

European University Institute

Do origins matter?

The effect of geographical and social mobility on preferences for redistribution

Olga Griaznova

Thesis submitted for assessment with a view to obtaining the degree of Doctor of Political and Social Sciences of the European University Institute

Florence, 06 December 2018

European University Institute
 Department of Political and Social Sciences

Do origins matter?
The effect of geographical and social mobility on preferences for redistribution

Olga Griaznova

Thesis submitted for assessment with a view to obtaining the degree of Doctor of Political and Social Sciences of the European University Institute

Examining Board

Prof. Dr. Fabrizio Bernardi, European University Institute (Supervisor)
Prof. Dr. Diego Gambetta, European University Institute
Prof. Dr. Ruud Luijkx, Tilburg University
Prof. Dr. Christian Welzel, Leuphana Universität Lüneburg
© Olga Griaznova, 2018
No part of this thesis may be copied, reproduced or transmitted without prior permission of the author

Researcher declaration to accompany the submission of written work Department of Political and Social Sciences - Doctoral Programme

I <Olga Griaznova> certify that I am the author of the work < Do origins matter? The effect of geographical and social mobility on preferences for redistributions> I have presented for examination for the Ph.D. at the European University Institute. I also certify that this is solely my own original work, other than where I have clearly indicated, in this declaration and in the thesis, that it is the work of others.

I warrant that I have obtained all the permissions required for using any material from other copyrighted publications.

I certify that this work complies with the Code of Ethics in Academic Research issued by the European University Institute (IUE 332/2/10 (CA 297).

The copyright of this work rests with its author. Quotation from it is permitted, provided that full acknowledgement is made. This work may not be reproduced without my prior written consent. This authorisation does not, to the best of my knowledge, infringe the rights of any third party.
I declare that this work consists of <80817> words.

Statement of language correction:

This thesis has been corrected for linguistic and stylistic errors. I certify that I have checked and approved all language corrections, and that these have not affected the content of this work.

Signature and date:
21.11.2018

ABSTRACT

This dissertation contributes to the long-standing and ongoing discussion about cultural and economic determinants of individual support for government intervention in a market economy and redistribution resources in a society to reduce inequality and poverty. The causal effects of culture and individual self-interest are still disputed. To address the gaps in the existing literature, this dissertation looks at geographic and social mobility to estimate whether changes in cultural settings and life conditions affect preferences for redistribution. Two general questions guide this dissertation. First, "Do people change their preferences for redistribution in response to changes in the cultural and social context where they live?" Second, "Do they change their preferences for redistribution if their socio-economic position changes?" Both parts of the dissertation attempt to answer each respective question.

Part I investigates how cultural differences in countries of origin and countries of destination affect preferences for redistribution. Two different research designs were employed. Using data from the European Social Survey, the International Social Survey Programme and the World Values Survey, a cross-sectional analysis was used to estimate the association between average attitudes to redistribution in countries of origin and preferences of immigrants. Longitudinal data of the German Socio-Economic Panel that followed immigrants over time was used to assess the elasticity of their preferences in Germany. Both studies found that culture had an effect: both the culture of origin and the culture of destination affect immigrants' preferences for redistribution. However, preferences are not stable. People can change them in a new cultural environment and the longer individuals live in a culture of destination, the more similar their preferences become to those of the native population. At the same time, the change in immigrants' preferences for redistribution may be conditional on the reasons and circumstances of their migration.

Part II tests four hypotheses related to socio-economic position: the rational learning theory, the prospect of upward mobility hypothesis, the self-interest hypothesis and the theory of relative utility of income. The first three theoretical models predict a higher demand for redistribution in cases in which individuals are disadvantaged in terms of their social conditions. Using data from the German Socio-Economic Panel, I estimate how changes in employment status and income, generally considered the most important determinants of individual welfare, change individual
preferences for redistribution. Because the research was longitudinal, I was able to follow individuals over time and was, therefore, able to assess the effect of a transition into unemployment and income growth on individual preferences. The study provides neither strong support for the self-interest hypothesis, nor for the rational learning theory. The transition into unemployment does not lead to an increase in preferences for redistribution. Income growth reduces individual demand for redistribution only slightly and only in the group of low- and middle-income Germans.

ACKNOWLEDGEMENTS

"Nanos gigantum humeris insidentes"

Bernardus Carnotensis

I'm writing these last words of my thesis full of gratitude to those people who inspired my decision to do a PhD , who made it possible and who gave me courage, energy and love throughout all these years.

I want to give the first words of thanks to my supervisor, Fabrizio Bernardi. Even now, it's not quite clear to me why he chose me among other applicants five years ago, but his will changed my life. Through all these years, he has been an example for me of high standards in research and exceptional professionalism. From the very beginning, he expected a high standard of work from me and kept his criticism to my modest achievements all way long. It took a while for me to learn how he thinks, how he identifies research problems and how he makes arguments. Years of reading, writing and discussing different studies finally brought me to a point where I feel that I understand my supervisor well. When editing the final draft of the thesis and reading his written remarks, I even learnt how to decipher his handwriting - not an easy task. Even now, I do not know if he is satisfied with the work I have done, but for me, the time we worked together was substantial and significant. Even if the thesis is far from perfect, it presents much more than I could have done without my supervisor and much more than I expected when I started it.

I'm happy and proud to see among the jury members people who I respect very much and whose opinion is very important to me. I would like to thank Christian Welzel who approved my first modest steps in the field of quantitative and comparative studies when I had just arrived at the Laboratory of Comparative Social Research at the HSE. His inspiring lectures and workshops stimulated my academic curiosity and in the end, those lecture were what led to a desire and a final decision to do a PhD. Without his encouragement and support with a reference letter, my application to the EUI would have never taken place. I would like to express my appreciation to Diego Gambetta. I feel that I was really lucky that Diego was the second reader of my prospectus, a short summary of future research that students need to defend in their first year at the EUI. Diego dramatically destroyed all the ideas (sometimes very vague) I then had, but at the same time suggested an interesting plot for my future research. This turn in the research made my subsequent years at the academy really spicy. Diego was the godfather of this dissertation project. For this
reason, his assessment is especially important to me. Diego's seminars Foundation of Social Life and Advanced Research Design which he gave together with Fabrizio as well as discussions in the Experimental Working Group expanded my horizons and substantially improved my analytical skills. I very much appreciate that Ruud Luijkx agreed to read my thesis and that he agreed to be a part of the examining board. His publications contributed a lot to my understanding of the problem of inequality, social mobility and methodology. I am deeply grateful to all my jury members for their interesting questions and valuable comments. They stimulated a lot of thought about my current research and provided insight for future work.

I would also like to mention that this dissertational project would not have be possible without financial support and administration of the Ministry of Education and Science of the Russian Federation. I very much appreciate this initiative to support Russian PhD researchers in their academic careers and feel very sorry that it will not continue. I'm still very happy that European University in Saint-Petersburg continues to collaborate with the EUI and that Russian graduate students can still earn their PhD degrees from the Institution. The programs that support international mobility boost and promote the academic achievements of Russian researchers and also have an important additional outcome. I'm strongly convinced that all the projects that presume international cooperation either in the field of culture, technology or science lead to the development of international relations and reduce tension in international politics in the long run. Cross-cultural cooperation in academia, learning from people from different countries and discussing different problems even unrelated to academic research, allow people from around the world to see a human face of their counterparts, which can in turn lessen the perpetuation of stereotypes constantly created and reinforced by some politicians and mass media. This outcome is especially important in a time of tension in international affairs.

More on a personal note, I would like to say that an international PhD program is a great experience - educational, stimulating and very adventurous. This experience teaches us to think more broadly and to look further. I would like to thank many people who helped define my academic path and who made this experience possible. I would like to thank Denis Podvoisky for encouraging me to stay in academia, for the work we did together, the several papers we published and for the 10 years we spent together when we were married. An important part of my life was my work at the Levada-Center where I met fantastic people who were enthusiasts of the survey industry in Russia and high-level intellectuals. Yuriy Levada, Aleksei Grazhdankin, Emilia Azarkh, Boris Dubin, Natalia Bondarenko, Marina Krasilnikova, Natalia Zorkaya and Lev Gudkov built a creative space where I started my work as an empirical researcher. I would like to thank Alexander Gofman who
supervised my first dissertation at the Institute of Sociology of the Russian Academy of Science, the Institute of Sociology itself where I met a lot of friends and colleagues. I would like to thank Vladimir Magun who was my inspiring superior both at the Institute of Sociology and at the Higher School of Economics and who suggested research welfare attitudes, which in the end became the core of my application to the EUI.

My very best and kind regards go to the Laboratory of Comparative Social Research in HSE where I met fantastic people who helped m reach a new level in my research and who became my friends. I would like to thank Eduard Ponarin, Ronald Inglehart, Christian Welzel, Tatiana Karabchuk, Anna Almakaeva, Maria Kravtsova, Anna Nemirovskaya, Alexey Bessudnov, Andrey Scherbak, Alexey Zakharov, Anna Shirokanova, Margarita Zavadskaya, Aigul M. Mavletova, Joshua Dubrow, Vladimir Kozlov, Ekaterina Lytkina, Aleksey Oshchepkov, Maria Ravlik, Valentina Rotondi, Cristopher Swader, Tereza Tonyan and many many others who established and support the international network of researchers. The Lab supported my international mobility and organized many insightful academic events. I will always remember unforgettable summer schools organized by Eduard Ponarin, Christian Welzel, Peter Schmidt, Hermann Dülmer and Hannes Kröger, our conferences and simply the time we spent together.

While working on the thesis I met at the EUI many bright, talented, creatively thinking, open, responsive, supportive, helpful, friendly and very kind people. I address big share of my gratitude to Koen Geven, Lela Chakhaia, Max Schaub and Philipp Chapkovskiy who discussed with me the design of my future research in the first year and helped me to understand expectations of Fabrizio and Diego and supported me until the last minute when I submitted my prospectus. I thank Christian Meyer and Matthias Schmidtblaicher who helped me when I was straggling with my data in VSP. I'm happy that I met Kirill Shakhnov and his family, his jokes about my research and real assistance with Stata management helped me a lot when I was working on my first empirical chapters.

Many thanks and a lot of gratitude I address to Florian Hertel whom I met when experienced almost a panic attack in front of around four hundred data files and had no idea how to approach panel data analysis. Today morning I was sitting in the cafeteria and remember how many coffees we had there while discussing my research and data analysis. Even after years I still find papers with his handwriting among my documents. I am infinitely grateful that I was able to rely on his friendly hand and take a step into those areas that were new and unknown to me. I thank Gordey Yastrebov and Diederik Boertien who were always open and available to discuss many questions

I had about methods and data analysis. I thank Julia Kosyakova, Daniel Lukas Paierl and Benedikt Dengler for providing me with literature on migration and taxation in Germany.

The thesis would never look like this if Nicky Owtram, Julia Dotti Sani, Nevena Kulic, Lea Kröger and Rutger Birnie would not read parts of it. I very much appreciate their comments and recommendations. Special thanks I want to turn to Jessica Bate, who proofread my dissertation and made a solid and readable text from the initial manuscript.

I would say that a supervisor is not only a person who guides a PhD project, but a person who creates a social and academic environment and establishes networks between previously scattered single researchers. I go back to say again thanks to Fabrizio, that I met Alexi Gugushvili, Daria Popova, Carolina Zuccotti, Michael Grätz, Chiara Comolli, Anne Christine Holtmann, Marit Rebane, Lela Chakhaia, Macarena Ares Abalde, Estelle Herbaut, Lea Kröger, Gordey Yastrebov, Diana Galos, Giuliana Giuliani, Marco Cozzani, Carlos Gil Hernandez, Ilze Plavgo and Daniel Lukas Paierl. It is always a great pleasure to meet these bright researchers and many other members of the inequality working group at conferences and seminars, attend their presentations and listen to their comments.

I'm grateful to those people who made my work at the EUI pleasant and efficient. I thank the administrative staff at the SPS department and in the library. In the department, I thank Gabriella Unger, Monika Rzemieniecka, Martina Selmi, Jennifer Dari, Maureen Lechleitner and Adele Battistini (who is looking at me now and waiting when I will finally hand in the text). In the library, I thank Alexandra Howarth, Ruth Nirere-Gbikpi, Alba Parrini, Ann-Charlotte Svantesson, Jiří Vaňkát and Alberto Caselli. I thank also very special people who meet us in the cafeteria in the morning and in the canteen at the lunch time. I thank Antonella, Chinzia, Guia, Natasha and others for their cheering smiles and kind words which are much more important than just a coffee.

I feel very sorry that I have acknowledged people only with respect to our professional relations. I met at the EUI many friends, professors and good colleagues who are very valuable for me. I thank you all for sharing the years I spent at the EUI with me. I thank my friends Martin Lestra, Camille Brugier, Katharina Wolf, Lorenzo Piccoli, Maria Jose Schmidt-Kessen, Anna Bara, Julia Rone and Rutger Birnie who helped and supported me during hard times. I will always keep them in my heart.

The last and most important words of gratitude, as always, belong to our loved ones. I want to devote the last words of thanks to my small family. The last years were very difficult for us, we have survived and become even stronger together. I cannot find the proper words to say how much I appreciate all the love and support I got from them. I can only give them my love in return.

TABLE OF CONTENTS

ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IX
LIST OF FIGURES XIII
LIST OF TABLES XVI
LIST OF APPENDIXES XIX
CHAPTER 1. Introduction. 1

1. Introduction 3
2. Research questions and main contributions 7
2.1. The effects of culture on preferences for redistribution 7
2.2. The effects of social mobility 9
3. The structure of the thesis 12
PART I. DOES THE CULTURE OF ORIGIN MATTER? APPROACHING REDISTRIBUTION PREFERENCES OF IMMIGRANTS 15
CHAPTER 2. Introduction to Part I 17
4. Introduction 17
5. Acculturation 20
6. Towards the issue of false adaptation 23
3.1. Self-selection into migration 23
3.2. Self-selection into a country of immigration. 26
3.3. A problem of out-migration 38
7. Conclusion 39
CHAPTER 3. Redistribution preferences in motion: the effect of average preferences for redistribution in countries of origin on the preferences of immigrants. A cross-sectional approach 41
8. Rationale and hypotheses 41
1.1. The first extension of the Luttmer-Singhal (LS) model: self-selection into migration 42
1.2. The second extension of the LS model: self-selection into the country of migration 43
9. Research design, key concepts and operationalization 45
2.1. Data and measurement 45
2.2. Measurement of the preferences for redistribution 46
2.3. Stage 1: Replication of the LS model on the extended ESS data set 49
2.4. Stage 2: Replication of the LS model on the extended subsamples of immigrants 49
2.5. Stage 3: Control for self-selection into migration by means of human values 53
2.6. Stage 4: Approaching the question: What is "culture"? 54
10. Main results 56
1.1 Key correlations 56
3.2. LS model replication 61
3.3. Extension of the LS model using controls for self-selection into a country of migration: Replication of the LS model for both European and non-European migrants 64
3.4. Extension of the LS model using controls for self-selection into migration: Introducing basic human values 75
3.5. What is "culture"? Control for different measurements of values in countries of birth 81
11. Conclusion and discussion 86
CHAPTER 4. Adoption of Preferences for Redistribution or Cultural Determinacy: Evidence from Panel Data on Immigrants in Germany 91
12. Rationale 91
13. Hypotheses 93
14. Research design 96
3.1. Framework 96
3.2. Research design 96
3.3. Case selection and subsample identification 98
3.4. Data 104
2.5. Measures 109
3.6. Models 110
15. Key results 114
4.1. Replication using base line controls 114
4.2. Immigrants in Germany 127
16. Conclusion 142
PART II. SOCIAL MOBILITY. SELF-INTEREST AND PREFERENCES FOR REDISTRIBUTION: RELATIVE NATURE OF THE EFFECTS 145
CHAPTER 5. Introduction to Part II 147
17. Introduction 147
18. Self-interest: theories and causal inferences 150
19. Limitations of current models 157
3.1. Limitations of the MR model 157
3.2. Limitations of the POUM model 158
3.3. Limitations of empirical tests of the rational learning theory and intergenerational mobility 159
3.4. Possible solutions 160
20. Questions and research design 161
21. Data 164
5.1. Sample selection 164
5.2. Sample description 165
22. Operationalization and measurement 172
6.1. Preferences for redistribution 172
6.2. Unemployment and transition into unemployment 172
6.3. Income and individual income growth 174
CHAPTER 6. Transition into unemployment and demand for redistribution 179
23. Rationale 179
24. Results 183
2.1. Descriptive statistics 183
2.2. The effect of previous, current and future experience of unemployment on preferences for redistribution 189
2.3. The effect of transition into unemployment on preferences for redistribution: A longitudinal approach 193
25. Conclusion and discussion 196
CHAPTER 7. Income growth and demand for redistribution 199
26. Rationale 199
27. Results 201
2.1. The effect of previous, current and future income: a cross-sectional approach 201
2.2. The effect of income growth on individual preferences: a longitudinal approach. 205
28. Conclusion 218
CHAPTER 8. The main conclusion 223
29. Introduction 223
30. A summary of the main findings 225
31. Limitations 232
32. Future research 236
LITERATURE 239
APPENDICES 257
APPENDIX FOR CHAPTER 2 258
APPENDIX FOR CHAPTER 3 261
APPENDIX FOR CHAPTER 4 359
APPENDIX FOR CHAPTER 6 372
APPENDIX FOR CHAPTER 7 385

LIST OF FIGURES

CHAPTER 2

Figure 2.1 - Four possible outcomes of acculturation, theoretical models for a migrant transited from a country where redistribution preferences (RP) are high to a country where the preferences are low 22
Figure 2.2 - Outcomes of acculturation in the case of self-selection into migration. 26
Figure 2.3 - The Indo-European family tree (Campbell and Poser, 2008, p. 84) 30
Figure 2.4 - The share of European immigrants (in the countries of destinations) who speak languages similar to the official languages in countries of destination (subsample of migrants, ESS, cumulative dataset) 33
Figure 2.5 - The share of immigrants from welfare regimes in various European countries (subsample of European migrants, ESS, cumulative dataset) 36
Figure 2.6 - Correction for self-selection into a similar country of destination 37
CHAPTER 3
Figure 3.1 - Average demand for redistribution in 33 countries, ISSP measures 51
Figure 3.2 - An average demand for redistribution in 24 countries, ISSP measures 52
Figure 3.3 - Deviation of immigrants' preferences for redistribution from host country means by preferences in country of birth (Luttmer and Singhal, p. 159) 58
Figure 3.4 - Deviation of immigrants' preferences for redistribution from average preferences in host countries by preferences in country of birth 60
Figure 3.5-Immigrant preferences for redistribution by preferences in country of birth measured by ISSP proxies. A. "Reduce difference between rich and poor".
B. "Reduce income differences" 68
Figure 3.6-Effects of average preferences for redistribution in the country of origin on preferences for redistribution of immigrants. Comparisons of the 7 main specifications presented in the Table 3.7 when controlled and not controlled for basic human values 79
Figure 3.7 - Marginal effects of values in seven specifications 81

$$
\begin{aligned}
& \text { Figure } 3.8 \text { - Effects of average preferences for redistribution in the country of origin on } \\
& \text { immigrants' preferences for redistribution. Comparisons of the } 7 \text { main } \\
& \text { specifications (presented in the Table A3.9 in the Appendix) when controlled } \\
& \text { and not controlled for the average cultural values in the countries of origin } 85
\end{aligned}
$$

Figure 3.9-Association of preferences for redistribution of immigrants from 8 random countries with preferences of natives in countries of residence (CR) 88

CHAPTER 4

Figure 4.1 - Time spent in Germany 98
Figure 4.2 - German immigration to the Russian Empire in the XVIII and XIX centuries (Informationen zur politischen Bildung Heft 267, 2000) 100
Figure 4.3 - The Soviet Deportation of Nationalities from 1941-1945 101
Figure 4.4 - Tenure of immigrants from Russia, Kazakhstan, Poland and Turkey in Germany in 1997 106
Figure 4.5 - Age of immigrants from Russia, Kazakhstan, Poland and Turkey at the moment of migration 106
Figure 4.6 - Gender distribution of immigrants from Russia, Kazakhstan, Poland and Turkey 107
Figure 4.7 - Education of West and East Germans and immigrants from Russia, Kazakhstan, Poland and Turkey 107
Figure 4.8 - Religious denomination of immigrants from Russia, Kazakhstan, Poland and Turkey 109
Figure 4.9 - Predicted margins of demand for redistribution for West and East Germans in 1997 and 2002 118
Figure 4.10 - The change of redistribution preferences of West and East Germans over time: rescaled dependent variables 121
Figure 4.11 - The change of redistribution preferences of East and West Germans over time: predicted values from fixed effect regressions 124
Figure 4.12 - Redistribution preferences of Germans and migrants in 1997 and 2002, linear predictions, baseline controls 133
Figure 4.13 - The effect of cohort on redistribution preferences of Germans and migrants, linear predictions, baseline controls plus sample-cohort interactions 137

CHAPTER 6

Figure 6.1-Change in demand for redistribution in favour of the unemployed........................ 184
Figure 6.2 - Change in demand for redistribution in favour of the sick 185
Figure 6.3 - Change in demand for redistribution in favour of the family 186
Figure 6.4 - Change in demand for redistribution in favour of old people................................. 187
Figure 6.5 - Change in demand for redistribution in favour of people requiring care 188

CHAPTER 7

Figure 7.1 - Mean weighted net household income mobility per capita in ten decile groups from 1997 to 2002, percentage of initial deciles206

Figure 7.2 - Preferences for redistribution of different income deciles among West and East Germans, predicted margins216

LIST OF TABLES

CHAPTER 2

Table 2.1 - Four outcomes of the acculturation process (Berry 2003) 21
Table 2.2 - Types of welfare states (Fenger, 2007, pp. 22-24) 34

CHAPTER 3

Table 3.1 - Immigration Flows within ESS Sample Countries (pooled data, 6 waves) 47
Table 3.2 - Immigration Flows to the ESS Sample Countries (pooled data, 6 waves) 48
Table 3.3 - Predictors of preference for redistribution: Baseline model with fewer controls 63
Table 3.4 - Correlations between country averages for the variable "redistribution preferences" (ESS) and three variables measuring demand for redistribution form ISSP and WVS 66
Table 3.5 - Predictors of preference for redistribution for ESS country migrants and other migrants: Baseline model with fewer controls 70
Table 3.6 - Effect of birth country culture on immigrants' preferences for redistribution in the country of residence: Different subsamples of migrants and different specifications 73
Table 3.8 - Effect of birth country culture on immigrants' preferences for redistribution in residence country: Controls for self-selection into migration by means of individual values 77
Table 3.9 - Correlation between two measures of redistribution and different measures of values on country level 83
CHAPTER 4
Table 4.1 - Subsamples of the study 105
Table 4.2 - Determinants of preferences for redistribution (Source: G-SOEP 1997, 2002, panel data set) 115
Table 4.3 - Marginal effects estimated for East and West Germans in 1997 and 2002 117
Table 4.4 - Preferences for redistribution among native Germans (rescaled DV, corrected missing values, only for native Germans, Source: G-SOEP 1997, 2002, panel data set) 120
Table 4.5 - The effect of time preferences for redistribution among Germans: fixed effect model (Source: G-SOEP 1997, 2002, panel data set) 123
Table 4.6 - The effect of time on preferences for redistribution of Germans: the fixed effect model, and controls for time-varying regressors(Source: G-SOEP 1997, 2002, panel data set) 125
Table 4.7 - Comparing migrants to West Germans (who did not migrate between East and West Germany and who participated in the survey in both 1997 and 2002), rescaled DVs base line controls 131
Table 4.8-Effect of time on redistribution preferences for different subsamples of immigrants 140
Table 4.9 - Expected years for the convergence of preferences of immigrants and East Germans with the preferences of native West Germans in 1997. Estimates are based on fixed effects models 141
Table 4.10 - Outcomes of adaptation of different subsamples of immigrants to average preferences of West Germans between 1997 and 2002 144
CHAPTER 5
Table 5.1 - Number of observations per year 166
Table 5.2 - Descriptive statistics for the sample of West and East Germans in 2002 166
Table 5.3 - Experience of unemployment 168
Table 5.4 - Years of unemployment from 1992 to 2002 counted in 2002 168
Table 5.5-Change in employment status from 1992-1997 and from 1998-2002 169
Table 5.6-Socio-demographic characteristics of different transition groups in the West and East subsample 171
Table 5.7 - OECD equivalence scales for household income 177
Table 5.8 - Mean income for each decile 177

CHAPTER 6

Table 6.1 - Effect of current, past and future experience of unemployment on preferences for redistribution 192
Table 6.2 - The effect of transition into unemployment on preferences for redistribution 194
CHAPTER 7
Table 7.1 - The effect of current, previous and future HH net income (deciles based on averaged income for 3 years) on demand for redistribution 203
Table 7.2 - Transition matrix for mean weighted monthly household net income per capita for two years 1992 and 2002 (frequencies) 205
Table 7.3 - Demand for redistribution in favour of the unemployed in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002) 207
Table 7.4 - Demand for redistribution in favour of the sick in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002) 208
Table 7.5 - Demand for redistribution in favour of the family in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002) 208
Table 7.6 - Demand for redistribution in favour of old people in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002) 209
Table 7.7 - Demand for redistribution in favour of those needing care in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002) 209
Table 7.8 - Probabilities of increase and decrease in demand for redistribution in five domains for upwardly and downwardly mobile transition groups 209
Table 7.9 - Effect of transition to another decile of weighted mean household net income on demand for redistribution 211
Table 7.10 - Effect of transition to another weighted mean household net income on demand for redistribution, fixed effects models with base line controls for time varying parameters 212
Table 7.11 - Preferences for redistribution (Source: G-SOEP 1997, 2002, panel data set) 214

LIST OF APPENDIXES

APPENDIX FOR CHAPTER 2

Tables
Table A2.1 - Migration flows in the ESS sample (ESS 1-6) 258
APPENDIX FOR CHAPTER 3
Tables
Table A3.1-Descriptive statistics for natives, European and non-European migrants 261
Table A3.2 - Definitions of Motivational Types of Values in Terms of their Core Goals 268
Table A3.3 - List of 21 Items in Portrait Values Questionnaire used in ESS (from Schwartz Sh. The Recommended Method for Measuring Values in the ESS) 269
Table A3.4-Predictors of preference for redistribution only for ESS country migrants. Baseline model with fewer controls (Source: ESS 2002-2013, cumulative data set) 272
Table A3.5-1. Country dummies as only controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002- 2013, cumulative data set) 276
Table A3.6-2. Baseline, but fewer controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 277
Table A3.7-3. Baseline. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 280
Table A3.8-3.1. Other two measures of linguistic minority: cut-off $=10 \%$. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 284
Table A3.9-3.2. Other two measures of linguistic minority: cut-off $=50 \%$. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 288

Table A3.10-4. Baseline, but more controls. Effect of Birth Country Culture on
Immigrant's Pref. for Redistribution in Residence Country (Source:
ESS 2002-2013, cumulative data set) 292
Table A3.11-5. Comprehensive controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 296
Table A3.12-1. Country dummies as only controls. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 305
Table A3.13-2. Baseline, but fewer controls. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 307
Table A3.14-3. Baseline. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 313
Table A3.15-3.1. Other two measures of linguistic minority: cut-off $=10 \%$. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 320
Table A3.16-3.2. Other two measures of linguistic minority: cut-off $=50 \%$. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 326
Table A3.17-4. Baseline, but more controls. Effect of Birth Country Culture and Basic Human Values on Immigrant's Preferences for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set) 333
Table A3.18-5. Comprehensive controls. Effect of Birth Country Culture and BasicHuman Values on Immigrant's Preferences for Redistribution in ResidenceCountry (Source: ESS 2002-2013, cumulative data set)341
Table A3.19 - The effect of average preferences for redistribution in a country of birth and cultural values on immigrants' preferences for redistribution in a residence country 356

Figures

Figure A3.1-Structural Relations among Basic Values (Schwartz, 1992) 268
Figure A3.2 - An average demand for redistribution in 96 countries (WVS) 275
Figure A3.3 - Effects of average cultural values in the country of origin on preferences for redistribution of immigrants. Comparisons of the 7 main specifications presented in the Table A3.19 358
APPENDIX FOR CHAPTER 4
Tables
Table A4.1-Preferences for redistribution, missing values correction (Source: G-SOEP 1997, 2002, panel data set) 359
Table A4.2 - Preferences for redistribution, corrected missing values, only for native Germans (Source: G-SOEP 1997, 2002, panel data set) 360
Table A4.3 - Preferences for redistribution, rescaled, corrected missing values, only for native Germans (Source: G-SOEP 1997, 2002, panel data set) 362
Table A4.4-Preferences for redistribution, rescaled, corrected missing values, only for native Germans and immigrants with additional controls for tenure 363
Table A4.5-Age regressions for preferences for redistribution (rescaled, corrected missing values, only for native Germans and immigrants) (Source: G-SOEP 1997, 2002, panel data set) 366
Table A4.6-Cohort regressions for preferences for redistribution (rescaled, corrected missing values, only for native Germans) (Source: G-SOEP 1997, 2002, panel data set) 368
Table A4.7-Number of observations in different cohorts of Germans and immigrants 370
APPENDIX FOR CHAPTER 6
Tables
Table A6.1 - Effect of unemployment in 1997, West and East Germans (Source: G-SOEP 1997) 372
Table A6.2 - Effect of previous experience of unemployment on preferences for redistribution (Source: G-SOEP 1992-1997) 373
Table A6.3-Effect of future experience of unemployment on preferences for redistribution (Source: G-SOEP 1997-2002) 374
Table A6.4-Effect of current, previous and future experience of unemployment on preferences for redistribution in 1997 (Source: G-SOEP 1992-2002) 376
Table A6.5-Effect of unemployment in 2002, West and East Germans (Source: G-SOEP 2002) 377
Table A6.6-Effect of previous experience of unemployment on preferences for redistribution (Source: G-SOEP 1992-2002) 379
Table A6.7-Effect of years of unemployment on preferences for redistribution (Source: G-SOEP 1992-2002) 380
Table A6.8-Effect of years of unemployment on preferences for redistribution (Source: G-SOEP 1992-2002) 381
Table A6. 9 - The effect of transition into unemployment on preferences for redistribution, fixed effect model, controls for time varying variables: income, marital status, education and number of persons in HH (Source: G-SOEP, panel data set) 383
APPENDIX FOR CHAPTER 7
Tables
Table A7.1 - Effect of current, previous and future HH net income per capita (decile) on demand for redistribution, base line controls 385
Table A7.2 - Effect of current, previous and future HH net income, OECD-modified scale (decile) on demand for redistribution, base line controls 386
Table A7.3 - Transition matrix for monthly household net income for two years 1997 and 2002, frequencies 387
Table A7.4 Transition matrix for monthly household net income per capita for two years 1997 and 2002, frequencies 387
Table A7.5 - Effect of transition to another household net income decile on demand for redistribution 389
Table A7.6-Effect of transition to another household net income decile on demand for redistribution, models with base line controls 389
Table A7.7-Effect of transition to another decile of household net income per capita on demand for redistribution 391
Table A7.8 - Effect of transition to another decile of household net income per capita on demand for redistribution, fixed models with base line controls, fixed effects mode 392
Table A7.9 - Effect of transition on preferences for redistribution of East and West Germans, fixed effect models (Source: G-SOEP 1997, 2002, panel data set) 394
Table A7.10-Effect of transition into other government income decile on preferences for redistribution of East and West Germans, fixed effect model with baseline controls (Source: G-SOEP 1997, 2002, panel data set) 394
Table A7.11 - Effect of income growth on demand for redistribution for different income groups of upward mobile Germans 396

Figures

Figure A7.1 - Net household income mobility in ten decile groups from 1997 to 2002, \% of initial deciles 387
Figure A7.2 - Net household income mobility per capita in ten decile groups from 1997 to 2002, \% of initial deciles 388
Figure A7.3 - Income immobility across deciles for three measures of income 388

INTRODUCTION

CHAPTER 1. Introduction

1. Introduction

"Redistribution is probably the most important single function of most modern governments" (Tullock 2013, 1)

The stability of every democratic state is based on the consensus between the government and the population regarding the most important tasks of a state (Brooks and Manza, 2007; Rehm, 2011). Over the last few decades, the core matter of political and partisan contention has consisted in several disputed points about redistribution. Preferences for an optimal fiscal policy, a definite level of taxation and welfare provision are some of the most important topics in political discussion and one that is present in electoral campaign slogans. These topics determine both current politics, individual voting and electoral outcomes (Rueda and Stegmueller, 2016).

In recent years, leading world economists and politicians have expressed concern over future in the labour market and job prospects among Europeans and Americans, disenchantment with social security and welfare protection, and a loss of trust in government among most of the population around Europe. ${ }^{1}$ Some of them have also stressed that paying close attention to the problem of rising social inequality is crucial as it leads to a change in public demand for social protection and attitudes towards redistribution (Moene and Wallerstein, 2001) ${ }^{2}$. Moreover, it is now widely believed that ignoring the needs and preferences of the middle class, when people feel that the government does not look out for them, can lead to serious and sometimes unpredictable political and economic consequences. Since middle-class citizens are very concerned about social politics and redistribution (Dallinger, 2015), the matter of welfare expectations can and is sometimes used as an instrument by populists (Mughan, Bean, and McAllister 2003; Mughan 2007; Rodrik 2018). These arguments can be traced in the critical remarks of L. Summers who claimed that: "They [middle-class members - O.G.] feel they are not being heard, and they've expressed that in the Brexit vote, the Italian referendum and in the US election" (Elliott, 2017). Preferences for redistribution have thus become a crucial issue, mainly on account of the political and economic

[^0]consequences that they can incur. Accordingly, a systematic examination of these preferences is extremely important.

Since political outcomes depend to a large extent on electoral behaviour and public demand, there has been an increasing interest in the factors that shape and change these preferences. In recent years, a lot of effort has been devoted to the study of preferences for redistribution in economics and welfare attitudes in the social sciences. However, the determinants of these preferences have not yet been fully understood. Although sociologists and economists have focused on the same problem, they have developed research on different basic assumptions. Initially, they followed different logical arguments built on a theoretical explanation of individual motivation for action. Within the theoretical framework outlined by economists, rational self-interest predicted individual preferences, while in sociological theory, cultural background and values determined individual attitudes. Kangas (1997) delineated these behavioural models as Homo Economicus and Homo Sociologicus. This division allowed the general disciplinary difference in the studies of preferences for redistribution to be delineated.

However, over time, we can observe interpenetration of the disciplines: economics has borrowed a notion of culture, altruism and justice from sociology, while sociology has paid more attention to the role of individual utility in shaping reasons for individual demand for government intervention in redistribution. The long-term dispute about the power of beliefs, values and norms initiated by Durkheim, Weber and Parsons in sociology was continued by Arrow in economics in his seminal book "Social choice and individual values"(1963). However, the economics literature was reluctant to consider culture as a robust concept or to provide culturally-based explanations in view of the ubiquity of this concept and inability of scholars to suggest refutable hypotheses (Guiso, Sapienza, and Zingales, 2006). Thus, Arrow came up against an axiom that was widely accepted in economics at that time that "the individual seeks to maximize his expected utility"(1963, p. 10). One important argument was, however, accepted in this work and it became a cornerstone in empirical studies of redistribution preferences in economics: people may sacrifice their own utility when they believe that it is important for the common good.

The current progress made in surveys and data collection techniques now provide more information to formalise hypotheses and to attribute differences in beliefs and values to cultural patterns. This, in turn, has made it possible to pull culture into economic discourse. Since economists have admitted that altruism is an important omitted variable in political economy (Rueda, 2014), some researchers have revised a utility function that includes altruism and beliefs
about justice into models as proxies for culture (Alesina and Giuliano 2011; Greif 1994; Carroll, Rhee, and Rhee 1994; Alesina and Glaeser 2004; Bernhard, Fischbacher, and Fehr 2006; Alesina and Angeletos 2005; Bénabou and Tirole 2006; Alt and Iversen 2017). In the social sciences, in the same year (1963) as Arrow did, Lipset published his book "Political Man" where he also discussed the effect of beliefs on actual political redistribution and the political situation in a given country (1963). Several subsequent works delivered more findings about the association between the demand for redistribution and human values (Hochschild 1981; McClosky and Zaller 1987; Feldman and Zaller 1992; Kulin 2011; Kulin and Svallfors 2013). These studies established that altruism and egalitarianism increase the demand for redistribution, while individualism decreases it.

At the same time, the importance of individual self-interest in redistribution has been widely recognised in both economics and the social sciences for many decades. Existing research has revealed a wide variety of associations and has shown that people with a higher socioeconomic status (higher income, education, more prestigious occupation and without any experience of unemployment) and living in generous welfare states ask for less government welfare provision and redistribution compared to those who have a lower socioeconomic status and live in Eastern European countries (Coughlin 1990; Fitzpatrick 2011; Jæger 2006; Jæger 2008; Jæger 2013; O. Kangas 1997; Kulin and Svallfors 2013; Lau and Heldman 2009; Linos and West 2003; van Oorschot, Opielka, and Pfau-Effinger 2008; Van Oorschot and Reeskens 2013; Svallfors, Kulin, and Schnabel 2012; Sykes 2009).

Lately, Meltzer and Richard (1981) have suggested the theory of the median voter to explain the principles shaping the preferences for redistribution and their determinants. Their model relies on the strong self-interest argument that individual demand for redistribution is a function of an individual's position in the income distribution in society. This model predicts lower demand for redistribution among individuals who are higher on the income ladder. The theory explains both individual decision-making about desirable levels of redistribution and social outcomes of political participation. On the one hand, a person's own interest in redistribution is based on their own needs; on the other, individual demand is shaped by structural conditions and depends on the median income in a country.

The theory also predicts that the median voter is sensitive to inequality: the higher the level of inequality, the more benefits a median voter will gain from redistribution and the stronger the support for redistribution will be in the society. This means that an individual's demand for
redistribution is shaped by the amount they pay in taxes and it is also shaped by lump sum government welfare transfers in their favour. People support redistribution more if the monetary amount of welfare benefits exceeds the amount of taxes they paid, but support it less if they pay more in taxes than they gain in benefits. Consequently, where the median voter sits on the income ladder determines average demand for redistribution in a country. This argument underlies an extensive discussion about the effect of numerous macroeconomic and social conditions on redistribution preferences.

The publications that have come out in recent decades test both the ideational and the rational determinants of individual demand for redistribution. Most of the research in the social sciences and some in economics has combined the two sets of individual level determinants discussed above in their models: self-interest and values (Coughlin 1990; Fitzpatrick 2011; O. E. Kangas 1997; Corneo 2001; Alesina and Ferrara 2005; Linos and West 2003; Jæger 2008; Jæger 2006; J. Kulin and Svallfors 2013; Svallfors, Kulin, and Schnabel 2012; Van Oorschot and Reeskens 2013; Sykes 2009; van Oorschot, Opielka, and Pfau-Effinger 2008; Lau and Heldman 2009; Alesina and Angeletos 2005).

Even though the current findings help shed light on the complexity of important associations, expand explanations and define a list of possible controls, we know little about whether individual self-interest and values are causally related to redistribution preferences. So far, several questions still arise when dealing with these preferences. Namely, while discussing what factors determine a preference for redistribution, researchers cannot fully understand whether people shape their preferences at an early stage of socialization and maintain this over the course of their lives or whether they adapt them progressively based on their cultural and social context.

This dissertation seeks to shed light on the issue of elasticity of preferences for redistribution and seeks to approach the problem of the causal effect of culture and individual socio-economic position on these preferences. In particular, I study how, on the one hand, a transition from one cultural context to another and, on the other, how social mobility, i.e. a transition from one socioeconomic position to another, affects individual demand for redistribution.

This chapter introduces and justifies the general research question of the thesis. The next section proceeds introductory Section 1, introduces the general question, splits it into several specific research questions, illustrates existing approaches to the causal inference identification, and formulates preliminary hypotheses. Section 3 delineates the outline of the thesis.

2. Research questions and main contributions

The general question of my dissertation is "How elastic are preferences for redistribution?" In other words, "Do people change their preferences for redistribution in response to changes in the cultural and social context in which they live?" Similarly, "Do they change their preferences for redistribution if their socio-economic position changes?" The underlying idea is to understand preferences of people who move: immigrants and socially mobile people. These questions leads me to ask two separate questions about the effects of culture and individual welfare.

2.1. The effects of culture on preferences for redistribution

The first issue that I address in my dissertation involves the responsiveness of individual preferences for redistribution to cultural environment. Here, I ask whether migrants hold on to the same redistribution preferences as those that are widespread in their "culture" of origin or whether they change their preferences to conform to the mainstream cultural context of the country to which they have migrated. This problem can be nested within the growing literature that discusses the role of culture in economic behaviour (Alesina and Giuliano 2015). The literature in economics defines culture as "beliefs and preferences that vary systematically across groups of individuals" (Fernández, 2008). This definition facilitates the measurement of the concept and, correspondingly, makes it possible to take the average preferences for redistribution that are typical among a definite group as an indicator of culture.

To explore the association between culture, on the one hand, and behaviour or attitudes, on the other, some recent studies have correlated averages for certain cultural traits in the country of birth with immigrants' preferences and behaviour. Scholars have generally found that the culture in which an immigrant is born affects their preferences and behaviour. This conclusion is relevant for fertility (Fernández and Fogli, 2009), corruption (Fisman and Miguel, 2007), living arrangements (Giuliano, 2007), female labour market participation (Fernández and Fogli, 2009; Polavieja, 2015) and economic outcomes (Guiso et al., 2006).

Some studies, however, empirically investigate the causal link between culture and individual preferences for redistribution. Ockenfels and Weimann (1999) exploited the natural experiment of Germany's reunification and found different patterns of redistribution behaviour in public good
games between West and East Germans. They suggested that the cultural explanation for differences in the behavioural patterns between West and East Germans was found in the experience of Communism. Alesina and Fuchs-Schündeln (2007) used the same natural experiment focusing their research on the preferences of East Germans after the transition. They identified a slow cultural adaptation to the new institutional environment.

Luttmer and Singhal separated the effect of "culture" on preferences for redistribution from the effects of the economic and institutional environment (Luttmer and Singhal, 2011). They followed Fernández (2008) in her differentiation between culture as a system of social norms and economics as a set of institutions and traditional economic variables. Luttmer and Singhal attributed average preferences for redistribution in the country of origin to the culture of origin and traced an association between these averages and the individual preferences of immigrants. They showed that the assimilation theory does not explain the effect of the economic, political and cultural environment on the demand for redistribution. Conversely, these researchers claimed that they disentangled cultural determinants of preferences for redistribution from institutional and economic factors and, in the end, concluded that the culture in the country of origin shapes the preferences immigrants have for redistribution and that immigrants maintain those preferences even in a new institutional and economic context. They ascertained that migrants from the countries where the preferences for redistribution are more explicit tend to vote for proredistribution parties.

These empirical strategies shed light on the methodological aspects of causal attribution. However, empirical evidence about the effect of culture is still controversial. In some cases, the epidemiological approach established a strong association between the behavioural and attitudinal patterns of immigrants and the widespread patterns in their countries of origin. However, we know very little about the socialising effect of the mainstream culture in the country of residence. So, to provide some clarity about the effect of culture on preferences for redistribution and to understand how elastic these preferences are, I shall address not only the question of the effect of the culture of origin but also the question of the effect of culture in the country of destination. Here, I can ask two complementary questions.

RQ1. Do immigrants hold on to attitudes shaped in their country of origin?
RQ2. Do migrants adapt their preferences for redistribution to a new institutional and cultural context?

The lack of consensus about the direction of the effects of culture on preferences for redistribution in the recent literature means that alternative hypotheses need to be tested. Some empirical evidence mentioned above claims that the demand for redistribution remains stable after transition to a new institutional context, while others indicate integration and a convergence of preferences. The general hypotheses take the following form:

H1. Preferences for redistribution are elastic and responsive to changes in the institutional and cultural environment of an individual.

2.2. The effects of social mobility

The second general question is whether individual preferences for redistribution change if an individual experiences social mobility. The rational learning theory stresses the effects of both, the experience of social mobility, and the "cultural heritage" of a family on the preferences for redistribution. Piketty showed that, on the one hand, an individual's current and previous income influences his or her preferences for redistribution. On the other, these preferences are strongly associated to the preferences of the members of his or her "class of origin". People who are upwardly or downwardly mobile express an intermediate position concerning redistribution between stable low-income and high-income people (Piketty, 1995a, p. 552).

The latest available empirical evidence confirms the main arguments of the rational learning theory. Analysing the ISSP survey data, Corneo and Gruner showed that people are more likely to have a lower demand for redistribution if they perceive their own income and living standards as better off compared to their own fathers; in other words, if they have an experience of intergenerational upwards social mobility (Corneo and Gruner, 2002). Alesina and La Ferrara (2005) similarly concluded that upward mobility increases the probability that an individual will be against redistribution. This is true for Americans who have higher occupational prestige scores than their fathers, for those who are on an upward income trend, and for those who have better subjective and objective income prospects. Siedler and Sonnenberg (2012) reached the same results for Germans, based on their analysis of the German Socio-Economic Panel Study and intergenerational mobility.

There is a related branch of the literature which takes individual expectations about personal own welfare in the future as a measure of mobility. Several publications examined the effect of expected social mobility or the "prospect for upward mobility hypothesis" (often shortened to the "POUM"
hypothesis) on preferences for redistribution. Most research has found that a rising-income trajectory decreases demand for redistribution (Benabou and Ok 2001a; Ravallion and Lokshin 2000; Alesina and Giuliano 2009). Checchi and Filippin (2003) tested the "POUM" hypothesis in experiments and found that subjects with incomes below the mean but expectations above the mean (i.e. these had a prospect of climbing the income ladder) express lower preferences for redistribution.

However, unilateral consensus about the association between upward mobility and preferences for redistribution is difficult to observe in the literature. Pieces of empirical evidence obtained for the UK by Clark and D'Angelo (2010) showed a different regularity: if an individual's socioeconomic status is higher compared to that of his/her father when measured on the HopeGoldthorpe Scale (HGS), he/she expresses more support for redistribution and votes for left-wing parties.

An explanation for this inconsistency in the literature can be found in a paper referring to studies in social and clinical psychology on the self-serving bias and optimism. Gugushvili (2016a) put forward arguments that a self-serving bias in causal attribution leads to the overestimation of an individual's own achievements compared to others, including their own parents. This bias correlates with optimism about their own future and also leads to the suppression of egalitarian attitudes. This exact association was established between the subjective measure of an individual's own mobility compared to that of their father on the one hand and preferences for redistribution. In turn, the association between individual objective social mobility and preferences for redistribution is positive. Gugushvili supported the theoretical discussion about the self-serving bias through studying the effects of objective intergenerational occupational mobility and the subjective self-reported mobility experience on attitudes towards inequality in post-socialist transition countries. The findings he presented confirmed the self-serving bias arguments and showed that when the subjective measure of social mobility is negatively associated with egalitarian attitudes, the objective intergenerational upward mobility does not, in turn, correlate with the demand for equality. This conclusion makes the problem of measurement and differentiation between subjective and objective social mobility an important matter in the research.

The inconsistency of recent findings leads me to ask whether social mobility affects preferences for redistribution once again. However, I shall use different measures of mobility and will address only intragenerational mobility in order to avoid the possible bias discussed above.

RQ3. Do people change their redistribution preferences after an experience of social mobility?

To address this question I shall test the following hypothesis:

H2. Preferences for redistribution are elastic and responsive to changes in social and financial circumstances of an individual.

These research questions and hypotheses define the structure of the thesis and will be specified stepwise in the following chapters. My research is thus divided into two parts: the study of the effect of migration to another country and the effect of social mobility on preferences for redistribution.

3. The structure of the thesis

The dissertation is organized into two main parts which aim to address the two key research questions about the effect of culture and self-interest on individual preferences for redistribution. Each part consists of three chapters: one introductory and two empirical. Each empirical chapter can be taken as a separate piece of work united by the common question about the elasticity of preferences for redistribution.

Part I analyses the effect of culture on preferences for redistribution. Chapter 2 introduces the theoretical framework of Part 1, the main concepts and discusses some limitations. Section 1, "Acculturation", brings to light the existing findings about the cultural determinants of individual behaviour and individual preferences and shapes some expectations that will be tested later in the empirical chapters. Section 2, "Towards the issue of false adaptation", discusses the problem of selective migration and suggests some corrections for the selection bias. Chapter 3 is a crosssectional investigation of how the culture of origin determines preferences for the redistribution of immigrants; country-specific fixed-effect models are implemented to identify the effect.

This chapter extends the paper of E. Luttmer and M. Singhal (2011) "Culture, Context, and the Taste for Redistribution" published in the American Economic Journal. In the chapter, I use data from the European Social Survey and Social Survey Programme to estimate the association between individual preferences for redistribution among immigrants and average preferences for redistribution in their countries of origin. Chapter 4 responds to some of the methodological problems outlined in Chapter 3, develops a within-subject research design, and treats the question about the effect of culture in a longitudinal way. This chapter builds on and expands the work of A. Alesina and N. Fuchs-Schündeln (2007) "Goodbye Lenin (or Not?): The Effect of Communism on People" published in the American Economic Review. For this purpose, I exploit the data of the German Socio-Economic Panel. Here, I follow the same immigrants over time to estimate how their preferences for redistribution change while living in Germany. Namely, I look at how immigrants from Kazakhstan, Russia, Poland, and Turkey who have moved to Germany change their preferences over time.

Part II develops the study of the causal effects of self-interest on individual demand for redistribution. As in Part I, Chapter 5 Introduction gives an overview of the main theories and key findings that are relevant for the subsequent empirical chapters, provides a critical examination of some approaches, formulates main questions and hypotheses, and describes the research design
and measurement issues. Both of the empirical chapters in Part 2 exploit the data of the German Socio-Economic Panel study by following individuals over time to estimate how a change in an individual's socio-economic situation affects his/her preferences for redistribution. In this work, I selected two important components of self-interest which, according to the theory and previous findings, strongly associate with individual preferences for redistribution: employment status and income.

Chapter 6 focuses on the individual experience of unemployment in several ways. Firstly, I test basic associations between the current experience of unemployment and individual demand for redistribution. Then I estimate the effect of previous and future unemployment, and in the final stage, I test the causal link between the transition into unemployment and individual preferences. The other aspect of mobility is followed in Chapter 7. This chapter traces the association between disposable income and preferences for redistribution. As in the previous chapter, I test direct associations of current income and preferences for redistribution, previous and future income, and later test how income growth changes preferences for redistribution. Fixed-effect models are used to estimate the effect of changes over time of employment status and income in both Chapter 6 and Chapter 7.

Chapter 8 concludes the thesis, summarizes the results of the empirical chapters, and discusses the main findings of the thesis.

PART I

DOES THE CULTURE OF ORIGIN MATTER? APPROACHING REDISTRIBUTION PREFERENCES OF IMMIGRANTS

CHAPTER 2. Introduction to Part I

1. Introduction

Modern sociological theory and empirical social research largely rely on the classics: it is known that culture matters (Harrison and Huntington 2001; Alesina and Giuliano 2015). However, for many decades, problems of conceptualisation and overly broad definitions of culture made it a difficult subject for empirical investigation (Polavieja, 2015, p. 167). Since culture was parsimoniously defined as collective phenomena manifested in people's minds (DiMaggio, 1997) or "beliefs and preferences that vary systematically across groups of individuals" (Fernández, 2008) researchers have confirmed the claim that "culture matters" empirically when establishing differences in beliefs, preferences and values across countries, communities, religions and cultural areas on the one hand and differences in political and economic outcomes on the other (Dalton and Welzel, 2014; Harrison and Huntington, 2001; Inglehart, 1997; Inglehart and Welzel, 2005).

Polavieja differentiated between two approaches to culture: the first identified culture as individual motivation to act and the second as a sense of attribution. The first stream is derived from Weberian and Parsonian traditions and interprets culture as "a repository of preferences, beliefs, values, and identities that motivate people's behavior". According to this approach, culture determines the direction of individual behaviour: "culture thus affects human action through values that direct it to some end rather than others" (Swidler, 1986, p. 274). The second stream presented by Swidler and Tilly treats culture as a collection of repertoires, symbolic and normative toolkits used to assign the meaning to actions and frame them. The first approach treats culture in a determinist way while the second repertoire and toolkit theories leave room for changes, describe socialisation as a lifelong process, and interpret culture as variative, fragmented and fractional. To measure culture, most empirical researchers nest it in national societies or cohesive subnational groupings like Hofstede and Bourdieu did (DiMaggio, 1997, p. 267). I treat culture in the same way as Hofstede and Bourdieu, as the average preferences and beliefs of a national group.

To address the issue of the elasticity of preferences for redistribution, in the first part of the thesis, I will discuss the question whether a person tends to reproduce cultural patterns over the course of their life, as the motivational theory predicts, or whether a person conforms to mainstream culture
and changes his/her own preferences and beliefs in response to a change in cultural environment. Inglehart (1977) pointed out that individual values are shaped during the formative age and are robust to changes. It is unclear whether individual preferences follow the same logic. We also may expect that individual preferences are more elastic than values. Does the culture of origin shape individual preferences at the early stage of socialisation or are individual preferences elastic and responsive to change? Does a change in the cultural environment lead people to change their preferences? Or maybe these preferences are stable and people maintain whatever preferences are established during their formative years?

Debating the seminal work of Esping-Andersen (1990), Jæger (2013) argues that welfare regimes shape cultural patterns and normative views on redistribution, deservingness, solidarity and equality. In this case, welfare regimes perform a role of supra-national unities generating these patterns. They act as socializing forces and create a sort of "welfare culture" that shapes public beliefs and preferences for redistribution. Since individual preferences for redistribution are endogenous to welfare culture, an individual's transition to another welfare regime can be used as a methodological tool to make the effect of culture explicit: if a person maintains his/her preferences for redistribution over time after the transition to another culture, then the culture of origin determines one's preferences. However, changes to an individual's preferences after the transition, would suggest that individual preferences are elastic and responsive to the change in cultural context.

An individual faces a problem of role conflicts (Mead, 1964; Goffman, 1959) and dissonanceproducing experiences when immigrate to another country. Festinger developed the theory of cognitive dissonance (Festinger, 1962) and suggested that dissonance when appeared necessitates reduction mechanisms as all individuals require consistency. Immigrants encounter two contradictory cognitions upon arrival to a new culture: on the one hand they still have their attitudes and preferences which were shaped in the country of origin, on the other hand they realise that their attitudes and preferences do not correspond to average attitudes and preferences of natives in the host country. As a result, an immigrant collides aversive motivational state and desires to reduce this dissonance. Festinger discussed two possible options how individuals can solve the conflict between inconsistent cognitions: either they change their cognitions, or they find new justification for their believes and attitudes, enabling individuals to reconcile contradictions. The strength of cognitive dissonance determined by multiple factors such as selection issues and the history of migration and a wish to reach cognitive consistency lead to certain patterns of
integration. Assimilation and acculturation theories complement and clarify the theory of cognitive dissonance in the context of cross-cultural interaction.

Assimilation and acculturation theories suggest a range of insights into the discussion about the effect of culture and delineate classification of different ways in which the culture of origin could affect individual preferences and attitudes. Assimilation theory claims that societal context strongly affects attitudes: migrants absorb values and attitudes of host countries, and upper classes do it to a greater extent than lower ones (Portes and Zhou 1993; Alba and Nee 2005; Norris and Inglehart 2012). Acculturation theory proposes different outcomes of adaptation from assimilation to marginalisation (Berry 2003). This theory assumes not only the adoption but also the rejection of values and beliefs of natives by immigrants in a host country where they live. The following section provides some empirical insights into acculturation theory.

2. Acculturation

Nowadays the concept of "acculturation" is frequently used to discuss the issue of immigrants' cognitive dissonance reduction, integration and adaptation of immigrants in a host country. Previously, authors used it as a synonym of assimilation. For example, the definition used by the International Organisation for Migration in 2004 neglected the various possible ways people can change their attitudes and behaviour while living in a country different from their country of birth: acculturation is "the progressive adoption of elements of a foreign culture (ideas, words, values, norms, behaviour, institutions) by persons, groups or classes of a given culture" (Sam, 2006, p. 11). Berry, however, considers integration as an open process without an unidirectional outcome: "acculturation is a process of cultural and psychological change that results from continuing contact of different cultural backgrounds" (Berry 2006, 27).

For many decades John Berry and his colleagues (J. W. Berry, 2003, 2005; Kwak and Berry, 2001) analysed acculturation processes. Approaching the question of cooperation and conflict of representatives of different cultures, he took migrants as an example and an empirical tool. Migrants became of particular interest of his because they were born in one culture and resettled in another. Although they kept their culture at first, they faced the problem of adaptation later. Initially guided by the findings of anthropologists Redfield, Linton and Herskovits (1936) and Graves (1967), Berry developed his approach and suggested four possible outcomes of migrants' adaptation to a new environment: assimilation, integration, separation and marginalisation. This classification is based on two important dimensions: a wish to keep the culture of origin and a wish to adopt the new culture and successfully interact with natives. In the case of assimilation, a migrant tries to abandon the culture of origin and adopt the culture of the receiving country or the dominant majority. Integration takes place when a migrant has the intention to adopt the new culture but at the same time prefers to keep the culture of origin. Two other outcomes prevent successful adaptation: separation happens when a migrant sticks to the culture of origin and rejects the culture of the host country, and marginalisation happens when both the culture of birth and the culture of the host country are abandoned.

Table 2.1-Four outcomes of the acculturation process (Berry 2003)

		Attitude Toward Keeping Heritage Culture and Identity	
		Positive	Negative
	Positive	Integration	Assimilation

In line with the theory, we can expect that immigrants may change their preferences for redistribution in different ways. The four possible outcomes of acculturation are presented in Figure 2.1, where the x -axis refers to time while the y -axis to the level of preferences for redistribution. The figure presents several lines depicting theoretical models of possible changes of preferences over time. To make the dynamic model explicit, I address a specific case when a person migrated from a country where the level of the demand for redistribution is high to a country where the level of demand is less on average. Migration also happens from countries in which there is less demand for redistribution to countries in which there is more demand, but for theoretical clarity, I will refer only to the first specific case and will discuss the possible outcomes one by one.

Line 1 refers to assimilation when a person moves away from preferences for redistribution typical in the country of origin and after some time adopts typical preferences in the country of destination. In this particular example, I provide indications for people who had higher demand for redistribution compared to natives shortly after transition and whose demand decreased substantially over time. At time point two (t2) the preferences for redistribution of immigrants in are indistinguishable from the preferences of natives. Line 2 delineates the scenario of integration when a person changes his/her own preferences and partially adapts to the average preferences in the host country. However, the gap between the preferences of an immigrant and average preferences in the country still holds. In this particular theoretical example, an immigrant who had high demand for redistribution after transition reduces her own demand over time, yet at the time point 2 his/her demand for redistribution is still higher compared to that of natives. Line 3 depicts the separation outcome: an immigrant holds the same preferences typical of natives in the country of origin over time. No convergence of the preferences of immigrants and those of natives can be observed in this case: the theoretical model demonstrates that the level of the demand for redistribution at time point one is similar to the level of the demand at time point two. There are
two lines 4 , which illustrate marginalisation, and are extreme outcomes when an immigrant demonstrate preferences for redistribution typical neither of the country of origin nor in the country of destination. Marginalisation suggests that redistribution preferences were abandoned from the very beginning. Theoretically, this outcome is a marginal case.

Figure 2.1 - Four possible outcomes of acculturation, theoretical models for a migrant transited from a country where redistribution preferences (RP) are high to a country where the preferences are low

3. Towards the issue of false adaptation

There are three important problems in the study of immigrants' adaptation: first, self-selection into migration, second, self-selection into a country of immigration and third, return-migration. These three issues make findings based on a cross-sectional analysis in some sense fragile. Below I discuss these points separately one by one.

3.1. Self-selection into migration

Most of the researchers who study migrants underline the fact that migrants are not a random sample (Bianchi, 2013; Borjas, 1988). To understand the selection mechanism better, I discuss further a set of determinants of migration. Kauppinen and Poutvaara (2012) traced a long discussion about incentives for migration back to Adam Smith. This tracing attracted the attention of the academic community to the relationship between wage differences and geographic mobility. Later on, economic advantages (Hicks, 1932), an increase in social capital (Sjaastad, 1962) and amount of public goods (Tiebout, 1956) were discussed as decisive determinants of migration.

The most general explanation for migration was formulated by Nakosteen and Zimmer (1980. 841): migrants "seek to maximize the present value of net gains resulting from locational change". In particular, income differentials and net of mobility costs are identified as the key incentives for migration. Migrant-non-migrant earning differentials are introduced into many statistical models that aim to explain reasons for migration (Nakosteen and Zimmer, 1980).

Borjas (1988, p. 4, 1994, p. 1688) described individual decisions by means of an equation:

Where:

$$
\begin{equation*}
I=\ln \left(\frac{\mathrm{w}_{1}}{\mathrm{w}_{0}+\mathrm{C}}\right) \approx\left(\mu_{1}-\mu_{0}-\pi\right)+\left(\varepsilon_{1}-\varepsilon_{0}\right) \tag{1}
\end{equation*}
$$

I - is an index function determining individual decisions for migration, w_{0} - are the individual earnings in the country of origin,
w_{1} - are the individual earnings in the destination country, C - is the level of mobility costs,
μ_{0} - are the earnings of the average native worker in the country of origin,
μ_{1} - are the earnings of the average native worker in the country of destination, π - is a "time-equivalent" measure of the transition costs for emigration $\left(\pi=C / w_{0}\right)$.
ε_{0} - are disturbances in the country of origin, ε_{1} - are disturbances in the country of destination.
According to this equation, migration takes place when $I>0$. Here we can see pure rational choice for migration. Borjas (1988, p. 5) summarized that immigration is:
"(a) a negative function of mean income in the home country;
(b) a positive function of mean income in the United States [or the country of destination - OG];
(c) a negative function of the costs of emigrating to the United States [the country of destination OG]".

In his research Borjas tested the hypothesis that migrants are income-maximisers. He extended the Roy (1951) model affirming that self-selection of migrants depends on the relative returns to their abilities and showed that this hypothesis holds true only under definite conditions. Namely, positive selection of migrants takes place when the correlation of wages in the country of origin and the country of destination is positive and significant and when the ratio of the income differentiation in the country of destination is higher compared to the country of origin. To disentangle this effect, Borjas employed an array of control indicators that that he expected would be associated with the political and economic situation in a country: a politically competitive system, a recent loss of freedom, a number of assassinations, income inequality, distance from the U.S., English proficiency, mean age at migration, ln per capita GNP, continents. Brücker and Trübswetter (2007) came to similar conclusion using the case of West and East Germany. They studied migration flows in Germany after reunification and asked the question "Do the best go west?". Commenting on empirical literature on migration from East to West in Germany, they provided several arguments supporting the positive selection hypothesis: migrants are better educated and possess higher skills levels compared to nonmigrants.

Moreover, the long list of current publications explaining rational reasons for migration may be supplemented by the discussion about personality traits. Abilities, readiness to take risks and search for new experience are important determinants of self-selection into migration (Fouarge and Ester, 2007). In particular, Fouarge and Ester discovered that Europeans decide to move to another country if they expect not only upward labour market mobility and income growth, but also if they want to discover a new environment and meet new people.

Some researchers developed an idea suggested by Sjaastad (1962) proposing that the intention to invest in human capital is an important trigger in a decision about migration (Axelsson and Westerlund, 1998; Bianchi, 2013; Nakosteen, Westerlund, and Zimmer, 2008). Nakosteen,

Westerlund, and Zimmer (2008) argued that there is an effect of unobservable individual traits on both wages and propensity to engage in risky human capital investment (such as migration). Ghatak, Levine, and Price (1996) also put forward an argument that wage differential is not a single cause of migration. They discussed cases of migration in which there were no wage differentials and cases of disinclination to migrate when the wage increase was evident. They concluded that there are a number of macro and micro factors minimizing the effect of wage differentials. For example, wage uncertainty, inequality in income distribution and relative deprivation in countries of origin could make parents want to invest in opportunities for their children, take risks and opt for migration to seek a better future for them (Ghatak et al., 1996, p. 161).

As we can see, it is widely acknowledged that immigrants are a selective group and immigration is a selective process. With respect to my key question, there is an important matter to be discussed. Assimilation or integration may be identified at a later stage not only because of learning the local culture but because of self-selection into migration on the very first stage: as an immigrant is a risk-taker relying on her own abilities, she might have a lower demand for redistribution compared to stayers even before the migration. And here we could see a modified outcome of acculturation. Assimilation can take place at the end; however, at the moment of immigration, a person can already have preferences that differ from those of the majority in the country of origin and are similar to those of the majority in the country of destination.

Figure 2.2 addresses the issue of self-selection into migration under the same assumption that a person migrated from a country where the level of the demand for redistribution is high to a country where it is low. There are two possible outcomes here: integration and assimilation. Line 1 refers to relative assimilation when a person had preferences similar to natives in a host country from the very beginning and his/her preferences became even more similar at time point two. Lines 2 and 3 describe the theoretical model of relative and false integration. In the case of false integration (line 3), the level of individual demand for redistribution is somewhere between average preferences in the country of origin and average preferences in the country of destination from the very beginning and remains the same over time - no change happens here. At the same time, we can observe a slight convergence in the case of integration, as line 2 depicts: a migrant may have preferences more or less similar to the average preferences in the country of destination and those preference become more similar over time. So, in this case we could expect that little or no change will be observed. Theoretically, in the case of self-selection into a country, neither separation nor
marginalisation can take place because the preferences of immigrants were already similar to the average preferences of natives in the country of destination already at the time point 1 .

Figure 2.2-Outcomes of acculturation in the case of self-selection into migration

3.2. Self-selection into a country of immigration

Kauppinen and Poutvaara (2012) asked whether better-off natives in Denmark tend to migrate only in order to minimize their own tax burdens and in order to gain more income. Borjas's hypothesis refers to a situation in which a person opts to migrate if he/she believes in her own abilities and expects higher wages and low taxation in reward. Kauppinen and Poutvaara, in addition, were motivated by the selection issue and assimilation. Namely, at first, they investigated whether migrants self-select to a country where the average preferences for redistribution are similar to their own and where a degree of government intervention in redistribution corresponds to their preferences. They compared Danish migrants who moved to Nordic countries, the United States, the United Kingdom, Ireland, Canada, Australia, New Zealand, the rest of Western Europe and the rest of the world to Danes living in Denmark. To identify the selection bias, they focused on preferences of Danes who immigrated to Nordic countries where demand for redistribution is high and to liberal countries where an average demand for redistribution is low. They compared these two groups of migrants and found that the preferences for redistribution of migrants from Denmark to Nordic countries is higher compared to those who migrated to the U.S. or other English-speaking countries. Even after controlling for other possible determinants, the association between preferences for redistribution and country of destination remains significant. Moreover, on the second stage, they showed that lower demand for redistribution of Danes in English-speaking
countries is not the result of assimilation: both Danes who immigrated at a young age and later, those who lived in the host country for a long or short time demonstrated the same level of demand for redistribution.

The other reason for self-selection into a country is the cost of migration. Immigration "often involves a loss of established social networks of family and friends, and the challenge of integrati into a new job, a different social security system and a new social environment, often with the need to learn a new language" (H. Krieger, 2006, p. 2). A short geographic distance from the country of origin decreases the cost of migration both in terms of expenses and cultural adaptation. This selection bias is important for my research because migration within similar cultural areas decreases the exogenous effects of culture in the country of destination and makes it problematic to differentiate between the effects of culture in the country of origin and the country of destination.

Krieger singles out several factors that increase the price of migration. Using the data from Euro Barometer survey, he clearly showed that the most problematic aspects are breakups with family and friends, difficulties with language and problems with healthcare facilities. Fouarge and Ester (2007), in turn, found that language barriers (for 58% of European respondents) and finding a job (for 35%) are the main obstacles to immigration. These obstacles together can be united and discussed as a social and cultural distance, the phenomenon widely examined in cross-cultural psychology. As a result, people may self-select into neighbouring countries to reduce the costs of the transition.

Cultural distance is a degree of dissimilarity between two cultures in terms of language, religion, habits of everyday life and fundamental components of value systems (Berry 1997, 23). The broader literature on this topic stated that the greater the cultural distance between country of origin and country of destination, the more difficult the adaptation (Babiker, Cox, and Miller 1980; Furnham and Bochner 1982; Furnham 1983; Searle and Ward 1990; Ward and Searle 1991; Colleen Ward and Kennedy 1992; Ward and Kennedy 1993; Colleen Ward and Kennedy 1999): "Greater cultural distance implies the need for greater culture shedding and culture learning, and perhaps large differences trigger negative intergroup attitudes and induce greater culture conflict leading to poorer adaptation" (Berry 1997, 23). Yet when choosing for immigration Europeans can minimize the cost by choosing nearby countries (making distance from family and friends shorter), countries where people speak the same or similar language (Chiswick and Miller 1994; Chiswick and Miller 2005, 3) (partially equalizing migrants and natives in terms of employment and makes adaptation easier) and maybe even countries with similar social security systems (it
allows immigrants to have a more predictable environment and reduces health risks). In many cases, these factors overlap.

Corder (1981) discussed distances between the English language, Western European and Asian languages and found that French and German languages are closer to English, compared to Japanese or Korean. This is the reason why immigrants from Western Europe to English-speaking countries demonstrate a higher level of language proficiency in comparison to immigrants from Asia. The same conclusion can be found in the work of Beenstock, Chiswick and Repetto (2001): they claim that Arabic-speakers are much more fluent and proficient in Hebrew than Englishspeakers. The same or similar language is a sort of "entry ticket" to another culture: from the very beginning, an immigrant from a country where a language is similar to language in the country of destination is included in communication with natives and in the media space of the country. Selection into a country where people speak a similar language can make adaptation easier. For example, Chiswick and Miller (1994) found that there is a selective migration into different regions in Canada: the most immigrants from a Romance language country (a large share of them were French-speakers) settled in Quebec. To support this argument, they provided data of Census of Canada in 1981: "of the adult male immigrants in Quebec 11\% are from France and 26\% are from Italy and Portugal, Romance language countries, while only 15% are from the United States, United Kingdom and Ireland. In contrast, in "English Canada" less than 1\% are from France, 16\% from Italy and Portugal, and 33% are from the United States, United Kingdom and Ireland" (Chiswick and Miller 1994, 122). Moreover, the results of their multinominal logit models confirmed that the selection of a language in a multi-lingual environment depends on the mother tongue of immigrants.

To test the theory of selective migration into neighbouring countries, I utilised data on migrants from the ESS sample, a cumulative dataset. The data indicate that a large share of migrants did indeed move to neighbouring countries where they meet no or little complication in terms of language (Figure 2.4^{3}) and where there was a similar welfare regime (Figure 2.5). Below I discuss these two reasons in details and provide some examples.

The first strategy in identifying selective migration is to associate the language in the country of origin to the language in the country of destination or to measure a linguistic distance. Literature in linguistics suggests two possible ways to measure linguistic distance. Historical linguistics

[^1]proposes a classification of languages based on their historical and genetic relationship: the so called language or family tree. This idea was initially suggested by Friedrich von Schlegel and later elaborated by August Schleicher, Jacob Grimm, and Wilhelm von Humboldt. The other measure of the linguistic distance is the Index of Difficulty of Learning a Foreign Language (Language Scores). This index is a result of empirical estimation of average language ability of immigrants after several weeks of training. Researchers tested the linguistic proficiency in English of immigrants from different countries and based on these results, they assigned mean scores of proficiencies to countries of origin. These mean scores indicated the linguistic distance of the country of origin from the U.S. (Hart-Gonzalez and Lindemann 1993; Chiswick and Miller 2005; Chiswick and Miller 2007, 575).

To disclose a non-random character of intra-European migration, I need to identify a distance not just between English language and other languages as the Index of Difficulty of Learning a Foreign Language allows, but a distance between all European languages. For this purpose, I use the IndoEuropean family tree ${ }^{4}$ (Figure 2.3). The family tree classifies languages into groups based on their linguistic similarity. I take the Italian language to exemplify the logic behind the scheme presented in Figure 2.3. Romanian and Dalmatian are the languages most similar to Italian. These languages are part of the Eastern Romance language group. This means that Romanians have little difficulties in learning Italian and the large number of Romanian immigrants in Italy can be explained by the short linguistic distance between Italian and Romanian and thus, the ability of Romanian immigrants to understand natives without extra educational efforts and the low cost of obtaining language fluency. There is a slightly greater distance between Italian, Spanish and French, which belong to the Latin linguistic group, but it costs less for Italians in terms of effort to learn Spanish or French which may facilitate migration between these countries. Italian and Welsh or Irish Gaelic are in the same Italo-Celtic branch of languages, but the linguistic distance gets greater in this case. Most European languages belong to the same Indo-European family. These languages are different in many respects and it requires a lot of effort for Italians to learn Danish or Polish, for example. However, there is still similarity in terms of writing and expressing ideas. The greatest linguistic distance can be observed between Italian and languages that do not belong to the Indo-European family such as Chinese or Arabic.

[^2]I quantify the linguistic distance based on the linguistic family tree to test the hypothesis about non-random migration in terms of linguistic similarity. I have developed a nominal scale from 1 to 5 indicating the range from total linguistic similarity to the total linguistic difference. Score 1 means "no linguistic distance" or the same language. To illustrate how the scale works, I take Germans as an example. I assign a score 1 to a German who migrated to Austria, for example, and had no language difficulties. A score of 2 means "small linguistic distance". In this case, I assign score 2 to a German who migrated to a country of the same West Germanic group of languages, to the Netherlands, for example. A score of 3 is a "medium linguistic distance"; a German gets this score if he/she migrates beyond his/her linguistic group to a country of the same Germanic branch of languages, like Norway or Denmark. A score of 4 means a "long linguistic distance" but in the same family of languages: a German gets this score if he/she migrates beyond his/her German linguistic branch but still remains in the Indo-European language space. A German who moved to Spain, Italy, Greece or Poland can be a good example. A score of 5 means a "very long linguistic distance", or a completely different language. A German would get this score if he migrated beyond the Indo-European language space, for example, to Turkey, India or Japan.

Figure 2.3 - The Indo-European family tree (Campbell and Poser, 2008, p. 84)

The non-random character of migration can be established if the data show that most cases of migration occur between countries with no or a short linguistic distance. To test this hypothesis, I assigned language distance scores to immigrants depending on official languages in the country of origin and destination using the scale described above. I tried to assess how many immigrants from in the ESS sample (European migrants) in a specific country speak a language similar to their own native language. Figure 2.4 shows the share of immigrants in a country who speak the same, similar or completely different languages, where 1 means "no linguistic distance", 2 "short linguistic distance", 3 "medium linguistic distance", 4. "long linguistic distance", 5. "very long linguistic distance".

The figure shows that immigrants tend to move to countries where the official language is the same or similar to the official language in their country of origin. In 16 out of 32 countries, the share of immigrants who speak a language similar (three groups with either no, a short or a medium linguistic difference) to the official language in the host country exceeds 60%. This finding can be taken as confirmation of the non-random character of migration at least in half of the countries from the ESS sample. Several cases need to be discussed separately. I attributed migration status to people who declared the country of birth different from the country of residence. However, the upper part of the histogram presents countries such as Russia, Ukraine, Czech Republic and Slovakia, countries that emerged after the collapse of the USSR in the case of Russia and Ukraine, and Czechoslovakia in the case of the Czech Republic and Slovakia. Initially internal migration in these countries became external. The majority of people identified as migrants here were born in one country. Consequently, migration between these counties happens not only because of a short
linguistic distance but most of all because of strong cultural, family and economic ties. In this case, one would hardly expect immigrants from the Czech Republic to Slovakia to face a strong need to adapt to a new political, economic and cultural environment. On the contrary, in this case, a person may never change his/her own preferences in response to a change in the cultural environment.

When looking at this situation of migrants in Luxemburg and Switzerland, we find that the share of immigrants who speak a similar language exceeds 80%. The reason for selective migration in this case may also be due to the fact that there are several official languages in these countries. For example, both Italians, French people and Germans can find a region where they can speak their native tongue in Switzerland. In the other ten countries (Bulgaria, Belgium, Iceland, Slovenia, Portugal, Ireland, France, Norway, Denmark, Croatia) between 60% and 80% of immigrants speak their mother tongue or a similar language. In eight countries (UK, Netherlands, Italy, Austria, Spain, Cyprus, Sweden, Poland) the share of immigrants who speak similar languages is also substantial: between 20 and 50%. There were only in 8 countries out of 32 , where the share of immigrants who speak languages similar to the official language of the country of origin was less than 20%. I could not establish a clear linguistic bias in Finland, Germany, Greece, Estonia, Turkey, Lithuania, Israel or Hungary.

Figure 2.4 - The share of European immigrants (in the countries of destinations) who speak languages similar to the official languages in countries of destination (subsample of migrants, ESS, cumulative dataset)

The other cause of the selection into a country may be similarity between welfare regimes or institutional redistribution arrangements and social protection in a country of origin and a country of destination. This bias can be clearly identified if we correlate the regime in an immigrant's country of origin and that in the country of residence. For this purpose I use the classification of welfare regimes initially elaborated by G. Esping-Andersen (1990) and extended by Fenger (2007) (Table 2.2). Fenger's classification unifies Conservative and Mediterranean welfare regimes. However, he also indicates in his paper that Mediterranean countries shape a separate cluster but the distance between the core of the Conservative and Mediterranean countries is tiny. To make the picture more detailed, I consider Mediterranean countries separately. Based on this classification and the country of origin, I have attributed a regime of origin to each migrant. This
modification allows us to see clearly the share of European migrants from a certain welfare regime in each country (Figure 2.5).

Table 2.2-Types of welfare states (Fenger, 2007, pp. 22-24)

Socialdemocratic	Conservativecorporatist type	Liberal	FormerUSSR	Post-communist European type	Developing welfare states type
Finland	Austria	New Zealand	Belarus	Bulgaria	Georgia
Denmark	Belgium	United Kingdom	Estonia	Croatia	Romania
Norway	France	United States	Latvia	Czech Republic	Moldova
Sweden	Germany	+ Iceland	Lithuania	Hungary	
	The Netherlands	+ Ireland	Russia		
	Greece		Ukraine		
	Italy				
	Spain				

Figure 2.5 shows that the majority of immigrants in many countries came from the same welfare regime. For instance, most immigrants in Estonia, Lithuania, Ukraine and Russia are from the former USSR countries. A similar picture can be seen in Slovakia, the Czech Republic, Slovenia and Croatia: the majority of immigrants in these countries are from former communist countries. These two cases represent the countries that emerged after the collapse of the USSR: Czechoslovakia and Yugoslavia. As mentioned above, migration between the countries which were parts of the former USSR as well as between the countries which were previously parts of Czechoslovakia or Yugoslavia is determined by a common history and strong economic and family ties. There are also strong economic and family ties between the UK and Ireland, a fact that explains the large number of immigrants from the liberal welfare regime, mainly from the UK, in Ireland. Yet, the data on the UK doesn't provide us with evidence about selective migration based on the similarity of welfare regimes. Selective migration partially holds in social-democratic countries: in Norway, Sweden and Finland the share of immigrants from social-democratic countries is above 40%. In some Conservative countries, like Switzerland, Luxembourg and Austria, selective migration is around 40%. At the same time, it is evident that there is a sort of exchange of immigrants between the familiaristic and conservative regimes. There are a lot of immigrants from conservative countries in Portugal, Italy and Spain and from familiaristic countries in Belgium, Luxemburg, France and Switzerland. Meanwhile, there are just a few countries with diverse migration flows like Germany, UK, Cyprus and Denmark in which there is no relationship between selective migration and the similarity of welfare regimes.

A detailed overview of the migration flows allows us to be more precise: Portuguese people move to Spain, France, Italy and Switzerland; Spaniards move to the same countries as Portuguese
people do; French people move to Belgium, Luxemburg and Switzerland; those from Belgium move to Luxemburg and the Netherlands; people from the UK move to Ireland, and people from Ireland move to the UK; people from Russia move to Ukraine and Estonia; people move from Ukraine to Russia and Estonia (see Table A2.1 in the appendix). Consequently, a question arises "what can we say about the effect of the culture of origin if people migrate within similar cultural zones ${ }^{5}$?" Is it possible to say that a person faces a problem of adaptation when she moves from France to Belgium or from Austria to Germany? Besides, similar languages allow people even before migration to have access to the same media environment which also shapes their ideas about proper standards of redistribution.

[^3]Figure 2.5 - The share of immigrants from welfare regimes in various European countries (subsample of European migrants, ESS, cumulative dataset)

Accordingly, there is a problem of self-selection into a country which is similar to a country of origin in terms of welfare settings and average preferences in the ESS sample and this observation is be typical generally for intra-European migration. In this case, intra-European migrants experience very small changes to their external environment and the exogenous effect of culture is hardly detectable. The main expectation here would be that a migrant's preferences would be similar to those of a native after migration and would keep these preferences over time. This means that, for example, an Austrian would self-select to Germany because of many reasons just discussed because in both countries average preferences for redistribution are more or less the same and the immigrant would not face the problem of integration in this specific case. Or, another example, a person from any country may opt for a transition to a liberal country if his/her own
demand for redistribution is low and similar to an average demand for redistribution. Figure 2.6 outlines possible outcomes of acculturation in the case of immigration within the same welfare regimes. Line 5 fits the main theoretical expectation when preferences of a migrant are the same as preferences of natives after migration and that these preferences remain stable over time. However, a person may have a transition shock or economic experience unrelated to the welfare culture or personal characteristics that, in turn, can lead to marginalisation when individual preferences substantially deviate from preferences of natives at the second time point. Lines 4^{*} and $4^{* *}$ explain this deviation: a person can reduce his/her demand in the case of successful adaptation (4*) and increase his/her in the case of downward mobility (4**). In both cases the terminal demand deviates from average preferences.

At the same time, marginalisation can be caused by the other selection issue: selection into migration. Line 4 represents this case of marginalisation. An immigrant is a self-selected person from the very beginning and it makes a person different from non-migrants both in terms of risktaking and demand for redistribution. A theoretical model when a person migrates within the same welfare regime, where an average demand for redistribution is the same, predicts no change in preferences. However, initial preferences of an immigrant may be shaped by individual characteristics which also direct the decision to immigrate. If a person migrates, it can be a result of a positive selection: a person relies on his/her own abilities and takes risks to maximise his/her own income, but not at the expense of welfare system. This type of selection determines individual demand for redistribution and makes the demand even lower compared to average preferences.

Figure 2.6-Correction for self-selection into a similar country of destination

3.3. A problem of out-migration

As stated above, self-interest, readiness to take risks and to search for new experiences are important individual characteristics that define a decision to immigrate and reduce one's own demand for redistribution. To overcome the issue of self-selection into migration, it is possible to follow certain groups of immigrants over time. However, another bias can arise here: return migration. Even if one follows the same group, there is a risk of a sample reduction and exit of those who did not show integration. Initial incentives for migration may become less important than the costs of the transition and adaptation. As a result, one could observe out-migration, return migration or repatriation: those people who had no intention from the very beginning or could not adapt to the economic and cultural environment could decide to return to their country of origin. Constant and Massey (2003) traced return migration in European countries. They paid special attention to the fact that after the European Union was enlarged in the 1980s and 1990s, representatives of many European countries got the opportunity to work and reside legally in Germany. However, most migrants returned to their country of birth: "the rates of return migration were particularly high for migrants from EU countries, with 9 of 10 Italians, 8 of 10 Spaniards, and 7 of 10 Greeks ultimately going back" (Constant and Massey, 2003, p. 632). At the same time, migrants who faced obstacles getting to Germany, and who had to make more of an effort to obtain the legal right to work and reside there preferred to stay: "only 5 of 10 Yugoslavs and 3 of 10 Turks returned home" (Constant and Massey, 2003, p. 632).

Return migration may affect not only the sample size in a piece of research, but can also lead to substantial changes in group characteristics. People who do not demonstrate a tendency towards integration and an intention to change their own preferences may leave the country and therefore cannot be part of the sample. As an outcome, the convergence of average preferences of migrants and natives can be observed not just because of integration, but because of return migration of those who didn't adopt the culture in the host country. As migrants are a very specific and fluid group, it is problematic to exploit a change of group averages as a measure of integration. Instead I shall follow individuals in the subsample and employ individual fixed effects models to trace the change in preferences.

4. Conclusion

The previous studies of migration clearly show that migrants are a specific group of people and that migration flows are not random. If not taken into account, these factors may lead to biased conclusions. As a result, the research, which uses data on migrants, shall be designed with respect to these three peculiarities and limitation. Namely,

1. People are self-selected to be migrants based on individual characteristics: readiness to take risks, beliefs in abilities and the desire to search for new experiences all make people migrate and be less supportive of redistribution. The problem of false adaptation can appear here again. Some empirical findings discussed above make it clear that most migrants are guided by selfinterest and move from less prosperous (in terms of GDP, unemployment rates, political situation) countries in Eastern and Southern Europe to wealthier European countries. At the same time, there are pieces of evidence that show an average level of preference for redistribution in Eastern and Southern European countries are higher compared to Western countries. However, preferences of the self-selected immigrants are already supposed to be lower at the moment of the transition, which means that from the very beginning an immigrant's preference for redistribution may be similar to the average preference in the country of destination. This fact may lead researchers to biased conclusions about successful adaptation. In my research, I will address this problem in two different ways. In Chapter 3, I will introduce basic human values to control for personality traits in the models. In Chapter 4, I will follow the same subjects over time using panel data. This design will allow us to clearly see if adaptation takes place regardless of the unobservables.
2. Migration in Europe does not occur randomly: in the most cases, people migrate to neighbouring countries similar to their country of origin in terms of welfare arrangements and language. European migrants tend to move to the countries close to their home countries in terms of borders, culture, language, social policy as well as politics and media space. This peculiarity of migration flows facilitates adaptation at first blush, but adaptation may not be needed since the difference between average preferences for redistribution in the country of birth and country of residence is very small. My study aims to estimate what effect culture of origin has on immigrants' individual preferences for redistribution. For this purpose, the research design needs to introduce diversity into the sample of sending countries to correct for self-selection into a country. In particular, it is necessary to estimate how culture of origin and the culture in the country of destination differ and what effect this difference has on immigrants' preferences for redistribution.
3. The third problem that can lead to a biased conclusion on the adaptation of immigrants is out-migration. Sub-populations of migrants are diverse and fluid: some people come to stay but others to earn money and leave. Those who stay tend to adapt to the local culture and change their preferences while those who go have no motivation to adapt it because they come to the country just for a short time and will go back to their home countries at some point. A comparison of the group averages and changes of means can lead to an identification problem. Since a group of immigrants is fluid, the empirical evidence of convergence can be biased if average preferences are compared even of the same group at different time points because of the exit of those who do not integrate. The issue of outmigration is closely connected to the problem of selection into the sample: subjects who don't feel like a resident or a part of a local community will probably not be selected into the sample both because of subjective and objective reasons. Participation in a survey automatically reports a person as a settled and loyal resident who is ready to collaborate with natives. Cross-sectional data and even panel data used at a group level can provide us with evidence that immigrants have adapted. However, the estimates might be biased as only self-selected integrated subjects are in the sample. Within-subject estimates and individual fixed effects models can help at least partially avoid some of these limitations. I cannot avoid the problem of selection in the sample of the most loyal immigrants, but I can estimate whether individual preferences for redistribution are responsive to the effect of the culture of destination. This test will be implemented in Chapter 4.

CHAPTER 3. Redistribution preferences in motion: the effect of average preferences for redistribution in countries of origin on the preferences of immigrants. A cross-sectional approach

1. Rationale and hypotheses

Luttmer and Singhal (2011) proposed the most recent approach regarding the study of the effect of an immigrant's culture of origin on his/her redistribution preferences. They identified a strong effect of the culture of origin on immigrants' preferences for redistribution. The authors traced the association between individual preferences for redistribution and average preferences for redistribution in the immigrants' country of origin and ascertained that migrants from countries where the preferences for redistribution are higher tend to express more pro-redistribution preferences. Models with country-specific fixed effect controls were applied to separate the effect of "culture" from the effects of economic and institutional environment in host countries (Luttmer and Singhal, 2011). The researchers showed that assimilation theory does not fully explain the effect of the macro-environment on demand for redistribution. Conversely, the researchers concluded that migrants keep whatever preferences for redistribution were shaped by the culture in their country of origin in a new context and even when controlling for a comprehensive range of other predictors. To prove this argument, they provided an extensive set of regression models and showed that their results were robust to a variety of economic and social factors defining individual self-interest in redistribution.

