = a888a,fiyyaS. The partial solutions 8aay and yfifiy are not
extendable to a full solution. The partial solution a888 of {124,234} and the
partial solution fiyycx of {124,23,234} are both extendable, but to different full
solutions.

18

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

The example shows that arbitrary decompositions into subproblems will not
eliminate rework. The basic tool for finding the right decomposition is the dual
graph of a CSP; it records which constraints share which variables, i.e. the
potential extendability and coordination problems. In the definition that follows,
I use the notation (V, E, l) for a labelled graph; V is the set of nodes of the graph,
Eq Vx V is its set of edges, and t is a function that assigns a label to each edge.

Definition 5.1: The dual graph of a CSP (X , D, R, s,e) is defined by
• V=R
• E = {(c1,c2) e R x R: s(c1) n s(c2) * 0}
• /(c1,c 2) = s(c1) n s (c 2).

The dual graph of the CSP in ex. 5.1 has nodes 124, 13. 45, 234; edges (124, 13),
(124,234), (13, 234), (45, 234), (124, 45); and labels of edges (in the same order)
1, 24, 3, 4, 4.

I will only consider CSP’s with connected dual graphs; otherwise, an
efficient algorithm can find the connected components of the (disconnected) dual
graph, and each of them can be solved separately. I will only consider CSP’s with
reduced dual graphs, i.e. CSP’s in which no constraint’s scope is a subset of
another constraint’s scope; otherwise, if x(c) c s(c'), c can be eliminated and
e(c') can be restricted to contain only tuples consistent with e(c) on .s(c). In a
CSP with reduced dual graph, each constraint is uniquely represented by its scope;
I will adopt this notation from now on.

What is the best criterion for problem-partitioning? In ex. 5.1, consider
the partitioning (124,13) and (234,45). The two subproblems have to
communicate to set the values of x2,x3,x4 consistently; that is why they are linked
with edges (124, 234) and (13, 234), labelled with 24 and 3 respectively. The set
of variables (2,3,4) whose values need to be set consistently is not a subset of
either 124 or 13. Hence, subproblem (234,45) cannot communicate with
(124,13) through a single, representative constraint. Any “agreement” with
constraint 124 on the values of x2,x4 might conflict with “an agreement” with
constraint 13 on the value of x3. We would like each subproblem to be “coherent
enough” to be able to communicate with other subproblems throughout a single,
representative constraint. To formalize this idea, I introduce two definitions due
to Gyssens et al. (1944).

Definition 5.2: Let (R, E, l) be the dual graph of some CSP; let HaR, F cR -H be
two sets of constraints. F is connected with respect to H if for any two

19

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

constraints c,c' in F, there exists a sequence of constraints c=c,, c:,...,c„= c' in F
such that for all i= 1 1 .
• (c„ cI+)) is an edge in E.
• /(Cj,cl+1) contains a variable not in the scope of any of the constraints in H, for
each i= l,...,n -l.

Intuitively, subproblem F is connected with respect to subproblem H if any
two of the constraints in F share, directly or indirectly, variables whose value
cannot be set in subproblem H. Hence, even if H is solved and its (partial)
solution imposed on F, there may still be extendability and coordination problems
in F.

Example 5.1: (continued) Let H={ 124}. Then F={ 13,234,45} is not connected
wrt H, because the label 4 on the edge that links 234 to 45 belongs to the scope of
a constraint in H. F consists of two connected components wrt H, namely (13,
234} and {45}.

The idea of the “coherent enough” subproblem that can communicate with
other subproblems through a single representative is captured in the following
definition.

Definition 5.3: Let (R,E ,l) be the dual graph of some CSP. A hinge is a set of
constraints H that contains at least two elements and is either equal to R or a
subset of R that satisfies: for each connected component C, of R-H wrt H, there is
a constraint h, in H such that scope(C,) n scope(//) c s c o p e } w h e r e the scope
of a subproblem is the union of the scopes of its constraints. A hinge is minimal
if all its proper subsets are not hinges.

Example 5.1: (continued) The minimal hinges of the CSP defined in Example
5.1 are H,={ 124,13,234}, / / 2={45,234}, / / 3={45,124}.

Why should CSP’s be decomposed into minimal hinges? Two duality-type
results provide an answer: decomposition into hinges is the only partitioning
method that creates no extendability problems where none exist in the first place.

Definition 5.4: A problem decomposition method preserves extendability if any
subproblem F it creates has the following property.
• if every solution of every constraint in R extends to a full solution, then every
solution of F extends to a full solution. The next example shows that this is not a
trivial property.

20

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Example 5.2: Consider the CSP given by X={x,,j:2rx3,x4), D={a,|3,Y}
R={ 12,23,34,14}, and e(12)={ya,yp} <?(23)={aa,p|3}, ^(34)={ ocy,Py} ,
£(14)={yy}. There are two full solutions, yaay and yPPy. Every solution of
every constraint is extendable. The subproblem {12,14,34}, however, has the
nonextendable solutions yapy, yPay, both violate constraint 23.

The next fact, due to Gyssens et al. (1994), shows that the hinge
decomposition method preserves extendability. Its proof is in the appendix.

Fact 5.1: Let B be a CSP where every solution of every constraint is extendable.
If H is a hinge of B, then every solution of H is extendable.

The next fact shows that the hinge decomposition method is the only one
that preserves extendability in all CSP’s. Its proof is in the appendix.