Luttmer and Singhal implemented a very parsimonious model and made an important contribution to the analysis of the causal effect of culture on preferences for redistribution. However, several questions arose. The first issue concerns the causal effects. There is a problem of self-selection biases in the study of migrants and their preferences, as discussed above. In particular, people who immigrate tend to be different from those who stay behind in terms of demands, ambitions and beliefs (Borjas, 1987). Luttmer and Singhal approached the problem of self-selection into
migration from an economic standpoint. They assumed that individual decision-making about immigration is motivated by economic reasons, monetary benefits and income differentials. To avoid this selection bias, they controlled for an extensive list of economic parameters referring both to individual welfare and macro indicators in the country of origin. At the same time, they admit that selection may take place because of unobservable individual characteristics. Correspondingly, other individual ideational traits might come into play that determine both the decision to immigrate and attitudes towards redistribution. Second, the researchers employed data only for European migrants. Yet, upon closer examination of the migration flows within the ESS subsample, it is easy to see that a large proportion of migration takes place within similar cultural, linguistitc or welfare areas. This means that the individual demand for redistribution of an immigrant who self-selected into a country similar to her country of origin may not deviate substantially from the average redistribution preferences in the country of destination. This condition narrows down the explanatory power of Luttmer and Singhal's results because Europeans generally assert stronger adherence to redistribution compared to representatives of other more liberal cultures outside Europe like the USA and Australia for example (Corneo 2001; Alesina and Ferrara 2005; Alesina and Glaeser 2008). In this respect, I will address the problem of self-selection into migration and then self-selection into a country of migration and will compare preferences for redistribution among European and Non-European migrants. Third, I use more recent data and a larger sample that, in principle, enable me to get more precise estimates and test the generalizability of earlier findings. Finally, it is important to clear up whether the effect of culture measured as average preferences for redistribution in the country of origin is robust enough to control for the conventional measures of culture which are normally measured as average cultural values in a country, elaborated by Inglehart and Welzel (Inglehart 1997, 2003; Inglehart and Welzel 2005; Welzel 2010. 2013).

To address these issues in this chapter, I initially replicate the study of Luttmer and Singhal and then propose some improvements to their models. To begin with, I discuss some reasons to carry out the modifications in the model.

1.1. The first extension of the Luttmer-Singhal (LS) model: self-selection into migration

The strategy used by Luttmer and Singhal to address self-selection into migration is to control for many covariates such as age, education, professional skills, occupation, industry, parental background, a partner's migration status, and prosperity and inequality in the country of birth. The
previous discussion about self-selection into migration suggests that immigrants demonstrate a high demand for new experiences, beliefs in their own abilities and readiness to take risks. These individual traits and characteristics, in turn, make a person less dependent on social services and therefore, less demanding when it comes to redistribution. My first extension of the LS analysis is, therefore, to include individual values as a factor that might account both for selection into migration and preferences for redistribution.

Basic human values and openness to change in particular are shaped during the first formative years of human life. These values remain relatively stable during the life course of adult people (Inglehart and Baker, 2000) and can affect individual decisions, including the decision to immigrate or ask for welfare benefits from the state. Schwartz suggested four measurements of human values: openness to change, conservation (similar to conservatism), self-enhancement (similar to egoism) and self-transcendence (similar to altruism) (Schwartz, 1992; Welzel, 2010). To the list, I add self-expression values developed by Inglehart and Welzel (2005), as they can also be taken for a proxy for a search for new experience and readiness to take risks. I will include these five values in my models to control for selection bias.

The general hypothesis of this chapter is that individual preferences for redistribution of immigrants are determined by average preferences for redistribution in the country of origin. However, self-selection into migration guided by openness to change, self-enhancement and selfexpression values may reduce the effect of average preferences in the country of origin. The theoretical example, i.e. the case of an immigrant that came from a country where the demand for redistribution is high to a country where the demand for redistribution is low, predicts that her preferences will be lower than the average preferences in the country of origin and more similar to the average preferences in the country of destination. Consequently, controlling for basic human values may at least partially correct the selection bias and make estimates more precise.

1.2. The second extension of the $L S$ model: self-selection into the country of migration

Self-selection into the country of migration is the other disputable matter of the LS model. Luttmer and Singhal used ESS data in their study and assigned each migrant the average preference for redistribution of natives in their home countries. In this way, they only considered immigrants from the countries included in the ESS project.

They showed that there is a positive association between average preferences for redistribution in the country of origin and individual preferences of immigrants. This finding is not surprising because, as shown above, the large share of European immigrants move to the countries with similar welfare arrangements and a similar level of demand for redistribution. If a large share of European migrants migrates to the neighbouring countries, with the same welfare regimes, and a similar language environment and media space, it is reasonable to expect that their preferences will be similar to preferences in the country of origin since the average preferences in the country of destination are more or less the same as those in the country they came from. The possible and partial solution here can be the extension of the sample to non-European migrants. A tendency to migrate to the countries where the official language is similar to the official language of the sending countries still remains, but other biases like the similarity of welfare regimes, common borders and media space will be minimized.

2. Research design, key concepts and operationalization

2.1. Data and measurement

In order to test the robustness of the LS model, I run my analysis in five stages using the European Social Survey cumulative dataset ($\mathrm{N}=278756$). I employ data from six rounds of the survey: ESS1 (2002-2003), ESS2 (2004-2005), ESS3 (2006-2007), ESS4 (2008-2009), ESS5 (2010-2011), ESS6 (2012-2013). Thirty-two countries which participated at least in two rounds of the survey were included into a cumulative data set: Austria, Belgium, Bulgaria, Switzerland, Cyprus, Czech Republic, Germany, Denmark, Estonia, Spain, Finland, France, United Kingdom, Greece, Croatia, Hungary, Ireland, Israel, Iceland, Italy, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal, Russia, Sweden, Slovenia, Slovakia, Turkey, and Ukraine. Some countries were excluded because of discrepancy in the core variables ${ }^{6}$. Those countries are Albania, Kosovo, Latvia, and Romania. Some observations having missing values for redistribution preferences, country of birth, country of residence, gender and age, and respondents under 18 years old were dropped. Thus the total sample size is 273909: 250071 natives, 12924 migrants from the countries included in ESS cumulative data set, 10914 migrants from other countries. Descriptive statistics for the three subsamples are provided in the appendix (Table A3.1). Table 3.1 outlines the main characteristics of the subsample of migrants from the ESS countries in the same way as presented in the article by of Luttmer and Singhal. The left half of the table describes migration flows from the country. For example, 200 people from Austria immigrated to 19 countries, and most of them immigrated to Switzerland (107 people). The right half of the table presents migration flows to the host countries: Austria accepted 328 immigrants from 23 ESS countries, the majority of which immigrated from Germany (115 people). Table 3.2 depicts migration flows from all countries, and not just European ones as in the previous case. The data show that, in total, Austria accepted 489 immigrants from 54 countries and Germany was still the most frequent country of birth.

The data on immigrants are sensitive to the sample size and the number of waves in each country. For example, Germany participated in all six rounds of the ESS and has the largest sample size (about 3000 cases per wave). Italy, in turn, participated only in the first, second and sixth round of the survey and has a smaller sample size (1207 cases in the first wave, 1529 in the second wave and 960 in the sixth wave). This leads to differences in the sample size of immigrants in the host

[^4]countries: since the Italian sample size is much smaller, there are fewer immigrants in Italy (53 cases). To the contrary, since the German sample is larger, there are more immigrants in this sample (859 cases). The sample composition of the migration flows in the ESS does not represent the general composition of migration flows in Europe. Yet, in this particular piece of research, I am interested in the effect of average preferences for redistribution in the countries of origin and, if country of destination is controlled for, the differences in the sample size may not substantially change the main effect of culture.

2.2. Measurement of the preferences for redistribution

Existing surveys suggest different measures for preferences for redistribution. This variety proceeds from different conceptualisations, theoretical perspectives and purposes of a concrete study. There is a common agreement that preferences for redistribution are multidimensional. Some researchers single out different dimensions of preferences for redistribution based on the aim, means and effects (Mades Meier Jæger, 2006). Others add functions and financing of a welfare state (Andreß and Heien, 2001) or prefer to study preferences for redistribution focusing on concrete social programs (Alesina and Fuchs-Schündeln, 2007). Meanwhile, comparative cross-cultural studies require more generalisations. For this reason, in this chapter I use a unidimensional dependent variable that reflects popular attitudes towards general aims and ideological principles of the welfare state (Mades Meier Jæger, 2006). The preferences for redistribution are measured here by means of the following question "Using this card, please say to what extent you agree or disagree with each of the following statements. The government should take measures to reduce differences in income levels". Respondents were asked to reply using a five point scale: 1 "agree strongly", 2 "agree", 3 "neither agree nor disagree", 4 "disagree", 5 "disagree strongly". In order to generalise and draw comparisons, this question was also used as a dependent variable in a number of previous studies (Finseraas, 2009; Mades Meier Jæger, 2006; Luttmer and Singhal, 2011; D. Rueda, 2017). I reversed the scale for my analysis to simplify the interpretation of the results to associate higher demand for redistribution with the higher scores. To calculate an average demand for redistribution in countries of origin, I followed the same sequence of steps as Luttmer and Singhal did: "we calculate the mean preference among natives in the birth country in each ESS round, weighted by individual weights, and then average across rounds" (Luttmer and Singhal, 2011, p. 164).
Table 3.1 - Immigration Flows within ESS Sample Countries (pooled data, 6 waves)
$\left.\begin{array}{lllll|lllll}\hline & \begin{array}{l}\text { Number } \\ \text { immigrants } \\ \text { from } \\ \text { birth }\end{array} & \begin{array}{l}\text { Distinct } \\ \text { cestination }\end{array} & \begin{array}{l}\text { Most } \\ \text { prevalent } \\ \text { destination }\end{array} & \begin{array}{l}\text { Number } \\ \text { immigrating } \\ \text { to most } \\ \text { country }\end{array} & \text { countries }\end{array}\right)$
Table 3.2 - Immigration Flows to the ESS Sample Countries (pooled data, 6 waves)

Destination country	Number of immigrants in destination country	Distinct birth countries	Most birth country prevalent	Number immigrating from most prevalent country
Austria	489	54	Germany	115
Belgium	1014	103	France	144
Bulgaria	65	15	Russia	21
Croatia	285	16	Bosnia and Herzegovina	213
Cyprus	296	45	Greece	76
Czech Republic	259	19	Slovakia	174
Denmark	446	74	Germany	38
Estonia	1596	26	Russia	1179
Finland	292	51	Sweden	86
France	959	92	Algeria	174
Germany	1359	100	Poland	218
Greece	813	55	Albania	314
Hungary	175	17	Romania	92
Iceland	53	24	Denmark	10
Ireland	1487	82	UK	671
Israel	3027	80	Russia	374
Italy	124	41	Romania	13
Lithuania	138	11	Russia	71
Luxembourg	831	56	Portugal	252
Netherlands	884	99	Indonesia	113
Norway	652	71	Sweden	85
Poland	133	21	Germany	47
Portugal	706	43	Angola	175
Russia	567	27	Ukraine	171
Slovakia	195	11	Czech Republic	135
Slovenia	643	25	Bosnia and Herzegovina	219
Spain	913	70	Morocco	122
Sweden	1119	96	Finland	236
Switzerland	2056	102	Germany	430
Turkey	43	11	Bulgaria	22
United Kingdom	1219	105	India	135
Ukraine	1000	29	Russia	736
Total	23838			

2.3. Stage 1: Replication of the LS model on the extended ESS data set

Luttmer and Singhal estimated the effect of culture on individual preferences of immigrants by regressing these preferences $\left(R P_{i}\right)$ on the average demand for redistribution in the country of origin $\left(\overline{R P_{o}}\right)$. To control for differences caused by self-interest, they controlled for a set of individual characteristics that are associated with individual welfare, as well as the social and income situation $\left(X_{i}\right)$. To control for the objective characteristics and cultural influences of the country of destination they included the destination country fixed effects $\left(\theta_{d}\right)$. The main model specification is then the following:
(1) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2} X_{i}+\theta_{d}+\varepsilon_{i}$
$R P_{i}$-is an immigrant i 's redistribution preferences;
$\overline{R P_{o}}$ - are the average redistribution preferences among natives an immigrant's I country of origin; X_{i} - is a vector of individual characteristics. The LS model assumes several specifications with different variations of the vector components;
θ_{d} - is a fixed effect for a country of destination of an immigrant i, capturing both institutional and cultural characteristics in the country of destination;
ε_{i} - is the error term.
Luttmer and Singhal used the first three waves of the ESS for their empirical examination of this model. I first replicate the LS model and consider the same three waves of the ESS for a robustness check. Then I extend their work and use all six available rounds of the survey to get more immigrants in my subsample. Like Luttmer and Singhal, I will adjust standard errors to allow for clustering of error terms by country of birth (Luttmer and Singhal, 2011, p. 162).

2.4. Stage 2: Replication of the $L S$ model on the extended subsamples of immigrants

To address the issue of self-selection into the country of destination, I include immigrants from non-European countries in my analysis. Here I repeat the same analysis described in stage 1 for the modified sample of native Europeans, European and non-European migrants. For this purpose, I use data from the International Social Survey Programme (ISSP) to calculate the average preferences for redistribution in the countries outside Europe. The subsequent paragraphs discuss the measures employed in this survey.

There are two questions on preferences for redistribution in the International Social Survey Programme. The first question is "What is your opinion of the following statement: "It is
responsibility of government to reduce the difference in income between people with high incomes and with low incomes". Respondents used a five point scale to answer, where " 1 " means "agree strongly" and " 5 " means "disagree strongly". I reversed the scale for the same reason as before. The ISSP asked this question in 1985, 1990. 1996, 1999 (Role of Government I-III) and 2009 (Social Inequality IV). Figure 3.1 presents data for the mean demand for redistribution in 33 countries around the world. The second question in the ISSP is "On the whole, do you think it should or shouldn't be the government's responsibility to 'reduce income differences between rich and the poor'". Respondents were asked to reply on a four-point scale where 1 stands for "it definitely should be", and 4 indicated "it definitely should not be". The scale was reversed as well to make higher values correspond to a stronger demand for redistribution. The ISSP asked this question almost in the same years as the previous one (in 1985, 1990, 1996, 2006 (Role of Government I-IV)) in 24 countries. Figure 3.2 depicts the average demand for redistribution in these countries. Both Figure 3.1 and Figure 3.2 clearly illustrate the difference in demand for redistribution in Europe, liberal countries outside Europe and former USSR countries. Compared to European countries, the population in liberal countries (Canada, the US and Australia) asks less for redistribution and people living in post-communist countries ask more redistribution.
Figure 3.1 - Average demand for redistribution in 33 countries, ISSP measures
"It is responsibility of government to reduce the difference in income between people with high incomes and with low incomes" (5 point scale)

2.5. Stage 3: Control for self-selection into migration by means of human values

The introduction to Part I extensively discussed the problem of self-selection into migration and made a claim that immigrants significantly differ from stayers both in terms of observable measured characteristics, such as self-interest, and unobservable ones, such as individual traits. Luttmer and Singhal controlled for a wide list of determinants of economically motivated migration and self-interest. I extend their model by introducing basic human values to control for self-selection into migration. I expect these values to define both decisions for migration and ideas about what the right level of redistribution is in a given society.

Basic human values are "desirable transsituational goals, varying in importance, that serve as guiding principles in the life of a person or other social entity"(Schwartz, 1994, p. 21). Values are calculated in line with the Schwartz methodology operationalized in the Portrait Values Questionnaire and included into the European Social Survey: 21 initial indicators are aggregated into 10 value indexes (self-direction, universalism, benevolence, stimulation, hedonism, security, power, achievement, conformity, and tradition) and these indexes are aggregated into 4 value categories. A conceptual definition of Schwartz's values is provided in Figure A3.1, Table A3.2 and Table A3.3 in the Appendix. In my research, I utilize 4 higher order value categories: openness to change, conservation, self-transcendence, and self-enhancement. Schwartz et al. (2011) defined components of openness to change and self-transcendence values as growth values, and conservation and self-enhancement as protection values. "Growth values (self-direction, universalism, benevolence, stimulation, and hedonism) express anxiety-free self-expansion; protection values (security, power, achievement, conformity, and tradition) express anxiety-based self-protection" (Bilsky, Janik, and Schwartz, 2011, p. 760). This division allows us not only to control for self-selection but also to differentiate the reasons why people support redistribution. Both self-transcendence and conservation values stimulate the demand for social equality, and people who share these values demonstrate a higher level of support for redistribution. However, anxiety-free self-expansion requires equality of opportunities and anxiety-based self-protection demands equality of conditions.

In addition to the four value categories, I control for self-expression values which determine individual self-direction and might be taken as a measure of readiness to take risks, for example,
to take risks and immigrate. These values "bring increasing emphasis on the civil and political liberties that constitute democracy, which provides broader latitude for people to pursue freedom of expression and self-realization" (Inglehart and Welzel, 2005, p. 3). Inglehart and Welzel included five components in this index: signing petitions, happiness, tolerance to homosexuals, interpersonal trust and unimportance of economic and physical security (Inglehart and Welzel, 2005, p. 49). In the ESS I could identify only the first four components (signing petitions, happiness, tolerance to homosexuals and interpersonal trust (Appendix A3.1)). Based on these parameters, I calculated an index of "self-expression" by means of principal component analysis and saved scores as a single variable. Questions can be found in the web appendix Welzel's book "Freedom Rising" (Welzel 2013 web appendix). When I add values to my study, I follow the critical assumption that values are shaped during the formative years and remain stable over an individual's life course (Inglehart and Baker, 2000; Newcomb and etc, 1967).

When the extended, the model takes the following shape:
(2) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2} O C_{i}+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$O C_{i}-\mathrm{R}$'s i openness to change values
(3) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2} C O_{i}+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$C O_{i}$ - R's i conservation values
(4) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2} S E_{i}+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$S E_{i}-\mathrm{R}$'s i self-enhancement values
(5) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2} S T_{i}+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$S T_{i}$ - R's i self-transcendence values

2.6. Stage 4: Approaching the question: What is "culture"?

The final inquiry is the problem of the association between an average demand for redistribution in the country of birth and widespread values there. It is acknowledged that an average demand for redistribution is endogenous to the cultural environment in a country. Consequently, here I can test whether the effect of culture determined through an average demand for redistribution depends
on average values in the country. At this stage, I include the averages in the country of origin for cultural values identified by Inglehart and Welzel in the LS model and I test whether average cultural values such as self-expression, post-materialism, emancipative values, autonomy and voice index ${ }^{7}$ take a share of the explanatory power of average preferences for redistribution in the country of origin. I run a separate model for each value. The extended model becomes the following:
(6) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2}\left(\overline{S E x}_{o}\right)+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$\overline{S E x}_{o}$ - average scores for self-expression values in i's country of birth
(7) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2}\left(\overline{P M_{o}}\right)+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$\overline{P M}_{o}$ - average scores for post-materialist values in i's country of birth

$$
\text { (8) } R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2}\left(\overline{E m a}_{o}\right)+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}
$$

$\overline{E m a}_{o}$ - average scores for emancipative values in i's country of birth
(9) $R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2}\left(\overline{A u t}_{o}\right)+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}$
$\overline{A u t}_{o}$ - average scores for autonomy values in i's country of birth

$$
\text { (10) } R P_{i}=\beta_{1}\left(\overline{R P_{o}}\right)+\beta_{2}\left(\overline{V o}_{o}\right)+\beta_{3} X_{i}+\theta_{d}+\varepsilon_{i}
$$

$\bar{V}{ }_{o}$ - average scores for voice index in i's country of birth

[^5]
3. Main results

1.1 Key correlations

Luttmer and Singhal established the effect of culture of birth on migrants' preferences for redistribution. As they showed, the relationship between individual preferences and average preferences in the countries of birth are positive, strong and robust when controls for economic factors are taken into account. To highlight this regularity, the authors provided a straightforward graph (Figure 3.3) exhibiting this correlation (Luttmer and Singhal, 2011, p. 159). This figure traces the association between average demand for redistribution in countries of origin (on the x axis) and average deviation of immigrants' preferences for redistribution from average preferences in the country of destination (on the y -axis). To produce the estimates for the y -axis, Luttmer and Singhal extracted the average preferences for redistribution in the country of destination from immigrants' individual preferences for redistribution scores. To make the figure, they averaged this deviation for the countries of origin and correlated the averages with an average demand for redistribution in the country of origin. The final estimates on the y-axis measure how preferences of immigrants from a certain country deviate from preferences of natives regardless of the country the immigrants live in. This means that results are sensitive to the main characteristics of the migration flows. In other words, a deviation of immigrants' preferences from natives is determined by the average preferences of the natives in the countries where they mostly migrated. For example, there are 685 immigrants from Italy in the sample: 244 of them moved to Switzerland, 117 to Belgium, 74 to Luxembourg, 57 to France, 57 to Germany, 26 to the United Kingdom and a few to other countries. This means that the score for Italian immigrants on the y -axis is largely determined by the preferences of immigrants to Switzerland and Belgium and average preferences of natives in these countries.

Figure 3.3 leads us to the first conclusion: the association between average preferences for redistribution in the country of origin and deviation of migrants' preferences from natives is positive. Furthermore, a detailed consideration of the countries which are on the upper and lower part of the y-axis allows us to see that countries where the demand for redistribution is higher, are on the upper part and countries where the demand for redistribution is lower are on the lower part.

Namely, immigrants from Netherland and Denmark demonstrate a lower demand for redistribution compared to natives regardless of the countries of destination. On the contrary, immigrants from Portugal and Hungary have a higher demand compared to natives. These arguments could lead us to the conclusion that the culture of origin determines immigrants' preferences for redistribution. However, to be more accurate, it is important to follow the preferences of immigrants from the countries where the demand for redistribution is the highest like in Greece, Bulgaria and Turkey. Based on the key argument that culture determines immigrants' preferences of redistribution, one may expect that immigrants from these countries could have a higher demand for redistribution. However, immigrants from Greece show much lower demand for redistribution compared to natives in countries of destination and the preferences of immigrants from Turkey and Bulgaria do not deviate much from preferences of natives in countries of destination. In all these cases, the countries of destination are very diverse and in most cases the average demand for redistribution in the countries of destination is lower compared to demand in the countries of origin. This finding reminds us again the question of self-selection into migration and self-selection into the country of migration.

The figure reveals also another related problem: there is no deviation of preferences of immigrants from the average preferences of natives. That is, the scores on the y-axis are equal to zero in many cases in the Czech Republic, Luxembourg, Norway, Sweden, Finland, Romania, Poland, Ukraine, France, Turkey and Bulgaria. This can be explained by selection: immigrants from these countries moved to the neighbouring countries where the demand for redistribution is similar to average preferences of the countries of origin and and the immigrants' own preferences. In turn, the positive association between average preferences for redistribution in the country of origin and deviation of immigrants' preferences from those of natives is largely determined by immigrants from Portugal, Slovenia, Israel, Italy and Hungary, on the one hand, and Denmark, Netherlands, Germany, Great Britain and Switzerland on the other.

Figure 3.3-Deviation of immigrants' preferences for redistribution from host country means by preferences in country of birth (Luttmer and Singhal, p. 159)

The first main question I address in this chapter is whether the results of the study are replicable. Firstly, I perform the same sequence of steps as Luttmer and Singhal did and then extend the sample to three more recent waves of the ESS. Guided by their research design, I put individual migrants' preferences for redistribution with extracted mean scores for redistribution preferences of natives in the country of residence across averaged preferences in the country of birth for two samples of European migrants: at first, I use a cumulative data set just for ESS rounds 1-3 as Luttmer and Singhal did and then for all the 6 rounds. Comparing previous (Figure 3.3) and current findings (Figure 3.4), I can confirm that Luttmer and Singhal's findings can be replicated (Figure 3.4A) and results are robust even if we extend the sample to 6 waves of the survey (Figure 3.4B).

Luttmer and Singhal found that "a one unit increase in the mean preference for redistribution in an immigrant's country of birth is associated with a 0.34 unit increase in her own preference for redistribution" (Luttmer and Singhal, 2011, p. 158). This corresponds to the replicated results: the association between average preferences in the country of origin and deviation of the preferences of immigrants from natives is positive, as a one-point increase in preferences for redistribution in
the country of origin associates with a 0.3 point higher demand for redistribution among immigrants from these countries. This regularity explains 40 percent of variation in the dependent variable.

The estimates based on the cumulative data set covering 6 waves are similar to the initial coefficient: a one unit increase in redistribution preferences in a birth country increases immigrants' demand for redistribution by a 0.3 unit. This means that migrants from the countries with a high demand for redistribution are more inclined towards redistribution compared to natives (immigrants from Portugal, Italy, Slovenia, Russia, and Bulgaria for example); on the contrary migrants from the countries where demand for redistribution is low demonstrate lower demand by themselves (immigrants from Denmark, Netherlands, Germany, UK and Switzerland). However, some countries have slightly changed their location on the new plot: Figure 3.4 shows Hungarian, Ukrainian and Cyprian migrants as less demanding compared to natives while the migrants from Norway relatively more demanding. Apart from this, we can see a reduction in the number of sending countries where preferences for redistribution are similar to preferences in the host countries. The data on the three waves of ESS show that immigrants from the Czech Republic, Norway, Sweden, Finland, Romania, Poland, Spain, Ukraine, France and Turkey have the same preferences for redistribution as natives in the countries of destination. At the same time, the data on the six waves of the ESS are more disperse: only immigrants from Lithuania, Turkey and Poland have preferences for redistribution similar to natives in this case.

The following sequence of steps replicates and extends Luttmer and Singhal's research at first by the introduction of more cases into the study, then by the inclusion of the non-European immigrants and later by controlling for ideational reasons of self-selection: basic human values and cultural values.

Figure 3.4-Deviation of immigrants' preferences for redistribution from average preferences in host countries by preferences in country of birth
A. Replication of Luttmer and Singhal results (similar to 2011, 159) (ESS1-ESS3)

B. Replication of Luttmer and Singhal's results on the extended cumulative ESS data set (ESS1ESS6)

3.2. LS model replication

Table 3.3 aims, first, to estimate an effect of average preferences for redistribution in the country of origin among immigrants and, second, to compare the effects of traditional determinants of selfinterest in the subsample of immigrants and natives. Columns 1 and 2 present the estimates for the effect of average preferences for redistribution in the country of origin on individual preferences for redistribution of migrants, column 1 replicates LS results and column 2 explicates the results based on the cumulative ESS dataset covering 6 waves. The coefficients in column 1 at large extent reproduce the general findings of Luttmer and Singhal, only a slight discrepancy can be found at the second or third decimal place. The authors reported the association between an average demand for redistribution in the country of origin and immigrants' preferences for redistribution at the level of 0.36 ($\mathrm{p}<0.01$), while my result is 0.31 ($\mathrm{p}<0.01$). These deviations can be explained by the harmonisation of some socio-economic variables and modifications in the datasets. In particular, some changes in measurement took place from wave to wave. Namely, isco88 codes were substituted by isco08 in ESS6 to measure occupation, different income scales were used in different countries, scales were modified in the ESS4 and used later on, the main source of household income was measured by different scales in different countries in different years, different scales for marital status were used in France and Estonia, scales for educational attainment and partner's educational attainment are different for ESS1-4 and ESS5-6 ${ }^{8}$.

Regardless of the slight discrepancy of the coefficients in the replication part, the effect of preferences for redistribution in the country of origin remained robust compared to the initial correlation presented in Figure 3.2 when controlled for socioeconomic variables and average income in the country of birth calculated as the log of purchasing power parity adjusted GDP ${ }^{9}$. Now, one unit increase in redistribution preference on a five-point scale in a country of birth results in a $0.31-0.36$ increase in migrants preferences for redistribution. This result is similar to the one found by Luttmer and Singhal in their article.

[^6]Columns 3 and 4 of Table 3.3 set out the effects of the key determinants traditionally conceived as the components of economic self-interest separately for immigrants and natives. In this case, I didn't include average preferences for redistribution in the country of origin to compare the effects of the constituents of economic self-interest of migrants and natives. The data confirm predictions of economic and social theory as well as the previous empirical evidence showing that determinants of self-interest positively affect preferences for redistribution. This is valid both for natives (column 4) and immigrants (column 3).

Effects of gender and age are observed in the expected direction: women and elder people are more inclined towards redistribution. Though the association between age, gender and individual demand for redistribution in both subsamples is significant, the effects are weak substantially. From here onward, I will try to employ the following strategy suggested in a recent methodological paper when interpreting the results: "go beyond the mechanical application of the dichotomous rule of statistical significance testing and engage in an informed discussion on the effect size" (Bernardi, Chakhaia, and Leopold, 2017, p. 2). Accordingly, the coefficients predict that the difference between younger people who are let's say 20 years old and older people who are around 60 years old is just 0.2 points on a 5-point scale. The same goes for gender: among females, the level of preference for redistribution is only 0.1 points higher compared to males. There are similar results for education: people who have higher levels education are only 0.1 less supportive of redistribution compared to those who have secondary education among migrants and 0.15 among natives. Similar associations were identified for expereinces of unemployment. These differences add little to the substantial interpretation of the effects of socio-demographic variables. The effects of the income variables are more salient. Since harmonisation of income variables turned out to be problematic across 6 waves, I use individual feelings about household income to measure individual welfare. Compared to those who cope with current income, people who live comfortably with current income support redistribution 0.2 points less. This association is typical both for natives and immigrants. Compared to the same reference group, people who reported that it is very difficult to live with current income are 0.2 points more inclined towards redistribution. The most negative attitude towards redistribution was expressed by the group who has the most income from investment: 0.3 less supportive towards redistribution compared to people getting their main income from wages. Yet the preferences of subjects who receive unemployment benefits do not
differ from the preferences of those who do not receive benefits. All the institutional, economic and cultural differences between countries are captured by the country fixed-effects.

Table 3.3 - Predictors of preference for redistribution: Baseline model with fewer controls

	1	2	3	4
VARIABLES	Immigrants, ESS 1-3	Immigrants, ESS 1-6	Immigrantscontrols only	Nativescontrols only
Birth country redistribution preferences, ESS 1-3				
	(0.074)			
Birth country redistribution preferences, ESS 1-6		0.357***		
		(0.061)		
Birth country log GDP per capita	$\begin{aligned} & 0.246 * * * \\ & (0.059) \end{aligned}$	$\begin{aligned} & 0.228^{* * *} \\ & (0.033) \end{aligned}$		
Age	$\begin{aligned} & 0.005^{* *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.004 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.004 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.004 * * * \\ & (0.001) \end{aligned}$
Female	$\begin{aligned} & 0.085^{* *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.089 * * * \\ & (0.021) \end{aligned}$	$\begin{aligned} & 0.088 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.113 * * * \\ & (0.015) \end{aligned}$
Education (secondary education is a reference category)				
Own low education	$\begin{gathered} 0.067 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.056^{*} \\ (0.030) \end{gathered}$	$\begin{aligned} & 0.074 * * \\ & (0.035) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.013) \end{gathered}$
Own high education	$\begin{aligned} & -0.073^{* *} \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.070^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.074 * * * \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.148^{* * *} \\ & (0.014) \end{aligned}$
Missing dummy	$\begin{gathered} 0.109 \\ (0.132) \end{gathered}$	$\begin{aligned} & -0.065 \\ & (0.118) \end{aligned}$	$\begin{aligned} & -0.074 \\ & (0.121) \end{aligned}$	$\begin{aligned} & -0.098^{* * *} \\ & (0.034) \end{aligned}$
Partner's education (secondary education is a reference category)				
Partner's low education	$\begin{gathered} 0.026 \\ (0.040) \end{gathered}$	$\begin{aligned} & -0.017 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.030) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.011) \end{gathered}$
Partner's high education	$\begin{aligned} & -0.163 * * * \\ & (0.039) \end{aligned}$	$\begin{aligned} & -0.070^{* * *} \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.068^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.108 * * * \\ & (0.015) \end{aligned}$
Missing dummy	$\begin{aligned} & -0.052 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.023 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.040^{* * *} \\ & (0.011) \end{aligned}$
Marital status (married is a reference category)				
Divorced or separated	$\begin{gathered} 0.068 \\ (0.092) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.054) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.052) \end{gathered}$	$\begin{aligned} & 0.059 * * * \\ & (0.011) \end{aligned}$
Widowed	$\begin{gathered} 0.041 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.013 \\ & (0.017) \end{aligned}$
Never married	$\begin{aligned} & 0.113^{* *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & 0.085 * * \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.090^{* * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.026^{* *} \\ & (0.011) \end{aligned}$
Marital status missing	$\begin{gathered} 0.079 \\ (0.069) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.038) \end{gathered}$	$\begin{aligned} & -0.043 * \\ & (0.024) \end{aligned}$
Feeling about household's income (coping is a reference category)				
Living comfortably on present income	$\begin{aligned} & -0.218^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & -0.205^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.212^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.202 * * * \\ & (0.015) \end{aligned}$
Difficult on present income	$\begin{aligned} & 0.146 * * * \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.131^{* * *} \\ & (0.016) \end{aligned}$	$\begin{aligned} & 0.134 * * * \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.128^{* * *} \\ & (0.020) \end{aligned}$
Very difficult on present income	$\begin{aligned} & 0.163^{* * *} \\ & (0.043) \end{aligned}$	$\begin{aligned} & 0.232 * * * \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.232 * * * \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.235 * * * \\ & (0.031) \end{aligned}$
Feeling about household's income missing	0.081	0.027	0.032	-0.064**
	(0.132)	(0.087)	(0.085)	(0.026)
Primary income source (wages is a refer Self-employed	$\begin{gathered} \text { nce category) } \\ -0.180^{* * *} \end{gathered}$	-0.180***	-0.178***	-0.162***

Pension	(0.048)	(0.043)	(0.044)	(0.025)
	0.017	0.063**	0.063**	0.000
	(0.040)	(0.027)	(0.027)	(0.014)
Unemployment benefits	0.071	-0.013	-0.016	0.018
	(0.088)	(0.055)	(0.055)	(0.029)
Social benefits	0.145*	0.087**	0.077*	0.052
	(0.078)	(0.041)	(0.042)	(0.033)
Investment	-0.336*	-0.322***	-0.309**	-0.343***
	(0.168)	(0.113)	(0.116)	(0.053)
Other	-0.244*	-0.161**	-0.153**	-0.114***
	(0.132)	(0.062)	(0.065)	(0.024)
Primary income source missing	-0.086	-0.093*	-0.091*	-0.050**
	(0.069)	(0.050)	(0.048)	(0.020)
Log household size	0.005	0.057*	0.054*	0.013
	(0.032)	(0.028)	(0.029)	(0.008)
Paid work last week	-0.010	0.024	0.029	0.003
	(0.034)	(0.020)	(0.020)	(0.007)
Paid work missing	-0.017	-0.068	-0.054	-0.116***
	(0.153)	(0.119)	(0.114)	(0.037)
Has a child in the household	0.036	-0.053	-0.050	-0.022**
	(0.043)	(0.036)	(0.037)	(0.010)
Has a child in the household missing	-0.028	-0.005	-0.015	-0.065*
	(0.268)	(0.170)	(0.169)	(0.034)
Ever unemployed for more than 12 months	0.109**	0.079**	0.076**	0.118***
	(0.043)	(0.033)	(0.032)	(0.019)
Ever been unemployed missing	0.212**	-0.019	-0.025	0.016
	(0.090)	(0.063)	(0.060)	(0.016)
Lives in metropolitan area	0.001	-0.018	-0.013	-0.043***
	(0.042)	(0.022)	(0.022)	(0.014)
Lives in metropolitan area missing	0.480*	0.098	0.109	0.036
	(0.252)	(0.193)	(0.194)	(0.050)
ESS round dummies (ESS'01 is a reference category) Residence country dummies (31, Germany -reference category)				
Constant	-0.496	-0.312	3.365***	3.490***
	(0.759)	(-0.622)	(0.084)	(0.031)
Observations	5836	12914	12914	249971
R-squared	0.121	0.112	0.107	0.137

Note: Source: ESS 2002-2013, cumulative data set. DV is measured on a scale of 1-5 where 5 corresponds to "strongly agree" with the statement "The government should take measures to reduce differences in income levels".

Estimates are from linear models with robust standard errors. Robust standard errors in parentheses

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

3.3. Extension of the LS model using controls for self-selection into a country of migration: Replication of the LS model for both European and non-European

 migrantsTo account for the issue of self-selection of immigrants into similar countries in terms of culture and welfare arrangements, I proceed to the second stage of the study. Here I repeat the same
analysis as above but introduce other measures of average preferences for redistribution in a country of origin initially borrowed from ISSP and WVS. This substitution allows the inclusion of non-European immigrants in the research and the opportunity to have more variation in sending countries as well as to partially minimise the selection bias. The subsample of migrants and countries included in the analysis was modified based on data available in these surveys. To differentiate between various measures of preferences for redistribution, I use different concepts for their identification:

1. "Redistribution preferences" is the key concept used by Luttmer and Singhal and the one used in my previous analysis. This variable is measured with the question: "Using this card, please say to what extent you agree or disagree with each of the following statements. 'The government should take measures to reduce differences in income levels'" (ESS'1-ESS'06, 5 point reversed scale).
2. Government responsibility is the concept borrowed from the WVS. The WVS asked people to express their attitudes to redistribution using a 10-point scale where 1 means total support of the statement "The government should take more responsibility to ensure that everyone is provided for" and 10 indicates total support for the statement "People should take more responsibility to provide for themselves". Individuals could also opt for values in-between to express their opinion. (WVS2-WS6). I reversed the scale to facilitate the interpretation of the results and calculated weighted country means for natives using design weights to correct a possible imbalance in the design of the sample (under or over representation of different social groups).
3. Reduce differences between rich and poor is a concept measured in the ISSP with the question "On the whole, do you think it should or should not be the government's responsibility to reduce income differences between the rich and the poor" (ISSP, a fourpoint reversed scale: $1=$ definitely should not be, $4=$ definitely should be).
4. Reduce income differences also comes from the ISSP. The wording of the question is "What is your opinion of the following statement: "It is the responsibility of the government to reduce the differences in income between people with high incomes and those with low incomes" (ISSP, a five-point reversed scale: $1=$ "disagree strongly", $5=$ "agree strongly").

The wording of the question from the ISSP questionnaire ("It is the responsibility of the government to reduce the differences in income between people with high incomes and those with low incomes") is the most similar to the wording of our key measure of redistribution preferences ("The government should take measures to reduce differences in income levels"). The correlation of country means for these variables is 0.8 ($\mathrm{p}<0.01$) (Table 3.4). However, the other measure "Reduce differences between rich and poor" correlates with our initial measure of redistribution preferences even more $-\mathrm{r}=0.84$ ($\mathrm{p}<0.01$). At the same time the correlation between government responsibility and redistribution preferences is not strong enough ($\mathrm{r}=0.6$) and moreover, it is insignificant. The WVS provides us with the most extensive coverage of countries of birth. Yet, in contrast to my expectation, the extensive coverage of birth countries and the inclusion of all available migrants in the subsample did not reveal a strong relationship between preferences for redistribution in the countries of origin and preferences of immigrants. I performed a similar analysis for all there variables measuring "culture" in the countries of origin. However, the measures borrowed from the WVS did not provide substantial findings. The results for this part of analysis are not included in the chapter, but are available on request. The map of average government responsibility index calculated on the WVS for 96 countries is presented in the appendix (Figure A3.2).

Table 3.4 - Correlations between country averages for the variable "redistribution preferences" (ESS) and three variables measuring demand for redistribution form ISSP and WVS

	(1)
(1). A mean demand for government responsibility by birth country (WVS 2-6, weighted)	0.60
(2). Government should reduce differences between rich and poor (ISSP, QoG)	0.84^{*}
(3). Government should reduce income differences (ISSP, QoG)	0.8^{*}

To introduce other measures of preferences for redistribution and non-European immigrants into my study, I first reproduce the same sequence of steps presented in part 3.1. As I did before, I put individual preferences for redistribution in deviation from the mean preferences of natives in the country of residence against average preferences for redistribution in the countries of birth. Figure 3.5 depicts the association between migrants' preferences for redistribution and the two ISSP proxies for preferences for redistribution: "reduce differences between rich and poor" and "reduce income differences".

Figure 3.6 shows that average preferences for redistribution in the country of origin explain a large share of the variation in the deviation of individual preferences of immigrants from those of natives. The ISSP indicators make this regularity clearly observed: average preferences in the country of origin explain about 60% of the observed variation. If a person came from a country where demand for redistribution is high, her preferences will be higher compared to natives in the country of residence. Each point of increase in the demand for income equality leads to an increase in deviation from natives by $0.39(\mathrm{p}<0.001)$ points and an increase in demand for the reduction differences between rich and poor by $0.46(\mathrm{p}<0.001)$ points.

The figure proves that the extension of the sample to non-European immigrants is reasonable. If the sample is limited to European countries, the power of the effects becomes smaller, about 0.35 ($\mathrm{p}<0.001$) and $0.39(\mathrm{p}<0.001)$ points. To the contrary, if the sample is limited to non-European migrants, the effect becomes larger: 0.48 ($\mathrm{p}<0.001$) for a demand for income equality and 0.63 ($\mathrm{p}<0.001$) for a demand to decrease differences between rich and poor. The inclusion of nonEuropean immigrants in the sample makes the sample of the sending countries more heterogeneous. This partially removes selection into neighbouring countries where preferences for redistribution are similar to those in the countries of origin. This extension makes the association between average preferences for redistribution in the countries of origin and deviation of preferences for redistribution of immigrants from natives more salient. However, this association may not only be because of culture, but because of differences between immigrants and natives in terms of their respective economic situations. This argument is to be tested further by controlling for socioeconomic determinants.

Figure 3.5- Immigrant preferences for redistribution by preferences in country of birth measured by ISSP proxies. A. "Reduce difference between rich and poor". B. "Reduce income differences"

----- Linear prediction for the European subsample

- - Linear prediction for the non-European subsample
- Liner prediction for all

Table 3.5 presents the estimates for the effect of the culture of birth measured as average preferences for redistribution in the country of origin and reported in the ESS and ISSP. Column 1 repeats the estimates presented in column 2 of Table 3.3 for comparative purposes. Column 2 reports the estimates for the ISSP measure "Government should reduce differences between rich and poor" and column 3 for the ISSP measure "Government should reduce income differences". As indicated above, the substitution of average demand for redistribution in the country of origin with data from different sources was motivated by the desire to increase variation in the countries of origin. Accordingly, the results presented in the tables are based on different subsamples of migrants. Column 1 reports the results for immigrants from 32 European countries, column 2 for immigrants from 38 countries (24 European and 14 non-European) and column 3 for immigrants from 31 countries (23 European and 8 non-European).

The results obtained for the ISSP subsample of migrants outlined in the columns 2 and 3 of Table 3.5, similar to the findings based on ESS subsample of immigrants, reveal a positive and significant association between average preferences for redistribution in the country of origin and individual preferences of immigrants. However, compared to pairwise associations discussed above, the effect of both ISSP proxies for preferences for redistribution of immigrants decreased significantly when controlling for socio-economic determinants: the effect of the average demand in the country of origin to "reduce differences between rich and poor" dropped from 0.46 to 0.21 , and to "reduce
income differences" from 0.39 to 0.19 . This means that to a large extent, the initial association between average preferences in the country of origin and individual preferences for redistribution was determined by differences in social and demographic characteristics of immigrants from different countries. Immigrants who move from countries where an average demand for redistribution is low from the very beginning (like the UK, New Zealand and Canada) may be less dependent on social services and be less interested in redistribution compared to immigrants who move from countries where average demand for redistribution is high (like Portugal, Slovenia, Russia and Italy). Moreover, when including non-European immigrants in the sample and controlling for immigrants' socio-economic characteristics, the effect of average preferences for redistribution in countries of origin goes down by half. This suggests that the effect of culture is overestimated by Luttmer and Singhal. Table A3.4 in the appendix provides some results for the robustness check when a similar test was done only for European immigrants. In this case, the coefficients for the ISSP measures of redistribution preferences are similar to the effect of the ESS measure: 0.35 ($\mathrm{p}<0.01$) for "reduce differences between rich and poor" and 0.45 ($\mathrm{p}<0.01$) for "reduce income differences".

Nonetheless, the effects remained both statistically and substantially significant even when social and demographic characteristics of migrants were controlled for and when non-European immigrants were included in the sample. Social and economic variables in these specifications affect preferences for redistribution almost in the same way as in the first specification for the ESS subsample. Females, the elderly and people who are not as well educated are more in favour of redistribution. As before, this association is significant, but weak. In a similar way, individuals' financial situation differentiates between those who have lower income and a higher demand for redistribution and those who live comfortably with their current income.

There is a single inconsistency which is worth discussing. When we use ISSP measures for redistribution as key predictors of migrant preferences for redistribution, the effect of log GDP per capita in a country of birth vanishes. Luttmer and Singhal noticed that the magnitude and significance of this measure is sensitive to samples peculiarities. I could assume that redistribution preferences can become a product of the economic environment in cases of increased heterogeneity of countries of birth.

Table 3.5-Predictors of preference for redistribution for ESS country migrants and other migrants: Baseline model with fewer controls

VARIABLES	(1) ESS RP	(2) ISSP migrants reduce differences between rich and poor	(3) ISSP reduce income differences
Birth country redistribution preferences (ESS)	$\begin{aligned} & 0.357 * * * \\ & (0.061) \end{aligned}$		
Reduce differences between rich and poor (ISSP)		$\begin{aligned} & 0.213 * * * \\ & (0.071) \end{aligned}$	
Reduce income differences (ISSP)			$\begin{aligned} & 0.185 * * * \\ & (0.065) \end{aligned}$
Birth country log GDP per capita	$\begin{aligned} & 0.228 * * * \\ & (0.0326) \end{aligned}$	$\begin{aligned} & 0.0065 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.00682 \\ & (0.00508) \end{aligned}$
Age	$\begin{aligned} & 0.00428 * * * \\ & (0.000952) \end{aligned}$	$\begin{aligned} & 0.004 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.00422 * * * \\ & (0.000933) \end{aligned}$
Female	$\begin{aligned} & 0.0891^{* * *} \\ & (0.0208) \end{aligned}$	$\begin{aligned} & 0.0767 * * * \\ & (0.0212) \end{aligned}$	$\begin{aligned} & 0.0740^{* * *} \\ & (0.0217) \end{aligned}$
Own low education	$\begin{gathered} 0.0562^{*} \\ (0.0301) \end{gathered}$	$\begin{aligned} & 0.0702^{* *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.0711^{*} \\ & (0.0355) \end{aligned}$
Own high education	$\begin{aligned} & -0.0707^{* * *} \\ & (0.0176) \end{aligned}$	$\begin{aligned} & -0.087 * * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.0824^{* * *} \\ & (0.0192) \end{aligned}$
Missing dummy	$\begin{aligned} & -0.0649 \\ & (0.118) \end{aligned}$	$\begin{aligned} & -0.191^{*} \\ & (0.111) \end{aligned}$	$\begin{aligned} & -0.199 * \\ & (0.113) \end{aligned}$
Partner low education	$\begin{aligned} & -0.0174 \\ & (0.0279) \end{aligned}$	$\begin{aligned} & -0.0317 \\ & (0.0278) \end{aligned}$	$\begin{aligned} & -0.0315 \\ & (0.0299) \end{aligned}$
Partner high education	$\begin{aligned} & -0.0695 * * * \\ & (0.0180) \end{aligned}$	$\begin{aligned} & -0.0549^{* *} * \\ & (0.0193) \end{aligned}$	$\begin{aligned} & -0.0505 * * \\ & (0.0206) \end{aligned}$
Missing dummy	$\begin{aligned} & -0.0226 \\ & (0.0254) \end{aligned}$	$\begin{aligned} & -0.0278 \\ & (0.0263) \end{aligned}$	$\begin{aligned} & -0.0193 \\ & (0.0266) \end{aligned}$
Divorced or separated	$\begin{gathered} 0.0187 \\ (0.0537) \end{gathered}$	$\begin{aligned} & 0.0390 \\ & (0.0566) \end{aligned}$	$\begin{aligned} & 0.0504 \\ & (0.0578) \end{aligned}$
Widowed	$\begin{gathered} 0.00385 \\ (0.0380) \end{gathered}$	$\begin{aligned} & 0.0372 \\ & (0.0376) \end{aligned}$	$\begin{aligned} & 0.0328 \\ & (0.0378) \end{aligned}$
Never married	$\begin{aligned} & 0.0846^{* *} \\ & (0.0318) \end{aligned}$	$\begin{aligned} & 0.101 * * * \\ & (0.0336) \end{aligned}$	$\begin{aligned} & 0.119 * * * \\ & (0.0313) \end{aligned}$
Marital status missing	$\begin{gathered} 0.0168 \\ (0.0368) \end{gathered}$	$\begin{aligned} & 0.0577 \\ & (0.0625) \end{aligned}$	$\begin{aligned} & 0.0471 \\ & (0.0566) \end{aligned}$
Feeling about household's income (coping is a reference category)			
Living comfortably on present income	$\begin{aligned} & -0.205 * * * \\ & (0.0283) \end{aligned}$	$\begin{aligned} & -0.196 * * * \\ & (0.0288) \end{aligned}$	$\begin{aligned} & -0.202 * * * \\ & (0.0299) \end{aligned}$
Difficult on present income	$\begin{aligned} & 0.131 * * * \\ & (0.0156) \end{aligned}$	$\begin{aligned} & 0.153 * * * \\ & (0.0212) \end{aligned}$	$\begin{aligned} & 0.154 * * * \\ & (0.0217) \end{aligned}$
Very difficult on present income	$\begin{aligned} & 0.232 * * * \\ & (0.0390) \end{aligned}$	$\begin{aligned} & 0.249 * * * \\ & (0.0504) \end{aligned}$	$\begin{aligned} & 0.243 * * * \\ & (0.0490) \end{aligned}$
Feeling about household's income missing	$\begin{gathered} 0.0267 \\ (0.0871) \end{gathered}$	$\begin{aligned} & -0.0191 \\ & (0.0938) \end{aligned}$	$\begin{aligned} & -0.0165 \\ & (0.0971) \end{aligned}$
Primary income source (wages is a reference cate Self-employed	$\begin{aligned} & \text { ory): } \\ & -0.180^{* * *} \\ & (0.0425) \end{aligned}$	$\begin{aligned} & -0.177 * * * \\ & (0.0491) \end{aligned}$	$\begin{aligned} & -0.166^{* * *} \\ & (0.0477) \end{aligned}$

Pension	$0.0626^{* *}$	$0.0562^{* *}$	$0.0675^{* *}$
	(0.0271)	(0.0277)	(0.0262)
Unemployment benefits	-0.0128	-0.0498	-0.0687
	(0.0551)	(0.0523)	(0.0500)
Social benefits	$0.0868^{* *}$	0.0703	0.0616
	(0.0413)	(0.0464)	(0.0478)
Investment	$-0.322^{* * *}$	$-0.462^{* * *}$	$-0.460^{* * *}$
	(0.113)	(0.106)	(0.105)
Other	$-0.161^{* *}$	$-0.147^{* *}$	$-0.175^{* * *}$
	(0.0619)	(0.0629)	(0.0600)
Primary income source - missing	-0.0926^{*}	$-0.0957^{* *}$	-0.0857^{*}
	(0.0498)	(0.0464)	(0.0466)
Log household size	0.0568^{*}	0.0550^{*}	$0.0731^{* *}$
	(0.0283)	(0.0278)	(0.0275)
Paid work last week	0.0236	0.0267	0.0216
	(0.0195)	(0.0187)	(0.0188)
Paid work - missing	-0.0680	0.0278	0.0408
	(0.119)	(0.136)	(0.149)
Has a child in the household	-0.0533	-0.0448	-0.0506
	(0.0361)	(0.0385)	(0.0404)
Has a child in the household missing	-0.00517	-0.0312	-0.0311
Missing	(0.170)	(0.152)	(0.150)
Ever unemployed for more than 12 months	$0.0786^{* *}$	$0.0607^{* *}$	$0.070)^{* *}$
Ever been unemployed missing	(0.0325)	(0.0259)	(0.0265)
	-0.0191	-0.0154	-0.0295
Lives in metropolitan area	(0.0632)	(0.0724)	(0.0698)
	-0.0176	-0.0137	-0.0199
Lives in metropolitan area	(0.0215)	(0.0229)	(0.0236)
Missing	0.0975	0.223	0.230
ESS round dummies (ESS'01 is a reference category)	(0.193)	(0.199)	(0.201)
Residence country dummies (31, Germany is a reference category)			
Constant	-0.312	$2,646^{* * *}$	$2,587^{* * *}$
	(0.502)	(0.249)	(0.244)
Observations	12914	12075	11509
R-squared	0.112	0.123	0.123

Note: Source: ESS 2002-2013, cumulative data set. DV is measured on a $1-5$ scale, where 5 means "strongly agree" with the statement "The government should take measures to reduce differences in income levels". Estimates are from linear models with robust standard errors, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Luttmer and Singhal tested six more specifications of the model modifying individual characteristics for the robustness check. First of all, they controlled for economically motivated migration. In the very first specification they introduced only the destination country fixed effects to capture unobserved heterogeneity across countries of destination and the possible effect of average preferences for redistribution in the countries of destination on immigrants' individual preferences for redistribution. This test allowed them to address the issue of selection into a country where average preferences for redistribution correspond to each immigrant's preferences (Tiebout selection). If this type of selection takes place, the effect of average preferences for redistribution
in the country of origin on immigrants' preferences when controlling for the destination country fixed effects would not be identified. I carried out the same robustness check for different proxies of preferences for redistribution and different samples of immigrants. The coefficients of the first specification are available in Table 3.6 in section 1 "Country dummies as only controls". Luttmer and Singhal reported a positive and significant effect of culture in this case ($0.26, \mathrm{p}<0.01$). My results are similar to theirs for the extended to 6 waves sample of European immigrants: the association between average preferences for redistribution in the country of origin and individual preferences of immigrants is 0.25 ($\mathrm{p}<0.01$). I tested the same model for the mixed subsample of European and non-European immigrants: the coefficients for ISSP measures became larger. This means that we can identify a strong effect of the culture of origin in the mixed subsample if we do not consider the socioeconomic characteristics of immigrants. Furthermore, the effect of culture is substantially stronger for the mixed subsample compared to the subsample of European immigrants. As we have seen above, the effect of culture becomes smaller for the mixed subsample if controlled for the main socio-economic characteristics. Section 2 "Baseline, but fewer controls" repeats the coefficients for different measures and different subsamples of immigrants from Table 3.5 for a comparative purpose.

Luttmer and Singhal then extended the list of controls presented above in Table 3.3 and Table 3.5 and introduced additional controls for a more narrow and specific measure of education, third order polynomials in the log of household size and income, second order polynomials for age, more specific controls for current and previous employment, a partner's employment status, a dummy for the linguistic minority (a respondent's primary language spoken at home is spoken by less than 30 percent of the native population), tenure in the country and religion. I repeated their empirical test for different subsamples of immigrants and different measures of average preferences for redistribution in the countries of origin. The add-up of the models can be seen in section 3 "Baseline", Table 3.6. Special attention here was paid to the linguistic skills of immigrants. Sections 3.1 and 3.2. test for the robustness of previous results when controlled for being a linguistic minority (respondent's language is spoken by less than 30 percent of natives; 10 and 50 in additional specifications). As we can see from the table, the effects of the three proxies of culture are very much resistant to controls. What is more, when we control for the dummy for linguistic minority, the effect of culture becomes stronger. Full specifications are available in the appendix (Table A3.5-Table A3.11).

Additional controls for political inclusion and participation, such as citizenship and participation in the last national elections, do not change the size of the coefficients. Section 4 in Table 3.6 provides the output for the models only for the four proxies of preferences for redistribution. At the last stage, Luttmer and Singhal introduced comprehensive controls: dummies for regions in all the countries, GINI in a country of birth (for the last available year), the main activity for the last 7 days, a membership in a trade union or similar, mother's educational attainments, father's educational attainments, industry of employment and occupation. Regions fixed effects models allowed me to control for more latent factors referring to environment peculiarities which may also reflect economic reasons for migration. This set of controls slightly reduced the effect of culture. Section 5 in Table 3.6 shows that the effect of culture became 0.29 ($\mathrm{p}<0.01$) for the subsample of European immigrants, 0.22 ($\mathrm{p}<0.01$) and 0.17 ($\mathrm{p}<0.01$) for the mixed ISSP subsamples. The reduction of the effect was 0.12 for the European subsample of immigrants and 0.02-0.04 for the mixed subsample. Nonetheless, here we also see the robustness of all three effects of culture.

These findings lead to the conclusion that preferences of immigrants associate with average preferences for redistribution in their countries of origin. However, this association is partially determined by the social and economic conditions of the immigrants. The more controls there are in the models the weaker the association. The effect of culture became two times lower when comprehensive controls were implemented in the mixed subsample of immigrants. Nonetheless, the effect of average preferences for redistribution in the country of destination remains significant.

Table 3.6-Effect of birth country culture on immigrants' preferences for redistribution in the country of residence: Different subsamples of migrants and different specifications

Coefficient on
birth country S.E. R2 N

PR

1. Country dummies only as controls				
Birth country redistribution preferences (ESS)	$0.247^{* * *}$	(0.074)	0.069	12924
Reduce differences between rich and poor (ISSP)	$0.356^{* * *}$	(0.099)	0.083	12083
Reduce income differences (ISSP)	$0.322^{* * *}$	(0.079)	0.083	11517

2. Baseline, few controls ${ }^{10}$				
Birth country redistribution preferences (ESS)	0.357***	(0.061)	0.112	12914
Reduce differences between rich and poor (ISSP)	0.213***	(0.071)	0.123	12075
Reduce income differences (ISSP)	0.185***	(0.065)	0.123	11509
3. Baseline ${ }^{11}$				
Birth country redistribution preferences (ESS)	0.344***	(0.061)	0.115	12914
Reduce differences between rich and poor (ISSP)	0.235***	(0.069)	0.128	12075
Reduce income differences (ISSP)	0.205***	(0.062)	0.128	11509
3.1. Other two measures of linguistic minority: cut-off = 10\%				
Birth country redistribution preferences (ESS)	0.392***	(0.068)	0.104	12914
Reduce differences between rich and poor (ISSP)	0.297***	(0.075)	0.116	12075
Reduce income differences (ISSP)	0.259***	(0.068)	0.116	11509
3.2. Other two measures of linguistic minority: cut-off $=\mathbf{5 0 \%}$				
Birth country redistribution preferences (ESS)	0.393***	(0.069)	0.104	12869
Reduce differences between rich and poor (ISSP)	0.290***	(0.073)	0.116	12032
Reduce income differences (ISSP)	0.253***	(0.067)	0.116	11471
4. Baseline, but more controls ${ }^{12}$				
Birth country redistribution preferences (ESS)	0.340***	(0.06)	0.116	12914
Reduce differences between rich and poor (ISSP)	0.236***	(0.068)	0.129	12075
Reduce income differences (ISSP)	0.209***	(0.061)	0.129	11509
5. Comprehensive controls ${ }^{13}$				
Birth country redistribution preferences (ESS)	0.288***	(0.066)	0.138	12024
Reduce differences between rich and poor (ISSP)	0.215***	(0.066)	0.152	11313
Reduce income differences (ISSP)	0.167***	(0.060)	0.152	10783

Note: Source: ESS 2002-2013, cumulative data set. DV is measured on a 1-5 scale, where 5 means "strongly agree" with the statement "The government should take measures to reduce differences in income levels". Estimates are from linear models with robust standard errors, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

[^7]
3.4. Extension of the LS model using controls for self-selection into migration: Introducing basic human values

Luttner and Singhal's research demonstrated that a large number of economic and social factors affect redistribution preferences. The effect of culture remains robust even if we control for them. However, as discussed above, there are not just economic reasons for migration. To avoid a bias caused by selection into migration, we also need to control also for individual ideational characteristics determining an individual's decision to migrate, to take risks as well as to ask for government intervention. The current section aims to fill this gap. The main expectation I seek to test here is that openness to change values and self-enhancement may decrease the effect of culture because these values influence the decision to migrate and decrease the demand for social support and redistribution. Conservation values are opposite to openness to change; these values prevent migration and enhance the demand for redistribution. Self-transcendence is positively associated with redistribution preferences; however, it does not directly affect the decision to move to another country. At the same time, immigrants from some countries may be more altruistic compared to immigrants from other countries and controls for these values may also reveal some change in the effect of culture. One may criticise these expectations arguing that a person may respond to a migration shock and become less open, ambitious and more risk averse. However, the current section follows the main assumption of cross-cultural psychology that basic human values are guiding principles of human life shaped during formative age and that these values never change.

The same 5 steps are performed at this stage of the study starting from the models that controlled for the destination country fixed effects only to models with comprehensive controls. I extend the LS models here by adding basic human values one by one to control for selection into migration. Here, as before, I compare the effects of redistribution preferences in the countries of birth on migrants' individual preferences in two subsamples of migrants: migrants from ESS countries and migrants from ISSP countries. Now I opt for the variable "reduce differences between rich and poor" (ISSP) as a proxy for redistribution preferences since it has a stronger explanatory power and covers more countries. Table 3.7 reports coefficients for preferences for redistribution extracted from the full specifications available in the appendix (Table A3.12 - Table A3.18). Generally, Table 3.7 contains coefficients extracted from 70 models: the first lines in each section repeat coefficients presented in Table 3.6 as reference points and then lines from 2 to 9 report
coefficients for the effect of culture when controlled for values and coefficients for values. The table is split into 2 columns: the first column reports the coefficients for the ESS subsample and the second for the subsample of both European and non-European migrants. To facilitate the interpretation of the results I provide Figure 3.6 and Figure 3.7 which compare coefficients and trace how they change from model to model for the two subsamples of immigrants. As in the previous case, I discuss each section of the table one by one.

The very first specification (only for country fixed effects) reported in the first section of Table 3.7 shows that the effect of "culture" of birth is sensitive to inclusion of openness and conservation values. The first line in the section 1 of the table reports the association between culture and individual preferences as 0.25 for the European subsample of immigrants and 0.36 for the mixed subsample. However, when we control for openness or conservation values (as opposite to openness), the effect of culture reduces to 0.18 in the ESS subsample and 0.3 in the mixed subsample. This means that in the very basic model without additional social and demographic controls, individual basic human values take a third of the effect of culture in the European subsample and a substantial share in the mixed subsample. In other words, individual demand for redistribution of European immigrants is largely determined by their basic human values and the effect of the culture of origin here is much smaller. However, in the mixed subsample the effect of culture remains relatively strong. Figure 3.6 shows how the effects of average preferences for redistribution in the country of origin change when controlling for four types of basic human values. The figure allows us to see that openness and conservation values take partially the explanatory power of the effect of culture: the effect of culture became weaker in the very first specification by $0.06-0.07$ points. This reduction may mean that self-selection into migration partially based on individual ideational characteristics does indeed take place. Those who are open to change both self-select into migration and have lower demand for preferences for redistribution. At the same time, the effects of "culture" turned out to be rather resistant to the controls for altruistic (selftranscendence) and egoistic (self-enhancement) values.

The effect of culture remained robust, substantially and statistically significant in all the models in which controls for different sets of demographic and economic parameters were implemented and did not change much after including controls for values. The specifications presented in sections 2 to 4 in Table 3.7 reveal that, starting from fewer controls up to the model with more controls, the
effect of culture varies from 0.3 to 0.36 for the subsample of European migrants and from 0.17 to 0.28 for the mixed subsample. All the coefficients are significant at the level 0.01 . Figure 3.6 helps to grasp the main picture of how the effect of culture changes when controlling for values in different specifications. On average, the effect of culture gets smaller by $0.03-0.04$ points in the ESS sample and 0.04 points in the ISSP sample when in addition to different sets of social and demographic characteristics, values are also included. This difference may be identified as an effect of selection into migration.

The fifth specification assumes the most extensive list of control variables including GINI in the country of origin, membership in a trade union, parental backgrounds measured as level of education, industry of employment and occupation. This set of controls as we have already seen before takes a small share of the explanatory power of culture as well as values. Indeed, the effect of values reduced on average by 0.02 points, and when controlled for values the effect of culture reduced only by 0.01 points.

Table 3.7 - Effect of birth country culture on immigrants' preferences for redistribution in residence country: Controls for self-selection into migration by means of individual values

	RP (ESS)	R2	N	RDPR (ISSP)	R2	N
1. Country dummies only as controls	0.247***(0.074)	0.07	12924	0.356***(0.099)	0.08	12083
RP	0.180**(0.07)			0.303***(0.097)		
+ Openness to change	$-0.155 * * *(0.023)$	0.08	12229	$-0.139 * * *(0.023)$	0.09	11450
RP	0.176**(0.069)			0.297***(0.098)		
+ Conservation	$0.154 * * *(0.023)$	0.08	12235	0.134***(0.024)	0.09	11454
RP	$0.235 * * *(0.069)$			$0.345^{* * *}(0.097)$		
+ Self-Enhancement	$-0.141 * * *(0.020)$	0.08	12229	$-0.128 * * *(0.020)$	0.09	11449
RP	$0.243 * * *(0.07)$			$0.356 * * *(0.096)$		
+ Self-Transcendence	$0.194 * * *(0.018)$	0.08	12233	$0.173 * * *(0.019)$	0.09	11454
2. Baseline, but fewer controls	0.357***(0.061)	0.11	12914	0.213***(0.071)	0.12	12075
RP	$0.314 * * *(0.059)$			$0.171 * *(0.071)$		
+ Openness to change	$-0.096 * * *(0.024)$	0.12	12222	$-0.079 * * *(0.024)$	0.13	11443
RP	$0.311^{* * *}(0.06)$			$0.170^{* *}(0.071)$		
+ Conservation	$0.077 * * *(0.024)$	0.11	12228	$0.058 * *(0.025)$	0.13	11447
RP	$0.321^{* * *}(0.063)$			0.192*** (0.069)		
+ Self-Enhancement	$-0.096 * * *(0.02)$	0.12	12222	-0.093***(0.019)	0.13	11442
RP	$0.327 * * *(0.064)$			$0.207 * * *(0.067)$		
+ Self-Transcendence	$0.163 * * *(0.017)$	0.12	12226	$0.152 * * *(0.017)$	0.13	11447
3. Baseline	$0.344^{* * *}(0.061)$	0.12	12914	$0.235 * * *(0.069)$	0.13	12075
RP	$0.307 * * *(0.062)$			$0.200 * * *(0.071)$		
+ Openness to change	$-0.101 * * *(0.024)$	0.12	12222	$-0.086 * * *(0.024)$	0.13	11443
RP	$0.305^{* * *(0.062)}$			0.199***(0.072)		
+ Conservation	$0.077 * * *(0.025)$	0.12	12228	$0.061 * *(0.025)$	0.13	11447
RP	0.309***(0.064)			0.213***(0.071)		

+ Self-Enhancement	-0.092***(0.019)	0.12	12222	$-0.087^{* * *}(0.019)$	0.13	11442
RP	$0.313 * * *(0.065)$			0.224*** (0.07)		
+ Self-Transcendence	$0.163^{* * *}(0.016)$	0.12	12226	$0.149 * * *(0.017)$	0.14	11447
3.1. Other two measures of	0.392***(0.068)	0.10	12914	0.297***(0.075)	0.12	12075
$\begin{aligned} & \text { linguistic minority: cut-off }= \\ & 10 \% \end{aligned}$						
RP	$0.351 * * *(0.069)$			$0.257 * * *(0.076)$		
+ Openness to change	$-0.114^{* * *}(0.025)$	0.11	12222	$-0.10^{* * *}(0.025)$	0.12	11443
RP	$0.350 * * *(0.069)$			0.256***(0.076)		
+ Conservation	0.09***(0.027)	0.11	12228	0.074**(0.028)	0.12	11447
RP	$0.356 * * *(0.072)$			0.273*** (0.076)		
+ Self-Enhancement	-0.095***(0.019)	0.11	12222	$-0.09^{* * *(0.019)}$	0.12	11442
RP	$0.361 * * *(0.072)$			$0.286 * * *(0.075)$		
+ Self-Transcendence	$0.168 * * *(0.017)$	0.11	12226	0.154***(0.017)	0.12	11447
3.2. Other two measures of	0.392***(0.068)	0.10	12914	0.292***(0.075)	0.12	12075
$\begin{aligned} & \text { linguistic minority: cut-off }= \\ & \mathbf{5 0 \%} \end{aligned}$						
RP	0.353***(0.07)			0.252*** (0.077)		
+ Openness to change	$-0.113 * * *(0.025$	0.11	12222	$-0.099 * * *(0.025)$	0.12	11443
RP	0.351 ***(0.07)			$0.252 * * *(0.077)$		
+ Conservation	$0.089 * * *(0.027)$	0.11	12228	0.073**(0.028)	0.12	11447
RP	$0.356 * * *(0.072)$			0.268***(0.077)		
+ Self-Enhancement	-0.095***(0.019)	0.11	12222	$-0.09^{* * *(0.019)}$	0.12	11442
RP	$0.360 * * *(0.073)$			$0.281 * * *(0.076)$		
+ Self-Transcendence	0.168***(0.016)	0.11	12226	$0.154^{* * *(0.017)}$	0.12	11447
4. Baseline, but more controls	0.340***(0.06)	0.12	12914	0.236*** (0.068)	0.13	12075
RP	$0.303 * * *(0.061)$			0.201***(0.07)		
+ Openness to change	$-0.100^{* * *}(0.025)$	0.12	12222	$-0.085 * * *(0.024)$	0.13	11443
RP	$0.301 * * *(0.061)$			0.200*** (0.070)		
+ Conservation	$0.077 * * *(0.025)$	0.12	12228	$0.061 * *(0.025)$	0.13	11447
RP	$0.305^{* * *}(0.063)$			$0.213^{* * *}(0.07)$		
+ Self-Enhancement	$-0.093 * * *(0.019)$	0.12	12222	$-0.087^{* * *}(0.019)$	0.134	11442
RP	$0.310^{* * *}(0.064)$			$0.225 * * *(0.069)$		
+ Self-Transcendence	$0.162 * * *(0.016)$	0.12	12226	$0.148 * * *(0.017)$	0.14	11447
RP	$0.342 * * *(0.061)$			$0.254 * * *(0.071)$		
5. Comprehensive controls	0.288**(0.066)	0.14	12024	0.215*** (0.066)	0.15	11313
RP	0.275*** (0.069)			0.198***(0.066)		
+ Openness to change	-0.08***(0.028)	0.14	11411	$-0.065 * *(0.029)$	0.16	10740
RP	$0.273 * * *(0.069)$			0.198*** (0.066)		
+ Conservation	0.056* (0.029)	0.14	11416	0.041(0.03)	0.16	10743
RP	0.272***(0.07)			0.209*** (0.066)		
+ Self-Enhancement	$-0.088^{* * *}(0.017)$	0.14	11412	$-0.083 * * *(0.017)$	0.16	10740
RP	$0.275 * * *(0.072)$			$0.218 * * *(0.065)$		
+ Self-Transcendence	$0.155 * * *(0.014)$	0.15	11416	$0.143 * * *(0.016)$	0.16	10745

Note: Source: ESS 2002-2013, cumulative data set. DV is measured on a $1-5$ scale, where 5 means "strongly agree" with the statement "The government should take measures to reduce differences in income levels". Estimates are from linear models with robust standard errors, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Figure 3.6-Effects of average preferences for redistribution in the country of origin on preferences for redistribution of immigrants. Comparisons of the 7 main specifications presented in the Table 3.7 when controlled and not controlled for basic human values
a. ESS subsample of migrants

b. The ISSP subsample of migrants

Discussing basic human values (in Schwartz's measurement) we can clearly see associations in the expected direction: all the observed effects are in line with previous findings (Kulin and Svallfors 2013; Gryaznova 2013). In particular, altruistic (self-transcendence) and collectivistic (conservation) values make people more pro-redistributive. In contrast, individualistic (openness to change) and egoistic (self-enhancement) values shape more independent attitudes and lower demand for redistribution. In the very first specification, when only country dummies are introduced to the models as controls, we see that a one-point increase in openness and selfenhancement values leads to a 0.16 ($\mathrm{p}<0.01$) and 0.14 ($\mathrm{p}<0.01$) point decrease in demand for redistribution. The opposite association is observed for conservation and self-transcendence values: a one point increase in these values leads to 0.15 ($\mathrm{p}<0.01$) and 0.19 ($\mathrm{p}<0.01$) point increase in preferences for redistribution. However, the effect of values gets smaller when social and economic variables are introduced. Figure 3.7 facilitates the comparisons of the magnitude of the effects of basic human values in 7 specifications. In addition to Table 3.7, the figure makes it clear that in different specifications, the effects of values do not change substantially: the variation of the coefficients is within 0.01 point. The final specification with the extensive list of control variables shows the reduction in the effect of openness and conservation in the both subsamples. At the same time, almost no change is observed for self-enhancement and self-transcendence values.

The very first question that motivated the creation of this section was a selection issue: preferences for redistribution may be defined by individual values which make a person migrate and ask for less redistribution. The current test allowed us to see the robustness of the effect of culture: even when controlling for basic human values, the association between average preferences for redistribution in the country of origin and immigrant's own preferences still holds. The extension of the sample of migrants to non-European migrants partially corrected for self-selection into a country. By introducing some heterogeneity into the sample, the empirical test has confirmed the robust character of the effect of "culture" not only for European migrants but also for mixed subsamples.

Figure 3.7 - Marginal effects of values in seven specifications

3.5. What is "culture"? Control for different measurements of values in countries of birth

The very final issue I aim to test in this chapter is the question of whether average preferences for redistribution taken for a proxy of culture overlap with other measures of culture. In other words, I try to approach the question "what stands behind 'culture' measured as an average demand for redistribution?" This question drives the next paragraph of this chapter.

Inglehart and Welzel distinguished between different cultural values typical of people who live in different countries (Inglehart, 1997, 2003; Inglehart and Welzel, 2005; Welzel, 2010). In addition to self-interest and macro-economic situation, these values may be considered as determinants of political and economic attitudes. Demand for a definite role of government participation in
redistribution in a country may also be a product of the cultural values shared by a population. Luttmer and Singhal controlled for prosperity and inequality in the country of birth and the effect of culture remained robust. Cultural values shared by a population in a country of birth can be used as additional controls. Inglehart and Welzel proposed a list of measures to be used to study cultural differences between countries. In my research, I try to identify an effect of these available proxies for culture and test whether the effect of average preferences for redistribution in the country of origin are sensitive to these controls.

I begin with presenting bivariate associations between preferences for redistribution and five country specific values for ESS and ISSP subsamples. Table 3.8 shows strong significant correlations of all the cultural values and preferences for redistribution. All the effects are in the expected direction: high demand for redistribution in the countries of origin negatively associates with all the tested cultural values typical for the countries of origin.

Modernisation theory defines self-expression values in contrast to survival values such as individualism, tolerance, demand for public and political activity, importance of liberty and quality of life. The higher the level of self-expression values is in the countries, the lower the average demand for existential security there, and consequently the lower the demand for redistribution. This argument is strongly supported by the data: this association is -0.8 for European migrants and -0.7 for the mixed subsample. Post-materialists, in turn, "strive for self-actualization, stress the aesthetic and the intellectual, and cherish belonging and esteem" (Held, Mueller, Deutsch, Grzechnik, and Welzel, 2009, p. 57). People who hold these values also oppose a higher demand for redistribution: the association is -0.6 for both subsamples. Emancipative values mean demand for gender (equal opportunities for males and females to enter higher education and power, and to have a job) and reproductive equality (acceptance of divorce, abortion, homosexuality) as well as for political and human rights and freedoms; the more explicit these values are in a country, the higher the demand for freedom of choice and equality of opportunities. Emancipative values also negatively associate with the demand for redistribution: -0.6 in the European subsample of immigrants and -0.7 in the mixed subsample. The Autonomy and Voice index are components of the emancipative values index. The Autonomy index unifies the importance of imagination, independence and nonconformism, and the Voice index stresses political rights and freedoms, like
freedom of speech and opportunity to express a person's own ideas local and national affairs. In the both cases, the associations are strong and negative.

The strong interdependence of average preferences for redistribution and cultural values lead me to think, on the one hand, that cultural values could make up part of the explanatory power of the average preferences for redistribution in the models. On the other hand, the theory of modernisation argues that cultural values are derived from the development of economic forces and economic prosperity of countries, which means that established associations may derive from the negative relationship of GDP and average preferences for redistribution. For this reason, the models discussed below control for GDP in countries of origin.

Table 3.8-Correlation between two measures of redistribution and different measures of values on country level

	RP (ESS)	RDRP (ISSP)
Redistribution preferences (ESS)	1	
Reduce differences between rich and poor (ISSP)	0.87^{*}	1,00
Self-Expression (ESS)	-0.77^{*}	-0.72^{*}
Post-materialist index (WVS)	-0.60^{*}	-0.64^{*}
Emancipative values index (WVS, QoG)	-0.63^{*}	-0.66^{*}
Autonomy Index (WVS, QoG)	-0.44^{*}	-0.61^{*}
Voice Index (WVS, QoG)	-0.60^{*}	-0.54^{*}
	$* \mathrm{p}<0.05$	

I run additional 70 regression models to test the robustness of the effect of average preferences for redistribution in countries of origin to the effect of cultural values in the same countries. Figure 3.8 delineates coefficients for the seven specifications discussed above on the x -axis and compares coefficients when controlled for cultural values typical of countries of origin on the y-axis. Initial coefficients are provided in Table A3.19 in the appendix. One by one I control for Self-Expression values, the Post-materialist index, the Autonomy Index, the Emancipative values index and the Voice Index.

Since the correlation between average preferences for redistribution in the country of origin and cultural values is negative, we can expect that the effect of average preferences for redistribution will become stronger when cultural values factors are kept balanced. This means that immigrants can be guided by different components of culture: both by average preferences for redistribution
in the country of origin and by cultural values there. When controlling for cultural values, the effect of preferences becomes clearer.

Figure 3.8 allows us to compare changes in the effect of "culture" when controlling for cultural values. As we can see, the effect of average preferences in countries of origin becomes even more salient when controlled for Self-expression values and the Post-materialist index both in the subsample of European and mixed migrants. In the very first model, when controlling only for countries of residence, the effect of "culture" turns out to be two times stronger in the European subsample of immigrants when Self-expression values are introduced into the model. In the mixed subsample, the change is not as dramatic: the effect of average preferences for redistribution in the country of origin was 0.36 ($\mathrm{p}<0.01$) when controlling only for country dummies and became 0.42 ($\mathrm{p}<0.01$) when I controlled for Self-expression values in addition.

The effect of average preferences in the country of origin slightly decreases when other social and demographic controls are introduced into models. However, the effect of "culture" remains higher when controlled for Self-expression values compared to the basic specifications on average 0.07 points in the European and 0.1-0.16 in the mixed subsample. The effect of "culture" remains higher as well when controlling for the Post-materialist index compared to basic specifications in all the cases on average 0.03 points in the European subsample and 0.12-0.16 in the mixed subsample.

Additional controls for Emancipative values, the Autonomy and Voice Indexes do not change the effects of "culture" much compared to basic specifications in the European subsample. Controls for Emancipative values and the Voice Index made the effect of "culture" more salient in the very first specification. However, when controls for individual, social and demographic characteristics are included, no difference is observed in coefficients. Yet, in the mixed subsample, controlling for these values, the effect of "culture" is larger compared to basic models. The coefficients for cultural values are reported in Figure A3.3 in the appendix.

Figure 3.8-Effects of average preferences for redistribution in the country of origin on immigrants, preferences for redistribution. Comparisons of the 7 main specifications (presented in the Table A3.9 in the Appendix) when controlled and not controlled for the average cultural values in the countries of origin

4. Conclusion and discussion

Chapter 3 aimed to address the question of whether individual preferences for redistribution are culturally determined. For this purpose, I built my research on the work of Luttmer and Singhal who empirically established the effect of culture on individual preferences for redistribution. At first the current chapter replicates their design and later extends it to correct the possible selection bias. To provide external validity for their findings, I addressed four basic issues: sensitivity of the results to time and sample size, self-selection into a country of migration, self-selection into migration, and association between normative environment in the country of origin measured as cultural values and average preferences for redistribution there.

From the research that has been carried out, it is possible to conclude that the effect of culture measured as average preferences for redistribution in the country of origin on immigrants' preferences for redistribution is stable even when the extensive list of controls is used and sample modifications are made. On average, each point increase in preferences for redistribution in a country of origin increases deviation of immigrants' preferences from those of natives by 0.3 even if an extensive list of social and demographic parameters are controlled for. This means that if the average preferences for redistribution in the country of origin are 3 points higher than in the country of destination, preferences of immigrants from these countries would be 1 point higher compared to natives ${ }^{14}$. This finding is relevant for the subsample of European immigrants.

[^8]However, the same test performed for the mixed subsample of European and non-European immigrants showed that the association between average preferences for redistribution in the countries of origin and immigrants' preferences is smaller almost by half. Moreover, the effect of culture becomes lesser when controlling for openness to change and conservation values. The main effect of culture in the basic specification reduced from 0.36 for the European subsample without controlling for values to 0.17 for the mixed subsample with additional controls for openness or conservation values. The main conclusion in this chapter is that there is an effect of culture on immigrants' individual preferences for redistribution. However, the previous findings overestimated its magnitude.

This conclusion leads us to discuss of whether political integration is possible if the culture of origin determines policy related preferences of immigrants like preferences for redistribution. At this point we can ask an alternative question: how similar are the preferences for redistribution of immigrants to the preferences of natives? To give a prompt answer I randomly selected eight countries of origin and compared preferences of immigrants from these countries with average preferences for redistribution of natives in the countries of destination. I selected immigrants from Argentina, Algeria, Austria, Belarus, Belgium, Bulgaria, Germany and Italy and presented the very basic findings in Figure 3.9. The descriptive associations clarify that in some cases immigrants have preferences for redistribution similar to natives and sometimes they do not. This can be explained through differences between migration flows, migration politics of countries of destination which have a demand for certain types of labour forces, networks of immigrants, individual self-selection issues, political and economic situation both in sending and receiving countries and so on. This means that it is problematic to make a prediction about political integration of immigrants solely based on the average effect of culture in the country of origin. Each subsample of immigrants requires specific consideration.

Figure 3.9 - Association of preferences for redistribution of immigrants from 8 random countries with preferences of natives in countries of residence (CR)

As we can see from the figure, the culture of origin corresponds to preferences of immigrants just in a few cases and we can hardly claim the universal character of the effect of the culture of origin. To the contrary, in many cases we see that preferences of immigrants are similar to the preferences of natives. The general overview of the trends makes it explicit that political integration is a complex process which is not similar for different countries or for subsamples of immigrants. Immigrants from Austria can be a good example for this argument. The average preference for redistribution in Austria is 3.8. However, Austrians who live in Slovenia and Israel have a higher demand for redistribution which is similar to natives there (around 4.2). Meanwhile, Austrians who immigrated to Sweden ask for less redistribution compared to both natives in the country of destination and origin (3.4). In this case we may suspect that selection into migration affects the results. For immigrants from Algeria, Belarus, Belgium and Italy there is no universal trend: in some countries their preferences are similar to those of natives, in some countries they are higher
and in some countries lower. The preferences of Germans and Bulgarians, however, are similar to those of the native population in most cases. This difference can be caused by reasons for migration and the social and demographic characteristics of the migrants. However, the size of each subsample is too small to model each case.

These limitations led me to change the research design and address the issue of elasticity of preferences for redistribution in a different way. To answer the question of whether immigrants stick to the culture of origin or adopt preferences typical in the country of residence, I will follow immigrants over time and trace possible changes of preferences for redistribution of the same individuals. This leads me to employ panel data and a longitudinal research design in the subsequent chapter.

CHAPTER 4. Adoption of Preferences for Redistribution or Cultural Determinacy: Evidence from Panel Data on Immigrants in Germany

1. Rationale

"Is it possible that living under a specific system leads to adaptation of preferences?". This is the key question that Alesina and Fuchs-Schündeln (AF from here onward) address in their paper "Good-Bye Lenin (or Not?): The Effect of Communism on People's Preferences" (Alesina and Fuchs-Schündeln 2007, 1507). They exploited the exogenous shock induced by the reunification of Germany to investigate the causal effect of living in a given economic and political regime on preferences for redistribution. They followed West and East Germans over time to understand whether a political regime shapes preferences for redistribution of people, or, on the contrary, whether different preferences for redistribution of a population define the profile of social politics and patterns of redistribution in a certain country.

While Alesina and Fuchs-Schündeln discussed the long-lasting effect of Communism, in this chapter, I focus on the long-lasting effect of the culture of origin on immigrants' preferences in Germany. I ask the following question: "Do immigrants adapt their redistribution preferences to the new institutional context of the host country or do they hold on to the attitudes shaped in their country of origin?". The question about adaptation of preferences for redistribution is of particular interest nowadays because of their political and electoral importance. And this question seems to be even more important if we take into account increasing migration flows in Europe and the inclusion of migrants in the electoral process.

In this chapter I first replicate the AF's study for West and East Germans. They compared two subsamples of Germans over time and provided evidence of slow convergence of their preferences. They claimed that East Germans reduced their preferences for redistribution over time and adapted them to the new capitalist environment. They isolated the effect of time on individual preferences for redistribution while controlling for a purely individualistic economic self-interest in benefits, an individualistic interest in the common good and secure environment, as well as altruistic reasons. Their results are based on data from the German Socio-Economic Panel and on a set of bivariate probit regressions with the left-hand-side variable equal to one if one expressed strong support for the active role of the government in redistribution. Results are reported to stand even when subjected to a number of tests based on two-stage probit models and ordered probit models on initial variables. I similarly start my research with the same design and perform the same sequence of steps as were done in AF's paper. At a later stage, I will add additional robustness checks and develop my research focusing on the study of immigrants.

In my replication of the AF article, I treat the missing cases, which AF record as 0 s , differently. I also measure the dependent variable on a scale from 0 to 5 rather than record it a dummy variable (0 or 1), which is what was done by AF. Moreover, while AF perform a cross-sectional analysis, I estimate a fixed effect model which allows me to partially control for person-level unobserved heterogeneity. This was reasonable as these unobservables might affect the estimates especially when dealing with a highly selective group of immigrants. Apart from this, to trace nonlinearity I extend AF's cohort analysis and present additional evidence of bilateral convergence both West and East Germans.

Then I extend the AF's comparison of East and West Germans to people who migrated to Germany from different welfare regimes and language areas and compare their preferences for redistribution with those of native Germans. I consider four origin countries: Turkey, Poland, Russia and Kazakhstan. Previous studies have shown that average level of preferences for redistribution in these countries is higher than in Germany (Svallfors, 2012). However, unlike the case of East Germany in the AF study, I do not have a straight and simple natural experiment to rely on and I have to deal with the issue that immigrants are a selected group.

The issue of self-selection into migration is extremely relevant, particularly if it turns out that the choice to migrate to a given country is also driven by certain preferences for redistribution. As discussed in the previous chapter, the large share of migration in Europe happens between neighbouring countries and within similar language, welfare and media areas. Not surprisingly, the preferences for redistribution of migrants in many cases are similar to the preferences of natives. In my study, the inclusion of migrants from non-European countries offers more analytical leverage to identify the effect of culture. In particular, I select the four ethnic groups which differ considerably in terms of their experience and the reasons for of their migration. Pols and Turks are mainly labour migrants, while those from Russia and Kazakhstan in many cases are ethnic Germans ("Aussiedler") and so-called Jewish Quota Refugees. While the former group of immigrants from Turkey and Poland is a case of economically motivated labour migration, the latter case can resemble a natural experiment. The group of immigrants from Russia and Kazakhstan can be considered an ethnic group socialized in a different culture and who at some point, returned to their home country. Because ethnic Germans and Jewish quota refugees were motivated by historical reasons and were granted both citizenship, political and social rights (Kalter and Kogan, 2014), the group of immigrants from the former Soviet Union is likely to be less selective on values and attitudes that would make them similar to (East) Germans to start with. In this respect, selection into migration occurred on a factor that can be considered exogenous and not related to the individual traits and preferences for redistribution.

2. Hypotheses

Previous findings suggest that the culture in the country of birth defines migrants' preferences for redistribution: the stronger the demand for redistribution in the country of birth the more inclined towards redistribution the immigrant (Luttmer and Singhal, 2011). At the same time, Alesiana and Fuchs-Schündeln provided evidence that culture determines individual preferences even long after a change in institutional environment and economic conditions. Consequently, the null hypothesis I could propose here would be that there is no relationship between immigrants' preferences for redistribution and culture (average preferences for redistribution) in the country of destination.

At the same time, as we already know, migrants are used to taking risks and counting on themselves. These features make them less dependent on welfare. Riphahn (1998) found empirical
confirmation for this argument using G-SOEP data: foreigners have a significantly lower risk of being on social benefits.

Apart from this, assimilation or integration may happen not only because of learning but because of self-selection into a country of destination: possible initial contradiction with the culture of origin or choosing a country that fits the immigrant's preferences (Kauppinen and Poutvaara 2012). Consequently, a migrant may self-select into a country which corresponds to their attitudes. And here we could see a modified scenario of acculturation. Assimilation or integration can be observed on a terminal stage: at the moment of immigration a person had already preferences different from preferences in the country of origin and similar to preferences in the country of destination.

Two possible traits can be seen here: a person from the very beginning could have preferences similar to natives in a host country and her preferences could become even more similar over time. Or preferences could be similar from the very beginning and remain the same over time - no change would happen here. So, we might expect that little or any change will be observed. Theoretically, in the case of self-selection into a country, neither separation nor marginalisation can take place if the preferences of an immigrant were already similar to the average preferences of natives in the country of destination. Therefore, these arguments and previous findings lead me to hypothesize that from the very beginning, migrants will have a lower demand for redistribution and they will maintain this attitude over time.

Both theoretical approaches, first that individual preferences are shaped by the culture of origin and never change and second that the self-selection into migration and into certain cultures determines the initial similarity between the preferences of immigrants and those of natives put forward the null hypothesis - that culture in the country of destination does not affect immigrants' preferences for redistribution. If reformulated more precisely, the null hypothesis would be the following:

H0. Immigrants from Turkey, Poland, Russia and Kazakhstan do not change their preferences for redistribution in time.

Inglehart and Norris (2012) differentiated between theories of cultural integration and multiculturalism. There are theoretical arguments and supporting empirical evidence in the
previous literature for both approaches. For example, Moreno (2005) compared values of Mexicans who lived in Mexico and in the US with Anglo-Americans living in the US, Nicolás (2005) studied migrants in Spain and compared their social and political values with average values in their countries of origin and average values of native Spaniards. Both researchers obtained almost the same results: migrants express preferences and values which are somewhere between averages in their home and host countries. Inglehart and Norris also concluded that "[m]igrants do not wholly reject their cultural roots, it seems, but neither do they fully adopt the values of their host societies" (Norris and Inglehart, 2012, p. 241). In particular, "migrant populations gradually came to share mainstream values, ways of life and beliefs prevailing in their host society, usually through an intergenerational process" (Alba and Nee 2003; cited on Norris and Inglehart 2012, 7). An alternative hypothesis can be formulated given the recent findings ${ }^{15}$:

H1. Immigrants from Turkey, Poland, Russia and Kazakhstan change their preferences for redistribution over the course of their lives in Germany to make their preferences similar to those of native Germans. For example, Russians who move to Germany can have a higher demand for redistribution, but they reduce this demand over time. Since the process of integration takes time, I don't expect a radical change of migrants' preferences, but, at the same time, I expect to see a convergence process.

[^9]
3. Research design

3.1. Framework

To start with, I will replicate the analyses of Alesina and Fuchs-Schündeln (2007). They used data of the German Socioeconomic Panel (GSOEP) to test the dynamic of redistribution preferences of West and East Germans after reunification. I use the same data and the same research design as a first approximation. Further I implement several modifications aimed to eliminate some noise in data, to clean the sample and to use the proper models for the panel data analysis.

3.2. Research design

To capture the effect of culture, Alesina and Fuchs-Schündeln utilised the natural experiment of the reunification of Germany. In 1989, political and economic institutions in East Germany were converted from socialist to capitalist standards and East Germany became a part of the capitalist world. After reunification, East Germans experienced a transition from a planned economy, paternalistic welfare arrangements and full employment to a society where the general income was higher, but at the same time, life opportunities were not equal and the probability of unemployment was much higher (Diewald, Goedicke, and Mayer, 2006, p. 2). Alesina and Fuchs-Schündeln claimed that initial economic, political and demographic settings were the same in the both parts of Germany before the split in 1945 and differences in preferences for redistribution between West and East Germans were only caused by the experience of Communism. In this case, the experience of Communism can be considered as a treatment and a clear type of cultural intervention. Starting from reunification, both West and East Germans were involved in the similar institutional context, however the economic preferences and political attitudes of East Germans were still affected by the "culture" of Communism. To estimate this effect and the likelihood of integration, the authors compared preferences of East and West Germans and the way in which those preferences changed over time between 1997 to 2002 .

In my research, I estimate the effect of culture in the country of residence (Germany) on immigrants' preferences for redistribution. Similar to Alesina and Fuchs-Schündeln, I trace how preferences for redistribution change over time within different subsamples. In addition to West
and East Germans, I follow the preferences for redistribution of recent immigrants from Turkey, Poland, Russia and Kazakhstan. Existing data has allowed me to extend the framework of the natural experiment exploited previously. Immigration from the former Soviet Union countries provides additional contextual settings for the natural experiment discussed by Alesina and FuchsSchündeln. On the one hand, the reunification of Germany enables us to trace the effect of the changed macro environment, namely the substitution of Communism with a market economy, on individual preferences for redistribution of East Germans. On the other hand, reunification of two more or less equally large parts of a country can lead to a bilateral cultural convergence. In the case of Germany, we may expect that not only might East Germans adopt preferences of the West, but the West could also take on board cultural patterns of the East.

The effect of culture may be captured better if we follow preferences of a smaller group of subjects who entered a cultural and institutional environment. For this reason, immigrants from former communist countries in West Germany may be a good extension for the AF research design. East Germans constantly lived in their cultural settings and may be more resistant to changing their preferences in response to a change in the political and economic regime. Immigrants, in turn, experienced closer contact with the capitalist environment after transition through contact with the local population who were educated in a capitalist environment and through experiencing wellestablished cultural and economic patterns. In my research, I consider a group of immigrants from the former Soviet Union (FSU) who similarly to East Germans who experienced Communism, arrived in West Germany almost at the time of reunification and were granted rights similar to those granted to natives after resettlement. Comparisons of the FSU immigrants with East Germans and labour immigrants from Poland and Turkey shed some light on differences in integration strategies, the robustness of the effect of culture and elasticity of the preferences for redistribution.

To identify the convergence of preferences, I compare preferences of immigrants with preferences of West and East Germans and monitor how these preferences change over time between 1997 and 2002. To minimize biases due to self-selection into migration and into the country of migration, I estimate fixed effect models that partially take out the effect of unobserved time invariant characteristics. Even if the migrants from our subsample are self-selected and even if their preferences for redistribution are lower than those in their countries of origin, we can estimate not the absolute values but the way in which their preferences changed over time compared to natives.

This research design involves a further discussion about a specific migration context typical for each subsample.

3.3. Case selection and subsample identification

There are three important conditions which make the effect of the culture of origin on individual preferences for redistribution explicit. First, the difference in average preferences for redistribution in sending and receiving countries must be substantially big. Only in this case is it reasonable to estimate the effect of time on immigrants' individual preferences after transition. Second, tenure in the country must not be too long to avoid complete integration. Third, it is necessary to have a sufficient number of observations in the subsamples. There are just four available subsamples of immigrants in GSOEP which meet these conditions: immigrants from Russia, Kazakhstan, Poland and Turkey (Figure 4.1). The available data reflect the general structure of migration flows in Germany at the end of the $20^{\text {th }}$ century. Immigration was extensive from precisely these countries in the 1990s (""Germany", in Connecting with Emigrants: A Global Profile of Diasporas 2015". OECD, 2015).

Figure 4.1 - Time spent in Germany

Though immigration from Russia, Kazakhstan, Poland and Turkey was massive and took place at the same time, the nature and causes of these migration flows were different. This difference could generate dissimilar patterns of integration and lead to non-univocal conclusions about the elasticity
of preferences for redistribution. The frst and most important cleavage between these groups of immigrants is the reason why they came to the country. Immigrants from Poland and Turkey are labour immigrants who may be a highly selective group in terms of values and personal traits. Immigrants from Russia and Kazakhstan are mainly ethnic German resettlers who had historical reasons for migration and could rely on the support of the German government upon arrival. The peculiarities of this migration flow suggest an interesting setting for a natural experiment. To justify it better, it is necessary to provide some information about the characteristics of this group of immigrants.

On the one hand, recent immigration from FSU countries satisfies initial requirements: demand for redistribution in these countries is substantially higher compared to average preferences in Germany, immigrants from these countries are recent immigrants who came to Germany mostly in the $90^{\text {th }}$ and we have a sufficient number of observations. I consider available subsamples as recent immigrants with reference to the first time point of the survey on preferences for redistribution in 1997.

On the other hand, migration from the former Soviet Union to Germany is a very specific case of resettlement of ethnic groups and deserves to be discussed. About two million immigrants came to Germany from FSU countries. Most of came from Russia and Kazakhstan. This massive resettlement was not spontaneous; it had a political and historical background. Most of the immigrants were either ethnic Germans (about 90\%), people who had German ancestors, or, a smaller share (about 10\%) of Jewish quota refugees (Kalter and Kogan, 2014, p. 1440).

Ethnic Germans were settled in the European part of Russian Empire starting from XVI century. Among several waves of migration, the most extensive one was motivated by a decree from Catherine the Great issued in 1764. According to this decree, German immigrants were granted a wide range of privileges in Russia. Namely, they were provided with free transportation to Russia, given land, promised religious freedom, freedom to trade and practice, were entitled to interestfree loans and exemption from military service (Stent 2000. 165). Figure 4.2 shows detailed information about migration flows at that time. The majority of immigrants from Baden, Wuertemberg and Pfalz colonised the south west part of the Russian Empire and immigrants from Prussia and Hessen mainly colonised the Volga Region. According the 1897 Russian census, there
were $1,790,500$ Ethnic Germans who lived permanently in Russia including 50,780 in Sant Petersburg and 17,717 in Moscow (Krieger et al. 2006, 6).

Figure 4.2-German immigration to the Russian Empire in the XVIII and XIX centuries (Informationen zur politischen Bildung Heft 267, 2000)

Deutsche Auswanderung nach Russland im 18. und 19. Jahrhundert

Many Germans left Russia after the October Revolution, mainly because of collectivization. Many Germans died during the Civil War because the main battles between While Cossack forces and Red Army were in the places where Germans lived. The German population in the Soviet Union decreased by half in 1920s. However, the Soviet Census of 1939 indicated that the population of Germans was $1,427,232$, indicating population growth.

Germans always lived in distinct communities and had different customs than Russians (Applebaum, 2003, p. 426). They partially kept the German language, but, at the same time, their language became archaic after more than 200 years of settlement in Russia and borrowed a lot from Russian language. In the context of the World War II the ethnicity of ethnic Germans made them suspicious and was a reason to blame them to be spies, "concealing enemies" and
collaborators with German army (Applebaum 2003, 426-27). In September 1941, the Soviet government condemned Germans, which marked the beginning of several decades of formal restrictions and repression (Pohl, 2012, p. 206). In the fall of 1941 about 800 thousand Germans (and during the war the other 400 thousand) were deported from the European regions to Siberia and Kazakhstan (Figure 4.3). Severe conditions during deportation resulted in mass mortality. About 228000 Germans died during the resettlement. Those who survived lost their relatives, homes, property, and were settled in regions in which they were unprepared to live with very few means to support themselves. They lived under police control until 1955, were not allowed to speak their language, or practice their religion or culture until 1970 (Isurin and Riehl, 2017, p. 49). Germans were rehabilitated in 1964, but were not allowed to return to the places where they had previously settled.

Figure 4.3 - The Soviet Deportation of Nationalities from 1941-1945

Many Germans remained in Siberia and Kazakhstan until the end of the 1980s. Soviet authorities strictly controlled the emigration from the Soviet Union from 1948 until 1987. The single officially recognised reason for leaving the country was family reunification. However, the process of liberalisation of international relations started in 1987 and the emigration reform conducted in

1991 in the Soviet Union ${ }^{16}$ together with the German Federal Law Concerning Displaced Persons ("Bundesvertriebenengesetz", 1953) allowed ethnic Germans to leave the USSR and have the right to resettle in Germany. According the German Federal Law, ethnic Germans were given a special settlement status right upon arrival, which made them eligible for a citizenship, provided them with assistance and information aimed to facilitate integration into the labour market, and to access the healthcare and educations.

The census data allow the assessment of the magnitude of emigration from the Soviet Union. There were 2,038,603 ethnic Germans living in the USSR in 1989 according to census data and most of them in Russia (842,295 people) and Kazakhstan (957,518 people). During the 1990s more than 70% of the German population in Kazakhstan and 40% of German population in Russia emigrated. At the time of the collapse of Soviet Union, they were guided by economic reasons because of the situation of uncertainty on the one hand and historical memory about recent repressions on the other. At the same time, the survey of ethnic Germans who came to Germany from 1990 to 1994 showed that the majority of immigrants felt settled and accepted in the countries where they came from (Isurin and Riehl, 2017, p. 49). In comparison to the Russian context, ethnic Germans in Kazakhstan had an additional reason for emigration: rising Kazakh nationalism and deterministic Islam in the country (Stent 2000. 166), which means that almost the entire population of Germans in Kazakhstan was non-violently pushed away from the country for cultural reasons.

The emigration reform of 1991 initiated the liberalization of emigration regulations in the Soviet Union and like with ethnic Germans, the reform allowed Jews to emigrate (Dietz, Lebok, and Polian, 2002). One year before East Germany granted asylum to the Jewish population who lived in the Soviet Union and who experienced discrimination and persecution (Beauftragte der Bundesregierung für Ausländerfragen 1997, 307), they could enter the country using a tourist visa or apply for refugee status. After reunification in 1991, Germany implemented a law to admit refugees to Germany based on quota regulation (Kontingentflüchtlingsgesetz 1980). This law required an application for an immigration permit from the German embassy in the country of

[^10]residence. The federal administration office in Germany distributed these applications across Departments of the Interior in federal countries according to a quota system. These Departments made a decision about the permit and in the case of a positive decision, a prospective immigrant was invited to apply for an exit visa in the (former) USSR.

The 1989 Soviet census reported 536,848 Jews in Russia and 18,492 in Kazakhstan. According the next census only 43% of Jews remained in Russia in 2002 and only 674 individuals in Kazakhstan in 1999. The German Federal Administration Office reported 157,694 confirmed applications from 1991 until 2000 and 128,519 Jewish immigrants who came to Germany at that time. The other 8,535 Jews from the FSU came to Germany earlier on a tourist visa and were not sent back. However, in contrast to ethnic Germans, post-Soviet Jewish emigration spread out among three countries: the preferable countries were the United States and Israel, while Germany hosted about 9\% of Jewish emigration from FSU countries (Kalter and Kogan, 2014, p. 1440).

Historically, the Jewish population lived in the European part of Russia, in the Ukraine, Belarus, Moldova, Latvia, Lithuania, in the Caucasus and in central Asia (in Uzbekistan and Kazakhstan) (Dietz et al., 2002, p. 32). The 1939 census reported that more than 3 million Jews lived in the USSR, however the Jewish population decreased by half only reaching 1,4 million in 1989. The first reason was the Holocaust in areas occupied by Germany during the World War II, the second was emigration to Israel in the 1970s, the third reason was the low fertility rate and the fourth Russification and mixed marriages of Jews in the USSR (Dietz et al., 2002, p. 32). At the end of the 1980s, the Jewish population was predominantly concentrated in big cities (only in Moscow and St. Petersburg where they made up $53,2 \%$ of their population). Among the main motivations for emigration were antisemitism, ethnic tension in FSU countries, political instability, economic crisis and ecological catastrophes (Dietz et al., 2002, p. 36).

In general terms, both ethnic Germans and Jewish refugees from the FSU faced similar historic experiences, shared a common ancestry and belonged to a discriminated minority. Both groups came from the same regions and considered Russian their mother tongue. Legal admission criteria and integration support in Germany made these groups similar in many respects and differentiated them from labour immigrants and asylum seekers (Isurin and Riehl, 2017, p. 51). The most important aspect for my research is the similarity in motivation for emigration shared by ethnic

Germans and Jews which is rooted in historic experience and legal conditions. These aspects minimise possible biases caused both by self-selection into migration and self-selection into the country of migration.

Chapter 2 thoroughly discussed the problem of self-selection into migration and self-selection into a country of migration. It claimed that on the one hand individuals who rely on their own abilities, who are ready to take risks and are looking for new experience self-select to be immigrants. These traits negatively associate with demand for redistribution. On the other hand, people tend to selfselect into countries similar to their country (neighbouring countries, countries with the same welfare regimes and language areas). This trend means that most people migrate among countries where preferences for redistribution are similar. We can consider preferences for redistribution of immigrants from Russia and Kazakhstan as a non-biased case because this migration flow consists predominantly of ethnic Germans and Jewish quota refugees. The historical reasons for emigration of ethnic Germans and Jews from Russia and Kazakhstan described above and the institutional support they received in Germany upon arrival mean that their decision to emigrate was neither directed by individual traits nor by similarity between country of origin and country of destination. The case of Ethnic Germans and Jews also allows me to evade a double selection issue motivated by labour market aspirations and migrants' networks which normally encourage migration (Kalter and Kogan, 2014, p. 1452).

The comparisons of preferences of immigrants from Kazakhstan and Russia with preferences of West and East Germans allow me to get unbiased estimates for elasticity of preferences for redistribution and the effect of culture. I assumed that labour immigrants from Poland and Turkey are self-selected into migration and their individual traits made them demand redistribution less from the very beginning. The comparisons of the self-directed risk takers from Poland and Turkey with resettles from Russia and Kazakhstan can shed some light on the magnitude of selection bias caused by individual traits.

3.4. Data

The German Socioeconomic Panel (G-SOEP) is a wide-ranging representative longitudinal survey of about 11,000 private households conducted from 1984 to 2013 in the Federal Republic of Germany, and from 1990 to 2013 in East Germany (the former German Democratic Republic).

G-SOEP is run by the German Institute for Economic Research, DIW Berlin. The survey collects information on all the members of a household: West and East Germans, foreigners and recent immigrants. Alesina and Fuchs-Schündeln studied data on the West and East German subsample collected in 1997 and 2002. I use the same data, but focus on individuals who participated in both waves: West and East Germans and immigrants who came to Germany less than 20 years ago. All the migrants in my sample permanently live in West Germany. Individuals who have no information about redistribution preferences, country of origin, sex, age, individual or household income are filtered out. The final sample of individuals who took part in both waves is 8,567 (Table 4.1).

Table 4.1-Subsamples of the study

Sample	No.	\%
Germans West	4747	55.4
Germans East	2989	34.9
Turks	506	5.9
Poles	161	1.9
Russians	86	1.0
Kazakhs	78	0.9
Total	8567	100.0

The research design requires that the sample of immigrants satisfy several conditions. First, Figure 4.4 shows that the most immigrants from Poland, Russia and Kazakhstan (about 80%) came to Germany between 5 and 10 years ago, and that the majority of Turks came to Germany earlier. However, all the selected immigrant came to Germany less than 20 years ago. About a half of the immigrants from Poland, Russia and Kazakhstan were middle-aged between 25 and 44 years old. The number of children and retired people, those who could not work is thus very small in the subsample (Figure 4.5). The sample of immigrants is balanced on gender (Figure 4.6), apart from the education of immigrants education of immigrants from Russia and Kazakhstan resembles the educational structure in East Germany (Figure 4.7).

Figure 4.4 - Tenure of immigrants from Russia, Kazakhstan, Poland and Turkey in Germany in 1997

Graphs by sample, G-SOEP

Figure 4.5 - Age of immigrants from Russia, Kazakhstan, Poland and Turkey at the moment of migration

Figure 4.6-Gender distribution of immigrants from Russia, Kazakhstan, Poland and Turkey

Figure 4.7 - Education of West and East Germans and immigrants from Russia, Kazakhstan, Poland and Turkey

Graphs by sample

Moreover, the natural experiment necessitates identification of the subjects in the sample. For this purpose, it is essential to identify the ethnic origin of immigrants from Russia and Kazakhstan. The data available in the G-SOEP make this task puzzling: neither ethnicity, nor language spoken
at home can be found there. The single proxy for ethnicity which I could find is religion. This substitution is valid as Russians in Russia are mainly Orthodox Christians and Kazakhs in Kazakhstan are Muslim. Germans are expected to be either Catholic or Protestant in most cases, and the Jewish population to be Jewish. It is possible to expect that immigrants might not have a religious denomination for historical reasons, however, existing data show that most immigrants from Russia and Kazakhstan are Protestant (50% and 54%) and Catholic (21% and 9\%) (Figure 4.8), which clearly indicates that at least two-thirds of the immigrants from these countries can be identified as ethnic German. 10\% of immigrants from Russia and 20% of immigrants from Kazakhstan don't belong to any denomination while 16% and 13% are other Christians, most likely Orthodox Christians who might be either partners of the immigrants or Russified Germans or Jews. Furthermore, legal constraints for immigration to Germany that existed in the 1990s can clearly identify the immigrants in the subsample who came to Germany before 1997 as ethnic Germans, Jewish quota refugees and their family members.

The setting of the research requires that immigration be guided neither self-selection based on individual traits nor by similarity of institutional arrangement between sending and host countries. As ethnic Germans, Jewish immigrants and their family members were not affected by this selection bias and were motivated by similar reasons for emigration, there is no need to differentiate between them in the empirical part.

Figure 4.8 - Religious denomination of immigrants from Russia, Kazakhstan, Poland and Turkey

Graphs by sampleM

2.5. Measures

Redistribution preferences were measured in two waves of G-SOEP in 1997 and 2002 and never repeated. In spite the fact that the data were collected long ago they are still valid for my research purpose because I am interested in changes of preferences and relative estimates. Besides, when using these data, I can avoid biased estimates because of the side effect of the Great Recession that took place in 2008. Participants of the survey were asked about their preferences concerning the role of government in providing different kinds of of benefits and social services. The wording of the question is the following: "At present, a multitude of social services are provided not only by the state but also by private free market enterprises, organizations, associations, or private citizens. What is your opinion on this? Who should be responsible for the following areas?". Respondents were asked to give their answers referring to several dimensions related to financial security: "financial security in case of unemployment", "financial security in case of illness", "financial
security of families", "financial security for old age" and "financial security for persons needing care". Respondents gave their answers using a 5 -point scale where the code " 1 " corresponded to "only the state" and " 5 " corresponded to "only private forces". Alesina and Fuchs-Schündeln recoded the scale in dummy variables where code " 1 " was assigned for the items 1 "only the state" and 2 "mostly the state" and " 0 " to all other categories (3 "state and private forces," 4 "mostly private forces" and 5 "only private forces"). To replicate the AF model, I use the same dummy variables at first and then compare the results with the results obtained on the 5 -point reversed scale, where variables take on the value of 1 if the answer is "only private forces" and of 5 if "only the state". Except in the replication part, I use a reversed 5-point scale for all the models.

Alesina and Fuchs-Schündeln used the experience of Communism as the explanatory variable. On the contrary, I assess the effect of time on redistribution preferences of people who were born abroad and had an experience of living in another culture. In my model I include the same baseline controls as was done before in the AF model: age, gender, marital status, labour force status, education, occupation of the respondent, the number of children, the number of adults in the household and the annual household income (Alesina and Fuchs-Schündeln 2007, 1511) as well as income per capita, unemployment rates in German states, gross and net transfers per capita that each state received from other states and the federal government in 1997 and 2002 (Alesina and Fuchs-Schündeln 2007, 1512). Some deviations in results may be caused by different treatment of income variables: while Alesina and Fuchs-Schündeln converted all the monetary variables into Deutsche Marks to harmonise the measures, I use available recoded income variables in Euro from the dataset.

3.6. Models

3.5.1. AF replication

3.5.1.1 First, I try replicating AF's findings and estimate the following model:
(1) $\operatorname{Pr}\left(R P_{i}=1 \mid X_{i}\right)=\beta_{1}\left(\right.$ East $\left._{i}\right)+\beta_{2}\left(\right.$ Year $\left.2002_{i}\right)+\beta_{3}\left(\right.$ East $_{i} *$ Year $\left.2002_{i}\right)+$ $\beta_{2} X_{i}+\varepsilon_{i}$
where
$R P_{i}$ stands for redistribution preferences of an individual
$E a s t_{i}$ - the effect of "culture", the dummy variable: $0=$ a person lives in the West, $1=$ a person lives in the East

Year 2002_{i} - the effect of time, the dummy variable: $0=1997$ year, $1=2002$ year
X_{i} - is a vector of individual characteristics measured in 1997 and 2002
$\varepsilon_{i}-$ is the error term
3.5.1.2. I then checked whether the results are robust to a different treatment of missing values and sample identification. AF created dummy variables for occupation, employment status and education and assigned 0 values for missing values without creating an additional dummy variable for missing values. I correct this and exclude missing values. Second, while Alesina and FuchsSchündeln recoded the original variables with 5 values in a dummy variable, I use the entire scale of dependant variables from 1 to 5 to estimate the whole range of possible changes. Therefore, I eliminate from the analysis Germans who migrated between West and East from the subsamples of West and East Germans to get information only about settled Germans because preferences of migrating people are different. Finally, in the sample I keep only those individuals who participated in both waves in 1997 and 2002 to be sure that we follow the same subjects and there is no bias caused by outmigration. Accordingly, in the second stage, I perform the same analysis as described in the first specification but on the rescaled dependant variable (probit is substituted with OLS) using the modified subsample of settled West and East Germans who participated in the both waves of the survey. In addition, a different management of missing values management is implemented here.
3.5.1.3. Alesina and Fuchs-Schündeln implemented probit models with robust clustered errors to trace the effect of culture and integration of East Germans. They estimated coefficients for being from the East, time and an interaction of being from the East and time to see whether convergence of preferences of West and East Germans took place. At the same time, current literature in econometrics suggests using fixed effects models to avoid the omitted variables problem
(Wooldridge 2010. 247), identify causality and estimate the effect of change in the independent variable (Angrist and Pischke, 2009; Morgan and Winship, 2014). Within subject estimation compared to between subjects' estimation can eliminate two important problems: selection into treatment and unobserved unit heterogeneity. Even if a subject self-select into a survey these unobserved characteristics are eliminated by the fixed effects approach, which allows for the exclusion of time-constant unobserved heterogeneity, including individual values (Owens and Pedulla, 2014). As there are just two time points, either a first difference or a fixed effect model can be used to test for within subject dynamic of redistribution preferences of East Germans and compare them with West Germans. Fixed effects models discard the between-individual variation and allow us to see only the effect of parameters which have been changed. In this case we remove averages for dependent variables and time varying parameters and measure only how a change in one parameter affects a change in the dependent variable. First, I only test the time effect (1) and do so separately for West and East Germans. I later add time varying controls such as income, a number of family members, marital status and years of education (2).
(2) $\left(\mathrm{RP}_{\mathrm{it}}-\overline{\mathrm{RP}}_{\mathrm{i}}\right)=\beta\left(\right.$ Year 2002 $\left.{ }_{\mathrm{it}}-\overline{\text { Year 2002 }}{ }_{i}\right)+\left(\varepsilon_{i t}-\bar{\varepsilon}_{i}\right)$
(3) $\left(\mathrm{RP}_{\mathrm{it}}-\overline{\mathrm{RP}}_{\mathrm{i}}\right)=\beta\left(\right.$ Year 2002 $\left.{ }_{\mathrm{it}}-\overline{\text { Year } 2002_{i}}\right)+\gamma\left(X_{i t}-\overline{X_{i}}\right)+\left(\varepsilon_{i t}-\bar{\varepsilon}_{i}\right)$
$X_{i t}$ - is a vector of individual characteristics varying in time

3.5.2. Immigrants in Germany

3.5.2.1. After the replication of the AF model and additional robustness checks I run a similar analysis for the subsamples of migrants. I test how immigrants' preferences for redistribution of changed between 1997 and 2002 compared to West Germans; at this point I use interval dependent variables and treat the data in a cross-sectional way.

$$
\begin{align*}
& \text { RP }_{i}=\beta_{1}\left(\text { East }_{i}\right)+\beta_{2}\left(\text { Poles }_{i}\right)+\beta_{3}\left(\text { Turks }_{i}\right)+\beta_{4}\left(\text { Russians }_{i}\right)+ \tag{4}\\
& \beta_{5}\left(\text { Kazakhs }_{i}\right)+\beta_{6}\left(\text { Year 2002 }_{i}\right)+\beta_{7}\left(\text { East }_{i} * \text { Year 2002 }_{i}\right)+\beta_{8}\left(\text { Poles }_{i} *\right. \\
& {\text { Year } \left.2002_{i}\right)+\beta_{9}\left(\text { Turks }_{i} *{\text { Year } \left.2002_{i}\right)+\beta_{10}\left(\text { Russians }_{i} * \text { Year } 2002_{i}\right)+}^{\beta_{11}\left(\text { Kazakhs }_{i} * \text { Year } 2002_{i}\right)+\beta_{12} X_{i}+\varepsilon_{i}}\right.}^{2}
\end{align*}
$$

3.5.2.2. Previous studies showed that younger generations tend to express different preferences from those of older generations on the one hand and that younger generations adopt preferences
more similar to those of natives. In this respect, focussing on the effect of cohort of birth (or age in the appendix) can give us a clue about the future convergence of immigrants' and natives' preferences for redistribution. I, therefore, include cohort interactions (age interactions are in the appendix):
(5) $R P_{i}=\beta_{1}\left(\right.$ Cohort $\left._{i}\right)+\beta_{2}\left(\right.$ Cohort $_{i} * i$ Sample $\left._{i}\right)+\beta_{3}\left(\right.$ i.Sample $\left._{i}\right)+$ $\beta_{4}\left(\right.$ Year $\left.2002_{i}\right)+\beta_{5}\left(\right.$ i. Sample ${ }_{i} *$ Year 2002 $\left.i\right)+\beta_{6} X_{i}+\varepsilon_{i}$
i. Sample ${ }_{i}$ - subsamples of East Germans, immigrants from Turkey, Poland, Russia and Kazakhstan; West German subsample is a reference category.
3.5.2.3. Finally, by means of fixed effect models, I test if there is a tendency towards convergence of the preferences of immigrants and West Germans. I estimate the association between demeaned time variable (measured as -0.5 if a year is 1997 and 0.5 if a year is 2002) and demeaned demand for redistribution when individual means are removed from the parameters.

4. Key results

4.1. Replication using base line controls

4.1.1. Replication and some comments

I run the initial probit model with robust clustered errors and estimate equation (16) with being from the East variables, measuring the effect of culture, a dummy for the year where 1997 is equal to 0 and 2002 is equal to 1 , and an interaction term for East and a year to estimate the change of average preferences of East Germans over time as Alesina and Fuchs-Schündeln (2007) did. I also include traditional controls and indicators of economic conditions such as sex, age, education, marital status, occupation, labour market position, the number of children and adults in a household. Table 4.2 shows the results.

I managed to replicate the findings of Alesina and Fuchs-Schündeln (2007) to a large extent: discrepancy between their estimates and mine is often smaller than 0.01 (Alesina and FuchsSchündeln 2007b, 1513). To compare the results, I report their original estimates in the Table 4.2 in the first three lines and my own results starting from line 4.

The main conclusion of my replication exercise is that the results provided by Alesina and FuchsSchündeln are meaningful and robust to replication. The probability that an East German would strongly support redistribution in 1997 was higher than the probability that a West German would. This conclusion is valid for all the five situations of social risks that are taken for dependent variables: unemployment, illness, family support, old age and need of care. The authors established variation in marginal effects from 0.37 to 0.43 of the effect of being from the East on preferences for redistribution. My calculations produced the same estimates.

The second main finding is also confirmed: there was a tendency of preferences of West and East Germans between 1997 and 2002 to converge. Alesina and Fuchs-Schündeln's indicators of convergence (the interaction between East variable and the year) varies between - 0.06 and -0.18 depending on the domain for redistribution. I find basically the same results. Assessing the economic meaning of the estimates, AF argue that the probability of favouring state intervention
among East Germans was between 14,5 and 17 percentage points higher than among West Germans in 1997. Over time East Germans demanded state intervention less: probability of support declined between 1997 and 2002 between 2,3 and 6,9 percentage points, depending on the domain of redistribution.

Table 4.2 - Determinants of preferences for redistribution (Source: G-SOEP 1997, 2002, panel data set)

	(1)	(2)		(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Alesina and Fuchs	hündeln (2007b, 151				
East	$\begin{aligned} & 0.432 * * * \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.434 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.420 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.426^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.371 * * * \\ & (0.028) \end{aligned}$
Year 2002	$\begin{aligned} & 0.064^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.165^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.103 * * * \\ & (0.023) \end{aligned}$
East * Year 2002	$\begin{aligned} & -0.123 * * * \\ & (0.039) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.161^{* * *} \\ & (0.036) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.060^{*} \\ & (0.036) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.143^{* * *} \\ & (0.036) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.176^{* * *} \\ & (0.036) \\ & \hline \end{aligned}$
Own results:					
East	$\begin{aligned} & 0.433 * * * \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.426 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.411^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.418 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.369 * * * \\ & (0.028) \end{aligned}$
Year 2002	$\begin{aligned} & 0.068^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.167 * * * \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.040^{*} \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.103^{* * *} \\ & (0.022) \end{aligned}$
East * Year 2002	$\begin{aligned} & -0.126^{* * *} \\ & (0.039) \end{aligned}$	$\begin{aligned} & -0.158^{* * *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.063^{*} \\ & (0.036) \end{aligned}$	$\begin{aligned} & -0.134^{* * *} \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.174^{* * *} \\ & (0.036) \end{aligned}$
College	$\begin{aligned} & -0.200^{* * *} \\ & (0.064) \end{aligned}$	$\begin{aligned} & -0.250^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & -0.133^{* *} \\ & (0.062) \end{aligned}$	$\begin{aligned} & -0.267^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & -0.109^{*} \\ & (0.060) \end{aligned}$
Vocational	$\begin{aligned} & -0.095^{*} \\ & (0.057) \end{aligned}$	$\begin{aligned} & -0.130^{* *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.126^{* *} \\ & (0.055) \end{aligned}$	$\begin{aligned} & -0.158^{* * *} \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.076 \\ & (0.054) \end{aligned}$
Secondary school	$\begin{aligned} & -0.101 * \\ & (0.059) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (0.056) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.057) \end{aligned}$	$\begin{aligned} & -0.095^{*} \\ & (0.056) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.056) \end{aligned}$
Intermediate tech.	$\begin{aligned} & -0.103 \\ & (0.069) \end{aligned}$	$\begin{aligned} & -0.139^{* *} \\ & (0.065) \end{aligned}$	$\begin{aligned} & -0.137^{* *} \\ & (0.067) \end{aligned}$	$\begin{aligned} & -0.141^{* *} \\ & (0.065) \end{aligned}$	$\begin{aligned} & -0.050 \\ & (0.065) \end{aligned}$
Age	$\begin{aligned} & -0.027^{*} \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.014) \end{aligned}$
Age squared	$\begin{aligned} & 0.001^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$			
Age cubed	$\begin{aligned} & -0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$
Male	$\begin{aligned} & -0.085 * * * \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.072 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.021 \\ & (0.021) \end{aligned}$
Number of children	$\begin{aligned} & 0.012 \\ & (0.018) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.054 * * * \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.015 \\ & (0.017) \end{aligned}$
Number of adults	$\begin{aligned} & 0.019^{*} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.051 * * * \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.022^{* *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.034^{* * *} \\ & (0.011) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.010) \end{aligned}$
Married	$\begin{aligned} & 0.061^{*} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.085^{* *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.009 \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.060^{*} \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.090^{* * *} \\ & (0.034) \end{aligned}$
Divorced	$\begin{aligned} & 0.069 \\ & (0.054) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.052) \end{aligned}$	$\begin{aligned} & 0.017 \\ & (0.051) \end{aligned}$	$\begin{aligned} & 0.067 \\ & (0.052) \end{aligned}$	$\begin{aligned} & 0.099^{* *} \\ & (0.050) \end{aligned}$
Married separated	$\begin{aligned} & 0.031 \\ & (0.082) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.079) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.080) \end{aligned}$	$\begin{aligned} & 0.107 \\ & (0.082) \end{aligned}$	$\begin{aligned} & 0.124 \\ & (0.081) \end{aligned}$
Widowed	$\begin{aligned} & -0.040 \\ & (0.059) \end{aligned}$	$\begin{aligned} & 0.023 \\ & (0.056) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.057) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.056) \end{aligned}$	$\begin{aligned} & 0.073 \\ & (0.056) \end{aligned}$
Log HH income	$-0.157^{* * *}$	$-0.272 * * *$	-0.143***	-0.223***	-0.154***

	(0.026)	(0.025)	(0.024)	(0.025)	(0.024)
Civil servant	$-0.126^{* *}$	$-0.213^{* * *}$	0.088	-0.055	-0.104^{*}
	(0.057)	(0.059)	(0.059)	(0.059)	(0.055)
Self-employed	$-0.337^{* * *}$	$-0.387^{* * *}$	$-0.337^{* * *}$	$-0.457^{* * *}$	$-0.305^{* * *}$
	(0.050)	(0.052)	(0.053)	(0.053)	(0.050)
White-collar	-0.035	-0.041	0.013	$-0.091^{* * *}$	$-0.100^{* * *}$
	(0.033)	(0.031)	(0.032)	(0.031)	(0.031)
Unemployed	$0.152^{* * *}$	0.013	$0.146^{* * *}$	0.007	-0.030
	(0.051)	(0.047)	(0.047)	(0.046)	(0.046)
Retired	-0.108^{*}	-0.106^{*}	$0.129^{* *}$	0.028	-0.016
	(0.060)	(0.059)	(0.059)	(0.058)	(0.058)
Maternity	0.024	-0.036	0.116	$-0.181^{* *}$	-0.060
	(0.079)	(0.076)	(0.075)	(0.076)	(0.074)
Nonworking	-0.026	-0.019	$0.158^{* * *}$	-0.009	0.025
	(0.043)	(0.041)	(0.041)	(0.041)	(0.040)
Training	-0.052	-0.015	-0.118^{*}	-0.076	-0.017
	(0.066)	(0.063)	(0.065)	(0.063)	(0.063)
Other nonworking	-0.009	-0.088^{*}	0.061	-0.037	$-0.097 * *$
	(0.051)	(0.048)	(0.049)	(0.048)	(0.049)
Constant	$2.035 * * *$	$1.859^{* * *}$	$0.861^{* * *}$	$1.881^{* * *}$	$1.244^{* * *}$
	(0.303)	(0.292)	(0.293)	(0.291)	(0.286)
Observations	18,337				
		18,335	18,333	18,364	18,362

Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale of 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses, *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

There is an important assumption in the paper that ought to be discussed. Alesina and FuchsSchündeln rely in their research on the argument that East Germans tend to be integrated into the culture of West Germany. However, the convergence can be seen from both sides as a result of reunification of two more or less equal parts of the country. The effect of substitution of the planned economy by market institutions may be complemented by the experience of social protection in East Germany. This experience may be promoted through mass media and supported in electoral campaigns.

Namely, the data show not only that demand for redistribution decreases among East Germans over time, but demand for redistribution among West German increases in some cases. To trace the dynamic of preferences of both West and East Germans, I calculated marginal effects and plotted the results (Figure 4.9). When we are looking at the dynamic of the preferences for redistribution that favours the unemployed and those who need care, we see that the process is fully bilateral. More precisely, the probability that Germans supported redistribution to help those who need care declines by 3,5 percentage points in the subsample of East Germans and increases by exactly 3,5 percentage points in the subsample of West Germans. This trend is observed for the preferences for redistribution that favours those who need care: the probability of strong support
decreased among East Germans and increased among West Germans in both groups by 2,2 percentage points (Table 4.3, Figure 4.9). Moreover, West Germans demanded more financial security in the case of illness: the difference between the probabilities of high support in 1997 and 2002 is $5,4 \%$ (compared to -1% among East Germans).

I performed the same exercise as Alesina and Fuchs-Schündeln to estimate an average number of years necessary for entire convergence. The authors indicated that the process would take from 11 to 35 years from the time point of measurement and from 20 to 40 years from the moment of reunification depending on the type of social program (Alesina and Fuchs-Schündeln 2007, 1512). To reach these results, they employed West Germans as a reference point for both 1997 and 2002, while acknowledging that West Germans increase their demand for redistribution over time. This means that full convergence will happen in two generations only if the process if integration is bilateral: East Germans decrease their demand while West Germans increase their demand.

However, if the preferences of West Germans were stable over time, we would get different estimates. To test this, I treat the average preferences of West Germans in 1997 as the main point for convergence. In this case, we can see that the process of integration of East Germans, and their adoption of the preferences of West Germans will take much longer: 37 years to adopt the same level of demand for redistribution that favours the unemployed, 30 years for family support, 12 years for security in old age and 25 years in the case of requiring care, while redistribution that favours the sick might never happen. These results are valid only in the case of pure linearity and complete steadiness of the preferences of West Germans. However, the preferences of West Germans also change over time.

Table 4.3-Marginal effects estimated for East and West Germans in 1997 and 2002

	when unemployed	change	when sick	change	for family	change	in old age	change	when requiring care	change
1997 west	0.63		0.35		0.33		0.39		0.41	
2002 west	0.65	2,2\%	0.40	5,4\%	0.32	-0.6\%	0.37	-2,1\%	0.44	3,5\%
1997 east	0.79		0.53		0.49		0.56		0.57	
2002 east	0.77	-2,2\%	0.52	-1,0\%	0.46	-3,4\%	0.49	-7,7\%	0.53	-3,5\%
Predicted difference between E and $\mathrm{W}=0$	$\begin{aligned} & \text { in } 20 \text { years } \\ & 2017 \end{aligned}$		$\begin{aligned} & \text { in } 15 \mathrm{ye} \\ & 2012 \end{aligned}$		$\begin{aligned} & \text { in } 39 \mathrm{y} \\ & 2036 \end{aligned}$		$\begin{aligned} & \text { in } 17 \\ & 2014 \end{aligned}$		$\begin{aligned} & \text { in } 11 \text { years, } \\ & 2008 \end{aligned}$	

Figure 4.9 - Predicted margins of demand for redistribution for West and East Germans in 1997 and 2002

4.1.2. Correction of missing values and sample modification

To test for the robustness of the results, I made some modifications in the data analysis to eliminate some noise in the data and to properly identify the samples. Step by step, I run the same model discussed above for corrected missing values only for the subsample of native Germans and for the rescaled dependent variables. Alesina and Fuchs-Schündeln recoded missing values as zero when they created dummies for categorical variables such as education and occupation and didn't recode the missing values as zero for the number of children. When recoded, the coefficients for the effect of being form East became on average 0.01 more salient. At the same time, the effect of the year and interaction terms remained almost the same: the deviation is less than 0.01 points (Table A4.1 in the appendix).

Alesina and Fuchs-Schündeln differentiated between West and East Germans based on a sample membership of a respondent (psample). However, to be precise it is necessary to add some more filters to be sure that there is no effect of external culture and there are only native-born Germans in the study. I added two more criteria to the sample membership: native born status and citizenship. This improvement, nevertheless, hasn't affected the results and the key findings remained robust: the deviation of estimate is less than 0.01 (Table A4.2 in the appendix). Yet this criterion is used in the further research.

The researchers treated the dependent variables as dummies: support of redistribution was fixed to 1 in the case of selection of point 1 "only the state" or 2 "mostly the state" on the scale. Other options were treated as 0 "no support". This sort of data management has some advantages as well as disadvantages. We can estimate the probability of getting more support for redistribution using different criteria of estimation as well as avoiding the problem of linearity. On the other hand, when we estimate the effects of some predictors, we are interested in the effects on the rough scale: how the change in the independent variable affect the change in the dependant variable. For this purpose and to get more variation in the dependant variables, I changed the scale to initial one and reversed it to make higher values of the scale correspond to stronger adherence to redistribution. Results provided on the 5-point scale show that the preferences of East Germans were from 0.23 to 0.3 higher compared to West Germans in 1997, though the preferences of East Germans declined from 0.02 to 0.11 point in 2002 (Table A4.3 in the appendix). Corrections in data management and
the modification of the sample did not change much in the final estimates Table 4.4, Figure 4.10). However, if we assess the time of adoption of average preferences in West Germany in 1997 by East Germans, we see that it takes even longer: 24 years for unemployment benefits, 117 years for health care, 48 years for family support, 12 years for financial security in old age, and 18 years for financial security for those who need care.

Table 4.4 - Preferences for redistribution among native Germans (rescaled DV, corrected missing values, only for native Germans, Source: G-SOEP 1997, 2002, panel data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
East	0.301***	0.279***	0.290***	0.281***	0.229***
	(0.018)	(0.017)	(0.019)	(0.019)	(0.017)
Year 2002	0.027*	0.108***	0.014	-0.009	0.051***
	(0.015)	(0.014)	(0.015)	(0.015)	(0.014)
East 2002	-0.082***	-0.100***	-0.030	-0.099***	-0.110***
	(0.022)	(0.022)	(0.024)	(0.023)	(0.022)
College	-0.209**	$-0.307 * * *$	-0.152*	-0.439***	-0.205**
	(0.081)	(0.081)	(0.087)	(0.096)	(0.082)
Vocational	-0.143*	-0.221***	-0.145*	-0.359***	-0.182**
	(0.079)	(0.080)	(0.086)	(0.094)	(0.081)
Secondary school	-0.124	-0.170**	-0.048	-0.320***	-0.153*
	(0.082)	(0.082)	(0.088)	(0.096)	(0.082)
Intermediate, tech.	-0.173**	-0.190**	-0.176*	-0.372***	-0.192**
	(0.087)	(0.087)	(0.094)	(0.100)	(0.088)
In school	-0.129	-0.234**	-0.138	-0.384***	-0.152
	(0.093)	(0.093)	(0.101)	(0.108)	(0.093)
Age	-0.021**	-0.013	-0.022**	-0.019*	-0.016*
	(0.010)	(0.010)	(0.011)	(0.010)	(0.010)
Age sq	0.000**	0.000*	0.001**	0.000**	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age cb	-0.000**	-0.000*	-0.000**	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	-0.036***	$-0.056 * * *$	-0.007	$-0.040 * * *$	-0.004
	(0.014)	(0.014)	(0.015)	(0.014)	(0.013)
N children	0.019**	0.028***	0.054***	0.025***	0.021**
	(0.009)	(0.009)	(0.010)	(0.009)	(0.009)
Adults	0.005	0.036***	0.023***	0.025***	0.004
	(0.007)	(0.007)	(0.008)	(0.007)	(0.007)
Married	0.023	0.035	-0.001	0.017	0.061***
	(0.022)	(0.022)	(0.024)	(0.023)	(0.022)
Divorced	0.048	-0.013	0.027	0.033	0.070**
	(0.034)	(0.033)	(0.035)	(0.035)	(0.033)
Married, separated	-0.034	-0.011	-0.021	0.037	0.055
	(0.047)	(0.046)	(0.053)	(0.053)	(0.050)
Widowed	-0.012	0.022	-0.029	-0.034	0.052
	(0.036)	(0.035)	(0.038)	(0.037)	(0.035)
Ln HH income	$-0.088^{* * *}$	$-0.161 * * *$	$-0.110 * * *$	-0.152***	-0.094***
	(0.017)	(0.016)	(0.017)	(0.017)	(0.016)
Civil servant	-0.077**	$-0.142 * * *$	0.087**	-0.074**	-0.082**
	(0.037)	(0.036)	(0.040)	(0.037)	(0.033)

Self-employed	$-0.247^{* * *}$	$-0.273^{* * *}$	$-0.265^{* * *}$	$-0.331^{* * *}$	$-0.222^{* * *}$
	(0.034)	(0.031)	(0.036)	(0.033)	(0.031)
White-collar	$-0.047^{* *}$	$-0.052^{* *}$	-0.009	$-0.096^{* * *}$	$-0.095^{* * *}$
	(0.021)	(0.021)	(0.022)	(0.022)	(0.020)
In education	-0.021	-0.062	-0.038	-0.030	-0.037
	(0.044)	(0.041)	(0.044)	(0.046)	(0.041)
Unemployed	$0.076^{* * *}$	-0.005	$0.088^{* * *}$	-0.011	-0.022
	(0.029)	(0.031)	(0.032)	(0.032)	(0.031)
Retired	-0.036	-0.073^{*}	$0.089^{* *}$	-0.049	-0.056
	(0.038)	(0.038)	(0.042)	(0.040)	(0.038)
Maternity	0.023	-0.004	0.069	$-0.110^{* *}$	-0.058
	(0.047)	(0.047)	(0.048)	(0.047)	(0.046)
Nonworking	-0.001	-0.026	$0.115 * * *$	-0.027	-0.006
	(0.026)	(0.027)	(0.029)	(0.028)	(0.026)
Training	-0.001	0.009	-0.065	0.015	-0.040
	(0.044)	(0.044)	(0.047)	(0.046)	(0.043)
Other nonworking	-0.006	$-0.069^{* *}$	0.005	-0.050	$-0.083^{* *}$
	(0.033)	$(0.032$	(0.036)	(0.035)	(0.032)
Constant	$4.961^{* * *}$	$4.978^{* * *}$	$4.479 * * *$	$5.228^{* * *}$	$4.690^{* * *}$
	(0.212)	(0.214)	(0.227)	(0.227)	(0.209)
Observations	17,534				
R-squared	0.046	17,532	17,530	17,559	17,556

Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale of 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses, *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Figure 4.10 - The change of redistribution preferences of West and East Germans over time: rescaled dependent variables

4.1.3. Fixed effect models

The AF study is based on a comparison of preferences between 1997 and 2002. The panel data for the two years are pooled and used in a cross-sectional way (although robust standard errors are used in view of each individual might account for two observations in the data and thus the error terms are not independent). In my extension I exploit a within-subject test and estimate how the change in time affects individual preferences for redistribution. The fixed effects estimation strategy partials out unobserved time-invariant factors and allows me to trace whether East Germans reduce their demand for redistribution to make it similar to that of West Germans.

Table 4.5 reports results from fixed effect regressions separately for West and East Germans. These models estimate the effect of time (i.e. moving from 1997 to 2002) on preferences for redistribution for the same subject. These new findings qualify the previous results based on the pooled crosssectional analysis. In the fixed effect analysis, we find that East Germans adopt the preferences of West Germans only in two domains of redistribution: there is a negative time trend for East

Germans only for redistribution in favour of the unemployed, the retired and those requiring care $(-0.052$ and $-0.082, \mathrm{p}<0.01)$. Preferences of West Germans remain stable over time. Bilateral convergence is observed for the demand for redistribution in favour of those who need care: East Germans reduced their support by 0.04 points and West Germans, to the contrary, increased it by 0.034 points; both estimates are significantly different from zero. However, when it concerns redistribution in favour of the sick West Germans increase their support of state intervention while preferences of East Germans remain stable over the time. No convergence is found for redistribution in favour o family support.

Table 4.5 - The effect of time preferences for redistribution among Germans: fixed effect model (Source: G-SOEP 1997, 2002, panel data set)
East Germans

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Year 2002	-0.052***	0.026	0.002	-0.082***	-0.041**
	(0.019)	(0.019)	(0.020)	(0.020)	(0.019)
Constant	4.134***	3.608***	3.528***	3.678***	3.694***
	(0.013)	(0.013)	(0.014)	(0.014)	(0.013)
Observations	5,424	5,426	5,428	5,436	5,440
R -squared	0.003	0.001	0.000	0.007	0.002
Number of pers. nr.	2,860	2,861	2,862	2,858	2,861
West Germans					
VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Year 2002	0.006	0.085***	-0.004	-0.023	0.034**
	(0.016)	(0.015)	(0.017)	(0.016)	(0.015)
Constant	3.829***	3.337***	3.253***	3.395***	$3.465 * * *$
	(0.011)	(0.010)	(0.011)	(0.011)	(0.010)
Observations	8,815	8,820	8,818	8,828	8,823
R -squared	0.000	0.008	0.000	0.001	0.001
Number of pers. nr.	4,680	4,682	4,682	4,683	4,681

Note: Estimates are from fixed effects models. DV is measured on a scale of $1-5$ (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses,

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

Figure 4.11 - The change of redistribution preferences of East and West Germans over time: predicted values from fixed effect regressions

If one controls for time varying covariates (Table 4.6) such as income, years of education and marital status, the tendency for convergence to occur vanishes for the demand for redistribution in favour of the unemployed in the subsample of East Germans. At the same time, additional controls make the demand for healthcare services of West Germans more salient in the subsample of East Germans when controlled for components of self-interest.

Overall, these findings do not provide strong support of the theory of integration, which says that East Germans will adopt redistribution preferences of West Germans within 20 years.

In two domains of redistribution, there is no convergence at all (redistribution in favour of the unemployed and families), in one case there is bilateral convergence (redistribution in favour of those who need care), in one case West Germans change their preferences and make them closer to the preferences of East Germans (healthcare policy). There is only one case in which I found some confirmation of the integration theory: East Germans adopt preferences for redistribution of West Germans only when responding to a question about redistribution in favour of elderly people.

Table 4.6 - The effect of time on preferences for redistribution of Germans: the fixed effect model, and controls for time-varying regressors(Source: G-SOEP 1997, 2002, panel data set)

East Germans

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
	-0.025	0.032	0.010	$-0.079 * * *$	$-\mathbf{0 . 0 4 2 * *}$
Year 2002	(0.021)	(0.021)	(0.022)	(0.022)	(0.021)
	$-0.129^{* *}$	-0.042	-0.026	-0.047	-0.030
Log HH income	(0.055)	(0.056)	(0.059)	(0.058)	(0.055)
	$0.051^{* *}$	0.005	0.027	-0.004	-0.020
Number of persons in HH	(0.025)	(0.025)	(0.027)	(0.027)	(0.025)
	0.101	0.188	0.248^{*}	-0.036	-0.200
2. Married, but separated	(0.135)	(0.137)	(0.145)	(0.144)	(0.137)
	0.033	0.109	-0.028	-0.165	-0.057
3.Single	(0.103)	(0.105)	(0.110)	(0.110)	(0.104)
	-0.011	0.033	0.057	-0.123	-0.074
4. Divorced	(0.127)	(0.128)	(0.136)	(0.135)	(0.128)
	-0.132	-0.196	-0.071	$-0.289^{* *}$	$-0.354^{* * *}$
5. Widowed	(0.128)	(0.131)	(0.138)	(0.136)	(0.129)
	0.008	-0.014	-0.025	0.000	
Amount of education	$-0.034 * *$				
training in years		(0.016)	(0.017)	(0.016)	(0.016)
	(0.016)	$3.824^{* * *}$	$3.835^{* * *}$	$4.435 * *$	$4.037 * * *$
Constant	$5.451^{* * *}$	(0.476)	(0.501)	(0.499)	(0.474)
	(0.470)				
Observations	5,301	0.302	5,306	5,312	5,316
R-squared	0.003	0.002	0.011	0.006	
Number of pers. nr.	2,836	2,836	2,837	2,832	2,836

West Germans

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Year 2002	0.012	$\mathbf{0 . 1 0 1 * * *}$	0.007	-0.005	$\mathbf{0 . 0 4 2 * * *}$
	(0.017)	(0.016)	(0.018)	(0.017)	(0.016)
Log HH income	-0.070^{*}	-0.041	0.007	-0.059	0.023
	(0.042)	(0.039)	(0.045)	(0.042)	(0.039)
Number of persons in HH	0.011	0.030	$0.037 *$	0.033	0.017
	(0.020)	(0.019)	(0.022)	(0.020)	(0.019)
2. Married, but separated	-0.132	0.034	-0.179	0.189^{*}	0.125
	(0.109)	(0.104)	(0.117)	(0.109)	(0.104)
3.Single	-0.022	0.107	-0.031	0.017	0.029
	(0.069)	(0.066)	(0.075)	(0.069)	(0.066)
4. Divorced	-0.072	-0.028	0.077	-0.007	0.006
	(0.090)	(0.085)	(0.097)	(0.090)	(0.085)
5. Widowed	$-0.272^{* *}$	0.002	-0.132	-0.104	-0.187^{*}
	(0.116)	(0.108)	(0.124)	(0.113)	(0.107)
Amount of education	or	-0.014	-0.015	-0.018	-0.019^{*}
training in years			-0.013		
	(0.011)	(0.011)	(0.012)	(0.011)	(0.011)
Constant	$4.580^{* * *}$	$3.744^{* * *}$	$3.308^{* * *}$	$4.020^{* * *}$	$3.381^{* * *}$
	(0.356)	(0.338)	(0.383)	(0.357)	(0.338)
Observations		8,531	8,529	8,538	8,536
R-squared	8,526	0.010	0.003	0.003	0.003
Number of pers. nr.	0.003	4,600	4,602	4,602	4,603

Note: Estimates are from fixed effects models with robust clustered errors. DV is measured on a scale 1-5 ("1" corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses,
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, * $\mathrm{p}<0.1$
The fixed effect transformation relaxes the effect of time on preferences for redistribution compared to the pulled OLS models with robust standard errors employed in the AF's study. The reason for this change may be either methodological or theoretical. Plümper, Troeger, and Manow (2005) discussed four potential violations of OLS standard assumptions when using pulled panel data: serial correlation of errors, heteroscedasticity, contemporaneous correlation of errors and possible simultaneous autocorrelation and heteroscedasticity. The AF model followed the BeckKatz standard and applied robust standard errors in an OLS estimates to correct for heteroscedasticity. At the same time, the AF model included time periods to correct for possible non-spherical errors. However, neither the lagged dependent variable, nor dummies for the sample units were added to the list of covariates. The theoretical reason is connected to the methodological one. OLS models with robust standard errors produce estimates which count for both betweenand within-subject variation. In this case we cannot disentangle the treatment effect of time on the subjects' preferences. OLS models with robust standard errors provide estimates for all subjects
pulled together. And the effect of time in this case refers to all the time-unit observations. The fixed effect estimates assume zero correlation between subjects and therefore reveal the average treatment effect of time on a subject's preferences for redistribution when controlled for time constant parameters.

The fixed effects estimates lead me to the conclusion that the integration process of East Germans is less linear and less structured as predicted Alesina and Fuchs-Schündeln. First, the discussion about convergence of preferences between West and East Germans is not a story of adoption of western cultural patterns by Eastern Germans. This theoretical framing aims to estimate only how preferences of East Germans change over time and to test the hypothesis about the reduction in demand for redistribution in this subsample. This framework would limit the explanatory power of the existing data and would lead to a conclusion about long-lasting adoption of preferences of East Germans in the three domains of redistribution: unemployment, pensions, and financial support for those who require care. If one treats the preferences of West Germans constant to 1997, one can say that the convergence of preferences will happen in 29 years for redistribution in favour of the unemployed, in 17 years for redistribution in favour of the elderly and in 28 years for redistribution in favour of requiring care. For the other two domains (health care and family support), one could not expect any convergence. Meanwhile, the preferences of West Germans are not time-constant, which corrects the conclusion about convergence. The results reveal the story of bilateral convergence in two domains: unemployment (in 26 years) and redistribution in favour of those needing care (in 15 years).

Convergence of preferences for two other domains of redistribution occurs because of unilateral change. West Germans adopt the redistribution preferences of East Germans in the domain of healthcare (in 23 years), while East Germans adopt the preferences of West Germans in the domain of pensions (in 24 years).

4.2. Immigrants in Germany

In the previous section, I replicated and extended Alesina and Fuchs-Schündeln findings on the cultural integration of East Germans after the collapse the wall. The results of the fixed effect model shed some doubts on AF's major conclusions. I couldn't establish a direct effect of West

German "culture" of on preferences for redistribution of East Germans. In some cases, the convergence is bilateral and in others West Germans adopted preferences of East Germans.

The purpose of the current section is to perform similar tests for a subsample of immigrants in Germany. Here I study the effect of the culture of origin on preferences for redistribution. Generally, I address the same question as in Chapter 3. Namely, whether immigrants from different cultural, economic and welfare environment adopt preferences for redistribution typical of the native population.

A major limitation of this section is that there is no information about the preferences of immigrants before at the time of arrival in Germany. However, Alesina and Fuchs-Schündeln do not have data on the preferences of East Germans before and at the moment of the reunification either. The data they employed were collected 7 years after reunification. They follow the assumption that the redistribution preferences were much higher in East Germany compared to West Germany before $1989{ }^{17}$. I will make a similar assumption which seems reasonable since previous studies showed that the average preferences for redistribution in Poland, Kazakhstan, Turkey and Russia are considerably higher compared to Germany. Accordingly, I assume, in the same way as Alesina and Fuchs-Schündeln did, that at the moment of migration, the preferences of immigrants were higher than the average preferences of Germans. This assumption is valid for immigrants from Kazakhstan and Russia as they are not selected based on individual traits but were motivated by historical reasons and legal conditions.

4.2.1. OLS comparisons

The first model with baseline controls makes the distinction between West Germans and immigrants transparent in terms of preferences for redistribution. Table 4.7 reports OLS estimates and shows that, as expected, immigrants demanded more in terms of redistribution in 1997 than did West Germans. This regularity holds for Turks, Kazakhs and Russians. At the same time, the preferences of Poles were more similar to those of West Germans even in 1997. The preferences of Poles exceeded those of West Germans only in the case of healthcare security. The similarity

[^11]of preferences of West Germans and Poles might be caused by selection issues: Poles are labour immigrants who rely on their abilities, are ready to take risks and look for new experience. As was discussed above, these individual traits negatively correlate with the demand for social security services and redistribution. Additional controls for tenure in the country do not substantially change the results (Table A4.4 and Figure A4.1 in the appendix).

Similar to the comparisons of preferences of West and East Germans, the discussion about integration of immigrants involves the discussion about reference points. As was established above, West Germans become more demanding for the financial security of sick people and of those who need care. Because of bilateral change, the estimates of the time and sample interactions must be treated carefully. In most cases, the terms are negative. However, the trend for different groups of immigrants in some cases is not distinguishable from zero. Marginal predictions in Figure 4.12 facilitate the interpretation of the coefficients reported in Table 4.7.

Based on regression estimates reported in the table, the subsample of Turks could be considered as a clear case of integration. Turks asked for the same level of redistribution that favoured the unemployed, which was typical for West Germans in both 1997 and 2002. At the same time, Turks had higher demand for redistribution compared to West Germans in all other four domains of social policy in 1997 and decreased their demand for redistribution in favour of the sick $(-0.13$, $\mathrm{p}<0.01)$, people in need of care $(-0.14, \mathrm{p}<0.05)$ and families $(-0.09, \mathrm{p}<0.1)$. In 2002, the preferences of Turks became indistinguishable from the preferences of West Germans. However, the support of elderly people seemed to be a priority for this subsample of immigrants: they had relatively high demand for redistribution in favour of the retired in 1997 and kept this preference over time. However, marginal predictions (Figure 4.12) reveal that the convergence of preferences of Turks and those of West Germans in the domain of healthcare and care occurred mainly because of changes in the preferences of West Germans who increased their own demand for redistribution.

In terms of Poles, it is difficult to say whether they are well integrated in West Germany because of a fast adoption of the preferences of natives or because of self-selection (those who immigrated had less demand for redistribution and shaped their preferences with reference to West Germany): in almost all cases, Poles expressed the same attitudes as West Germans at the beginning and kept them. The single exception is the demand for healthcare provision, which was higher in 1997 and
became similar to West Germans in 2002. However, the bilateral convergence takes place in this domain of redistribution.

Immigrants from Russia and Kazakhstan are a subsample of immigrants who are not self-selected into migration based on individual traits which simultaneously reduce demand for redistribution. For historical reasons and immigration conditions, these groups of immigrants might express similar demand for redistributions and show similar patterns of integration. And indeed, the available data indicate that preferences of both groups were higher compared to preferences of West Germans in 1997 in most cases. The similarity of preferences of immigrants from Russia and Kazakhstan with preferences of East Germans in 1997 reminds us of Alesina and FuchsSchündeln's argument about the cultural effect of communism. Predicted margins and calculated difference in the change of preferences make it clear that preferences of immigrants from Kazakhstan and Russia change very slowly over time in the domains of healthcare and care for those who need one. Predictions make it explicit that preferences of immigrants from Kazakhstan will become similar to preferences of West Germans measured in 1997 in the domain of healthcare in 20 years and in 15 years in the domain of care. Regression estimates predicted that immigrants from Russia will change their preferences in 29 years in the domain of care and never in the domain of healthcare. These trends provide the argument that cultural patterns are relatively persistent over time especially in the domain of healthcare and care. Only the demand for redistribution in favour of the unemployed is elastic enough to respond little to the time effect. Regression estimates predicted also that immigrants from Russia will reduce their demand for redistribution and it becomes similar to preferences of West Germans in 6 years and preferences of immigrants from Kazakhstan in 13 years. Preferences for redistribution regarding family support is elastic only in the subsample of immigrants from Kazakhstan. Convergence would take place place in 5 years. In the Russian subsample similar preferences are stable over time, and convergence may happen only in 190 years. As we can see, in some cases the patterns of integration are different among immigrants from Kazakhstan and Russia. While immigrants from Russia show integration only in the domain of unemployment and care, immigrants from Kazakhstan reveal integration patterns to some degree in all the domains.

In terms of the convergence of preferences of immigrants and West Germans it must be said that the maximum reduction of the demand for redistribution was 0.18 points for the subsample of

Poles in terms of demand for insurance in favour of those who need care. The other extreme case is an increase in demand for redistribution in favour of the elderly in the subsamples of Russian immigrants by 0.24 . On the one hand, if we discuss this dynamic from a substantial point of view, we can say that the change in predicted margins for five years from 3,36 to 3,22 in the first case, or from 3,57 to 3,81 in the second means little even if it is significant. However, as we know from the previous discussion, the preferences are very robust to change, and even slight variation leads to big changes in the long run. In turn, the preferences of the majority of immigrants under study are lower than the preferences of East Germans. Slopes of convergence are more explicit and in 2002 in many cases migrants' preferences are indistinguishable from West Germans.

These findings support the integration hypothesis especially for the subsamples of immigrants from Turkey and Poland. However, the trends that have been discussed may be produced by initial selection bias. In the first two cases, we deal with the positive labour migration (Borjas, 1987) when people are guided by returns on their abilities and wage differences in the country of origin and the country of destination. Economic self-interest, abilities and individual traits make them demand redistribution less. On the contrary, immigration from Russia and Kazakhstan, as we know, is caused by the repatriation of ethnic Germans and Jews. On the one hand, they are not selfselected into migration, but on the other hand, current findings establish that they experience substantial difficulties integrating into the labour market (Kogan, 2011). For this sample of immigrants, the social security system provides the means for life to some extent, which is what differentiates them significantly from labour immigrants.

Table 4.7-Comparing migrants to West Germans (who did not migrate between East and West Germany and who participated in the survey in both 1997 and 2002), rescaled DVs base line controls

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemp.	When Sick	For Family	In Old-Age	When Need Care
East in East	0.288***	0.241***	0.259***	0.255***	0.223***
	(0.020)	(0.020)	(0.021)	(0.021)	(0.019)
Turks (West)	0.040	0.221***	0.196***	0.188***	0.108**
	(0.043)	(0.042)	(0.045)	(0.044)	(0.042)
Poles (West)	0.024	0.159**	0.091	0.070	0.097
	(0.072)	(0.062)	(0.069)	(0.074)	(0.072)
Russians (West)	0.107	0.271***	0.190**	0.173**	0.178**
	(0.076)	(0.089)	(0.093)	(0.082)	(0.086)
Kazakhs (West)	0.240**	0.227**	0.175	0.020	0.106
	(0.093)	(0.096)	(0.112)	(0.095)	(0.103)
Year 2002	0.011	0.090***	0.001	-0.017	0.042***

	(0.016)	(0.015)	(0.017)	(0.016)	(0.015)
East in East 02	-0.064***	-0.062***	0.003	-0.068***	-0.091***
	(0.024)	(0.024)	(0.026)	(0.025)	(0.024)
Turks (West) 02	-0.029	-0.131***	-0.138**	-0.006	-0.093*
	(0.051)	(0.051)	(0.054)	(0.053)	(0.052)
Poles (West) 02	-0.066	-0.164**	-0.143	-0.119	-0.180**
	(0.102)	(0.083)	(0.105)	(0.097)	(0.086)
Russians (West) 02	-0.094	-0.093	0.004	0.243**	-0.073
	(0.115)	(0.119)	(0.107)	(0.112)	(0.104)
Kazakhs (West) 02	-0.104	-0.148	-0.192	0.063	-0.078
	(0.136)	(0.134)	(0.162)	(0.128)	(0.137)
Age	-0.008	-0.002	-0.014	-0.012	-0.013
	(0.012)	(0.012)	(0.013)	(0.012)	(0.012)
Age squared	0.000	0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age cubed	-0.000	-0.000	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
College	-0.104*	-0.130**	-0.119**	-0.186***	-0.109*
	(0.056)	(0.055)	(0.057)	(0.060)	(0.057)
Vocational	-0.035	-0.050	-0.106**	-0.107*	-0.064
	(0.053)	(0.052)	(0.054)	(0.058)	(0.055)
Secondary school	-0.023	-0.007	-0.025	-0.061	-0.025
	(0.054)	(0.053)	(0.055)	(0.059)	(0.056)
Intermediate tech.	-0.086	-0.030	-0.158**	-0.130*	-0.059
	(0.066)	(0.066)	(0.071)	(0.069)	(0.068)
In school	-0.006	0.029	-0.005	-0.180**	-0.036
	(0.084)	(0.083)	(0.098)	(0.092)	(0.086)
Male	-0.028*	-0.054***	-0.004	-0.019	0.011
	(0.015)	(0.015)	(0.016)	(0.016)	(0.014)
Number of children	0.007	0.020**	0.038***	0.015	0.018**
	(0.009)	(0.009)	(0.010)	(0.010)	(0.009)
Number of adults	-0.002	0.034***	0.019**	0.029***	0.005
	(0.008)	(0.007)	(0.008)	(0.008)	(0.007)
Married	0.053**	0.032	0.014	0.026	0.046**
	(0.024)	(0.024)	(0.026)	(0.024)	(0.023)
Divorced	0.040	-0.038	0.017	0.013	0.050
	(0.038)	(0.037)	(0.038)	(0.038)	(0.036)
Married, but separated	-0.011	-0.015	0.025	0.078	0.085
	(0.049)	(0.051)	(0.058)	(0.056)	(0.053)
Widowed	0.008	0.032	0.004	-0.032	0.058
	(0.039)	(0.038)	(0.042)	(0.039)	(0.037)
Logged HH income	-0.106***	-0.182***	-0.120***	-0.187***	-0.102***
	(0.017)	(0.017)	(0.018)	(0.018)	(0.017)
Civil servant	-0.114***	-0.158***	0.039	-0.059	-0.080**
	(0.040)	(0.039)	(0.044)	(0.040)	(0.035)
Self-employed	-0.233***	-0.267***	-0.259***	-0.286***	$-0.227 * * *$
	(0.036)	(0.033)	(0.038)	(0.035)	(0.032)
White collar	-0.049**	-0.057***	-0.022	-0.070***	-0.088***
	(0.022)	(0.021)	(0.023)	(0.023)	(0.021)
Currently in education	0.014	-0.104*	-0.028	0.022	-0.040
	(0.058)	(0.055)	(0.059)	(0.060)	(0.053)
Unemployed	0.041	0.002	0.077**	0.022	-0.026
	(0.029)	(0.030)	(0.032)	(0.033)	(0.031)
Retired	-0.016	-0.062	0.069	-0.021	-0.052
	(0.040)	(0.040)	(0.044)	(0.042)	(0.039)
Maternity	0.037	-0.014	0.041	-0.062	-0.058

	(0.049)	(0.050)	(0.051)	(0.050)	(0.049)
Nonworking	-0.013	-0.026	$0.090^{* * *}$	0.006	0.003
	(0.026)	(0.026)	(0.028)	(0.028)	(0.026)
Training	0.021	0.055	-0.043	0.104^{*}	0.013
	(0.057)	(0.054)	(0.060)	(0.057)	(0.057)
Other nonworking	0.010	$-0.079 * *$	-0.013	-0.036	$-0.117 * * *$
	(0.037)	(0.035)	(0.039)	(0.038)	(0.035)
Constant	$4.855^{* * *}$	$4.852^{* * *}$	$4.447 * * *$	$5.156^{* * *}$	$4.583 * * *$
	(0.233)	(0.232)	(0.255)	(0.245)	(0.228)
Observations	15,562	15,567	15,568	15,589	15,587
R-squared	0.042	0.054	0.042	0.054	0.030

Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale of 1-5 ("1" corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Figure 4.12 - Redistribution preferences of Germans and migrants in 1997 and 2002, linear predictions, baseline controls

4.2.2. Cohort regressions

Some literature discussed the generational character of the integration process: the probability of integration of the younger generation and adoption of a new culture is much higher compared to the older generation. Accordingly, the other possible way to test the integration hypothesis is through a cohort analysis. When different cohorts of East and West Germans are compared, we can see if people who were teenagers or younger at the time of reunification adopted similar preferences both in West and in East Germany. Cohort regressions are used to capture nonlinearity of the age effect in this paragraph. Figure 4.13 represents predicted margins (age regressions in the appendix Figure A4.2) described in equations 5 and 6 (coefficients are reported in Table A4.5 and Table A4.6 in the appendix), where dependent variables are five proxies for redistribution preferences and cohorts are independent variables. The standard set of controls discussed above is implemented here. I dropped the youngest cohorts from the analysis as there is a small number of observations in the sample of immigrants who were born between 1975 and 1979 (Table A4.7 in the appendix).

The findings in these figures lead me to the appealing conclusion about a convergence of preferences of West and East Germans through the change of generations. Cohort regressions predict entire convergence as well as linear regressions. These findings are inconsistent with the idea that East Germans will progressively adopt the preferences of West Germans. Rather, the process of convergence driven by cohorts is bilateral for all the domains of redistribution: the younger a West German is the higher his/her preferences for redistribution; the younger an East German is the lower his/her preferences for redistribution. In this case, it is difficult to distinguish whether East Germans adopt preferences of West Germans or vice versa. Consequently, the causal claim requires further discussion.

Subsamples of immigrants can give us a clue about this issue. A first generation immigrants from Poland, Kazakhstan, Turkey and Russia are minorities in West Germany; they came to the country and assumed to be integrated. In case of East Germans, this rule doesn't hold: both West and East Germans are citizens of the same country, represent more than a quarter of the population and have equal access both to mass media and political technologies that shape public opinion. These conditions can cause the exact bilateral convergences presented in the figures. However,
immigrants are not empowered to change the preferences of natives and to make them adopt their ideas about redistribution. In this respect, only the presence or absence of integration can be studied.

Figure 4.13 allow us to see that linear age prediction does not capture the variety of the adaptation process of the different cohorts and different groups of immigrants. And in some cases, there is no linear dependency between age and preferences for redistribution. Cohort regressions allowed seeing some different results for immigrants from Turkey. Compared to the OLS estimates which reported no change in the demand for redistribution in favour of the elderly (Table 4.7), cohort regressions show that Turks will converge their preferences with preferences of West Germans through a change of generations. The preferences of Turks born between 1960 and 1975 are similar to the preferences of both East and West Germans from the same cohort while the difference between "old" cohorts is still significant. Generally, the preferences of the "young" cohorts of Turks are similar to preferences of West Germans in the domain of unemployment, pensions and care. In the domain of healthcare, we can see that the demand for redistribution of the young cohort of Turks is lower compared to the "old" cohort.

The subsample of Poles demonstrates an unsystematic dynamic of preferences. The differences in preferences of young Pols and young West Germans are insignificant in all the domains of social policy. However, when it comes to redistribution in favour of the unemployed, retired people and those in need of care, middle-aged cohorts show lower scores compared to young and old cohorts on the one hand and West Germans on the other.

In most cases, immigrants from Russia displayed a slow intergenerational convergence of preferences with West Germans. Support for redistribution among older cohorts was sometimes similar to East Germans and sometimes even higher. Middle-aged and young cohorts asked for substantially less redistribution than older generation, though their preferences were much more similar to preferences of East Germans than West. Young immigrants from Russia have the same preferences as young West Germans only in the domain of unemployment. In all other cases they reproduce patterns of East Germans.

Immigrants from Kazakhstan showed that "young" cohorts have preferences similar to West Germans in most domains of social policy while "old" cohorts follow the patterns of "old" East

Germans. The single exception is observed in the domain of unemployment: "young" and "middleaged" cohorts support this type of redistribution more than "old".

Figure 4.13 - The effect of cohort on redistribution preferences of Germans and migrants, linear predictions, baseline controls plus sample-cohort interactions

4.2.3. Fixed effects models

The final test for the integration hypothesis is the within-subject analysis. What happens to individual preferences for redistribution of immigrants when we leave aside all the time-constant parameters and estimate only how a change in time relates to the change in preferences by comparing individuals' preferences in 2002 to their preferences in 1997 ?

As we know from the previous discussion, preferences of immigrants were higher in 1997 compared to native West Germans and similar to East Germans in many cases: immigrants from Turkey and Russia were stronger supporters of redistribution that favoured the sick, family, the elderly and those requiring care. The difference between their preferences and the preferences of West Germans was about 0.2 points. Immigrants from Kazakhstan were more inclined to support redistribution in favour of the unemployed and sick. While Poles expressed higher demand only for redistribution in favour of the sick. In both cases, the difference was about 0.2 points. The purpose of the current test is to gain some evidence of the elasticity of preferences; a negative sign of the coefficients would mean that there is a tendency towards convergence.

Table 4.8 reports the output of fixed effects models for the effect of time on preferences for redistribution. In 1997 only immigrants from Kazakhstan and Russia expressed higher demand for redistribution in favour of the unemployed. The difference in preferences for redistribution in favour of the unemployed was insignificant among immigrants from Poland and Turkey and West Germans in 1997 and the difference became even smaller in 2002. The data provided in Table 4.8 explain the tendency towards convergence in the subsamples of immigrants from Kazakhstan and Russia. The coefficients are statistically insignificant, though. The difference between immigrants from Kazakhstan, immigrants from Russia and West Germans was 0.24 and 0.11 in 1997. Fixedeffects estimates show that immigrants from Kazakhstan reduced their demand for redistribution by 0.18 points in 2002 and immigrants from Russia by 0.11 . These estimates mean that we can expect a convergence of preferences of immigrants and West Germans in 7 years in the subsample of immigrants from Kazakhstan and 5 years in the subsample of immigrants from Russia (Table 4.9 reports predicted years for convergence of the preferences for redistribution in different domains). This argument supports the integration hypothesis in this domain of redistribution.

The issue of healthcare was important for all the groups of immigrants in 1997 and over time they those preferences did not change much. The decline in demand varies from 0.03 in the subsample of Russians to 0.1 in the subsample of Kazakhs. This change is very tiny for a strong claim; however, it shows that compared to preferences of East Germans, the preferences of immigrants are not rigid, that they change in the same direction for all the groups and can change in a long run. As predicted, the difference found in the previous section between immigrants and West Germans in 1997 may disappear in 17 years in the sample of immigrants from Turkey; in 11 years in the
sample of immigrants from Poland; in 44 years in the sample of immigrants from Russia; and in 12 years in the sample of immigrants from Kazakhstan.

A significant difference in demand for redistribution in favour of families was found in the subsample of Turks and Russians. However, in two other subsamples, the difference was substantial too. Turks, Poles and Kazakhs reduce their own demand by $0.14,0.17$ and 0.24 points. Preferences in the Russian subsample are less elastic: the decline in demand for redistribution in favour of families was only around 0.03 . Again, all the coefficients demonstrate a negative trend and a slow tendency towards convergence. Assessing the economic meaning of these trends, I can predict that convergence of preferences of immigrants and West Germans may happen relatively quickly: in 7 years in the sample of Turks, in 3 years in the sample of Poles and in 4 years in the sample of immigrants from Kazakhstan. Preferences of immigrants from Russia tuned out to be less elastic. As in the previous case, the convergence of preferences of this sample of immigrants and West Germans may happen in 32 years.

The data presented in Table 4.7 and discussed above indicate consensus about redistribution in favour of the elderly among West Germans on the one hand and immigrants from Poland and Kazakhstan on the other - there was no large difference between them. At the same time, Turks and Russians supported this type of redistribution more. Table 4.8 shows that time affected preferences differently in these subsamples: while the preferences of Turks slightly reduced (the convergence may happen in 17 years), demand for redistribution in favour of the elderly among immigrants from Russia became even stronger by 0.17 points. Consequently, we can hardly expect convergence in the last case. This is just the single dimension of the complex demand for social policy where a single subsample of immigrants demonstrates a trend to separate from the preferences typical for the host country. This discrepancy requires additional investigation and additional robustness checks.

The final estimates treat preferences in the domain of care as the most elastic. At first, the differences in preferences of immigrants and West Germans were not large in 1997 and all immigrants reduced their demand for redistribution in this domain over time. A predicted integration may happen in this case in 6 years among Turks, in 4 years among Poles, in 5 years among immigrants from Kazakhstan and in 20 years among immigrants from Russia.

Most of the estimates in the fixed effect model are statistically insignificant due to the low N in the subsamples of immigrants. Still the overall pattern of the results is consistent with a convergence of migrants' preferences towards those of West Germans over time.

Table 4.8 - Effect of time on redistribution preferences for different subsamples of immigrants

	Time effect				The time effect with controls		
VARIABLES	Sample:	effect	St.err.	N	effect	St.err.	N
When Unemployed	West	0.006	(0.016)	8815	0.014	(0.018)	8597
	East	-0.052***	(0.019)	5424	-0.019	(0.023)	5360
	Turks	0.007	(0.049)	915	0.024	(0.056)	893
	Poles	-0.109	(0.106)	279	-0.036	(0.142)	277
	Russians	-0.106	(0.117)	147	-0.061	(0.140)	142
	Kazakhs	-0.175	(0.146)	140	-0.085	(0.182)	138
When Sick	West	0.085***	(0.015)	8820	0.111***	(0.017)	8602
	East	0.026	(0.019)	5426	0.031	(0.024)	5362
	Turks	-0.066	(0.049)	915	-0.048	(0.057)	893
	Poles	-0.070	(0.084)	278	-0.014	(0.111)	276
	Russians	-0.031	(0.118)	146	-0.114	(0.156)	141
	Kazakhs	-0.095	(0.144)	140	0.080	(0.197)	138
For Family	West	-0.004	(0.017)	8818	0.021	(0.020)	8600
	East	0.002	(0.020)	5428	0.025	(0.025)	5364
	Turks	-0.138***	(0.053)	918	-0.102	(0.062)	896
	Poles	-0.173	(0.107)	275	-0.021	(0.144)	273
	Russians	-0.030	(0.108)	147	-0.168	(0.132)	142
	Kazakhs	-0.238	(0.175)	140	-0.331	(0.224)	138
In Old-Age	West	-0.023	(0.016)	8828	0.001	(0.018)	8609
	East	-0.082***	(0.020)	5436	-0.072***	(0.025)	5372
	Turks	-0.054	(0.051)	918	0.026	(0.059)	896
	Poles	-0.163	(0.099)	279	-0.166	(0.137)	277
	Russians	0.167	(0.109)	147	-0.023	(0.132)	142
	Kazakhs	-0.048	(0.135)	140	-0.073	(0.190)	138
Requiring Care	West	0.034**	(0.015)	8823	0.049***	(0.017)	8605
	East	-0.041**	(0.019)	544	-0.024	(0.024)	5376
	Turks	-0.087*	(0.051)	917	-0.064	(0.059)	895
	Poles	-0.132	(0.089)	279	-0.149	(0.120)	277
	Russians	-0.045	(0.102)	147	-0.184	(0.131)	142
	Kazakhs	-0.111	(0.142)	140	-0.148	(0.192)	138

Note: Estimates are from fixed effects models. Estimates in the right column are controlled for: year, income, HH size and marital status. DV is measured on a scale of $1-5$ (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses, ${ }^{* * *} \mathrm{p}<0.01$, ${ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4.9 - Expected years for the convergence of preferences of immigrants and East Germans with the preferences of native West Germans in 1997. Estimates are based on fixed effects models

	When Unemp.	When Sick	For Family	In Old-Age	When Need Care
East in East	28	no	no	16	27
Turks (West)	no	17	7	17	6
Poles (West)	1	11	3	2	4
Russians (West)	5	44	32	no	20
Kazakhs (West)	7	12	4	2	5

5. Conclusion

The current chapter attempted to answer the question of how elastic preferences for redistribution are and, more specifically, whether it is possible for immigrants to adopt preferences for redistribution typical of the population in a host country. I employed acculturation theory as a theoretical framework and compared changes in preferences for immigrants in Germany over time. Acculturation theory suggests four possible outcomes of adaptation: assimilation, integration, separation and marginalisation.

The previous discussion about self-selection into the country of migration and self-selection into migration suggests that differences in integration patterns might be caused by the conditions and reasons for migration. These criteria make us to differentiate between labour immigrants from Poland and Turkey and resettlers from Russia and Kazakhstan. Previous studies define labour immigrants as risk-takers who rely on their own abilities and expect a higher income in return for their work. They are less dependent on and ask for fewer social services and benefits. To the contrary, immigrants from Russia and Kazakhstan came to Germany for historic and legal reasons unrelated directly to labour opportunities and redistribution. To a certain extent, these characteristics reduced the initial selection bias in the sample of immigrants from Russia and Kazakhstan at the stage of immigration. The differences between the two groups of immigrants may explain differences in integration strategies of labour immigrants and resettlers. Final estimates indicated that labour immigrants were more inclined to have a lower demand for redistribution than resettlers in 1997 and demonstrated relatively fast integration. Immigrants from Kazakhstan and Russia had a higher demand for redistribution in 1997 and the process of their integration was not as smooth or as fast as in the sample of labour immigrants, especially in the sample of immigrants from Russia.

I tested how demand for redistribution changes over time in five domains of social security: unemployment, healthcare, family support, pensions and support of people needing care. For this purpose I compared immigrants with West and East Germans. The cross-sectional analysis allowed me to establish differences in preferences across subsamples of immigrants and natives and to compare these differences in 1997 and 2002. The cohort analysis investigated the issue of
generational change in preferences and fixed effect models estimated within-subject variation of preferences over time.

The data show that immigrants asked in many cases more redistribution compared to West Germans in 1997. At the same time, my findings suggest that there is a large variation among groups in the pattern of convergence of preferences and across redistribution domains. Table 4.10 summarizes my main results.

When discussing the main conclusions of this chapter, I shall first pay attention to the fact that preferences for redistribution of West Germans, which I took for a reference point, were not stable over time. Alesina and Fuchs-Schündeln (2007) expected that East Germans would adopt the culture of a market economy typical of West Germans after reunification. However, the more detailed consideration of the effect of time on preferences of West and East Germans shows that not only did East Germans reduce their demand for redistribution, but West Germans increased their demand for redistribution in several domains of social policy. This bilateral convergence may be a consequence of political reforms which sought to gain support for social security system led by the government of Gerhard Schröder who came to power in 1998. The bilateral convergence of preferences and mutual cultural effects of West and East Germany does not provide a clear estimate of the effect of the culture of a market economy on the preferences for redistribution of East Germans.

The study of the smaller ethnic groups allowed me to capture the effect of culture more accurately. The results of all the tests performed in this chapter so far allow me to say that the demand for redistribution among immigrants is lower than among East Germans and reduces over time. To conclude this chapter, I can estimate preferences for redistribution as elastic enough to change slowly in most samples and domains of redistribution policy, especially among labour immigrants. The single outlier is the demand for pensions of immigrants from Russia which could be explained by the structural conditions of socio-economic integration and the existential risks they face in old age.

The more elastic preferences are those of Turks, Pols and immigrants from Kazakhstan: the difference between them and West Germans became insignificant in many cases in 2002. However, the process of convergence is bilateral. In other words, preferences of immigrants and West

Germans became similar not only because of a reduction in the demand for redistribution by Turks and Poles but in addition because West Germans increased their demand for redistribution in favour of the sick and those who need care. Preferences for redistribution of immigrants from Russia are more constant. If we compare predicted margins of the Russian subsample for two time points and 5 programs of social policy, we will see that in most cases their preferences are similar to the preferences of East Germans and that the tendency towards decline is barely traceable. Moreover, the demand for redistribution in favour of the elderly increased from 1997 to 2002.

Table 4.10-Outcomes of adaptation of different subsamples of immigrants to average preferences of West Germans between 1997 and 2002
\(\left.$$
\begin{array}{llllll}\hline \begin{array}{l}\text { Immigrants } \\
\text { from }\end{array} & \begin{array}{l}\text { When } \\
\text { Unemployed }\end{array} & \text { When Sick } & \text { For Family } & \text { In Old-Age } & \begin{array}{l}\text { When } \\
\text { Requiring Care }\end{array} \\
\hline \begin{array}{l}\text { Kazakhstan } \\
\text { Poland }\end{array} & \begin{array}{l}\text { integration } \\
\text { similarity }\end{array} & \text { integration } & \text { integration } & \text { integration } & \text { integration }\end{array}
$$ $$
\begin{array}{l}\text { similarity } \\
\text { similarity }\end{array}
$$ \quad \begin{array}{l}integration

separation

(reduction)\end{array}\right\}\)| separation |
| :--- |
| Russia |

Results of the within-subjects test for different subsamples of immigrants demonstrate a slow but precise and common pattern for almost all subsamples and all social programs trend towards a reduction of preferences for redistribution over time. The general trend that is common in most cases is that sometimes coefficients are small and statistically insignificant because of the small sample size. However, the size of the effect of time is different from zero and the sign is negative which means that preferences for redistribution are elastic and can change over time.

PART II

SOCIAL MOBILITY. SELF-INTEREST AND PREFERENCES FOR
 REDISTRIBUTION: RELATIVE NATURE OF THE EFFECTS

CHAPTER 5. Introduction to Part II

1. Introduction

Current literature discusses factors shaping redistribution preferences rather extensively. In the last decades, considerable attention has been paid not only to the cultural dimension discussed in the first part of the thesis, but also, and especially, to the self-interest of people who stand to gain from government intervention. Particular success was achieved in identifying the association between individual social position and attitudes towards the role of the state in providing social benefits and the reduction of inequality. In answering the question why people prefer one type of redistribution, one style of government welfare intervention to others, scholars from different disciplines have reached a common conclusion. They have proved, in many cases, that preferences for redistribution are shaped both by the micro and macro-economic conditions of an individual.