Fact 5.2: Let (X,R,s) be a CSP skeleton, i.e. a CSP problem whose domains and
extents have not been specified. Let F be a subset of R that is not a hinge. Then,
there exist domains D r ..Dn and extents e(c) for each constraint c in R such that in
the resulting CSP (X,D,R,s,e).
• every solution of every constraint in R is extendable.
• F has a nonextendable solution.

The last fact that makes hinge decomposition interesting is that the size of
the largest minimal hinge is an invariant of the dual graph of a CSP; it is due to
Gyssens (1986). The size of the largest subproblem of a CSP determines solution
time. It makes sense, then, to classify NPD problems into classes representing
their degree of difficulty (as measured by the size of their largest minimal hinge);
call this parameter the degree of cyclicity of the dual graph of a CSP. The next
example shows that there is no relationship between the number of variables of a
CSP and its degree of cyclicity, except that the former is an upper bound on the
latter. It follows that the number of variables of a problem is not a very precise
indicator of its degree of difficulty.

Example 5.3: Consider a sequence A 2,...A„ of CSP’s. Each At has n variables.
The constraint set of each A k,k=2,3,...,n, is Rt={ 12,23,...,(/:— 1)jfc,Jk 1 ,Jt(it+1),...,(n -
l)n}. The largest minimal hinge of Ak is the set { 12,23,...,£1} for k>2\ its size is
k. Hence problems with the same number of variables n can have degrees of
cyclicity ranging from 2 to n.

This section has looked at individual subproblems and their properties. The
next one discusses how subproblems should be connected with each other. Recall

21

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Clausing's (1994, p.40) statement: “The formation of the best interlocking
structure of teams is a key success factor.”

6. The best interlocking structure of teams

This section builds on the ideas of sections 4 and 5 to find a way of
integrating subproblem solutions that minimizes rework. The basic ideas are
three. First, as the results of Section 5 suggest, each subproblem should be a
minimal hinge; so that any extendability present in the constraints of the original
CSP is preserved. Secondly, as the results of Section 4 suggest, subproblems
should be linked to each other to form a binary, tree-structured CSP; so that a
solution can be discovered without rework after application of the decision­
ordering and communication techniques. Thirdly, given that the size of the
largest subproblem determines solution time, subproblems of maximum size
should be used as sparingly as possible. I start formalizing these ideas with the
notion of a hinge tree, due to Gyssens et al. (1994).

In the next definition, the scope of a hinge is the set of variables that appear
in the scope of some constraint in the hinge.

Definition 6.1: Let G=(R,E,l) be the dual graph of a CSP. A hinge tree of G is a
labelled tree with nodes N, edges A and labelling function X such that

(1) Each node in A is a minimal hinge of G.

(2) Each constraint in R belongs to some node in N.

(3) If (//,//') is an edge in A, then Hr\H' is a singleton; and X(H,H')=HnH'.

(4) If (H,H') is an edge in A , then scope (//)nscope(//')=scope(//n ///).

(5) If (/ / l, / /2) (//2, / /3),.„, (//„_,,//„) is a path of edges in A , then
scope(//,)nscope(//„)cscope(//,),i=2,3,... ,n -1.

Property 1 was justified in section 5. Property 2 is obviously necessary to
cover the original CSP. The next three examples motivate the three remaining
properties. (Recall that hinges in the hinge tree correspond to subproblems to be
solved independently of each other).

Example 6.1: This example motivates property (3) of a hinge tree. Let B be the
CSP defined by X={x,,x2,x3 ,x4rx5) R={ 12,13,234,235). Its dual graph has R as its

22

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

node set; edges (12,13), (12,234), (12,235) (13,234), (13,235), (234.235); and
labels of edges, respectively, 1,2,2,3,3,23. This graph contains three minimal
hinges, namely H,={ 12,13,234} H2={ 12,13,235}, H,={234,235}. There are two
hinge trees satisfying properties (1) (2) and (3), namely these with nodes sets
) / / , , / /3},i= 1,2. There is one hinge tree that satisfies properties (1) (2) but violates
property (3), namely {HX,H2}. Problem decomposition {Hl,H2} requires the
solution of two subproblems of maximum size; while problem decompositions
{ //,,//3},i=l,2, require the solution of only one subproblem of maximum size.

Example 6.2: This example motivates property (4) of hinge trees. Consider the
CSP B with X={xx,x1,...,x1) and /?={23,124,127,135,136}. Its dual graph has
nodes R\ and there is an edge connecting any two nodes. The minimal hinges are
//,={ 23,124,135} / / 2= {23,124,136}, / / 3={ 23,127,135}, / / 4= {23 ,127,136},
Hs={ 124,127} and H6={ 135,136}. There are two trees that satisfy properties 1, 2
and 3 but violate 4, with node sets {//,,//„} and {H2,H3}. To see the violation of
property 4 by the first of these trees note that scope(//,)nscope(/f4)={ 1.2,3},
while scop e(//,n //4)=scope(23)={2,3}. The trees that satisfy properties 1 through
4 are those with node sets {Ht,H5,H6} for /= 1,2,3,4. Every problem
decomposition of the latter form contains only one hinge with three elements;
every problem decomposition that violates property 4 contains two hinges with
three elements each. Again, a violation of one of the properties of a hinge tree
results in larger than necessary subproblem size.