The consistent body of findings showing that a disadvantaged social position correlates with a higher demand for redistribution. However, the association "the more disadvantages - the higher the demand for redistribution" established by means of a cross-sectional analysis can be called into question from the perspective of the identification of a causal relationship. This remark can be supported by the argument of Owens and Pedulla (2014) who claimed that inferences about positive association between self-interest and individual welfare preferences based on crosssectional data may be incorrect. Besides, according to Rehm: "many macro theories in political economy rely on causal mechanisms related to the determinants of redistribution preferences at the micro level. Although many macro theories explicitly or implicitly rely on them, these individual-level mechanisms are usually only stated as assumptions and remain largely untested" (2009, 855-56). Similarly, M. Jæger admitted the vast availability availability of cross-sectional data in the identification of correlations and differences of attitudes between various social groups. However, he writes "data of this type are ill-suited for investigating the extent to which self-interest or political ideology actually determines the extent to which individuals support public
responsibility for welfare provision" (Jæger 2006, 322). Identification of a causal relationship between self-interest and demand for redistribution is the objective of Part I.

Both demand for redistribution and individual social disadvantages can be caused by different initial factors or "third variables", such as parental background, inherited membership of a social class, and ideological or structural peculiarities of a society. This is exemplified in the work of Clark and D'Angelo who stressed that political preferences are shaped initially in a family during socialization, and preferences of parents affect preferences of their children (2013). In addition, a considerable amount of literature has been published on intergenerational mobility and the transmission of social status from parents to their children. Researchers have reported that there is a strong effect of parental background on individual social status and social position is transmitted from parents to children in most cases (Bourdieu, 1977; Jonsson, Grusky, Di Carlo, Pollak, and Brinton, 2009; Hertel and Groh-Samberg, 2014; Hertel, 2016; Bernardi and Ballarino, 2016). This finding leads to the idea that political preferences and preferences for redistribution in particular can be inherited together with social status and membership in a certain social class (Svallfors 2004; Kulin and Svallfors 2013). This argument seems particularly relevant in the case of Germany, the country I focus on in this part of the dissertation. Recent evidence suggests that the level of inter-generational mobility in Germany is very low, especially if it concerns class and occupational mobility (Breen, 2004; Breen and Luijkx, 2004; Grätz and Pollak, 2016; Müller and Pollak, 2004; Nunn, 2013).

In order to overcome the limits of cross-sectional analyses, the question of self-interest and how position in the social structure affect preferences for redistribution is reformulated in terms of how changes in socio-economic position affect the demand for redistribution. Individual political and economic preferences are stable over time, however, they can change as a result of income shocks, unemployment and economic crisis (Stegmueller, 2013, p. 314). The key research question then becomes: Do people change their preferences if they change their socio-economic position?

The rest of the second part of the thesis is structured as follows: Chapter 5 is an extended introduction and Chapters 6 and 7 are both empirical. Chapter 5: "Introduction" discusses the problem of identification of self-interest, the main theories, the methodological approach, methods and technical details which are used in the subsequent two empirical chapters. The section "Theories and concepts: identification of self-interest" covers the literature review, while the
section "Towards limited causality" makes several critical remarks and identifies gaps aimed to be filled in the thesis. "Theoretical framework, hypotheses and questions" outlines the theoretical background and core questions addressed in the empirical chapters. The section "Research design and theoretical model" discusses the framework for empirical investigation. "Data" and "Operationalisation and measurement" describe the main technical details. Chapter 6: "Transition into unemployment and demand for redistribution" contains three sections. The section "Rationale" discusses literature on the effect of unemployment on individuals' political preferences and attitudes and some current findings. The section "Sample" describes the main characteristics of subjects and the section "Results" provides empirical evidence on the effect of transition into unemployment on preferences for redistribution. Chapter 7: "Income growth and demand for redistribution" holds the same internal logic: it starts from the overview of the current findings of the effects of income mobility on individual preferences and attitudes and then proceeds to the analysis of empirical data.

2. Self-interest: theories and causal inferences

Piketty (1995) traces the history of studies about the effect of self-interest on the demand for redistribution from A. de Tocqueville who in 1835 made the first attempt to explain differences in preferences for redistribution between people the United Stated and Europe through a difference in mobility rates. According to his arguments, low social mobility, when individuals have almost no chances to increase their own welfare, stimulates demand for redistribution. Piketty finds similar ideas in the works of Bendix and Lipset (1959; 1966, 1977, 1992), who stressed, however, not the real effect of mobility, but the perceived nature of mobility by population: if people think that there is no chance for social mobility, they opt for redistribution.

Similarly, in their paper "Preferences for Redistribution" Alesina and Giuliano (2009) provide a systematic review of six approaches to model these preferences and identify causal effects: basic or static models (Meltzer and Richard, 1981), expected future income and social mobility (Benabou and Ok, 2001a), indirect utility of inequality (Perotti, 1993); direct utility of inequality (Rawls, 1971), trade-offs through class ideology (Bénabou and Tirole, 2006), beliefs about fairness (Alesina and Angeletos 2005). I will shortly discuss these approaches.

Romer (1975), Roberts (1977) and Meltzer and Richard (1981) were, to a large extent, the first to launch the empirically-based discussion about an individual's economic interest in redistribution. They claimed that the distribution of wealth in a society determines public demand for redistribution. In other words, the aggregated preferences for redistribution in a country are a function of the income of a median voter (citizen): in cases of greater inequality, the poor median citizens vote for redistribution through higher taxation; demand for redistribution is higher in cases of high levels of inequality in pre-tax income among citizens. Alesina and Giuliano (2009) called this argument "the basic 'workhorse' political economic model for preferences for redistribution".

It is possible to reinterpret the median voter hypothesis in a way that is relevant for the macro output on individual level as well: individual demand for redistribution depends on lump sum benefits and the costs of these benefits for a specific person. If a person is in a lower part of the income ladder, he/she asks more for redistribution since his/her contributions to the redistributed common good (taxes) are less than the benefits he/she receives from social policy. Those who are
in the upper part of the income ladder ask less for redistribution because what they contribute to the common pot (taxes) exceed the benefits they receive. According to the median voter hypothesis, the median income in a society defines individual preferences. Accordingly, an individual with the same income may opt for or against redistribution as far as their individual decision is determined by their individual position on the income ladder compared to the median income. Corneo called self-interest the "homo oeconomicus effect" (HOE): "an individual is expected to support the government's intervention towards reducing inequality if his net income is raised by that intervention" (Corneo 2001, 284). Consequently, individual preference for redistribution depends not only on each individual economic situation, but on individual position in the common income distribution and voters with an income below the median opt for higher taxes. So, as we can see, individual self-interest in redistribution is relative.

Corneo suggested an empirical test for the Meltzer-Richard (MR) model. He used two measures of individual self-interest: the first is self-reported gains from redistribution and the other is a person's income compared to average income in their country ($\ln \left(\right.$ inc $\left._{\text {ind }} / \overline{\ln c_{\text {country }}}\right)$). Corneo found that expected benefits strongly correlate with demand - even more strongly than income. Basically, he studied the perceived and relative costs and benefits of redistribution. Corneo and Gruener provided evidence of external validity in the other work (2002) and published an article with a similar conclusion. Apart from the "homo oeconomicus effect" when a person opts for redistribution only because of egotistical self-interest, Corneo also distinguished between "public values effect" and the "social rivalry effect". These effects describe relative self-interest. In the first case, people are interested in the common good because it is better to live in a welfare society and secure environment. Here, public good corresponds to individual welfare. In the other case, they are worried about their own income in comparison to the income of members of their social class. These effects are relative and conditional. This finding is similar to what Alesina calls the indirect effect of inequality.

The second approach focuses on the association between expectation for future mobility and demand for redistribution. The "prospect for upward mobility hypothesis" was briefly discussed in the introduction of the thesis. According to the POUM hypothesis, demand for redistribution gets lower if a person expects upward mobility in the future. Ravallion and Lokshin (2000) studied preferences for redistribution in Russia and found that these preferences are to a large extent
derived from the direction of individual social and income mobility. People on a rising trajectory demand redistribution less even if they are worse-off today. On the contrary, people who are betteroff now feel more inclined towards redistribution if they are on downward trajectory. The other confirmation of the POUM hypothesis was provided by Benabou and Ok (2001b), Alesina and Giuliano (2009), Alesina, Stantcheva and Teso (2018). However, this hypothesis was confirmed only under the condition that poor people expecting upward mobility are not risk averse. A recent paper by Cojocaru (2014) imposes more restrictions on this regularity: this finding is valid only for EU countries while poor people in non-EU former socialist countries don't express lower preferences for redistribution even if they expect upward mobility in the future.

The other four approaches that discuss factors that shape preferences for redistribution refer to the utility of redistribution through ideational determinants. However, regardless of the heuristic potential of this explanation, it is problematic to empirically establish causal inferences. Since these approaches go beyond the research question of the current part, I will discuss them just briefly. The more complicated reasoning for individual demand for redistribution focuses on the indirect utility of inequality discussed by Alesina and Giuliano (2009). They have considered two possible alternative arguments which could guide individual demand for redistribution. The first argument says that a reduction of inequality leads to an expansion of education, reduction of crime, respect for private property, all of which stimulates productivity and a rise in individual income in the end, and, at the same time, reduces expenses on security and protection. This logic predicts individual support for a reduction of inequality and redistribution even if a person is well-off. Selfinterest in this case comes from the individual share of common welfare and that increases in the case of redistribution. However, this reasoning holds a strong assumption that individuals think about the common good and can relate individual obligatory contributions (taxes) to individual benefits which might be possible in the case of common prosperity. Besides, it is empirically difficult to identify a causal link between ideational motives that encourage someone to contribute to the common good and preferences for redistribution. A similar problem can be seen with the direct utility of inequality which refers to normative judgements in what an individual considers okay in terms of level of inequality. Alesina and Giuliano (2009) have provided some arguments from "libertarian", "efficiency maximizing", "communist" and "Rawlsian" views ((Rawls (1971)). They concluded that in this case, individual utility is defined by the ideas about the ideal profile of inequality in a country. This profile relates to left-right preferences, but may have deeper
cultural roots, in religion or national peculiarities. This involves a trade-off between individual income status and beliefs about the ideal level of inequality: a person opts for an ideological position which legitimizes his own status.

The other issue related to ideology is a discussion about fairness and justice insofar as it concerns income redistribution. The core focus of this discussion is devoted to the nature of income, whether it is a result of luck or effort. This topic has become more and more popular over the years (Hochschild 1981; Soltan 1983; McClosky and Zaller 1987; Hamilton 1983; Kluegel and Mateju 1995; Kluegel and Mason 2004; Mau 2004; Van Oorschot and Reeskens 2013; Alesina and Angeletos 2005; Mau and Veghte 2007; Bénabou and Tirole 2006; Hennighausen and Heinemann 2015). The conclusions of this stream of literature partially relate to the findings based on the POUM hypothesis and affirm the belief that individual welfare comes not form real effort, but from family history, connections, class membership and other factors which are external to the person can be associated with the demand for redistribution (Alesina et al., 2018).

Another important theoretical explanation that links social mobility, self-interest and demand for redistribution is suggested by the rational learning theory. Piketty (1995a) modelled a rational "homo oeconomicus" who does not just maintain the preferences shaped by a family or borrowed from previous generations, but whose preferences for redistribution change in response to their own experience of social mobility and income trajectories, as well as based on benefits and expenses they currently have from the redistribution. Piketty considered individual mobility in terms of intergenerational mobility and discussed the issue of dynastic learning: a successful upward social and income trajectory makes a person rationally update their own beliefs and then transmit them on their offspring. This theory is a starting point for all the studies on individual self-interest and demand for redistribution using intergenerational social mobility (Corneo and Gruner 2002; Alesina and Ferrara 2005; A. Clark and D'Angelo 2010; A. Clark and d'Angelo 2013; Siedler and Sonnenberg 2012).

Corneo and Gruener (2002) approached the problem of intergenerational mobility through an individual perception of one's own social and income position with a reference to one's own father when he/she was of the same age as a respondent. They took as a measure of individual intergenerational mobility an answer to a survey question: "Compared with your father when he was about your age, are you better or worse off in your income and standard of living generally?",
recoded a dummy variable "better-off than father" and exploited it in models as a proxy for intergenerational mobility. Empirical evidence shows that there is a strong negative relationship between and individual's demand for redistribution and the "better-off than father" variable. Gugushvili reported a similar finding and drew the same conclusion about attitudes towards income differences (2016a) and popular explanations of poverty and solidarity with the poor (2016b). Thus, this measure can reflect not only individual mobility, but subjective aspirations, intergenerational relationships and beliefs about one's abilities and achievements (Duru-Bellat and Kieffer, 2008; Smith and Kluegel, 1986).

There is also another way to measure intergenerational mobility. Alesina and Ferrara (2005) captured the pats history of social mobility also referring to the position of the father, but considered objective measures. They thus measured occupational and educational mobility with differences in job prestige scores and years of education between respondents and their fathers. As a result, they reached controversial conclusions. Upward mobility in terms of job prestige leads to the expected outcome: individual demand for redistribution gets lower in this case. However, upward educational mobility doesn't lead to a decrease in demand for redistribution in this case. This discrepancy poses an interesting puzzle in term of how to interpret the results. To find some arguments to explain this inconsistency in the results, Alesina and Ferrara clarified what intergenerational mobility in education means. It means that individuals who experienced upward mobility in education have parents who are less educated in comparison to those who have high educated parents and did not experience upward mobility due to the ceiling effect in some cases. In particular, the offspring of highly educated parents has only two options for educational mobility: either no mobility (when children get high education similar to that of their parents), or downward mobility. Namely, children of highly educated parents have no chance for upward mobility in education because their parents already occupy the highest position. I would add that those people who experienced upward mobility and have a lower class background may be socialised in the pro-redistributive environment and reproduce higher demand for redistribution typical of their class of origin, the class they come from. Even if they reduced their preferences after transition into higher education, their preferences may still remain higher than preferences immobile people who had high educational attainment (both parental and their own). Alesina and Ferrara also discussed an expansion in education or increasing education between generations as another explanation which reduces the explanatory power of educational mobility.

Clark and D'Angelo (2010) also put forward the counterintuitive view that intergenerational upward mobility leads to the empowerment of left-wing beliefs and pro-social preferences. In particular, they concluded that higher social status than one's parents, measured by a sociooccupational prestige Hope-Goldthorpe Scale (HGS), positively correlated with redistributive preferences if controlled for individual HGS: "Doing better than one's parents makes individuals more favourable to redistribution and more pro-public sector. These results are partially in contrast with those in Alesina and La Ferrara (2004)" (A. Clark and D'Angelo 2010. 12). Clark and D'Angelo explain this finding through satisfaction about the social security system. Better-off individuals support redistribution in this case since they find it useful for themselves and believe that it will allow others to "get forward".

Another recent study has approached the effect of income mobility on individual demand for redistribution through an earnings analysis. In their research Siedler and Sonnenberg (2012) also compared individual conditions to parental ones. They exploited GSOEP panel data to find a reliable measure of earnings and correlated the income of fathers at economically active ages with the income of their adult sons. To correct possible measurement errors, they opted for an average life course income for both fathers and sons and found a strong negative association between preferences for redistribution and individual intergenerational earnings mobility.

The Social insurance approach may complement the Melzer- Richard's model and the rational learning theory. This approach reformulates the general idea of self-interest in redistribution. Being focused on an individual social position and income, the MR model takes externalities, namely relative measures exogenous to a person as a reference point for individual demand for redistribution. At the same time, the social insurance approach shifts the research focus from the relative position on the social and income ladder to individual risk exposure (Dryzek and Goodin 1984; Ewald 1991; Barr 1992; Sinn 1995; Casamatta, Cremer, and Pestieau 2000; Moene and Wallerstein 2001; Rehm 2009; Jæger 2013; Rehm 2016). This theoretical shift uses a different logic of reasoning about the same problem of how self-interest affects preferences for redistribution. According to Jæger "the demand for redistribution reflects personal risks and social risks shared with others" (Jæger 2013, 149). From this point of view, individual demand for redistribution is guided by individual aspiration to satisfy one's own basic needs in survival and safety through the minimization of one's own risk exposure. Interpreting individual behaviour
from this position, an individual acts not with reference to a median income person, but guided by the intention to increase her own consumption and decrease expenditures. Kim (2007) calls this demand the "protective effect". This approach allows us to model preferences for redistribution in a dynamic way: a transition to a disadvantaged social position or conditions which decrease the possibility of satisfying one's own needs may lead to an increase in demand for redistribution.

3. Limitations of current models

3.1. Limitations of the MR model

It is widely accepted that individual demand for redistribution is shaped by individual position on the social and income ladder. Meltzer and Richard's model (MR) is taken as a starting point for most of the studies oriented towards detailed analysis of redistribution, public demand for redistribution and the causal effects of self-interest on demand for redistribution (Alberro Alesina and Perotti, 1994; Alesina, Di Tella, and MacCulloch, 2004; Alesina and Ferrara, 2005; Alesina and Fuchs-Schündeln, 2007; Alesina and Rodrik, 1991; Azzimonti, De Francisco, and Krusell, 2006; Benabou and Ok, 2001b; Borge and Rattsø, 2004; P. J. Coughlin, 1992; Cusack, Iversen, and Rehm, 2006; Epple and Romer, 1991; C. Fong, 2001; Fujiwara, 2015; Moene and Wallerstein, 2001; Ostry, Berg, and Tsangarides, 2014; Perotti, 1993; Persson and Tabellini, 1994; Roemer and Roemer, 2009; Tullock, 1983). The idea that relative social and income position defines individual preferences is crucial for my research. A reference point for individual demand in the MR model is median income in a society. However, if one tries to empirically model individual demand for redistribution in the way defined by the theory, one will face some problems.

The first problem is manifest in Corneo's (2001) work. He modelled the individual utility of redistribution through household income divided by the median income in the country. However, income divided by a constant term produces the same effect as income and does not grasp the relative character of income with respect to the median income. We need to have a discontinuity to capture the median income effect. Namely, to test the theory we shall indicate a difference between those whose income is below and those whose income is above the median. But moreover, we need to trace the effect of individual transition from a lower-than-the-median income to a higher-than-the-median income to identify causality. Yet, even if we follow this research design, we will encounter a new problem. The MR model does not take into account differences between income groups. For example, it predicts higher demand for redistribution among all those whose income is lower than median and a lower demand among all those whose income is higher than median. This leads us to assume that all those who have an income lower than the median have a
similarly high demand for redistribution, and the same logic is reproduced for those who have an income higher than median, but with a different sign. This assumption seems to be too strong to be accepted: an individual is expected to ask for redistribution if his income is, for example, fifty Euro below the median income and reject redistribution if his income increases by one hundred, thereby rising to fifty Euro above the median. At the same time, an increase in income by $€ 1,000$ would mean nothing and would not lead to a change in attitudes if the income remains lower than the median. According to the MR model, the person will still support redistribution. It is difficult to believe these arguments. Generally, the median voter hypothesis works well as a theoretical and analytical explanation on the macro level, but can hardly be taken as a theoretical background for the empirical analysis of individual preferences.

The other problem lies in the idea that a rational self-interested individual aims to increase own consumption at the expense of others through redistribution. In other words, a person aims to redistribute to gain benefits. This idea seems to be good from the position of economic and rational choice theory. However, there is an important omission: a situation of unawareness. It is difficult for an individual to estimate their own position on a social and income ladder, and especially their own position compared to the median income in a society. It is possible to express some doubts that an individual can rationally calculate the gains he will get from redistribution.

3.2. Limitations of the POUM model

The "prospect for upward mobility hypothesis" is closely related to the compensation and social insurance approach because a person asks for redistribution if s / he feels insecurity about the satisfaction of his/her own needs in the future. The measurement of social mobility in terms of individual expectations about one's own future is an important methodological "mode" that allows researchers to design a proxy for two time point estimates on the one hand and on the other to define individual risk exposure and a slope of mobility. Some publications provided evidence and discussed conditions under which we can observe a negative effect of expected upward mobility on preferences for redistribution (Ravallion and Lokshin 2000; Benabou and Ok 2001b; Checchi and Filippin 2003; Alesina and Ferrara 2005; Keely and Tan 2008; Rainer and Siedler 2008; Cojocaru 2014).

However, here we encounter a problem typical of all the studies employing self-assessed and attitudinal parameters: there is a chance of biased estimates because of a lack of objective pieces of evidence. The other problem is a danger that we explain "attitudes with attitudes" and there is no exogenous variation in the independent variable (Wooldridge 2010; Jæger 2008). Namely, individual perception of one's own risk exposure may not reflect one's actual individual economic situation, and prospects of mobility and individual perceptions of one's own future may be caused by individual unobserved characteristics as well as individual demand for redistribution. Namely, an individual may be sensitive to macroeconomic difficulties in a country or in her industry, individual stage of a career, family reasons or simply individual anxiety. This sensitivity may shape the individual idea of vulnerability, expectations about downward mobility and a higher demand for redistribution even if a person is well-off and the probability of downward income mobility is objectively very low. If we focus only on individual expectations, we can hardly provide a solid basis for the argument that individual upward mobility determines a low demand for redistribution.

3.3. Limitations of empirical tests of the rational learning theory and intergenerational mobility

The rational learning theory was tested in most cases by estimating the effect of intergenerational mobility on individual preferences. However, the studies discussed above found no consensus in terms of the role of upwards mobility on preferences for redistribution. The evidence presented in this section suggests that this relationship calls for more investigation both into the measurement of mobility, the direction of the effects and causality. At this point, I shall discuss what intergenerational mobility really measures. In the case of educational or occupational mobility when one's own parents are taken as a reference point, a person also experiences class mobility, which means that the person may experience the effect of the social environment and class ideology but not only self-interest directly. To clarify the effect of social and income mobility on individual preferences for redistribution, it is reasonable not to take parental background as a reference point, but a person's own previous social and income position. Despite an exhaustive search, it has proven difficult to find literature on this matter.

3.4. Possible solutions

I correct the shortcoming discussed above in three ways. First, I will rely on the social insurance approach which claims that self-interest in redistribution is a function of one's own risk exposure, that an individual's preferences depend on her own ability to satisfy her own needs. According this view, an individual asks for redistribution based on his/her own needs regardless of his/her position on the social ladder in relationship to a person with a median income. Second, to overcome the limits of the POUM model, I will substitute the self-assessed and attitudinal parameters with objective indicators which measure risk exposure through previous and future labour market and income mobility. Third, the rational the rational learning theory was previously tested by means of intergenerational mobility. However, rational learning may also happen within an individual lifespan when a person estimates her own risk exposure and needs. This means that a person's response to her own financial conditions and risks and may change her preferences for redistribution.

4. Questions and research design

Overall, the second part aims to highlight and to find some empirical support for the basic assumption in political economy which says that the demand for redistribution is driven by individual self-interest. This part seeks to address the general question: "how elastic are preferences for redistribution if the socio-economic conditions of the individual change?". For this purpose, I follow people over time to see if they adapt their preferences when they experience unemployment and income growth. Two empirical chapters aim to provide some evidence for these two types of social mobility. Chapter 6 asks the question "Does individual experience of unemployment lead to a higher demand for redistribution?" while chapter 7 aspires to answer the question "Does income growth lead to a decrease in the demand for redistribution?"

In both empirical chapters, I will implement the same sequence of steps. At first, I will test the very basic model in a cross-sectional way to see whether the data support previous findings about the positive effects of a disadvantaged social position on individual preferences for redistribution.

$$
\begin{aligned}
& \text { (1) } R P_{i}=\beta_{1} U e_{i}+\beta_{2} X_{i}+\varepsilon_{i} \\
& \text { (2) } R P_{i}=\beta_{1} \text { Inc }_{i}+\beta_{2} X_{i}+\varepsilon_{i}
\end{aligned}
$$

$R P_{i}$ is an i's redistribution preferences
$U e_{i}$ is an i's current unemployment status
Inc c_{i} is an i's current income
X_{i} is a vector of i's characteristics, basic specification includes sex, age, age squared, being from
East Germany, education, the number of children in a household, the number of adults in a household, marital status, \log household income (if no $\beta_{1} \operatorname{Inc} c_{i}$), occupation ε_{i} is the error term

In the second stage, I estimate the effect of past personal experience (previous experience of unemployment and previous income) on individual preferences for redistribution in a crosssectional way.

$$
\text { (3) } R P_{i t}=\beta_{1} U e_{i t}+\beta_{2} U e_{i t-1}+\beta_{3} X_{i}+\varepsilon_{i}
$$

$$
\text { (4) } R P_{i t}=\beta_{1} \operatorname{Inc} c_{i t}+\beta_{2} \operatorname{Inc} c_{i t-1}+\beta_{3} X_{i}+\varepsilon_{i}
$$

Alesina and la Ferrara discussed the POUM hypothesis in their paper and suggested using the objective index of expected income measured as an estimated probability of transition to an upper income decile. This index was calculated on panel data and later assigned to the matched respondents participated in a cross-sectional survey on preferences for redistribution. This manipulation allows me to differentiate between those who are on upward or downward slope of income mobility. I take the idea of objective POUM into consideration, but use a different measure of individual expected mobility: future experience of unemployment and future income. Compared to the study of Alesina and la Ferrara, I can simultaneously use data both on change in demand for redistribution and change in the socio-economic situations of the subjects. If these data are available, matching is not needed.

$$
\begin{aligned}
& \text { (5) } R P_{i t}=\beta_{1} U e_{i t}+\beta_{2} U e_{i t+1}+\beta_{3} X_{i}+\varepsilon_{i} \\
& \text { (6) } R P_{i t}=\beta_{1} \text { Inc }_{i t}+\beta_{2} \operatorname{Inc} c_{i t+1}+\beta_{3} X_{i}+\varepsilon_{i}
\end{aligned}
$$

I include both terms, previous and future experience, in the models in the fourth step of the crosssectional analysis.

$$
\begin{aligned}
& \text { (7) } R P_{i}=\beta_{1} U e_{i t}+\beta_{2} U e_{i t-1}+\beta_{2} U e_{i t+1}+\beta_{3} X_{i}+\varepsilon_{i} \\
& \text { (8) } R P_{i}=\beta_{1} \text { Inc }_{i t}+\beta_{2} \text { Inc }_{i t-1}+\beta_{2} \text { Inc }_{i t+1}+\beta_{3} X_{i}+\varepsilon_{i}
\end{aligned}
$$

The four steps discussed will be implemented for data collected in 1997. To provide an additional robustness check I also run the models (1)-(4) on data collected in 2002. The detailed description of income measures is provided below in the section "Operationalization and measurement".

There is an argument that can weaken the claim about a direct relationship between self-interest and preferences for redistribution. There is evidence that individual observed characteristics such as education, occupation, industry, regions of residence and social networks strongly correlate to parental background and lead to a certain positioning in the labour market (Mäder, Müller, Riphahn, and Schwientek, 2014). Data from the US and Canada show that there is intergenerational transmission of labour market outcomes from parents to their children (Gottschalk 1990. 1996; Beaulieu et al. 2005). Together with an employment profile, individuals inherit employment risks from their parents. Consequently, a certain level of the demand for redistribution may be a product of inherited social position and be similar to parental social stance. Hence, a cross-sectional analysis does not say much about the real determinants of preferences for
redistribution because they can be reproduced dynastically. At the same time, data from Sweden disproved the findings that were valid for the US and Canada (Edmark and Hanspers, 2015). This could mean that social politics in social democratic countries effectively equalises employment chances of offspring from disadvantaged families with their better-off peers and liberal welfare regimes, in turn, reproduce the structure of disadvantages.

The part of the empirical investigation discussed above aims to relate the current work to what has been published before. This part precedes the empirical study that investigates the relationship between self-interest and demand for redistribution in terms of causal inferences. So, I aim to improve the previous research by using a longitudinal research design that is better suited to establishing the causal relationship between experience of social mobility, income, unemployment and preferences for redistribution. At this point I use fixed effect models to follow the same individuals and estimate directly how changes in employment status and income affect preferences for redistribution. Fixed effects models allow us to control for time-invariant unobserved characteristics such as culture or basic human values discussed in the first part (Margalit, 2013; Naumann, Buss, and Bähr, 2016; Owens and Pedulla, 2014). I provide two specifications without controls and with baseline controls for time-varying parameters.

$$
\begin{align*}
& (9)\left(R P_{i t}-\overline{R P_{l}}\right)=\beta\left(U e_{i t}-\overline{U e_{i}}\right)+\left(\alpha_{i t}-\overline{\alpha_{\mathrm{i}}}\right)+\left(\varepsilon_{\mathrm{it}}-\bar{\varepsilon}_{\mathrm{i}}\right) \\
& (10) \quad\left(R P_{i t}-\overline{R P_{l}}\right)=\beta\left(\operatorname{Inc} c_{i t}-\overline{\operatorname{Inc}}\right)+\left(\alpha_{i t}-\overline{\alpha_{\mathrm{i}}}\right)+\left(\varepsilon_{\mathrm{it}}-\bar{\varepsilon}_{\mathrm{i}}\right) \\
& \left(R P_{i t}-\overline{R P_{l}}\right)=\beta\left(U e_{i t}-\overline{U e_{i}}\right)+\gamma\left(X_{i t}-\overline{X_{i}}\right)-\left(\alpha_{i t}+\overline{\alpha_{\mathrm{i}}}\right)+\left(\varepsilon_{\mathrm{it}}-\bar{\varepsilon}_{\mathrm{i}}\right) \tag{11}\\
& \left(R P_{i t}-\overline{R P_{l}}\right)=\beta\left(I n c_{i t}-\overline{\operatorname{Inc}}{ }_{i}\right)+\gamma\left(X_{i t}-\overline{X_{i}}\right)-\left(\alpha_{i t}+\overline{\alpha_{\mathrm{i}}}\right)+\left(\varepsilon_{\mathrm{it}}-\bar{\varepsilon}_{\mathrm{i}}\right) \tag{12}
\end{align*}
$$

$U e_{i}$ is an experience of unemployment, a dummy variable;
$\operatorname{Inc} c_{i}$ is income calculated in deciles;
X_{i} is a vector of i's time-varying characteristics; basic specification includes level of education, number of children in a household, number of adults in a household, a marital status, household income in deciles, and occupation.

5. Data

My study uses longitudinal data to investigate the effect of past and future experience of individual social and income mobility, and then the effect of transition into unemployment and a different income decile on individual preferences. For this purpose, I exploit data of the German SocioEconomic Panel (G-SOEP), the same data which I used in Chapter 4 in the first part of the thesis. In that chapter, I already provided a broad description of the survey (page 72). Here I only highlight the key features of the data used in this part. As mentioned above, the study aimed to address the effects of past history and objective future mobility as well as the effects of social and income transitions. Questions about redistribution preferences were included in the SOEP survey only two times: in 1997 and 2002. However, to meet the requirements of the research design, I extend the number of time points from two to eleven to investigate the matter of mobility issue and use available annual waves from 1992 to 2002. The SOEP contains comprehensive information about individual income and occupational status on an annual basis and includes different sub-samples for different population groups to cover the entire German population in a representative way.

5.1. Sample selection

To eliminate possible noise in the data, I have restricted the sample to only native Germans since a migration background may cause different deviations in career trajectories, advantages or disadvantages in labour market and income (Gehricke, Fritz, and Roß, 2012; Kogan, 2004; Leopold, Leopold, and Lechner, 2017). Moreover, migrants are a very selective group of the population in terms of preferences and risk aversion. Accordingly, I have selected individuals who were born in Germany, declared their nationality as German and who belong to a German subsample in the SOEP specification. Eastern and Western Germans are differentiated based on the SOEP sample membership. I have dropped observations with missing information on preferences for redistribution, sex and age, those who did not participate in the both survey years in 1997 or 2002 for cross-sectional analysis and in 1997 and 2002 for panel data analysis. I have dropped the cases without information on employment status and income for all three years from 1995 to 1997 and from 2000 to 2002.

5.2. Sample description

The number of respondents in my research varied depending on the type of the research design. As in Chapter 4, I use data on preferences for redistribution available in the SOEP. Since questions on preferences for redistribution were asked only in 1997 and 2002, only those people who participated in the survey in those years were selected into the sample. For these subjects, I also employ panel data on their experiences of social and income mobility from 1993 to 2002. Participation in both waves of the survey was not a matter of principal for the cross-sectional research design. Hence, I did not restrict the sample size to those who participated in the both waves in 1997 and in 2002, which means that I had more observations in this case. However, we can see a reduction in the number of cases from 1997 to 2002 for the whole German sample of 1,510 cases as well as for the West (934 cases) and East (576 cases) subsamples. A longitudinal research design requires participation in both 1997 and 2002 since it is assumed that we followed the same subject over the time. The total number of the respondents here is equal to 9,228 for each year (Table 5.1). The sample covers all adult respondents allowed to fill out an individual questionnaire. The average age of the participants is 44 years in 1997 and 47 in 2002 (the minimum age is 17 and the maximum 99 years old). The sample is equally distributed between gender groups: males (48%) and females (52%). The SOEP sample is designed in a representative way; however, the issue of distribution of respondents across the regions deserves considerable attention. While interpreting the results, the reader should bear in mind that there is a difference in preferences between Germans living in East and West robust to the controls. This is important because the share of West Germans in the pooled data is 61% compared to 39% of East Germans. This is the reason why I provide additional separate explanations for these groups in my analysis. Table 5.2 provides detailed descriptive statistics for the subsamples of West and East Germans in 2002.

Table 5.1 - Number of observations per year

$\mathbf{1 9 9 7}$ or 2002				$\mathbf{1 9 9 7}$ and 2002			
year	West	East	Total	West	East	Total	
$\mathbf{1 9 9 2}$	6409	4129	10538	5190	3354	8544	
$\mathbf{1 9 9 3}$	6516	4185	10701	5275	3398	8673	
$\mathbf{1 9 9 4}$	6634	4261	10895	5366	3460	8826	
$\mathbf{1 9 9 5}$	6753	4314	11067	5458	3500	8958	
$\mathbf{1 9 9 6}$	6859	4384	11243	5535	3559	9094	
$\mathbf{1 9 9 7}$	6970	4445	11415	5626	3602	9228	
$\mathbf{1 9 9 8}$	6892	4380	11272	5626	3602	9228	
$\mathbf{1 9 9 9}$	6721	4221	10942	5626	3602	9228	
$\mathbf{2 0 0 0}$	6465	4118	10583	5626	3602	9228	
$\mathbf{2 0 0 1}$	6241	4017	10258	5626	3602	9228	
$\mathbf{2 0 0 2}$	6036	3869	9905	5626	3602	9228	
Total	66087	42194	108281	89422	51698	14112	

Table 5.2 - Descriptive statistics for the sample of West and East Germans in 2002

	West		East	
Variable	Mean	Std. Dev.	Mean	Std. Dev.
Male	0.48	0.50	0.49	0.50
Age	47.15	18.08	44.78	17.71
HH income	2670.87	1455.73	2203.14	1035.09
HH income per capita	1098.35	642.94	869.09	398.22
Decile of HH income	5.82	2.91	4.72	2.62
Decile of HH income per capita	6.02	2.91	4.60	2.61
Years of education	11.75	2.52	12.17	2.31
College	0.20	0.40	0.29	0.46
Number of children	0.48	0.85	0.40	0.72
Adults	2.24	0.96	2.34	0.94
Single	0.23	0.42	0.27	0.44
Married	0.61	0.49	0.58	0.49
Divorced	0.06	0.25	0.06	0.24
Married, separated	0.02	0.12	0.02	0.13
Widowed	0.07	0.26	0.07	0.25
Civil servant	0.05	0.21	0.02	0.14
Self-employed	0.06	0.24	0.04	0.21
Blue-collar	0.14	0.34	0.19	0.39
White-collar	0.30	0.46	0.26	0.44
Currently in education	0.02	0.15	0.05	0.21
Unemployed	0.03	0.16	0.09	0.28
Retired	0.18	0.38	0.14	0.35
Maternity	0.02	0.13	0.02	0.12
Nonworking	0.13	0.33	0.10	0.30
Training	0.03	0.17	0.04	0.20
Other non-working	0.05	0.21	0.06	0.23

The previous discussion in Part I made it clear that there is a different level of demand for redistribution in West and East Germany, and that this difference is relatively robust over time. The claim that this difference persists for ideological reasons led me to consider the two subsamples of West and East Germans separately in the current part. The very preliminary descriptive statistics of the sample allow us to see that there is a compositional difference. First, the GSOEP sample includes 61% of West Germans and 39% of East Germans. Second, the labour market experience is different for West and East Germans. For the time span of 11 years between 1992 and 2002, the share of West Germans who had an experience of unemployment was $15,5 \%$, while among East Germans the share is more than two times higher, $37,5 \%$. Because the timeframe of my study is defined by the years of the survey about redistribution (1997 and 2002) I split the time continuum into four periods to trace the experience of unemployment from 1992 to 1996 in the first survey year 1997, and from 1998 to 2001 in the second survey year 2002. For the fixedeffect approach, I compared experience in two periods: from 1992 to 1997 and from 1998 to 2002. Figures in Table 5.3 - Experience of unemployment easily show this discrepancy regarding labour market experience between West and East Germans. We can see that this discrepancy holds if we trace the tenure of unemployment (Table 5.4). More than a half of West Germans (54\%) who had an experience of unemployment were able to re-enter the labour market within one year, while the share of East Germans who were able to recover after one year is much smaller-only 38%.

Table 5.3 - Experience of unemployment

				Total				
	West		East		No	Yes		
	No (\%)	Yes (\%)	No (\%)	Yes (\%)	N	\%	N	\%
from 1992 to 1996	91	9	75	25	7222	85	1307	15
in 1997	96	4	90	10	8099	94	540	6
from 1998 to 2001	93	7	80	20	7975	88	1125	12
in 2002	97	3	92	8	8648	95	454	5
from 1992 to 1997	90	10	72	28	7153	83	1496	17
from 1998 to 2002	92	8	78	22	7833	86	1276	14
from 1992 to 2002	85	15	63	37	6941	76	2179	24

Table 5.4 - Years of unemployment from 1992 to 2002 counted in 2002

Years of unemployment in 2002	West	East	All Germans	West	East	All Germans N
$\mathbf{0}$	N	N	N	$\%$	$\%$	$\%$
$\mathbf{1}$	4654	2287	6941	85	63	76
$\mathbf{2}$	456	507	963	8	14	11
$\mathbf{3}$	165	287	452	3	8	5
$\mathbf{4}$	107	202	309	2	6	3
$\mathbf{5}$	50	125	175	1	3	2
$\mathbf{6}$	22	88	110	0	2	1
$\mathbf{7}$	18	52	70	0	1	1
$\mathbf{8}$	10	35	45	0	1	0
$\mathbf{9}$	6	17	23	0	0	0
$\mathbf{1 0}$	1	18	19	0	0	0
$\mathbf{1 1}$	1	9	10	0	0	0
No data	3	0	3	0	0	0
Total	543	242	785			

Table 5.5 presents the percentage of subjects who had an experience of unemployment in the both periods (1992-1997 and 1998-2002), who had no experience of unemployment in the first period and transitioned into unemployment in the second, who had an experience of unemployment in the first period and exited unemployment in the second period, and who had no experience of unemployment in either period. The table reports percentages separately for West and East Germans. Among East Germans, the level of transition into unemployment is twice the share of

West Germans who experienced the same type of transition. In the West German subsample, only 5% who were employed in the first period lost their jobs, while in the East subsample the share is 9%. Moreover, the share of West Germans who were unemployed in both periods is 3%. Compared to this, 13% of unemployed East Germans is a large number. However, 7% of West Germans and 15% of East Germans were able to recover after unemployment in the second period ${ }^{18}$. This transition matrix shows that there was a high degree of labour market mobility among East Germans compared to West on the one hand, but on the other hand, it shows that the number of those who were unemployed in both periods is very high in the East subsample compared to West. This means that the general perception of unemployment risks and long-term unemployment might be higher in East Germany especially in the transition period when the situation in the labour market was uncertain.

Table 5.5-Change in employment status from 1992-1997 and from 1998-2002

Experience of Unemployment	1998-2002 (west)		1998-2002 (east)		1998-2002 (all)		
	no	yes	no	yes	no	yes	
$\mathbf{1 9 9 2 - 1 9 9 7}$	No	85	5	63	9	$6554(76 \%)$	$599(7 \%)$
	Yes	7	3	15	13	$892(10 \%)$	$593(7 \%)$

Socio-demographic characteristics vary across transition groups mostly in East Germany. Table 5.6 compares the basic characteristics of the four transition groups identified in terms of their employment status in the subsample of West and East Germans: permanently employed (EE), those who had an experience of unemployment in the first period and found a job in the second period (UE), those who had no experience of unemployment in the first period and who lost their job in the second period (EU), and those who were unemployed in 2 periods (UU). The first line of Table 5.6 reports the share of males within the four transition groups. As we can see, the gender distribution in the transition groups in West Germany is more or less equally male and female while in the East German subsample more females (57\%) were unemployed in 2 periods, more females found a job in the second period (58\%) and more males lost a job in the second period (62%). The second line of the table shows the average age of members of the four transition groups: the age of those employed in two periods as well as those unemployed in two periods is about 45-

[^12]48 years. At the same time, in the East subsample those who found a job in the second period are about 52 years and those who lost jobs on average ten years younger. The data also show a difference between transition groups in terms of household income. Line three presents the data on average income in each subsample: in the West subsample the difference between permanently employed and unemployed in two periods is 922 Euro. In the East this difference is a bit smaller at 602 Euro. It is easy to see that there is a substantial difference in household income between working East and West Germans: the household income of the East subsample is on average 378 Euro more, while difference in household income of the unemployed in two periods is only 65 Euro. If we compare income per capita, the difference between regions and transition groups becomes more salient. At the same time, compared to West Germans, there is a higher number of East Germans with a college degree in all the transition groups (line eight): among the permanently employed 35% vs. 22%; among those who found a job 27% vs. 14%; among those who lost a job 21% vs. 14%; and among those who are permanently unemployed 15% vs. 9%. The other remarkable difference is the marital status of people in different transition groups in the West and East subsamples (lines 11-14): those who were unemployed in the two periods in West Germany are more likely to be single (29%) compared to the East (16\%), and East Germans are more likely to be married (65%) compared to the West (49%). Among those who lost their jobs in the second period, there were a few more singles in the East subsample (35\%) compared to the West (29\%). The other differences are not particularly noticeable.

Table 5.6 - Socio-demographic characteristics of different transition groups in the West and East subsample

	West				East			
	EE	UE	EU	UU	EE	UE	EU	UU
	Mean							
Variable	0.50	0.48	0.52	0.53	0.49	0.42	0.62	0.43
Male	48.29	47.86	44.75	46.54	45.22	51.52	41.35	46.61
Age	2734	2375	22609	1812	2356	2056	1889	1747
HH income	1141	1065	946	881	937	867	748	670
HH income per capita	5.95	4.71	5.79	3.85	5.12	4.07	4.43	3.47
Decile of HH income								
Decile of HH income per	6.28	5.55	5.71	4.44	5.06	4.54	4.26	3.25
capita	11.90	11.50	11.20	10.62	12.48	11.96	11.80	11.45
Years of education	0.22	0.14	0.14	0.09	0.35	0.27	0.21	0.15
College	0.45	0.46	0.41	0.33	0.35	0.35	0.37	0.49
Number of children	2.23	2.03	2.23	1.96	2.36	2.20	2.33	2.23
Adults	0.22	0.17	0.29	0.29	0.29	0.12	0.35	0.16
Single	0.61	0.61	0.55	0.49	0.57	0.70	0.51	0.65
Married	0.06	0.11	0.11	0.13	0.05	0.08	0.07	0.11
Divorced	0.01	0.03	0.02	0.01	0.01	0.03	0.02	0.04
Married, separated	0.09	0.06	0.02	0.06	0.08	0.08	0.04	0.04
Widowed	0.06	0.01	0.00	0.00	0.03	0.01	0.00	0.00
Civil servant	0.07	0.08	0.02	0.03	0.06	0.04	0.01	0.02
Self-employed	0.34	0.28	0.14	0.16	0.33	0.23	0.12	0.11
Blue-collar	0.14	0.21	0.10	0.18	0.19	0.25	0.17	0.15
White-collar								

6. Operationalization and measurement

6.1. Preferences for redistribution

Five dependent variables on preferences for redistribution, similar to those used in Chapter 4, are used. The variables are based on the following questions: "At present, a multitude of social services are provided not only by the state but also by private free market enterprises, organizations, associations, or private citizens. What is your opinion on this? Who should be responsible for the following areas?": "financial security in case of unemployment", "financial security in case of illness", "financial security of families", "financial security for old age" and "financial security for persons needing care". Answers are measured on 5-point scale where the code " 1 " corresponded to "only the state" and " 5 " - "only private forces". Each dimension of social policy is referred further as "redistribution in favour of the unemployed", "redistribution in favour of the sick", "redistribution in favour of families", "redistribution in favour of the elderly" and "redistribution in favour of those needing care".

All five dimensions refer to different types of risk exposure. However, if we study transition into unemployment or income growth, we can expect a spillover effect. In other words, social and income mobility will not only affect related dimensions, but all five components. One can expect that in the case of unemployment, an individual may not only ask for more redistribution in favour of the unemployed, but also, because of a disadvantaged individual social location, ask for "financial security in case of illness", "financial security of families", "financial security for old age" and "financial security for persons needing care". I treat the data in the same way as before: I rescale them to assign the highest score to the highest level of demand (" 5 " on the five-point scale).

6.2. Unemployment and transition into unemployment

The SOEP questionnaire for individuals asks a set of questions about individual labour force status, type of occupation and occupational position. At first individuals are differentiated based on their current labour market participation so that employed people are separate from unemployed people in order to filter the questions that follow. At this point non-working individuals, those in military
or community service, those on maternity leave, and employed persons in a phased retirement scheme whose current actual working hours are zero are united in the same group "not employed". Further on, individuals are asked about their specific activity in detail, which is separate for those who are employed and those who are not.

I have generated a variable "occupation" based on the variables described above. Here I have differentiated between four groups of respondents depending on their inclusion in the labour market: in education, employed, pensioner and unemployed. To control for possible coding mistakes, I have done a double check to see if a person is identified identically both in the variable "labour force status" and "occupational position". Later on, the variable "occupation" is transformed into four dummies: the variable "unemployed" is the key independent variable and the three others are the controls.

Previous experience of unemployment is generated as an experience of unemployment between 1992 and 1996 to model preferences in 1997; between 1992 and 2001 and a number of years of unemployment to model preferences in 2002. The effect of future experience of unemployment is estimated only for 1997 and generated as an experience between 1998 and 2002. Further on, I have used a different measure for unemployment for first difference and fixed effects models. I have calculated an experience of unemployment between 1992 and 1997 for the year 1997 and from 1998 to 2002 for the year 2002. This coding allows me to have a more flexible measure of unemployment: a person gets a score 1 for an experience of unemployment if the person reported experience of unemployment at least once in the first period from 1992 to 1997, for the second period from 1998 to 2002 the same applies. The obvious advantage of this modification is that we can clearly identify individuals who were not exposed to unemployment for several years and those who had an experience of unemployment not only at the moment of the survey but also some time before. I expect that the experience of unemployment may have a long-lasting effect on selfassessment of individual risk exposure and preferences for redistribution meaning that a person who has never had an experience of unemployment may change her own preferences for redistribution since she faced this situation.

6.3. Income and individual income growth

When measuring income mobility and income growth, there are two important issues to be addressed. The first is the multidimensionality of income. Jäntti and Jenkins (2013) published a 232-page report which provides the reader with extensive information about the measurement of income and income mobility. In their discussion of the multidimensionality of the concept of "income," they classified it into different categories based on the level of analysis (social or individual), time of analysis (short-term and long-term incomes, period-specific income), a reference point (individual herself or previous generations) and the relative positioning of an individual or a group in the income structure of a society. Based on the level of analysis they have differentiated between income mobility and individual income growth. The term income mobility refers to a society overall, while individual income growth, in turn, conceptualises only individual income. To address my research question, I need a measure for individual income growth.

Since income is a parameter which is not constant over time, current literature suggests several strategies to make the measure of income more robust. First, to reduce measurement error, attenuation bias and a number of missing cases, I average income over multiple years (Breen, Mood, and Jonsson, 2016; Siedler and Sonnenberg, 2012; Solon, 1992). I use period-specific measure of income calculated as $\frac{1}{3}\left(i n c_{t-2}+i n c_{t-1}+i n c_{t}\right)$, meaning average income for three years: the year of the survey about preferences for redistribution (1997 or 2002) and the two years prior. Then, I assess the income before these intervals to measure income history. I take the average income for the three years from 1992 to 1994 for income history in 1997 and the average for the two years from 1998 to 1999 for income history in 2002. The latter limitation is imposed by the time constraint of the survey. To measure objective individual income growth to test the OPOUM hypothesis, I also calculate average income for three years, but after the year of the survey and only for the year 1997 (as my data cover only 10 years from 1992 to 2002): $\frac{1}{3}$ (inc $c_{1998}+$ inc $_{1999}+$ inc $_{2000}$).

Second, I define a hierarchy of income positions to facilitate estimation of change in income, as well as transitions, and exclude exogenous interventions which affect income of the all members of the society, such as inflation for example. Traditionally, for this purpose, researchers split the sample into equal decile groups and trace transitions of individuals from one decile group to
another (Fields and Ok 1999; Alesina and Ferrara 2005; Jäntti and Jenkins 2013). I follow the same strategy in my work so that each decile includes 1000 people on average.

The third problem relates to the type of income. The SOEP provides an extended list of variables indicating different sources of income and modes of measurement. The "Codebook for the \$PEQUIV File 1984-2015: CNEF Variables with Extended Income Information for the SOEP" describes the measurement of income implemented in the SOEP in 134 pages. I utilize selfreported "monthly household net income" ${ }^{19}$.

Monthly household net income measures current income without taxes asked for in the household questionnaire which is filled out by the head of household. Income for all the years is provided in Euro. However, income information was collected in DM before the year 2002 (the year the Euro was implemented) and recoded into Euro later on (SOEP group, 2016). The wording of the initial question in the 2002 survey is as follows: "If you take a look at the total income from all members of the household: how high is the monthly household income today? Please state the net monthly income, which means after deductions for taxes and social security. Please include regular income such as pensions, housing allowance, child allowance, grants for higher education support payments, etc. If you do not know the exact amount, please estimate the amount per month" ${ }^{20}$. Each respondent was asked to give an answer in the exact amount of Euro per month ${ }^{21}$.

[^13]The fourth problem comes from a dependence of individual welfare on family conditions and household size. Literature in economics suggests an implication of equivalence scales both for income and consumption to assign a proper level of welfare to a household (Khandker and Haughton, 2009; Pendakur, 1999; Pollak and Wales, 1979; Ravallion, 1998). To measure individual welfare, these equivalence scales first consider the number of adults and children in a household, then some of them add additional components such as family members with special needs. The OECD suggests three scales based just on the number of adults and children in a household: "OECD equivalence scale" (1982), "OECD-modified scale" (1994), "Square root scale" $(2011)^{22}$. Table 5.7 compares the key characteristics of the four types of scales including "per capita income".

The theoretical discussion about the measurement of income made me opt for one main and two additional measures. To reduce possible problems with measurement, I use monthly household net income weighted on the OECD-modified scale as the OECD and Eurostat do in order to trace the effect of income growth in my study. The other two measures, unadjusted household income (column 5) and per capita income (column 1), I use for the robustness check.

The OECD-modified scale (used as the main measure of income in the study) assigns different weights to each person in a household (1 to a household head, 0.5 to other household members older than 14 years, 0.3 to children) and the final number indicates how many times higher the income of a given household would need to be in order to be equal in welfare to a household which has the same amount of income and consists only of one person. Interpreting numbers in Table 5.7 we can say that a household which consists of 2 adults and 3 children requires 2,4 times more income compared to a household where there is just one member.

Based on the monthly household net income weighted on the OECD- modified scale I divided the sample into 10 equal parts to trace the effect of income mobility. Table 5.8 provides us with the substantial meaning of the decile scale used for this purpose and presents monthly mean household net income for each of the ten decile groups with the same measures rescaled per capita.

[^14]Table 5.7-OECD equivalence scales for household income ${ }^{23}$

Household size	Equivalence scale				
"Oxford" scale per-capita income	"OECD- ("Old OECD scale")	Square root modified" scale	Household scale income		
	1	1	1	1	1
	2	1.7	1.5	1.4	1
	3	2.2	1.8	1.7	1
2 adults, 3 children	4	2.7	2.1	2.0	1
Elasticity ${ }^{l}$	5	3.2	2.4	2.2	1

Table 5.8-Mean income for each decile

Deciles	Monthly household net income		Monthly household net income perCapita	
	1997	2002	1997	2002
1	856	901	340	399
2	1265	1350	465	547
3	1502	1637	540	637
4	1714	1871	618	719
5	1922	2091	695	804
6	2102	2340	777	900
7	2337	2590	870	1018
8	2639	2925	993	1161
9	3080	3423	1171	1372
10	4413	4862	1780	2034
Total	2180	2398	824	959

[^15]
CHAPTER 6. Transition into unemployment and demand for redistribution

1. Rationale

Unemployment, involuntarily job termination and worker layoffs are traditionally considered as a measure of individual risk exposure and an indicator of reduction in individual income and consumption (Moffit, 2015). Individual job loss associated with a period of unemployment also causes other social disadvantages and leads not only to a drop in income (Farber, 2010), but also to a decay in both subjective well-being on the one hand (Hasenfeld and Rafferty 1989; Cusack, Iversen, and Rehm 2006; Clark 2003; Leopold, Leopold, and Lechner 2017) and an impairment of health (Turner, 1995), of mental health (Creed and Reynolds, 2001; Gebel and Voßemer, 2014; Jahoda, 1982; McKee-Ryan, Song, Wanberg, and Kinicki, 2005; Paul, Geithner, and Moser, 2009) and decay in demographic characteristics including family tension (Brand, 2015) and life expectancy (Sullivan and von Wachter, 2009) on the other. Another body of literature affirms that a vulnerable position in the labour market determines individual political preferences and attitudes (Cusack et al., 2006; Iversen and Soskice, 2001; Rehm, 2009, 2016). These arguments can support the initial hypothesis about vulnerability in the case of unemployment leading to a higher demand for redistribution.

However, all the developed economies including Germany implemented unemployment benefit schemes to minimise negative consequences of unemployment, risk exposure and support individual consumption at a reasonable level. Moffit (2015) showed that net income replacement rates in the first year after job loss in Germany in 2005 were 70%. This means that relative financial security after transition into unemployment buffers the negative consequences of a disadvantaged social position. Besides, individual consumption depends not only on a person's own benefits and
earnings, but also on their partner's and total household income (Häusermann, Kurer, and Schwander, 2016; Pollak, 2003) as well as wealth, including savings (Moffit, 2015). This is evidence that individual vulnerability in the case of unemployment depends on structural conditions, welfare arrangements in a society and family conditions. These arguments can undermine a strong hypothesis based on self-interest. Previous arguments about rational learning are still valid. However, the direction of changes in preferences may be determined not only by individual insecurity and demand but also by the supply from the welfare state and family support. If the welfare pillow buffers the existential shock, the change in preferences may not be that dramatic.

These arguments lead me to test two competitive hypotheses. The null hypothesis proposes no association between a transition into unemployment and an increase in preferences for redistribution: a person does not change preferences for redistribution after transition into unemployment. This hypothesis relies at first on the idea that a person is nested in a family and depends not just on their own income but on family welfare, which may buffer the effect of unemployment. Second, individuals assess their own risk exposure and asks for higher redistribution if they estimate their own situation in the labour market as vulnerable and treat the situation of unemployment as possible even before unemployment. As a result, transition does not change individual attitudes. The alternative hypothesis is that a person increases their own demand for redistribution after a transition into unemployment. This hypothesis assumes that after a transition into unemployment, a person becomes more interested in redistribution because it increases their benefits.

Two recent publications approach issues similar to the key question of my study: identification of the direct effect of unemployment on individual preferences for redistribution. Owens and Pedulla (2014) approached this issue using panel data from the General Social Survey collected in 2006, 2008 and 2010 including the question "Some people think that the government in Washington ought to reduce the income differences between the rich and the poor, perhaps by raising the taxes of wealthy families or by giving income assistance to the poor. Others think that the government should not concern itself with reducing this income difference between the rich and the poor" (7point scale). They concluded that preferences for redistribution may change in response to exogenous shocks such as unemployment. They claimed that Americans who experienced negative
shocks expressed higher support for redistribution compared to those who did not. The important finding of the paper is that a transition into unemployment leads to an increase in demand for redistribution by 0.51 points on a 7 -point scale.

Naumann, Buss and Bahr (2016) traced welfare policy preferences of the Dutch in the time of the Great Recession and claimed that the data from the Dutch "Longitudinal Internet Studies for the Social Sciences" (LISS) panel provided strong support for the hypothesis that "people adapt their political preference to their material circumstances". They utilised the following question to measure support for welfare policies: "People have different views on what the responsibilities of the government should or should not be. For each of the tasks below please indicate on a score of $0-10$ how much responsibility you think the government should have". The tasks are "ensuring a job for everyone who wants one", "ensuring adequate health care for the sick" and "ensuring a reasonable standard of living for the old". They compared public demand for unemployment benefits in 2008 and 2013 estimating fixed-effects models and found that in cases of temporary unemployment a person increased her demand by 1 point and those that lost their job by 0.75 point on an 11-point scale. They argued that a person changes their own preferences only if there is a direct material shock directly affecting the person's life. According to this logic, the experience of unemployment will lead to changes in preferences for redistribution only in favour of the unemployed, but not the sick or the elderly. In cases of unemployment, the Dutch don't change their preferences for redistribution in favour of the sick, or the elderly. However, regression coefficients show positive and a substantial association between a transition into unemployment and support of health care (0.37) and pensions (0.28) though the association is insignificant. For those who are temporarily unemployed this relationship is even stronger: 0.68 and 0.45 .

Both studies treated data collected during and after the Great Recession, which means that individual preferences may be affected not only by individual objective risk exposure, but also the general situation of uncertainty and subjectively perceived risk exposure. Owens and Pedulla employed the data collected in 2006, 2008 and 2010 and Naumann, Buss and Bahr in 2008 and 2013. This means that the subjects were not affected by the negative consequences of the Great Recession in 2006, and also that we may expect that the effect of the Great Recession in 2008 was not all that strong, since the crisis was just starting at the time. In contrast, the subjects experienced the negative consequences of the Great Recession after 2008 and the data collected in 2010 and

2013 may be strongly affected by individual experience, the general situation of economic uncertainty and mass media. This means that we cannot properly distinguish between different dimensions of risk exposure: either changes in preferences were driven by shocks in the labour market or multiplied by macro shocks on a societal level.

To make a clear cut, in this chapter I focus on individuals who transitioned into unemployment in a relatively stable society before the Great Recession to separate the effect of individual experience from the effect of macroeconomic crisis. The study of the German subsample will provide external validity for previous findings.

2. Results

2.1. Descriptive statistics

The starting point to understand whether there is a change in preferences linked to the transition in and out of unemployment is a basic description of the dynamics between two periods. For this purpose, I have estimated the difference between individual preferences for redistribution in the $1^{\text {st }}$ and $2^{\text {nd }}$ period, and plotted this difference for the four transition groups. Figures 6.1 to 6.5 show how the members of four transition groups changed their preferences for redistribution in favour of those who are unemployed, the sick, those who have a family, the elderly and those requiring care. The initial hypotheses argued that after a transition into unemployment, people increase their demand for redistribution in favour of all disadvantaged groups because of their own vulnerable position, as they encounter financial, social and even possibly health problems. However, as we can see, most people from the all four transition groups kept their preferences in the second period at the same level as in the first period. The percentage of those who kept the same level of support in favour of the unemployed is between 42-45\% both in the group of permanently employed people and among those who lost their jobs in the second period, both in West and East Germany. The most surprising thing is that among East Germans who lost their jobs, the share of those who decreased their demand for redistribution (24% for 1 point, 5% for 2 points) is larger compared to those who increased their demand (20% for 1 point, 5% for two points). The transition group of those who found a job in the second period follows the same pattern: 30% decreased support by 1 or 2 points vs. 24% who increased their support. The last case may be explained as self-interest, however, the similar trend for all the transition groups makes the explanation less straightforward. For the West subsample, the change of preferences happened in the opposite direction. The share of those who increased their demand for redistribution in favour of the unemployed was slightly larger compared to those who decreased their demand both in the subsample of those who found a job (28% vs. 31%) and those who lost their jobs (27% vs. 31%).

Figure 6.1 - Change in demand for redistribution in favour of the unemployed

We can expect that people who transitioned into unemployment might encounter health problems and problems with medical services. Their vulnerable position might make them ask for more social security in case of sickness. Yet, the opposite situation can be seen: the share of those who decreased their demand for redistribution in favour of the sick was larger among those who transitioned into unemployment in the West (Figure 6.2). In the East, the share of those who increased their demand for this type of redistribution is the same as the share of those who decreased it. All other transition groups showed a slight increase in demand for redistribution in favour of the sick.

Figure 6.2 - Change in demand for redistribution in favour of the sick

The West and East subsamples show different directions of changes in preferences for redistribution in favour of the family. Among West Germans, demand for redistribution in favour of the family increased in the subsample of the permanently employed and those who transitioned into employment: 2-7\% more compared to those who reduced demand. At the same time, a large share of West Germans who experienced unemployment in both periods decreased their support by 1-2 points: 37% decreased their support vs. 23% who increased it. Within the subsample of those who transitioned into unemployment, the number of those who changed their preferences in one direction or another is equal: 30%. In the subsample of East Germans, the share of those who increased support of this program is almost the same as the share who decreased the support in all four transition groups.

Figure 6.3-Change in demand for redistribution in favour of the family

Figure 6.4 depicts the change in demand for redistribution in favour of old people. The trend is universal for all transition groups: the share of people who reduced their demand in all the cases is larger compared to those who increased it. Among East Germans, the share of permanently employed people who reduced demand for redistribution in favour of the old by 1-2 points is 30% vs. 25% who increased the demand, among those who found a job in the second period 31% vs. 23%, among those who lost a job 33% vs. 21% and among those who had an experience of unemployment in two periods 31% vs. 24%. However, in the subsample of West Germans only those who were unemployed in two periods reduced their demand for redistribution in favour of old people substantially: 34% vs. 21% who increased their demand. The other transition groups of West Germans did not show a big difference in the number of those who decreased and increased their demand for redistribution in favour of old people: the difference does not go beyond 2%. This type of social insurance does not relate to immediate benefits and maybe some people do not consider themselves as possible recipients of it.

Figure 6.4 - Change in demand for redistribution in favour of old people

There is no universal trend in the demand for redistribution in favour of those needing care (Figure 6.5). Support for social programs oriented towards people who need care became more popular in the subsample of permanently employed (24% vs. 27%) and those who found a job (24% vs. 29%) in West Germany and unemployed in two periods in East Germany (26% vs. 31%). To the contrary, among West Germans who lost jobs and those who were unemployed in two periods, the share of those who decreased their demand was larger: 28% and 31% vs. 22% and 22% who changed their preferences in a positive direction. The same is relevant for the subsample of permanently employed people and those who found a job in the East subsample: 30% and 32% vs. 25% and 23%.

Figure 6.5 - Change in demand for redistribution in favour of people requiring care

As we can see, it is difficult to define the common pattern of changes. Every time the change is specific for each dimension of social policy and type of sample. What is clear from this descriptive analysis is that the subsample of people who transitioned into unemployment differs only insignificantly from other transition groups: unemployment can be followed both by increase and decrease in a demand for redistribution. Regardless of the fact that more than a half of the respondents changed their preferences over time, the balance between those who changed their preferences in favour of redistribution and against it is pretty stable across all the four transition groups. If we focus precisely on the subsample of the people who transitioned into unemployment, we can see that in most cases, the difference between those who increased and decreased their demand for redistribution does not exceed 5%. There are just two exceptions. Among East Germans who lost a job, the share of those who decreased demand for redistribution in favour of old people is 11% larger compared to those who increased support for this program. The other case is observed among similar transition group of West Germans: the share of those who decreased
their demand for redistribution in favour of those needing care is 6% higher compared to those who increased the demand (28% vs. 22%).

This descriptive analysis suggests a negative answer to the question of whether self-interest shapes preferences for redistribution in cases of unemployment. The self-interest hypothesis can find weak support in the West subsample of those who transitioned into unemployment: a share of those who increased their support for redistribution in favour of unemployed was 4% larger (31%) compared to those who changed their opinion in the other direction (27\%). In the Eastern subsample this regularity does not hold: there are more people who transitioned into unemployment and reduced their own support for redistribution in favour of the unemployed (30\%), and there are fewer people who increased their support (26\%) in the similar situation.

To make the picture clearer, I will use regression models to compare variation across different demographic groups. Afterwards, in the second stage, I will implement a within-subject research design and will follow preferences for redistribution of the same subjects over time by means of fixed effects models.

2.2. The effect of previous, current and future experience of unemployment on preferences for redistribution

The current section relates my findings to what was established in earlier publications. Table 6.1 presents the results for the empirical tests of the effect of current (model 1 for 1997 and model 5 for 2002), past (model 2 for 1997 and models 6, 7, 8 for 2002), objective future (model 3 for 1997) and both past and future mobility on preferences for redistribution (model 4 for 1997). The Table 6.1 provides only the coefficients we are interested in. Full specifications with traditional baseline controls are available in the appendix (Tables A6.1-A6.8).

Table 6.1, therefore, summarises the output for forty models: each row reports coefficients for the effect of preferences for redistribution in different specifications for five dependent variables put in five columns. This output presents the coefficients for the pulled data since the models control for differences between the West and the East. The output for models 1 and 5 make it clear that the available data show a very weak association between current unemployment and demand for redistribution for a few social programs. There are only three statistically significant associations:
current unemployment positively correlates with the demand for redistribution in favour of the family ($0.1, \mathrm{p}<0.05$), correlates negatively with the demand for redistribution in favour of those needing care $(-0.08, \mathrm{p}<0.05)$ and positively in 2002 with the demand for redistribution in favour of the unemployed ($-0.09, \mathrm{p}<0.05$). Even these associations are time dependant (the first two cases are reported for 1997 and the third for 2002) and substantially add very little to make a strong claim: the largest difference between the employed and the unemployed is only 0.1 on the five point scale.

To identify the effect of past experience of unemployment I ran separate models for the years 1997 and 2002. I used different measures for the experience of unemployment for these years: for the year 1997, I estimate the effect of the experience of unemployment during the five preceding years from 1992 to 1996, and for the year 2002 I estimate the effect of experience for the ten years from 1992 to 2001. Apart from that, for an additional test of the effect of the experience of unemployment, I have added duration of unemployment for the measures in 2002. The output for model 2 in Table 6.1 reports coefficients for the experience of unemployment in the 5 years before 1997: all the coefficients are positive and four of the five are significant. However, though significant, these coefficients are very small and do not exceed 0.06 on a scale of $1-5$. The similar regularity is typical for the effect of the experience of unemployment within the preceding ten years on the five proxies of preferences for redistribution in 2002: all the coefficients are positive and three out of five are significant, but all of them are very small (Model 6). Results for model 7 explore how the duration of unemployment affects preferences for redistribution. The positive and significant association is established only for the demand for redistribution in favour of the unemployed, family and those needing care: one year of unemployment increases the demand for redistribution in favour of these social groups by 0.02 on average, which means that the difference in preferences for redistribution between those who are permanently employed and unemployed for 10 years would only be 0.2 points. This difference is very small and the substantial interpretation does not allow us to say that this result is meaningful. According to the data, a person will increase their demand for redistribution by 1 point only after 50 years of unemployment. Nonetheless, the data show that there is a slight difference in demand between groups of employed and unemployed, and there is a slight effect of self-interest.

Model 3 aspires to test whether future risk exposure positively correlates with the demand for
redistribution. I use objective future unemployment to trace if actual risk exposure determines a higher demand for redistribution. The data do not provide clear support for the objective POUM hypothesis. The coefficients for model 3 in the Table 6.1 explain that objective future unemployment does not associate with current level of the demand for redistribution in favour of the unemployed. Future unemployment increases individual support for this type of redistribution by 0.02 points and this increase is statistically insignificant. At the same time, future unemployment associates positively with the main elements of the welfare mix: demand for redistribution in favour of the family $(0.06, \mathrm{p}<0.1)$, the sick $(0.09, \mathrm{p}<0.01)$ and the elderly (0.07 , $\mathrm{p}<0.05$).

As we can clearly see from Table 6.1, coefficients both for current, past and future unemployment are very weak and not always significant. Generally, this conclusion does not deviate much from the results in previous publications. Alesina and Fuchs-Schündeln (2007) employed the same GSOEP data and estimated probit models for the same 5 types of preferences for redistribution: when unemployed $(0.16<0.001)$, when sick (0.005), of the family $(0.14,<0.001)$, when old (0.005), when requiring care (-0.03). Their results perfectly associate with mine as presented in Table 4.2. However, the coefficients became smaller when the binary scales of the dependent variables were substituted with the original 5-point reversed scales (Table 4.4). The other comparisons are available if required.

Table 6.1 - Effect of current, past and future experience of unemployment on preferences for redistribution

2 years $(\mathrm{N}=433)$	0.050	-0.024	0.010	-0.037	-0.020
	(0.043)	(0.041)	(0.045)	(0.043)	(0.040)
3 years $(\mathrm{N}=296)$	0.032	0.063	0.066	0.034	0.009
	(0.051)	(0.049)	(0.053)	(0.051)	(0.048)
4 years $(\mathrm{N}=171)$	$\mathbf{0 . 1 4 2 * *}$	0.026	$0.206^{* * *}$	0.083	0.022
	(0.067)	(0.065)	(0.070)	(0.068)	(0.063)
5 years $(\mathrm{N}=103)$	0.064	-0.035	0.064	0.016	0.054
	(0.082)	(0.080)	(0.086)	(0.084)	(0.078)
6 years $(\mathrm{N}=64)$	0.118	$\mathbf{0 . 1 9 7 *}$	0.139	0.143	0.152
	(0.105)	(0.102)	(0.110)	(0.106)	(0.099)
7 years $(\mathrm{N}=42)$	0.043	0.012	$\mathbf{0 . 2 6 2 *}$	-0.061	0.028
	(0.131)	(0.128)	(0.138)	(0.134)	(0.125)
8 years $(\mathrm{N}=23)$	0.145	0.219	0.134	$\mathbf{0 . 3 9 1 * *}$	0.236
	(0.170)	(0.165)	(0.178)	(0.172)	(0.161)
9 years $(\mathrm{N}=15)$	0.074	0.029	0.039	-0.202	0.330^{*}
	(0.188)	(0.183)	(0.197)	(0.191)	(0.178)
10 years $(\mathrm{N}=8)$	0.432	-0.216	0.179	$-0.743^{* *}$	-0.138
	(0.299)	(0.291)	(0.313)	(0.304)	(0.283)
11 years $(\mathrm{N}=3)$	0.725	0.013	$\mathbf{1 . 6 2 3 * * *}$	0.695	$0.71 \mathbf{n}^{*}$
	(0.458)	(0.445)	(0.480)	(0.465)	(0.434)
Observations	7721	7724	7727	7738	7736

[^16]
2.3. The effect of transition into unemployment on preferences for redistribution:

A longitudinal approach

The last test for the rational learning hypothesis and the effect of self-interest on preferences for redistribution is based on a within-subject analysis. The current section attempts to clarify whether transition into unemployment leads to an increase in preferences for redistribution, namely whether a person reshapes their own preferences in view of their own vulnerability and self-interest. This approach compares individual preferences of a person with her own preferences at an earlier time point.

Table 6.2 presents estimates for the equation (9) (p.161) and results of fixed effect model. Here I evaluate the effect of a transition into unemployment without additional controls separately for West and East Germans. Data show that generally people who transitioned into unemployment did not change their preferences significantly compared to their permanently employed counterparts. In the case of job loss, both East and West Germans demonstrate very little increase in demand for
redistribution in favour of the unemployed (0.03 and 0.07), but this effect is statistically insignificant. In turn, those who became unemployed decrease their support for redistribution in favour of the sick. For East Germans, this reduction is very little and insignificant, but for West Germans, the effect of unemployment is much stronger ($-0.13, \mathrm{p}<0.1$). There is no common pattern in the West and East subsamples on how unemployment affects other dimensions of redistribution preferences: while East Germans have a negative sign for redistribution in favour of old people ($0.03)$, West Germans have a negative sign for the family (-0.02) and those requiring care (-0.1). On the contrary, the transition into unemployment of East Germans leads to a slight increase in support for family programs (0.07) and redistribution in favour of those requiring care (0.8), and of West Germans to a very small increase in support of pension programs (0.03). What is common in all cases is that the coefficients are very small and insignificant. If we look at the unconditional effect of unemployment, we get little empirical confirmation of the rational learning hypothesis. As far as I have not find a substantial effect of transition in both groups I did not try to compare these effects statistically.

As we know, unemployment associates with other negative events in human life. The most important negative consequence of unemployment may be a drop in income. The other possible factors which intervene in individual life together with unemployment and define individual preferences for redistribution may be a change in household size, marital status or years of education. However additional controls for these time varying covariates did not change the final conclusion.

Table 6.2-The effect of transition into unemployment on preferences for redistribution
East Germans

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old Age	When Requiring Care
Unemployed	0.034	-0.014	0.069	-0.025	0.083
	(0.064)	(0.063)	(0.067)	(0.066)	(0.063)
Year 2002	$-0.076^{* * *}$	0.010	-0.020	$-0.072^{* * *}$	$-0.061^{* * *}$
	(0.023)	(0.023)	(0.025)	(0.024)	(0.023)
Constant	$4.105^{* * *}$	$3.578^{* * *}$	$3.492^{* * *}$	$3.628^{* * *}$	$3.665^{* * *}$
	(0.015)	(0.015)	(0.016)	(0.016)	(0.015)
Observations	4,374	4,373	4,374	4,382	4,384
R-squared	0.006	0.000	0.001	0.006	0.004
Number of pers.nr.	2,424	2,426	2,426	2,424	2,425

West Germans

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old Age	When Requiring Care
Unemployed	0.074	-0.129^{*}	-0.018	0.027	-0.096
	(0.070)	(0.066)	(0.075)	(0.070)	(0.066)
Year 2002	0.007	$0.092^{* * *}$	0.004	-0.018	$0.041^{* * *}$
	(0.017)	(0.016)	(0.018)	(0.017)	(0.016)
Constant	$3.812^{* * *}$	$3.314^{* * *}$	$3.223^{* * *}$	$3.376^{* * *}$	$3.451^{* * *}$
	(0.011)	(0.010)	(0.012)	(0.011)	(0.011)
Observations	8,425	8,431	8,427	8,436	8,432
R-squared	0.000	0.009	0.000	0.000	0.002
Number of pers.nr.	4,596	4,598	4,597	4,600	4,597

Note: Estimates are from fixed effects models. Source: G-SOEP, subsamples of permanently employed and transited into unemployment. DV is measured on a scale of 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Standard errors in parentheses, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.

3. Conclusion and discussion

The current chapter tested the rational learning theory and the social insurance approach, predicting that individual self-interest determines individual preferences for redistribution. In line with this theory, individuals are expected to increase their own demand for redistribution in a situation of social and income risk exposure. I estimated how the experience of unemployment determines and changes individual demand for redistribution. I took a transition into unemployment as a shock and, according to the theory, expected that a person would increase their demand for redistribution in favour of the unemployed as well as in favour of the family, those needing care and the sick because of individual vulnerability in the situation of unemployment. However, empirical evidence does not meet the expectation. Neither descriptive statistics nor a cross-sectional or longitudinal approach provided us with arguments indicating a strong association between individual self-interest and preferences for redistribution. Previous experience of unemployment and years of unemployment indeed positively and significantly associates with individual demand for redistribution in favour of the unemployed. Yet, the coefficients are very small and add little to the substantial explanation. The OPOUM hypothesis was not confirmed either: a future experience of unemployment did not correspond to individual demand for redistribution in favour of the unemployed, but positively associates with individual support of redistribution in favour of the family, the sick and the elderly. The expected results were not present after longitudinal tests either: a transition into unemployment leads only to a very slight and statistically insignificant change in preferences for redistribution.

This counterintuitive conclusion may have arisen for several possible reasons. The first is effective social policy preventing a transition into poverty in cases of unemployment in Germany. Moffit (2015) claimed that unemployed workers experience only a $2,7 \%$ drop in consumption. This claim undermines the general idea of taking an experience of unemployment as a negative shock since a person does not meet the existential problem of survival and support of individual consumption. The other reason may be family circumstances: a person is nested in a family where income and wealth is distributed among family members. In cases of unemployment, a person may receive financial support from family and be protected against existential risks. The third possible reason why a person does not change their own demand for redistribution after transition into
unemployment is initial awareness about individual risk exposure: if a person is a member of a social group where unemployment risks are high, a person shapes higher demand for social support even before the transition into unemployment and maintains this demand high over time. A person does not perceive the transition into unemployment as a shock as far the person was permanently in danger of unemployment and familiar with the experience of their fellow workers. Even if a person has a positive experience of social protection and appreciates the quality of government welfare services, the person might shape their own attitudes before the transition and maintain high support for government welfare intervention after transition.

Moffit (2015) provided some statistics affirming that the state welfare buffer is not available to all workers, but only for those who have unemployment benefits and allowances. Workers who are not entitled to welfare support in the case of unemployment reduce consumption by more than 22%. This argument brings to light the second problem of a dualization of the labour market (Esping-Andersen, 1996) and sample identification. The design of the panel study assumes a survey of the same people over time, which means that there is a higher likelihood of settled people being in the sample than those who are mobile. In turn, settled people are expected to be engaged in a more or less stable labour market relationship, are entitled to social protection in cases of unemployment and may expect to have family support. On the contrary, people who are engaged in atypical and precarious employment are more mobile and are less likely of being selected for the survey. This type of employment relationship leads to the deprivation of social protection of this group of workers (Bernardi and Garrido, 2008; Eichhorst and Marx, 2010; Rueda, 2005). For this sample I only selected native-born Germans to eliminate any bias caused by a migration background. This selection covers a large portion of insiders in the labour market and the welfare state, which means that my sample only includes individuals who meet minimal exposure to social risks, have social protection in cases of unfavourable life conditions and have no experience of a shock strong enough to change their preferences.

The time frame of the study may also affect the final results. The dualization of the labour market in Germany has been developing especially over the last fifteen years, but my study covers the period from 1997 to 2002, the time when the majority was still involved in a stable labour market relationship. In this case, a person may have pro-redistributive attitudes even before the experience of unemployment as it may be a product of average preferences of her social group or class with
whom she shares similar social risks. In this case, even if a person receives unemployment benefits at some point and finds them helpful, the person may not increase demand because the level of demand for redistribution was already high before the transition and stays at the same level over time.

Consequently, the absence of a salient association between unemployment and individual preferences for redistribution established in the study may proceed from three main problems. The first problem is identification: the selection into sample and the timeframe. The second problem may proceed from Germany's welfare performance: a large share of people does not feel negative shocks, do not reduce their consumption and, as a result, do not change their preferences. Third, awareness about the high probability of unemployment and the experience of one's counterparts: high demand for redistribution is shaped before a transition into unemployment and remains high after it.

The problems just mentioned closely relate to each other. In the final section, I discuss the association between individual material vulnerability and unemployment. As we can see, unemployment does not always associate with exposure to social and income risks, which means that the rational learning argument cannot be rejected here. The following chapter aims to associate individual preferences for redistribution with actual material vulnerability measured by income.

CHAPTER 7. Income growth and demand for redistribution

1. Rationale

In this chapter, I extend the analysis of self-interest by focussing on changes in income. As we could see, transition into unemployment does not substantially transform individual preferences for redistribution. There two possible reasons why this measure of self-interest does not show an expected association with preferences. First, individuals can be aware about their risk exposure and they can a higher demand for redistribution even before a transition into unemployment. Second, a welfare buffer provided by the state or family can prevent an existential shock and a drop in individual consumption. To overcome this problem, I will trace individual income growth as far as it has been traditionally treated as the best indicator of individual material welfare.

Based on the self-interest hypothesis and as explained by the rational learning theory, an individual is expected to reduce his own preferences for redistribution as soon as he earns a higher income. However, several studies do not confirm this claim. Fong, Bowles, and Gintis, (2006) considering predictors of support for redistribution, concluded that personal income explains the variation of preferences for redistribution poorly. According to their claim, which is supported by evidence from behavioural experiments and surveys, personal support for redistribution is not determined very much by individual self-interest, but by individual propensity towards strong reciprocity. Normative framing of the poor, namely the idea that they deserve welfare benefits and to take individual responsibility for their unfavourable situation, is the better determinant for demand for redistribution compared to pure self-interest.

Alt and Iversen (2017) proposed that self-interest has an indirect effect on the demand for redistribution through individual risk exposure. According to this model, income doesn't linearly affect preferences. Based on a log function of utility, they claimed that the marginal utility of money gets less explicit with a rise in income. Consequently, higher income groups are willing to contribute more to the common welfare since altruistic gains of spending on social needs and redistribution is the same for all income groups, but for higher income groups it is easier to contribute because they lose less in relative value: "the marginal utility of money declines as the level of income rises, although the (altruistic) utility gain of a dollar spent on the poor is the same across the income scale, those with higher income are willing to pay more into the system than those with lower income" (Alt and Iversen, 2017, p. 24). The argument about a decrease of marginal utility of money with a rise in income can shape an alternative hypothesis to the hypothesis that there should be a direct negative association between income and preferences for redistribution. Here we could expect a u-shaped association between income and preferences for redistribution, when people on the lower and upper parts of the income distribution would demonstrate higher demand for redistribution, compared to those who are in the middle. To identify the nonlinear effect of income growth, I will trace it within different income groups in the final stage of my research.

Other papers have, however, provided evidence of a significant negative association between individual preferences and individual income stance (Owens and Pedulla, 2014). However, as in the case of unemployment, individual income can be associated with redistribution preferences not directly but determined by a third variable or other unmeasured causes (Doherty, Gerber, and Green, 2006; Owens and Pedulla, 2014). To overcome the omitted variable bias I employ a longitudinal research design and fixed effects models, as in the previous chapter.

2. Results

In this chapter, I study the effect of a change in disposable income on individual preferences for redistribution. The operationalisation part has already reported that for this purpose, I employ monthly household net income in Euros reported by the head of household for the whole household ${ }^{24}$.

To respond to the criticism that the measure of individual welfare is not a household income on the one hand and not an income per capita on the other, further on, I use a conventional measure of income - the mean income weighted on the modified OECD scale. I use two other measures of income (unadjusted net monthly household income and income per capita) for a robustness check. The analysis is performed in four steps: cross-sectional comparisons, fixed effects regressions, fixed effects regressions for upward mobile individuals and fixed effects regressions for lower, medium and higher income deciles to catch possible nonlinear regularities.

2.1. The effect of previous, current and future income: a cross-sectional approach

To relate my findings to previous publications and my own results in chapters four and six, I start with a test of associations between income and individual preferences for redistribution among Germans as a whole sample with controls for West and East Germans. Table 7.1 presents results of 5 OLS models aimed to test, first, the effect of current income in 1997, second, the effect of previous income, and third, the objective POUM hypothesis. Models four and five are applied for 2002: the fourth model for the current income and fifth for income in the previous ten years is divided into three periods.

The current chapter treats income as deciles (10 categories) calculated on average income for the three preceding years. All the associations are highly significant. However, the substantial

[^17]interpretation does not allow us to treat income as a strong predictor of preferences for redistribution: the difference in preferences between the lower and upper income decile is only 0.2 points for demand for redistribution in favour of the unemployed, the family and those requiring care and 0.3 for demand for redistribution in favour of the sick and old.

To justify my results, I need to compare and relate them to what has been established so far. The review of numerous papers did not allow me to find many references. However, two papers exploited similar measures of variables and published coefficients very similar to my own. Jæger (2006) used Canadian panel data of the Equality, Security, Community (ESC) survey and estimated the association between income deciles and two measures of support of welfare state principles ("reduce income differences" ${ }^{25}$ and "provide a decent standard of living" ${ }^{26}$). The reported association between income and two proxies for preferences for redistribution is from -0.02 to -0.08 in different specifications and all are significant ($p<0.001$). Reeskens and van Oorschot (2015) established a similar association on data of the European Social Survey. They took a latent scale based on 6 questions as a dependent variable: "People have different views on what the responsibilities of governments should or should not be. For each of the tasks, I read out please tell me on a score of $0-10$ how much responsibility you think governments should have. 0 means it should not be governments' responsibility at all and 10 means it should be entirely governments' responsibility. Firstly to.. (i) jobs for everyone who wants one, (ii) adequate health care for the sick, (iii) a reasonable standard of living for the old, (iv) a reasonable standard of living for the unemployed, (v) sufficient childcare services for working parents, and (vi) paid leave from work for people who have to take care of sick family members is provided" (each item is estimated on 11-point scale). To identify the effect of income they employed a traditional ESS harmonized 10 -point scale. The effect reported in their paper is equal to -0.03 ($p<0.001$). This comparison shows that my results are consistent with previous findings.

My results with a reference to previous publications lead me to a conclusion that individual income correlates to preferences for redistribution. But at the same time, the association is very weak

[^18]though robust and significant.

The estimates for the association between previous income and individual preferences for redistribution are provided in row 2 . The second model reveals the effect of average income from 1992 to 1994 on preferences in 1997 and shows that even if controlled for current income, past income also determines individual preferences for redistribution in favour of the unemployed ($0.01, \mathrm{p}<0.05$) and the family ($-0.011, \mathrm{p}<0.05$). In turn, the model for 2002 exposes different associations. Previous income still determines demand for redistribution in favour of the family, but the association between previous income and demand for redistribution in favour of the unemployed became virtually zero. Instead of financial security when unemployed, in 2002 previous income determines preferences for financial security when old. This change can be explained by the aging of the sample group since I studied the same subjects. At the same time, I could not establish an association between previous income and demand for financial security in cases of sickness and need for care, either in 1997 or in 2002. Moreover, I could not identify an effect of long-term income on individual preferences: neither average income from 1995 to 1997 nor average income from 1992 to 1994 determines preferences for redistribution in 2002.

Model 3 tests for the objective "prospects of upward mobility hypothesis" and provides some confirmation for it. The individual upward income trend leads to a decrease in demand for financial security in case of sickness $(-0.02, \mathrm{p}<0.01)$, old age ($-0.01, \mathrm{p}<0.01$), need of care $(-0.02, \mathrm{p}<0.01)$ and for family $(-0.01, \mathrm{p}<0.1)$. These associations are very weak and do not go beyond 0.02 points for a one decile change, however, they still highly significant.

Table 7.1 - The effect of current, previous and future HH net income (deciles based on averaged income for $\mathbf{3}$ years) on demand for redistribution

		(2)	${ }^{\text {(3) }}$ For Family	(4)	(5) ${ }^{\text {When }}$ Requiring Care
VARIABLES	When Unemployed	When Sick	For Family	In Old Age	When Requiring Care
RP in 1997					
1. HH net income decile in 1995-1997	-0.019***	-0.033***	-0.019***	-0.033***	-0.021***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Observations	9571	9567	9560	9579	9578
2. HH net income decile in 1995-1997	-0.010*	-0.030***	-0.010*	-0.027***	-0.017***
	(0.005)	(0.005)	(0.006)	(0.005)	(0.005)
HH net income decile in 1992-1994	-0.010**	-0.003	-0.011**	-0.007	-0.005
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)

Observations	9121	9118	9111	9130	9129
3. HH net income decile in 1995-1997	-0.016***	-0.021***	-0.015***	-0.026***	-0.007
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
HH net income decile in 2000-2002 (OPOUM)	-0.004	-0.017***	-0.008*	-0.013***	-0.018***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)
Observations	7968	7965	7962	7972	7973
RP in 2002					
4. HH net income decile in 2000-2002	-0.019***	-0.031***	-0.029***	-0.030***	-0.021***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Observations	8412	8413	8419	8425	8424
5. HH net income decile in 2000-2002	-0.015**	-0.026***	-0.016**	-0.016**	-0.016***
	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
HH net income decile in 1998-1999	0.000	0.004	-0.012*	-0.014**	0.004
	(0.007)	(0.007)	(0.007)	(0.007)	(0.006)
HH net income decile in 1995-1997	-0.006	-0.006	-0.006	-0.005	-0.006
	(0.007)	(0.007)	(0.007)	(0.007)	(0.006)
HH net income decile in 1992-1994	0.001	-0.007	-0.002	0.003	-0.006
	(0.005)	(0.005)	(0.006)	(0.006)	(0.005)
Observations	7464	7467	7470	7476	7476

Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale 1-5 ("1" corresponds to "only private forces", " 5 " to "only the state"). Standard errors in parentheses,*** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05$, * $\mathrm{p}<0.1$. All estimates are controlled for: sex, age, age squared, East Germany, education, number of children in a HH, number of adults in HH, marital status, log HH income, occupation.

I have replicated the analysis and used the other measures of individual welfare. To capture individual welfare, I took income per capita and weighted mean HH income based on the OECDmodified scale to be more certain about the life conditions of an individual. This transformation did not change the character of the main associations. The basic findings are similar to the ones presented in the previous table: the effect of current income is weak substantially. Tables are available in the appendix (Table A7.1 and Table A7.2).

2.2. The effect of income growth on individual preferences: a longitudinal

 approach
2.2.1. Descriptive statistics

To start with, we need to have a snapshot of the frequency of income transitions. Table 7.2 shows that we have a sufficient number of cases to estimate the effects of a transition into a different income decile on preferences for redistribution (tables and figures for HH income and income per capita available in the Appendix in Table A7.3 and Table A7.4). The data demonstrate that the probability of income mobility within the median groups is much higher compared to extreme groups, but even in the extreme deciles, over 40% of the subjects experienced income mobility from 1997 to 2002. Figure 7.1 (Figure A7.1 and Figure A7.2 in the appendix) presents results similar to those in the table, but in percentages, and all the cases for upward or downward mobility are united in one group to facilitate interpretation.

Table 7.2-Transition matrix for mean weighted monthly household net income per capita for two years 1992 and 2002 (frequencies)

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
TOTAL											
$\mathbf{1}$	439	169	81	48	34	32	21	11	11	2	848
$\mathbf{2}$	197	241	148	121	70	37	25	12	8	4	863
$\mathbf{3}$	76	201	191	148	119	73	54	25	16	4	907
$\mathbf{4}$	49	83	196	198	125	125	71	30	8	17	902
$\mathbf{5}$	23	62	114	158	157	138	111	62	38	19	882
$\mathbf{6}$	28	41	64	100	170	153	141	120	46	21	884
$\mathbf{7}$	24	28	44	66	109	171	183	142	87	68	922
$\mathbf{8}$	15	26	34	30	72	79	148	228	171	89	892
$\mathbf{9}$	13	17	32	37	53	65	110	166	279	156	928
10	6	19	10	6	7	19	31	81	211	501	891
TOTAL	870	887	914	912	916	892	895	877	875	881	8,919

Figure 7.1 - Mean weighted net household income mobility per capita in ten decile groups from 1997 to 2002, percentage of initial deciles

Mean demand for redistribution of different transition groups

The snapshot of average preferences for redistribution for 100 transition groups and for five dependent variables presented in Table 7.3 - Table 7.7 provides dispersed data. However, we can estimate how symmetric the transition matrixes are. One can compare how average preferences for redistribution deviate in the groups of mobile subjects from the groups of immobile subjects (marked with yellow and located on the diagonal line of the table). In the tables, I highlighted the cells where the means are higher than in immobile groups. Below the diagonal line, the means for upward mobile groups can been seen and above the diagonal line, the means for downwardly mobile individuals can be seen. The tables show that in general individuals who experienced downward mobility more often have higher demand for redistribution compared to those who experienced upward mobility. If we compare two parts of the table which are bellow and above the diagonal we will see more cells with values higher than in the diagonal in the part that below the diagonal Simple arithmetic allows to us to see that among downwardly mobile groups, the number of those who increased demand for redistribution is larger than the number of upwardly mobile groups who increased their demand. This pattern is universal in the all five domains of redistribution: 21 vs. 13 in the domain of unemployment, 22 vs. 10 in the domain of healthcare, 25 vs .14 in the domain of family support, 31 vs .11 in the domain of pensions and 27 vs .11 in the domain of care.

This finding leads us to the conclusion that the probability of an increase in demand for
redistribution in the case of downward mobility is higher compared to the probability of an increase among those who experienced upward mobility. Table 7.8 compares probabilities of an increase and a decrease in the demand for redistribution among upwardly and downwardly mobile groups. The results presented in the table clarify the general pattern. Upwardly mobile income groups decrease their demand for redistribution in most cases: the probability of a decrease is from 67% in the domain of family support to 80% in the domain of health care. However, the sample of the downwardly mobile income groups does not show symmetric regularity: half of the groups increased their demand for redistribution while the other half decreased it. Only the domain of pensions produced more or less expected results: 69% of the downwardly mobile groups increased their demand for redistribution while 29% of them decreased it.

The interesting pattern of changes in preferences can be seen in the sample of low-income deciles: upward mobile income groups from first, second and third deciles demonstrate in many cases a higher demand for redistribution compared to their immobile counterparts. At the same time, the sample of middle-income groups does not exhibit a similar pattern.

As we can see, descriptive analysis requires a lot of effort and does not allow us to build a clear explanation of changes of preferences resulting from upward and downward mobility. Fixed effect models performed on the next step allow us to make a more coherent and consistent conclusion.

Table 7.3 - Demand for redistribution in favour of the unemployed in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002)

$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
$\mathbf{1}$	$\mathbf{3 . 9 7}$	$\mathbf{4 . 0 7}$	$\mathbf{4 . 1 5}$	3.77	3.71	3.96	3.52	3.83	3.91	$\mathbf{4 . 0 9}$	3.5
$\mathbf{2}$	$\mathbf{4 . 1 4}$	$\mathbf{4 . 0 3}$	$\mathbf{4 . 1 3}$	$\mathbf{4 . 0 4}$	3.85	$\mathbf{4 . 0 5}$	$\mathbf{4 . 0 6}$	3.88	$\mathbf{4 . 2 2}$	3.63	3.67
$\mathbf{3}$	$\mathbf{4 . 1 1}$	$\mathbf{4 . 1 1}$	$\mathbf{4 . 0 9}$	3.9	4.02	4.03	3.94	3.9	$\mathbf{4 . 2}$	3.88	3.67
$\mathbf{4}$	3.88	3.91	4.03	4.11	3.97	4	3.94	3.94	$\mathbf{4 . 2 6}$	3.33	4.07
$\mathbf{5}$	3.71	$\mathbf{4 . 2 7}$	$\mathbf{4 . 0 2}$	3.95	$\mathbf{4 . 1}$	3.96	3.98	3.77	3.78	3.72	3.57
$\mathbf{6}$	3.81	$\mathbf{4 . 1 5}$	$\mathbf{4 . 1 7}$	$\mathbf{4 . 0 6}$	3.92	$\mathbf{3 . 9 9}$	$\mathbf{4 . 1 3}$	3.87	3.9	$\mathbf{4 . 1 1}$	3.82
$\mathbf{7}$	3.95	3.8	$\mathbf{4}$	3.76	3.75	3.88	$\mathbf{3 . 9 6}$	3.94	3.89	3.91	3.7
$\mathbf{8}$	$\mathbf{4 . 0 8}$	3.74	3.97	3.89	3.96	3.88	3.85	4.01	3.81	3.82	3.88
$\mathbf{9}$	$\mathbf{4 . 3 1}$	3.75	$\mathbf{4 . 0 7}$	3.76	$\mathbf{3 . 8 5}$	$\mathbf{3 . 8 1}$	$\mathbf{3 . 8 7}$	3.7	3.76	$\mathbf{3 . 8 4}$	3.74
$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{3 . 9 4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	3.75	$\mathbf{3 . 8 3}$	$\mathbf{3 . 8 6}$	3.78	$\mathbf{3 . 7 8}$	3.7
Total	4.01	4.04	4.08	3.97	3.94	3.93	3.96	3.88	3.85	3.83	$\mathbf{3 . 7 3}$

Table 7.4 - Demand for redistribution in favour of the sick in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002)

$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
$\mathbf{1}$	$\mathbf{3 . 6 1}$	$\mathbf{3 . 7}$	$\mathbf{3 . 6 6}$	3.4	3.35	3.58	3.55	3.22	3.36	2.82	3.5
$\mathbf{2}$	3.62	$\mathbf{3 . 6 6}$	$\mathbf{3 . 7 4}$	$\mathbf{3 . 6 8}$	3.48	3.63	3.54	3.46	3.44	3.25	3
$\mathbf{3}$	3.56	3.71	$\mathbf{3 . 7 1}$	3.56	3.55	3.61	3.57	3.39	3.65	3.5	3.67
$\mathbf{4}$	3.52	3.47	$\mathbf{3 . 6 8}$	3.64	3.55	3.56	3.47	3.4	3.52	$\mathbf{3 . 6 7}$	3.29
$\mathbf{5}$	3.38	$\mathbf{3 . 7 9}$	$\mathbf{3 . 6 3}$	3.5	$\mathbf{3 . 6 1}$	3.51	3.6	3.34	3.24	3.33	2.79
$\mathbf{6}$	3.41	3.51	3.52	$\mathbf{3 . 6 5}$	3.5	3.54	$\mathbf{3 . 6 9}$	3.49	3.5	3.47	3
$\mathbf{7}$	3.5	$\mathbf{3 . 6}$	$\mathbf{3 . 5 8}$	3.24	3.28	3.42	$\mathbf{3 . 5 5}$	3.3	$\mathbf{3 . 5 7}$	3.43	3.3
$\mathbf{8}$	$\mathbf{3 . 6 7}$	$\mathbf{3 . 5 3}$	$\mathbf{3 . 5 5}$	$\mathbf{3 . 8 1}$	$\mathbf{3 . 4 6}$	$\mathbf{3 . 4 6}$	$\mathbf{3 . 5 2}$	$\mathbf{3 . 4 4}$	3.35	$\mathbf{3 . 5}$	3.52
$\mathbf{9}$	$\mathbf{3 . 6 9}$	$\mathbf{3 . 7 5}$	$\mathbf{3 . 6 7}$	3.34	$\mathbf{3 . 6 2}$	$\mathbf{3 . 4 1}$	3.34	$\mathbf{3 . 4 3}$	$\mathbf{3 . 3 8}$	$\mathbf{3 . 4 1}$	3.29
$\mathbf{1 0}$	$\mathbf{4}$	3.28	3.22	3	$\mathbf{3 . 5 7}$	3.21	3.28	$\mathbf{3 . 3 6}$	3.32	3.32	3.11
Total	3.59	3.65	3.66	3.56	3.5	3.49	3.55	3.39	3.41	3.4	3.19

Table 7.5 - Demand for redistribution in favour of the family in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002)

$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
$\mathbf{1}$	$\mathbf{3 . 5 0}$	$\mathbf{3 . 5 6}$	$\mathbf{3 . 5 5}$	3.50	3.03	2.87	3.00	3.36	$\mathbf{3 . 8 2}$	$\mathbf{4 . 5 0}$	3.47
$\mathbf{2}$	$\mathbf{3 . 6 7}$	$\mathbf{3 . 5 5}$	$\mathbf{3 . 6 1}$	3.53	3.42	3.34	3.50	$\mathbf{3 . 6 7}$	$\mathbf{3 . 6 3}$	$\mathbf{4 . 3 3}$	3.57
$\mathbf{3}$	$\mathbf{3 . 5 8}$	$\mathbf{3 . 6 2}$	$\mathbf{3 . 4 7}$	3.36	3.40	3.26	3.14	3.40	$\mathbf{3 . 5 0}$	3.33	3.45
$\mathbf{4}$	3.33	3.34	3.52	$\mathbf{3 . 6 3}$	3.55	3.42	3.15	3.48	2.83	3.43	3.47
$\mathbf{5}$	3.24	$\mathbf{3 . 5 5}$	3.35	3.31	$\mathbf{3 . 3 8}$	$\mathbf{3 . 5 1}$	3.35	3.06	3.37	3.00	3.36
$\mathbf{6}$	3.04	$\mathbf{3 . 4 5}$	3.35	3.38	3.37	$\mathbf{3 . 4 2}$	3.36	3.34	3.32	3.12	3.36
$\mathbf{7}$	$\mathbf{3 . 3 7}$	$\mathbf{3 . 5 2}$	$\mathbf{3 . 6 1}$	3.21	3.18	$\mathbf{3 . 3 7}$	$\mathbf{3 . 2 6}$	$\mathbf{3 . 2 7}$	$\mathbf{3 . 3 5}$	3.09	3.29
$\mathbf{8}$	$\mathbf{3 . 4 2}$	$\mathbf{3 . 2 6}$	3.06	$\mathbf{3 . 2 6}$	$\mathbf{3 . 3 4}$	$\mathbf{3 . 2 4}$	3.13	$\mathbf{3 . 1 9}$	$\mathbf{3 . 2 8}$	$\mathbf{3 . 4 1}$	3.24
$\mathbf{9}$	$\mathbf{4 . 0 0}$	3.25	$\mathbf{3 . 6 3}$	3.15	$\mathbf{3 . 3 4}$	3.18	$\mathbf{3 . 3 8}$	3.11	$\mathbf{3 . 2 9}$	2.98	3.23
$\mathbf{1 0}$	$\mathbf{3 . 1 7}$	2.59	$\mathbf{3 . 3 8}$	$\mathbf{4 . 0 0}$	$\mathbf{3 . 1 4}$	$\mathbf{3 . 2 2}$	3.07	$\mathbf{3 . 1 4}$	$\mathbf{3 . 1 4}$	$\mathbf{3 . 0 7}$	3.10
Total	3.51	3.51	3.48	3.43	3.36	3.35	3.26	3.22	3.27	3.11	3.35

Table 7.6-Demand for redistribution in favour of old people in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002)

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Total											
$\mathbf{1}$	3.58	$\mathbf{3 . 6 4}$	$\mathbf{3 . 6 8}$	3.48	3.58	3.48	3.33	3.27	3.36	3.5	3.58
$\mathbf{2}$	3.67	$\mathbf{3 . 6 7}$	$\mathbf{3 . 7 5}$	$\mathbf{3 . 7 5}$	3.31	3.46	$\mathbf{3 . 7 1}$	3.56	3.13	3.67	3.65
$\mathbf{3}$	3.48	3.57	$\mathbf{3 . 6 5}$	3.44	3.55	3.51	3.41	3.5	3.13	3	3.53
$\mathbf{4}$	3.52	3.39	$\mathbf{3 . 6 1}$	$\mathbf{3 . 5 9}$	3.43	3.43	3.12	$\mathbf{3 . 7 3}$	3.33	3.21	3.49
$\mathbf{5}$	$\mathbf{3 . 6 7}$	$\mathbf{3 . 7 9}$	$\mathbf{3 . 5 3}$	$\mathbf{3 . 5 1}$	$\mathbf{3 . 5}$	$\mathbf{3 . 5 9}$	$\mathbf{3 . 5 8}$	3.39	3.39	2.86	3.53
$\mathbf{6}$	3.54	3.54	3.5	3.6	3.54	3.63	3.44	3.25	3.32	3.18	3.49
$\mathbf{7}$	$\mathbf{3 . 4 5}$	$\mathbf{3 . 4 6}$	$\mathbf{3 . 6 1}$	$\mathbf{3 . 4 3}$	3.28	$\mathbf{3 . 4 7}$	$\mathbf{3 . 4 2}$	$\mathbf{3 . 4 7}$	3.32	3.28	3.41
$\mathbf{8}$	$\mathbf{3 . 5 8}$	$\mathbf{3 . 4 2}$	$\mathbf{3 . 5 8}$	$\mathbf{3 . 4 2}$	$\mathbf{3 . 2 8}$	$\mathbf{3 . 3 7}$	$\mathbf{3 . 3 5}$	$\mathbf{3 . 2 7}$	$\mathbf{3 . 3 4}$	$\mathbf{3 . 3 2}$	3.34
$\mathbf{9}$	$\mathbf{3 . 5 4}$	3.31	$\mathbf{3 . 5 3}$	3.3	$\mathbf{3 . 7 4}$	$\mathbf{3 . 3 9}$	$\mathbf{3 . 4}$	$\mathbf{3 . 3 7}$	$\mathbf{3 . 3 5}$	3.2	3.37
$\mathbf{1 0}$	$\mathbf{3 . 6 7}$	$\mathbf{3 . 2 8}$	$\mathbf{3 . 2 2}$	3	$\mathbf{3 . 2 9}$	$\mathbf{3 . 2 2}$	$\mathbf{3 . 3 2}$	$\mathbf{3 . 1 4}$	$\mathbf{3 . 3}$	3.11	3.18
Total	3.59	3.59	3.62	3.54	3.46	3.5	3.41	3.34	3.33	3.16	3.45

Table 7.7 - Demand for redistribution in favour of those needing care in the case of transition to another mean weighted net income decile from 1997 to 2002 (preferences for redistribution are measured for 2002)

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Total											
$\mathbf{1}$	$\mathbf{3 . 6 6}$	3.72	3.62	3.48	3.39	3.61	3.47	3.36	3.18	3	3.63
$\mathbf{2}$	3.64	3.74	3.67	3.6	3.48	3.71	3.5	$\mathbf{3 . 7 8}$	3.13	$\mathbf{4 . 3 3}$	3.65
$\mathbf{3}$	$\mathbf{3 . 7 6}$	3.6	3.66	3.6	3.53	3.51	3.43	$\mathbf{3 . 7}$	$\mathbf{3 . 6 9}$	2.67	3.6
$\mathbf{4}$	3.57	3.53	3.6	$\mathbf{3 . 6 5}$	3.56	3.52	3.55	$\mathbf{3 . 8 9}$	$\mathbf{3 . 8 3}$	3.64	3.6
$\mathbf{5}$	3.45	$\mathbf{3 . 8 4}$	3.58	3.62	$\mathbf{3 . 6 6}$	3.62	3.61	3.37	3.36	3.29	3.6
$\mathbf{6}$	$\mathbf{3 . 7}$	3.6	$\mathbf{3 . 6 7}$	3.65	3.56	$\mathbf{3 . 6 6}$	3.57	3.38	3.5	3.53	3.58
$\mathbf{7}$	3.4	3.44	$\mathbf{3 . 6 7}$	$\mathbf{3 . 5 5}$	3.31	$\mathbf{3 . 5 2}$	3.51	$\mathbf{3 . 6 1}$	$\mathbf{3 . 5 7}$	3.4	3.5
$\mathbf{8}$	3.5	$\mathbf{3 . 5 3}$	$\mathbf{3 . 6 8}$	$\mathbf{3 . 5 9}$	3.45	$\mathbf{3 . 5 1}$	$\mathbf{3 . 5 7}$	$\mathbf{3 . 4 6}$	$\mathbf{3 . 5 7}$	$\mathbf{3 . 5 2}$	3.52
$\mathbf{9}$	3.54	$\mathbf{3 . 5}$	$\mathbf{3 . 7}$	3.42	$\mathbf{3 . 6}$	$\mathbf{3 . 5 2}$	$\mathbf{3 . 5 6}$	$\mathbf{3 . 5 2}$	$\mathbf{3 . 4 5}$	3.44	3.5
$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{3 . 3 9}$	$\mathbf{3 . 4 4}$	3	$\mathbf{3 . 5 7}$	$\mathbf{3 . 4 4}$	3.32	$\mathbf{3 . 4 5}$	$\mathbf{3 . 3 9}$	$\mathbf{3 . 3 3}$	3.37
Total	3.64	3.66	3.64	3.6	3.52	3.57	3.54	3.5	3.47	3.38	3.55

Table 7.8 - Probabilities of increase and decrease in demand for redistribution in five domains for upwardly and downwardly mobile transition groups

		unemployed	sick	family	old	care
upward	probability of increase	0.29	0.20	0.31	0.24	0.24
	probability of decrease	0.71	0.80	0.67	0.71	0.76
downward	probability of increase	0.47	0.49	0.56	0.69	0.60
	probability of decrease	0.49	0.47	0.42	0.29	0.40

2.2.2. Fixed effects models

Earlier findings indicated a discrepancy in demand for redistribution of West and East Germans caused by cultural reasons. This difference, which is robust over time, may lead to different effects of the tested income determinants. This is the reason why I also treat these subsamples separately in this section when I run fixed effects models.

Tables and figures below report the estimates only for the mean household net income weighted on OECD scale. Estimates for fixed effects models for the other two measures of income, the unadjusted monthly net household income and household income per capita, are provided in the appendix (Table A7.5). All income variables are measured in deciles (10 categories) based on average income for 3 years (one year of the survey on preferences for redistribution and two years before). Since fixed effects models assume that we subtract individual-specific means from variables at each time point, the scale of variables remains the same but the values, in this case, are centred around zero. In our case this means that because we have two time points, values for income vary from $-4,5$ to 4,5 . Interpretation of the results here is similar to the interpretation of the output in OLS regressions: one unit of change in the independent variable leads to β change in the dependent variable.

Table 7.9 indicates how demand for redistribution in favour of the unemployed, the sick, family, the elderly and those requiring care changed after transition into the higher-income decile. I repeated the same analysis for the pulled sample of Germans and separately for the West and East subsamples. Table 7.9 shows that preferences for redistribution of West Germans are more elastic compared to those of East Germans. Redistribution preferences of West Germans are more sensitive to individual welfare and an increase in income leads to a decrease in demand for redistribution. This regularity is valid for four types of social programs: redistribution in favour of the unemployed, the sick, family and the elderly. On average, transition to an upper-income decile leads to a 0.02 point decrease in preferences for redistribution. The effect is small for the transition into the next decile, however, it gets larger if a person has an experience of the transition two or more deciles up. The maximum change in preferences may be 0.2 if a person transits from the $1^{\text {st }}$ to the $10^{\text {th }}$ income decile in the case of linearity.

East Germans, in turn, do not change their preferences for redistribution in response to income
growth. All the coefficients are almost indistinguishable from zero. This may mean that beliefs about redistribution among East Germans were shaped at a formative age during socialisation and never changed. East Germans can slightly reduce their demand for redistribution in favour of the unemployed, but this change is statistically insignificant. This means that we can hardly treat individual income as a main determinant of individual demand for redistribution in the East subsample.

Table 7.9-Effect of transition to another decile of weighted mean household net income on demand for redistribution

All Germans

	$(\mathbf{1})$	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean	$-\mathbf{0 . 0 1 7 * * *}$	$\mathbf{0 . 0 1 2 * *}$	$\mathbf{- 0 . 0 1 0 *}$	$\mathbf{- 0 . 0 1 5 * * *}$	-0.007
weighted income		(0.005)	(0.006)	(0.005)	(0.005)
	(0.005)	$0.061^{* * *}$	0.000	$-0.040^{* * *}$	0.004
Year 2002	-0.017	(0.011)	(0.012)	(0.012)	(0.011)
	(0.012)	$3.503 * * *$	$3.409 * * *$	$3.581 * * *$	$3.588^{* * *}$
Constant	$4.041^{* * *}$	(0.030)	(0.033)	(0.032)	(0.030)
	(0.031)				
		16,040	16,039	16,057	16,058
Observations	16,037	0.005	0.000	0.003	0.000
R-squared	0.002	8,830	8,831	8,827	8,828
Number of pers. nr.	8,827				

East Germans

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean weighted income	-0.013	0.000	-0.002	-0.009	0.002
	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)
Year 2002	$-0.054^{* * *}$	0.023	0.003	$-0.064^{* * *}$	$-0.039^{* *}$
	(0.018)	(0.018)	(0.019)	(0.019)	(0.018)
Constant	$4.192^{* * *}$	$3.605^{* * *}$	$3.529^{* * *}$	$3.701^{* * *}$	$3.675^{* * *}$
	(0.041)	(0.042)	(0.043)	(0.043)	(0.042)
Observations	6,243	6,239	6,244	6,251	6,256
R-squared	0.004	0.001	0.000	0.004	0.002
Number of pers. nr.	3,449	3,450	3,451	3,446	3,449

West Germans

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean weighted income	-0.019***	-0.018***	-0.015**	-0.018***	-0.010
	(0.007)	(0.006)	(0.007)	(0.007)	(0.006)
Year 2002	$\begin{aligned} & 0.005 \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.083^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.026^{*} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.031^{* *} \\ & (0.014) \end{aligned}$
Constant	$\begin{aligned} & 3.940^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 3.439 * * * \\ & (0.041) \end{aligned}$	$\begin{aligned} & 3.339 * * * \\ & (0.047) \end{aligned}$	$\begin{aligned} & 3.503^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 3.529^{* * *} \\ & (0.041) \end{aligned}$
Observations	9,794	9,801	9,795	9,806	9,802
R-squared	0.002	0.010	0.001	0.002	0.002
Number of pers. nr.	5,378	5,380	5,380	5,381	5,379

Note: Estimates are from fixed effects models. DV is measured on a scale of 1-5 ("1" corresponds to "only private forces", " 5 " to "only the state"). Robust standard errors in parentheses,

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

After implementation of controls, these effects remained largely robust (Table 7.10). The effect of upward mobility on demand for redistribution in favour of the sick and family gets slightly weaker if controlled for time-varying predictors such as the number of members in a household, marital status and years of education. Family composition takes a share of the explanatory power of income when when looking at the association between individual income and demand for redistribution in favour of the family and the sick. Implementation of additional controls adds nothing to the change in coefficients in the East subsample. Since the estimates for the pooled sample of Germans are misleading, I skip it later on in the text.

Table 7.10 - Effect of transition to another weighted mean household net income on demand for redistribution, fixed effects models with base line controls for time varying parameters

East Germans

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unempl.	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean weighted income	-0.014	0.003	0.001	-0.007	0.004
	(0.009)	(0.009)	(0.010)	(0.009)	(0.009)
Year 2002	$\begin{aligned} & -0.037 * \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.025 \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.013 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.060^{* * *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.038^{*} \\ & (0.020) \end{aligned}$
HH members	$\begin{aligned} & 0.013 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.017 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.046^{* *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.024 \\ & (0.022) \end{aligned}$
(1 Married)					
2. Married but separated	$\begin{aligned} & 0.064 \\ & (0.122) \end{aligned}$	$\begin{aligned} & 0.181 \\ & (0.124) \end{aligned}$	$\begin{aligned} & 0.287 * * \\ & (0.130) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.129) \end{aligned}$	$\begin{aligned} & -0.152 \\ & (0.125) \end{aligned}$
3. Single	$\begin{aligned} & 0.023 \\ & (0.096) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.099) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.103) \end{aligned}$	$\begin{aligned} & -0.122 \\ & (0.103) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (0.099) \end{aligned}$
4. Divorced	0.009	0.042	0.067	-0.130	-0.115

	(0.115)	(0.119)	(0.124)	(0.122)	(0.118)
5. Widowed	$-0.247^{* *}$	-0.188	-0.043	$-0.404^{* * *}$	$-0.417^{* * *}$
	(0.124)	(0.126)	(0.132)	(0.130)	(0.126)
Years of education	-0.026^{*}	0.022	0.006	-0.012	0.014
	(0.015)	(0.015)	(0.016)	(0.016)	(0.015)
Constant	$4.469^{* * *}$	$3.356^{* * *}$	$3.313^{* * *}$	$3.944^{* * *}$	$3.617^{* * *}$
	(0.206)	(0.211)	(0.219)	(0.218)	(0.211)
Observations	5,935	5,931	5,938	5,943	5,949
R-squared	0.007	0.004	0.003	0.009	0.007
Number of pers. nr.	3,291	3,291	3,292	3,286	3,291

West Germans

VARIABLES	(1)	(2)	(3)	(4)	
	When Unempl.	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean weighted income	-0.020***	-0.014**	-0.012	-0.017**	-0.010
	(0.007)	(0.007)	(0.008)	(0.007)	(0.007)
Year 2002	0.007	0.099***	0.009	-0.015	0.039**
	(0.017)	(0.016)	(0.018)	(0.017)	(0.016)
HH members	-0.011	0.027	0.024	0.006	0.023
	(0.018)	(0.017)	(0.019)	(0.018)	(0.017)
(1 Married)					
2. Married but separated	-0.160	0.045	-0.200*	0.151	0.036
	(0.108)	(0.102)	(0.116)	(0.108)	(0.102)
3. Single	-0.037	0.091	-0.051	-0.006	0.023
	(0.068)	(0.064)	(0.073)	(0.068)	(0.064)
4. Divorced	-0.069	-0.015	0.058	0.005	0.036
	(0.088)	(0.084)	(0.095)	(0.089)	(0.083)
5. Widowed	-0.264**	0.019	-0.132	-0.104	-0.185*
	(0.114)	(0.106)	(0.121)	(0.111)	(0.105)
Years of education	-0.017	-0.022**	-0.029**	-0.019*	-0.017*
	(0.011)	(0.010)	(0.012)	(0.011)	(0.010)
Constant	4.206***	3.573***	3.603***	3.701***	3.664***
	(0.152)	(0.144)	(0.163)	(0.152)	(0.143)
Observations	9,305	9,311	9,304	9,315	9,313
-R-squared	0.004	0.012	0.004	0.003	0.004
Number of pers. nr.	5,158	5,161	5,159	5,160	5,158

Note: Estimates are from fixed effects models. DV is measured on a scale 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Estimates are controlled for: year, income, HH size and marital status. Robust standard errors in parentheses, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, ${ }^{*} \mathrm{p}<0.1$

2.2.3. A test for nonlinearity

The recent publication of Alt and Iversen (2017) discusses the association between a marginal utility of money which decreases with a rise in income and demand for redistribution. They suggest that high-income people may be more in favour of redistribution compared to lower income groups because it is less costly for them in relative terms. This paragraph aims to proceed with this logic. At first, I perform the test of nonlinearity in a cross-sectional way and compare the difference of
demand for redistribution for 10 decile groups and second I perform a within-subject test to trace the effect of income growth for different income groups. As before, income in this part is measured in 10 income deciles basedon the mean household income weighted on the OECD scale.

Table 7.11 outlines coefficients for nine income groups compared to the very first low-income decile. The figures make it clear that the hypothesis about the relative utility of income does not work for our data. There is no significant difference in demand for redistribution between the first six income decile groups. The difference in preferences for redistribution becomes significant only between the first and the seventh decile: for redistribution in favour of the sick -0.1 ($\mathrm{p}<0.01$), for the family $-0.1(p<0.01)$, for the elderly $-0.1(p<0.05)$ and for those requiring care $-0.04(p<0.1)$. Starting from this point, demand for redistribution in all the domains gets lower in the upper decile. The coefficients for all the programs are negative and strongly significant for the eighth, ninth and tenth income deciles. This means that demand for redistribution of the members of these deciles are substantially and significantly lower compared to the members of the first decile. The difference between the extreme deciles is -0.14 ($\mathrm{p}<0.01$) for redistribution in favour of the unemployed, -0.3 ($\mathrm{p}<0.01$) for redistribution in favour of the sick, -0.2 ($\mathrm{p}<0.01$) for the family, 0.3 ($\mathrm{p}<0.01$) for the elderly and $-0.2(\mathrm{p}<0.01)$ for those requiring care. The association between income and individual preferences for redistribution is not linear as can be seen. However, the association "the higher income the lower demand for redistribution" still holds. This may be caused by progressive taxation in Germany: people who are on the lower part of income distribution feel less of a tax burden compared to those who are in the upper part. Figure 7.2 demonstrates this nonlinearity.

Table 7.11 - Preferences for redistribution (Source: G-SOEP 1997, 2002, panel data set)

	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
$2^{\text {nd }}$ decile	0.027	0.035	0.035	0.001	-0.001
	(0.027)	(0.027)	(0.029)	(0.028)	(0.027)
$3^{\text {rd }}$ decile	$0.063^{* *}$	0.053^{*}	0.021	0.048^{*}	0.039
	(0.027)	(0.027)	(0.029)	(0.029)	(0.027)
$4^{\text {th }}$ decile	0.004	0.001	-0.026	-0.005	-0.001
	(0.027)	(0.027)	(0.030)	(0.029)	(0.027)
$5^{\text {th }}$ decile	0.013	-0.025	-0.026	-0.017	-0.045^{*}
	(0.027)	(0.027)	(0.030)	(0.029)	(0.027)
$6^{\text {th }}$ decile	0.019	-0.045	-0.039	-0.035	-0.015
	(0.028)	(0.027)	(0.029)	(0.029)	(0.027)
$7^{\text {th }}$ decile	-0.018	$-0.104^{* * *}$	$-\mathbf{0 . 1 0 3 * * *}$	$-\mathbf{0 . 0 7 2 * *}$	-0.044^{*}
	(0.028)	(0.027)	(0.030)	(0.029)	(0.027)

$8^{\text {th }}$ decile	$\begin{aligned} & -0.074 * * * \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.119 * * * \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.144 * * * \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.151^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.088 * * * \\ & (0.028) \end{aligned}$
$9^{\text {th }}$ decile	$\begin{aligned} & -0.070 * * \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.124 * * * \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.095 * * * \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.162 * * * \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.096^{* * *} \\ & (0.028) \end{aligned}$
$10^{\text {th }}$ decile	$\begin{aligned} & -0.135 * * * \\ & (0.031) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.290^{* * *} \\ & (0.029) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.204 * * * \\ & (0.032) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.293 * * * \\ & (0.031) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.192 * * * \\ & (0.029) \\ & \hline \end{aligned}$
East	$\begin{aligned} & 0.287 * * * \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.256^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.269^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.257 * * * \\ & (0.019) \end{aligned}$	$\begin{aligned} & 0.214 * * * \\ & (0.017) \end{aligned}$
Year 2002	$\begin{aligned} & 0.019 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.089^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.005 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.024^{*} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.041 * * * \\ & (0.013) \end{aligned}$
East 2002	$\begin{aligned} & -0.079 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.096^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.100^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.110^{* * *} \\ & (0.022) \end{aligned}$
College	$\begin{aligned} & -0.213 * * * \\ & (0.078) \end{aligned}$	$\begin{aligned} & -0.297 * * * \\ & (0.078) \end{aligned}$	$\begin{aligned} & -0.152^{*} \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.414^{* * *} \\ & (0.096) \end{aligned}$	$\begin{aligned} & -0.198^{* *} \\ & (0.079) \end{aligned}$
Vocational	$\begin{aligned} & -0.156^{* *} \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.227^{* * *} \\ & (0.077) \end{aligned}$	$\begin{aligned} & -0.155^{*} \\ & (0.082) \end{aligned}$	$\begin{aligned} & -0.357 * * * \\ & (0.095) \end{aligned}$	$\begin{aligned} & -0.188 * * \\ & (0.078) \end{aligned}$
Secondary school	$\begin{aligned} & -0.135^{*} \\ & (0.078) \end{aligned}$	$\begin{aligned} & -0.179 * * \\ & (0.079) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.323^{* * *} \\ & (0.097) \end{aligned}$	$\begin{aligned} & -0.161^{* *} \\ & (0.080) \end{aligned}$
Intermediate, tech.	$\begin{aligned} & -0.193^{* *} \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.196^{* *} \\ & (0.085) \end{aligned}$	$\begin{aligned} & -0.180^{* *} \\ & (0.091) \end{aligned}$	$\begin{aligned} & -0.364^{* * *} \\ & (0.101) \end{aligned}$	$\begin{aligned} & -0.205^{* *} \\ & (0.086) \end{aligned}$
In school	$\begin{aligned} & -0.113 \\ & (0.090) \end{aligned}$	$\begin{aligned} & -0.220^{* *} \\ & (0.090) \end{aligned}$	$\begin{aligned} & -0.115 \\ & (0.097) \end{aligned}$	$\begin{aligned} & -0.357 * * * \\ & (0.108) \end{aligned}$	$\begin{aligned} & -0.130 \\ & (0.090) \end{aligned}$
Age	$\begin{aligned} & -0.020^{* *} \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.020^{*} \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0.017 * \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.010) \end{aligned}$
Age sq	$\begin{aligned} & 0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000^{*} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$
Age cb	$\begin{aligned} & -0.000^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000^{*} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000^{* *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$
Male	$\begin{aligned} & -0.033 * * \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.053^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.038^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.013) \end{aligned}$
N children	$\begin{aligned} & -0.000 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.029 * * * \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.009) \end{aligned}$
Adults	$\begin{aligned} & -0.025 * * * \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.022 * * * \\ & (0.007) \end{aligned}$
Married	$\begin{aligned} & 0.011 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.003 \\ & (0.022) \end{aligned}$	$\begin{aligned} & 0.052 * * \\ & (0.021) \end{aligned}$
Divorced	$\begin{aligned} & 0.047 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.044 \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.075 * * \\ & (0.032) \end{aligned}$
Married, separated	$\begin{aligned} & -0.040 \\ & (0.046) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.045) \end{aligned}$	$\begin{aligned} & 0.001 \\ & (0.052) \end{aligned}$	$\begin{aligned} & 0.049 \\ & (0.052) \end{aligned}$	$\begin{aligned} & 0.056 \\ & (0.048) \end{aligned}$
Widowed	$\begin{aligned} & -0.015 \\ & (0.035) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.058^{*} \\ & (0.034) \end{aligned}$
Civil servant	$\begin{aligned} & -0.067 * \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.112^{* * *} \\ & (0.036) \end{aligned}$	$\begin{aligned} & 0.095^{* *} \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.049 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.059^{*} \\ & (0.033) \end{aligned}$
Self-employed	$\begin{aligned} & -0.248^{* * *} \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.263^{* * *} \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.264 * * * \\ & (0.035) \end{aligned}$	$\begin{aligned} & -0.318^{* * *} \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.209^{* * *} \\ & (0.030) \end{aligned}$
White-collar	$\begin{aligned} & -0.044^{* *} \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.036^{*} \\ & (0.020) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.083^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.087 * * * \\ & (0.020) \end{aligned}$
In education	$\begin{aligned} & -0.014 \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.051 \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.040) \end{aligned}$
Unemployed	$\begin{aligned} & 0.090^{* * *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.018 \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.095 * * * \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.006 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.030) \end{aligned}$
Retired	$\begin{aligned} & -0.044 \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.074^{* *} \\ & (0.038) \end{aligned}$	$\begin{aligned} & 0.078 * \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.059 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.064^{*} \\ & (0.037) \end{aligned}$
Maternity	$\begin{aligned} & 0.031 \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.022 \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.081^{*} \\ & (0.047) \end{aligned}$	$\begin{aligned} & -0.081 * \\ & (0.047) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.045) \end{aligned}$

Nonworking	-0.002	-0.021	$0.109^{* * *}$	-0.031	-0.007
	(0.026)	(0.026)	(0.029)	(0.027)	(0.026)
Training	-0.004	0.012	-0.067	0.022	-0.038
	(0.044)	(0.044)	(0.046)	(0.045)	(0.043)
Other nonworking	-0.001	-0.056^{*}	0.004	-0.044	$-0.074^{* *}$
	(0.033)	(0.032)	(0.035)	(0.034)	(0.032)
Constant	$4.325^{* * *}$	$3.787^{* * *}$	$3.683^{* * *}$	$4.092^{* * *}$	$4.012^{* * *}$
	(0.171)	(0.173)	(0.185)	(0.188)	(0.170)
Observations	17,983	17,980	17,979	18,004	18,002
R-squared	0.049	0.060	0.048	0.059	0.034

Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). *** $\mathrm{p}<0.01, * * \mathrm{p}<0.05$, * $\mathrm{p}<0.1$

Figure 7.2 demonstrates the associations between income deciles and demand for redistribution for West and East Germans. The visual representation allows us to confirm the conclusion made in the previous step: the association between income and demand for redistribution is not linear, however compared to the very first deciles, members of the higher deciles are less supportive of redistribution. This conclusion is valid for preferences for redistribution of West Germans in favour of all beneficiary groups and of East Germans for redistribution in favour of the sick and elderly. At the same time, the difference in preferences of members of the extreme deciles of East Germans is statistically insignificant for redistribution in favour of the unemployed, family and those requiring care.

Figure 7.2 - Preferences for redistribution of different income deciles among West and East Germans, predicted margins

The self-interest hypothesis and rational learning theory would expect that income growth would to the reduction of the demand for redistribution regardless of the position of an individual on the income ladder. However, the hypothesis of the relative utility of income introduces some modifications into this argument. According to this hypothesis, the relative utility of income may also affect the outcome of the transition into the upper income decile. People from the lower, middle and upper part of the income distribution may react differently to income growth. Low and middle-income groups are self-interested in pure income and may reduce their demand for redistribution to get more net money in cases of transition into a higher income decile. Or, they may also keep their preferences if they are interested in social services and welfare benefits. On the other hand, higher income groups may be guided by different arguments: since their basic needs are satisfied, they may increase their demand for redistribution after income growth as it may contribute to the common good and welfare on a social level.

3. Conclusion

Chapter 7 explored associations and causal relationships between preferences for redistribution and income growth. This chapter is a logical continuation of the discussion about the effect of selfinterest on individual demand for redistribution started in chapters four and five. Based on the selfinterest hypothesis and associations established in earlier publications, I expected that being guided by rational learning, a person would decrease her demand for redistribution in the case of income growth since a person becomes more independent from social support and welfare benefits.

I have tested this expectation in several ways. At first, I related my study to the previous publications, and traced associations between current, past and future income. As expected, current individual income negatively associates with preferences for redistribution: the richer a person, the lower her support for redistribution. Previous income, in turn, has no universal effect: those who had higher income before have a lower demand for redistribution in favour of the unemployed, the family and the elderly. The effect of objective future income is more universal: if a person is on an upward income slope, she asks for less redistribution for of all beneficiary groups. These associations resemble some results in previous publications. However, interpreting the substantial meaning and the size of the effects, I cannot conclude that income is a strong predictor of preferences for redistribution.

A longitudinal research design implemented in the second stage was motivated by the idea that the association between individual demand for redistribution and income could be caused by a third variable. The fixed effects analysis allowed me to partial out the effect of the time constant variables, to estimate the elasticity of preferences for redistribution and to assess how responsive preferences for redistribution are to change in individual income.

I ran fixed effects models at first for an entire subsample of West and East Germans and later for different income groups of immobile and upwardly mobile individuals to respond the possible problem of nonlinearity and the hypothesis of the relative utility of income. The first findings, based on the entire sample, reveal the difference between East and West Germans: only West Germans reduce their demand for redistribution in case of income growth, East Germans keep their preferences even if they experience income mobility. This means that the hypothesis of self-
interest based on the rational learning theory works only for West Germans. This discrepancy speaks in favour of a sociological explanation of preferences for redistribution: if people are educated in a capitalist economy they can clearly identify their self-interest and follow this interest if their economic conditions change. At the same time, communism shaped ideas about social protection and redistributive justice in a different way. We could hypothesize that dominant culture or ideology define elasticity of certain attitudes. If capitalism makes individuals sensitive to their economic conditions enabling them to shape and reshape their preferences for redistribution, people who grew up or had an experience of communism in their formative years shaped their ideas about social security in the case of social risks and redistributive justice. The latter condition makes these ideas robust to critical events in individual life.

These results lead me to the conclusion that preferences for redistribution are elastic enough in some settings and often people can change them in response to income growth. However, in most cases, the change is very small and there is no universal trend for different income groups. Lowincome individuals in cases of income growth follow self-interest and reduce their demand for redistribution, medium-income subjects are sensitive to a type of social program because they are consumers of the majority of services, and people with high-incomes respond differently in West and East Germany: East Germans are more selective and West Germans confirm the argument about the relative utility of income and increase their demand for redistribution.

CONCLUSION

CHAPTER 8. The main conclusion

1. Introduction

"Groups regard a political system as legitimate or illegitimate according to the way in which its values fit with theirs" (Lipset 1966, 77)

Zygmunt Bauman claimed that late modernity accelerates social and geographic mobility, leads to the flexibility of self-identification and volatility of reference frames and values. Modern individuals have fewer social constrains than before and change their social and geographic location more easily than before. The new context of liquid modernity requires a better understanding of the mechanism of the formation of political and economic preferences. Since people are more mobile, they can change their preferences in response to changes to their life conditions. The change in the mobility patterns may lead to a general shift in political preferences on a macro-level and alter the political and economic landscape in a country. Correspondingly, the challenges of modernity make the establishment of associations between different phenomena insufficient and bring to the fore the importance of causal links. It is essential to understand whether changes in the social, cultural and geographic environment on a micro level affect politically-related preferences of individuals.

Because of their strong political importance, preferences for redistribution and its determinants are the subject of extensive studies in economics, sociology and political science. The recent publications show that both culture and an individual self-interest determine preferences over optimal redistribution schemes. While common beliefs in a society about the moral aspects of redistribution and the deservingness of the poor to receive benefits as well as individual social position and disadvantages strongly associate with the level of individual demand for redistribution, few studies have addressed the issue of causality.

The aim of the dissertation has been to contribute to the discussion about causal effect of culture and self-interest on individual preferences for redistribution. The general question I have addressed is whether individual preferences for redistribution are responsive to individual life circumstances. This question guided the main line of the dissertation and divided the analysis in two parts. Part I of the dissertation focused on the causal effect of culture on individual preferences through an analysis of geographic mobility while Part II investigated the causal effect of self-interest through social mobility.

2. A summary of the main findings

Two parts of the dissertation aim to address the issue of causal determinants and elasticity of the preferences for redistribution from two perspectives. Part I looks at cultural determinants on a macro level and values on a micro level, while Part II contributes to existing literature about the causal effect of individual self-interest on preferences for redistribution.

Chapter 2 introduces the studies on the effect of culture, together with any shortcomings. The limited studies on the causal attribution of culture to individual preferences for redistribution have exploited either migration or natural experiments to disentangle cultural effects. I follow the same research strategy. However, studies involving immigrants face a selection problem and a possible bias in estimates. Chapter 2 examines the self-selection issue and singles out three possible dimensions of selection: self-selection into migration based on individual traits, self-selection into a country of migration, and out migration.

In relationship to a native population who live permanently in their country of birth, migrants are a special group of people who are ready to take risks connected to relocation and who are open to new experiences; they are also self-directed and rely on their own abilities. These individual traits both determine decisions to migrate and reduce individual demand for redistribution. This means that migrants' preferences for redistribution may be lower than preferences for redistribution in their countries of origin and more similar to the average preferences in the country of destination. In this case, empirical studies can oversee or undermine the effect of culture in the estimates.

Second, migration in Europe normally occurs between neighboring countries and within similar cultural areas and welfare regimes where average preferences for redistribution are similar. It is problematic to identify the effect of culture in this case, since immigrants' preferences both in countries of origin and at destination are the same.

Third, immigrants are a fluid group of the population. Some immigrants come to a country to stay, others are temporary labour immigrants; some are motivated to adopt the cultural patterns of the host country, others are less inclined to integrate. Empirical studies may follow groups of immigrants over time to estimate the effect of the culture of destination on immigrants' preferences.

However, findings about adaptation and integration may be misleading because of outmigration: those who did not adopt the preferences of people in the host country dropped out of the sample.

Empirical chapters 3 and 4 aim to address the selection issues and overcome some of the shortcomings of earlier studies.

Chapter 3 looks at the effect of culture of origin on immigrants' preferences for redistribution. This study is motivated by an early study by Luttmer and Singhal (2011) who estimated the relationship between average preferences for redistribution in countries of origin and immigrants' preferences. They claimed that preferences for redistribution are culturally determined. Their design only included migrants within European and did not control for self-selection into migration. I have extended their model and have provided additional robustness checks for their results. First, I extended the time frame of the study and the sample of immigrants to non-European immigrants to have more variation in the predictor variable. Second, I controlled for self-selection into migration adding basic human values into the model to correct for individual traits. Third, I included cultural values to differentiate between the effect of average preferences for redistribution in the country of origin and average cultural values. Chapter 3 concludes with the claim that immigrants experience the effect of culture of origin; however, the previous study by Luttmer and Singhal overestimates its size twofold.

Chapter 4 suggests an alternative way to estimate the effect of culture. This chapter focuses on the effect of the culture of destination on immigrants' individual preferences redistribution. This study follows immigrants from Kazakhstan, Poland, Russia and Turkey in Germany and asses how they change their preferences for redistribution over time. It partially resembles the research design developed by Alesina and Fuchs-Schündeln (2007). These two scholars exploited the natural experiment of the reunification of West and East Germany to estimate the effect of communism on individual preferences for the redistribution among East Germans. Immigration to Germany from Russia and Kazakhstan at the beginning of the 1990s extended the framework of this natural experiment and allowed some methodological problems to be resolved.

Immigrants from Russia and Kazakhstan were mostly ethnic Germans or Jews who were granted political rights and social benefits similar to those of native Germans right after immigrating. These rights made them equal to East Germans in terms of setting. The immigrants also experienced
communism before migrating and were therefore expected to have higher demand for redistribution before they resettled. Compared to East Germans who represented almost a quarter of the German population who were permanently settled in their cultural environment and who had access to the political process and mass media, immigrants from Russia and Kazakhstan were a minority who expected to be integrated. This case of immigrants provides a good setting for the study of the effect of culture.

Migration from Russia and Kazakhstan was motivated mainly by historical reasons and changes in legislation. Compared to labour immigrants from Poland and Turkey, immigrants from Russia and Kazakhstan were less selected. The members of the last group of immigrants from Russia and Kazakhstan were not expected to have individual traits determining both migration and a lower demand for redistribution. This expectation was supported by the data, which showed a higher demand for redistribution on the part of immigrants from Russia and Kazakhstan compared to immigrants from Poland and Turkey in 1997.

The effect of culture was studied in two different ways: OLS regressions with robust clustered errors and fixed-effects models. The first approach aimed to compare different groups of immigrants over time, while fixed effects models allowed within-subject changes to be assessed and estimates for the average treatment effect of the culture of destination to be collected.

The first test showed that preferences for redistribution varied between labour immigrants from Poland and Turkey and resettlers from Russia and Kazakhstan. The preferences of immigrants from Poland were more flexible. These preferences were, in many cases, virtually the same as the preferences of West Germans in 1997, and they became almost indistinguishable from the preferences of West Germans in 2002. The preferences of immigrants from Turkey were higher than those of West Germans regarding four domains out of five in 1997, but immigrants from Turkey converged their preferences with preferences of West Germans in 2002 with a single exception in the domain of pensions.

On the one hand, this finding is explained by self-selection into migration. On the other, the preferences of West Germans also changed; they increased their demand for redistribution in the domain of healthcare and care, which in turn, determined convergence. Instead, the preferences of immigrants from Russia and Kazakhstan were domain-specific. Immigrants from Russia adopted
the preferences of West Germans only in favour of the unemployed. In the domain of family support, healthcare and care, preferences of immigrants from Russia did not change much and resembled the preferences of East Germans, and, in the domain of pensions, they even increased their demand for redistribution. The preferences of immigrants from Kazakhstan were more flexible. Their preferences were similar to those of the West Germans in the domain of pensions in 1997 and they slightly increased those preferences in 2002; at the same time, they reduced their demand for redistribution in favour of the unemployed, family, healthcare and care.

The second test estimated how time affected subjects in different subsamples. Fixed effects models controlled for time-constant unobserved individual characteristics, including the values and individual traits determining self-selection into migration; they also showed a slightly different output compared to the OLS estimates. The direction and size of the average treatment effect of time on individual preferences for redistribution are similar in many cases. Immigrants from Kazakhstan, Poland and Turkey reduced their preferences for redistribution in the same way in most domains. They expected they would adopt the preferences of West Germans much faster compared to East Germans, sometimes even in the short term. Even immigrants from Russia adopted the preferences of West Germans faster than the East Germans did. This confirms the integration hypothesis. One single exception for the subsample of immigrants from Russia referred to the demand for financial security in the case of old age; they increased their demand for redistribution in this domain over time and departed from West Germans in this regard.

The main conclusion of this chapter is that immigrants adopt the cultural patterns of redistribution that are widespread in the country of destination. However, the method according to which data is analysed is important. It is not enough to provide estimates based on OLS or to use the probit models that have been reported in previous publications. Results become more salient and precise if both compare groups, follow individuals over time and estimate an average treatment effect of the variables which are of particular interest.

Chapter 5 opens Part II and introduces the discussion about the causal effect of self-interest on preferences for redistribution. Part II aims to find empirical evidence for the basic assumption in political economy that individual preferences for redistribution are guided by individual selfinterest. This part begins with the previous discussion about the elasticity of preferences for
redistribution, but it focuses on a more specific question "Do people change their preferences if they change their socio-economic position?"

The chapter examines existing approaches in detail to identify the causal link between objective characteristics and preferences for redistribution. The examination of these existing approaches singles out some methodological limitations and leads to the discussion about some possible solutions. The most influential approaches of explaining and empirically examining the causal relationship between self-interest and preferences for redistribution are Meltzer and Richard's model, the "prospect for upward mobility hypothesis", and the rational learning theory. These approaches predict a high demand for redistribution if a person is on a lower part of income distribution in a society, if a person expects downward mobility in the future, and if a person has experience of downward mobility.

However, most research designs aimed to empirically test these hypotheses may be considered too unreliable to be able to able to make a strong claim. First, it is difficult to shape predictions about individual demand for redistribution based on an individual's position on the income ladder with a reference to a median income individual. Second, the prospect for mobility is normally measured in terms of subjective expectations about individuals' own life chances and these expectations may be irrelevant. Third, the individual experience of mobility is measured in most cases within the framework of intergenerational mobility. However, the estimates are dependent in this case on how old an individual is at the moment of comparison, and how parental status and mobility are measured.

Part II develops a more reliable approach for measuring the causal effect of self-interest. In contrast to earlier studies, I consider an individual at a previous stage of her life as a reference point. I use panel data to study the objective effect of current, previous and future life conditions as well as the effect of transition from one socio-economic stance to another. This transformation makes it possible to avoid references to a median income individual, subjective judgements and linkage to the parents of this individual. As an individual position in the labour market and income are generally accepted as the strong determinants of preferences for redistribution, Chapters 6 and 7 take the causal effect of unemployment and income as the focal points of enquiry.

Chapter 6 tests for the POUM and rational learning hypotheses in several ways. First, I used panel data to model an individual's objective current, previous and future experience of unemployment. In a cross-sectional way, I regressed these parameters on individual demand for redistribution. The output was largely consistent with previous studies: individual unemployment positively associated with individual demand for redistribution in favour of the unemployed. Initially, I expected that individual disadvantaged situations caused by unemployment would positively associate with the demand for all social programs. However, current unemployment associated only with the demand for redistribution in favour of the family. Any previous experience of unemployment and future experience positively correlated with preferences for redistribution in all five domains. In the first approximation, these results confirmed the rational learning and POUM hypotheses.

However, I cannot make a strong claim about there being a robust association between unemployment and preferences for redistribution: individuals who were unemployed or who became unemployed in the future had on average 0.08 higher preferences for redistribution compared to those who were employed. This difference is substantially negligible. Second, I ran fixed-effects models and estimated the effect of transition into unemployment. This examination allowed me to identify not only the association between parameters which may be caused by a third variable, but also to remove time constant unobserved heterogeneity and to distinguish whether a change in employment status leads and causally associates with demand for redistribution. This test did not provide any support for rational learning. Individuals who were not unemployed before and who transited into unemployment at the second time point did not change their preferences substantially. The discussion about the possible causes of these results concludes Chapter 6.

Chapter 7 is arranged in the same sequence of steps as in Chapter 6. First, the cross-sectional analysis tests the effect of current, previous and future income on individual preferences for redistribution. The results show the strong statistical significance of the coefficient: first, the higher the income, the lower the demand for redistribution in all the domains of social protection; second, if a person is on an upward income slope, they ask for less redistribution. In substance, the coefficients are very weak though they resemble earlier findings.

Second, the longitudinal design and fixed-effects models estimate how preferences for redistribution change if people become richer and less dependent on social protection. Transition matrixes compared the average demand for redistribution in all the transition groups and made it clear that the probability that upwardly mobile individuals decrease their demand for redistribution at the second time point is much higher (on average 75%) compared to downwardly mobile individuals (on average 40\%). At the same time, transition into a higher income decile differently affects the preferences for redistribution of West and East Germans. The first test conducted for the pulled subsamples of West and East Germans showed that only West Germans were sensitive to changes in income: transition into a higher income decile leads to a decrease in demand for redistribution by about 0.02 ($\mathrm{p}<0.001$) in four out of five domains of social policy (unemployment, healthcare, family support, and old-age pensions). This finding would support the rational learning theory predicting a decline in support for redistribution where there is income growth but only for West Germans.

Both parts of the dissertation contribute to the longstanding discussion in economics, sociology and political science about the cultural and economic determinants of individual preferences for redistribution. In this study, four empirical chapters develop a methodological discussion and research designs aimed to identify the causal links between culture, self-interest and preferences for redistribution. The empirical findings of both parts show that people reproduce preferences for redistribution that are typical of their groups of "origin", but that they slowly change these in response to changes in life conditions.

3. Limitations

"Fullness of knowledge always means some understanding of the depths of our ignorance; and that is always conducive to humility and reverence" (Robert Andrews Millikan (1929, p. 199))

The dissertation attempts to respond to some methodological gaps in the ongoing discussion about causal determinants of preferences for redistribution. The four empirical chapters implement more precise measures for both the causal effects of culture and self-interest. Meanwhile, several limitations and caveats need to be discussed. I will discuss them one by one.

1. The general value but, at the same time, the main limitation derives from the general logic of the dissertational project. The study tries to take steps ahead in relation to previous seminal and prominent publications. This strategy has enabled me to correct some missing links, and it has also shown that the framework of early research was too wide and the main concepts too broadly interpreted. Causal claims require even more precise measures and a more precise research design.
2. The problem of randomization and selectivity is central to studies of the causal effects of culture and migration. Chapter 3 attempted to control for the value determinants of migration and preferences for redistribution and to add more variation to sending countries. However, the problem of the selection of a country of destination still remains. Clear estimates of the effect of culture would, in the case of a random distribution of immigrants from one country between several host countries, be different in terms of cultural and economic settings. Moreover, this randomization and a survey on preferences must be carried out at the same time for all subjects to avoid any possible external effects connected with time. Kauppinen and Poutvaara (2012) pointed out that, indeed, random distribution across host countries is necessary to avoid a selection bias based on individual preferences. However, this research design is not feasible from either a practical or from an ethical point of view.
3. Chapter 4 addressed the issue of selectivity by exploiting a natural experiment of the relocation of ethnic Germans and Jewish quota refugees from Russia and Kazakhstan. This exercise meant
that selectivity could be avoided at least in the case of immigrants from Kazakhstan, as the general population of ethnic Germans and Jews left the country. At the same time, it is possible that there was negative selection in the subsample of immigrants from Russia, as only 40% of ethnic Germans and Jews left the country. These groups might have been motivated not only by historical, legal, political and cultural reasons, but also by the expectation of improving their life conditions at the expense of the resettlement programs. Comparisons of the social and demographic characteristics of the ethnic Germans who came to Germany and those who stayed in Russia go beyond the scope of the study, however.
4. The second limitation of Chapter 4 is constituted by the small sample size of the groups of immigrants. This makes most regression coefficients statistically insignificant.
5. The other problem may derive from the time of the survey. The chapter discusses data collected in 1997 and 2002. This time frame might be considered too remote and irrelevant for the current research. However, findings based on later data might be affected by the Great Recession, and the economic and migration crisis that followed.
6. The available data do not provide information about immigrants' preferences redistribution at the moment when they came to Germany or before their migration. Chapter 4 makes similar assumption as the earlier publication by Alesina and Fuchs-Schündeln (2007), i.e. that at the moment of immigration, migrants' preferences were higher than the average preferences of natives.
7. Part II attempted to use changes in individual life conditions as a treatment and to estimate how these changes affect individual preferences for redistribution. Chapter 6 compared those individuals who experienced transition into unemployment and those who were permanently employed. Based on previous theoretical and empirical findings I treated unemployment as a disadvantage affecting individual life conditions, well-being and preferences for redistribution.

However, within-subject estimates indicated that people do not change their preferences for redistribution after transition into unemployment, even if time-varying parameters including income are controlled. This finding leads to a reconsideration of the phenomenon of unemployment on a theoretical level and to the development of better measures of individual vulnerability. The generosity of the welfare state, amount of the state welfare benefits for an
individual in the case of unemployment, and family conditions may modify the general idea of vulnerability and the common perception of individual vulnerability in the case of unemployment.

A possible way of overcoming this problem might be to estimate the effect of the interaction between transition into unemployment, individual consumption and welfare benefits. The other way to estimate the effect of unemployment is to repeat the same research design but in different economic settings. The study of the effect of transition into unemployment in countries with low or absent unemployment benefits might change the general conclusion.
8. Chapter 7 did not provide any strong support for rational learning theory or the self-interest argument. Income measured as net household monthly income (either total, or per capita, or weighted on the OECD scale) divided in deciles is a weak predictor of preferences for redistribution.
9. Chapter 5 discussed all the possible difficulties in measuring income in detail. Chapter 7 tried to overcome many of these. However, cross-sectional estimates show that those people who are in the upper part of income distribution ask for significantly less redistribution compared to those who are in the lower and middle part of income distribution. The nonlinearity of these associations corresponds to the nonlinearity of the German taxation system. People may be sensitive not to the amount of their net income but to the amount of the taxes they pay. Progressive taxation schemes in Germany may affect individual preferences for redistribution. However, the complexity of the German taxation schemes makes it difficult to provide coherent and parsimonious reasoning at the current stage of research. Individual taxation in Germany depends not only on individual gross income, but also on the family situation, the number of family members, dependents and children, wealth, property and many other factors. It is tempting to explain the discontinuity of the effect of income on preferences for redistribution in low, middle and high-income groups by means of differences in taxes. However, this issue requires more research with a clear and precise consideration of the life conditions of individuals and the amount of taxes they pay. This shortcoming may stimulate future research.
10. Chapter 7 produced controversial results. While it may indicate empirical proof for the theory of the relative utility of income and show that well-off individuals become more altruistic when they experience income growth, this regularity may be not universal, but country-specific.

Additional robustness checks for different economic settings are required to provide external validity for the results.
11. Chapter 6 and Chapter 7 might well be subject to the problem that the participants of panel studies may, in some cases, recall their previous responses. This is a general problem of panel surveys. This tendency may undermine the effect of individual labour market mobility and income growth on individual preferences for redistribution.
12. Both parts of the dissertation would have provided a more complete picture of the effects of culture and self-interest if I could have used not only quantitative data analysis, but a mixedmethods approach. Quantitative methods have many unquestionable advantages, but qualitative methods such as interviews or group discussions can shed light on different aspects determining preferences for redistribution which go beyond questionnaires and the theoretical framework of the researchers designing the surveys. At the same time, an experimental research design might help link attitudinal patterns which are normally revealed by surveys to actual behavior.

4. Future research

"Explanation is always incomplete: we can always raise another why-question. And the new why-questions may lead to a new theory which not only "explains" the old theory but corrects it" (Popper 1974 (2005, 150))

Future research on this topic may be easily developed on the limitations discussed above. My recent findings have motivated a list of new research questions aimed at providing external validity to the conclusions or at finding a new way of studying the determinants of preferences for redistribution.

1. The study of current migration in Europe may provide some more data about the integration of people who came from countries that were different in terms of political, economic and cultural settings. The German Socio-Economic Panel extended the sample of immigrants up to almost five thousand households in 2013. Using this extension, it would be possible to obtain more recent and more precise estimates for changes in preferences. However, preferences for redistribution have not been measured since 2007 , so it would be necessary to find an alternative proxy to measure the phenomenon in which I am interested.
2. Another set of questions could be used to the test of robustness of the results about the effect of culture in different settings. What is happening with the preferences for redistribution of immigrants from Turkey, Poland, Russia and Kazakhstan in different countries? The research design implemented in Chapter 4 could be replicated in a different context. Namely, transition to a liberal welfare context may affect immigrants' preferences in a different way. The British Household Panel Survey provides empirical data to answer this question.
3. Comparisons of ethnic Germans who resettled in Germany and those who stayed in Russia may contribute to the discussion about selective migration.
4. Qualitative methods might contribute to a better understanding of the factors determining preferences for redistribution. Interviews or group discussions may lead a researcher to develop a
different vision of the preferences for redistribution and their determinants. To go beyond these limits, immigrants and socially mobile people can be asked about their experiences and attitudes. The change in the method of data collection may shed light on the regularities which could not be identified with survey instruments.
5. The dissertation shows that, despite shared expectations, transition into unemployment does not lead to a change in preferences for redistribution in Germany. Does this mean that the social security system in Germany buffers the negative consequences of unemployment? Is this true only in the specific case of Germany? To provide external validity for this conclusion, similar research could be repeated for countries with different welfare arrangements: countries with liberal economies (the US and the UK), social democratic countries (Sweden) and countries with rapidly changing welfare regimes and social structures (Russia). The measurement of preferences for redistribution varies across surveys; however, basic trends are also of theoretical and empirical interest.
6. As indicated above, a detailed understanding of the life conditions of individuals during unemployment, their ability to support their consumption at the same level as before unemployment, family transfers and the welfare benefits they received may lead to a different interpretation of risk exposure during unemployment. A comparison of different income groups and a differentiation between individuals who encounter difficulties to support their lives after a transition into unemployment and those who do not have these disadvantages may clarify the effect of unemployment on individual preferences for redistribution in different contexts.
7. Current results support the finding in previous publications that show women ask more redistribution compared to men as their stand in the labour market and income situation is more fragile. However, because of differences in role models men might be more concerned about their prospects of unemployment and possible disruption of their breadwinning ability. Comparison of the effect of future unemployment and the effect of transition into unemployment on preferences for redistribution among men and women might be of a particular interest.

At the same time, I would expect that difference in effects between males and females in the way how they respond to the expected unemployment could vary across different family structures and settings of welfare regimes. This question is very interesting. I would develop it and ask whether
a level of female labour force participation in a country or region affects the differences in preferences of males and females and whether the effect of expected unemployment is different for males and females in different settings. Or we could also follow different types of families and compare those where males are breadwinners and where females are. This way of research requires a detailed comparative study of social policies, female labour force participation, family support and childcare services.
8. Contrary to theoretical predictions, income did not explain much in variation and change in preferences for redistribution. This finding requires further investigation. In established and stable economies like Germany, neither individual nor household income may be a key determinant of individual welfare. The additional differentiation of people based on their wealth may lead to some changes in estimates. Moreover, different economic and social security settings may lead to a different output.
9. Chapter 7 identified non-linear associations between individual income and preferences for redistribution: individuals who are in the lower and middle part of income distribution have higher preferences for redistribution compared to those individuals in the upper part of income distribution. This association is not linear and may be explained by the progressive taxation system in Germany. In this respect, a better test of the rational learning theory might be provided by the substitution of household income with paid taxes. This substitution allows net household "subsidence" to be estimated and accounte for individual wealth at the same time. However, individual taxes in Germany are determined not only by individual income and wealth, but by many other individual and household parameters. This exercise necessitates a substantial theoretical study of general tax law and fiscal administration in Germany.

LITERATURE

Alba, R. D., \& Nee, V. (2003). Remaking the American Mainstream: Assimilation and Contemporary Immigration. Harvard University Press.

Alba, R., \& Nee, V. (2005). Remaking the American Mainstream: Assimilation and Contemporary Immigration. Cambridge, Mass.: Harvard University Press.

Alesina, A. F., \& Giuliano, P. (2009). Preferences for Redistribution (SSRN Scholarly Paper No. ID 1369061). Rochester, NY: Social Science Research Network.
Alesina, A., \& Glaeser, E. (2004). Fighting Poverty in the US and Europe: A World of Difference. Oxford University Press : Oxford University Press.
Alesina, A., \& Perotti, R. (1994). The Political Economy of Growth: A Critical Survey of the Recent Literature. The World Bank Economic Review, 8, 351-371.
Alesina, A., \& Angeletos, G.-M. (2005). Fairness and Redistribution: US vs. Europe. American Economic Review, 95.
Alesina, A., Di Tella, R., \& MacCulloch, R. (2004). Inequality and happiness: are Europeans and Americans different? Journal of Public Economics, 88, 2009-2042.

Alesina, A., \& Ferrara, E. L. (2005). Preferences for Redistribution in the Land of Opportunities. Journal of Public Economics, 89, 897-931.

Alesina, A., \& Fuchs-Schündeln, N. (2007). Good-Bye Lenin (or Not?): The Effect of Communism on People's Preferences. American Economic Review, 97, 1507-1528.

Alesina, A., \& Giuliano, P. (2009). Preferences for Redistribution (NBER Working Paper No. 14825.).

Alesina, A., \& Giuliano, P. (2011). Chapter 4 - Preferences for Redistribution. In A. B. and M. O. J. Jess Benhabib (Ed.), Handbook of Social Economics (Vol. 1, pp. 93-131). NorthHolland.

Alesina, A., \& Giuliano, P. (2015). Culture and Institutions. Journal of Economic Literature, 53, 898-944.

Alesina, A., \& Glaeser, E. (2008). Fighting Poverty in the US and Europe: A World of Difference. Oxford: Oxford University Press.

Alesina, A., \& Rodrik, D. (1991). Distributive Politics and Economic Growth (Working Paper No. 3668). National Bureau of Economic Research.

Alesina, A., Stantcheva, S., \& Teso, E. (2018). Intergenerational Mobility and Preferences for Redistribution. American Economic Review, 108, 521-554.

Alt, J., \& Iversen, T. (2017). Inequality, Labor Market Segmentation, and Preferences for Redistribution. American Journal of Political Science, 61, 21-36.

Andreß, H.-J., \& Heien, T. (2001). Four Worlds of Welfare State Attitudes? A Comparison of Germany, Norway, and the United States. European Sociological Review, 17, 337-356.

Angrist, J. D., \& Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion (1 edition). Princeton: Princeton University Press.

Applebaum, A. (2003). Gulag: A History (1 edition). New York: Doubleday.
Arrow, K. J. (1963). Social choice and individual values. New York: John Wiley \& Sons, Inc.
Axelsson, R., \& Westerlund, O. (1998). A panel study of migration, self-selection and household real income. Journal of Population Economics, 11, 113-126.

Azzimonti, M., De Francisco, E., \& Krusell, P. (2006). Median-voter Equilibria in the Neoclassical Growth Model under Aggregation*. Scandinavian Journal of Economics, 108, 587-606.

Babiker, I. E., Cox, J. L., \& Miller, P. M. (1980). The measurement of cultural distance and its relationship to medical consultations, symptomatology and examination performance of overseas students at Edinburgh University. Social Psychiatry, 15, 109-116.
Beaulieu, N., Duclos, J.-Y., Fortin, B., \& Rouleau, M. (2005). Intergenerational Reliance on Social Assistance: Evidence from Canada. Journal of Population Economics, 18, 539-562.
Benabou, R., \& Ok, E. A. (2001a). Social Mobility and the Demand for Redistribution: The Poum Hypothesis. The Quarterly Journal of Economics, 116, 447-487.

Bénabou, R., \& Tirole, J. (2006). Belief in a Just World and Redistributive Politics. The Quarterly Journal of Economics, 121, 699-746.

Bernardi, F., \& Ballarino, G. (2016). Education, Occupation and Social Origin: A Comparative Analysis of the Transmission of Socio-Economic Inequalities. Edward Elgar Publishing.

Bernardi, F., Chakhaia, L., \& Leopold, L. (2017). 'Sing Me a Song with Social Significance’: The (Mis)Use of Statistical Significance Testing in European Sociological Research. European Sociological Review, 33, 1-15.
Bernardi, F., \& Garrido, L. (2008). Is There a New Service Proletariat? Post-industrial Employment Growth and Social Inequality in Spain. European Sociological Review, 24, 299-313.

Bernhard, H., Fischbacher, U., \& Fehr, E. (2006). Parochial altruism in humans. Nature, 442, 912915.

Berry, J. (2006). Contexts of acculturation. In The Cambridge handbook of acculturation psychology (pp. 27-42). Cambridge: Cambridge University Press.

Berry, J. W. (1997). Immigration, Acculturation, and Adaptation. Applied Psychology, 46, 5-34.
Berry, J. W. (2003). Conceptual approaches to acculturation. In K. M. Chun, P. Balls, \& G. Mar (Eds.), Acculturation: Advances in theory, measurement, and applied research (pp. 1737). Washington, DC, US: American Psychological Association.

Berry, J. W. (2005). Acculturation: Living successfully in two cultures. International Journal of Intercultural Relations, 29, 697-712.

Bianchi, M. (2013). Immigration Policy and Self-Selecting Migrants. Journal of Public Economic Theory, 15, 1-23.
Bilsky, W., Janik, M., \& Schwartz, S. H. (2011). The Structural Organization of Human ValuesEvidence from Three Rounds of the European Social Survey (ESS). Journal of CrossCultural Psychology, 42, 759-776.
Borge, L.-E., \& Rattsø, J. (2004). Income distribution and tax structure: Empirical test of the Meltzer-Richard hypothesis. European Economic Review, 48, 805-826.

Borjas, G. J. (1987). Self-Selection and the Earnings of Immigrants. The American Economic Review, 77, 531-553.

Borjas, G. J. (1988). Self-Selection and the Earnings of Immigrants (Working Paper No. 2248). National Bureau of Economic Research.

Borjas, G. J. (1994). The Economics of Immigration. Journal of Economic Literature, 32, 16671717.

Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge University Press.

Brand, J. E. (2015). The Far-Reaching Impact of Job Loss and Unemployment. Annual Review of Sociology, 41, 359-375.

Breen, R. (Ed.). (2004). Social Mobility in Europe. Oxford University Press.
Breen, R., \& Luijkx, R. (2004). Social Mobility in Europe between 1970 and 2000. Social Mobility in Europe, 1, 37-77.

Breen, R., Mood, C., \& Jonsson, J. (2016). How Much Scope for a Mobility Paradox? The Relationship between Social and Income Mobility in Sweden. Sociological Science, 3, 3960.

Brooks, C., \& Manza, J. (2007). Why Welfare States Persist: The Importance of Public Opinion in Democracies. Chicago: University Of Chicago Press.

Brücker, H., \& Trübswetter, P. (2007). Do the best go west? An analysis of the self-selection of employed East-West migrants in Germany. Empirica, 34, 371-395.

Campbell, L., \& Poser, W. J. (2008). Language Classification: History and Method (1 edition). Cambridge, UK ; New York: Cambridge University Press.
Carroll, C. D., Rhee, B.-K., \& Rhee, C. (1994). Are There Cultural Effects on Saving? Some CrossSectional Evidence. The Quarterly Journal of Economics, 109, 685-699.

Checchi, D., \& Filippin, A. (2003). An Experimental Study of the POUM Hypothesis. IZA.
Chiswick, B. R., \& Miller, P. W. (1994). Language choice among immigrants in a multi-lingual destination. Journal of Population Economics, 7, 119-131.

Chiswick, Barry R., \& Miller, P. W. (2005). Linguistic Distance: A Quantitative Measure of the Distance Between English and Other Languages. Journal of Multilingual and Multicultural Development, 26, 1-11.

Chiswick, Barry R., \& Miller, P. W. (2007). The Economics of Language: International Analyses. Routledge.

Clark, A., \& d'Angelo, E. (2013). Upward Social Mobility, Well-being and Political Preferences: Evidence from the BHPS (Working Paper No. 338). Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

Clark, A., \& D'Angelo, E. (2010). Upward Social Mobility, Well-being and;Political Preferences: Evidence from the;BHPS (Working Paper No. 338). Universita’ Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

Clark, A. E. (2003). Unemployment as a Social Norm: Psychological Evidence from Panel Data. Journal of Labor Economics, 21, 323-351.
Cojocaru, A. (2014). Prospects of upward mobility and preferences for redistribution: Evidence from the Life in Transition Survey. European Journal of Political Economy, 34, 300-314.
Constant, A., \& Massey, D. S. (2003). Self-selection, earnings, and out-migration: A longitudinal study of immigrants to Germany. Journal of Population Economics, 16, 631-653.
Corder, S. P. (1981). Error analysis and interlanguage. Oxford University Press.
Corneo, G. (2001). Inequality and the State: Comparing US and German Preferences. Annales d'Économie et de Statistique, 283-296.
Corneo, G., \& Gruner, H. P. (2002). Individual preferences for political redistribution. Journal of Public Economics, 83, 83-107.

Coughlin, P. J. (1992). Probabilistic Voting Theory. Cambridge University Press.
Coughlin, R. M. (1990). The economic person in sociological context: Case studies in the mediation of self-interest. Journal of Behavioral Economics, 19, 181.
Creed, P. A., \& Reynolds, J. (2001). Economic deprivation, experiential deprivation and social loneliness in unemployed and employed youth. Journal of Community \& Applied Social Psychology, 11, 167-178.
Cusack, T., Iversen, T., \& Rehm, P. (2006). Risks at Work: The Demand and Supply Sides of Government Redistribution. Oxford Review of Economic Policy, 22, 365-389.
Dallinger, U. (2015). Public Redistribution and Voter Demand: The Role of the Middle Class. Comparative Sociology, 14, 721-750.
Dalton, R. J., \& Welzel, C. (Eds.). (2014). The Civic Culture Transformed: From Allegiant to Assertive Citizens (Reprint edition). New York, NY: Cambridge University Press.
Dietz, B., Lebok, U., \& Polian, P. (2002). The Jewish Emigration from the Former Soviet Union to Germany. International Migration, 40, 29-48.
Diewald, M., Goedicke, A., \& Mayer, K. U. (2006). After the Fall of the Wall: Life Courses in the Transformation of East Germany (1 edition). Stanford, Calif: Stanford University Press.

DiMaggio, P. (1997). Culture and Cognition. Annual Review of Sociology, 23, 263-287.
Doherty, D., Gerber, A. S., \& Green, D. P. (2006). Personal Income and Attitudes toward Redistribution: A Study of Lottery Winners. Political Psychology, 27, 441-458.

Duru-Bellat, M., \& Kieffer, A. (2008). Objective/subjective: The two facets of social mobility. Sociologie Du Travail, 50, Supplement 1, e1-e18.

Edmark, K., \& Hanspers, K. (2015). Is Welfare Dependency Inherited? Estimating Causal Welfare Transmission Effects Using Swedish Sibling Data. European Journal of Social Security, 17, 338-360.

Eichhorst, W., \& Marx, P. (2010). Whatever Works: Dualisation and the Service Economy in Bismarckian Welfare States (IZA Discussion Paper No. 5035). Institute for the Study of Labor (IZA).

Elliott, L. (2017, January 18). Middle classes in crisis, IMF's Christine Lagarde tells Davos 2017. The Guardian.

Epple, D., \& Romer, T. (1991). Mobility and Redistribution. Journal of Political Economy, 99, 828-858.

Esping-Andersen, G. (1990). The three worlds of welfare capitalism. Princeton N.J.: Princeton University Press.

Esping-Andersen, G. (1996). Welfare states without work: the impasse of labour shedding and familialism in continental European social policy. London: SAGE Publications, Inc.

Farber, H. S. (2010). Job Loss and the Decline in Job Security in the United States. NBER, 223262.

Feldman, S., \& Zaller, J. (1992). The political culture of ambivalence: Ideological responses to the welfare state. American Journal of Political Science, 36, 268-307.

Fenger, H. J. M. (2007). Welfare regimes in Central and Eastern Europe: Incorporating postcommunist countries in a welfare regime typology. Contemporary Issues and Ideas in Social Sciences, 2, 1-30.

Fernández, R. (2008). Culture and economics. In S. N. Durlauf \& L. E. Blume (Eds.), The New Palgrave Dictionary of Economics (Second Edition, pp. 333-340). Basingstoke: Palgrave Macmillan.

Fernández, R., \& Fogli, A. (2009). Culture: An Empirical Investigation of Beliefs, Work, and Fertility. American Economic Journal: Macroeconomics, 1, 146-177.

Festinger, L. (1962). A Theory of Cognitive Dissonance. Stanford University Press.

Fields, G., \& Ok, E. A. (1999). The Measurement of Income Mobility: An Introduction to the Literature. In J. Selber (Ed.), Handbook of Income Inequality Measurement (pp. 557-598). Kluwer Academic Publishers.

Finseraas, H. (2009). Income Inequality and Demand for Redistribution: A Multilevel Analysis of European Public Opinion. Scandinavian Political Studies, 32, 94-119.

Fisman, R., \& Miguel, E. (2007). Corruption, Norms, and Legal Enforcement: Evidence from Diplomatic Parking Tickets. Journal of Political Economy, 115, 1020-1048.

Fitzpatrick, T. (2011). Social paternalism and basic income. Policy \& Politics, 39, 83-100.
Fong, C. (2001). Social preferences, self-interest, and the demand for redistribution. Journal of Public Economics, 82, 225-246.

Fong, C. M., Bowles, S., \& Gintis, H. (2006). Strong reciprocity and the welfare state (Handbook on the Economics of Giving, Reciprocity and Altruism) (pp. 1439-1464). Elsevier.

Fouarge, D., \& Ester, P. (2007). Factors determining international and regional migration in Europe (pp. 1-49). Dublin: European Foundation for the Improvement of Living and Working Conditions.

Fujiwara, T. (2015). Voting Technology, Political Responsiveness, and Infant Health: Evidence From Brazil. Econometrica, 83, 423-464.

Furnham, A. (1983). Social Difficulty in Three Cultures. International Journal of Psychology, 18, 215-228.

Furnham, A. F., \& Bochner, S. (1982). Social difficulty in a foreign culture: An empirical analysis of culture shock. In S. Bochner (Ed.), Culture in Contact: Studies in cross cultural interaction. (pp. 161-198). Oxford.: Pergamon.
Gebel, M., \& Voßemer, J. (2014). The impact of employment transitions on health in Germany. A difference-in-differences propensity score matching approach. Social Science \& Medicine (1982), 108, 128-136.

Gehricke, M., Fritz, J., \& Roß, H. (2012). Methodenbericht. Arbeitslose mit Migrationshintergrund. Nürnberg: Bundesagentur für Arbeit Statistik.

Ghatak, S., Levine, P., \& Price, S. W. (1996). Migration Theories and Evidence: An Assessment. Journal of Economic Surveys, 10, 159-198.

Giuliano, P. (2007). Living Arrangements in Western Europe: Does Cultural Origin Matter? Journal of the European Economic Association, 5, 927-952.

Goffman, E. (1959). The Presentation of Self in Everyday Life (1 edition). New York, NY: Anchor. Gottschalk, P. (1990). AFDC Participation Across Generations. The American Economic Review, 80, 367-371.

Gottschalk, P. (1996). Is the correlation in welfare participation across generations spurious? Journal of Public Economics, 63, 1-25.

Grabka, M. M. (2011). Codebook for the \$PEQUIV File 1984-2010 (p. 201). Berlin: DIW Berlin.
Grätz, M., \& Pollak, R. (2016). Legacies of the past: social origin, educational attainment and labour-market outcomes in Germany. In F. Bernardi \& G. Ballarino (Eds.), Education, Occupation and Social Origin (pp. 34-48). Edward Elgar Publishing.

Graves, T. D. (1967). Psychological Acculturation in a Tri-Ethnic Community. Southwestern Journal of Anthropology, 23, 337-350.

Greif, A. (1994). Cultural Beliefs and the Organization of Society: A Historical and Theoretical Reflection on Collectivist and Individualist Societies. Journal of Political Economy, 102, 912-950.

Gryaznova, O. (2013). Factors Affecting Welfare Attitudes in Different Types of Welfare States: Personal Interests and Values (SSRN Scholarly Paper No. ID 2267337). Rochester, NY: Social Science Research Network.

Gugushvili, A. (2016a). Intergenerational objective and subjective mobility and attitudes towards income differences: evidence from transition societies. Journal of International and Comparative Social Policy, 32, 199-219.

Gugushvili, A. (2016b). Intergenerational Social Mobility and Popular Explanations of Poverty: A Comparative Perspective. Social Justice Research. doi:10.1007/s11211-016-0275-9

Guiso, L., Sapienza, P., \& Zingales, L. (2006). Does Culture Affect Economic Outcomes? Journal of Economic Perspectives, 20, 23-48.

Hamilton, V. L. (1983). What's Fair?: American Beliefs about Distributive Justice. Contemporary Sociology, 12, 236-237.

Harrison, L. E., \& Huntington, S. P. (2001). Culture Matters: How Values Shape Human Progress. New York: Basic Books.

Hart-Gonzalez, L., \& Lindemann, S. (1993). Expected Achievement in Speaking Proficiency, 1993. School of Language Studies, Foreign Services Institute, Department of State.

Häusermann, S., Kurer, T., \& Schwander, H. (2016). Sharing the Risk? Households, Labor Market Vulnerability, and Social Policy Preferences in Western Europe. The Journal of Politics, 78, 1045-1060.

Held, M., Mueller, J., Deutsch, F., Grzechnik, E., \& Welzel, C. (2009). Value Structures and Dimensions: Evidence from the German WVS. World Values Research, 2, 56-77.

Hennighausen, T., \& Heinemann, F. (2015). Don't Tax Me? Determinants of Individual Attitudes Toward Progressive Taxation. German Economic Review, 16, 255-289.
Hertel, F. R. (2016). Social Mobility in the 20th Century: Class Mobility and Occupational Change in the United States and Germany. Springer.

Hertel, F. R., \& Groh-Samberg, O. (2014). Class mobility across three generations in the U.S. and Germany. Research in Social Stratification and Mobility, 35, 35-52.

Hicks, J. (1932). The Theory of Wages. Macmillan.
Hochschild, J. L. (1981). What's fair?: American beliefs about distributive justice. Cambridge: Harvard University Press.

Informationen zur politischen Bildung. Heft 267: Aussiedler. (2000). Bundeszentrale für politische Bildung, Bonn,.

Inglehart, R. (1977). The silent revolution: changing values and political styles among Western publics. Princeton, N.J.: Princeton University Press.
Inglehart, R. (1997). Modernization and postmodernization : cultural, economic, and political change in 43 societies. Princeton N.J.: Princeton University Press.

Inglehart, R. (2003). Human values and social change: findings from the values surveys. Leiden; Boston: Brill.

Inglehart, R., \& Baker, W. E. (2000). Modernization, Cultural Change, and the Persistence of Traditional Values. American Sociological Review, 65, 19-51.
Inglehart, R., \& Welzel, C. (2005). Modernization, cultural change, and democracy : the human development sequence. Cambridge UK ;;New York: Cambridge University Press.

Isurin, L., \& Riehl, C. M. (2017). Integration, Identity and Language Maintenance in Young Immigrants: Russian Germans or German Russians. John Benjamins Publishing Company.

Iversen, T., \& Soskice, D. (2001). An Asset Theory of Social Policy Preferences. American Political Science Review, 95, 875-893.

Jæger, Mades Meier. (2006). What Makes People Support Public Responsibility for Welfare Provision: Self-interest or Political Ideology? Acta Sociologica (Sage Publications, Ltd.), 49, 321-338.
Jæger, Mads Meier. (2008). Does Left-Right Orientation Have a Causal Effect on Support for Redistribution? Causal Analysis with Cross-Sectional Data Using Instrumental Variables. International Journal of Public Opinion Research, 20, 363-374.
Jæger, Mads Meier. (2013). The effect of macroeconomic and social conditions on the demand for redistribution: A pseudo panel approach. Journal of European Social Policy, 23, 149-163.
Jahoda, M. (1982). Employment and Unemployment: A Social-Psychological Analysis. CUP Archive.

Jäntti, M., \& Jenkins, S. P. (2013). Income Mobility (SOEPpapers on Multidisciplinary Panel Data Research).

Jonsson, J. O., Grusky, D. B., Di Carlo, M., Pollak, R., \& Brinton, M. C. (2009). Microclass Mobility: Social Reproduction in Four Countries. American Journal of Sociology, 114, 977-1036.
Kalter, F., \& Kogan, I. (2014). Migrant Networks and Labor Market Integration of Immigrants from the Former Soviet Union in Germany. Social Forces, 92, 1435-1456.
Kangas, O. (1997). Self-interest and the common good: The impact of norms, selfishness and context in social policy opinions. Journal of Socio-Economics, 26, 475-494.
Kauppinen, I., \& Poutvaara, P. (2012). Preferences for Redistribution among Emigrantsfrom a Welfare State (Ifo Working Paper Series No. Ifo Working Paper No. 120). Ifo Institute for Economic Research at the University of Munich.
Keely, L. C., \& Tan, C. M. (2008). Understanding preferences for income redistribution. Journal of Public Economics, 92, 944-961.
Khandker, S. R., \& Haughton, J. (2009). Handbook on poverty and inequality. The World Bank.
Kluegel, J. R., \& Mason, D. S. (2004). Fairness matters: social justice and political legitimacy in post-communist Europe. Europe-Asia Studies, 56, 813-834.
Kluegel, J. R., \& Mateju, P. (1995). Egalitarian vs. Inegalitarian Principles of Distributive Justice. In Social justice and political change: public opinion in capitalist and post-communist states (pp. 209-238). Transaction Publishers.

Kogan, I. (2004). Last Hired, First Fired? The Unemployment Dynamics of Male Immigrants in Germany. European Sociological Review, 20, 445-461.

Kogan, I. (2011). New Immigrants - Old Disadvantage Patterns? Labour Market Integration of Recent Immigrants into Germany. International Migration, 49, 91-117

Krieger, H. (2006). Long distance mobility within the EU: considering the Lisbon Agenda and Transitional Arrangements (pp. 1-10). Dublin: European Foundation for the Improvement of Living and Working Conditions.

Krieger, V., Kampen, H., Paulsen, N., Kopp, L., Schleicher, J., \& Kampen, J. (2006). Deutsche aus Russland gestern und heute: Volk auf dem Weg. Landsmannschaft der Deutschen aus Russland eV.

Kulin, J., \& Svallfors, S. (2013). Class, Values, and Attitudes Towards Redistribution: A European Comparison. European Sociological Review, 29, 155-167.

Kulin, J. (2011). Values and welfare state attitudes : The interplay between human values, attitudes and redistributive institutions across national contexts (dissertation). Umeå University, Umeå.