Example 6.3: This example motivates property (5) of hinge trees. Let B be a
CSP with X ={x,,...,x7} and R={ 14,36,47,139,456,123,58}. The minimal hinges
are H x={ 14,36,139,456}, H2={ 14,36,123,456}, //,={ 139,123}, tf4={47,456},
/ / 5={58,456}. The trees of hinges that satisfy properties 1 through 4 but violate
property 5 have node sets {H„Hm,H],Hn} where i*j,ij= 1,2 and m*n,m,n=4,5; and
edges all labelled with 456. The trees of hinges that
satisfy all five properties have node sets { //„ //3,//4,/ /5}i= 1,2; and edges (//,,//3),
(//„tf4) (H„//5); the first edge labelled with 123 and the other two with 456.
Again, the trees of hinges that satisfy all five properties involved only one hinge
of maximum size; while all those trees of hinges that satisfy only the first four
properties involve two hinges of maximum size, resulting in larger than necessary
subproblem size.

I now describe how exactly a hinge tree is used to solve a CSP. There are
three ideas involved: problem decomposition into minimal hinges; subproblem
communication through the edges of the hinge tree; and solving not the original
CSP (by picking values for each individual variable out of its domain), but an
equivalent, dual CSP (by picking tuples of values out of each subproblem’s
solution set). The basic construction is described by the next definition.

23

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Definition 6.2: Let B=(X,D,/?,5,e) be a CSP, G={R,E.I) its dual graph, and
(N A X) a hinge tree of G. The dual CSP of B is defined to be a binary tree-
structured CSP B '=(X'.D',R',s',e'), as follows.
• X'=N;R'=A;s\H],H 2) = {Hi ,H 2} for each (/ / , , / / ,) in R'.
• for each hinge H in N, D'h= solution set of H
• for each edge (Ht,H2) in A, e '(//,,//2) = all pairs (u',u2) where u‘ is a solution of
Ht,/=1,2; and where u' and u2 assign the same values to the variables they share,
i.e. to the variables in scope(//,) n scope(//2).

The dual of a CSP, being binary and tree structured, can be solved without
rework, after the methods of Section 4 have been applied. The next example
takes us through the steps of the solution process, assuming that a hinge tree has
already been constructed and the solution sets of the hinges computed.

Example 6.4 The CSP B is defined by X = {a-,;c2,...jc9};Z),= { a ,p , y,5},
/ = 1,2.....9; R = {12,1345,238,456,57,67,89}; e(l2) = {a a , y3/3, yy. 88, a/3. /3a}.
e(l 345) = {a/3/3a, fiyyfi, y88y, 8888},
e(238)={ay<5. a/3a. pyfi, y8y, 555},
e(456)= {yya, paa. Syfi, 555}, e(57) = {aa, /3/3, yy, 55}
e(67)= {aa, /3/3, yy}, e(89) = {aa, 55}.

A hinge tree of B has nodes H],H2,H},Hi where H,={ 12,1345,238),
H,={ 1345.456), H3=(456,57,67), H4={238,89); and edges
(HlH2),(H2H3),[H]Hi), labelled, respectively, with 1345, 456,238. The
solution sets of each hinge are given by
DW| = {x1x2x3a:4j:5a:8 = ppyyfia, yySSyy, 555555. aa/3/3aa, /3ay)/3a},
D H2 = {x,x3x4x5x6 = ySSyfi, 55555, a/3/3aa},
D = {x4x5x6x7 = yyaa,/3aaa,5555},

D Hi ~ { jc2 ̂ 3^8 ̂ 9 = ccySS, 8888, apaa}.

A width-one ordering of the hinge-tree is 7/, < H2 < Hi < HA. The parent
of H4 and H, is H,, and the parent of H3 is H2. The DAC algorithm starts from H4,
and eliminates from D m all tuples inconsistent with all values in Z7W4; since H,
and H4 share the variables 238, every solution of H, that does not agree with any
solution of H4 on the variables 238 is eliminated. We get
D ' Hi ={x]X2x 2x^x5x s = 888888,aappaa,payypa} i.e. the first two solutions
of H, are eliminated by the DAC algorithm.

24

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

The DAC algorithm now proceeds to the hinge immediately preceding H4 in
the width-one ordering, namely H3; and eliminates from D H2 (the domain of the
parent of H3) all tuples that do not agree on the variables 456 with any tuple in
D H3. The resulting domain of H, is D ' H2 = {xxx 3x Ax 5x b = 88888, aP/iaa}, i.e.
H2 has lost one solution. Finally, the DAC algorithm proceeds to H,, and
eliminates from D ' m (the domain of the parent of H2) all tuples that do not agree
on the variables 1345 with any tuple in D ' H2. The resulting domain of H, is
D " m = {x1x 2x3x4x 5x g = 888888, aap/iaa}, i.e. H, has lost one more solution.
The BT algorithm now takes over from the DAC algorithm.

It starts from the first value of the first variable in the dual CSP, i.e. from
the tuple x ,x 2x 3 x4x5x8 = 888888 in D " m . It proceeds to the next dual variable,
i.e. H2, and discovers that x]x 3x Ax 5x6 = 88888 is consistent with its previous
assignment. It then proceeds to H3, H4, in that order, and discovers that an
assignment of 8 to all variables in the scope of each hinge is consistent with all
previous assignments. The BT algorithm terminates with the solution x t = 8 , all
i, without having performed any rework, since no assignment of 8‘s to each
hinge’s scope ever had to be undone. If the BT algorithm had started from the
other value in D " m , namely aa(3(3aa, it would have extended it without
rework to the other full solution, namely a a p p a a a a .

7. Costs and benefits of organizing for fast NPD

The previous sections have shown that a decision-ordering, a
communication, and a problem-partitioning technique will solve a CSP without
any rework between subproblems. What is the overall cost of applying these
methods, and how does it compare with the cost o f solving a CSP without them?
Given that typical NPD problems are large (recall the figures cited in point six of
the introduction), it makes sense to adopt rate of growth as our measure of cost.
To see what this means, recall that in section 4 it was seen that to solve binary,
tree-structured problems we need to perform n constraint checks to obtain a
width-one ordering; nk2 constraint checks to obtain arc consistency, and nk
constraint checks to solve the resulting CSP. The overall cost is thus
n + nk + nk2. Considering only the rate of growth means replacing this
expression by its leading term, ignoring its coefficient. Hence

Fact 7.1 The cost of solving a binary, tree-structured CSP is k 2, where k is the
size of its largest domain.

25

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

This is standard computer science practice. Cormen et al. (1990. p. 10),
state: “It is the rate of growth of the running time that really interests us. We
therefore consider only the leading term of a formula since the lower order terms
are relatively insignificant for large n. We also ignore the leading term's constant
coefficient, since constant factors are less significant than the rate of growth in
determining computational efficiency for large inputs”.

Recall also that to solve an arbitrary CSP we need rk" constraint checks.
Hence

Fact 7.2 The cost of finding a solution of an arbitrary CSP with the (unaided) BT
algorithm is k n.

To apply the methods of section 6, we need to compute the solution sets of
subproblems of the original CSP, as opposed to finding a single solution. How is
this done? If B is the CSP whose solution set we seek, apply the BT algorithm to
its dual CSP, with one difference; once the first solution is identified, instead of
stopping, discard the portion of the search tree already explored by the BT
algorithm, and apply the BT algorithm to the rest. Stop when the whole search
tree has been explored; any time a new solution is identified, add it to the solution
set. If the size of the extends of the constraints in the original CSP has maximum
£, and if there are r constraints in the original CSP, the solution set can be
computed after at most l r constraint checks. Hence, if d is the degree of cyclicity
of the dual graph of a CSP, computing the solution set of any subproblem that is a
node of a hinge tree takes at most ld constraint checks, since d is the maximum
number of constraints any such subproblem may contain.

Fact 7.3 The cost of computing the solution sets of the subproblems that are the
nodes of a hinge tree is ld.

To apply the methods of section 6 we need an algorithm that computes a
hinge tree. Here is what the algorithm basically does. It picks some constraint c
in R and computes the connected components C,,.... Cm of R - {c} wrt c. It then
forms the hinges //, =C, u { c } ; and the tree with nodes edges

m - 1, and labels of all edges c. It then marks c as used, and
repeats the same process with some H, that contains more than two elements, and
at least one unused element. It stops when all constraints have been marked used,
or when all nodes in the constructed tree contain only used elements. In case
R - {c}, or some Hl - { c } , contains only one connected component wrt c, c is
marked used, another, unused constraint is picked, and the process repeated. The
cost of this algorithm is actually the cost of computing connected components;

26

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

connected components are computed by standard graph algorithms (Cormen et al.
(1990, p. 488)).

Fact 7.4 (Gyssens et al. (1994)). The cost of computing a hinge tree is r2, where
r is the number of constraints of the original CSP.

Note also that the number of nodes in a hinge tree is bounded by r, since
hinges are constructed as connected components of subsets of R until R is covered.

Finally, the methods of section 6 require the discovery of a solution of a
binary, tree structured CSP using the methods of section 4. The variables of this
CSP are the nodes of the hinge tree. We know from fact 7.1 that the cost of
solving such a problem is determined by the size of the largest domain of the
CSP, i.e., in our case, by the size of the largest solution set pertaining to a node of
the hinge tree. This is no larger than (.d, where i is the size of the largest extent
of a constraint and d the number of constraints in the largest minimal hinge.
Hence by fact 7.1

Fact 7.5 The cost of finding a solution to the dual CSP defined by the hinge tree
of the original CSP is i 2d.

By facts 7.3, 7.4 and 7.5 we have that the sum of costs of applying the
methods of section 6 is r 1 + i d + i 2d. Hence, neglecting all but the leading terms,
we obtain

Fact 7.6 The cost of finding a solution to a CSP using the decision-ordering,
communication and problem-partitioning techniques is l 2d.

Comparing l ld with k n, we conclude that the organizational methods that
eliminate rework between subproblems are worth their cost if the degree of
cyclicity d of a CSP is small relative to the number of variables n of the same
CSP.