Kwak, K., \& Berry, J. W. (2001). Generational differences in acculturation among Asian families in Canada: A comparison of Vietnamese, Korean, and East-Indian groups. International Journal of Psychology, 36, 152-162.
Lau, R. R., \& Heldman, C. (2009). Self-Interest, Symbolic Attitudes, and Support for Public Policy: A Multilevel Analysis. Political Psychology, 30, 513-537.

Leopold, L., Leopold, T., \& Lechner, C. M. (2017). Do Immigrants Suffer More From Job Loss? Unemployment and Subjective Well-being in Germany. Demography, 54, 231-257.

Linos, K., \& West, M. (2003). Self-interest, Social Beliefs, and Attitudes to Redistribution. European Sociological Review, 19, 393-409.

Lipset, S. M. (1963). Political man; the social bases of politics. Garden City, N.Y.: Doubleday.
Luttmer, E. F. P., \& Singhal, M. (2011). Culture, Context, and the Taste for Redistribution. American Economic Journal: Economic Policy, 3, 157-179.

Mäder, M., Müller, S., Riphahn, R., \& Schwientek, C. (2014). DIW Berlin: Intergenerational Transmission of Unemployment : Evidence for German Sons (Text) (p. 32). Berlin: DIW Berlin.

Margalit, Y. (2013). Explaining Social Policy Preferences: Evidence from the Great Recession. American Political Science Review, 107, 80-103.
Mau, S. (2004). The Moral Economy of Welfare States: Britain and Germany Compared. Routledge.

Mau, S., \& Veghte, B. (2007). Intruduction: Social justice, Legitimacy and welfare state. In S. Mau \& B. Veghte (Eds.), Social Justice Legitimacy and the Welfare State (pp. 1-16). Aldershot, England; Burlington, VT: Ashgate.

McClosky, H., \& Zaller, J. (1987). The American Ethos: Public Attitudes Toward Capitalism and Democracy. Harvard University Press.

McKee-Ryan, F., Song, Z., Wanberg, C. R., \& Kinicki, A. J. (2005). Psychological and physical well-being during unemployment: a meta-analytic study. The Journal of Applied Psychology, 90, 53-76.

Mead, G. H. (1964). George Herbert Mead: On Social Psychology- Selected Papers. (A. Strauss, Ed.) (Revised ed. edition). Chicago: University of Chicago Press.

Meltzer, A. H., \& Richard, S. F. (1981). A Rational Theory of the Size of Government. Journal of Political Economy, 89, 914-927.

Millikan, R. A. (1929). What I Believe. The Forum, 193-201.
Moene, K. O., \& Wallerstein, M. (2001). Inequality, Social Insurance, and Redistribution. American Political Science Review, 95, 859-874.

Moffit, R. (2015). Unemployment benefits and unemployment The challenge of unemployment benefits is to protect workers while minimizing undesirable side effects. In K. Zimmerman \& A. Kritikos (Eds.), Evidence-based Policy Making in Labor Economics: The IZA World of Labor Guide 2015 (p. 247). London, New Dehli, New York, Sydney: Bloomsbury Publishing.

Moreno, A. (2005). Nuestros valores: Los mexicanos en México y en Estados Unidos al inicio del siglo xxi. Mexico: BANAMEX, 187-190.

Morgan, S. L., \& Winship, C. (2014). Counterfactuals and Causal Inference: Methods and Principles for Social Research (2 edition). New York, NY: Cambridge University Press.

Mughan, A., Bean, C., \& McAllister, I. (2003). Economic globalization, job insecurity and the populist reaction. Electoral Studies, 22, 617-633.

Mughan, Anthony. (2007). Economic Insecurity and Welfare Preferences: A Micro-Level Analysis. Comparative Politics, 39, 293-310.

Müller, W., \& Pollak, R. (2004). Social Mobility in West Germany: The Long Arms of History Discovered? - Oxford Scholarship. In R. Breen (Ed.), Social Mobility in Europe (pp. 17113). Oxford: Oxford University Press.

Nakosteen, R. A., Westerlund, O., \& Zimmer, M. (2008). Migration and Self-Selection: Measured Earnings and Latent Characteristics*. Journal of Regional Science, 48, 769-788.
Nakosteen, R. A., \& Zimmer, M. (1980). Migration and Income: The Question of Self-Selection. Southern Economic Journal, 46, 840-851.

Naumann, E., Buss, C., \& Bähr, J. (2016). How Unemployment Experience Affects Support for the Welfare State: A Real Panel Approach. European Sociological Review, 32, 81-92.

Newcomb, K., \& etc. (1967). Persistence and Change: Bennington College and Its Students After 25 Years. John Wiley \& Sons Ltd.

Nicolás, J. D. (2005). Las dos caras de la inmigración (Ministerio de Trabajo y Asuntos Sociales). Madrid.

Norris, P., \& Inglehart, R. F. (2012). Muslim Integration into Western Cultures: Between Origins and Destinations. Political Studies, 60, 228-251.

Nunn, A. (2013). Fostering Social Mobility as a Contribution to Social Cohesion. Council of Europe.

Ockenfels, A., \& Weimann, J. (1999). Types and patterns: an experimental East-West-German comparison of cooperation and solidarity. Journal of Public Economics, 71, 275-287.
OECD. (2015). Connecting with Emigrants - A Global Profile of Diasporas 2015. Paris: Organisation for Economic Co-operation and Development.

Ostry, M. J. D., Berg, M. A., \& Tsangarides, M. C. G. (2014). Redistribution, Inequality, and Growth. International Monetary Fund.

Owens, L. A., \& Pedulla, D. S. (2014). Material Welfare and Changing Political Preferences: The Case of Support for Redistributive Social Policies. Social Forces, 92, 1087-1113.

Paul, K. I., Geithner, E., \& Moser, K. (2009). Latent deprivation among people who are employed, unemployed, or out of the labor force. The Journal of Psychology, 143, 477-491.

Pendakur, K. (1999). Semiparametric estimates and tests of base-independent equivalence scales. Journal of Econometrics, 88, 1-40.

Perotti, R. (1993). Political Equilibrium, Income Distribution, and Growth. The Review of Economic Studies, 60, 755-776.

Persson, T., \& Tabellini, G. (1994). Is Inequality Harmful for Growth? The American Economic Review, 84, 600-621.

Piketty, T. (1995). Social Mobility and Redistributive Politics. The Quarterly Journal of Economics, 110, 551-584.

Plümper, T., Troeger, V., \& Manow, P. (2005). Panel data analysis in comparative politics: Linking method to theory. European Journal of Political Research, 327-354.

Pohl, J. O. (2012). Soviet Apartheid: Stalin's Ethnic Deportations, Special Settlement Restrictions, and the Labor Army: The Case of the Ethnic Germans in the USSR. Human Rights Review, 13, 205-224.

Polavieja, J. G. (2015). Capturing Culture: A New Method to Estimate Exogenous Cultural Effects Using Migrant Populations. American Sociological Review, 80, 166-191

Pollak, R. A. (2003). Gary Becker's Contributions to Family and Household Economics. Review of Economics of the Household, 1, 111-141.

Pollak, R. A., \& Wales, T. J. (1979). Welfare Comparisons and Equivalence Scales. The American Economic Review, 69, 216-221.

Popper, K. (2005). Unended Quest: An Intellectual Autobiography. Routledge.
Portes, A., \& Zhou, M. (1993). The New Second Generation: Segmented Assimilation and Its Variants. Annals of the American Academy of Political and Social Science, 530, 74-96.

Rainer, H., \& Siedler, T. (2008). Subjective income and employment expectations and preferences for redistribution. Economics Letters, 99, 449-453.

Ravallion, M. (1998). Poverty lines in theory and practice (No. LSM133) (p. 1). The World Bank.
Ravallion, M., \& Lokshin, M. (2000). Who wants to redistribute?: The tunnel effect in 1990s Russia. Journal of Public Economics, 76, 87-104.

Rawls, J. (1971). A theory of justice. Cambridge, Mass.: Belknap Press of Harvard University Press.

Redfield, R., Linton, R., \& Herskovits, M. J. (1936). Memorandum for the Study of Acculturation. American Anthropologist, 38, 149-152.

Reeskens, T., \& van Oorschot, W. (2015). Immigrants' Attitudes towards Welfare Redistribution. An Exploration of Role of Government Preferences among Immigrants and Natives across 18 European Welfare States. European Sociological Review, 31, 433-445.
Rehm, P. (2009). Risks and Redistribution An Individual-Level Analysis. Comparative Political Studies, 42, 855-881.
Rehm, P. (2011). Social Policy by Popular Demand. World Politics, 63, 271-299.
Rehm, P. (2016). Risk Inequality and Welfare States: Social Policy Preferences, Development, and Dynamics. New York, NY: Cambridge University Press.
Roberts, K. (1977). Voting over income tax schedules. Journal of Public Economics, 8, 329-340.
Rodrik, D. (2018). Populism and the Economics of Globalization. Journal of International Business Policy.
Roemer, J. E., \& Roemer, J. E. (2009). Political Competition: Theory and Applications. Harvard University Press.

Romer, T. (1975). Individual welfare, majority voting, and the properties of a linear income tax. Journal of Public Economics, 4, 163-185.
Rueda, D. (2017). Food comes first, then morals: redistribution preferences, parochial altruism and immigration in Western Europe. Journal of Politics, 80, 225-239.
Rueda, D. (2005). Insider-Outsider Politics in Industrialized Democracies: The Challenge to Social Democratic Parties. The American Political Science Review, 99, 61-74.
Rueda, D. (2014). Food Comes First, Then Morals: Redistribution Preferences, Altruism and Group Heterogeneity in Western Europe (CAGE Online Working Paper Series No. 200). Competitive Advantage in the Global Economy (CAGE).

Rueda, D. \& Stegmueller, D. (2016). Preferences That Matter: Inequality, Redistribution and Voting.

Sam, D. L. (2006). Acculturation: conceptual background and core components. In D. L. Sam \& J. W. Berry (Eds.), The Cambridge handbook of acculturation psychology (pp. 27-42). Cambridge: Cambridge University Press.
Schwartz, S. H. (1992). Universals in content and structure of values: Theoretical advances and empirical tests in 20 countries. In Advances in Experimental Social Psychology / Ed. by M. Zanna. (Vol. 25, pp. 1-65). New York: Academic Press.

Schwartz, S. H. (1994). Are There Universal Aspects in the Structure and Contents of Human Values? JOSI Journal of Social Issues, 50, 19-45.

Searle, W., \& Ward, C. (1990). The prediction of psychological and sociocultural adjustment during cross-cultural transitions. International Journal of Intercultural Relations, 14, 449464.

Siedler, T., \& Sonnenberg, B. (2012). Intergenerational Earnings Mobility and Preferences for Redistribution (SSRN Scholarly Paper No. ID 2186466). Rochester, NY: Social Science Research Network.

Sjaastad, L. A. (1962). The Costs and Returns of Human Migration. Journal of Political Economy, 70, 80-93.

Smith, E. R., \& Kluegel, J. R. (1986). Beliefs About Inequality: Americans' Views of What Is and What Ought to Be. New York: Aldine Transaction.

SOEP group. (2016). SOEP 2014 - Documentation of Household-related Status and Generated Variables in $\$ H G E N$ for SOEP v31.1. SOEP Survey Papers 3ǒǒ: Series D - Variable Descriptions and Coding. DIW Berlin/SOEP: DIW Berlin/SOEP.

Solon, G. (1992). Intergenerational Income Mobility in the United States. American Economic Review, 82, 393-408.

Soltan, K. E. (1983). What's Fair? American Beliefs about Distributive Justice. American Journal of Sociology, 88, 1046-1048.

Stegmueller, D. (2013). Modeling Dynamic Preferences: A Bayesian Robust Dynamic Latent Ordered Probit Model. Political Analysis, 21, 314-333.

Stent, A. E. (2000). Russia and Germany Reborn: Unification, the Soviet Collapse, and the New Europe. Princeton University Press.

Sullivan, D., \& von Wachter, T. (2009). Job Displacement and Mortality: An Analysis Using Administrative Data. The Quarterly Journal of Economics, 124, 1265-1306.

Svallfors, S. (2004). Class, Attitudes and the Welfare State: Sweden in Comparative Perspective. Social Policy \& Administration, 38, 119-138.

Svallfors, S. (2012). Welfare attitudes in Europe: Topline Results from Round 4 (ESS Topline Results Series).

Svallfors, S., Kulin, J., \& Schnabel, A. (2012). Age, Class, and Attitudes Towards Government Responsibilities. In Contested Welfare States? : Welfare Attitudes in Europe and Beyond (pp. 158-192). Stanford, CA: Stanford University Press.
Swidler, A. (1986). Culture in Action: Symbols and Strategies. American Sociological Review, 51, 273-286.

Sykes, R. (2009). Culture and Welfare State: Values and Social Policy in Comparative Perspective - Edited by Wim van Oorschot, Michael Opielka and Birgit Pfau-Effinger. Social Policy \& Administration, 43, 778-780.

Tiebout, C. M. (1956). A Pure Theory of Local Expenditures. Journal of Political Economy, 64, 416-424.

Tullock, G. (1983). Further tests of a rational theory of the size of government. Public Choice, 41, 419-421.

Tullock, G. (2013). Economics of Income Redistribution. Springer Science \& Business Media.
Turner, J. B. (1995). Economic Context and the Health Effects of Unemployment. Journal of Health and Social Behavior, 36, 213-229.
van Oorschot, W., Opielka, M., \& Pfau-Effinger, B. (2008). Culture and Welfare State: Values and Social Policy in Comparative Perspective. Elgar.

Van Oorschot, W., \& Reeskens, T. (2013). Equity, equality, or need? A study of popular preferences for welfare redistribution principles across 24 European countries. Journal of European Public Policy.

Ward, C., \& Kennedy, A. (1993). Where's the 'Culture’ in Cross-Cultural Transition?: Comparative Studies of Sojourner Adjustment. Journal of Cross-Cultural Psychology, 24, 221-249.

Ward, Colleen, \& Kennedy, A. (1992). Locus of control, mood disturbance, and social difficulty during cross-cultural transitions. International Journal of Intercultural Relations, 16, 175194.

Ward, Colleen, \& Kennedy, A. (1999). The measurement of sociocultural adaptation. International Journal of Intercultural Relations, 23, 659-677.

Ward, Colleen, \& Searle, W. (1991). The impact of value discrepancies and cultural identity on psychological and sociocultural adjustment of sojourners. International Journal of Intercultural Relations, 15, 209-224.

Welzel, C. (2010). How Selfish Are Self-Expression Values? A Civicness Test. Journal of CrossCultural Psychology, 41, 152-174.

Welzel, C. (2013). Freedom Rising: Human Empowerment and the Quest for Emancipation. New York: Cambridge University Press.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge; London: The MIT Press.

APPENDICES

APPENDIX FOR CHAPTER 2

Count	Austria	Belgium	Bulgaria	Switzerland	Cyprus	Cz. Rep.	Germany	Denmark	Estonia	Spain	Finland	France
Austria	0	1	0	101	0	2	36	1	0	0	0	2
Belgium	0	0	0	16	0	0	1	5	0	5	0	20
Bulgaria	4	2	0	7	36	1	10	4	1	8	2	0
Switzerland	5	3	0	2	0	1	13	1	0	8	1	13
Cyprus	3	0	0	2	0	0	0	0	0	0	0	0
Czech Republic	14	4	0	15	0	0	43	2	0	2	0	0
Germany	110	49	0	398	3	4	0	42	6	29	7	39
Denmark	0	0	0	5	0	0	4	5	1	5	1	0
Estonia	0	0	0	0	0	0	5	0	0	0	38	0
Spain	3	20	0	58	0	0	16	4	2	0	5	47
Finland	0	0	0	8	0	0	1	7	12	4	0	1
France	6	149	1	149	1	1	17	8	2	44	1	0
United Kingdom	8	10	1	49	50	1	23	21	1	29	5	13
Greece	4	10		6	71	0	22	2	0	0	1	5
Croatia	30	1	0	64	0	0	17	1	0	0	0	4
Hungary	20	3	2	18	1	13	13	2	0	0	2	3
Ireland	1	0	0	5	0	0	4	3	0	2	0	3
Israel	0	1	0	6	0	0	1	0	0	0	1	1
Iceland	0	0	0	0	0	0	1	14	0	0	0	0
Italy	16	117	0	244	2	1	57	2	0	12	3	57
Lithuania	0	0	0	1	0	0	4	1	16	3	0	0
Luxembourg	2	8	0	1	0	0	1	0	0	0	0	3
Netherlands	3	112	0	37	0	0	18	7	0	11	3	3
Norway	0	2	0	2	1	0	1	18	1	1	3	1
Poland	16	24	0	25	2	16	251	19	0	9	3	16
Portugal	0	16	0	121	0	0	10	1	0	18	0	104
Russia	1	13	22	10	9	3	236	6	1219	11	77	8
Sweden	2	2	0	11	2	0	1	29	0	0	91	1
Slovenia	8	2	0	6	0	0	7	0	0	0	0	2
Slovakia	9	2	0	10	1	190	6	0	1	3	1	1
Turkey	55	65	0	82	0	0	224	32	0	0	4	24
Ukraine	1	4	3	2	4	9	33	2	182	15	4	2
	321	620	32	1461	183	242	1076	239	1444	219	253	373

Count	United Kingdom	Greece	Croatia	Hungary	Ireland	Israel	Iceland	Italy	Lithuania	Luxemb.	Netherlands	Norway	Poland
Austria	2	3	5	0	0	8	0	4	0	6	3	3	0
Belgium	9	4	0	1	1	11	0	5	0	117	37	4	1
Bulgaria	7	33	0	0	6	36	0	4	0	3	1	0	0
Switzerland	6	6	0	0	1	3	1	9	0	10	3	0	0
Cyprus	3	10	0	0	3	3	0	0	0	0	0	0	0
Czech Republic	6	3	0	0	11	13	0	0	0	2	2	3	1
Germany	73	76	11	9	27	43	4	11	0	73	68	38	48
Denmark	0	1	0	0	4	1	12	0	0	9	0	57	0
Estonia	4	0	0	0	6	0	0	0	0	0	0	0	0
Spain	10	1	0	0	13	7	1	2	0	10	8	3	0
Finland	5	0	0	0	0	1	1	0	0	0	1	10	0
France	28	3	0	5	28	63	3	9	0	154	13	8	9
United Kingdom	1	10	0	0	706	32	3	2	0	10	28	39	2
Greece	1	0	0	0	1	2	0	3	0	2	6	2	1
Croatia	2	0	0	0	0	0	0	2	0	1	3	5	0
Hungary	4	0	0	0	12	40	0	0	0	2	5	5	0
Ireland	94	0	0	0	0	1	0	0	0	2	4	0	0
Israel	2	1	0	0	0	0	0	0	0	0	3	2	0
Iceland	3	0	0	0	1	0	0	0	0	0	0	10	0
Italy	26	3	1	0	11	13	0	0	0	74	9	6	0
Lithuania	11	0	0	0	50	24	1	0	0	0	2	4	4
Luxembourg	1	0	0	0	0	0	0	0	0	0	0	0	0
Netherlands	10	1	1	0	11	9	2	0	0	28	0	8	1
Norway	1	0	0	0	1	0	0	0	0	1	1	0	0
Poland	73	6	0	0	218	121	2	3	2	10	23	55	0
Portugal	20	0	0	0	3	0	0	0	0	360	7	0	0
Russia	11	39	1	5	5	428	1	2	84	11	0	19	3
Sweden	7	2	0	0	2	2	8	0	0	0	2	87	0
Slovenia	1	0	25	1	0	2	0	1	0	0	2	0	0
Slovakia	6	0	0	13	6	1	0	0	0	0	3	0	1
Turkey	9	34	0	0	2	68	0	0	0	0	97	9	0
Ukraine	4	9	1	9	6	320	0	0	7	2	1	1	13
	440	245	45	43	1135	1252	39	57	93	887	332	378	84

Count	Portugal	Russia	Sweden	Slovenia	Slovakia	Turkey	Ukraine	
Austria	0	0	9	13	0	0	2	201
Belgium	4	0	0	2	0	0	0	243
Bulgaria	2	1	5	1	1	21	0	196
Switzerland	8	0	9	0	0	1	0	104
Cyprus	0	0	2	0	0	0	0	26
Czech Republic	0	0	7	1	137	0	2	268
Germany	17	18	60	29	1	6	17	1316
Denmark	0	0	44	0	0	0	0	149
Estonia	0	3	16	0	0	0	6	78
Spain	10	0	7	0	0	0	0	227
Finland	0	0	242	0	0	0	0	293
France	72	0	6	6	2	0	0	788
United Kingdom	1	0	19	0	0	0	0	1064
Greece	0	0	9	0	0	1	0	152
Croatia	0	0	12	192	0	0	0	334
Hungary	0	2	16	0	24	0	2	189
Ireland	0	0	3	0	0	0	0	122
Israel	0	0	2	0	0	0	0	20
Iceland	0	0	6	0	0	0	0	35
Italy	0	0	6	21	4	0	0	685
Lithuania	0	6	2	0	0	0	6	135
Luxembourg	4	0	0	0	0	0	0	20
Netherlands	0	0	12	1	0	2	0	280
Norway	0	0	0	0	0	0	95	
Poland	1	0	60	0	0	0	17	965
Portugal	1	1	47	0	5	0	0	663
Russian Federation	0	0	3	0	0	0	0	0
Sweden	0	0	15	6	6	0	660	2911
Slovenia	0	0	0	4	0	0	0	253
Slovakia	0	0	2	2	0	0	0	61
Turkey	0	0	1	1	0	0	3	259
Ukraine	0	0	34	0	0	0	2	741
	22	164	0	3	12	0	0	835
	142	195	656	282	192	31	717	13708

APPENDIX FOR CHAPTER 3

Table A3.1 - Descriptive statistics for natives, European and non-European migrants

natives \quad European migrants | non-European |
| :---: |
| migrants |

	mean	s.e.	mean	s.e.	mean	s.e.
Government should reduce differences in income levels	3.91	(1.03)	3.86	(1.05)	3.93	(1.02)
Sample	1	0	2	0	3	0
Origin category of mother	0.34	(0.73)	1.03	(0.55)	1.74	(0.64)
Origin category of father	0.35	(0.74)	1.04	(0.55)	1.73	(0.65)
Parental origin (only for $2^{\text {nd }}$ generation migrants)	1.10	(0.41)	\cdot	(.)	${ }^{\cdot}$	(.)
female	0.54	(0.50)	0.57	(0.50)	0.54	(0.50)
Age	48.6	(17.9)	50.4	(17.5)	45.7	(16.6)
Age $^{2} / 100$	26.8	(18.2)	28.5	(18.4)	23.7	(16.7)
Doing last 7 days: paid work	0.54	(0.50)	0.54	(0.50)	0.56	(0.50)
Paid work	0.50	(0.50)	0.49	(0.50)	0.52	(0.50)
Education	0.059	(0.24)	0.037	(0.19)	0.061	(0.24)
Unemployed, looking for job	0.040	(0.20)	0.047	(0.21)	0.068	(0.25)
Unemployed, not looking for job	0.017	(0.13)	0.019	(0.14)	0.025	(0.16)
Permanently sick or disabled	0.023	(0.15)	0.027	(0.16)	0.028	(0.16)
Retired	0.25	(0.43)	0.26	(0.44)	0.17	(0.37)
Community or military service	0.001	(0.043)	0.002	(0.047)	0.002	(0.049)
Housework, looking after children	0.097	(0.30)	0.099	(0.30)	0.11	(0.31)
Other	0.010	(0.10)	0.010	(0.099)	0.013	(0.11)
Main activity is missing	0.006	(0.078)	0.007	(0.083)	0.009	(0.095)
Industry, NACE, 21 groups	9.00	(5.78)	9.18	(5.77)	9.39	(5.77)
Agriculture, forestry and fishing	0.058	(0.23)	0.027	(0.16)	0.024	(0.15)
Mining and quarrying	0.020	(0.14)	0.028	(0.16)	0.022	(0.15)
Manufacturing	0.19	(0.39)	0.22	(0.41)	0.20	(0.40)
Electricity, gas, steam and air conditioning supply	0.008	(0.092)	0.010	(0.10)	0.004	(0.068)
Water supply; sewerage, waste management and remediation activities	0.004	(0.066)	0.004	(0.070)	0.002	(0.052)
Construction	0.061	(0.24)	0.066	(0.25)	0.065	(0.25)

	natives		European migrants		non-European migrants	
	mean	s.e.	mean	s.e.	mean	s.e.
Wholesale and retail trade; repair of motor vehicles and motorcycles	0.11	(0.32)	0.11	(0.31)	0.099	(0.30)
Transportation and storage	0.054	(0.23)	0.050	(0.22)	0.050	(0.22)
Accommodation and food service activities	0.036	(0.19)	0.053	(0.22)	0.070	(0.25)
Information and communication	0.013	(0.11)	0.017	(0.13)	0.014	(0.12)
Financial and insurance activities	0.021	(0.14)	0.019	(0.14)	0.016	(0.12)
Real estate activities	0.005	(0.071)	0.005	(0.075)	0.002	(0.052)
Professional, scientific and technical activities	0.015	(0.12)	0.018	(0.13)	0.016	(0.13)
Administrative and support service activities	0.037	(0.19)	0.044	(0.21)	0.045	(0.21)
Public administration and defense; compulsory social security	0.047	(0.21)	0.030	(0.17)	0.034	(0.18)
Education	0.066	(0.25)	0.061	(0.24)	0.048	(0.21)
Human health and social work activities	0.086	(0.28)	0.092	(0.29)	0.093	(0.29)
Arts, entertainment and recreation	0.025	(0.16)	0.030	(0.17)	0.030	(0.17)
Other service activities	0.020	(0.14)	0.028	(0.16)	0.023	(0.15)
Activities of households as employers; undifferentiated goods- and services-pro	0.007	(0.087)	0.012	(0.11)	0.023	(0.15)
Activities of extraterritorial organisations and bodies	0.000	(0.018)	0.001	(0.034)	0.000	(0.027)
Industry missing	0.11	(0.32)	0.081	(0.27)	0.12	(0.32)
Occupation	5.81	(2.54)	5.80	(2.62)	6.11	(2.64)
Managers	0.003	(0.063)	0.002	(0.045)	0.003	(0.055)
Professionals	0.082	(0.27)	0.085	(0.28)	0.072	(0.26)
Technicians and associate professionals	0.14	(0.35)	0.17	(0.38)	0.14	(0.35)
Clerical support workers	0.15	(0.36)	0.14	(0.35)	0.12	(0.33)
Service and sales workers	0.10	(0.31)	0.085	(0.28)	0.087	(0.28)
Skilled agricultural, forestry and fishery workers	0.15	(0.36)	0.16	(0.36)	0.19	(0.39)
Craft and related trades workers	0.036	(0.19)	0.014	(0.12)	0.013	(0.11)
Plant and machine operators, and assemblers	0.13	(0.34)	0.13	(0.34)	0.13	(0.34)
Elementary occupations	0.086	(0.28)	0.088	(0.28)	0.083	(0.28)
Armed forces occupations	0.11	(0.31)	0.12	(0.33)	0.16	(0.37)
Occupation is missing	0.098	(0.30)	0.069	(0.25)	0.11	(0.31)
Partner doing last 7 days: paid work	0.61	(0.49)	0.61	(0.49)	0.62	(0.49)
Father's employment status when respondent 14	1.50	(0.86)	1.57	(0.98)	1.61	(0.94)
Employee	0.65	(0.48)	0.66	(0.47)	0.60	(0.49)
Self-employed	0.22	(0.41)	0.16	(0.37)	0.22	(0.41)
Not working	0.035	(0.18)	0.039	(0.19)	0.056	(0.23)

	natives		European migrants		non-European migrants	
	mean	s.e.	mean	s.e.	mean	s.e.
Father dead/absent	0.067	(0.25)	0.10	(0.30)	0.086	(0.28)
Father's employment status is missing	0.029	(0.17)	0.034	(0.18)	0.039	(0.19)
Mother's employment status when respondent 14	2.01	(0.99)	1.99	(1.02)	2.24	(0.98)
Employee	0.45	(0.50)	0.48	(0.50)	0.35	(0.48)
Self-employed	0.090	(0.29)	0.060	(0.24)	0.073	(0.26)
Not working	0.42	(0.49)	0.41	(0.49)	0.52	(0.50)
Mother dead/absent	0.022	(0.15)	0.031	(0.17)	0.032	(0.18)
Mother's employment status is missing	0.017	(0.13)	0.018	(0.13)	0.023	(0.15)
Father's occupation when respondent 14	4.10	(1.39)	3.94	(1.53)	3.88	(1.56)
Senior manager or administrators	0.054	(0.23)	0.074	(0.26)	0.083	(0.28)
Traditional and modern professional and technical occupations	0.10	(0.30)	0.15	(0.36)	0.15	(0.36)
Clerical and intermediate occupations, mid/junior managers	0.11	(0.31)	0.10	(0.30)	0.14	(0.34)
Skilled worker	0.34	(0.47)	0.28	(0.45)	0.24	(0.42)
Semi-skilled worker	0.22	(0.41)	0.21	(0.41)	0.21	(0.41)
Unskilled worker	0.18	(0.38)	0.19	(0.39)	0.18	(0.39)
Farther's occupation is missing	0.17	(0.38)	0.21	(0.41)	0.23	(0.42)
Mother's occupation when respondent 14	4.22	(1.43)	4.13	(1.55)	3.98	(1.57)
Senior manager or administrators	0.018	(0.13)	0.025	(0.16)	0.032	(0.18)
Traditional and modern professional and technical occupations	0.12	(0.33)	0.18	(0.38)	0.20	(0.40)
Clerical and intermediate occupations, mid/junior managers	0.22	(0.41)	0.19	(0.39)	0.20	(0.40)
Skilled worker	0.16	(0.36)	0.12	(0.32)	0.12	(0.32)
Semi-skilled worker	0.24	(0.43)	0.22	(0.42)	0.21	(0.41)
Unskilled worker	0.25	(0.43)	0.26	(0.44)	0.24	(0.43)
Mother's occupation is missing	0.48	(0.50)	0.48	(0.50)	0.60	(0.49)
Ever had a paid job	0.92	(0.27)	0.95	(0.22)	0.91	(0.28)
Ever unemployed and seeking work for a period more than three months	0.26	(0.44)	0.29	(0.45)	0.35	(0.48)
Any period of unemployment and work seeking lasted 12 months or more	0.12	(0.33)	0.13	(0.34)	0.17	(0.38)
Member of trade union or similar organisation	2.36	(0.79)	2.37	(0.76)	2.51	(0.76)
Ever a member a member of a trade union or similar	0.44	(0.50)	0.45	(0.50)	0.32	(0.47)
Ever a member - missing	0	0	0	0	0	0
Currently a member of a trade union or similar	0.44	(0.50)	0.45	(0.50)	0.32	(0.47)

	natives		European migrants		non-European migrants	
	mean	s.e.	mean	s.e.	mean	s.e.
Currently a member - missing	0	0	0	0	0	0
Feeling about household's income nowadays	2.10	(0.90)	2.13	(0.91)	2.28	(0.92)
Living comfortably on present income	0.27	(0.44)	0.27	(0.44)	0.21	(0.40)
Difficult on present income	0.20	(0.40)	0.21	(0.41)	0.26	(0.44)
Very difficult on present income	0.085	(0.28)	0.091	(0.29)	0.11	(0.32)
Feeling about household's income is missing	0.009	(0.095)	0.009	(0.096)	0.010	(0.10)
Children living at home or not	0.40	(0.49)	0.41	(0.49)	0.50	(0.50)
Ever had children living in household	0.71	(0.45)	0.74	(0.44)	0.73	(0.44)
Legal marital status	2.53	(1.76)	2.36	(1.66)	2.29	(1.68)
Divorced	0.094	(0.29)	0.12	(0.32)	0.11	(0.31)
Widowed	0.10	(0.30)	0.11	(0.31)	0.075	(0.26)
Never married	0.25	(0.43)	0.19	(0.39)	0.21	(0.41)
Marital status is missing	0.018	(0.13)	0.029	(0.17)	0.013	(0.11)
Number of people living regularly as member of household	2.73	(1.43)	2.62	(1.38)	3.02	(1.57)
Household size	0.87	(0.54)	0.82	(0.54)	0.96	(0.56)
Household size, squared log	1.04	(0.94)	0.97	(0.90)	1.23	(1.02)
Household size, cubed log	1.38	(1.68)	1.26	(1.57)	1.72	(1.91)
Highest level of education	3.12	(1.34)	3.42	(1.39)	3.25	(1.40)
Lower education	0.31	(0.46)	0.25	(0.44)	0.31	(0.46)
Higher education	0.30	(0.46)	0.41	(0.49)	0.35	(0.48)
Education is missing	0.004	(0.066)	0.008	(0.094)	0.010	(0.10)
years of full-time education completed	12.1	(4.09)	12.8	(4.22)	12.6	(4.35)
partner's highest level of education	3.16	(1.34)	3.40	(1.37)	3.24	(1.41)
Lower education, partner	0.17	(0.38)	0.15	(0.36)	0.19	(0.40)
Higher education, partner	0.18	(0.39)	0.25	(0.43)	0.22	(0.41)
Education is missing, partner	0.41	(0.49)	0.39	(0.49)	0.39	(0.49)
father's highest level of education	2.39	(1.35)	2.65	(1.52)	2.53	(1.57)
Lower education, father	0.51	(0.50)	0.43	(0.50)	0.49	(0.50)
Higher education, father	0.15	(0.35)	0.22	(0.42)	0.22	(0.41)
Education is missing, father	0.092	(0.29)	0.14	(0.35)	0.14	(0.35)
Mother's highest level of education	2.19	(1.26)	2.38	(1.42)	2.19	(1.45)
Lower education, father	0.60	(0.49)	0.54	(0.50)	0.60	(0.49)
Higher education, father	0.11	(0.32)	0.17	(0.38)	0.16	(0.37)
Education is missing, father	0.065	(0.25)	0.095	(0.29)	0.095	(0.29)
Citizen of country	0.99	(0.073)	0.59	(0.49)	0.69	(0.46)
How long ago first came to live in country	6	0	4.30	(1.05)	4.06	(1.09)

	natives		European migrants		non-European migrants	
	mean	s.e.	mean	s.e.	mean	s.e.
Tenure in country (more than 20 years)	1	0	0.61	(0.49)	0.48	(0.50)
Within last year	0	0	0.011	(0.11)	0.010	(0.10)
1-5 years ago	0	0	0.091	(0.29)	0.12	(0.33)
6-10 years ago	0	0	0.095	(0.29)	0.14	(0.34)
11-20 years ago	0	0	0.18	(0.39)	0.25	(0.43)
Tenure is missing	0	0	0.016	(0.13)	0.015	(0.12)
Voted last national election	0.77	(0.42)	0.47	(0.50)	0.52	(0.50)
Whether voted in election	0.77	(0.42)	0.47	(0.50)	0.51	(0.50)
Whether voted is missing	0.009	(0.095)	0.011	(0.11)	0.013	(0.11)
metro	0.33	(0.47)	0.42	(0.49)	0.52	(0.50)
Big city/suburbs	0.33	(0.47)	0.42	(0.49)	0.51	(0.50)
Big city/suburbs is missing	0.002	(0.050)	0.003	(0.062)	0.006	(0.079)
Weighted fraction of natives speaking this language in the country	0.86	(0.24)	0.53	(0.42)	0.57	(0.43)
Language at home spoken by less than 50% of natives at home	0.086	(0.28)	0.46	(0.50)	0.39	(0.49)
s50lingmin_d	0.085	(0.28)	0.46	(0.50)	0.38	(0.49)
s50lingmin_mis	0.005	(0.072)	0.003	(0.059)	0.007	(0.087)
Language at home spoken by less then 30% of natives at home	0.054	(0.23)	0.39	(0.49)	0.35	(0.48)
s30lingmin_d	0.054	(0.23)	0.39	(0.49)	0.34	(0.48)
s30lingmin_mis	0.005	(0.072)	0.003	(0.059)	0.007	(0.087)
Language at home spoken by less then 10% of natives	0.025	(0.16)	0.27	(0.45)	0.31	(0.46)
Language at home spoken by less then 10% of natives	0.025	(0.16)	0.27	(0.45)	0.31	(0.46)
Language at home is missing	0.005	(0.072)	0.003	(0.059)	0.007	(0.087)
Immigrant density greater than the median	.	(.)	0.50	(0.50)	.	(.)
Immigrant density greater than the median	0	0	0.50	(0.50)	0	0
Immigrant density is missing	1	0	0	0	1	0
Parental Immigrant density greater than the median	0.49	(0.50)		(.)	.	(.)
Religion or denomination belonging to at present	2.02	(1.39)	2.56	(1.69)	3.69	(2.06)
No religion	0.36	(0.48)	0.36	(0.48)	0.26	(0.44)
Roman catholic	0.31	(0.46)	0.25	(0.44)	0.18	(0.39)
Eastern orthodox	0.11	(0.31)	0.14	(0.35)	0.11	(0.32)
Other christian denomination	0.013	(0.11)	0.024	(0.15)	0.027	(0.16)
Jewish	0.017	(0.13)	0.076	(0.26)	0.15	(0.36)
Islamic	0.028	(0.17)	0.036	(0.19)	0.14	(0.35)

	natives		European migrants		non-European migrants	
	mean	s.e.	mean	s.e.	mean	s.e.
Other non-christian religions	0.003	(0.062)	0.006	(0.082)	0.037	(0.19)
Religion is missing	0.020	(0.14)	0.023	(0.15)	0.032	(0.18)
Attending relig. service at least once a month	0.26	(0.44)	0.23	(0.42)	0.31	(0.46)
Migrating to the EU15 countries	0.54	(0.50)	0.49	(0.50)	0.58	(0.49)
Migrating from the EU15 countries	0.54	(0.50)	0.48	(0.50)	0	0
Dummy for belonging to ethnic minority	0.038	(0.19)	0.18	(0.39)	0.30	(0.46)
A fraction of immigrants in resident nation is below median	0.79	(0.40)	0.44	(0.50)	0.64	(0.48)
A fraction of immigrants from parents' country in resident nation is below media	0.76	(0.43)	0.40	(0.49)	0.60	(0.49)
Year of interview	2007.7	(3.46)	2007.6	(3.46)	2008.0	(3.55)
Important to think new ideas and being creative	4.38	(1.26)	4.42	(1.30)	4.49	(1.24)
Important to be rich, have money and expensive things	2.95	(1.34)	2.95	(1.34)	3.14	(1.41)
Important that people are treated equally and have equal opportunities	4.92	(1.04)	4.99	(1.05)	5.09	(1.03)
Important to show abilities and be admired	3.84	(1.38)	3.89	(1.41)	4.19	(1.37)
Important to live in secure and safe surroundings	4.69	(1.20)	4.72	(1.21)	4.88	(1.15)
Important to try new and different things in life	3.98	(1.36)	4.03	(1.39)	4.16	(1.37)
Important to do what is told and follow rules	3.92	(1.37)	3.89	(1.40)	4.04	(1.40)
Important to understand different people	4.60	(1.07)	4.74	(1.05)	4.76	(1.08)
Important to be humble and modest, not draw attention	4.27	(1.27)	4.30	(1.27)	4.47	(1.25)
Important to have a good time	3.99	(1.36)	4.05	(1.37)	4.12	(1.37)
Important to make own decisions and be free	4.78	(1.10)	4.84	(1.10)	4.84	(1.11)
Important to help people and care for others well-being	4.76	(1.00)	4.80	(1.00)	4.95	(0.99)
Important to be successful and that people recognize achievements	3.84	(1.34)	3.91	(1.37)	4.12	(1.34)
Important that government is strong and ensures safety	4.69	(1.19)	4.75	(1.19)	4.91	(1.13)
Important to seek adventures and have an exciting life	3.04	(1.44)	3.01	(1.46)	3.15	(1.50)
Important to behave properly	4.39	(1.22)	4.41	(1.24)	4.57	(1.22)
Important to get respect from others	3.87	(1.36)	3.93	(1.40)	4.08	(1.40)
Important to be loyal to friends and devote to people close	5.04	(0.91)	5.09	(0.92)	5.09	(0.95)
Important to care for nature and environment	4.88	(1.02)	4.96	(1.02)	4.90	(1.05)
Important to follow traditions and customs	4.34	(1.33)	4.28	(1.38)	4.51	(1.36)
Important to seek fun and things that give pleasure	3.89	(1.39)	3.77	(1.42)	4.00	(1.39)

	mean	s.e.	mean	s.e.	mean	s.e.
Security	2.31	(1.03)	2.27	(1.03)	2.11	(0.97)
Conformity	2.84	(1.09)	2.85	(1.11)	2.69	(1.09)
Tradition	2.70	(1.03)	2.71	(1.04)	2.51	(1.04)
Benevolence	2.10	(0.82)	2.06	(0.83)	1.98	(0.83)
Universalism	2.25	(0.87)	2.14	(0.87)	2.08	(0.87)
Self-Direction	2.42	(0.97)	2.37	(0.99)	2.34	(0.96)
Stimulation	3.49	(1.20)	3.48	(1.22)	3.35	(1.22)
Hedonism	3.06	(1.21)	3.09	(1.21)	2.94	(1.19)
Achievement	3.17	(1.20)	3.10	(1.22)	2.85	(1.18)
Power	3.59	(1.10)	3.56	(1.10)	3.40	(1.12)
SEcenter	0.45	(0.85)	0.46	(0.86)	0.49	(0.78)
COcenter	-0.083	(0.94)	-0.12	(0.97)	-0.095	(0.92)
TRcenter	0.065	(0.92)	0.021	(0.93)	0.087	(0.91)
BEcenter	0.66	(0.66)	0.67	(0.66)	0.62	(0.65)
UNcenter	0.52	(0.74)	0.59	(0.74)	0.52	(0.73)
SDcenter	0.34	(0.78)	0.35	(0.81)	0.26	(0.76)
STcenter	-0.73	(1.00)	-0.75	(1.02)	-0.75	(1.01)
HEcenter	-0.30	(1.00)	-0.36	(0.97)	-0.34	(0.96)
ACcenter	-0.40	(0.92)	-0.38	(0.94)	-0.25	(0.90)
POcenter	-0.83	(0.90)	-0.83	(0.91)	-0.80	(0.93)
Conservation, centered	0.14	(0.65)	0.12	(0.65)	0.16	(0.59)
Openness to change, centered	-0.23	(0.64)	-0.26	(0.64)	-0.28	(0.61)
Self-Enhancement, centered	-0.62	(0.73)	-0.60	(0.73)	-0.52	(0.72)
Self-Transcendence, centered	0.59	(0.56)	0.63	(0.55)	0.57	(0.54)
Observations	250071		12924		10914	

Figure A3.1 - Structural Relations among Basic Values (Schwartz, 1992)

Table A3.2 - Definitions of Motivational Types of Values in Terms of their Core Goals

POWER	Social status and prestige, control or dominance over people and resources. (social power, authority, wealth, preserving my public image)
ACHIEVEMENT	Personal success through demonstrating competence according to social standards. (successful, capable, ambitious, influential)
HEDONISM	Pleasure and sensuous gratification for oneself. (pleasure, enjoying life, self-indulgence)
STIMULATION	Excitement, novelty, and challenge in life. (daring, a varied life, an exciting life)
SELF-	Independent thought and action-choosing, creating, exploring (creativity, freedom, independent, curious, choosing own goals)
DIRECTION	Understanding, appreciation, tolerance and protection for the welfare of all people and for nature. (broadminded, wisdom, social justice, equality, a world at peace, a world of beauty, unity with nature, protecting the environment)

BENEVOLENCE	Preservation and enhancement of the welfare of people with whom one is in frequent personal contact. (helpful, honest, forgiving, loyal, responsible)
TRADITION	Respect, commitment and acceptance of the customs and ideas that traditional culture or religion provide the self. (humble, accepting my portion in life, devout, respect for tradition, moderate)
CONFORMITY	Restraint of actions, inclinations, and impulses likely to upset or harm others and violate social expectations or norms. (politeness, obedient, self-discipline, honoring parents and elders)
SECURITY	Safety, harmony and stability of society, of relationships, and of self. (family security, national security, social order, clean, reciprocation of favors)

Table A3.3-List of 21 Items in Portrait Values Questionnaire used in ESS (from Schwartz Sh. The Recommended Method for Measuring Values in the ESS)
BENEVOLENCE 12. It's very important to him to help the people around him. He wants to care for other people.
18. It is important to him to be loyal to his friends. He wants to devote himself to people close to him.

UNIVERSALISM 14 If one of the ESS rounds devotes a module to values, it would be desirable to use the full 40 -item version presented in the appendix in order to increase the reliability of the indexes.
3. He thinks it is important that every person in the world be treated equally. He wants justice for everybody, even for people he doesn't know. 8. It is important to him to listen to people who are different from him. Even when he disagrees with them, he still wants to understand them.
19. He strongly believes that people should care for nature. Looking after the environment is important to him.

SELF-	1. Thinking up new ideas and being creative is important to him. He likes to do things in his own original way. 11. It is important to him to make his own decisions about what he does. He likes to be free to plan and to choose his activities for himself.
STIMULATION	6. He likes surprises and is always looking for new things to do. He thinks it is important to do lots of different things in life. 15. He looks for adventures and likes to take risks. He wants to have an exciting life.
HEDONISM	10. Having a good time is important to him. He likes to "spoil" himself. 21. He seeks every chance he can to have fun. It is important to him to do things that give him pleasure.

ACHIEVEMENT	4. It is very important to him to show his abilities. He wants people to admire what he does. 13. Being very successful is important to him. He likes to impress other people.
POWER	2. It is important to him to be rich. He wants to have a lot of money and expensive things. 17. It is important to him to be in charge and tell others what to do. He wants people to do what he says.
SECURITY	5. It is important to him to live in secure surroundings. He avoids anything that might endanger his safety. 14. It is very important to him that his country be safe from threats from within and without. He is concerned that social order be protected.
CONFORMITY	7. He believes that people should do what they're told. He thinks people should follow rules at all times, even when no-one is watching. 16. It is important to him always to behave properly. He wants to avoid doing anything people would say is wrong.
TRADITION	9. He thinks it's important not to ask for more than what you have. He believes that people should be satisfied with what they have. 20. Religious belief is important to him. He tries hard to do what his religion requires.

Appendix A3.1 - Components of Self-expression index (ESS'6)
 ASK ALL

A3 CARD 2 Using this card, generally speaking, would you say that most
people can be trusted, or that you can't be too careful ${ }^{2}$ in dealing with people?
Please tell me on a score of 0 to 10, where 0 means you can't be too careful and 10 means that most people can be trusted.

You can't be too careful									Most people can be trusted	(Don't Know)
$00 \quad 01$	02	03	04	05	06	07	08	09	10	88

ASK ALL

There are different ways of trying to improve things in [country] or help prevent ${ }^{6}$ things from going wrong. During the last 12 months, have you done any of the following?
Have you...READ OUT...

CARD 11 Using this card, please say to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

| | Agree
 strongly | AgreeNeither
 agree
 nor
 disagree | Disagree | Disagree
 strongly | (Don't |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| know) | | | | | |

C1 CARD 17 Taking all things together, how happy| would you say you are? Please use this card.

Extremely
unhappy

00 | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 88 |

Table A3.4 - Predictors of preference for redistribution only for ESS country migrants. Baseline model with fewer controls (Source: ESS 2002-2013, cumulative data set)

VARIABLES	$\begin{aligned} & \hline(1) \\ & \text { ESS } \\ & \text { ESS } \\ & \hline \end{aligned}$	(2) ESS migrants ISSP: reduce	$\begin{gathered} \text { (3) } \\ \text { ESS } \\ \text { ISSP: } \end{gathered}$	$\begin{gathered} \text { (4) } \\ \text { ESS } \\ \text { WVS: } \end{gathered}$
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.357 * * * \\ (0.061) \end{gathered}$			
Reduce differences between rich and poor (ISSP)		$\begin{gathered} 0.350 * * * \\ (0.095) \end{gathered}$		
Reduce income differences (ISSP)			$\begin{gathered} 0.454 * * * \\ (0.082) \end{gathered}$	
Government responsibility (WVS)				$\begin{gathered} -0.020 \\ (0.043) \end{gathered}$
Birth country log GDP per capita	$\begin{gathered} 0.228 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.209 * * \\ (0.087) \end{gathered}$	$\begin{gathered} 0.343 * * * \\ (0.102) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.056) \end{gathered}$
Age	$\begin{gathered} 0.004 * * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.003^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.003^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.004 * * * \\ (0.000) \end{gathered}$
Female	$\begin{gathered} 0.089^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} 0.073^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.068^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.078^{* * *} \\ (0.022) \end{gathered}$
Own low education	$\begin{aligned} & 0.056^{*} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.062^{*} \\ & (0.036) \end{aligned}$	$\begin{gathered} 0.060 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.058 \\ (0.034) \end{gathered}$
Own high education	$\begin{gathered} -0.070^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} -0.087 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} -0.082^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.077 * * * \\ (0.018) \end{gathered}$
Missing dummy	$\begin{aligned} & -0.064 \\ & (0.118) \end{aligned}$	$\begin{aligned} & -0.152 \\ & (0.126) \end{aligned}$	$\begin{aligned} & -0.151 \\ & (0.129) \end{aligned}$	$\begin{aligned} & -0.128 \\ & (0.147) \end{aligned}$
Partner low education	$\begin{gathered} -0.017 \\ (0.027) \end{gathered}$	$\begin{aligned} & -0.023 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.050^{*} \\ & (0.025) \end{aligned}$
Partner high education	$\begin{gathered} -0.069^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.065^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.059^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.065^{* * *} \\ (0.018) \end{gathered}$
Missing dummy	$\begin{aligned} & -0.022 \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.025) \end{aligned}$
Marital status (married is a reference category)				
Divorced or separated	$\begin{gathered} 0.018 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.058) \end{gathered}$
Widowed	$\begin{gathered} 0.003 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.034) \end{gathered}$
Never married	$\begin{gathered} 0.084 * * \\ (0.031) \end{gathered}$	$\begin{gathered} 0.087 * * \\ (0.036) \end{gathered}$	$\begin{gathered} 0.102 * * * \\ (0.033) \end{gathered}$	$\begin{gathered} 0.078 * * \\ (0.034) \end{gathered}$
Marital status - missing	$\begin{gathered} 0.016 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.033) \end{gathered}$
Feeling about household's income (coping is a reference category)				
Living comfortably on present income	$\begin{gathered} -0.205 * * * \\ (0.028) \end{gathered}$	$\begin{gathered} -0.205 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} -0.207 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} -0.197 * * * \\ (0.032) \end{gathered}$
Difficult on present income	$\begin{gathered} 0.131 * * * \\ (0.015) \end{gathered}$	$\begin{gathered} 0.154 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} 0.150^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.136 * * * \\ (0.014) \end{gathered}$
Very difficult on present income	$\begin{gathered} 0.232 * * * \\ (0.039) \end{gathered}$	$\begin{gathered} 0.242^{* * *} \\ (0.048) \end{gathered}$	$\begin{gathered} 0.241^{* * *} \\ (0.048) \end{gathered}$	$\begin{gathered} 0.245 * * * \\ (0.045) \end{gathered}$
Feeling about household's income - missing	$\begin{gathered} 0.026 \\ (0.087) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (0.101) \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.102) \end{aligned}$	$\begin{gathered} 0.013 \\ (0.085) \end{gathered}$
Primary income source (wages is a reference category)				
Self-employed	$\begin{gathered} -0.180^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} -0.195 * * * \\ (0.052) \end{gathered}$	$\begin{gathered} -0.176^{* * *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.178 * * * \\ (0.047) \end{gathered}$
Pension	$\begin{gathered} 0.062^{* *} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.067^{* *} \\ (0.026) \end{gathered}$	$\begin{gathered} 0.076 * * * \\ (0.025) \end{gathered}$	$\begin{aligned} & 0.048^{*} \\ & (0.026) \end{aligned}$
Unemployment benefits	-0.012	-0.052	-0.070	-0.039

Social benefits	(0.055)	(0.055)	(0.050)	(0.054)
	0.086**	0.093**	0.093*	0.090**
	(0.041)	(0.044)	(0.045)	(0.041)
Investment	-0.322***	-0.393***	-0.397***	-0.375***
	(0.113)	(0.114)	(0.113)	(0.121)
Other	-0.161**	-0.176**	-0.173**	-0.147**
	(0.061)	(0.072)	(0.072)	(0.070)
Primary income source - missing	-0.092*	-0.085*	-0.065	-0.056
	(0.049)	(0.047)	(0.046)	(0.044)
Log household size	0.056*	0.066**	0.078**	0.063**
	(0.028)	(0.030)	(0.030)	(0.029)
Paid work last week	0.023	0.025	0.020	0.010
	(0.019)	(0.021)	(0.021)	(0.016)
Paid work - missing	-0.068	-0.014	0.016	-0.018
	(0.119)	(0.144)	(0.158)	(0.121)
Has a child in the household	-0.053	-0.054	-0.060	-0.060
	(0.036)	(0.041)	(0.043)	(0.039)
Has a child in the household - missing	-0.005	0.053	0.054	0.075
	(0.170)	(0.149)	(0.150)	(0.143)
Ever unemployed for more than 12 months	0.078**	0.044*	0.052**	0.073**
	(0.032)	(0.022)	(0.022)	(0.034)
Ever unemployed - missing	-0.019	-0.048	-0.048	-0.020
	(0.063)	(0.074)	(0.075)	(0.063)
Lives in metropolitan area	-0.017	-0.015	-0.020	-0.025
	(0.021)	(0.025)	(0.025)	(0.020)
Lives in metropolitan area - missing	0.097	0.211	0.217	-0.043
	(0.193)	(0.207)	(0.209)	(0.141)
Wave two	-0.021	-0.039	-0.047	-0.002
	(0.036)	(0.037)	(0.036)	(0.037)
Wave three	0.042	0.030	0.044	0.063
	(0.044)	(0.049)	(0.050)	(0.048)
Wave four	0.024	0.020	0.020	0.045
	(0.040)	(0.045)	(0.045)	(0.043)
Wave five	0.053	0.057	0.061	0.088
	(0.056)	(0.060)	(0.062)	(0.061)
Wave six	0.179***	0.165***	0.166***	0.224***
	(0.040)	(0.043)	(0.043)	(0.039)
$D E$ is a reference category				
AT	0.209***	0.216***	0.189**	0.222***
	(0.060)	(0.073)	(0.072)	(0.063)
BE	-0.040	-0.007	0.043	-0.042
	(0.070)	(0.089)	(0.078)	(0.093)
BG	0.535***	0.476***	0.505***	0.533***
	(0.072)	(0.062)	(0.056)	(0.073)
CH	-0.033	-0.048	-0.037	-0.035
	(0.058)	(0.064)	(0.070)	(0.068)
CY	0.283***	0.371***	0.360***	0.296***
	(0.069)	(0.092)	(0.120)	(0.099)
CZ	0.086	-0.015	-0.012	0.069
	(0.064)	(0.068)	(0.070)	(0.067)
DK	-0.489***	-0.566***	-0.571***	-0.528***
	(0.118)	(0.144)	(0.145)	(0.130)
EE	0.361***	0.341***	0.382***	0.359***
	(0.033)	(0.042)	(0.038)	(0.028)
ES	0.323***	0.307***	0.320***	0.321***
	(0.059)	(0.066)	(0.069)	(0.054)
FI	0.059	0.064	0.027	0.042

FR
GB

GR

HR
HU
IE
IL
IS

IT

LT
LU

NL

NO

PL

PT

RU

SE

SI

SK

TR

UA
Constant
Observation
R-squared

(0.136)	(0.168)	(0.132)	(0.132)
0.364***	0.361***	$0.363 * * *$	0.373***
(0.057)	(0.067)	(0.071)	(0.090)
-0.175***	-0.169***	-0.153**	-0.234***
(0.051)	(0.056)	(0.063)	(0.053)
0.607***	0.633***	0.670***	0.597***
(0.047)	(0.066)	(0.068)	(0.051)
$0.311^{* * *}$	0.313***	0.273**	0.389***
(0.080)	(0.092)	(0.107)	(0.075)
0.583***	0.462***	0.476***	0.596***
(0.093)	(0.063)	(0.063)	(0.079)
0.136***	0.108*	0.069	0.058
(0.047)	(0.054)	(0.065)	(0.062)
0.330***	0.334***	0.356***	0.310***
(0.047)	(0.068)	(0.068)	(0.050)
0.110	0.088	0.039	0.074
(0.098)	(0.111)	(0.113)	(0.132)
0.382***	0.390**	0.376**	0.470***
(0.129)	(0.141)	(0.151)	(0.123)
$0.371 * * *$	0.309***	0.347***	0.342***
(0.073)	(0.033)	(0.034)	(0.058)
-0.021	0.024	0.055	-0.027
(0.094)	(0.067)	(0.068)	(0.085)
-0.157***	-0.210***	-0.206**	-0.192***
(0.052)	(0.066)	(0.074)	(0.067)
-0.120	-0.152*	-0.196**	-0.234***
(0.080)	(0.084)	(0.088)	(0.059)
0.180***	0.090	0.125*	0.123*
(0.059)	(0.063)	(0.065)	(0.065)
$0.431^{* * *}$	0.461 ***	0.476***	0.470***
(0.056)	(0.071)	(0.076)	(0.056)
0.419***	0.211	0.218	0.342***
(0.051)	(0.345)	(0.345)	(0.050)
0.042	0.037	-0.041	0.053
(0.043)	(0.053)	(0.060)	(0.044)
0.501***	0.469***	0.445***	0.507***
(0.052)	(0.050)	(0.137)	(0.072)
0.258***	0.294***	0.251***	$0.161 * * *$
(0.055)	(0.061)	(0.054)	(0.054)
0.683***	0.724***	0.793***	0.699***
(0.082)	(0.089)	(0.093)	(0.072)
0.399***	0.380***	0.419***	0.399***
(0.035)	(0.042)	(0.038)	(0.032)
-0.312	0.186	-1.785	$2.796^{* * *}$
(0.502)	(1.084)	(1.247)	(0.751)
12914	10890	10587	11499
0.112	0.116	0.117	0.112

Robust standard errors in parentheses
$* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A3.5-1. Country dummies as only controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich and poor (ISSP)	(3) Reduce income differences (ISSP)	(4) Government responsibility
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.247 * * * \\ (0.073) \end{gathered}$			
Reduce differences between rich and poor (ISSP)		$\begin{gathered} 0.356^{* * *} \\ (0.099) \end{gathered}$		
Reduce income differences (ISSP)			$\begin{gathered} 0.322 * * * \\ (0.079) \end{gathered}$	
Government responsibility (WVS)				$\begin{gathered} 0.035 \\ (0.027) \end{gathered}$
$D E$ is a reference category				
AT	$\begin{gathered} 0.196^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.229 * * * \\ (0.068) \end{gathered}$	$\begin{gathered} 0.216^{* * *} \\ (0.078) \end{gathered}$	$\begin{gathered} 0.281 * * * \\ (0.063) \end{gathered}$
BE	$\begin{gathered} 0.049 \\ (0.095) \end{gathered}$	$\begin{gathered} 0.109 \\ (0.105) \end{gathered}$	$\begin{aligned} & 0.174 * \\ & (0.094) \end{aligned}$	$\begin{gathered} 0.138 \\ (0.089) \end{gathered}$
BG	$\begin{gathered} 0.697 * * * \\ (0.091) \end{gathered}$	$\begin{gathered} 0.618^{* * *} \\ (0.050) \end{gathered}$	$\begin{gathered} 0.631 * * * \\ (0.045) \end{gathered}$	$\begin{gathered} 0.797 * * * \\ (0.096) \end{gathered}$
CH	$\begin{aligned} & -0.009 \\ & (0.072) \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.074) \end{aligned}$	$\begin{gathered} 0.024 \\ (0.078) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.076) \end{gathered}$
CY	$\begin{gathered} 0.308 * * * \\ (0.062) \end{gathered}$	$\begin{gathered} 0.452 * * * \\ (0.090) \end{gathered}$	$\begin{gathered} 0.445 * * * \\ (0.093) \end{gathered}$	$\begin{gathered} 0.405 * * * \\ (0.071) \end{gathered}$
CZ	$\begin{gathered} 0.206 * * * \\ (0.071) \end{gathered}$	$\begin{gathered} 0.131 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.142 \\ (0.087) \end{gathered}$	$\begin{gathered} 0.246 * * * \\ (0.080) \end{gathered}$
DK	$\begin{gathered} -0.532 * * * \\ (0.111) \end{gathered}$	$\begin{gathered} -0.616^{* * *} \\ (0.116) \end{gathered}$	$\begin{gathered} -0.596^{* * *} \\ (0.120) \end{gathered}$	$\begin{gathered} -0.455 * * * \\ (0.090) \end{gathered}$
EE	$\begin{gathered} 0.469 * * * \\ (0.030) \end{gathered}$	$\begin{gathered} 0.492 * * * \\ (0.049) \end{gathered}$	$\begin{gathered} 0.508 * * * \\ (0.047) \end{gathered}$	$\begin{gathered} 0.520 * * * \\ (0.028) \end{gathered}$
ES	$\begin{gathered} 0.325 * * * \\ (0.063) \end{gathered}$	$\begin{gathered} 0.368 * * * \\ (0.065) \end{gathered}$	$\begin{gathered} 0.381^{* * *} \\ (0.076) \end{gathered}$	$\begin{gathered} 0.433 * * * \\ (0.050) \end{gathered}$
FI	$\begin{gathered} 0.088 \\ (0.132) \end{gathered}$	$\begin{gathered} 0.097 \\ (0.169) \end{gathered}$	$\begin{gathered} 0.097 \\ (0.150) \end{gathered}$	$\begin{gathered} 0.090 \\ (0.111) \end{gathered}$
FR	$\begin{gathered} 0.464^{* * *} \\ (0.067) \end{gathered}$	$\begin{gathered} 0.455^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 0.490^{* * *} \\ (0.074) \end{gathered}$	$\begin{gathered} 0.396 * * * \\ (0.059) \end{gathered}$
GB	$\begin{aligned} & -0.136 \\ & (0.082) \end{aligned}$	$\begin{gathered} -0.161^{* *} \\ (0.077) \end{gathered}$	$\begin{aligned} & -0.095 \\ & (0.086) \end{aligned}$	$\begin{aligned} & -0.106^{*} \\ & (0.062) \end{aligned}$
GR	$\begin{gathered} 0.630^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} 0.673 * * * \\ (0.071) \end{gathered}$	$\begin{gathered} 0.713 * * * \\ (0.074) \end{gathered}$	$\begin{gathered} 0.661^{* * *} \\ (0.040) \end{gathered}$
HR	$\begin{gathered} 0.366^{* * *} \\ (0.076) \end{gathered}$	$\begin{gathered} 0.394 * * * \\ (0.088) \end{gathered}$	$\begin{gathered} 0.401^{* * *} \\ (0.095) \end{gathered}$	$\begin{gathered} 0.575 * * * \\ (0.038) \end{gathered}$
HU	$\begin{gathered} 0.661^{* * *} \\ (0.068) \end{gathered}$	$\begin{gathered} 0.623 * * * \\ (0.074) \end{gathered}$	$\begin{gathered} 0.656 * * * \\ (0.073) \end{gathered}$	$\begin{gathered} 0.543 * * * \\ (0.052) \end{gathered}$
IE	$\begin{gathered} 0.165 * * * \\ (0.055) \end{gathered}$	$\begin{gathered} 0.168^{* *} \\ (0.065) \end{gathered}$	$\begin{gathered} 0.168 * * * \\ (0.053) \end{gathered}$	$\begin{aligned} & 0.130^{* *} \\ & (0.055) \end{aligned}$
IL	$\begin{gathered} 0.316 * * * \\ (0.070) \end{gathered}$	$\begin{gathered} 0.395 * * * \\ (0.088) \end{gathered}$	$\begin{gathered} 0.407^{* * *} \\ (0.092) \end{gathered}$	$\begin{gathered} 0.432 * * * \\ (0.056) \end{gathered}$
IS	0.171	0.232*	0.252**	0.318**

IT	(0.113)	(0.124)	(0.123)	(0.122)
	0.461***	0.500***	0.491***	0.517***
	(0.110)	(0.116)	(0.115)	(0.073)
LT	0.534***	0.524***	0.536***	0.633***
	(0.035)	(0.044)	(0.038)	(0.064)
LU	-0.025	0.043	0.094	-0.004
	(0.130)	(0.094)	(0.096)	(0.098)
NL	-0.148**	-0.172*	-0.156	-0.132**
	(0.064)	(0.094)	(0.100)	(0.056)
NO	-0.201**	-0.209**	-0.223***	-0.274***
	(0.079)	(0.085)	(0.077)	(0.056)
PL	0.394***	0.386***	0.425***	0.415***
	(0.076)	(0.088)	(0.089)	(0.076)
PT	0.497***	0.585***	0.624***	0.613***
	(0.056)	(0.060)	(0.063)	(0.060)
RU	0.333***	0.240	0.288	0.379***
	(0.044)	(0.302)	(0.310)	(0.047)
SE	0.054	0.065	0.041	0.050
	(0.060)	(0.069)	(0.064)	(0.059)
SI	0.533***	0.518***	0.583***	0.604***
	(0.051)	(0.062)	(0.119)	(0.068)
SK	0.379***	0.477***	0.404***	0.364***
	(0.042)	(0.072)	(0.053)	(0.049)
TR	0.641***	0.701***	0.717***	0.684***
	(0.058)	(0.068)	(0.073)	(0.075)
UA	0.552***	0.541***	0.558***	0.599***
	(0.032)	(0.045)	(0.043)	(0.039)
Constant	2.697***	2.519***	$2.421^{* * *}$	3.414***
	(0.297)	(0.325)	(0.305)	(0.180)
Observations	12924	12083	11517	20237
R-squared	0.069	0.083	0.083	0.077

Robust standard errors in parentheses

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05,^{*} \mathrm{p}<0.1
$$

Table A3.6-2. Baseline, but fewer controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich and poor (ISSP)	(3) Reduce infferences (ISSP)	(4) Government responsibility
Birth country redistribution preferences (ESS)	$0.357 * * *$ (0.061)			
Reduce differences between rich and poor		$0.213 * * *$		
(ISSP)	(0.071)	$0.185^{* * *}$		
Reduce income differences (ISSP)			(0.065)	0.002
Government responsibility (WVS)				(0.024)

Birth country log GDP per capita	$\begin{gathered} 0.228 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.003) \end{aligned}$
Age	0.004***	0.004***	0.004***	0.003***
	(0.000)	(0.000)	(0.000)	(0.000)
Female	0.089***	0.076***	0.074***	0.072***
	(0.020)	(0.021)	(0.021)	(0.016)
Own low education	-0.017	-0.031	-0.031	-0.035
	(0.027)	(0.027)	(0.029)	(0.023)
Own high education	-0.069***	-0.054***	-0.050**	-0.066***
	(0.018)	(0.019)	(0.020)	(0.016)
Missing dummy	-0.022	-0.027	-0.019	-0.040*
	(0.025)	(0.026)	(0.026)	(0.023)
Partner low education	0.056*	0.070**	0.071*	0.034
	(0.030)	(0.032)	(0.035)	(0.022)
Partner high education	-0.070***	-0.086***	-0.082***	-0.066***
	(0.017)	(0.019)	(0.019)	(0.015)
Missing dummy	-0.064	-0.191*	-0.199*	-0.040
	(0.118)	(0.111)	(0.113)	(0.087)
Marital status (married is a reference category)				
Divorced or separated	0.018	0.039	0.050	0.015
	(0.053)	(0.056)	(0.057)	(0.039)
Widowed	0.003	0.037	0.032	-0.031
	(0.038)	(0.037)	(0.037)	(0.035)
Never married	0.084**	0.101***	0.119***	0.033
	(0.031)	(0.033)	(0.031)	(0.027)
Marital status - missing	0.016	0.057	0.047	0.067
	(0.036)	(0.062)	(0.056)	(0.045)
Feeling about household's income (coping is a reference category)				
Living comfortably on present income	-0.205***	-0.196***	-0.202***	-0.161***
	(0.028)	(0.028)	(0.029)	(0.028)
Difficult on present income	0.131***	0.153***	0.154***	0.140***
	(0.015)	(0.021)	(0.021)	(0.016)
Very difficult on present income	0.232***	0.249***	0.243***	0.227***
	(0.039)	(0.050)	(0.049)	(0.026)
Feeling about household's income - missing	0.026	-0.019	-0.016	0.025
	(0.087)	(0.093)	(0.097)	(0.067)
Primary income source (wages is a reference category)				
Self-employed	-0.180***	-0.177***	-0.166***	-0.173***
	(0.042)	(0.049)	(0.047)	(0.037)
Pension	0.062**	0.056**	0.067**	0.030
	(0.027)	(0.027)	(0.026)	(0.027)
Unemployment benefits	-0.012	-0.049	-0.068	0.017
	(0.055)	(0.052)	(0.050)	(0.044)
Social benefits	0.086**	0.070	0.061	0.027
	(0.041)	(0.046)	(0.047)	(0.039)
Investment	-0.322***	-0.462***	-0.460***	-0.393***
	(0.113)	(0.106)	(0.105)	(0.088)
Other	-0.161**	-0.147**	-0.175***	-0.110*
	(0.061)	(0.062)	(0.060)	(0.055)
Primary income source - missing	-0.092*	-0.095**	-0.085*	-0.078**
	(0.049)	(0.046)	(0.046)	(0.036)
Log household size	0.056*	0.055*	0.073**	0.010
	(0.028)	(0.027)	(0.027)	(0.024)
Paid work last week	0.023	0.026	0.021	-0.011
	(0.019)	(0.018)	(0.018)	(0.016)

Paid work - missing	-0.068	0.027	0.040	0.007
	(0.119)	(0.136)	(0.149)	(0.070)
Has a child in the household	-0.053	-0.044	-0.050	-0.022
	(0.036)	(0.038)	(0.040)	(0.029)
Has a child in the household - missing	-0.005	-0.031	-0.031	-0.114
	(0.170)	(0.152)	(0.150)	(0.129)
Ever unemployed for more than 12 months	0.078**	0.060**	0.070**	0.069***
	(0.032)	(0.025)	(0.026)	(0.023)
Ever unemployed - missing	-0.019	-0.015	-0.029	0.027
	(0.063)	(0.072)	(0.069)	(0.049)
Lives in metropolitan area	-0.017	-0.013	-0.019	-0.002
	(0.021)	(0.022)	(0.023)	(0.016)
Lives in metropolitan area-missing	0.097	0.223	0.230	-0.112
	(0.193)	(0.199)	(0.201)	(0.097)
Wave two	-0.021	-0.045	-0.055	0.012
	(0.036)	(0.036)	(0.035)	(0.033)
Wave three	0.042	0.022	0.032	0.042
	(0.044)	(0.045)	(0.047)	(0.035)
Wave four	0.024	0.001	-0.000	-0.007
	(0.040)	(0.042)	(0.043)	(0.033)
Wave five	0.053	0.039	0.034	0.070*
	(0.056)	(0.051)	(0.053)	(0.037)
Wave six	0.179***	0.154***	0.144***	0.157***
	(0.040)	(0.038)	(0.038)	(0.034)
$D E$ is a reference category				
AT	0.209***	0.248***	0.230***	0.327***
	(0.060)	(0.066)	(0.071)	(0.056)
BE	-0.040	0.073	0.111	0.116
	(0.070)	(0.076)	(0.070)	(0.073)
BG	0.535***	0.464***	0.477***	0.572***
	(0.072)	(0.062)	(0.058)	(0.055)
CH	-0.033	0.019	0.041	0.082
	(0.058)	(0.057)	(0.060)	(0.061)
CY	0.283***	0.435***	0.438***	0.382***
	(0.069)	(0.075)	(0.079)	(0.067)
CZ	0.086	0.005	0.019	0.153**
	(0.064)	(0.064)	(0.060)	(0.069)
DK	-0.489***	-0.523***	-0.518***	-0.381***
	(0.118)	(0.111)	(0.117)	(0.087)
EE	0.361***	0.320***	0.336***	0.400***
	(0.033)	(0.037)	(0.032)	(0.030)
ES	0.323***	0.397***	0.400***	0.420***
	(0.059)	(0.051)	(0.060)	(0.046)
FI	0.059	0.078	0.088	0.103
	(0.136)	(0.181)	(0.171)	(0.126)
FR	0.364***	0.437***	0.463***	0.392***
	(0.057)	(0.058)	(0.056)	(0.055)
GB	-0.175***	-0.108**	-0.070	-0.040
	(0.051)	(0.048)	(0.055)	(0.058)
GR	0.607***	0.650***	0.683***	0.616***
	(0.047)	(0.059)	(0.059)	(0.034)
HR	0.311***	0.399***	0.403***	0.514***
	(0.080)	(0.079)	(0.081)	(0.045)
HU	0.583***	0.504***	0.522***	0.456***
	(0.093)	(0.054)	(0.054)	(0.056)
IE	0.136***	0.151***	0.154***	0.138***

IL	(0.047)	(0.046)	(0.040)	(0.048)
	0.330***	0.360***	0.364***	0.394***
	(0.047)	(0.073)	(0.074)	(0.050)
IS	0.110	0.175	0.205*	0.347***
	(0.098)	(0.108)	(0.110)	(0.113)
IT	0.382***	0.463***	0.439***	0.474***
	(0.129)	(0.115)	(0.114)	(0.067)
LT	0.371***	0.305***	0.319***	0.458***
	(0.073)	(0.040)	(0.038)	(0.070)
LU	-0.021	0.107	0.143**	0.089
	(0.094)	(0.069)	(0.066)	(0.081)
NL	-0.157***	-0.142*	-0.137*	-0.126**
	(0.052)	(0.071)	(0.068)	(0.052)
NO	-0.120	-0.113	-0.120*	-0.182***
	(0.080)	(0.067)	(0.062)	(0.053)
PL	0.180***	0.133*	0.151**	0.295***
	(0.059)	(0.066)	(0.068)	(0.077)
PT	0.431***	0.559***	0.568***	0.588***
	(0.056)	(0.055)	(0.054)	(0.053)
RU	0.419***	0.171	0.209	0.321***
	(0.051)	(0.293)	(0.295)	(0.045)
SE	0.042	0.102**	0.083*	0.109**
	(0.043)	(0.046)	(0.044)	(0.050)
SI	0.501***	0.477***	0.521***	0.599***
	(0.052)	(0.051)	(0.120)	(0.054)
SK	0.258***	0.259***	0.215***	0.255***
	(0.055)	(0.056)	(0.043)	(0.050)
TR	0.683***	0.682***	0.694***	0.720***
	(0.082)	(0.096)	(0.102)	(0.074)
UA	0.399***	0.354***	0.368***	0.466***
	(0.035)	(0.038)	(0.033)	(0.041)
Constant	-0.312	2.646***	2.587***	3.430***
	(0.502)	(0.249)	(0.244)	(0.176)
Observations	12914	12075	11509	20220
R -squared	0.112	0.123	0.123	0.108

Robust standard errors in parentheses
*** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A3.7-3. Baseline. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich and poor (ISSP)	(3) Reduce income differences (ISSP)	(4) Government responsibility
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.344 * * * \\ (0.061) \end{gathered}$			
Reduce differences between rich and poor (ISSP)		0.235***		
Reduce income differences (ISSP)		(0.069)	0.205***	

	(0.062)			
Government responsibility (WVS)				$\begin{gathered} 0.005 \\ (0.023) \end{gathered}$
Birth country log GDP per capita	0.198***	0.005	0.005	-0.001
	(0.031)	(0.003)	(0.004)	(0.002)
Age	0.007*	0.005	0.005	0.006*
	(0.004)	(0.004)	(0.004)	(0.003)
$\mathrm{Age}^{2} / 100$	-0.004	-0.002	-0.002	-0.003
	(0.003)	(0.003)	(0.003)	(0.002)
Female	0.084***	0.074***	0.069***	0.070***
	(0.021)	(0.021)	(0.022)	(0.017)
Own education primary	0.030	0.054	0.053	-0.017
	(0.046)	(0.048)	(0.051)	(0.028)
Own education sec0	0.074**	0.081**	0.084**	0.056**
	(0.031)	(0.032)	(0.035)	(0.024)
Own education sec2	0.068	0.072	0.079	0.092**
	(0.043)	(0.046)	(0.047)	(0.037)
Own education ter	-0.081***	-0.095***	-0.093***	-0.079***
	(0.019)	(0.019)	(0.019)	(0.016)
Own education mis	-0.063	-0.189	-0.197*	-0.034
	(0.121)	(0.112)	(0.115)	(0.087)
Partner low education	-0.013	-0.029	-0.027	-0.037
	(0.029)	(0.029)	(0.031)	(0.023)
Partner high education	-0.060***	-0.046**	-0.042**	-0.056***
	(0.017)	(0.017)	(0.018)	(0.016)
Missing dummy	0.002	0.032	0.013	-0.041
	(0.057)	(0.057)	(0.055)	(0.045)
Marital status (married is a reference category)				
Divorced or separated	0.013	0.038	0.043	0.012
	(0.056)	(0.060)	(0.062)	(0.042)
Widowed	0.012	0.047	0.034	-0.024
	(0.035)	(0.040)	(0.038)	(0.034)
Never married	0.101***	0.116***	0.128***	0.045
	(0.031)	(0.033)	(0.032)	(0.028)
Marital status - missing	0.016	0.054	0.041	0.065
	(0.037)	(0.062)	(0.055)	(0.043)
Feeling about household's income (coping is a reference category)				
Living comfortably on present income	-0.204***	-0.192***	-0.199***	-0.159***
	(0.028)	(0.028)	(0.030)	(0.028)
Difficult on present income	0.131***	0.156***	0.156***	0.141***
	(0.015)	(0.021)	(0.021)	(0.017)
Very difficult on present income	0.227***	0.248***	0.242***	0.227***
	(0.039)	(0.052)	(0.050)	(0.026)
Feeling about household's income - missing	0.027	-0.015	-0.017	0.021
	(0.087)	(0.094)	(0.099)	(0.066)
Log household size	0.081	0.024	0.089	-0.081
	(0.124)	(0.126)	(0.131)	(0.084)
Log household size ${ }^{2}$	-0.028	0.052	-0.009	0.092
	(0.180)	(0.184)	(0.188)	(0.126)
Log household size ${ }^{3}$	0.012	-0.018	0.003	-0.021
	(0.063)	(0.066)	(0.065)	(0.044)
Paid work last week	0.007	0.012	0.008	-0.016
	(0.018)	(0.018)	(0.018)	(0.016)
Paid work - missing	-0.101	-0.102	-0.088	-0.039
	(0.143)	(0.166)	(0.180)	(0.082)

Partner has a job	0.035	0.035	0.037	-0.021
	(0.041)	(0.046)	(0.047)	(0.026)
Partner has a job-missing	0.076	0.301***	0.317**	0.051
	(0.131)	(0.109)	(0.118)	(0.081)
Paid work last week - partner	0.051*	0.057*	0.070**	0.035
	(0.025)	(0.028)	(0.029)	(0.021)
Paid work partner - missing	0.009	-0.035	0.013	0.008
	(0.053)	(0.062)	(0.057)	(0.048)
Ever unemployed for more than 12 months	0.068**	0.050**	0.059**	0.063***
	(0.031)	(0.023)	(0.024)	(0.022)
Ever unemployed - missing	-0.024	-0.024	-0.036	0.031
	(0.060)	(0.071)	(0.069)	(0.049)
Primary income source (wages is a reference category)				
Self-employed	-0.183***	-0.183***	-0.172***	-0.181***
	(0.042)	(0.048)	(0.047)	(0.037)
Pension	0.080***	0.075**	0.090***	0.047*
	(0.028)	(0.028)	(0.027)	(0.025)
Unemployment benefits	-0.002	-0.034	-0.049	0.019
	(0.051)	(0.048)	(0.045)	(0.040)
Social benefits	0.102**	0.080	0.073	0.038
	(0.043)	(0.050)	(0.052)	(0.040)
Investment	-0.305**	-0.451***	-0.444***	-0.397***
	(0.117)	(0.106)	(0.105)	(0.087)
Other	-0.134**	-0.126**	-0.153**	-0.099*
	(0.061)	(0.062)	(0.059)	(0.054)
Primary income source - missing	-0.094*	-0.110**	-0.093*	-0.073*
	(0.051)	(0.046)	(0.047)	(0.037)
Has a child in the household	-0.069	-0.066	-0.069	-0.043
	(0.042)	(0.045)	(0.048)	(0.031)
Has a child in the household - missing	0.028	0.006	0.005	-0.090
	(0.171)	(0.151)	(0.149)	(0.130)
Linguistic minority: cut-off $=30 \%$, dummy	-0.035	-0.027	-0.029	-0.037*
	(0.022)	(0.029)	(0.030)	(0.022)
Linguistic minority 30% - missing	0.143	0.004	-0.052	-0.038
	(0.093)	(0.132)	(0.145)	(0.106)
Tenure: more than 20 years ago - reference category				
Tenure within last year	-0.191**	-0.256***	-0.253***	-0.160**
	(0.078)	(0.063)	(0.063)	(0.066)
Tenure: 1-5 years ago	-0.091***	-0.130***	-0.122***	-0.112***
	(0.030)	(0.031)	(0.032)	(0.025)
Tenure: 6-10 years ago	-0.079*	$-0.154^{* * *}$	-0.135***	-0.121***
	(0.041)	(0.043)	(0.043)	(0.030)
Tenure: 11-20 years ago	-0.087**	$-0.111^{* * *}$	$-0.109 * * *$	-0.105***
	(0.034)	(0.035)	(0.037)	(0.021)
Tenure missing	0.050	0.050	0.056	0.027
	(0.087)	(0.101)	(0.105)	(0.067)
Religion none	0.041	0.059*	0.060*	0.051
	(0.032)	(0.031)	(0.032)	(0.034)
Catholic	0.077**	0.065*	0.059	0.078**
	(0.036)	(0.035)	(0.036)	(0.038)
Orthodox	0.058	0.039	0.041	0.098**
	(0.040)	(0.045)	(0.046)	(0.042)
Other Christian	0.020	0.001	0.019	0.059
	(0.092)	(0.084)	(0.088)	(0.065)
Jew	-0.007	-0.090	-0.061	0.020
	(0.071)	(0.095)	(0.091)	(0.065)

Islam	0.059	0.213**	0.278***	0.149***
	(0.048)	(0.102)	(0.099)	(0.044)
Other	-0.053	-0.021	-0.012	0.123*
	(0.088)	(0.069)	(0.074)	(0.072)
Religion missing	0.020	0.014	0.006	0.048
	(0.055)	(0.058)	(0.061)	(0.057)
Lives in metropolitan area	-0.015	-0.011	-0.017	-0.001
	(0.021)	(0.022)	(0.023)	(0.016)
Lives in metropolitan area - missing	0.103	0.231	0.241	-0.121
	(0.191)	(0.199)	(0.201)	(0.096)
Wave two	-0.013	-0.031	-0.041	0.023
	(0.037)	(0.037)	(0.037)	(0.032)
Wave three	0.050	0.038	0.045	0.050
	(0.044)	(0.045)	(0.048)	(0.034)
Wave four	0.032	0.021	0.016	0.001
	(0.043)	(0.045)	(0.046)	(0.034)
Wave five	0.055	0.049	0.043	0.071*
	(0.054)	(0.048)	(0.050)	(0.036)
Wave six	0.178***	0.161***	0.149***	0.157***
	(0.040)	(0.038)	(0.039)	(0.033)
$D E$ is a reference category				
AT	0.205***	0.238***	0.219***	0.309***
	(0.060)	(0.067)	(0.073)	(0.057)
BE	-0.032	0.072	0.113	0.107
	(0.073)	(0.079)	(0.073)	(0.073)
BG	0.509***	0.434***	0.444***	0.540***
	(0.085)	(0.093)	(0.091)	(0.065)
CH	-0.005	0.037	0.060	0.096
	(0.058)	(0.058)	(0.060)	(0.066)
CY	0.306***	0.468***	0.463***	0.381***
	(0.085)	(0.107)	(0.112)	(0.083)
CZ	0.057	-0.027	-0.016	0.121
	(0.070)	(0.074)	(0.072)	(0.077)
DK	-0.467***	-0.512***	-0.502***	-0.372***
	(0.117)	(0.110)	(0.116)	(0.088)
EE	0.345***	0.296***	0.310***	0.369***
	(0.047)	(0.050)	(0.050)	(0.039)
ES	0.343***	0.408***	0.413***	0.440***
	(0.063)	(0.059)	(0.066)	(0.053)
FI	0.111	0.119	0.124	0.154
	(0.133)	(0.170)	(0.161)	(0.120)
FR	0.371***	0.426***	0.457***	0.375***
	(0.059)	(0.066)	(0.062)	(0.059)
GB	-0.140**	-0.082	-0.046	-0.014
	(0.054)	(0.054)	(0.058)	(0.058)
GR	0.619***	0.678***	0.704***	0.619***
	(0.066)	(0.093)	(0.095)	(0.046)
HR	0.275***	0.343***	0.351***	0.489***
	(0.092)	(0.101)	(0.103)	(0.056)
HU	0.574***	0.469***	0.487***	0.471***
	(0.104)	(0.067)	(0.066)	(0.055)
IE	0.149**	0.174***	0.172***	0.161***
	(0.056)	(0.059)	(0.058)	(0.052)
IL	0.398***	0.494***	0.470***	0.439***
	(0.097)	(0.151)	(0.145)	(0.084)
IS	0.130	0.175	0.202*	0.361***

	(0.096)	(0.106)	(0.109)	(0.115)
IT	$\begin{gathered} 0.372 * * * \\ (0.132) \end{gathered}$	$\begin{gathered} 0.456^{* * *} \\ (0.122) \end{gathered}$	$\begin{gathered} 0.432 * * * \\ (0.120) \end{gathered}$	$\begin{gathered} 0.469 * * * \\ (0.073) \end{gathered}$
LT	$\begin{gathered} 0.348 * * * \\ (0.072) \end{gathered}$	$\begin{gathered} 0.288^{* * *} \\ (0.059) \end{gathered}$	$\begin{gathered} 0.301 * * * \\ (0.058) \end{gathered}$	$\begin{gathered} 0.421 * * * \\ (0.072) \end{gathered}$
LU	$\begin{gathered} 0.020 \\ (0.093) \end{gathered}$	$\begin{aligned} & 0.136^{*} \\ & (0.070) \end{aligned}$	$\begin{gathered} 0.173 * * \\ (0.068) \end{gathered}$	$\begin{gathered} 0.126 \\ (0.088) \end{gathered}$
NL	$\begin{gathered} -0.148^{* * *} \\ (0.051) \end{gathered}$	$\begin{gathered} -0.138^{*} \\ (0.071) \end{gathered}$	$\begin{aligned} & -0.136^{*} \\ & (0.067) \end{aligned}$	$\begin{gathered} -0.140 * * \\ (0.055) \end{gathered}$
NO	$\begin{array}{r} -0.089 \\ (0.080) \end{array}$	$\begin{aligned} & -0.088 \\ & (0.069) \end{aligned}$	$\begin{aligned} & -0.099 \\ & (0.065) \end{aligned}$	$\begin{gathered} -0.162 * * * \\ (0.059) \end{gathered}$
PL	$\begin{aligned} & 0.142^{*} \\ & (0.076) \end{aligned}$	$\begin{gathered} 0.116 \\ (0.096) \end{gathered}$	$\begin{gathered} 0.136 \\ (0.097) \end{gathered}$	$\begin{gathered} 0.254 * * * \\ (0.093) \end{gathered}$
PT	$\begin{gathered} 0.429 * * * \\ (0.064) \end{gathered}$	$\begin{gathered} 0.535 * * * \\ (0.068) \end{gathered}$	$\begin{gathered} 0.549 * * * \\ (0.067) \end{gathered}$	$\begin{gathered} 0.605 * * * \\ (0.060) \end{gathered}$
RU	$\begin{gathered} 0.379 * * * \\ (0.059) \end{gathered}$	$\begin{gathered} 0.170 \\ (0.290) \end{gathered}$	$\begin{gathered} 0.205 \\ (0.295) \end{gathered}$	$\begin{gathered} 0.301 * * * \\ (0.047) \end{gathered}$
SE	$\begin{gathered} 0.053 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.047) \end{gathered}$	$\begin{aligned} & 0.114 * * \\ & (0.052) \end{aligned}$
SI	$\begin{gathered} 0.470 * * * \\ (0.062) \end{gathered}$	$\begin{gathered} 0.435 * * * \\ (0.071) \end{gathered}$	$\begin{gathered} 0.502 * * * \\ (0.129) \end{gathered}$	$\begin{gathered} 0.561^{* * *} \\ (0.063) \end{gathered}$
SK	$\begin{gathered} 0.231^{* * *} \\ (0.063) \end{gathered}$	$\begin{gathered} 0.238 * * * \\ (0.071) \end{gathered}$	$\begin{gathered} 0.186^{* * *} \\ (0.062) \end{gathered}$	$\begin{gathered} 0.227^{* * *} \\ (0.060) \end{gathered}$
TR	$\begin{gathered} 0.671^{* * *} \\ (0.086) \end{gathered}$	$\begin{gathered} 0.515^{* * *} \\ (0.132) \end{gathered}$	$\begin{gathered} 0.462 * * * \\ (0.135) \end{gathered}$	$\begin{gathered} 0.625^{* * *} \\ (0.078) \end{gathered}$
UA	$\begin{gathered} 0.374 * * * \\ (0.046) \end{gathered}$	$\begin{gathered} 0.329^{* * *} \\ (0.053) \end{gathered}$	$\begin{gathered} 0.340^{* * *} \\ (0.052) \end{gathered}$	$\begin{gathered} 0.421 * * * \\ (0.048) \end{gathered}$
Constant	$\begin{gathered} -0.089 \\ (0.480) \end{gathered}$	$\begin{gathered} 2.528 * * * \\ (0.301) \end{gathered}$	$\begin{gathered} 2.449 * * * \\ (0.297) \end{gathered}$	$\begin{gathered} 3.387 * * * \\ (0.206) \end{gathered}$
Observations	12914	12075	11509	20220
R -squared	0.115	0.128	0.128	0.113