8. Conclusion

This paper considers technological change, and in particular new product
and process development, from a new perspective, that of complex problem­
solving. Technological change is made possible by organizational techniques that
reduce the complexity of problem-solving; differences in the technological
performance of firms are attributed to their different problem-solving styles.
More specifically, this paper proposes the formalism of constraint satisfaction

27

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

problems (CSP) as (a) expressive enough to capture design problems, including
design for manufacturing, listening to the voice of the customer, and robust
design; and (b) tractable enough to be fully decidable, i.e. to possess an algorithm
that will always correctly generate a solution, or the set of all solutions. This
algorithm produces too much rework; in fact, rework is the main reason and
symptom of slow new product development, both on theoretical and empirical
grounds. To minimize rework, this paper proposes three distinct techniques. A
technique to order decisions; a technique to make more specific the goals of
design by communication prior to decision-making; and a problem-partitioning
technique that minimizes subproblem size subject to the constraint of not creating
extra extendability or coordination problems. The three techniques together
provably minimize rework and thus accelerate decision-making. The problem­
partitioning technique in particular associates with each design problem a tree of
subproblems; the size of the largest subproblem is an index of the degree of
difficulty of the design problem. The nature of the technical and marketing
constraints faced by product designers determines both the organizational form
(the tree of subproblems) appropriate for the design problem and the speed of
reaching a solution (an exponential term whose exponent is the size of the largest
subproblem). This organizational form is reusable because it depends only on
structural information, i.e. on which variables enter which constraints, not on the
values that satisfy each constraint. The cost of building this organizational form
is quadratic in the size of the design problem, i.e. other things being equal, larger
firms with many interdependent products face disproportionately larger costs of
adjusting their organizational forms to changes in the underlying structural
information. If the underlying structure remains the same, though, an incumbent
firm that has already computed its organizational form can amortize it over many
different NPD efforts, and will develop new products faster than a new entrant
who still has to figure out how to organize for new product development.

The empirical literature on new product development stresses the
importance of design in determining operational efficiency. Baily and Gersbach
(1995, p. 347) summarizing their findings on the determinants of operating
efficiency, state “Traditional determinants, such as capital intensity and scale were
found to play a role. But innovations such as design for manufacturing and
workplace organization turned out to be be even more important”. The empirical
literature by itself, however, cannot pinpoint exactly how fast product developers
differ from slow product developers; a result of this is that it is not clear to slow
developers what they should be imitating to become fast product developers.
Ward et al. (1995) make this point clearly in their discussion of Toyota's NPD
organization, which they call set-based concurrent engineering: “We do not know
enough about how set-based concurrent engineering is or should be performed.
Toyota’s approach is not well-defined or documented”, and “Since there is no
proven formal methodology, learning the process will be slow and error-prone”.

28

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Furthermore, the empirical literature has not established causal
relationships between time and problem-solving techniques; only associations have
been documented. Ward et al. (1995) state “Each advantage of set-based
concurrent engineering described earlier represents a hypothesis - that there is a
causal relationship between Toyota’s success and its use of set-based concurrent
engineering. An important task for further research is therefore to demonstrate
this causal link more carefully. Unfortunately such causes are difficult to show in
complex organizations”. Seen in this light, this paper contributes a well-defined
set of techniques that provably accelerate NPD; these techniques could, therefore,
provide a starting point for filling this gap in the literature.

29

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

R eferences

1. K. Arrow (1962): “The Economic Implications of Learning by Doing".
Review o f Economic Studies, 19. 155-173.

2. M. Baily and H. Gersbach (1995): "Efficiency in Manufacturing and the
Need for Global Competition", Brookings Papers: Microeconomics. 307-
358.

3. J. Blackburn (1991): Time-Based Competition. Business One Irwin.
Homewood II.

4. B. Chandrashekaran (1990): “Design Problem Solving". A1 Magazine.
Winter 1990. 59-71.

5. K. Clark and T. Fujimoto (1991): Product Development Performance,
Harvard Business School Press, Boston, Ma.

6. D. Clausing (1994): Total Quality Development. ASME Press. New York.

7. R. Cormen et al. (1990): Algorithms, MIT Press.

8. R. Dechterand and J. Pearl (1989): “Tree Clustering for Constraint
Networks”, Artificial Intelligence, 38, 353-366.

9. R. Florida (1993): Beyond Mass Production, Oxford U.P.

10. M. Graham (1986): The Business o f Research, Cambridge U.P.

11. M. Gomory (1989): “From the Product Cycle to the Ladder of Science”,
Harvard Business Review.

12. M. Gyssens (1986): “On the Complexity of Join Dependencies”, ACM
Transactions on Database Systems, 11, 1, 81-108.

13. M. Gyssens et. al. (1994): “Decomposing Constraint Satisfaction Problems
Using Database Techniques”, Artificial Intelligence, 66, 57-89.

14. J. Hauser and D. Clausing (1988): “The House of Quality”, Harvard
Business Review, May-June, 63-73.

30

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

15. A. Mackworth (1992): “The Logic of Constraint Satisfaction". Artificial
Intelligence, 58, 3-20.

16. R. Nelson (1959): “The Simple Economics of Basic Scientific Research".
Journal o f Political Economy. 297-306.

17. T. Ohno (1988): Workplace Management, Productivity Press.

18. P. Romer (1994): “The Origins of Endogenous Growth", Journal o f
Economic Perspectives, 8, 1, 3-23.

19. N. Rosenberg and D. Mowery (1989): Technology and the Pursuit o f
Economic Growth, Cambridge University Press.

20. R. Solow (1994): “Perspectives on Growth Theory", Journal o f Economic
Perspectives, 8, 1, 45-54.

21. G. Stalk and J. Hout (1990): Competing Against Time, Free Press.

22. K. Taguchi and D. Clausing (1990): “Robust Quality”, Hansard Business
Review, January-February.

23. K. Ulrich and S. Eppinger (1995): Product Design and Development,
McGraw Hill.

24. A. Ward et. al (1995): “The Second Toyota Paradox”, Sloan Management
Review.

25. R. Wheelwright and M. Clark (1992): Revolutionizing Product
Development, Harvard Business School Press.

26. R. Womack, et. al. (1989): “The Machine that Changed the World”,
Harper Perennial.

31

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

EUI
WORKING
PAPERS

EUI Working Papers are published and distributed by the
European University Institute, Florence

Copies can be obtained free of charge
- depending on the availability of stocks - from:

The Publications Officer
European University Institute

Badia Fiesolana
1-50016 San Domenico di Fiesole (FI)

Italy

Please use order form overleaf

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

Publications of the European University Institute

To The Publications Officer
European University Institute
Badia Fiesolana
1-50016 San Domenico di Fiesole (FI) - Italy
Telefax No: +39/55/4685 636
E-mail: publish@datacomm.iue.it

From N am e..
Address..

□ Please send me a complete list of EUI Working Papers
□ Please send me a complete list of EUI book publications
□ Please send me the EUI brochure Academic Year 1996/97

Please send me the following EUI Working Paper(s):

No, Author ..
Title: ...
No, Author ..
Title: ...
No, Author ...
Title: ...
No, Author ..
Title: ...

Date

Signature

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

mailto:publish@datacomm.iue.it

Working Papers of the Department of Economics
Published since 1994

ECO No. 94/1
Robert WALDMANN
Cooperatives With Privately Optimal
Price Indexed Debt Increase Membership
When Demand Increases

ECO No. 94/2
Tilman EHRBECK/Robert
WALDMANN
Can Forecasters’ Motives Explain
Rejection of the Rational Expectations
Hypothesis?

ECO No. 94/3
Alessandra PELLONI
Public Policy in a Two Sector Model of
Endogenous Growth *

ECO No. 94/4
David F. HENDRY
On the Interactions of Unit Roots and
Exogeneity

ECO No. 94/5
Bernadette GOV AERTS/David F.
HENDRY/Jean-Fransois RICHARD
Encompassing in Stationary Linear
Dynamic Models

ECO No. 94/6
Luigi ERMINI/Dongkoo CHANG
Testing the Joint Hypothesis of Rational­
ity and Neutrality under Seasonal Coin­
tegration: The Case of Korea

ECO No. 94/7
Gabriele FIORENTINI/Agustfn
MARAVALL
Unobserved Components in ARCH
Models: An Application to Seasonal
Adjustment

ECO No. 94/8
Niels HALDRUP/Mark SALMON
Polynomially Cointegrated Systems and
their Representations: A Synthesis

ECO No. 94/9
Mariusz TAMBORSKI
Currency Option Pricing with Stochastic
Interest Rates and Transaction Costs:
A Theoretical Model

ECO No. 94/10
Mariusz TAMBORSKI
Are Standard Deviations Implied in
Currency Option Prices Good Predictors
of Future Exchange Rale Volatility?
ECO No. 94/11
John MICKLEWRIGHT/Gyula NAGY
How Does the Hungarian Unemploy­
ment Insurance System Really Work? *

ECO No. 94/12
Frank CRJTCHLEY/Paul
MARRIOTT/Mark SALMON
An Elementary Account of Amari’s
Expected Geometry

ECO No. 94/13
Domenico Junior MARCHETT1
Procyclical Productivity, Externalities
and Labor Hoarding: A Reexamination of
Evidence from U.S. Manufacturing

ECO No. 94/14
Giovanni NERO
A Structural Model of Intra-European
Airline Competition

ECO No. 94/15
Stephen MARTIN
Oligopoly Limit Pricing: Strategic
Substitutes, Strategic Complements

ECO No. 94/16
Ed HOPKINS
Learning and Evolution in a
Heterogeneous Population

ECO No. 94/17
Berthold HERRENDORF
Seigniorage, Optimal Taxation, and Time
Consistency: A Review

ECO No. 94/18
Frederic PALOMINO
Noise Trading in Small Markets *

ECO No. 94/19
Alexander SCHRADER
Vertical Foreclosure, Tax Spinning and
Oil Taxation in Oligopoly

•out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

ECO No. 94/20
Andrzej BANIAK/Louis PHLIPS
La Pléiade and Exchange Rale Pass-
Through

ECO No. 94/21
Marie SALMON
Bounded Rationality and Learning;
Procedural Learning

ECO No. 94/22
Isabelle MARET
Heterogeneity and Dynamics of
Temporary Equilibria: Short-Run Versus
Long-Run Stability

ECO No. 94/23
Nikolaos GEORGANTZIS
Short-Run and Long-Run Cournot
Equilibria in Multiproduct Industries

ECO No. 94/24
Alexander SCHRADER
Vertical Mergers and Market Foreclosure:
Comment

ECO No. 94/25
Jeroen HINLOOPEN
Subsidising Cooperative and Non-
Cooperative R&D in Duopoly with
Spillovers

ECO No. 94/26
Debora DI GIOACCHINO
The Evolution of Cooperation:
Robustness to Mistakes and Mutation

ECO No. 94/27
Kristina KOSTLAL
The Role of the Signal-Noise Ratio in
Cointegrated Systems

ECO No. 94/28
Agustin MARA VALL/Vfctor GÔMEZ
Program SEATS “Signal Extraction in
ARIMA Time Series” - Instructions for
the User

ECO No. 94/29
Luigi ERMINI
A Discrete-Time Consumption-CAP
Model under Durability of Goods. Habit
Formation and Temporal Aggregation

ECO No. 94/30
Debora DI GIOACCHINO
Learning to Drink Beer by Mistake

ECO No. 94/31
Victor GtiMEZ/Agustln MARA V ALL
Program TRAMO ‘Time Series
Regression with ARIMA Noise, Missing
Observations, and Outliers” -
Instructions for the User

ECO No. 94/32
Akos VALENTINYI
How Financial Development and
Inflation may Affect Growth

ECO No. 94/33
Stephen MARTIN
European Community Food Processing
Industries

ECO No. 94/34
Agustfn MARAVALL/Christophe
PLANAS
Estimation Error and the Specification of
Unobserved Component Models

ECO No. 94/35
Robbin HERRING
The “Divergent Beliefs” Hypothesis and
the “Contract Zone” in Final Offer
Arbitration

ECO No. 94/36
Robbin HERRING
Hiring Quality Labour

ECO No. 94/37
Angel J. UBIDE
Is there Consumption Risk Sharing in the
EEC?