Table A3.8-3.1. Other two measures of linguistic minority: cut-off $=\mathbf{1 0 \%}$. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich and poor	(3) Reduce income differences (ISSP)	(4) Government responsibility
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.392 * * * \\ (0.068) \end{gathered}$			
Reduce differences between rich and poor		$\begin{gathered} 0.297 * * * \\ (0.074) \end{gathered}$		
Reduce income differences (ISSP)			$\begin{gathered} 0.259 * * * \\ (0.067) \end{gathered}$	
Government responsibility (WVS)				$\begin{gathered} 0.015 \\ (0.024) \end{gathered}$
Birth country log GDP per capita	0.185***	0.003	0.002	-0.002

	(0.031)	(0.003)	(0.004)	(0.003)
Age	0.002**	0.001**	0.002**	0.001**
	(0.000)	(0.000)	(0.000)	(0.000)
Female	0.091***	0.080***	0.076***	0.077***
	(0.022)	(0.022)	(0.022)	(0.017)
Own education primary	0.047	0.075	0.075	0.001
	(0.054)	(0.056)	(0.060)	(0.030)
Own education sec0	0.090**	0.099***	0.101**	0.069***
	(0.035)	(0.036)	(0.040)	(0.025)
Own education sec2	0.074	0.082*	0.088*	0.094**
	(0.044)	(0.047)	(0.049)	(0.037)
Own education tertiary	-0.108***	-0.120***	-0.118***	-0.101***
	(0.019)	(0.018)	(0.018)	(0.016)
Own education missing	-0.054	-0.173	-0.181	-0.020
	(0.119)	(0.112)	(0.115)	(0.085)
Partner low education	0.002	-0.013	-0.012	-0.026
	(0.030)	(0.030)	(0.032)	(0.023)
Partner high education	-0.076***	-0.062***	-0.058***	-0.073***
	(0.018)	(0.018)	(0.019)	(0.016)
Missing dummy	0.008	0.038	0.015	-0.037
	(0.060)	(0.061)	(0.058)	(0.046)
Marital status (married is a reference category)				
Divorced or separated	0.037	0.060	0.065	0.033
	(0.062)	(0.066)	(0.068)	(0.045)
Widowed	0.006	0.043	0.029	-0.032
	(0.040)	(0.045)	(0.044)	(0.037)
Never married	0.095***	0.110***	0.124***	0.036
	(0.034)	(0.035)	(0.035)	(0.029)
Marital status - missing	0.012	0.044	0.032	0.056
	(0.042)	(0.063)	(0.057)	(0.045)
Log household size	0.054	0.002	0.067	-0.123
	(0.126)	(0.127)	(0.132)	(0.083)
Log household size ${ }^{2}$	-0.051	0.027	-0.036	0.097
	(0.183)	(0.187)	(0.191)	(0.124)
Log household size ${ }^{3}$	0.026	-0.003	0.018	-0.016
	(0.063)	(0.067)	(0.066)	(0.043)
Paid work last week	-0.005	-0.001	-0.003	-0.027*
	(0.016)	(0.017)	(0.017)	(0.015)
Paid work - missing	-0.084	-0.083	-0.054	-0.031
	(0.156)	(0.176)	(0.193)	(0.087)
Ever has a paid job	0.052	0.047	0.049	-0.010
	(0.044)	(0.048)	(0.050)	(0.027)
Ever paid job-missing	0.068	0.288**	0.306**	0.052
	(0.126)	(0.110)	(0.114)	(0.078)
Paid work last week - partner	0.039	0.046	0.060**	0.022
	(0.025)	(0.028)	(0.029)	(0.021)
Paid work partner - missing	0.004	-0.032	0.018	0.001
	(0.058)	(0.066)	(0.059)	(0.050)
Ever unemployed for more than 12 months	0.110***	0.091***	0.100***	0.103***
	(0.034)	(0.027)	(0.028)	(0.024)
Ever unemployed - missing	-0.013	-0.023	-0.036	0.041
	(0.064)	(0.078)	(0.077)	(0.050)
Primary income source (wages is a reference category)				
Self-employed	-0.191***	-0.191***	-0.180***	-0.195***
	(0.045)	(0.052)	(0.051)	(0.039)
Pension	0.087***	0.089***	0.106***	0.054**
	(0.029)	(0.030)	(0.029)	(0.027)

Unemployment benefits	0.087	0.067	0.050	0.099**
	(0.052)	(0.052)	(0.048)	(0.039)
Social benefits	0.179***	0.164***	0.160***	0.105**
	(0.044)	(0.049)	(0.051)	(0.040)
Investment	-0.342**	-0.485***	-0.477***	-0.448***
	(0.127)	(0.115)	(0.114)	(0.090)
Other	-0.119*	-0.106	-0.136**	-0.088
	(0.061)	(0.064)	(0.059)	(0.055)
Primary income source - missing	-0.077	-0.095**	-0.080	-0.060
	(0.051)	(0.046)	(0.047)	(0.038)
Has a child in the household	-0.029	-0.024	-0.027	-0.007
	(0.046)	(0.050)	(0.053)	(0.034)
Has a child in the household - missing	0.035	0.014	0.012	-0.080
	(0.169)	(0.153)	(0.151)	(0.131)
Linguistic minority: cut-off $=10 \%$, dummy	-0.015	-0.009	-0.017	-0.029
	(0.027)	(0.036)	(0.038)	(0.026)
Linguistic minority 10% - missing	0.128	-0.011	-0.074	-0.040
	(0.098)	(0.128)	(0.139)	(0.104)
Tenure: more than 20 years ago - reference category				
Tenure within last year	-0.208**	-0.276***	-0.273***	-0.169**
	(0.078)	(0.066)	(0.065)	(0.066)
Tenure: 1-5 years ago	$-0.106 * * *$	-0.141***	-0.129***	-0.111***
	(0.031)	(0.033)	(0.033)	(0.027)
Tenure: 6-10 years ago	-0.084*	-0.163***	-0.140***	-0.115***
	(0.043)	(0.046)	(0.046)	(0.032)
Tenure: 11-20 years ago	-0.089**	-0.111***	-0.107***	-0.098***
	(0.035)	(0.036)	(0.039)	(0.022)
Tenure missing	0.044	0.048	0.049	0.030
	(0.089)	(0.101)	(0.106)	(0.066)
Religion none	0.020	0.015	0.010	0.049
	(0.052)	(0.056)	(0.058)	(0.057)
Catholic	0.043	0.062*	0.065**	0.053
	(0.031)	(0.031)	(0.031)	(0.035)
Orthodox	0.081**	0.071**	0.066*	0.084**
	(0.036)	(0.034)	(0.034)	(0.039)
Other Christian	0.066	0.055	0.059	0.109**
	(0.039)	(0.042)	(0.042)	(0.042)
Jew	0.037	0.026	0.046	0.074
	(0.091)	(0.082)	(0.085)	(0.067)
Islam	-0.020	-0.094	-0.065	0.002
	(0.070)	(0.089)	(0.086)	(0.064)
Other	0.065	0.214**	0.276***	0.176***
	(0.049)	(0.101)	(0.096)	(0.045)
Religion missing	-0.043	0.009	0.019	0.132*
	(0.095)	(0.073)	(0.080)	(0.069)
Lives in metropolitan area	-0.014	-0.010	-0.017	0.000
	(0.022)	(0.023)	(0.024)	(0.017)
Lives in metropolitan area - missing	0.092	0.220	0.233	-0.117
	(0.196)	(0.205)	(0.207)	(0.099)
Wave two	-0.012	-0.028	-0.038	0.026
	(0.038)	(0.038)	(0.038)	(0.033)
Wave three	0.051	0.039	0.046	0.053
	(0.046)	(0.046)	(0.049)	(0.035)
Wave four	0.029	0.020	0.016	0.004
	(0.042)	(0.045)	(0.046)	(0.034)
Wave five	0.054	0.052	0.043	0.077**
	(0.054)	(0.047)	(0.049)	(0.036)

Wave six	$\begin{gathered} 0.182 * * * \\ (0.039) \end{gathered}$	$\begin{gathered} 0.170^{* * *} \\ (0.037) \end{gathered}$	$\begin{gathered} 0.159 * * * \\ (0.037) \end{gathered}$	$\begin{gathered} 0.164 * * * \\ (0.034) \end{gathered}$
$D E$ is a reference category				
AT	0.200***	0.240***	0.218***	0.299***
	(0.058)	(0.070)	(0.074)	(0.059)
BE	-0.023	0.090	0.140*	0.114
	(0.082)	(0.091)	(0.081)	(0.080)
BG	0.659***	0.601***	$0.611^{* * *}$	0.687***
	(0.094)	(0.113)	(0.112)	(0.066)
CH	-0.043	0.006	0.030	0.058
	(0.061)	(0.068)	(0.071)	(0.071)
CY	0.340***	0.513***	0.501***	0.428***
	(0.095)	(0.118)	(0.123)	(0.090)
CZ	0.132*	0.042	0.054	0.185**
	(0.074)	(0.088)	(0.086)	(0.080)
DK	-0.519***	-0.565***	-0.551***	-0.432***
	(0.116)	(0.114)	(0.120)	(0.090)
EE	0.405***	0.374***	0.387***	0.421***
	(0.047)	(0.067)	(0.067)	(0.036)
ES	0.337***	0.408***	0.411***	0.454***
	(0.060)	(0.062)	(0.066)	(0.056)
FI	0.130	0.145	0.147	0.160
	(0.129)	(0.169)	(0.157)	(0.119)
FR	0.347***	0.394***	0.427***	0.343***
	(0.059)	(0.068)	(0.062)	(0.058)
GB	-0.174***	-0.107*	-0.070	-0.044
	(0.052)	(0.057)	(0.060)	(0.059)
GR	0.697***	0.766***	0.793***	0.703***
	(0.078)	(0.105)	(0.107)	(0.051)
HR	0.272***	0.343***	0.350***	0.493***
	(0.091)	(0.102)	(0.107)	(0.058)
HU	0.651***	0.556***	0.576***	0.524***
	(0.102)	(0.075)	(0.074)	(0.059)
IE	0.163***	0.192***	0.184***	0.169***
	(0.059)	(0.064)	(0.066)	(0.055)
IL	0.445***	0.546***	0.525***	0.487***
	(0.090)	(0.139)	(0.133)	(0.081)
IS	0.100	0.137	0.151	0.318**
	(0.109)	(0.116)	(0.118)	(0.122)
IT	0.367**	0.459***	0.438***	0.477***
	(0.134)	(0.130)	(0.127)	(0.074)
LT	0.440***	0.392***	0.408***	0.506***
	(0.069)	(0.064)	(0.061)	(0.069)
LU	-0.025	0.096	0.141*	0.079
	(0.100)	(0.082)	(0.079)	(0.097)
NL	-0.164***	-0.159**	-0.154**	-0.158***
	(0.050)	(0.075)	(0.073)	(0.056)
NO	-0.127	-0.123	-0.139*	-0.197***
	(0.080)	(0.072)	(0.069)	(0.059)
PL	0.218***	0.203*	0.229**	0.308***
	(0.074)	(0.102)	(0.102)	(0.093)
PT	0.467***	0.581***	0.602***	0.642***
	(0.061)	(0.068)	(0.065)	(0.060)
RU	0.478***	0.333	0.369	0.402***
	(0.063)	(0.294)	(0.299)	(0.052)
SE	0.000	0.030	0.007	0.072
	(0.046)	(0.054)	(0.053)	(0.054)

SI	$0.448^{* * *}$	$0.417^{* * *}$	$0.475^{* * *}$	$0.538^{* * *}$
	(0.062)	(0.076)	(0.127)	(0.066)
SK	$0.317 * * *$	$0.348^{* * *}$	$0.282^{* * *}$	$0.294^{* * *}$
	(0.064)	(0.077)	(0.068)	(0.061)
TR	$0.673^{* * *}$	$0.547 * * *$	$0.498^{* * *}$	$0.614^{* * *}$
	(0.077)	(0.122)	(0.124)	(0.078)
UA	$0.532^{* * *}$	$0.499^{* * *}$	$0.510^{* * *}$	$0.564^{* * *}$
Constant	(0.054)	(0.071)	(0.072)	(0.048)
	-0.059	$2.397 * * *$	$2.316^{* * *}$	$3.426^{* * *}$
	(0.519)	(0.272)	(0.270)	(0.182)
Observations				
R-squared	12914	12075	11509	20220

Robust standard errors in parentheses
$\quad * * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

Table A3.9-3.2. Other two measures of linguistic minority: cut-off $=\mathbf{5 0 \%}$. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich and poor (ISSP)	(3) Reduce income differences (ISSP)	(4) Government responsibility
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.393 * * * \\ (0.069) \end{gathered}$			
Reduce differences between rich and poor (ISSP)		$0.290^{* * *}$		
Reduce income differences (ISSP)		(0.072)	$\begin{gathered} 0.253 * * * \\ (0.067) \end{gathered}$	
Government responsibility (WVS)				$\begin{gathered} 0.011 \\ (0.024) \end{gathered}$
Birth country log GDP per capita	$\begin{gathered} 0.186 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.002 \\ (0.002) \end{gathered}$
Age	$\begin{gathered} 0.002 * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001 * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.002 * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001 * * \\ (0.000) \end{gathered}$
Female	$\begin{gathered} 0.092 * * * \\ (0.022) \end{gathered}$	$\begin{gathered} 0.081 * * * \\ (0.022) \end{gathered}$	$\begin{gathered} 0.077 * * * \\ (0.023) \end{gathered}$	$\begin{gathered} 0.079 * * * \\ (0.017) \end{gathered}$
Own education primary	$\begin{gathered} 0.046 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.060) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.030) \end{aligned}$
Own education sec0	$\begin{gathered} 0.090 * * \\ (0.034) \end{gathered}$	$\begin{gathered} 0.099 * * * \\ (0.036) \end{gathered}$	$\begin{gathered} 0.102 * * \\ (0.039) \end{gathered}$	$\begin{gathered} 0.069 * * * \\ (0.025) \end{gathered}$
Own education sec2	$\begin{aligned} & 0.079^{*} \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.083 * \\ & (0.047) \end{aligned}$	$\begin{aligned} & 0.089^{*} \\ & (0.048) \end{aligned}$	$\begin{gathered} 0.097 * * \\ (0.038) \end{gathered}$
Own education tertiary	$\begin{gathered} -0.108^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.120 * * * \\ (0.018) \end{gathered}$	$\begin{gathered} -0.119^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.102 * * * \\ (0.017) \end{gathered}$
Own education missing	$\begin{aligned} & -0.061 \\ & (0.121) \end{aligned}$	$\begin{gathered} -0.173 \\ (0.111) \end{gathered}$	$\begin{aligned} & -0.181 \\ & (0.115) \end{aligned}$	$\begin{gathered} -0.023 \\ (0.087) \end{gathered}$
Partner low education	$\begin{gathered} 0.002 \\ (0.031) \end{gathered}$	$\begin{gathered} -0.012 \\ (0.030) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.033) \end{gathered}$	$\begin{gathered} -0.027 \\ (0.023) \end{gathered}$
Partner high education	$\begin{gathered} -0.074^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.060^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.057 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} -0.072 * * * \\ (0.016) \end{gathered}$

Partner education - missing	$\begin{gathered} 0.010 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.057) \end{gathered}$	$\begin{aligned} & -0.037 \\ & (0.046) \end{aligned}$
Marital status (married is a reference category)				
Divorced or separated	0.039	0.060	0.066	0.036
	(0.061)	(0.065)	(0.067)	(0.045)
Widowed	0.004	0.042	0.028	-0.033
	(0.039)	(0.045)	(0.043)	(0.037)
Never married	0.094**	0.110***	0.124***	0.035
	(0.035)	(0.035)	(0.035)	(0.030)
Marital status - missing	0.017	0.051	0.039	0.063
	(0.041)	(0.063)	(0.057)	(0.045)
Log household size	0.070	0.014	0.082	-0.118
	(0.124)	(0.125)	(0.130)	(0.082)
Log household size ${ }^{2}$	-0.069	0.011	-0.054	0.087
	(0.183)	(0.188)	(0.192)	(0.123)
Log household size ${ }^{3}$	0.032	0.001	0.024	-0.012
	(0.064)	(0.068)	(0.067)	(0.043)
Paid work last week	-0.004	0.000	-0.001	-0.026
	(0.017)	(0.017)	(0.017)	(0.015)
Paid work - missing	-0.085	-0.083	-0.053	-0.029
	(0.156)	(0.176)	(0.192)	(0.087)
Ever had a paid job	0.055	0.050	0.052	-0.013
	(0.045)	(0.050)	(0.052)	(0.027)
Ever paid job-missing	0.070	0.290**	0.308**	0.049
	(0.125)	(0.111)	(0.114)	(0.078)
Paid work last week - partner	0.042	0.050*	0.064**	0.025
	(0.025)	(0.027)	(0.028)	(0.021)
Paid work partner - missing	0.007	-0.029	0.021	0.004
	(0.059)	(0.066)	(0.060)	(0.051)
Ever unemployed for more than 12 months	0.111***	0.092***	0.101***	0.103***
	(0.033)	(0.026)	(0.027)	(0.024)
Ever unemployed - missing	-0.024	-0.024	-0.038	0.033
	(0.063)	(0.078)	(0.076)	(0.051)
Primary income source (wages is a reference category)				
Self-employed	$-0.191^{* * *}$	-0.187***	-0.176***	-0.192***
	(0.045)	(0.052)	(0.052)	(0.039)
Pension	$0.091 * * *$	0.093***	$0.110 * * *$	0.058**
	(0.030)	(0.030)	(0.029)	(0.027)
Unemployment benefits	0.089*	0.070	0.053	0.102**
	(0.052)	(0.051)	(0.047)	(0.039)
Social benefits	0.181***	0.167***	0.162***	0.104**
	(0.045)	(0.050)	(0.051)	(0.040)
Investment	-0.341**	-0.483***	-0.475***	-0.447***
	(0.127)	(0.115)	(0.114)	(0.090)
Other	-0.116*	-0.104	-0.135**	-0.087
	(0.061)	(0.063)	(0.059)	(0.055)
Primary income source - missing	-0.075	-0.093*	-0.079	-0.059
	(0.052)	(0.047)	(0.047)	(0.038)
Has a child in the household	-0.028	-0.024	-0.026	-0.004
	(0.045)	(0.048)	(0.052)	(0.033)
Has a child in the household - missing	0.034	0.013	0.011	-0.078
	(0.169)	(0.155)	(0.153)	(0.131)
Linguistic minority: cut-off $=50 \%$, dummy	-0.010	0.004	-0.000	-0.005
	(0.023)	(0.033)	(0.032)	(0.024)
Tenure: more than 20 years ago - reference category				
Tenure within last year	-0.207**	-0.280***	-0.278***	-0.175***

	(0.078)	(0.066)	(0.065)	(0.065)
Tenure: 1-5 years ago	-0.110***	-0.145***	-0.135***	-0.120***
	(0.030)	(0.032)	(0.033)	(0.027)
Tenure: 6-10 years ago	-0.086**	$-0.167 * * *$	-0.145***	-0.120***
	(0.042)	(0.045)	(0.045)	(0.031)
Tenure: 11-20 years ago	-0.090**	-0.111***	-0.108**	-0.101***
	(0.036)	(0.037)	(0.039)	(0.022)
Tenure missing	0.049	0.051	0.050	0.033
	(0.098)	(0.112)	(0.119)	(0.073)
Religion none	0.012	0.002	-0.002	0.042
	(0.052)	(0.055)	(0.058)	(0.054)
Catholic	0.043	0.061*	0.064**	0.049
	(0.031)	(0.031)	(0.031)	(0.034)
Orthodox	0.079**	0.068*	0.063*	0.078**
	(0.036)	(0.034)	(0.034)	(0.038)
Other Christian	0.067*	0.054	0.058	0.106**
	(0.039)	(0.045)	(0.045)	(0.042)
Jew	0.037	0.023	0.043	0.070
	(0.091)	(0.081)	(0.085)	(0.066)
Islam	-0.021	-0.095	-0.066	0.001
	(0.070)	(0.088)	(0.084)	(0.064)
Other	0.061	0.211**	0.272***	0.169***
	(0.049)	(0.099)	(0.095)	(0.045)
Religion missing	-0.043	0.007	0.017	0.137**
	(0.094)	(0.073)	(0.079)	(0.066)
Lives in metropolitan area	-0.012	-0.008	-0.015	0.000
	(0.021)	(0.023)	(0.024)	(0.016)
Lives in metropolitan area - missing	0.112	0.219	0.231	-0.130
	(0.198)	(0.206)	(0.208)	(0.104)
Wave two	-0.014	-0.027	-0.038	0.027
	(0.038)	(0.039)	(0.038)	(0.033)
Wave three	0.051	0.038	0.047	0.054
	(0.046)	(0.046)	(0.049)	(0.035)
Wave four	0.027	0.019	0.015	0.005
	(0.041)	(0.044)	(0.045)	(0.033)
Wave five	0.052	0.048	0.040	0.076**
	(0.054)	(0.047)	(0.049)	(0.036)
Wave six	0.180***	0.168***	0.157***	0.164***
	(0.039)	(0.036)	(0.036)	(0.033)
$D E$ is a reference category				
AT	0.200***	$0.247^{* * *}$	0.224***	0.300***
	(0.057)	(0.069)	(0.073)	(0.057)
BE	-0.019	0.094	0.144*	0.114
	(0.080)	(0.087)	(0.077)	(0.080)
BG	0.656***	0.611***	0.619***	0.693***
	(0.092)	(0.114)	(0.113)	(0.066)
CH	-0.039	0.011	0.034	0.058
	(0.058)	(0.063)	(0.066)	(0.069)
CY	0.339***	0.517***	0.504***	0.428***
	(0.095)	(0.120)	(0.125)	(0.090)
CZ	0.132*	0.052	0.062	0.190**
	(0.073)	(0.087)	(0.085)	(0.079)
DK	-0.532***	-0.566***	-0.557***	-0.433***
	(0.117)	(0.118)	(0.123)	(0.089)
EE	0.411***	0.379***	0.394***	0.431***
	(0.039)	(0.055)	(0.055)	(0.035)

ES	0.338***	0.415***	0.415***	0.460***
	(0.059)	(0.061)	(0.066)	(0.055)
FI	0.129	0.148	0.148	0.154
	(0.130)	(0.171)	(0.158)	(0.119)
FR	0.351***	0.417***	0.448***	0.358***
	(0.059)	(0.067)	(0.061)	(0.059)
GB	-0.174***	-0.099*	-0.062	-0.045
	(0.052)	(0.057)	(0.060)	(0.058)
GR	0.697***	0.773***	0.799***	0.708***
	(0.079)	(0.105)	(0.107)	(0.051)
HR	0.280***	0.353***	0.362***	0.507***
	(0.084)	(0.094)	(0.097)	(0.058)
HU	0.652***	0.566***	0.585***	0.530***
	(0.102)	(0.075)	(0.073)	(0.058)
IE	0.164***	0.200***	0.191***	0.171***
	(0.059)	(0.063)	(0.064)	(0.055)
IL	0.445***	0.552***	0.529***	0.486***
	(0.090)	(0.140)	(0.134)	(0.082)
IS	0.101	0.143	0.157	0.319***
	(0.108)	(0.116)	(0.117)	(0.121)
IT	0.377***	0.471***	0.448***	0.503***
	(0.137)	(0.132)	(0.130)	(0.075)
LT	0.436***	0.395***	0.408***	0.498***
	(0.069)	(0.067)	(0.064)	(0.067)
LU	-0.026	0.097	0.139*	0.070
	(0.099)	(0.081)	(0.078)	(0.095)
NL	-0.163***	-0.153**	-0.150**	-0.156***
	(0.049)	(0.075)	(0.073)	(0.055)
NO	-0.127	-0.120	-0.138*	-0.210***
	(0.079)	(0.072)	(0.068)	(0.058)
PL	0.219***	0.213**	0.239**	0.318***
	(0.073)	(0.102)	(0.102)	(0.093)
PT	0.469***	0.590***	0.610***	0.650***
	(0.061)	(0.067)	(0.064)	(0.061)
RU	0.478***	0.341	0.376	0.410***
	(0.060)	(0.295)	(0.299)	(0.053)
SE	-0.001	0.035	0.011	0.071
	(0.045)	(0.054)	(0.053)	(0.053)
SI	0.451***	0.428***	0.485***	0.546***
	(0.060)	(0.075)	(0.125)	(0.065)
SK	0.314***	0.354***	0.289***	0.294***
	(0.062)	(0.077)	(0.068)	(0.058)
TR	0.679***	0.559***	0.511***	0.625***
	(0.076)	(0.121)	(0.123)	(0.079)
UA	0.543***	0.509***	0.522***	0.579***
	(0.045)	(0.058)	(0.059)	(0.047)
Constant	-0.093	2.403***	2.322***	3.445***
	(0.527)	(0.271)	(0.274)	(0.180)
Observations	12869	12032	11471	20120
R -squared	0.104	0.116	0.116	0.104

Robust standard errors in parentheses

$$
* * * p<0.01, * * p<0.05, * p<0.1
$$

Table A3.10-4. Baseline, but more controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS	(2) Reduce	(3) Reduce	(4) Government
	immigrants	differences	income	responsibility
		between rich and poor (ISSP)	differences (ISSP)	

Birth country redistribution preferences (ESS)

Reduce differences between rich and poor
Reduce income differences (ISSP)

$$
\begin{gathered}
0.340 * * * \\
(0.059)
\end{gathered}
$$

	(0.061)			
Government responsibility (WVS)				$\begin{gathered} 0.006 \\ (0.023) \end{gathered}$
Birth country log GDP per capita	0.192***	0.005	0.004	-0.001
	(0.031)	(0.004)	(0.004)	(0.002)
Age	0.007	0.004	0.004	0.006**
	(0.004)	(0.004)	(0.004)	(0.003)
Age 2/100	-0.003	-0.002	-0.002	-0.003
	(0.003)	(0.003)	(0.003)	(0.002)
Female	0.085***	0.075***	0.072***	0.070***
	(0.021)	(0.021)	(0.021)	(0.017)
Own education primary	0.026	0.048	0.046	-0.020
	(0.045)	(0.046)	(0.048)	(0.028)
Own education sec0	0.072**	0.078**	0.080**	0.055**
	(0.031)	(0.032)	(0.035)	(0.024)
Own education sec2	0.067	0.070	0.076	0.093**
	(0.044)	(0.046)	(0.047)	(0.038)
Own education tertiary	-0.080***	-0.094***	-0.091***	-0.077***
	(0.019)	(0.019)	(0.019)	(0.016)
Own education missing	-0.068	-0.191*	-0.199*	-0.036
	(0.119)	(0.110)	(0.113)	(0.086)
Partner low education	-0.016	-0.032	-0.030	-0.037
	(0.028)	(0.029)	(0.031)	(0.023)
Partner high education	-0.061***	-0.047**	-0.043**	-0.055***
	(0.017)	(0.017)	(0.018)	(0.016)
Partner high education - missing dummy	0.001	0.029	0.009	-0.042
	(0.056)	(0.056)	(0.054)	(0.045)
Marital status (married is a reference category)				
Divorced or separated	0.011	0.035	0.040	0.011
	(0.056)	(0.060)	(0.061)	(0.042)
Widowed	0.009	0.043	0.029	-0.026
	(0.035)	(0.039)	(0.038)	(0.034)
Never married	0.098***	0.114***	0.126***	0.044
	(0.031)	(0.033)	(0.032)	(0.028)
Marital status - missing	0.012	0.050	0.036	0.063
	(0.036)	(0.062)	(0.055)	(0.043)
Feeling about household's income (coping is a				
Living comfortably on present income	-0.205***	-0.192***	-0.199***	-0.158***
	(0.029)	(0.029)	(0.030)	(0.028)
Difficult on present income	0.130***	0.155***	0.155***	0.140***
	(0.015)	(0.021)	(0.021)	(0.017)
Very difficult on present income	0.224***	0.245***	0.238***	0.226***

	(0.039)	(0.051)	(0.049)	(0.026)
Feeling about household's income - missing	0.026	-0.017	-0.020	0.021
	(0.086)	(0.093)	(0.097)	(0.066)
Log household size	0.083	0.027	0.094	-0.078
	(0.125)	(0.127)	(0.132)	(0.085)
Log household size ${ }^{2}$	-0.029	0.053	-0.010	0.090
	(0.181)	(0.185)	(0.188)	(0.127)
Log household size ${ }^{3}$	0.011	-0.019	0.002	-0.021
	(0.063)	(0.066)	(0.065)	(0.044)
Paid work last week	0.008	0.011	0.008	-0.014
	(0.017)	(0.017)	(0.017)	(0.016)
Paid work - missing	-0.098	-0.101	-0.086	-0.035
	(0.144)	(0.165)	(0.180)	(0.081)
Ever had a paid job	0.037	0.037	0.040	-0.020
	(0.041)	(0.046)	(0.047)	(0.026)
Ever paid job-missing	0.076	0.304***	0.320**	0.049
	(0.134)	(0.109)	(0.120)	(0.081)
Paid work last week - partner	0.051*	0.057*	0.070**	0.035
	(0.025)	(0.028)	(0.029)	(0.021)
Paid work partner - missing	0.011	-0.031	0.018	0.010
	(0.052)	(0.061)	(0.055)	(0.048)
Ever unemployed for more than 12 months	0.068**	0.049**	0.058**	0.063***
	(0.031)	(0.023)	(0.024)	(0.022)
Ever unemployed - missing	-0.026	-0.029	-0.044	0.033
	(0.062)	(0.073)	(0.071)	(0.050)
Primary income source (wages is a reference category)				
Self-employed	-0.184***	-0.186***	-0.175***	-0.180***
	(0.042)	(0.048)	(0.046)	(0.037)
Pension	0.082***	0.077**	0.093***	0.048*
	(0.028)	(0.029)	(0.029)	(0.026)
Unemployment benefits	-0.000	-0.031	-0.045	0.019
	(0.050)	(0.047)	(0.045)	(0.040)
Social benefits	0.106**	0.083	0.078	0.040
	(0.043)	(0.051)	(0.053)	(0.040)
Investment	-0.304**	-0.452***	-0.445***	-0.397***
	(0.117)	(0.107)	(0.106)	(0.087)
Other	-0.135**	-0.130**	-0.157**	-0.099*
	(0.061)	(0.062)	(0.059)	(0.054)
Primary income source - missing	-0.094*	-0.109**	-0.093*	-0.073*
	(0.051)	(0.046)	(0.047)	(0.037)
Has a child in the household	-0.071	-0.067	-0.070	-0.043
	(0.042)	(0.045)	(0.048)	(0.031)
Has a child in the household - missing	0.022	0.000	-0.001	-0.092
	(0.169)	(0.148)	(0.145)	(0.130)
Linguistic minority: cut-off $=30 \%$, dummy	-0.045**	-0.040	-0.045	-0.041*
	(0.021)	(0.029)	(0.030)	(0.021)
Linguistic minority 30\% - missing	0.144	0.007	-0.050	-0.038
	(0.091)	(0.130)	(0.142)	(0.104)
Tenure: more than 20 years ago - reference category				
Tenure within last year	-0.224**	-0.298***	-0.302***	-0.179**
	(0.082)	(0.065)	(0.065)	(0.069)
Tenure: 1-5 years ago	-0.120***	-0.167***	-0.164***	-0.128***
	(0.031)	(0.030)	(0.030)	(0.026)
Tenure: 6-10 years ago	-0.101**	-0.181***	$-0.167 * * *$	-0.133***
	(0.043)	(0.043)	(0.043)	(0.031)
Tenure: 11-20 years ago	$-0.098^{* * *}$	$-0.125^{* * *}$	$-0.126^{* * *}$	$-0.111 * * *$
	(0.035)	(0.034)	(0.036)	(0.022)

Tenure missing	0.043	0.042	0.047	0.025
	(0.088)	(0.101)	(0.105)	(0.067)
Religion none	0.042	0.061*	0.062*	0.054
	(0.033)	(0.033)	(0.033)	(0.036)
Catholic	0.072*	0.060	0.053	0.076*
	(0.037)	(0.036)	(0.036)	(0.038)
Orthodox	0.052	0.034	0.036	0.097**
	(0.041)	(0.044)	(0.045)	(0.042)
Other Christian	0.013	-0.007	0.008	0.054
	(0.094)	(0.085)	(0.089)	(0.065)
Jew	-0.011	-0.095	-0.066	0.020
	(0.070)	(0.093)	(0.089)	(0.064)
Islam	0.053	0.210*	0.273**	0.147***
	(0.048)	(0.104)	(0.102)	(0.044)
Other	-0.053	-0.026	-0.016	0.122*
	(0.087)	(0.069)	(0.074)	(0.073)
Religion missing	0.020	0.014	0.007	0.050
	(0.055)	(0.057)	(0.061)	(0.058)
Lives in metropolitan area	-0.016	-0.012	-0.019	-0.002
	(0.021)	(0.022)	(0.023)	(0.016)
Lives in metropolitan area-missing	0.101	0.233	0.242	-0.120
	(0.190)	(0.200)	(0.201)	(0.095)
Wave two	-0.014	-0.032	-0.042	0.022
	(0.037)	(0.037)	(0.037)	(0.033)
Wave three	0.048	0.036	0.042	0.049
	(0.045)	(0.045)	(0.048)	(0.035)
Wave four	0.031	0.019	0.013	0.000
	(0.044)	(0.046)	(0.046)	(0.034)
Wave five	0.053	0.047	0.039	0.070*
	(0.055)	(0.049)	(0.051)	(0.037)
Wave six	0.177***	0.158***	0.146***	0.155***
	(0.041)	(0.039)	(0.040)	(0.034)
Citizenship, dummy	-0.034	-0.036	-0.037	0.008
	(0.026)	(0.024)	(0.024)	(0.016)
Citizenship - missing	0.093	0.144	0.136	0.100
	(0.260)	(0.326)	(0.326)	(0.166)
Voted	-0.028	-0.041*	-0.055**	-0.046**
	(0.018)	(0.022)	(0.023)	(0.018)
Voted - missing	0.039	0.024	0.004	0.023
	(0.074)	(0.080)	(0.080)	(0.048)
Religious attendance	0.018	0.019	0.022	0.014
	(0.019)	(0.017)	(0.018)	(0.015)
Religious attendance - missing	-0.077	-0.054	-0.043	-0.078
	(0.091)	(0.102)	(0.103)	(0.077)
$D E$ is a reference category				
AT	0.210***	0.237***	0.221***	0.312***
	(0.063)	(0.070)	(0.076)	(0.058)
BE	-0.036	0.060	0.098	0.109
	(0.074)	(0.084)	(0.078)	(0.073)
BG	0.506***	0.425***	0.432***	0.542***
	(0.090)	(0.097)	(0.096)	(0.068)
CH	-0.013	0.024	0.045	0.090
	(0.063)	(0.061)	(0.064)	(0.066)
CY	0.305***	0.468***	0.463***	0.380***
	(0.088)	(0.108)	(0.113)	(0.083)
CZ	0.063	-0.025	-0.015	0.120
	(0.071)	(0.072)	(0.070)	(0.076)

DK	$\begin{gathered} -0.471 * * * \\ (0.122) \end{gathered}$	$\begin{gathered} -0.518^{* * *} \\ (0.114) \end{gathered}$	$\begin{gathered} -0.510^{* * *} \\ (0.121) \end{gathered}$	$\begin{gathered} -0.369^{* * *} \\ (0.090) \end{gathered}$
EE	0.334***	0.280***	0.291***	0.363***
	(0.053)	(0.052)	(0.052)	(0.040)
ES	0.341***	0.405***	0.406***	0.439***
	(0.067)	(0.064)	(0.072)	(0.054)
FI	0.115	0.123	0.129	0.154
	(0.138)	(0.176)	(0.168)	(0.122)
FR	0.363***	0.414***	0.443***	0.374***
	(0.062)	(0.071)	(0.067)	(0.059)
GB	-0.140**	-0.089	-0.054	-0.012
	(0.056)	(0.057)	(0.063)	(0.060)
GR	0.624***	0.682***	0.709***	0.619***
	(0.068)	(0.096)	(0.100)	(0.046)
HR	0.282***	0.349***	0.359***	0.492***
	(0.092)	(0.102)	(0.105)	(0.056)
HU	0.582***	0.475***	0.495***	0.480***
	(0.108)	(0.068)	(0.068)	(0.058)
IE	0.147**	0.169***	0.167***	0.162***
	(0.057)	(0.061)	(0.059)	(0.053)
IL	0.421***	0.517***	0.497***	0.447***
	(0.097)	(0.151)	(0.146)	(0.083)
IS	0.138	0.181	0.210*	0.363***
	(0.101)	(0.109)	(0.113)	(0.114)
IT	0.382***	0.466***	0.446***	0.472***
	(0.129)	(0.120)	(0.118)	(0.072)
LT	0.357***	0.294***	0.306***	0.420***
	(0.076)	(0.062)	(0.061)	(0.072)
LU	0.007	0.117*	0.151**	0.123
	(0.093)	(0.069)	(0.066)	(0.088)
NL	-0.147**	-0.143*	-0.142*	-0.138**
	(0.055)	(0.074)	(0.070)	(0.055)
NO	-0.094	-0.096	-0.109	-0.160***
	(0.081)	(0.071)	(0.068)	(0.059)
PL	0.152*	0.124	0.145	0.255***
	(0.080)	(0.098)	(0.101)	(0.092)
PT	0.437***	0.542***	0.557***	0.606***
	(0.066)	(0.069)	(0.069)	(0.060)
RU	0.391***	0.185	0.224	0.308***
	(0.062)	(0.287)	(0.291)	(0.048)
SE	0.057	0.081	0.061	0.120**
	(0.048)	(0.050)	(0.049)	(0.052)
SI	0.483***	0.446***	0.514***	0.566***
	(0.066)	(0.074)	(0.130)	(0.063)
SK	$0.241^{* * *}$	0.248***	0.199***	0.233***
	(0.066)	(0.074)	(0.066)	(0.060)
TR	0.688***	0.529***	$0.479 * * *$	0.632***
	(0.089)	(0.133)	(0.137)	(0.078)
UA	0.393***	0.348***	0.360***	0.432***
	(0.051)	(0.057)	(0.058)	(0.048)
Constant	0.029	2.595***	2.511***	3.393***
	(0.483)	(0.305)	(0.296)	(0.213)
Observations	12914	12075	11509	20220
R-squared	0.116	0.129	0.129	0.114

Robust standard errors in parentheses, ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A3.11-5. Comprehensive controls. Effect of Birth Country Culture on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) Only ESS immigrants	(2) Reduce differences between rich	(3) Reduce income differences	(4) Government responsibility
Birth country redistribution preferences (ESS)	$\begin{gathered} 0.288 * * * \\ (0.066) \end{gathered}$			
Reduce differences between rich and poor (ISSP)		$0.215^{* * *}$		
Reduce income differences (ISSP)		$\begin{gathered} (0.065) \\ -0.049 \\ (0.152) \end{gathered}$	$\begin{gathered} -0.076 \\ (0.162) \end{gathered}$	
Government responsibility (WVS)			$\begin{gathered} 0.167 * * * \\ (0.060) \end{gathered}$	
Birth country log GDP per capita				$\begin{gathered} -0.004 \\ (0.019) \end{gathered}$
Main activity, last 7 days				
Unemployed, not looking for job	$\begin{gathered} 0.138 \\ (0.289) \end{gathered}$	$\begin{aligned} & 0.542^{*} \\ & (0.296) \end{aligned}$	$\begin{aligned} & 0.563 * \\ & (0.327) \end{aligned}$	$\begin{gathered} -0.093 \\ (0.086) \end{gathered}$
Permanently sick or disabled	$\begin{gathered} 0.209 \\ (0.290) \end{gathered}$	$\begin{gathered} 0.651 * * \\ (0.291) \end{gathered}$	$\begin{aligned} & 0.675 * * \\ & (0.323) \end{aligned}$	$\begin{gathered} -0.000 \\ (0.106) \end{gathered}$
Retired	$\begin{gathered} 0.217 \\ (0.285) \end{gathered}$	$\begin{gathered} 0.626 * * \\ (0.275) \end{gathered}$	$\begin{gathered} 0.657 * * \\ (0.305) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.106) \end{aligned}$
Housework, looking after children	$\begin{gathered} 0.166 \\ (0.272) \end{gathered}$	$\begin{aligned} & 0.546^{*} \\ & (0.279) \end{aligned}$	$\begin{aligned} & 0.570^{*} \\ & (0.310) \end{aligned}$	$\begin{aligned} & -0.086 \\ & (0.095) \end{aligned}$
Other	$\begin{gathered} 0.169 \\ (0.331) \end{gathered}$	$\begin{aligned} & 0.632^{*} \\ & (0.321) \end{aligned}$	$\begin{aligned} & 0.613^{*} \\ & (0.348) \end{aligned}$	$\begin{gathered} -0.044 \\ (0.125) \end{gathered}$
Main activity is missing	$\begin{gathered} 0.162 \\ (0.346) \end{gathered}$	$\begin{gathered} 0.551 \\ (0.366) \end{gathered}$	$\begin{gathered} 0.620 \\ (0.392) \end{gathered}$	
Member of a trade union, ever	$\begin{gathered} 0.031 \\ (0.029) \end{gathered}$	$\begin{aligned} & 0.050^{*} \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.039 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.045^{* *} \\ (0.022) \end{gathered}$
Currently a member	$\begin{gathered} 0.071 * * \\ (0.026) \end{gathered}$	$\begin{gathered} 0.084 * * * \\ (0.029) \end{gathered}$	$\begin{gathered} 0.090^{* * *} \\ (0.030) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.024) \end{gathered}$
Lower education, mother	$\begin{gathered} 0.020 \\ (0.028) \end{gathered}$	$\begin{aligned} & 0.045^{*} \\ & (0.026) \end{aligned}$	$\begin{gathered} 0.036 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.022) \end{gathered}$
Higher education, mother	$\begin{aligned} & -0.057 \\ & (0.034) \end{aligned}$	$\begin{aligned} & -0.057 * \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.053 \\ & (0.034) \end{aligned}$	$\begin{gathered} -0.062 * * \\ (0.024) \end{gathered}$
Education is missing, mother	$\begin{gathered} -0.020 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.018 \\ (0.037) \end{gathered}$
Lower education, father	$\begin{gathered} 0.076 * * \\ (0.029) \end{gathered}$	$\begin{aligned} & 0.058^{*} \\ & (0.030) \end{aligned}$	$\begin{aligned} & 0.060^{*} \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.041^{*} \\ & (0.023) \end{aligned}$
Higher education, father	$\begin{aligned} & -0.010 \\ & (0.038) \end{aligned}$	$\begin{aligned} & -0.031 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.038 \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (0.029) \end{aligned}$
Education is missing, father	$\begin{gathered} 0.043 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.032) \end{gathered}$
Industry				
Agriculture, forestry and fishing	$\begin{gathered} 0.496 \\ (0.317) \end{gathered}$	$\begin{gathered} 0.237 \\ (0.337) \end{gathered}$	$\begin{gathered} 0.379 \\ (0.334) \end{gathered}$	$\begin{gathered} -0.078 \\ (0.129) \end{gathered}$
Mining and quarrying	$\begin{aligned} & 0.520^{*} \\ & (0.304) \end{aligned}$	$\begin{gathered} 0.235 \\ (0.329) \end{gathered}$	$\begin{gathered} 0.381 \\ (0.320) \end{gathered}$	$\begin{aligned} & -0.104 \\ & (0.132) \end{aligned}$
Manufacturing	$\begin{aligned} & 0.533^{*} \\ & (0.313) \end{aligned}$	$\begin{gathered} 0.262 \\ (0.333) \end{gathered}$	$\begin{gathered} 0.399 \\ (0.327) \end{gathered}$	$\begin{aligned} & -0.030 \\ & (0.120) \end{aligned}$

Electricity, gas, steam and air conditioning supply	0.359	0.049	0.184	-0.193
	(0.314)	(0.352)	(0.345)	(0.135)
Water supply; sewerage, waste management and remediation activities	0.509**	0.198	0.338	
	(0.239)	(0.254)	(0.242)	
Community or military service				$\begin{aligned} & -0.194 \\ & (0.243) \end{aligned}$
Activities of extraterritorial organisations and				$\begin{aligned} & -0.214 \\ & (0.229) \end{aligned}$
Construction	0.600*	0.331	0.474	-0.002
	(0.302)	(0.321)	(0.313)	(0.115)
Wholesale and retail trade; repair of motor vehicles and motorcycles	0.548*	0.276	0.417	-0.031
	(0.307)	(0.330)	(0.322)	(0.120)
Transportation and storage	0.464	0.139	0.276	-0.088
	(0.302)	(0.323)	(0.316)	(0.108)
Accommodation and food service activities 1	0.585*	0.280	0.423	-0.007
	(0.289)	(0.314)	(0.304)	(0.107)
Information and communication	0.501	0.189	0.319	-0.089
	(0.331)	(0.348)	(0.347)	(0.144)
Financial and insurance activities	0.308	0.049	0.180	-0.256*
	(0.317)	(0.339)	(0.337)	(0.142)
Real estate activities	0.525*	0.255	0.386	-0.052
	(0.309)	(0.335)	(0.328)	(0.146)
Professional, scientific and technical activities	0.601*	0.271	0.390	-0.128
	(0.327)	(0.350)	(0.346)	(0.159)
Administrative and support service activities	0.536	0.206	0.377	-0.098
	(0.317)	(0.345)	(0.336)	(0.130)
Public administration and defense; compulsory social security	0.568*	0.303	0.447	-0.036
	(0.323)	(0.343)	(0.344)	(0.139)
Education	0.653**	0.382	0.523	0.027
	(0.305)	(0.325)	(0.317)	(0.127)
Human health and social work activities	0.564*	0.296	0.450	-0.016
	(0.298)	(0.323)	(0.314)	(0.120)
Arts, entertainment and recreation	0.581*	0.311	0.472	-0.004
	(0.299)	(0.323)	(0.312)	(0.122)
Other service activities	0.590**	0.325	0.451	-0.013
	(0.270)	(0.289)	(0.280)	(0.099)
Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use	0.448	0.164	0.322	-0.167
	(0.339)	(0.364)	(0.356)	(0.138)
Industry missing	$\begin{gathered} 0.542 \\ (0.326) \end{gathered}$	$\begin{gathered} 0.214 \\ (0.349) \end{gathered}$	$\begin{gathered} 0.353 \\ (0.343) \end{gathered}$	$\begin{gathered} 0.017 \\ (0.121) \end{gathered}$
Occupations, skilled agricultural, forestry and fishery workers - omited				
Armed forces	-0.093			-0.169
	(0.164)			(0.147)
Managers	-0.227**	-0.190	-0.195	-0.244***
	(0.099)	(0.143)	(0.154)	(0.081)
Professionals	-0.183***	-0.189	-0.204	-0.177***
	(0.063)	(0.135)	(0.147)	(0.059)
Technicians and associate professionals	-0.172**	-0.165	-0.178	-0.143**
	(0.069)	(0.150)	(0.163)	(0.061)
Clerical support workers	-0.104	-0.083	-0.081	-0.074

	(0.075)	(0.147)	(0.157)	(0.064)
Service and sales workers	-0.135*	-0.108	-0.115	-0.105*
	(0.073)	(0.146)	(0.158)	(0.060)
Craft and related trades workers	-0.072	-0.077	-0.087	-0.074
	(0.059)	(0.150)	(0.160)	(0.058)
Plant and machine operators, and assemblers	-0.023	-0.015	-0.013	-0.053
	(0.079)	(0.160)	(0.170)	(0.067)
Elementary occupations	-0.027	-0.041	-0.050	-0.086
	(0.061)	(0.159)	(0.171)	(0.057)
Log-transform GDP	0.180***	-0.002	0.001	-0.002
	(0.031)	(0.005)	(0.007)	(0.002)
Age	0.003	-0.000	-4.60e-05	0.003
	(0.005)	(0.004)	(0.004)	(0.003)
Age 2/100	-0.001	0.001	0.001	-0.001
	(0.003)	(0.003)	(0.003)	(0.003)
Female	0.090***	0.082***	0.076***	0.080***
	(0.024)	(0.024)	(0.024)	(0.018)
Own education primary	-0.000	0.027	0.025	-0.045*
	(0.043)	(0.044)	(0.047)	(0.027)
Own education sec0	0.046*	0.062**	0.063*	0.039
	(0.026)	(0.029)	(0.032)	(0.024)
Own education sec2	0.097**	0.099*	0.103*	0.110***
	(0.047)	(0.049)	(0.050)	(0.040)
Own education tertiary	-0.018	-0.025	-0.020	-0.014
	(0.028)	(0.027)	(0.028)	(0.021)
Own education missing	-0.050	-0.180*	-0.190*	-0.015
	(0.130)	(0.105)	(0.107)	(0.101)
Partner low education	-0.038*	-0.063***	-0.062**	-0.041*
	(0.022)	(0.022)	(0.023)	(0.023)
Partner high education	-0.037**	-0.019	-0.014	-0.021
	(0.017)	(0.017)	(0.018)	(0.014)
Partner education - missing dummy	-0.015	0.011	-0.004	-0.048
	(0.055)	(0.054)	(0.052)	(0.048)
Marital status (married is a reference category)				
Divorced or separated	0.038	0.055	0.057	0.024
	(0.060)	(0.065)	(0.067)	(0.044)
Widowed	0.019	0.044	0.022	-0.005
	(0.042)	(0.047)	(0.045)	(0.038)
Never married	0.111***	0.122***	0.131***	0.061*
	(0.038)	(0.040)	(0.039)	(0.031)
Marital status - missing	0.003	0.045	0.038	0.046
	(0.065)	(0.089)	(0.084)	(0.059)
Feeling about household's income (coping is a reference category)				
Living comfortably on present income	-0.185***	-0.170***	-0.175***	-0.142***
	(0.028)	(0.028)	(0.029)	(0.026)
Difficult on present income	0.117***	0.139***	0.138***	0.133***
	(0.015)	(0.022)	(0.022)	(0.018)
Very difficult on present income	0.204***	0.214***	0.208***	0.217***
	(0.039)	(0.046)	(0.044)	(0.031)
Feeling about household's income - missing	0.025	-0.032	-0.024	0.003
	(0.129)	(0.139)	(0.145)	(0.086)
Log household size	0.094	0.045	0.110	-0.084
	(0.111)	(0.117)	(0.121)	(0.083)
Log household size ${ }^{2}$	-0.067	0.003	-0.067	0.077
	(0.167)	(0.175)	(0.177)	(0.127)
Log household size ${ }^{3}$	0.030	0.004	0.029	-0.011
	(0.060)	(0.064)	(0.062)	(0.045)

Paid work last week	0.008	0.008	-0.015	-0.011
	(0.040)	(0.044)	(0.040)	(0.040)
Paid work - missing	-0.044	-0.009	-0.009	-0.037
	(0.134)	(0.142)	(0.160)	(0.083)
Ever had a paid job	0.353	0.473	0.462	0.040
	(0.413)	(0.509)	(0.516)	(0.400)
Ever paid job-missing	0.392	0.627	0.599	0.204
	(0.425)	(0.495)	(0.494)	(0.387)
Paid work last week - partner	0.039	0.041	0.056**	0.027
	(0.023)	(0.024)	(0.025)	(0.020)
Paid work partner - missing	0.010	-0.026	0.019	0.003
	(0.056)	(0.063)	(0.061)	(0.051)
Ever unemployed for more than 12 months	0.062**	0.052**	0.064**	0.063***
	(0.026)	(0.023)	(0.023)	(0.021)
Ever unemployed - missing	0.008	0.030	0.034	0.042
	(0.109)	(0.138)	(0.138)	(0.065)
Primary income source (wages is a reference category)				
Self-employed	-0.129***	-0.136***	-0.128**	-0.127***
	(0.045)	(0.049)	(0.050)	(0.039)
Pension	0.065	0.063	0.076*	0.025
	(0.038)	(0.043)	(0.043)	(0.028)
Unemployment benefits	0.011	-0.033	-0.050	0.018
	(0.060)	(0.054)	(0.054)	(0.045)
Social benefits	0.112**	0.069	0.059	0.041
	(0.045)	(0.057)	(0.059)	(0.047)
Investment	-0.345***	-0.429***	-0.435***	-0.414***
	(0.122)	(0.117)	(0.118)	(0.101)
Other	-0.026	-0.056	-0.087	-0.056
	(0.087)	(0.080)	(0.077)	(0.064)
Primary income source - missing	-0.082	-0.099	-0.075	-0.093*
	(0.067)	(0.061)	(0.064)	(0.052)
Has a child in the household	-0.068	-0.061	-0.061	-0.043
	(0.042)	(0.045)	(0.049)	(0.033)
Has a child in the household - missing	-0.078	-0.107	-0.109	-0.143
	(0.165)	(0.159)	(0.156)	(0.130)
Linguistic minority: cut-off $=30 \%$, dummy	-0.045	-0.034	-0.036	-0.047*
	(0.027)	(0.032)	(0.033)	(0.025)
Linguistic minority 30% - missing	0.063	-0.056	-0.121	-0.013
	(0.106)	(0.145)	(0.165)	(0.112)
Tenure: more than 20 years ago - reference category				
Tenure within last year	-0.240***	-0.309***	-0.312***	-0.204***
	(0.084)	(0.069)	(0.069)	(0.075)
Tenure: 1-5 years ago	-0.103***	$-0.142 * * *$	-0.136***	-0.132***
	(0.029)	(0.033)	(0.034)	(0.026)
Tenure: 6-10 years ago	-0.095*	-0.164***	-0.148***	-0.121***
	(0.047)	(0.052)	(0.053)	(0.032)
Tenure: 11-20 years ago	-0.082**	-0.097**	-0.101**	-0.101***
	(0.036)	(0.038)	(0.041)	(0.023)
Tenure missing	0.051	0.054	0.046	0.048
	(0.084)	(0.099)	(0.106)	(0.062)
Religion none	0.031	0.050*	0.054*	0.038
	(0.029)	(0.028)	(0.028)	(0.033)
Catholic	0.052	0.036	0.033	0.058*
	(0.031)	(0.029)	(0.029)	(0.033)
Orthodox	0.041	0.022	0.025	0.078**
	(0.038)	(0.052)	(0.053)	(0.036)
Other Christian	-0.008	-0.034	-0.021	0.041

	(0.089)	(0.079)	(0.084)	(0.062)
Jew	-0.029	-0.114	-0.090	-0.014
	(0.071)	(0.081)	(0.078)	(0.068)
Islam	0.008	0.141	0.206**	0.094**
	(0.051)	(0.090)	(0.080)	(0.041)
Other	-0.055	-0.025	-0.024	0.081
	(0.095)	(0.080)	(0.086)	(0.072)
Religion missing	-0.001	-0.006	-0.017	0.046
	(0.061)	(0.061)	(0.063)	(0.061)
Lives in metropolitan area	-0.001	-0.002	-0.008	0.014
	(0.021)	(0.023)	(0.024)	(0.017)
Lives in metropolitan area - missing	0.111	0.179	0.183	-0.135
	(0.180)	(0.195)	(0.198)	(0.099)
Wave two	-0.054	-0.071	-0.077*	-0.007
	(0.042)	(0.042)	(0.043)	(0.036)
Wave three	0.004	-0.014	-0.005	0.030
	(0.044)	(0.044)	(0.045)	(0.035)
Wave four	-0.001	-0.019	-0.024	-0.016
	(0.039)	(0.040)	(0.040)	(0.031)
Wave five	0.007	0.006	0.005	0.044
	(0.079)	(0.072)	(0.076)	(0.047)
Wave six	0.149***	0.129**	0.123**	0.141***
	(0.054)	(0.051)	(0.054)	(0.040)
Citizenship, dummy	-0.038	-0.042*	-0.041*	0.010
	(0.025)	(0.023)	(0.023)	(0.018)
Citizenship - missing	0.143	0.163	0.163	0.072
	(0.253)	(0.296)	(0.298)	(0.162)
Voted	-0.024	-0.035	-0.048**	-0.046**
	(0.018)	(0.022)	(0.023)	(0.019)
Voted - missing	0.040	0.052	0.043	0.006
	(0.084)	(0.091)	(0.092)	(0.062)
Religious attendance	0.020	0.025	0.029	0.020
	(0.020)	(0.018)	(0.019)	(0.016)
Religious attendance - missing	-0.047	-0.000	-0.007	-0.095
	(0.086)	(0.088)	(0.095)	(0.078)
Regions				
Reg_2	-0.444	-0.552	-0.500	-0.566
	(0.325)	(0.391)	(0.383)	(0.350)
Reg_3	0.452			
	(0.292)			
Reg_4	-0.651*	-0.708	-0.687	-0.780**
	(0.356)	(0.422)	(0.420)	(0.382)
Reg_ 5	-0.425	-0.606*	-0.572	-0.682*
	(0.286)	(0.345)	(0.341)	(0.373)
Reg_6	-0.584*	-0.516	-0.479	-0.490
	(0.319)	(0.391)	(0.391)	(0.364)
Reg_7	-0.049	-0.464	-0.456	-0.521
	(0.427)	(0.519)	(0.517)	(0.434)
Reg_8	-0.062	-0.216	-0.199	-0.249
	(0.305)	(0.377)	(0.375)	(0.344)
Reg_9	-0.513	-0.610	-0.615	-0.617
	(0.423)	(0.479)	(0.486)	(0.430)
Reg_10	-0.708**	-0.651*	-0.628	-0.637*
	(0.313)	(0.379)	(0.375)	(0.348)
Reg_11	-0.291			
	(0.296)			
Reg_12	-0.591	-0.770*	-0.740*	-0.642*

Reg_13
Reg_14
Reg 15
Reg_16
Reg_17
Reg_18
Reg_19
Reg_20
Reg_21
Reg_22
Reg_23
Reg_25
Reg_26
Reg_27
Reg_28
Reg_29
Reg_30
Reg_31
Reg_32

Reg_33
Reg_34
Reg_35
Reg_36
Reg_38
Reg_39
Reg_40
Reg_41
Reg_42

(0.354)	(0.395)	(0.390)	(0.381)
-0.246	-0.480	-0.412	-0.394
(0.308)	(0.384)	(0.378)	(0.357)
-0.738^{*}	-0.434	-0.422	$-1.014^{* *}$
(0.363)	(0.380)	(0.376)	(0.419)
$-1.351^{* * *}$	$-1.400^{* * *}$	$-1.323^{* *}$	$-1.123^{* *}$
(0.435)	(0.486)	(0.504)	(0.434)
-0.277	-0.549	-0.545	-0.523
(0.314)	(0.368)	(0.374)	(0.340)
-0.147	-0.190	-0.162	-0.196
(0.294)	(0.357)	(0.353)	(0.330)
$0.961^{* * *}$			0.630^{*}
(0.308)			(0.343)
-0.536	-0.641	-0.551	$-0.751^{* *}$
(0.332)	(0.391)	(0.388)	(0.347)
-0.279	-0.351	-0.298	-0.246
(0.300)	(0.360)	(0.354)	(0.298)
-0.470	-0.563	-0.553	-0.722^{*}
(0.363)	(0.433)	(0.434)	(0.390)
-0.671	-0.815	-0.592	-0.711
(0.581)	(0.582)	(0.564)	(0.475)
-0.263	-0.406	-0.446	-0.397
(0.310)	(0.385)	(0.388)	(0.347)
-0.321	-0.405	-0.340	-0.514
(0.384)	(0.439)	(0.474)	(0.380)
0.268	0.056	0.105	0.143
(0.260)	(0.317)	(0.308)	(0.268)
$-1.932 * *$	$-3.100^{* * *}$	$-3.059 * * *$	$-2.135 * * *$
(0.796)	(0.381)	(0.375)	(0.628)
-0.433	-0.293	-0.510	-0.710
(0.980)	(0.741)	(0.958)	(0.653)
-0.118	-0.260	-0.247	-0.274
(0.301)	(0.375)	(0.372)	(0.345)
-0.243	-0.339	-0.328	-0.362
(0.390)	(0.444)	(0.444)	(0.392)
0.037			-0.320
(0.319)	$-0.793 * *$	$-0.755^{*} *$	(0.352)
$-0.718 * *$	-0.663^{*}		
(0.324)	(0.391)	(0.389)	(0.361)
$-1.183 * *$	$-1.737 * * *$	$-1.710 * * *$	$-1.342^{* * *}$
(0.474)	(0.518)	(0.531)	(0.466)
-0.284	-0.519	-0.509	-0.433
(0.335)	(0.412)	(0.408)	(0.365)
-0.549	-0.570	-0.549	-0.806^{*}
(0.873)	(0.584)	(0.583)	(0.472)
0.118	0.090	0.035	0.094
(0.333)	(0.392)	(0.397)	(0.354)
-0.155	-0.180	-0.170	-0.139
(0.298)	(0.368)	(0.365)	(0.335)
-0.036	-0.240	-0.205	-0.199
(0.462)	(0.521)	(0.522)	(0.488)
$-0.776^{* *}$	$-1.020 * *$	$-1.025 * *$	$-0.969^{* * *}$
(0.325)	(0.400)	(0.399)	(0.351)
-0.861	-0.017	-0.016	-0.670
(0.747)	(0.392)	(0.391)	(0.579)
-0.193	-0.399	-0.376	-0.396
(0.303)	(0.371)	(0.368)	(0.339)

Reg_43
Reg_45
Reg_46
Reg_47
Reg_48
Reg_49
Reg_50
Reg_51
Reg_52
Reg_53
Reg_54
Reg_55
Reg_57
Reg_58
Reg_59
Reg_61
Reg_62
Reg_63
Reg_64
Reg_65
Reg_66
Reg_67
Reg_68
Reg_69
Reg_70
Reg_71
Reg_72
Reg_73
Reg_75

0.127	0.039	0.068	-0.026
(0.318)	(0.383)	(0.381)	(0.349)
0.099	-0.088	-0.049	-0.046
(0.414)	(0.434)	(0.429)	(0.431)
-0.897**	-0.964*	-0.945*	-1.139***
(0.431)	(0.528)	(0.526)	(0.407)
-0.880**	-0.977**	-0.994**	-1.052***
(0.336)	(0.410)	(0.404)	(0.355)
0.062	-0.131	-0.118	-0.091
(0.303)	(0.372)	(0.370)	(0.340)
-0.099	-0.182	-0.164	-0.286
(0.476)	(0.562)	(0.557)	(0.457)
0.574*	0.421	0.406	0.385
(0.313)	(0.374)	(0.372)	(0.340)
-0.515*	-0.788**	-0.769**	-0.665**
(0.298)	(0.318)	(0.307)	(0.280)
-0.328	-0.424	-0.384	-0.571
(0.341)	(0.417)	(0.418)	(0.366)
-1.008*	-1.246*	-1.240*	-1.363***
(0.565)	(0.640)	(0.636)	(0.472)
0.067	-0.097	-0.085	-0.087
(0.302)	(0.372)	(0.368)	(0.338)
-0.101	-0.085	-0.068	-0.190
(0.249)	(0.298)	(0.287)	(0.295)
-0.314	-0.477	-0.427	-0.448
(0.264)	(0.303)	(0.302)	(0.298)
-0.401	-0.381	-0.364	-0.682*
(0.337)	(0.415)	(0.409)	(0.365)
-0.457	-0.678	-0.639	-0.563
(0.436)	(0.490)	(0.496)	(0.444)
-0.138	0.052	0.035	-0.243
(0.317)	(0.418)	(0.416)	(0.354)
-0.095	-0.305	-0.249	-0.233
(0.296)	(0.369)	(0.363)	(0.296)
-0.621	-0.691	-0.653	-0.726*
(0.467)	(0.546)	(0.550)	(0.432)
-0.526	-0.398	-0.349	-0.396
(0.584)	(0.709)	(0.699)	(0.453)
1.124***	0.953**	0.939**	0.884**
(0.327)	(0.394)	(0.391)	(0.348)
-0.266	0.049	0.039	-0.060
(0.501)	(0.425)	(0.419)	(0.365)
-1.708***	-1.931***	-1.888***	-1.915***
(0.308)	(0.382)	(0.376)	(0.344)
-0.512	-0.565	-0.557	-0.642*
(0.342)	(0.453)	(0.452)	(0.371)
-0.749	-0.785	-0.770	-0.636
(0.714)	(1.040)	(1.038)	(0.650)
-0.328	-0.523	-0.521	-0.538
(0.331)	(0.407)	(0.407)	(0.360)
0.072	-0.286	-0.246	-0.143
(0.263)	(0.375)	(0.368)	(0.296)
-0.294	-0.482	-0.485	-0.370
(0.431)	(0.497)	(0.493)	(0.474)
-1.558***	-1.610***	-1.576***	-1.448***
(0.519)	(0.435)	(0.433)	(0.430)
-1.482***	$-1.721^{* * *}$	-1.670***	-1.648***

Reg_76
Reg_77
Reg_79
Reg_80
Reg_81
Reg_82
Reg_83
Reg_84
Reg_85
Reg_86
Reg_91
Reg_93
Reg_94
Reg_99
Reg_101
Reg_102
Reg_103
Reg_105
Reg_106

Reg_107
Reg_108
Reg_109
Reg_110
Reg_111
Reg_112
Reg_113
Reg_114
Reg_115

(0.297)	(0.372)	(0.364)	(0.338)
-0.174	-0.325	-0.304	-0.450
(0.312)	(0.388)	(0.383)	(0.349)
-1.586***	-1.513***	-1.664***	-1.491***
(0.466)	(0.493)	(0.493)	(0.444)
-0.479***	-0.705***	-0.678***	-0.532***
(0.127)	(0.185)	(0.186)	(0.174)
-0.251	-0.393	-0.371	-0.582*
(0.312)	(0.384)	(0.383)	(0.345)
-0.169	-0.283	-0.262	-0.989
(0.312)	(0.376)	(0.374)	(0.667)
-1.322***	-1.459***	-1.443***	-1.429***
(0.302)	(0.368)	(0.364)	(0.338)
-0.335	-0.460	-0.459	-0.517
(0.307)	(0.379)	(0.376)	(0.347)
-1.478**	-1.613***	-1.554***	-1.399***
(0.659)	(0.439)	(0.490)	(0.470)
-0.402	-1.203***	-1.150***	-1.250***
(0.569)	(0.383)	(0.380)	(0.343)
0.242	0.057	0.062	-0.013
(0.417)	(0.496)	(0.490)	(0.401)
0.063	0.214	0.216	-0.207
(0.323)	(0.405)	(0.404)	(0.409)
-0.308	-0.785*	-0.773	-0.796*
(0.745)	(0.443)	(0.463)	(0.406)
0.378	0.278	0.276	0.129
(0.302)	(0.364)	(0.359)	(0.319)
-0.338	-0.440	-0.415	-0.426
(0.317)	(0.388)	(0.386)	(0.349)
-0.601	-0.461	-0.476	-0.446
(0.396)	(0.425)	(0.425)	(0.425)
0.042	0.628	0.634	0.448
(0.467)	(0.502)	(0.510)	(0.463)
0.854***	0.101	0.819**	0.011
(0.311)	(0.653)	(0.366)	(0.605)
-0.966***	-1.019***	-1.037***	-1.127***
(0.300)	(0.372)	(0.369)	(0.337)
-0.486	-0.541	-0.494	-0.505
(0.312)	(0.372)	(0.370)	(0.338)
0.481	0.348	0.362	-0.021
(0.309)	(0.372)	(0.370)	(0.357)
-0.308	-0.388	-0.362	-0.405
(0.303)	(0.367)	(0.364)	(0.336)
-4.34e-06	-0.029	-0.051	-0.211
(0.328)	(0.406)	(0.406)	(0.349)
-0.240	-0.445	-0.409	-0.413
(0.350)	(0.424)	(0.422)	(0.385)
-0.266	-0.401	-0.399	-0.484
(0.321)	(0.390)	(0.387)	(0.346)
-0.882**	-1.043**	-1.029**	-0.960***
(0.333)	(0.395)	(0.397)	(0.349)
-0.060	-0.197	-0.181	-0.215
(0.309)	(0.382)	(0.380)	(0.340)
-0.037	-0.072	-0.067	-0.129
(0.311)	(0.373)	(0.373)	(0.336)
-0.327	-0.442	-0.422	-0.486
(0.339)	(0.412)	(0.408)	(0.358)

Reg_116	0.000	-0.042	-0.012	-0.177
	(0.298)	(0.363)	(0.360)	(0.331)
Reg_117	-0.541*	-0.592	-0.560	-0.558
	(0.307)	(0.374)	(0.371)	(0.341)
Reg_118	0.248	0.174	0.210	0.050
	(0.307)	(0.375)	(0.373)	(0.336)
Reg_119	-0.104	-0.189	-0.155	-0.079
	(0.303)	(0.373)	(0.367)	(0.338)
Reg_120	0.254	0.044	0.080	-0.085
	(0.299)	(0.355)	(0.353)	(0.351)
Reg_121	-0.230	-0.320	-0.319	-0.417
	(0.313)	(0.371)	(0.369)	(0.341)
Reg_122	0.083	0.077	0.069	-0.091
	(0.325)	(0.398)	(0.394)	(0.351)
Reg_123	-0.306	-0.381	-0.341	-0.216
	(0.335)	(0.394)	(0.395)	(0.354)
Reg_124	-0.057	-0.108	-0.133	-0.130
	(0.320)	(0.378)	(0.375)	(0.341)
Reg_125	-0.011	-0.172	-0.154	-0.158
	(0.312)	(0.377)	(0.374)	(0.338)
Reg_126	-0.373	-0.393	-0.354	-0.442
	(0.296)	(0.364)	(0.361)	(0.330)
Reg_127	-0.490	-0.602	-0.581	-0.685**
	(0.310)	(0.378)	(0.376)	(0.340)
Reg_128	-0.499	-0.633*	-0.635*	-0.765**
	(0.308)	(0.373)	(0.369)	(0.340)
Reg_129	-0.210	-0.377	-0.345	-0.316
	(0.301)	(0.365)	(0.363)	(0.334)
Reg_130	0.028	0.000	0.018	0.025
	(0.303)	(0.369)	(0.367)	(0.339)
Reg_131	0.023	-0.340	-0.275	-0.264
	(0.305)	(0.489)	(0.485)	(0.338)
Reg_132	-0.353	-0.481	-0.485	-0.495
	(0.312)	(0.377)	(0.373)	(0.346)
Reg_133	0.096	-0.062	-0.045	-0.028
	(0.309)	(0.374)	(0.371)	(0.339)
Reg_134	-0.125	-0.253	-0.275	-0.351
	(0.322)	(0.385)	(0.380)	(0.337)
Reg_135	0.213	-0.031	-0.077	-0.073
	(0.304)	(0.385)	(0.380)	(0.352)
Reg_136	0.018	-0.120	-0.101	-0.136
	(0.301)	(0.370)	(0.366)	(0.336)
Reg_24				0.107
				(0.406)
Reg_37				-0.534
				(0.345)
Reg_60				0.618*
				(0.343)
Reg_89				0.498
				(0.341)
Constant	-0.085	2.313***	2.034***	4.316***
	(0.909)	(0.659)	(0.655)	(0.576)
Observations R-squared	12024	11313	10783	18471
	0.138	0.152	0.152	0.133
	errors in ${ }^{* *} \mathrm{p}<0.05$	$\begin{aligned} & \text { theses } \\ & 0.1 \end{aligned}$		

SE	$\begin{gathered} 0.054 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.069) \end{gathered}$	$\begin{aligned} & 0.095^{*} \\ & (0.054) \end{aligned}$	$\begin{gathered} 0.098 \\ (0.062) \end{gathered}$	$\begin{aligned} & 0.100^{*} \\ & (0.053) \end{aligned}$	$\begin{gathered} 0.101 \\ (0.062) \end{gathered}$	$\begin{gathered} 0.040 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.051 \\ (0.066) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.066) \end{gathered}$
SI	$\begin{gathered} 0.533 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} 0.518^{* * *} \\ (0.062) \end{gathered}$	$\begin{gathered} 0.512 * * * \\ (0.054) \end{gathered}$	$\begin{gathered} 0.494 * * * \\ (0.062) \end{gathered}$	$\begin{gathered} 0.527 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} 0.506^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.547 * * * \\ (0.054) \end{gathered}$	$\begin{gathered} 0.531^{* * *} \\ (0.064) \end{gathered}$	$\begin{gathered} 0.585 * * * \\ (0.053) \end{gathered}$	$\begin{gathered} 0.564^{* * *} \\ (0.062) \end{gathered}$
SK	$\begin{gathered} 0.379^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} 0.477^{* * *} \\ (0.072) \end{gathered}$	$\begin{gathered} 0.305^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} 0.395^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 0.306^{* * *} \\ (0.043) \end{gathered}$	$\begin{gathered} 0.395 * * * \\ (0.072) \end{gathered}$	$\begin{gathered} 0.405^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} 0.500^{* * *} \\ (0.074) \end{gathered}$	$\begin{gathered} 0.421^{* * *} \\ (0.043) \end{gathered}$	$\begin{gathered} 0.515^{* * *} \\ (0.071) \end{gathered}$
TR	$\begin{gathered} 0.641^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.701 * * * \\ (0.068) \end{gathered}$	$\begin{gathered} 0.612 * * * \\ (0.059) \end{gathered}$	$\begin{gathered} 0.665^{* * *} \\ (0.071) \end{gathered}$	$\begin{gathered} 0.617 * * * \\ (0.059) \end{gathered}$	$\begin{gathered} 0.663 * * * \\ (0.069) \end{gathered}$	$\begin{gathered} 0.690^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.753^{* * *} \\ (0.070) \end{gathered}$	$\begin{gathered} 0.713 * * * \\ (0.058) \end{gathered}$	$\begin{gathered} 0.767 * * * \\ (0.069) \end{gathered}$
UA	$\begin{gathered} 0.552 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.541 * * * \\ (0.045) \end{gathered}$	$\begin{gathered} 0.497 * * * \\ (0.033) \end{gathered}$	$\begin{gathered} 0.486 * * * \\ (0.043) \end{gathered}$	$\begin{gathered} 0.486 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.472 * * * \\ (0.039) \end{gathered}$	$\begin{gathered} 0.568 * * * \\ (0.035) \end{gathered}$	$\begin{gathered} 0.555 * * * \\ (0.046) \end{gathered}$	$\begin{gathered} 0.578 * * * \\ (0.034) \end{gathered}$	$\begin{gathered} 0.561 * * * \\ (0.043) \end{gathered}$
Constant	$\begin{gathered} 2.697 * * * \\ (0.297) \end{gathered}$	$\begin{gathered} 2.519 * * * \\ (0.325) \end{gathered}$	$\begin{gathered} 2.963^{* * *} \\ (0.274) \end{gathered}$	$\begin{gathered} 2.708 * * * \\ (0.321) \end{gathered}$	$\begin{gathered} 2.928 * * * \\ (0.275) \end{gathered}$	$\begin{gathered} 2.671 * * * \\ (0.320) \end{gathered}$	$\begin{gathered} 2.653 * * * \\ (0.281) \end{gathered}$	$\begin{gathered} 2.475 * * * \\ (0.320) \end{gathered}$	$\begin{gathered} 2.577 * * * \\ (0.278) \end{gathered}$	$\begin{gathered} 2.404^{* * *} \\ (0.319) \end{gathered}$
Observations	12924	12083	12235	11454	12229	11450	12229	11449	12233	11454
R -squared	0.069	0.083	0.078	0.091	0.078	0.091	0.079	0.093	0.080	0.093

Table A3.13-2. Baseline, but fewer controls. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	$\begin{gathered} \text { (1) } \\ \text { ESS } \\ \text { migrants } \end{gathered}$	$\begin{gathered} \hline(2) \\ \text { ISSP } \\ \text { migrants } \end{gathered}$	(3) ESSM Conservation	(4) ISSPM Conservation	$\begin{gathered} \text { (5) } \\ \text { ESSM } \\ \text { Openness } \end{gathered}$	(6) ISSPM Openness	(7) ESSM Self-enhancement	(8) ISSPM Self-enhancement	(9) ESSM Self-transcendence	(10) ISSPM Self-transcendence
Birth country redistribution preferences (ESS)	0.357***		$0.311^{* * *}$		0.314***		$0.321^{* * *}$		$0.327^{* * *}$	
Reduce differences between rich and poor (ISSP)	(0.061)	0.213***	(0.059)	0.170**	(0.059)	0.171**	(0.063)	0.192***	(0.064)	0.207***
Conservation		(0.071)	$\begin{gathered} 0.076 * * * \\ (0.024) \end{gathered}$	$\begin{gathered} (0.071) \\ 0.057 * * \\ (0.024) \end{gathered}$		(0.070)		(0.068)		(0.067)

Openness					$\begin{gathered} -0.096^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} -0.078 * * * \\ (0.023) \end{gathered}$				
Selfenhancement							$-0.096 * * *$	-0.092***		
							(0.019)	(0.019)		
Selftranscendence									$0.163^{* * *}$	0.152***
									(0.016)	(0.016)
Birth country	0.228***	0.006	0.226***	0.008*	$0.231^{* * *}$	0.008*	$0.209^{* * *}$	0.007*	0.204***	0.006
log GDP per capita										
	(0.032)	(0.004)	(0.032)	(0.004)	(0.033)	(0.004)	(0.033)	(0.004)	(0.033)	(0.004)
Age	0.004***	0.004***	0.003***	0.003***	0.003***	0.003***	0.003***	0.003***	0.003***	0.003***
	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)
Female	0.089***	0.076***	0.083***	0.073***	0.082***	0.072***	0.069***	0.060**	0.062***	0.055**
	(0.020)	(0.021)	(0.021)	(0.022)	(0.020)	(0.021)	(0.021)	(0.022)	(0.019)	(0.021)
Own low education	0.056*	0.070**	0.047	0.062*	0.046	0.060*	0.056*	0.068*	0.057*	0.067*
	(0.030)	(0.032)	(0.031)	(0.034)	(0.031)	(0.034)	(0.032)	(0.034)	(0.032)	(0.034)
Own high education	-0.070***	-0.086***	-0.053***	-0.071***	-0.057***	-0.075***	-0.057***	-0.072***	-0.066***	-0.083***
	(0.017)	(0.019)	(0.018)	(0.019)	(0.018)	(0.019)	(0.017)	(0.018)	(0.017)	(0.018)
Missing dummy	-0.064	-0.191*	-0.100	-0.215	-0.107	-0.229	-0.121	-0.229	-0.113	-0.220
	(0.118)	(0.111)	(0.145)	(0.144)	(0.139)	(0.136)	(0.140)	(0.136)	(0.133)	(0.131)
Partner low education	-0.017	-0.031	-0.031	-0.040	-0.033	-0.041	-0.021	-0.032	-0.024	-0.034
	(0.027)	(0.027)	(0.025)	(0.025)	(0.025)	(0.025)	(0.026)	(0.026)	(0.025)	(0.024)
Partner high education	-0.069***	-0.054***	-0.072***	-0.057***	-0.074***	-0.056***	-0.072***	-0.057***	-0.077***	-0.062***
	(0.018)	(0.019)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.018)	(0.017)	(0.017)
Missing	-0.022	-0.027	-0.031	-0.031	-0.032	-0.031	-0.026	-0.028	-0.034	-0.033
dummy	(0.025)	(0.026)	(0.025)	(0.026)	(0.025)	(0.026)	(0.026)	(0.027)	(0.025)	(0.026)
Marital status (arried is a	rence categ								
Divorced or separated	0.018	0.039	0.031	0.050	0.036	0.053	0.017	0.038	0.025	0.043
	(0.053)	(0.056)	(0.057)	(0.061)	(0.056)	(0.060)	(0.056)	(0.060)	(0.057)	(0.060)
Widowed	0.003	0.037	0.013	0.043	0.012	0.040	0.011	0.040	0.017	0.044
	(0.038)	(0.037)	(0.042)	(0.045)	(0.043)	(0.046)	(0.040)	(0.042)	(0.041)	(0.043)

Never married	$\begin{gathered} 0.084 * * \\ (0.031) \end{gathered}$	$\begin{gathered} 0.101 * * * \\ (0.033) \end{gathered}$	$\begin{gathered} 0.093^{* * *} \\ (0.032) \end{gathered}$	$\begin{gathered} 0.106 * * * \\ (0.033) \end{gathered}$	$\begin{gathered} 0.096 * * * \\ (0.031) \end{gathered}$	$\begin{gathered} 0.109 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 0.078 * * \\ (0.034) \end{gathered}$	$\begin{gathered} 0.094 * * \\ (0.035) \end{gathered}$	$\begin{gathered} 0.080^{* *} \\ (0.035) \end{gathered}$	$\begin{gathered} 0.093 * * \\ (0.035) \end{gathered}$
Marital status	0.016	0.057	0.025	0.060	0.028	0.062	0.016	0.051	0.013	0.045
- missing	(0.036)	(0.062)	(0.038)	(0.061)	(0.036)	(0.060)	(0.040)	(0.064)	(0.039)	(0.063)
Feeling about household's income (coping is a reference category)										
Living comfortably on present income	-0.205***	-0.196***	$-0.207^{* * *}$	-0.202***	$-0.206^{* * *}$	-0.201***	$-0.208^{* * *}$	$-0.202^{* * *}$	$-0.210^{* * *}$	-0.205***
	(0.028)	(0.028)	(0.030)	(0.029)	(0.030)	(0.030)	(0.029)	(0.029)	(0.029)	(0.029)
Difficult on present income	0.131***	0.153***	0.126***	$0.147^{* * *}$	0.123***	$0.143^{* * *}$	0.130***	0.151***	0.126***	0.146***
	(0.015)	(0.021)	(0.016)	(0.022)	(0.017)	(0.022)	(0.016)	(0.021)	(0.016)	(0.022)
Very difficult on present income	0.232***	0.249***	0.224***	0.251***	0.224***	0.249***	$0.231^{* * *}$	0.256***	0.230***	0.252***
	(0.039)	(0.050)	(0.040)	(0.053)	(0.040)	(0.053)	(0.039)	(0.052)	(0.037)	(0.050)
Feeling about household's income missing	0.026	-0.019	0.019	-0.048	0.024	-0.047	0.032	-0.040	0.039	-0.034
	(0.087)	(0.093)	(0.091)	(0.100)	(0.084)	(0.090)	(0.086)	(0.094)	(0.087)	(0.094)
Primary income source (wages is a reference category)										
Self-employed	$\begin{gathered} -0.180^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} -0.177^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} -0.155 * * * \\ (0.043) \end{gathered}$	$\begin{gathered} -0.152 * * * \\ (0.049) \end{gathered}$	$\begin{gathered} -0.152 * * * \\ (0.043) \end{gathered}$	$\begin{gathered} -0.150^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} -0.159 * * * \\ (0.045) \end{gathered}$	$\begin{gathered} -0.157 * * * \\ (0.050) \end{gathered}$	$\begin{gathered} -0.160^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} -0.161^{* * *} \\ (0.049) \end{gathered}$
Pension	$\begin{aligned} & 0.062 * * \\ & (0.027) \end{aligned}$	$\begin{gathered} 0.056 * * \\ (0.027) \end{gathered}$	$\begin{gathered} 0.068^{* *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.059 * * \\ (0.026) \end{gathered}$	$\begin{gathered} 0.068^{* *} \\ (0.026) \end{gathered}$	$\begin{aligned} & 0.058 * * \\ & (0.027) \end{aligned}$	$\begin{gathered} 0.063 * * \\ (0.025) \end{gathered}$	$\begin{aligned} & 0.053 * \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.067 * * \\ & (0.026) \end{aligned}$	$\begin{gathered} 0.057 * * \\ (0.027) \end{gathered}$
Unemployme nt benefits	-0.012	-0.049	-0.003	-0.036	-0.001	-0.034	0.004	-0.031	0.009	-0.025
	(0.055)	(0.052)	(0.053)	(0.050)	(0.052)	(0.050)	(0.052)	(0.050)	(0.051)	(0.049)
Social benefits	$\begin{gathered} 0.086^{* *} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.099^{* *} \\ (0.036) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.102 * * * \\ (0.036) \end{gathered}$	$\begin{gathered} 0.074 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.094 * * \\ (0.035) \end{gathered}$	$\begin{gathered} 0.061 \\ (0.043) \end{gathered}$	$\begin{aligned} & 0.098^{* *} \\ & (0.037) \end{aligned}$	$\begin{gathered} 0.069 \\ (0.044) \end{gathered}$
Investment	$\begin{gathered} -0.322^{* * *} \\ (0.113) \end{gathered}$	$\begin{gathered} -0.462^{* * *} \\ (0.106) \end{gathered}$	$\begin{gathered} -0.276^{* *} \\ (0.115) \end{gathered}$	$\begin{gathered} -0.412^{* * *} \\ (0.109) \end{gathered}$	$\begin{gathered} -0.280^{* *} \\ (0.114) \end{gathered}$	$\begin{gathered} -0.409^{* * *} \\ (0.109) \end{gathered}$	$\begin{gathered} -0.288^{* *} \\ (0.114) \end{gathered}$	$\begin{gathered} -0.428^{* * *} \\ (0.108) \end{gathered}$	$\begin{gathered} -0.297^{* *} \\ (0.114) \end{gathered}$	$\begin{gathered} -0.424^{* * *} \\ (0.107) \end{gathered}$
Other	$\begin{gathered} -0.161^{* *} \\ (0.061) \end{gathered}$	$\begin{gathered} -0.147^{* *} \\ (0.062) \end{gathered}$	$\begin{gathered} -0.143^{* *} \\ (0.064) \end{gathered}$	$\begin{gathered} -0.131^{* *} \\ (0.063) \end{gathered}$	$\begin{gathered} -0.137^{* *} \\ (0.065) \end{gathered}$	$\begin{aligned} & -0.124^{*} \\ & (0.063) \end{aligned}$	$\begin{gathered} -0.157^{* *} \\ (0.063) \end{gathered}$	$\begin{gathered} -0.144 * * \\ (0.062) \end{gathered}$	$\begin{gathered} -0.153 * * \\ (0.064) \end{gathered}$	$\begin{gathered} -0.136^{* *} \\ (0.063) \end{gathered}$
Primary income source	-0.092*	-0.095**	-0.058	-0.077*	-0.060	-0.077*	-0.064	-0.082*	-0.059	-0.072

	No	İO	$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{0}{\infty}$		$\begin{aligned} & \text { 등 } \\ & \text { OO } \end{aligned}$			

(0.024)
0.035

(0.022)
0.014
(0.146)
-0.058^{*}
(0.034)

(0.028)
-0.028
(0.086)

(0.045)
$0.063^{* *}$

0

た

(0.036)
-0.009
(0.078)
-0.026
등
$\stackrel{\pi}{n}$
둥 승

\overparen{G}

$\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$
정엉
∞
0
0
0
0
0
(0.136)
-0.044
(0.038)
-0.031

(0.072)
-0.013
તิ
B.
é

	$\begin{aligned} & \mathscr{O} \\ & \text { OiO } \\ & 0 \end{aligned}$	$\begin{aligned} & \AA 0_{0}^{\infty} \\ & 0 . \end{aligned}$	$\begin{aligned} & \partial \hat{n} \\ & \Rightarrow 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { oub } \\ & 000 \end{aligned}$	$\begin{aligned} & \overparen{0}-1 \\ & 0 . \\ & 0.0 \end{aligned}$	̇ㅡㅇ	
									e, eo e

- missing
Log household size Paid work last
week Paid work missing Has a child in
the household Has a child in
the household - missing

[^19] 12 months Ever missing
Lives in metropolitan Lives in metropolitan area - missing Wave two Wave three Wave four