ECO No. 94/38
Berthold HERRENDORF
Credible Purchases of Credibility
Through Exchange Rate Pegging:
An Optimal Taxation Framework

ECO No. 94/39
Enrique ALBEROLAILA
How Long Can a Honeymoon Last?
Institutional and Fundamental Beliefs in
the Collapse of a Target Zone

ECO No. 94/40
Robert WALDMANN
Inequality, Economic Growth and the
Debt Crisis

'out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

ECO No. 94/41
John MICKLEWRIGHT/
GyulaNAGY
Flows to and from Insured
Unemployment in Hungary

ECO No. 94/42
Barbara BOEHNLEIN
The Soda-ash Market in Europe:
Collusive and Competitive Equilibria
With and Without Foreign Entry

ECO No. 94/43
Hans-Theo NORM ANN
Stackelberg Warfare as an Equilibrium
Choice in a Game with Reputation Effects

ECO No. 94/44
Giorgio CALZOLARI/Gabriele
FIORENTINI
Conditional Heteroskedasticity in
Nonlinear Simultaneous Equations

ECO No. 94/45
Frank CRITCHLEY/Paul MARRIOTT/
Mark SALMON
On the Differential Geometry of the Wald
Test with Nonlinear Restrictions

ECO No. 94/46
Renzo G. AVESANI/Giampiero M.
GALLO/Maik SALMON
On the Evolution of Credibility and
Flexible Exchange Rate Target Zones *

ECO No. 95/1
Paul PEZANIS-CHRISTOU
Experimental Results in Asymmetric
Auctions - The ‘Low-Ball’ Effect

ECO No. 95/2
Jeroen HINLOOPEN/Rien
WAGENVOORT
Robust Estimation: An Example

ECO No. 95/3
Giampiero M. GALLO/Barbara PACINI
Risk-related Asymmetries in Foreign
Exchange Markets

ECO No. 95/4
Santanu ROY/Rien WAGENVOORT
Risk Preference and Indirect Utility in
Portfolio Choice Problems

ECO No. 95/5
Giovanni NERO
Third Package and Noncooperative
Collusion in the European Airline
Industry *
ECO No. 95/6
Renzo G. AVESANI/Giampiero M.
GALLCVMark SALMON
On the Nature of Commitment in Flexible
Target Zones and the Measurement of
Credibility: The 1993 ERM Crisis *

ECO No. 95/7
John MICKLEWRIGHT/Gyula NAGY
Unemployment Insurance and Incentives
in Hungary

ECO No. 95/8
Kristina KOSTIAL
The Fully Modified OLS Estimator as a
System Estimator A Monte-Carlo
Analysis

ECO No. 95/9
Gunther REHME
Redistribution, Wealth Tax Competition
and Capital Flight in Growing
Economies

ECO No. 95/10
Grayham E. MIZON
Progressive Modelling of
Macroeconomic Time Series: The LSE
Methodology *

ECO No. 95/11
Pierre CAHUC/Hubert KEMPF
Alternative Time Patterns of Decisions
and Dynamic Strategic Interactions

ECO No. 95/12
Tito BOERI
Is Job Turnover Countercyclical?

ECO No. 95/13
Luisa ZANFORLIN
Growth Effects from Trade and
Technology

ECO No. 95/14
Miguel JIM^NEZ/Domenico
MARCHETTI, jr.
Thick-Market Externalities in U.S.
Manufacturing: A Dynamic Study with
Panel Data

♦out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

ECO No. 95/15
Berthold HERRENDORF
Exchange Rate Pegging. Transparency,
and Imports of Credibility

ECO No. 95/16
Gunther REHME
Redistribution, Income cum Investment
Subsidy Tax Competition and Capital
Flight in Growing Economies

ECO No. 95/17
Tito BOERI/Stefano SCARPETTA
Regional Dimensions of Unemployment
in Central and Eastern Europe and Social
Barriers to Restructuring

ECO No. 95/18
Bernhard WINKLER
Reputation for EMU - An Economic
Defence of the Maastricht Criteria

ECO No. 95/19
Ed HOPKINS
Learning, Matching and Aggregation

ECO No. 95/20
Done VERNER
Can the Variables in an Extended Solow
Model be Treated as Exogenous?
Learning from International Comparisons
Across Decades

ECO No. 95/21
Enrique ALBEROLA-ILA
Optimal Exchange Rate Targets and
Macroeconomic Stabilization

ECO No. 95/22
Robert WALDMANN
Predicting the Signs of Forecast Errors *

ECO No. 95/23
Robert WALDMANN
The Infant Mortality Rate is Higher
where the Rich are Richer

ECO No. 95/24
Michael J. ARTIS/Zenon G.
KONTOLEMIS/Denise R. OSBORN
Classical Business Cycles for G7 and
European Countries

ECO No. 95/25
Jeroen HINLOOPEN/Charles VAN
MARREWUK
On the Limits and Possibilities of the
Principle of Minimum Differentiation

ECO No. 95/26
Jeroen HINLOOPEN
Cooperative R&D Versus R&D-
Subsidies: Coumot and Bertrand
Duopolies

ECO No. 95/27
Giampiero M. GALLQ/Hubert KEMPF
Cointegration, Codependence and
Economic Fluctuations

ECO No. 95/28
Anna Pfc 17 INI/Stefano NARDELLI
Progressive Taxation, Quality, and
Redistribution in Kind

ECO No. 95/29
Akos VALENTIN YI
Rules of Thumb and Local Interaction *

ECO No. 95/30
Robert WALDMANN
Democracy, Demography and Growth

ECO No. 95/31
Alessandra PELLONI
Nominal Rigidities and Increasing
Returns

ECO No. 95/32
Alessandra PELLONI/Robert
WALDMANN
Indeterminacy and Welfare Increasing
Taxes in a Growth Model with Elastic
Labour Supply

ECO No. 95/33
Jeroen HINLOOPEN/Stephen MARTIN
Comment on Estimation and
Interpretation of Empirical Studies in
Industrial Economics

ECO No. 95/34
M.J. ARTIS/W. ZHANG
International Business Cycles and the
ERM: Is there a European Business
Cycle?

ECO No. 95/35
Louis PHLIPS
On the Detection of Collusion and
Predation

ECO No. 95/36
Paolo GUARDA/Mark SALMON
On the Detection of Nonlinearity in
Foreign Exchange Data

♦out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

ECO No. 95/37
Chiara MONFARDINI
Simulation-Based Encompassing for
Non-Nested Models: A Monte Cario
Study of Alternative Simulated Cox Test
Statistics

ECO No. 95/38
Tito BOERI
On the Job Search and Unemployment
Duration

ECO No. 95/39
Massimiliano MARCELLINO
Temporal Aggregation of a VARIMAX
Process

ECO No. 95/40
Massimiliano MARCELLINO
Some Consequences of Temporal
Aggregation of a VARIMA Process

ECO No. 95/41
Giovanni NERO
Spatial Multiproduct Duopoly Pricing

ECO No. 95/42
Giovanni NERO
Spatial Multiproduct Pricing: Empirical
Evidence on Intra-European Duopoly
Airline Markets

ECO No. 95/43
Robert WALDMANN
Rational Stubbornness?

ECO No. 95/44
Tilman EHR B EC K/Robert
WALDMANN
Is Honesty Always the Best Policy?

ECO No. 95/45
Giampiero M. GALLO/Barbara PACINI
Time-varying/Sign-switching Risk
Perception on Foreign Exchange Markets

ECO No. 95/46
Victor GÓMEZ/Agustfn MARAVALL
Programs TRAMO and SEATS
Update: December 1995

ECO No. 96/1
Ana Rule CARDOSO
Earnings Inequality in Portugal: High
and Rising?

ECO No. 96/2
Ana Rule CARDOSO
Workers or Employers: Who is Shaping
Wage Inequality?

ECO No. 96/3
David F. HENDRY/Grayham E. MIZON
The Influence of A.W.H. Phillips on
Econometrics

ECO No. 96/4
Andrzej BANIAK
The Multimarket Labour-Managed Firm
and the Effects of Devaluation

ECO No. 96/5
Luca ANDERLINI/Hamid
SABOURIAN
The Evolution of Algorithmic Learning:
A Global Stability Result

ECO No. 96/6
James DOW
Arbitrage, Hedging, and Financial
Innovation

ECO No. 96/7
Marion KOHLER
Coalitions in International Monetary
Policy Games

ECO No. 96/8
John MICKLEWRIGHT/ Gyula NAGY
A Follow-Up Survey of Unemployment
Insurance Exhausters in Hungary

ECO No. 96/9
Alastair McAULEY/John
MICKLEWRIGHT/Aline COUDOUEL
Transfers and Exchange Between
Households in Central Asia

ECO No. 96/10
Christian BELZIL/Xuelin ZHANG
Young Children and the Search Costs of
Unemployed Females

ECO No. 96/11
Christian BELZIL
Contiguous Duration Dependence and
Nonstationarity in Job Search: Some
Reduced-Form Estimates

'out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

ECO No. 96/12
Ramon MARIMON
Learning from Learning in Economics

ECO No. 96/13
Luisa ZANFORLIN
Technological Diffusion, Learning and
Economic Performance: An Empirical
Investigation on an Extended Set of
Countries

ECO No. 96/14
Humberto L6PEZ/Eva ORTEGA/ Angel
UBIDE
Explaining the Dynamics of Spanish
Unemployment

ECO No. 96/15
Spyros VASSILAKIS
Accelerating New Product Development
by Overcoming Complexity Constraints

'out of print

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

O
R

O
P

•40310/7^

%io0>sP

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

©
 T

he
 A

ut
ho

r(s
).

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
.

D
ig

iti
se

d
ve

rs
io

n
pr

od
uc

ed
 b

y
th

e
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e
O

pe
n

Ac
ce

ss
 o

n
C

ad
m

us
, E

ur
op

ea
n

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h

R
ep

os
ito

ry
.