	(0.040)	(0.042)	(0.042)	(0.044)	(0.041)	(0.044)	(0.042)	(0.044)	(0.041)	(0.044)
Wave five	0.053	0.039	0.070	0.059	0.070	0.056	0.076	0.067	0.074	0.060
	(0.056)	(0.051)	(0.056)	(0.051)	(0.056)	(0.051)	(0.056)	(0.051)	(0.056)	(0.052)
Wave six	0.179***	0.154***	0.194***	0.167***	0.193***	0.164***	0.200***	0.176***	0.199***	0.170***
	(0.040)	(0.038)	(0.037)	(0.036)	(0.037)	(0.036)	(0.038)	(0.037)	(0.038)	(0.037)
$D E$ is a reference category										
AT	0.209***	0.248***	$0.231^{* * *}$	0.260***	0.224***	0.255***	0.237***	0.272***	0.218***	0.250***
	(0.060)	(0.066)	(0.062)	(0.068)	(0.062)	(0.068)	(0.062)	(0.068)	(0.062)	(0.068)
BE	-0.040	0.073	-0.039	0.068	-0.031	0.077	-0.044	0.060	-0.022	0.081
	(0.070)	(0.076)	(0.069)	(0.075)	(0.068)	(0.073)	(0.069)	(0.075)	(0.068)	(0.073)
BG	0.535***	0.464***	0.519***	0.451***	0.524***	0.458***	0.539***	0.461***	0.579***	$0.496^{* * *}$
	(0.072)	(0.062)	(0.067)	(0.061)	(0.064)	(0.061)	(0.077)	(0.066)	(0.078)	(0.065)
CH	-0.033	0.019	-0.024	0.019	-0.027	0.018	-0.033	0.009	-0.035	0.008
	(0.058)	(0.057)	(0.059)	(0.057)	(0.060)	(0.057)	(0.059)	(0.057)	(0.061)	(0.058)
CY	0.283***	0.435***	0.284***	0.416***	0.291***	0.422***	0.297***	$0.431^{* * *}$	$0.321^{* * *}$	0.458***
	(0.069)	(0.075)	(0.063)	(0.075)	(0.061)	(0.072)	(0.065)	(0.075)	(0.064)	(0.072)
CZ	0.086	0.005	0.068	-0.002	0.074	-0.001	0.082	0.006	0.120**	0.039
	(0.064)	(0.064)	(0.060)	(0.059)	(0.057)	(0.054)	(0.056)	(0.054)	(0.057)	(0.055)
DK	-0.489***	-0.523***	-0.471***	-0.511***	-0.473***	$-0.507^{* * *}$	$-0.501^{* * *}$	-0.535***	-0.514***	-0.542***
	(0.118)	(0.111)	(0.117)	(0.109)	(0.117)	(0.109)	(0.121)	(0.115)	(0.119)	(0.111)
EE	$0.361 * * *$	0.320***	0.344***	0.305***	0.341***	0.299***	0.368***	0.329***	0.385***	0.344***
	(0.033)	(0.037)	(0.033)	(0.035)	(0.034)	(0.034)	(0.033)	(0.035)	(0.035)	(0.035)
ES	0.323***	0.397***	0.317***	0.389***	0.322***	0.395***	0.300***	0.367***	0.314***	0.382***
	(0.059)	(0.051)	(0.060)	(0.054)	(0.058)	(0.052)	(0.059)	(0.052)	(0.059)	(0.052)
FI	0.059	0.078	0.039	0.069	0.046	0.073	0.016	0.046	0.050	0.078
	(0.136)	(0.181)	(0.137)	(0.183)	(0.140)	(0.186)	(0.142)	(0.187)	(0.139)	(0.184)
FR	0.364***	0.437***	0.363***	0.431 ***	0.372***	$0.437 * * *$	0.336***	0.400***	0.341***	0.402***
	(0.057)	(0.058)	(0.060)	(0.058)	(0.058)	(0.057)	(0.059)	(0.058)	(0.059)	(0.058)
GB	-0.175***	-0.108**	-0.185***	-0.125**	-0.183***	-0.125**	-0.180***	-0.124**	-0.171***	-0.122**
	(0.051)	(0.048)	(0.049)	(0.051)	(0.048)	(0.051)	(0.049)	(0.052)	(0.049)	(0.052)
GR	0.607***	0.650***	0.592***	0.629***	0.592***	0.630***	0.623***	0.660***	0.649***	0.689***
	(0.047)	(0.059)	(0.044)	(0.058)	(0.043)	(0.056)	(0.045)	(0.058)	(0.047)	(0.060)
HR	0.311***	0.399***	0.357***	0.427***	0.341***	0.415***	0.387***	0.448***	0.375***	0.435***
	(0.080)	(0.079)	(0.101)	(0.094)	(0.098)	(0.093)	(0.099)	(0.095)	(0.091)	(0.087)
HU	0.583***	0.504***	0.601***	0.511***	0.605***	0.511***	0.620***	0.534***	0.648***	0.563***
	(0.093)	(0.054)	(0.099)	(0.048)	(0.103)	(0.048)	(0.091)	(0.047)	(0.091)	(0.051)
IE	$0.136^{* * *}$	$0.151 * * *$	0.122**	$0.133 * * *$	0.122**	0.133***	0.133**	$0.141 * * *$	0.141**	0.148***
	(0.047)	(0.046)	(0.050)	(0.048)	(0.048)	(0.047)	(0.052)	(0.051)	(0.051)	(0.050)
IL	0.330***	0.360***	0.338***	0.362***	0.334***	0.358***	0.376***	0.402***	0.379***	0.403***
	(0.047)	(0.073)	(0.056)	(0.075)	(0.056)	(0.075)	(0.059)	(0.077)	(0.055)	(0.072)

$$
\begin{gathered}
0.170 \\
(0.109) \\
0.507 * * * \\
(0.140) \\
0.289^{* * *} \\
(0.038) \\
-0.003 \\
(0.072) \\
-0.137 * \\
(0.072) \\
-0.126^{*} \\
(0.068) \\
0.092 \\
(0.068) \\
0.559 * * * \\
(0.053) \\
0.180 \\
(0.313) \\
0.132 * * * \\
(0.044) \\
0.482 * * * \\
(0.047) \\
0.216 * * * \\
(0.055) \\
0.665 * * * \\
(0.095) \\
0.326^{* * *} \\
(0.037) \\
2.775 * * * \\
(0.256) \\
\\
11443 \\
0.126
\end{gathered}
$$

$$
\begin{gathered}
0.082 \\
(0.098) \\
0.427 * * \\
(0.166) \\
0.422^{* * *} \\
(0.077) \\
-0.120 \\
(0.087) \\
-0.167 * * * \\
(0.052) \\
-0.140 \\
(0.086) \\
0.198 * * * \\
(0.055) \\
0.454 * * * \\
(0.055) \\
0.448 * * * \\
(0.054) \\
0.045 \\
(0.040) \\
0.522 * * * \\
(0.055) \\
0.280 * * * \\
(0.053) \\
0.716 * * * \\
(0.073) \\
0.416 * * * \\
(0.037) \\
-0.025 \\
(0.514) \\
\\
12222 \\
0.117
\end{gathered}
$$

$$
\begin{gathered}
0.115 \\
(0.109) \\
0.564^{* * *} \\
(0.140) \\
0.373^{* * *} \\
(0.041) \\
-0.001 \\
(0.070) \\
-0.134^{*} \\
(0.071) \\
-0.128^{*} \\
(0.069) \\
0.161 * * \\
(0.071) \\
0.581 * * * \\
(0.055) \\
0.259 \\
(0.319) \\
0.095 * * \\
(0.045) \\
0.526^{* * *} \\
(0.052) \\
0.294^{* * *} \\
(0.055) \\
0.739^{* * *} \\
(0.093) \\
0.380^{* * *} \\
(0.037) \\
2.590^{* * *} \\
(0.245) \\
11447 \\
\hline
\end{gathered}
$$

』 ヨ ヨ ヨ ヨ ヨ ヨ
Table A3.14-3. Baseline. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1) ESS migrants	(2) ISSP migrants	(3) ESSM Conservation	(4) ISSPM Conser- vation	(5) ESSM Openness	(6) ISSPM Openness	(7) ESSM Self-enhancement	(8) ISSPM Self-enhancement	(9) ESSM Self-transcendence	$\begin{gathered} \hline(10) \\ \text { ISSPM } \end{gathered}$ Self-transcendence
Birth country redistribution preferences (ESS)	0.344***		0.305***		0.307***		0.309***		0.313***	
	(0.061)		(0.062)		(0.062)		(0.064)		(0.065)	
Reduce differences between rich and poor (ISSP)		0.235***		0.199***		0.200***		0.213***		0.224***
Conservation		(0.069)	$\begin{gathered} 0.077 * * * \\ (0.024) \end{gathered}$	$\begin{gathered} (0.071) \\ 0.061^{* *} \\ (0.024) \end{gathered}$		(0.071)		(0.071)		(0.070)
Openness					$\begin{gathered} -0.101^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} -0.086^{* * *} \\ (0.023) \end{gathered}$				
Selfenhancement							-0.091***	$-0.086^{* * *}$		
Selftranscendence							(0.019)	(0.018)	0.163***	0.149***
Birth country	0.198***	0.005	0.194***	0.007*	0.199***	0.007*	0.182***	0.006	$\begin{gathered} (0.016) \\ 0.177^{* * *} \end{gathered}$	$\begin{gathered} (0.016) \\ 0.006 \end{gathered}$
log GDP per capita										
Age	$\begin{gathered} (0.031) \\ 0.007^{*} \\ (0.004) \end{gathered}$	$\begin{gathered} (0.003) \\ 0.005 \\ (0.004) \end{gathered}$	$\begin{gathered} (0.031) \\ 0.006 \\ (0.004) \end{gathered}$	$\begin{gathered} (0.004) \\ 0.004 \\ (0.004) \end{gathered}$	$\begin{gathered} (0.032) \\ 0.005 \\ (0.004) \end{gathered}$	$\begin{gathered} (0.004) \\ 0.004 \\ (0.003) \end{gathered}$	$\begin{gathered} (0.032) \\ 0.005 \\ (0.003) \end{gathered}$	$\begin{gathered} (0.004) \\ 0.003 \\ (0.003) \end{gathered}$	$\begin{gathered} (0.031) \\ 0.006 \\ (0.003) \end{gathered}$	$\begin{gathered} (0.004) \\ 0.003 \\ (0.003) \end{gathered}$
$\mathrm{Age}^{2} / 100$	$\begin{aligned} & -0.004 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	$\begin{gathered} -0.002 \\ (0.003) \end{gathered}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.002) \end{aligned}$
Female	$\begin{gathered} 0.084 * * * \\ (0.021) \end{gathered}$	$\begin{gathered} 0.074 * * * \\ (0.021) \end{gathered}$	$\begin{gathered} 0.080^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.071^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.079 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} 0.070 * * * \\ (0.021) \end{gathered}$	$\begin{gathered} 0.066 * * * \\ (0.022) \end{gathered}$	$\begin{gathered} 0.059 * * \\ (0.023) \end{gathered}$	$\begin{gathered} 0.058^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} 0.054 * * \\ (0.021) \end{gathered}$
Own education	0.030	0.054	0.012	0.040	0.005	0.034	0.023	0.049	0.021	0.045

(0.055)
$0.078^{* *}$

(0.031)
0.079

(0.051)
$-0.094^{* * *}$

(0.017)
-0.212
(0.135)
-0.030
(0.025)
$-0.054^{* * *}$

(0.016)
0.012
(0.066)
0.041
(0.063)
0.047
(0.044)
$0.106^{* * *}$
(0.034)
0.038
(0.062)
$-0.202 * * *$

primary
Own education sec0
Own education sec2
Own education ter
Own education mis
Partner low education
Partner high education
Missing dummy
Marital status
Divorced or separated
Widowed
Never married
Marital status - missing
Feeling about Living comfortably on present

(0.029)
$0.148^{* * *}$
（0．022）
$0.251^{* * *}$

(0.053)
-0.029

(0.094)
-0.017

(0.129)
0.115

(0.189)
-0.037

(0.070)
0.022
(0.020)
-0.125
(0.176)
0.042
(0.043)
$0.337 * * *$
(0.113)
$0.064 * *$
(0.030)
太 （0．030）

$\begin{array}{ll}n & \overparen{0} 0 \\ 0 & \frac{\infty}{0} \\ 0 & 0 \\ 0 & i\end{array}$

（0．020）
(0.162)
0.038
(0.039)
0.151
气

$\begin{array}{ll}1 & \hat{O} \\ 0 & 0 \\ 0 & 0 \\ 0 & i\end{array}$
(0.066)
0.019
(0.020)
-0.126 (0.160)
0.044
(0.038)
0.159
(0.120)
$0.059 * *$
(0.088)
0.019

(0.122)
0.052 $\stackrel{n}{\circ}$

－
(0.070)
0.020

(0.020)
-0.133

(0.172)
0.047

(0.042)
$0.342^{* * *}$
ヨ

 （0．030） $\stackrel{\text {＊}}{\frac{*}{*}}$ (0.023)
$0.248^{* * *}$
${ }^{(0.055)}$
O $\begin{array}{ll}\text { N } \\ 0 & \text { In } \\ 0 & 3 \\ 0 & 0\end{array}$
$\underset{i}{6}$

En
응
(0.159)
0.048
た

층

（0．055）
$\begin{array}{cc}\hat{0} & \frac{\partial}{0} \\ i & \frac{i}{6}\end{array}$
$\varepsilon Z I^{\circ} 0$
$\left(0 \varepsilon I^{\circ} 0\right)$

$\pm 10^{\circ} 0^{-}$
$\left(10 I^{\circ} 0\right)$

$$
\begin{aligned}
& \text { income } \\
& \text { Difficult }
\end{aligned}
$$

(0.069)
0.022

(0.020)
-0.134
(0.174)
0.041
(0.043)
$0.330^{* * *}$
$\stackrel{\pi}{3}$
$=$
$=$
$\stackrel{*}{*}$
$\stackrel{\circ}{0}$
0
0
（0．041）
0.015

(0.125)
0.051
(0.183)
-0.013
(0.066)
0.016
（0．020）
(0.161)
0.044
(0.038)
0.162
$\stackrel{\curvearrowleft}{3}$
菤 ${ }^{(0.028)}$太
＊＊＊8tで0
（0．052）
－0．015
$\stackrel{\overparen{ }}{\stackrel{\rightharpoonup}{6}}$
$\stackrel{\square}{0}$

0

$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$
\vdots
（0．066）
0.012
（0．018）
웅
0.035
（0．046）
$\frac{\hat{2}}{0}$ $*$
0
0
0
0
0
$\stackrel{2}{0} \stackrel{*}{*}$
（0．039）
웅 (0.087)
0.081

(0.124)
-0.028
－0．028
(0.180)
0.012
（0．063） 0.007
(0.018)
-0.101
$\frac{\overparen{\Im}}{\underset{G}{G}}$
0.035
Э
O．
$\stackrel{*}{2}$ Paid work last
week
Paid work－
missing
Partner has a
job
Partner has a
job－missing house
size
Log
house size ${ }^{2}$ Log household N
Paid work last

䔍
0
0
0
0 on p Feeling about
household＇s income missing
Log household .$\stackrel{N}{v}$
 household

week - partner
Paid work
partner
missing
Ever
unemployed
for more than
12 months
Ever
unemployed -
missing
Primary income
Self-
employed
Pension
Unemployme
nt benefits
Social
benefits
Investment
Other
Primary
income source

- missing
Has a child in
the household
Has a child in
the household

$$
-\operatorname{missing}
$$

Linguistic minority: cutoff $=30 \%$, dummy Linguistic
minority 30% - missing Tenure: more than
 last year Tenure: Tenure: 6-10 years ago Tenure: 11-20 years ago

Tenure
missing

Religion none
Catholic
Orthodox
Other
Christian
Jew
Islam

$$
\begin{gathered}
(0.200) \\
-0.017 \\
\\
\\
(0.031) \\
-0.006 \\
\\
(0.139) \\
\\
-0.251 * * * \\
\\
(0.064) \\
-0.124^{* * *} \\
\\
(0.030) \\
-0.140^{* * *} \\
\\
(0.041) \\
-0.104^{* * *} \\
\\
(0.030) \\
0.102 \\
\\
(0.091) \\
-0.000 \\
(0.061) \\
0.057^{*} \\
(0.033) \\
0.066^{*} \\
(0.037) \\
0.030 \\
\\
(0.047) \\
-0.035 \\
(0.077) \\
-0.080 \\
(0.109)
\end{gathered}
$$

Other	0.059	0.213**	0.057	0.214*	0.058	0.218*	0.062	0.224*	0.060	0.240*
	(0.048)	(0.102)	(0.048)	(0.120)	(0.048)	(0.118)	(0.049)	(0.121)	(0.049)	(0.121)
Religion missing	-0.053	-0.021	-0.039	-0.020	-0.041	-0.020	-0.066	-0.043	-0.084	-0.054
	(0.088)	(0.069)	(0.093)	(0.075)	(0.093)	(0.075)	(0.095)	(0.075)	(0.099)	(0.077)
Lives inmetropolitanarea	-0.015	-0.011	-0.022	-0.020	-0.023	-0.021	-0.020	-0.017	-0.020	-0.019
	(0.021)	(0.022)	(0.021)	(0.022)	(0.021)	(0.022)	(0.020)	(0.022)	(0.020)	(0.022)
$\begin{aligned} & \text { Lives in } \\ & \text { metropolitan } \\ & \text { area - missing } \end{aligned}$	0.103	0.231	-0.060	0.108	-0.061	0.107	-0.072	0.102	-0.076	0.104
	(0.191)	(0.199)	(0.148)	(0.173)	(0.148)	(0.172)	(0.150)	(0.174)	(0.151)	(0.175)
Wave two	-0.013	-0.031	0.016	-0.002	0.017	-0.003	0.018	0.002	0.019	-0.000
	(0.037)	(0.037)	(0.036)	(0.037)	(0.036)	(0.037)	(0.036)	(0.037)	(0.036)	(0.038)
Wave three	0.050	0.038	0.062	0.053	0.058	0.049	0.066	0.058	0.065	0.052
	(0.044)	(0.045)	(0.042)	(0.045)	(0.042)	(0.044)	(0.043)	(0.045)	(0.043)	(0.045)
Wave four	0.032	0.021	0.055	0.045	0.053	0.042	0.060	0.052	0.056	0.046
	(0.043)	(0.045)	(0.043)	(0.046)	(0.043)	(0.046)	(0.044)	(0.047)	(0.043)	(0.046)
Wave five	0.055	0.049	0.075	0.070	0.075	0.068	0.077	0.076	0.075	0.069
	(0.054)	(0.048)	(0.053)	(0.048)	(0.054)	(0.048)	(0.054)	(0.048)	(0.054)	(0.049)
Wave six	0.178***	0.161 ***	0.195***	0.175***	0.193***	0.172***	0.198***	0.183***	0.197***	0.177***
	(0.040)	(0.038)	(0.036)	(0.035)	(0.036)	(0.036)	(0.037)	(0.036)	(0.037)	(0.037)
$D E$ is a reference category										
AT	0.205***	0.238***	0.225***	0.249***	0.219***	0.244***	$0.231^{* * *}$	0.259***	0.212***	0.238***
	(0.060)	(0.067)	(0.061)	(0.068)	(0.062)	(0.067)	(0.064)	(0.071)	(0.063)	(0.069)
BE	-0.032	0.072	-0.031	0.067	-0.021	0.077	-0.035	0.060	-0.011	0.081
	(0.073)	(0.079)	(0.072)	(0.077)	(0.070)	(0.075)	(0.072)	(0.078)	(0.071)	(0.076)
BG	0.509***	0.434***	0.484***	0.416***	0.488***	0.424***	0.511***	0.429***	0.558***	0.471***
	(0.085)	(0.093)	(0.082)	(0.093)	(0.077)	(0.091)	(0.092)	(0.097)	(0.093)	(0.095)
CH	-0.005	0.037	0.006	0.040	0.004	0.040	-0.007	0.026	-0.010	0.023
	(0.058)	(0.058)	(0.061)	(0.057)	(0.061)	(0.057)	(0.062)	(0.059)	(0.062)	(0.058)
CY	0.306***	0.468***	0.309***	0.454***	0.320***	0.464***	0.318***	$0.461 * * *$	$0.351 * * *$	$0.493 * * *$
	(0.085)	(0.107)	(0.083)	(0.106)	(0.078)	(0.102)	(0.084)	(0.106)	(0.082)	(0.101)
CZ	0.057	-0.027	0.033	-0.041	0.037	-0.041	0.054	-0.026	0.093	0.008
	(0.070)	(0.074)	(0.067)	(0.070)	(0.064)	(0.064)	(0.064)	(0.065)	(0.065)	(0.066)
DK	$-0.467 * * *$	-0.512***	-0.452***	-0.499***	-0.451***	-0.494***	-0.481***	-0.522***	-0.493***	-0.526***
	(0.117)	(0.110)	(0.115)	(0.107)	(0.114)	(0.106)	(0.119)	(0.113)	(0.117)	(0.110)
EE	0.345***	0.296***	0.327***	0.280***	0.322***	0.273***	0.351***	0.302***	0.370***	0.320***
	(0.047)	(0.050)	(0.049)	(0.050)	(0.049)	(0.048)	(0.050)	(0.050)	(0.049)	(0.047)

$0.395^{* * *}$
(0.058)
0.117
(0.172)
$0.397^{* * *}$
(0.067)
-0.091
(0.057)
$0.721^{* * *}$
(0.089)
$0.381^{* * *}$
(0.107)
$0.539^{* * *}$
(0.058)
$0.172^{* * *}$
(0.062)
$0.525^{* * *}$
(0.162)
0.116
(0.107)
$0.544^{* * *}$
(0.149)
$0.357^{* * *}$
(0.058)
0.019
(0.068)
$-0.12)^{*}$
(0.071)
-0.105
(0.070)
0.135
(0.097)
$0.557 * * *$
(0.066)
0.266
(0.315)
0.079^{*}
(0.045)
$0.486^{* * *}$
(0.071)

历

SK	0.231***	0.238***	0.196***	0.198**	0.188***	0.189**	0.249***	0.250***	$0.266 * * *$	$0.269^{* * *}$
	(0.063)	(0.071)	(0.061)	(0.072)	(0.060)	(0.070)	(0.062)	(0.073)	(0.062)	(0.070)
TR	0.671***	0.515***	0.662***	0.501***	0.665***	0.496***	0.698***	0.535***	0.730***	0.545***
	(0.086)	(0.132)	(0.080)	(0.158)	(0.081)	(0.159)	(0.077)	(0.155)	(0.081)	(0.158)
UA	0.374***	0.329***	0.345***	0.305***	0.338***	0.297***	0.390***	0.345***	$0.411^{* * *}$	0.364***
	(0.046)	(0.053)	(0.044)	(0.049)	(0.043)	(0.047)	(0.047)	(0.050)	(0.045)	(0.049)
Constant	-0.089	2.528***	0.120	2.628***	0.067	2.625***	0.183	2.562***	0.171	2.483***
	(0.480)	(0.301)	(0.494)	(0.317)	(0.498)	(0.311)	(0.504)	(0.300)	(0.502)	(0.291)
Observations R-squared	12914	12075	12228	11447	12222	11443	12222	11442	12226	11447
	0.12	0.13	0.12	0.13	0.12	0.13	0.12	0.13	0.12	0.14
Table A3.15-3.1. Other two measures of linguistic minority: cut-off $=\mathbf{1 0 \%}$. Effect of Birth Country Culture and Basic Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)										
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	ESS	ISSP	ESSM	ISSPM	ESSM	ISSPM	ESSM	ISSPM	ESSM	ISSPM
	migrants	migrants	Conservation	Conservation	Openness	Openness	Self-enhancement	Self-enhancement	Self-transcendence	Self-transcendence
Birth country redistribution preferences (ESS)										
	0.392***		0.350 ***		$0.351^{* * *}$		0.356***		$0.361 * * *$	
	(0.068)		(0.068)		(0.068)		(0.071)		(0.072)	
Reduce differences between rich and poor (ISSP)		0.297***		0.256***		0.257***		0.273***		0.286***
		(0.074)		(0.076)		(0.076)		(0.076)		(0.075)
Conservation			0.089***	0.073**						
			(0.027)	(0.027)						
Openness					-0.114***	-0.099***				
					(0.025)	(0.025)				
Selfenhancement							-0.095***	$-0.089^{* * *}$		
							(0.019)	(0.018)		
Self-									$0.168^{* * *}$	$0.154^{* * *}$
										320

(0.016)	(0.016)
-0.106***	$-0.120^{* * *}$
(0.019)	(0.017)
-0.096	-0.195
(0.137)	(0.134)
-0.005	-0.015
(0.027)	(0.026)
-0.085***	$-0.070^{* * *}$
(0.018)	(0.017)
-0.030	0.017
(0.066)	(0.071)
0.040	0.063
(0.064)	(0.069)
0.011	0.044
(0.045)	(0.051)
0.087**	0.101**
(0.037)	(0.037)
0.002	0.027
(0.045)	(0.065)
-0.009	-0.040
(0.124)	(0.130)
0.034	0.091
(0.184)	(0.192)
0.000	-0.023
(0.068)	(0.071)
0.006	0.010

transcendence
Own
education
tertiary
Own
education
missing
Partner low
education
Partner high
education
Missing
dummy
Marital status
Divorced or
separated
Widowed
Never married
Marital status

- missing
Log household
size
Log household
size

$$
\stackrel{\stackrel{*}{*}}{\stackrel{*}{*}} \stackrel{+}{*}
$$

\[

\]

$$
\begin{aligned}
& \text { הֲ } \\
& \stackrel{*}{*} \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { week } \\
& \text { Paid work - } \\
& \text { missing } \\
& \text { Ever has a } \\
& \text { paid job } \\
& \text { Ever paid job- } \\
& \text { missing } \\
& \text { Paid work last } \\
& \text { week - partner } \\
& \text { Paid } \\
& \text { partner } \\
& \text { missing } \\
& \text { Ever } \\
& \text { unemployed } \\
& \text { for more than } \\
& 12 \text { months } \\
& \text { Ever } \\
& \text { unemployed - } \\
& \text { missing } \\
& \text { Other } \\
& \text { Primary income } \\
& \text { Self-employed } \\
& \text { Pension } \\
& \text { Unemployme } \\
& \text { nt benefits } \\
& \text { Social benefits } \\
& \text { Inent } \\
& \text { Pent } \\
& \text { Pren }
\end{aligned}
$$

$$
\begin{gathered}
(0.038) \\
0.002
\end{gathered}
$$

$$
\begin{gathered}
(0.079) \\
-0.170^{* * *} \\
(0.049) \\
0.091^{* * *} \\
(0.027) \\
0.110^{* *}
\end{gathered}
$$

(0.018)	(0.019)
-0.105	-0.104
(0.172)	(0.185)
0.059	0.054
(0.041)	(0.045)
0.140	$0.321^{* * *}$
(0.116)	(0.111)
0.046*	0.052*
(0.024)	(0.026)
0.034	-0.015
(0.063)	(0.072)
0.104**	0.087***
(0.038)	(0.030)
0.018	0.003
(0.082)	(0.099)
$-0.171^{* * *}$	$-0.173 * * *$
(0.048)	(0.054)
0.095***	0.093***
(0.029)	(0.030)
0.114**	0.098*
(0.051)	(0.053)
0.196***	0.168***
(0.040)	(0.048)
-0.311**	-0.441***
(0.125)	(0.115)
-0.104	-0.087

	(0.061)	(0.064)	(0.063)	(0.064)	(0.064)	(0.064)	(0.063)	(0.063)	(0.064)	(0.064)
Primary income source - missing	-0.077	-0.095**	-0.036	-0.072	-0.038	-0.073	-0.043	-0.078	-0.037	-0.070
	(0.051)	(0.046)	(0.048)	(0.049)	(0.049)	(0.050)	(0.050)	(0.050)	(0.049)	(0.049)
Has a child in the household	-0.029	-0.024	-0.049	-0.045	-0.051	-0.047	-0.045	-0.042	-0.049	-0.044
	(0.046)	(0.050)	(0.042)	(0.046)	(0.042)	(0.045)	(0.041)	(0.044)	(0.040)	(0.044)
Has a child in the household - missing	0.035	0.014	0.090	-0.043	0.102	-0.038	0.074	-0.058	0.084	-0.058
	(0.169)	(0.153)	(0.158)	(0.198)	(0.160)	(0.199)	(0.155)	(0.199)	(0.160)	(0.199)
Linguistic minority: cutoff $=10 \%$, dummy	-0.015	-0.009	-0.029	-0.018	-0.028	-0.017	-0.017	-0.007	-0.011	-0.002
	(0.027)	(0.036)	(0.030)	(0.038)	(0.029)	(0.038)	(0.029)	(0.038)	(0.030)	(0.038)
Linguistic minority 10% - missing	0.128	-0.011	0.128	-0.020	0.120	-0.029	0.137	-0.019	0.135	-0.027
	(0.098)	(0.128)	(0.102)	(0.130)	(0.104)	(0.131)	(0.106)	(0.134)	(0.106)	(0.136)
Tenure: more than 20 years ago - reference category										
Tenure within last year	-0.208**	-0.276***	-0.193**	$-0.267 * * *$	-0.195**	-0.272***	-0.197**	-0.269***	-0.197**	-0.263***
	(0.078)	(0.066)	(0.078)	(0.066)	(0.076)	(0.063)	(0.078)	(0.065)	(0.076)	(0.063)
Tenure:years ago	$-0.106^{* * *}$	$-0.141^{* * *}$	$-0.107 * * *$	-0.140***	-0.112***	-0.145***	$-0.097 * * *$	-0.132***	-0.102***	-0.133***
	(0.031)	(0.033)	(0.027)	(0.027)	(0.028)	(0.028)	(0.027)	(0.027)	(0.030)	(0.030)
Tenure: 6-10 years ago	-0.084*	-0.163***	-0.080*	-0.153***	-0.087**	-0.160***	-0.072*	-0.145***	-0.076*	$-0.147^{* * *}$
	(0.043)	(0.046)	(0.041)	(0.045)	(0.040)	(0.043)	(0.041)	(0.044)	(0.041)	(0.044)
Tenure: 11-20 years ago	-0.089**	-0.111***	-0.090***	-0.109***	-0.094***	-0.112***	-0.084***	-0.103***	-0.086***	-0.102***
	(0.035)	(0.036)	(0.029)	(0.030)	(0.029)	(0.030)	(0.029)	(0.029)	(0.030)	(0.030)
Tenure missing	0.044	0.048	0.086	0.089	0.084	0.089	0.095	0.098	0.096	0.099
	(0.089)	(0.101)	(0.082)	(0.092)	(0.082)	(0.092)	(0.081)	(0.093)	(0.082)	(0.093)
Religion none	$\begin{gathered} 0.020 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.052) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.059) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.052) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.053) \end{gathered}$	$\begin{aligned} & -0.002 \\ & (0.060) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.054) \end{gathered}$	$\begin{gathered} -0.000 \\ (0.059) \end{gathered}$
Catholic	0.043	0.062*	0.060*	0.078**	0.062*	0.081**	0.044	0.066**	0.037	0.060*

	(0.031)	(0.031)	(0.031)	(0.032)	(0.031)	(0.031)	(0.032)	(0.032)	(0.033)	(0.033)
Orthodox	0.081**	0.071**	0.074*	0.068*	0.076*	0.070*	0.077**	0.071*	0.077**	0.072*
	(0.036)	(0.034)	(0.037)	(0.036)	(0.037)	(0.036)	(0.036)	(0.036)	(0.037)	(0.037)
Other	0.066	0.055	0.061	0.050	0.059	0.049	0.062	0.054	0.054	0.047
Christian										
	(0.039)	(0.042)	(0.041)	(0.046)	(0.040)	(0.046)	(0.041)	(0.046)	(0.041)	(0.045)
Jew	0.037	0.026	0.005	0.002	0.008	0.005	-0.003	-0.002	-0.016	-0.011
	(0.091)	(0.082)	(0.078)	(0.070)	(0.076)	(0.069)	(0.080)	(0.070)	(0.082)	(0.074)
Islam	-0.020	-0.094	-0.003	-0.080	0.004	-0.078	-0.004	-0.087	-0.004	-0.085
	(0.070)	(0.089)	(0.078)	(0.098)	(0.079)	(0.098)	(0.079)	(0.099)	(0.077)	(0.102)
Other	0.065	0.214**	0.065	0.217*	0.066	0.223*	0.071	0.230*	0.069	0.246**
	(0.049)	(0.101)	(0.050)	(0.119)	(0.050)	(0.117)	(0.051)	(0.121)	(0.051)	(0.121)
Religion missing	-0.043	0.009	-0.029	0.008	-0.032	0.008	-0.058	-0.015	-0.077	-0.027
	(0.095)	(0.073)	(0.100)	(0.080)	(0.100)	(0.080)	(0.104)	(0.081)	(0.107)	(0.083)
Lives in metropolitan area	-0.014	-0.010	-0.020	-0.018	-0.021	-0.019	-0.018	-0.015	-0.018	-0.017
	(0.022)	(0.023)	(0.022)	(0.023)	(0.021)	(0.023)	(0.021)	(0.023)	(0.021)	(0.023)
$\begin{aligned} & \text { Lives in } \\ & \text { metropolitan } \\ & \text { area - missing } \end{aligned}$	0.092	0.220	-0.074	0.093	-0.075	0.092	-0.086	0.088	-0.089	0.091
	(0.196)	(0.205)	(0.154)	(0.183)	(0.154)	(0.181)	(0.157)	(0.183)	(0.158)	(0.184)
Wave two	-0.012	-0.028	0.012	-0.001	0.013	-0.002	0.015	0.003	0.015	0.000
	(0.038)	(0.038)	(0.037)	(0.039)	(0.037)	(0.038)	(0.037)	(0.038)	(0.037)	(0.039)
Wave three	0.051	0.039	0.058	0.050	0.054	0.045	0.063	0.055	0.061	0.049
	(0.046)	(0.046)	(0.044)	(0.046)	(0.044)	(0.046)	(0.045)	(0.047)	(0.045)	(0.047)
Wave four	0.029	0.020	0.049	0.041	0.047	0.038	0.054	0.048	0.049	0.042
	(0.042)	(0.045)	(0.042)	(0.046)	(0.042)	(0.046)	(0.043)	(0.046)	(0.042)	(0.046)
Wave five	0.054	0.052	0.071	0.070	0.071	0.067	0.074	0.077	0.072	0.070
	(0.054)	(0.047)	(0.054)	(0.047)	(0.054)	(0.047)	(0.054)	(0.047)	(0.054)	(0.048)
Wave six	0.182***	0.170***	0.196***	0.182***	0.194***	0.178***	$0.201^{* * *}$	0.190***	0.198***	0.184***
	(0.039)	(0.037)	(0.036)	(0.034)	(0.036)	(0.035)	(0.037)	(0.035)	(0.036)	(0.035)
$D E$ is a reference category										
AT	0.200***	0.240***	0.223***	0.254***	0.216***	0.246***	$0.226^{* * *}$	0.261***	0.207***	0.239***
	(0.058)	(0.070)	(0.059)	(0.069)	(0.059)	(0.069)	(0.062)	(0.074)	(0.061)	(0.072)
BE	-0.023	0.090	-0.022	0.084	-0.012	0.095	-0.027	0.077	-0.003	0.098
	(0.082)	(0.091)	(0.080)	(0.088)	(0.078)	(0.086)	(0.081)	(0.090)	(0.080)	(0.088)
BG	0.659***	0.601***	0.629***	0.584***	0.634***	0.592***	0.662***	0.602***	0.709***	0.642***
	(0.094)	(0.113)	(0.090)	(0.116)	(0.083)	(0.112)	(0.102)	(0.119)	(0.103)	(0.117)

$\begin{gathered} -0.043 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.068) \end{gathered}$	$\begin{aligned} & -0.031 \\ & (0.062) \end{aligned}$	$\begin{gathered} 0.009 \\ (0.066) \end{gathered}$	$\begin{gathered} -0.034 \\ (0.063) \end{gathered}$	$\begin{gathered} 0.008 \\ (0.066) \end{gathered}$	$\begin{aligned} & -0.045 \\ & (0.064) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.068) \end{aligned}$	$\begin{gathered} -0.046 \\ (0.064) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.068) \end{gathered}$
0.340 ***	0.513***	$0.343 * * *$	0.499***	0.355***	0.510***	$0.353 * * *$	0.508***	0.386***	0.540 ***
(0.095)	(0.118)	(0.093)	(0.117)	(0.088)	(0.112)	(0.095)	(0.118)	(0.093)	(0.113)
0.132*	0.042	0.103	0.025	0.109	0.026	0.128*	0.045	0.169**	0.080
(0.074)	(0.088)	(0.071)	(0.084)	(0.067)	(0.077)	(0.068)	(0.080)	(0.069)	(0.080)
-0.519***	-0.565***	-0.501***	-0.549***	$-0.500 * * *$	$-0.543 * * *$	-0.534***	-0.576***	$-0.546 * * *$	-0.581***
(0.116)	(0.114)	(0.113)	(0.109)	(0.113)	(0.109)	(0.119)	(0.117)	(0.117)	(0.114)
$0.405^{* * *}$	0.374***	0.377***	0.351 ***	0.372***	0.343***	0.415***	0.386***	0.438***	0.407***
(0.047)	(0.067)	(0.046)	(0.067)	(0.045)	(0.063)	(0.046)	(0.065)	(0.045)	(0.063)
$0.337 * * *$	0.408***	$0.333 * * *$	0.399***	$0.341^{* * *}$	0.407***	$0.316^{* * *}$	0.380***	0.332***	$0.394 * * *$
(0.060)	(0.062)	(0.062)	(0.062)	(0.059)	(0.059)	(0.061)	(0.061)	(0.060)	(0.060)
0.130	0.145	0.109	0.135	0.119	0.141	0.085	0.111	0.121	0.145
(0.129)	(0.169)	(0.129)	(0.170)	(0.132)	(0.174)	(0.135)	(0.177)	(0.131)	(0.171)
$0.347 * * *$	0.394***	0.351 ***	0.395***	0.364***	0.404***	0.325***	0.363***	$0.331 * * *$	$0.367 * * *$
(0.059)	(0.068)	(0.061)	(0.068)	(0.059)	(0.065)	(0.062)	(0.068)	(0.061)	(0.067)
-0.174***	-0.107*	-0.182***	$-0.122^{* *}$	$-0.178^{* *}$	-0.120**	-0.177***	-0.120*	-0.165***	-0.116*
(0.052)	(0.057)	(0.050)	(0.058)	(0.049)	(0.056)	(0.051)	(0.060)	(0.052)	(0.060)
0.697***	0.766***	$0.681^{* * *}$	$0.745^{* * *}$	0.685***	0.749***	0.713***	0.775***	0.747***	0.809***
(0.078)	(0.105)	(0.076)	(0.105)	(0.073)	(0.101)	(0.075)	(0.102)	(0.075)	(0.102)
0.272***	$0.343 * * *$	0.304**	0.362***	0.283**	0.345***	0.340***	0.390***	0.329***	0.379***
(0.091)	(0.102)	(0.119)	(0.122)	(0.115)	(0.119)	(0.116)	(0.121)	(0.105)	(0.112)
$0.651^{* * *}$	0.556***	$0.667^{* * *}$	0.572***	0.671***	0.571***	0.696***	0.601***	0.728***	$0.632 * * *$
(0.102)	(0.075)	(0.099)	(0.062)	(0.102)	(0.062)	(0.092)	(0.063)	(0.093)	(0.065)
$0.163 * * *$	0.192***	0.153**	0.178***	0.154**	0.180***	0.161 **	0.184**	0.171 **	$0.192 * * *$
(0.059)	(0.064)	(0.060)	(0.065)	(0.059)	(0.063)	(0.063)	(0.069)	(0.062)	(0.067)
$0.445^{* * *}$	0.546***	0.438***	0.540***	0.429***	0.534***	0.475***	0.582***	0.478***	$0.581 * * *$
(0.090)	(0.139)	(0.105)	(0.148)	(0.105)	(0.148)	(0.110)	(0.151)	(0.103)	(0.149)
0.100	0.137	0.103	0.141	0.081	0.129	0.070	0.111	0.024	0.076
(0.109)	(0.116)	(0.105)	(0.112)	(0.106)	(0.115)	(0.109)	(0.119)	(0.104)	(0.117)
0.367**	0.459***	0.364**	$0.516^{* * *}$	0.345*	$0.501^{* * *}$	0.410**	0.555***	0.418**	$0.565^{* * *}$
(0.134)	(0.130)	(0.173)	(0.158)	(0.172)	(0.157)	(0.173)	(0.156)	(0.171)	(0.156)
0.440***	0.392***	0.436***	0.386***	$0.427 * * *$	0.377***	0.495***	$0.443 * * *$	0.517***	$0.464 * * *$
(0.069)	(0.064)	(0.072)	(0.062)	(0.072)	(0.061)	(0.077)	(0.066)	(0.074)	(0.064)
-0.025	0.096	-0.099	-0.011	-0.093	-0.006	-0.111	-0.024	-0.094	-0.012
(0.100)	(0.082)	(0.093)	(0.083)	(0.091)	(0.083)	(0.096)	(0.085)	(0.092)	(0.080)
-0.164***	-0.159**	-0.172***	-0.162**	-0.161***	-0.155**	-0.172***	-0.167**	-0.146***	-0.151*
(0.050)	(0.075)	(0.050)	(0.074)	(0.051)	(0.073)	(0.051)	(0.076)	(0.053)	(0.075)
-0.127	-0.123	-0.136	-0.141*	-0.131	-0.133*	-0.148*	-0.151*	-0.140	-0.140*
(0.080)	(0.072)	(0.085)	(0.074)	(0.085)	(0.073)	(0.086)	(0.077)	(0.084)	(0.074)

PL	0.218***	0.203*	0.179**	0.163	0.163**	0.148	0.229***	0.213**	$0.241^{* * *}$	$0.223^{* *}$
	(0.074)	(0.102)	(0.077)	(0.104)	(0.077)	(0.102)	(0.074)	(0.104)	(0.075)	(0.103)
PT	0.467***	0.581***	0.481***	0.583***	0.478***	0.583***	0.491***	0.591***	0.511***	0.605***
	(0.061)	(0.068)	(0.059)	(0.065)	(0.059)	(0.065)	(0.062)	(0.067)	(0.063)	(0.067)
RU	0.478***	0.333	0.450***	0.309	0.454***	0.343	0.506***	0.402	0.534***	0.438
	(0.063)	(0.294)	(0.066)	(0.288)	(0.066)	(0.317)	(0.071)	(0.322)	(0.070)	(0.324)
SE	0.000	0.030	0.030	0.058	0.036	0.064	0.007	0.033	0.004	0.027
	(0.046)	(0.054)	(0.040)	(0.050)	(0.040)	(0.049)	(0.041)	(0.052)	(0.040)	(0.052)
SI	0.448***	0.417***	0.439***	0.411***	0.446***	0.416***	0.465***	0.436***	0.501***	0.468***
	(0.062)	(0.076)	(0.063)	(0.076)	(0.062)	(0.073)	(0.066)	(0.079)	(0.066)	(0.077)
SK	0.317***	0.348***	0.279***	0.305***	0.269***	0.294***	0.338***	0.363***	0.355***	0.383***
	(0.064)	(0.077)	(0.063)	(0.079)	(0.061)	(0.076)	(0.064)	(0.079)	(0.063)	(0.076)
TR	0.673***	0.547***	0.662***	0.531***	0.665***	0.525***	0.698***	0.564***	0.732***	0.575***
	(0.077)	(0.122)	(0.072)	(0.144)	(0.073)	(0.144)	(0.072)	(0.142)	(0.074)	(0.144)
UA	0.532***	0.499***	0.498***	0.473***	0.488***	0.461***	0.550***	0.518***	0.570***	0.536***
	(0.054)	(0.071)	(0.053)	(0.070)	(0.051)	(0.066)	(0.055)	(0.070)	(0.053)	(0.067)
Constant	-0.059	2.397***	0.149	2.504***	0.084	2.497***	0.192	2.402***	0.182	2.329***
	(0.519)	(0.272)	(0.520)	(0.290)	(0.525)	(0.285)	(0.538)	(0.277)	(0.535)	(0.276)
Observations	12914	12075	12228	11447	12222	11443	12222	11442	12226	11447
R -squared	0.104	0.116	0.107	0.118	0.109	0.120	0.108	0.120	0.112	0.123

Table A3.16-3.2. Other two measures of linguistic minority: cut-off $=50 \%$. Effect of Birth Country Culture and Basic Human Values on Immigrant's Pref. for Redistribution in Residence Country (Source: ESS 2002-2013, cumulative data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	ESS	ISSP	ESSM	ISSPM	ESSM	ISSPM	ESSM	ISSPM	ESSM	ISSPM
	migrants	migrants	Conservation	Conservation	Openness	Openness	Self-enhancement	Self-enhancement	Self-transcendence	Self-transcendence

6
$\stackrel{\circ}{\circ}$
$\stackrel{-}{6}$

$$
\begin{aligned}
& \text { (ISSP) } \\
& \text { Conservation } \\
& \text { Openness } \\
& \text { Self- } \\
& \text { enhancement } \\
& \text { Self- } \\
& \text { transcendence } \\
& \text { Birth country } \\
& \text { log GDP per } \\
& \text { capita } \\
& \text { Age } \\
& \text { Female } \\
& \text { Own } \\
& \text { education } \\
& \text { primary } \\
& \text { Own } \\
& \text { education } \\
& \text { sec0 } \\
& \text { Own } \\
& \text { education } \\
& \text { sec2 } \\
& \text { Own } \\
& \text { education } \\
& \text { tertiary } \\
& \text { Own } \\
& \text { education } \\
& \text { missing }
\end{aligned}
$$

Partner low education	0.002	-0.014	-0.012	-0.022	-0.015	-0.024	-0.003	-0.014	-0.005	-0.016
	(0.031)	(0.030)	(0.029)	(0.028)	(0.028)	(0.027)	(0.029)	(0.028)	(0.028)	(0.026)
Partner high education	-0.076***	$-0.062^{* *}$	$-0.079^{* * *}$	-0.064***	-0.081***	-0.063***	$-0.080^{* * *}$	$-0.066^{* * *}$	-0.085***	$-0.070^{* *}$
	(0.018)	(0.018)	(0.018)	(0.017)	(0.019)	(0.018)	(0.018)	(0.017)	(0.018)	(0.017)
Partner education missing	0.008	0.037	-0.037	0.007	-0.036	0.009	-0.031	0.015	-0.030	0.017
	(0.060)	(0.061)	(0.064)	(0.069)	(0.064)	(0.069)	(0.065)	(0.070)	(0.066)	(0.071)
Marital status (married is a reference category)										
Divorced or separated	0.037	0.060	0.043	0.067	0.048	0.071	0.031	0.056	0.041	0.063
	(0.061)	(0.066)	(0.065)	(0.070)	(0.064)	(0.069)	(0.064)	(0.069)	(0.064)	(0.069)
Widowed	$\begin{gathered} 0.007 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.042 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.040 \\ (0.049) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.050) \end{gathered}$
Never married	0.095***	$0.111^{* * *}$	0.096***	0.113***	0.102***	$0.116^{* * *}$	0.084**	0.102***	0.088**	0.101***
	(0.034)	(0.035)	(0.033)	(0.033)	(0.033)	(0.033)	(0.035)	(0.036)	(0.036)	(0.036)
Marital status - missing	0.012	0.044	0.012	0.041	0.015	0.044	0.004	0.032	0.002	0.028
	(0.042)	(0.063)	(0.043)	(0.063)	(0.041)	(0.061)	(0.046)	(0.066)	(0.045)	(0.065)
Log household size	0.054	0.000	0.002	-0.039	0.004	-0.037	0.004	-0.036	-0.009	-0.041
	(0.126)	(0.127)	(0.127)	(0.132)	(0.128)	(0.133)	(0.125)	(0.129)	(0.124)	(0.130)
Log household size ${ }^{2}$	-0.051	0.028	0.034	0.102	0.031	0.098	0.027	0.093	0.035	0.093
	(0.183)	(0.187)	(0.186)	(0.193)	(0.188)	(0.194)	(0.185)	(0.193)	(0.184)	(0.192)
Log household size ${ }^{3}$	0.026	-0.003	-0.001	-0.027	-9.05e-05	-0.026	0.002	-0.023	0.000	-0.024
	(0.063)	(0.067)	(0.066)	(0.070)	(0.067)	(0.071)	(0.067)	(0.071)	(0.068)	(0.071)
Paid work last week	-0.005	-0.001	0.004	0.010	0.002	0.009	0.006	0.010	0.006	0.010
	(0.017)	(0.017)	(0.019)	(0.019)	(0.019)	(0.020)	(0.019)	(0.019)	(0.018)	(0.019)
Paid work missing	-0.084	-0.083	-0.114	-0.114	-0.110	-0.113	-0.113	-0.113	-0.104	-0.104
	(0.156)	(0.176)	(0.173)	(0.183)	(0.171)	(0.180)	(0.174)	(0.185)	(0.172)	(0.185)
Ever had a	0.052	0.047	0.060	0.055	0.063	0.060	0.054	0.049	0.060	0.055

$$
\begin{gathered}
(0.045) \\
0.321^{* * *} \\
(0.111) \\
0.052^{*} \\
\\
(0.026) \\
-0.015 \\
\\
\\
(0.072) \\
0.087^{* * *} \\
\\
\\
(0.030) \\
0.002 \\
\\
(0.098) \\
\\
-0.172^{* * *} \\
(0.053) \\
0.093^{* * *} \\
(0.029) \\
0.097^{*} \\
\\
(0.053) \\
0.167 * * \\
\\
(0.048) \\
-0.442^{* * *} \\
(0.115) \\
-0.088 \\
(0.064) \\
-0.070
\end{gathered}
$$

$$
\begin{aligned}
& \text { paid job } \\
& \text { Ever paid job } \\
& \text { - missing } \\
& \text { Paid work last } \\
& \text { week - partner } \\
& \text { Paid work } \\
& \text { partner - } \\
& \text { missing } \\
& \text { Ever } \\
& \text { unemployed } \\
& \text { for more than } \\
& 12 \text { months } \\
& \text { Ever } \\
& \text { unemployed - } \\
& \text { missing } \\
& \text { Primary incomes } \\
& \text { Self- } \\
& \text { employed } \\
& \text { Pension } \\
& \text { Unemployme } \\
& \text { nt benefits } \\
& \text { Social } \\
& \text { benefits } \\
& \text { Investment } \\
& \text { Other } \\
& \text { Primary } \\
& \text { income source } \\
& - \text { missing }
\end{aligned}
$$

Christian										
	(0.040)	(0.045)	(0.042)	(0.049)	(0.042)	(0.049)	(0.043)	(0.048)	(0.043)	(0.048)
Jew	0.038	0.024	0.006	0.000	0.009	0.003	-0.003	-0.004	-0.016	-0.013
	(0.091)	(0.082)	(0.079)	(0.071)	(0.076)	(0.069)	(0.081)	(0.071)	(0.082)	(0.075)
Islam	-0.019	-0.094	-0.001	-0.079	0.005	-0.077	-0.003	-0.087	-0.003	-0.085
	(0.071)	(0.090)	(0.078)	(0.100)	(0.080)	(0.100)	(0.080)	(0.101)	(0.078)	(0.103)
Other	0.063	0.211**	0.062	0.214*	0.063	0.219*	0.068	0.226*	0.067	0.242*
	(0.049)	(0.099)	(0.050)	(0.118)	(0.050)	(0.116)	(0.050)	(0.120)	(0.051)	(0.120)
Religion missing	-0.042	0.009	-0.029	0.008	-0.031	0.008	-0.058	-0.015	-0.077	-0.027
	(0.095)	(0.073)	(0.100)	(0.080)	(0.100)	(0.079)	(0.104)	(0.080)	(0.107)	(0.083)
Lives in metropolitan area	-0.013	-0.010	-0.020	-0.018	-0.021	-0.019	-0.018	-0.016	-0.018	-0.017
	(0.022)	(0.023)	(0.021)	(0.023)	(0.021)	(0.023)	(0.021)	(0.023)	(0.021)	(0.022)
Lives in metropolitan area - missing	0.092	0.220	-0.073	0.093	-0.074	0.092	-0.086	0.087	-0.089	0.091
	(0.196)	(0.205)	(0.154)	(0.182)	(0.154)	(0.181)	(0.157)	(0.184)	(0.157)	(0.184)
Wave two	-0.012	-0.028	0.012	-0.001	0.013	-0.002	0.015	0.003	0.015	0.000
	(0.038)	(0.038)	(0.037)	(0.039)	(0.037)	(0.038)	(0.037)	(0.038)	(0.037)	(0.039)
Wave three	0.051	0.039	0.058	0.050	0.055	0.045	0.063	0.055	0.062	0.049
	(0.046)	(0.046)	(0.044)	(0.046)	(0.044)	(0.045)	(0.045)	(0.046)	(0.045)	(0.046)
Wave four	0.029	0.020	0.049	0.041	0.047	0.038	0.054	0.049	0.049	0.042
	(0.042)	(0.045)	(0.042)	(0.046)	(0.042)	(0.046)	(0.043)	(0.046)	(0.042)	(0.046)
Wave five	0.054	0.051	0.071	0.070	0.071	0.067	0.074	0.077	0.072	0.069
	(0.054)	(0.047)	(0.053)	(0.047)	(0.054)	(0.047)	(0.054)	(0.046)	(0.053)	(0.047)
Wave six	0.182***	0.169***	0.196***	0.182***	0.195***	0.178***	0.201***	0.190***	0.198***	0.183***
	(0.039)	(0.037)	(0.036)	(0.034)	(0.036)	(0.034)	(0.037)	(0.035)	(0.036)	(0.035)
$D E$ is a reference category										
AT	0.200***	0.241***	0.224***	0.255***	0.216***	0.247***	0.226***	0.262***	0.208***	0.240***
	(0.058)	(0.069)	(0.059)	(0.069)	(0.059)	(0.069)	(0.062)	(0.073)	(0.061)	(0.072)
BE	-0.018	0.089	-0.013	0.086	-0.003	0.097	-0.023	0.073	-0.001	0.093
	(0.079)	(0.087)	(0.079)	(0.087)	(0.076)	(0.084)	(0.079)	(0.087)	(0.076)	(0.084)
BG	0.659***	0.604***	0.628***	0.587***	0.633***	0.595***	0.663***	0.606***	0.710***	$0.646^{* * *}$
	(0.093)	(0.113)	(0.089)	(0.116)	(0.082)	(0.112)	(0.101)	(0.119)	(0.103)	(0.117)
CH	-0.041	0.003	-0.026	0.007	-0.029	0.007	-0.044	-0.008	-0.046	-0.011
	(0.059)	(0.063)	(0.061)	(0.061)	(0.061)	(0.061)	(0.063)	(0.064)	(0.063)	(0.063)
CY	0.339***	0.511***	0.341***	0.497***	0.353***	0.508***	0.352***	0.507***	0.386***	0.539***
	(0.095)	(0.119)	(0.093)	(0.118)	(0.088)	(0.113)	(0.094)	(0.119)	(0.093)	(0.114)

$\begin{aligned} & 0.132 * \\ & (0.074) \end{aligned}$	$\begin{gathered} 0.043 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.104 \\ (0.071) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.084) \end{gathered}$	$\begin{gathered} 0.109 \\ (0.067) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.077) \end{gathered}$	$\begin{aligned} & 0.129^{*} \\ & (0.068) \end{aligned}$	$\begin{gathered} 0.046 \\ (0.080) \end{gathered}$	$\begin{aligned} & 0.170^{* *} \\ & (0.069) \end{aligned}$	$\begin{gathered} 0.081 \\ (0.080) \end{gathered}$
-0.519***	-0.564***	-0.501***	-0.549***	-0.500***	-0.543***	-0.534***	$-0.576 * * *$	$-0.546 * * *$	-0.581***
(0.117)	(0.114)	(0.114)	(0.109)	(0.114)	(0.109)	(0.119)	(0.117)	(0.117)	(0.114)
0.414***	0.373***	0.395***	0.357***	0.389***	0.348***	0.424***	0.384***	0.443***	0.401***
(0.042)	(0.056)	(0.044)	(0.056)	(0.043)	(0.053)	(0.044)	(0.055)	(0.043)	(0.052)
0.337***	0.408***	0.332***	0.400***	0.340***	0.408***	0.316***	0.380***	0.331***	0.394***
(0.060)	(0.061)	(0.062)	(0.062)	(0.059)	(0.058)	(0.061)	(0.061)	(0.060)	(0.059)
0.129	0.142	0.108	0.132	0.117	0.138	0.083	0.108	0.119	0.142
(0.131)	(0.171)	(0.131)	(0.172)	(0.133)	(0.175)	(0.136)	(0.178)	(0.132)	(0.172)
0.347***	0.394***	0.350***	0.395***	0.363***	0.404***	$0.324 * * *$	0.364***	0.331***	0.367***
(0.059)	(0.068)	(0.062)	(0.068)	(0.060)	(0.065)	(0.062)	(0.068)	(0.061)	(0.067)
-0.174***	-0.106*	-0.182***	-0.121**	-0.178***	-0.119**	-0.177***	-0.119*	-0.165***	-0.115*
(0.053)	(0.056)	(0.050)	(0.057)	(0.049)	(0.056)	(0.051)	(0.059)	(0.052)	(0.059)
0.697***	0.768***	0.681***	0.747***	0.685***	0.751***	0.714***	0.778***	0.748***	0.812***
(0.078)	(0.105)	(0.076)	(0.105)	(0.073)	(0.101)	(0.074)	(0.101)	(0.074)	(0.102)
0.278***	0.343***	0.316**	0.366***	0.295**	0.349***	0.346***	$0.388^{* * *}$	0.332***	0.375***
(0.085)	(0.093)	(0.115)	(0.115)	(0.112)	(0.112)	(0.113)	(0.114)	(0.102)	(0.105)
0.652***	0.559***	0.669***	0.575***	0.673***	0.573***	0.698***	0.604***	0.729***	0.635***
(0.102)	(0.075)	(0.099)	(0.062)	(0.102)	(0.062)	(0.092)	(0.062)	(0.093)	(0.065)
0.163***	0.193***	0.154**	0.179***	0.154**	0.180***	0.161**	0.184**	0.171***	0.192***
(0.058)	(0.063)	(0.060)	(0.064)	(0.058)	(0.062)	(0.063)	(0.068)	(0.062)	(0.066)
0.444***	0.543***	0.436***	0.536***	0.426***	0.531***	0.473***	0.578***	0.477***	0.578***
(0.091)	(0.141)	(0.106)	(0.151)	(0.106)	(0.151)	(0.112)	(0.154)	(0.104)	(0.151)
0.099	0.137	0.103	0.141	0.081	0.129	0.070	0.111	0.024	0.076
(0.109)	(0.117)	(0.105)	(0.112)	(0.106)	(0.115)	(0.110)	(0.119)	(0.105)	(0.117)
0.368**	0.460***	0.364**	0.517***	0.345*	0.503***	0.410**	0.557***	0.418**	0.566***
(0.134)	(0.130)	(0.173)	(0.158)	(0.172)	(0.157)	(0.173)	(0.156)	(0.171)	(0.156)
0.437***	0.387***	0.431***	0.380***	0.422***	0.370***	0.491***	0.438***	0.514***	0.459***
(0.072)	(0.067)	(0.074)	(0.065)	(0.074)	(0.063)	(0.079)	(0.069)	(0.075)	(0.066)
-0.027	0.088	-0.104	-0.019	-0.097	-0.014	-0.116	-0.032	-0.098	-0.020
(0.100)	(0.082)	(0.092)	(0.082)	(0.090)	(0.082)	(0.096)	(0.084)	(0.092)	(0.080)
-0.164***	-0.159**	-0.172***	-0.162**	-0.161***	-0.155**	-0.172***	-0.167**	-0.146**	-0.150*
(0.051)	(0.075)	(0.050)	(0.074)	(0.052)	(0.074)	(0.051)	(0.076)	(0.053)	(0.075)
-0.128	-0.126*	-0.138	-0.144*	-0.132	-0.137*	-0.150*	-0.155*	-0.142	-0.144*
(0.081)	(0.073)	(0.085)	(0.074)	(0.085)	(0.072)	(0.087)	(0.077)	(0.084)	(0.074)
0.219***	0.205**	0.180**	0.166	${ }^{0.165 * *}$	0.151	0.231***	${ }^{0.215 * *}$	0.243***	0.225**
(0.073)	(0.101)	(0.077)	(0.103)	(0.077)	(0.102)	(0.073)	(0.103)	(0.075)	(0.103)
0.467***	0.583***	0.481***	0.586***	0.479***	0.585***	0.491***	0.593***	0.512***	0.607***
(0.061)	(0.067)	(0.059)	(0.064)	(0.059)	(0.064)	(0.061)	(0.066)	(0.062)	(0.066)

RU	0.479***	0.336	0.452***	0.312	0.456***	0.346	0.509***	0.405	0.536***	0.441
	(0.062)	(0.294)	(0.065)	(0.287)	(0.065)	(0.316)	(0.069)	(0.321)	(0.069)	(0.323)
SE	-0.000	0.028	0.028	0.056	0.035	0.062	0.005	0.031	0.003	0.025
	(0.046)	(0.054)	(0.041)	(0.050)	(0.040)	(0.049)	(0.041)	(0.052)	(0.041)	(0.052)
SI	0.448***	0.418***	0.439***	0.413***	0.446***	0.417***	0.466***	0.438***	0.502***	0.470***
	(0.062)	(0.075)	(0.063)	(0.075)	(0.061)	(0.072)	(0.065)	(0.078)	(0.066)	(0.076)
SK	0.318***	0.346***	0.279***	0.303***	0.270***	0.293***	0.338***	0.362***	0.355***	0.381***
	(0.064)	(0.077)	(0.063)	(0.079)	(0.061)	(0.076)	(0.064)	(0.079)	(0.064)	(0.075)
TR	0.676***	0.552***	0.668***	0.536***	0.670***	0.531***	0.703***	0.570***	0.736***	0.580***
	(0.077)	(0.122)	(0.073)	(0.143)	(0.073)	(0.143)	(0.072)	(0.141)	(0.074)	(0.143)
UA	0.541***	0.499***	0.517***	0.478***	0.506***	0.466***	0.559***	0.516***	0.575***	0.530***
	(0.047)	(0.060)	(0.048)	(0.059)	(0.046)	(0.055)	(0.052)	(0.060)	(0.049)	(0.056)
Constant	-0.077	2.410***	0.112	2.516***	0.049	2.510***	0.172	2.417***	0.169	2.343***
	(0.522)	(0.276)	(0.526)	(0.294)	(0.531)	(0.288)	(0.540)	(0.282)	(0.538)	(0.278)
Observations	12914	12075	12228	11447	12222	11443	12222	11442	12226	11447
R-squared	0.104	0.12	0.11	0.12	0.11	0.12	0.11	0.12	0.11	0.12

$-0.087^{* * *}$
(0.019)

0.006

(0.004)
0.003
(0.003)
-0.000
(0.003)
$0.060^{* *}$
(0.022)
0.044

(0.053)
$0.073^{* *}$
(0.031)
0.078
(0.051)
$-0.080^{* * *}$
(0.018)
-0.224
(0.136)
-0.032
(0.026)
$-0.051 * * *$
(0.017)
0.005

(0.024)

Self-
enhancement
Self-
transcendence
Birth country
log GDP per
capita
Age
Age ${ }^{2 / 100}$
Female
Own education
primary
Own education
sec0
Own education
sec2
Own education
tertiary
Own education
missing
Partner low
education
Partner high
education
Partner high
education-

(0.061)
0.016
(0.059)
0.013
(0.040)
$0.090^{* *}$
(0.033)
0.004
(0.038)
$-0.211^{* * *}$
(0.030)
$0.125^{* * *}$
(0.016)
$0.222^{* * *}$
(0.039)
0.038
(0.086)
0.023
(0.122)
0.050
(0.181)
-0.012
(0.067)
0.020

$$
\begin{gathered}
(0.065) \\
0.039 \\
(0.063) \\
0.043 \\
(0.044) \\
0.104^{* * *} \\
(0.034) \\
0.034 \\
(0.062) \\
-0.202^{* * *} \\
\\
(0.030) \\
0.147^{* * *} \\
(0.022) \\
0.248^{* * *} \\
\\
(0.052) \\
-0.028 \\
\\
\hline(0.093) \\
-0.013 \\
(0.129) \\
0.114 \\
(0.188) \\
-0.038 \\
(0.070) \\
0.023
\end{gathered}
$$

missing dummy		
	(0.056)	(0.056)
Marital status (married is a reference category)		
Divorced or separated	0.011	0.035
	(0.056)	(0.060)
Widowed	0.009	0.043
	(0.035)	(0.039)
Never married	0.098***	0.114***
	(0.031)	(0.033)
Marital status missing	0.012	0.050
	(0.036)	(0.062)
Feeling about household's income (coping is a refer		
Living comfortably on present income	-0.205***	-0.192***
	(0.029)	(0.029)
Difficult on present income	0.130***	0.155***
	(0.015)	(0.021)
Very difficult on present income	0.224***	0.245***
	(0.039)	(0.051)
Feeling about household's income missing	0.026	-0.017
	(0.086)	(0.093)
Log household size	0.083	0.027
	(0.125)	(0.127)
Log household size 2	-0.029	0.053
	(0.181)	(0.185)
Log household size ${ }^{3}$	0.011	-0.019
	(0.063)	(0.066)
Paid work last	0.008	0.011

(0.062)
$-0.184^{* * *}$
(0.042)
$0.082^{* * *}$
(0.028)
-0.000

(0.050)
$0.106^{* *}$
(0.043)
$-0.304^{* *}$
(0.117)
$-0.135^{* *}$
week
Paid work -
missing
Ever had a paid
job
Ever paid job -
missing
Paid work last
week - partner
Paid work
partner -
missing
Ever
unemployed for
more than 12
months
Ever
unemployed 12
m.- missing
Primary income
Self-employed
Pension
Unemployment
benefits
Social benefits
Investment
Other

	(0.061)	(0.062)	(0.063)	(0.062)	(0.064)	(0.063)	(0.063)	(0.062)	(0.064)	(0.062)
Primary income source missing	-0.094*	-0.109**	-0.052	-0.083*	-0.054	-0.084*	-0.059	-0.088*	-0.054	-0.081*
	(0.051)	(0.046)	(0.047)	(0.047)	(0.048)	(0.047)	(0.049)	(0.048)	(0.047)	(0.046)
Has a child in the household	-0.071	-0.067	-0.089**	-0.086**	-0.090**	-0.088**	-0.085**	-0.082**	-0.089**	-0.085**
	(0.042)	(0.045)	(0.038)	(0.040)	(0.038)	(0.039)	(0.037)	(0.039)	(0.037)	(0.038)
Has a child in the household missing	0.022	0.000	0.074	-0.055	0.085	-0.051	0.057	-0.071	0.068	-0.070
	(0.169)	(0.148)	(0.157)	(0.195)	(0.159)	(0.196)	(0.155)	(0.196)	(0.159)	(0.197)
Linguistic minority: cutoff $=30 \%$, dummy	-0.045**	-0.040	-0.054**	-0.044	-0.052**	-0.042	-0.042*	-0.033	-0.036	-0.028
	(0.021)	(0.029)	(0.023)	(0.029)	(0.023)	(0.030)	(0.023)	(0.030)	(0.023)	(0.031)
Linguistic minority 30\% missing	0.144	0.007	0.148	0.003	0.140	-0.004	0.157	0.004	0.156	-0.001
	(0.091)	(0.130)	(0.097)	(0.134)	(0.099)	(0.135)	(0.098)	(0.136)	(0.101)	(0.139)
Tenure: more than 20 years ago - reference category										
Tenure within last year	-0.224**	$-0.298 * * *$	-0.218**	-0.295***	-0.218**	$-0.296 * * *$	-0.225**	$-0.298 * * *$	-0.219**	-0.289***
	(0.082)	(0.065)	(0.085)	(0.066)	(0.083)	(0.064)	(0.085)	(0.065)	(0.083)	(0.064)
Tenure: 1-5 years ago	-0.120***	$-0.167^{* * *}$	$-0.123 * * *$	-0.163***	$-0.126^{* *}$	-0.165***	-0.115***	-0.157***	-0.116***	-0.154***
	(0.031)	(0.030)	(0.030)	(0.027)	(0.030)	(0.028)	(0.029)	(0.027)	(0.031)	(0.028)
Tenure: 6-10 years ago	-0.101**	-0.181***	-0.100**	$-0.169^{* * *}$	-0.105**	-0.174***	-0.093**	-0.163***	-0.093**	-0.162***
	(0.043)	(0.043)	(0.041)	(0.041)	(0.040)	(0.041)	(0.040)	(0.041)	(0.040)	(0.040)
Tenure: 11-20 years ago	-0.098***	-0.125***	$-0.101^{* * *}$	$-0.123^{* * *}$	-0.104***	-0.125***	$-0.096 * * *$	$-0.118^{* * *}$	$-0.096 * * *$	$-0.116^{* * *}$
	(0.035)	(0.034)	(0.030)	(0.030)	(0.030)	(0.030)	(0.030)	(0.029)	(0.030)	(0.029)
Tenure missing	$\begin{gathered} 0.043 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.042 \\ (0.101) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.081 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.083 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.081 \\ (0.093) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.081) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.093) \end{gathered}$
Religion none	$\begin{gathered} 0.020 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.054) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.054) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.014 \\ (0.055) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.061) \end{aligned}$	$\begin{gathered} 0.009 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.061) \end{gathered}$
Catholic	$\begin{gathered} 0.042 \\ (0.033) \end{gathered}$	$\begin{aligned} & 0.061^{*} \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.057^{*} \\ & (0.032) \end{aligned}$	$\begin{gathered} 0.076 * * \\ (0.033) \end{gathered}$	$\begin{aligned} & 0.059^{*} \\ & (0.032) \end{aligned}$	$\begin{gathered} 0.079 * * \\ (0.033) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.033) \end{gathered}$	$\begin{aligned} & 0.066^{*} \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.038 \\ (0.034) \end{gathered}$	$\begin{aligned} & 0.060^{*} \\ & (0.035) \end{aligned}$

Orthodox	0.072*	0.060	0.066*	0.058	0.069*	0.060	0.068*	0.060	0.069*	0.062
	(0.037)	(0.036)	(0.037)	(0.036)	(0.038)	(0.037)	(0.037)	(0.036)	(0.038)	(0.037)
Other Christian	0.052	0.034	0.048	0.031	0.047	0.030	0.048	0.033	0.041	0.026
	(0.041)	(0.044)	(0.041)	(0.047)	(0.041)	(0.048)	(0.042)	(0.047)	(0.042)	(0.046)
Jew	0.013	-0.007	-0.016	-0.028	-0.012	-0.024	-0.026	-0.034	-0.038	-0.042
	(0.094)	(0.085)	(0.081)	(0.074)	(0.079)	(0.073)	(0.083)	(0.075)	(0.085)	(0.078)
Islam	-0.011	-0.095	0.003	-0.077	0.010	-0.075	0.001	-0.085	0.001	-0.083
	(0.070)	(0.093)	(0.077)	(0.103)	(0.078)	(0.102)	(0.078)	(0.103)	(0.076)	(0.106)
Other	0.053	0.210*	0.053	0.211*	0.054	0.215*	0.057	0.220*	0.056	0.237*
	(0.048)	(0.104)	(0.047)	(0.121)	(0.047)	(0.120)	(0.048)	(0.123)	(0.048)	(0.122)
Religion	-0.053	-0.026	-0.038	-0.023	-0.040	-0.022	-0.065	-0.045	-0.083	-0.056
	(0.087)	(0.069)	(0.092)	(0.075)	(0.093)	(0.075)	(0.095)	(0.075)	(0.099)	(0.078)
Lives in	-0.016	-0.012	-0.023	-0.021	-0.024	-0.022	-0.020	-0.019	-0.021	-0.020
metropolitan area										
	(0.021)	(0.022)	(0.021)	(0.022)	(0.021)	(0.022)	(0.020)	(0.022)	(0.020)	(0.022)
Lives in	0.101	0.233	-0.063	0.109	-0.064	0.108	-0.075	0.103	-0.079	0.104
metropolitan area - missing										
	(0.190)	(0.200)	(0.147)	(0.174)	(0.148)	(0.174)	(0.150)	(0.175)	(0.151)	(0.176)
Wave two	-0.014	-0.032	0.015	-0.002	0.016	-0.003	0.017	0.001	0.018	-0.000
	(0.037)	(0.037)	(0.037)	(0.038)	(0.036)	(0.037)	(0.037)	(0.038)	(0.037)	(0.039)
Wave three	0.048	0.036	0.060	0.052	0.057	0.047	0.064	0.056	0.063	0.051
	(0.045)	(0.045)	(0.043)	(0.045)	(0.043)	(0.045)	(0.044)	(0.046)	(0.044)	(0.046)
Wave four	0.031	0.019	0.054	0.044	0.052	0.041	0.059	0.051	0.055	0.045
	(0.044)	(0.046)	(0.044)	(0.047)	(0.044)	(0.047)	(0.045)	(0.047)	(0.044)	(0.047)
Wave five	0.053	0.047	0.073	0.069	0.073	0.066	0.075	0.074	0.074	0.068
	(0.055)	(0.049)	(0.054)	(0.049)	(0.055)	(0.049)	(0.055)	(0.049)	(0.055)	(0.050)
Wave six	0.177***	0.158***	0.194***	0.175***	0.193***	0.172***	0.198***	0.182***	0.196***	0.176***
	(0.041)	(0.039)	(0.037)	(0.036)	(0.037)	(0.036)	(0.038)	(0.037)	(0.038)	(0.037)
Citizenship, dummy	-0.034	-0.036	-0.032	-0.032	-0.031	-0.031	-0.030	-0.029	-0.028	-0.027
	(0.026)	(0.024)	(0.024)	(0.024)	(0.023)	(0.023)	(0.024)	(0.023)	(0.024)	(0.023)
Citizenshipmissing	0.093	0.144	0.354**	0.489**	0.365**	0.496**	0.351**	0.491**	0.366***	0.493***
	(0.260)	(0.326)	(0.150)	(0.202)	(0.139)	(0.191)	(0.149)	(0.207)	(0.127)	(0.174)
Voted	-0.028	-0.041*	-0.029	-0.036	-0.025	-0.033	-0.033	-0.041*	-0.029	-0.038
	(0.018)	(0.022)	(0.020)	(0.024)	(0.021)	(0.024)	(0.020)	(0.024)	(0.020)	(0.023)
Voted - missing	0.039	0.024	0.061	0.054	0.060	0.051	0.062	0.053	0.059	0.045

	(0.074)	(0.080)	(0.077)	(0.082)	(0.078)	(0.083)	(0.078)	(0.083)	(0.081)	(0.086)
Religious attendance	0.018	0.019	0.011	0.017	0.010	0.017	0.013	0.017	0.016	0.020
	(0.019)	(0.017)	(0.019)	(0.017)	(0.019)	(0.017)	(0.019)	(0.017)	(0.019)	(0.018)
Religious attendance missing	-0.077	-0.054	-0.142	-0.122	-0.163	-0.149	-0.144	-0.123	-0.130	-0.118
	(0.091)	(0.102)	(0.106)	(0.124)	(0.101)	(0.118)	(0.107)	(0.124)	(0.106)	(0.127)
DE is a reference category										
AT	0.210***	0.237***	0.229***	0.248***	0.223***	0.243***	0.235***	0.259***	0.217***	0.238***
	(0.063)	(0.070)	(0.064)	(0.069)	(0.064)	(0.069)	(0.067)	(0.073)	(0.065)	(0.071)
BE	-0.036	0.060	-0.035	0.056	-0.026	0.066	-0.039	0.049	-0.015	0.071
	(0.074)	(0.084)	(0.073)	(0.081)	(0.070)	(0.079)	(0.073)	(0.082)	(0.072)	(0.081)
BG	0.506***	0.425***	0.481***	0.410***	0.486***	0.418***	0.508***	0.422***	0.555***	0.464***
	(0.090)	(0.097)	(0.086)	(0.097)	(0.080)	(0.094)	(0.097)	(0.101)	(0.098)	(0.098)
CH	-0.013	0.024	-0.001	0.027	-0.003	0.028	-0.016	0.013	-0.018	0.011
	(0.063)	(0.061)	(0.065)	(0.060)	(0.065)	(0.059)	(0.067)	(0.062)	(0.067)	(0.061)
CY	0.305***	0.468***	0.309***	0.454***	0.320***	0.464***	0.318***	0.462***	0.350***	0.493***
	(0.088)	(0.108)	(0.085)	(0.107)	(0.081)	(0.102)	(0.087)	(0.107)	(0.084)	(0.102)
CZ	0.063	-0.025	0.038	-0.039	0.042	-0.038	0.058	-0.024	0.098	0.010
	(0.071)	(0.072)	(0.067)	(0.069)	(0.064)	(0.063)	(0.065)	(0.064)	(0.066)	(0.065)
DK	-0.471***	-0.518***	-0.457***	-0.506***	-0.456***	-0.501***	-0.485***	-0.528***	-0.496***	-0.531***
	(0.122)	(0.114)	(0.119)	(0.110)	(0.119)	(0.109)	(0.124)	(0.117)	(0.122)	(0.113)
EE	0.334***	0.280***	0.315***	0.267***	0.311***	0.260***	0.340***	0.288***	0.359***	0.307***
	(0.053)	(0.052)	(0.055)	(0.053)	(0.054)	(0.050)	(0.056)	(0.052)	(0.055)	(0.049)
ES	0.341***	0.405***	0.337***	0.398***	0.345***	0.405***	0.320***	0.378***	0.336***	0.393***
	(0.067)	(0.064)	(0.069)	(0.065)	(0.066)	(0.061)	(0.068)	(0.063)	(0.068)	(0.062)
FI	0.115	0.123	0.091	0.110	0.099	0.116	0.067	0.086	0.102	0.119
	(0.138)	(0.176)	(0.139)	(0.177)	(0.140)	(0.179)	(0.144)	(0.182)	(0.139)	(0.177)
FR	0.363***	0.414***	0.361***	0.410***	0.372***	0.418***	0.336***	0.381***	0.344***	0.386***
	(0.062)	(0.071)	(0.066)	(0.072)	(0.063)	(0.069)	(0.065)	(0.072)	(0.065)	(0.071)
GB	-0.140**	-0.089	-0.150***	-0.106*	-0.147***	-0.104*	-0.145**	-0.104*	-0.134**	-0.099
	(0.056)	(0.057)	(0.053)	(0.058)	(0.052)	(0.057)	(0.055)	(0.060)	(0.055)	(0.060)
GR	0.624***	0.682***	0.611***	0.663***	0.614***	0.667***	0.639***	0.689***	0.672***	0.723***
	(0.068)	(0.096)	(0.065)	(0.094)	(0.062)	(0.090)	(0.064)	(0.091)	(0.064)	(0.091)
HR	0.282***	0.349***	0.321 ***	0.370***	0.301***	0.355***	0.354***	0.395***	0.341***	0.383***
	(0.092)	(0.102)	(0.112)	(0.113)	(0.110)	(0.112)	(0.110)	(0.113)	(0.101)	(0.105)
HU	0.582***	0.475***	0.597***	0.486***	0.601***	0.486***	0.624***	0.514***	0.655***	0.544***
	(0.108)	(0.068)	(0.107)	(0.059)	(0.110)	(0.059)	(0.102)	(0.059)	(0.101)	(0.061)
IE	0.147**	0.169***	0.137**	0.153**	0.138**	0.155**	0.145**	0.159**	0.154**	0.167**

IL	(0.057)	(0.061)	(0.058)	(0.061)	(0.057)	(0.059)	(0.061)	(0.064)	(0.060)	(0.063)
	0.421***	0.517***	0.411***	0.502***	0.401***	0.497***	0.448***	0.544***	$0.451^{* * *}$	0.543***
	(0.097)	(0.151)	(0.111)	(0.158)	(0.111)	(0.158)	(0.117)	(0.162)	(0.109)	(0.159)
IS	0.138	0.181	0.136	0.179*	0.116	0.169	0.107	0.154	0.062	0.120
	(0.101)	(0.109)	(0.095)	(0.104)	(0.096)	(0.107)	(0.101)	(0.110)	(0.095)	(0.109)
IT	0.382***	0.466***	0.366**	0.498***	0.348**	0.486***	0.411**	0.537***	0.417**	0.544***
	(0.129)	(0.120)	(0.166)	(0.148)	(0.165)	(0.148)	(0.166)	(0.146)	(0.164)	(0.146)
LT	0.357***	0.294***	0.352***	0.289***	0.345***	0.282***	0.407***	0.341***	0.429***	0.363***
	(0.076)	(0.062)	(0.078)	(0.059)	(0.076)	(0.057)	(0.083)	(0.064)	(0.079)	(0.060)
LU	0.007	0.117*	-0.079	0.004	-0.073	0.009	-0.090	-0.007	-0.073	0.004
	(0.093)	(0.069)	(0.083)	(0.068)	(0.082)	(0.068)	(0.087)	(0.070)	(0.083)	(0.066)
NL	-0.147**	-0.143*	-0.156***	-0.145*	-0.147**	-0.139*	-0.156***	-0.150*	-0.130**	-0.133*
	(0.055)	(0.074)	(0.054)	(0.073)	(0.055)	(0.072)	(0.055)	(0.075)	(0.057)	(0.073)
NO	-0.094	-0.096	-0.104	-0.114	-0.099	-0.106	-0.115	-0.123	-0.107	-0.112
	(0.081)	(0.071)	(0.086)	(0.072)	(0.085)	(0.070)	(0.087)	(0.075)	(0.084)	(0.072)
PL	0.152*	0.124	0.117	0.084	0.103	0.072	0.162**	0.129	0.172**	0.137
	(0.080)	(0.098)	(0.081)	(0.098)	(0.082)	(0.097)	(0.077)	(0.098)	(0.079)	(0.097)
PT	0.437***	0.542***	0.450***	0.544***	0.448***	0.545***	0.460***	0.551***	0.479***	0.564***
	(0.066)	(0.069)	(0.063)	(0.066)	(0.063)	(0.066)	(0.066)	(0.068)	(0.066)	(0.067)
RU	0.391***	0.185	0.366***	0.159	0.372***	0.188	0.419***	0.242	0.445***	0.277
	(0.062)	(0.287)	(0.064)	(0.280)	(0.063)	(0.304)	(0.068)	(0.308)	(0.067)	(0.311)
SE	0.057	0.081	0.085*	0.107**	0.091**	0.112**	0.065	0.085*	0.063	0.080*
	(0.048)	(0.050)	(0.043)	(0.045)	(0.042)	(0.044)	(0.043)	(0.047)	(0.042)	(0.047)
SI	0.483***	0.446***	0.474***	$0.442 * * *$	$0.480 * * *$	0.446***	$0.501^{* * *}$	$0.467 * * *$	0.534***	0.496***
	(0.066)	(0.074)	(0.066)	(0.073)	(0.064)	(0.070)	(0.069)	(0.076)	(0.068)	(0.074)
SK	0.241***	0.248***	0.207***	0.207***	0.198***	0.198***	0.260***	0.260***	0.276***	0.278***
	(0.066)	(0.074)	(0.065)	(0.074)	(0.063)	(0.071)	(0.066)	(0.074)	(0.066)	(0.072)
TR	0.688***	0.529***	0.678***	0.513***	0.679***	$0.509^{* * *}$	0.714***	0.549***	0.745***	0.556***
	(0.089)	(0.133)	(0.082)	(0.160)	(0.084)	(0.161)	(0.079)	(0.157)	(0.083)	(0.159)
UA	0.393***	0.348***	0.365***	0.324***	0.357***	0.316***	0.411***	0.364***	$0.430^{* * *}$	0.382***
	(0.051)	(0.057)	(0.048)	(0.054)	(0.047)	(0.051)	(0.051)	(0.055)	(0.049)	(0.053)
Constant	0.029	2.595***	0.243	2.687***	0.184	2.682***	0.307	2.621***	0.279	2.538***
	(0.483)	(0.305)	(0.500)	(0.321)	(0.504)	(0.314)	(0.508)	(0.302)	(0.506)	(0.293)
Observations	12914	12075	12228	11447	12222	11443	12222	11442	12226	11447
R-squared	0.12	0.13	0.12	0.13	0.12	0.13	0.12	0.134	0.12	0.14

Table A3.18-5. Comprehensive controls. Effect of Birth Country Culture and Basic Human Values on Immigrant's Preferences

-0.582

(0.382)
-0.054

(0.155)

0.087
(0.182)

0.045

(0.031)
0.064^{*}
(0.033)
0.035

(0.029)
-0.047

(0.033)
0.015

(0.046)
$0.066^{* *}$
(0.030)
-0.039

(0.040)
0.034

(0.033)
-0.199

(0.367)
-0.044

(0.145)

0.026
(0.158)

0.023

(0.031)
0.044
(0.029)
0.008

(0.030)
-0.053

(0.035)
-0.026
(0.049)
$0.082 * * *$
(0.029)
-0.018
(0.038)
0.052
(0.042)

$\stackrel{\hat{\circ}}{\circ} \stackrel{\overparen{\infty}}{\infty} \stackrel{\rightharpoonup}{\infty}$
(0.029)
$0.071^{* *}$
(0.026)

(0.034)
-0.020

(0.043)

$\stackrel{\overparen{O}}{\stackrel{\circ}{6}}$
Community or military
service
Housework, looking
after children
Armed forces
Other
Main activity - missing
Member of a trade
union, ever
Currently a member
education,
education, Lower
mother Higher
mother Education is missing,
mother Lower education, father Higher education,
father Education is missing, father Industry $\begin{array}{lr}\text { Water } & \text { supply; } \\ \text { sewerage, } & \text { waste } \\ \text { management } & \text { and } \\ \text { remediation activities }\end{array}$

Activities of extraterritorial organizations and bodies	-0.509**	-0.198		-0.203	-0.512**				$-0.537^{* *}$	-0.233
	(0.239)	(0.254)		(0.252)	(0.236)				(0.230)	(0.244)
Industry missing	0.033	0.015	0.555*	0.020	0.033	0.219	0.585*	0.256	0.033	0.023
	(0.157)	(0.174)	(0.326)	(0.166)	(0.149)	(0.346)	(0.315)	(0.339)	(0.144)	(0.158)
Agriculture, forestry and fishing	-0.013	0.039	0.481	0.019	-0.042	0.217	0.520	0.261	-0.030	0.031
	(0.146)	(0.154)	(0.328)	(0.165)	(0.158)	(0.342)	(0.317)	(0.334)	(0.151)	(0.155)
Mining and quarrying	0.010	0.036	0.514	0.029	-0.007	0.230	0.549*	0.266	-0.004	0.037
	(0.147)	(0.161)	(0.313)	(0.169)	(0.156)	(0.335)	(0.299)	(0.324)	(0.151)	(0.161)
Manufacturing	0.024	0.063	0.536	0.052	0.014	0.253	0.572*	0.291	0.025	0.067
	(0.147)	(0.158)	(0.318)	(0.162)	(0.151)	(0.337)	(0.305)	(0.326)	(0.146)	(0.154)
Electricity, gas, steam and air conditioning supply	-0.150	-0.149	0.375	-0.142	-0.143	0.060	0.403	0.087	-0.142	-0.134
	(0.169)	(0.185)	(0.310)	(0.180)	(0.165)	(0.348)	(0.295)	(0.334)	(0.160)	(0.171)
Construction	0.090	0.133	0.580*	0.108	0.058	0.308	0.620**	0.352	0.073	0.128
	(0.136)	(0.141)	(0.310)	(0.145)	(0.141)	(0.327)	(0.297)	(0.315)	(0.137)	(0.137)
Wholesale and retail trade; repair of motor vehicles motorcycles and	0.039	0.078	0.551*	0.069	0.030	0.270	0.590*	0.310	0.043	0.083
	(0.143)	(0.151)	(0.312)	(0.155)	(0.148)	(0.334)	(0.302)	(0.326)	(0.143)	(0.148)
Transportation and storage	-0.044	-0.058	0.457	-0.075	-0.060	0.129	0.494	0.163	-0.054	-0.062
	(0.125)	(0.144)	(0.308)	(0.147)	(0.127)	(0.329)	(0.295)	(0.319)	(0.120)	(0.138)
Accommodation and food service activities	0.076	0.082	0.578*	0.075	0.058	0.277	0.611**	0.311	0.065	0.088
	(0.113)	(0.127)	(0.293)	(0.128)	(0.115)	(0.317)	(0.281)	(0.307)	(0.110)	(0.123)
Information and communication	-0.007	-0.008	0.477	-0.040	-0.044	0.159	0.510	0.198	-0.042	-0.032
	(0.171)	(0.181)	(0.341)	(0.186)	(0.177)	(0.356)	(0.330)	(0.344)	(0.173)	(0.178)
Financial and insurance activities	-0.201	-0.149	0.303	-0.158	-0.215	0.043	0.338	0.079	-0.203	-0.144
	(0.163)	(0.178)	(0.317)	(0.176)	(0.160)	(0.339)	(0.306)	(0.330)	(0.156)	(0.170)
Real estate activities	0.016	0.057	0.542*	0.068	0.029	0.273	0.570*	0.303	0.013	0.057
	(0.148)	(0.162)	(0.315)	(0.159)	(0.148)	(0.338)	(0.303)	(0.326)	(0.148)	(0.156)
Professional, scientific	0.092	0.072	0.590*	0.059	0.070	0.261	0.624*	0.294	0.081	0.070

층	\％	だミす。	$\stackrel{\sim}{0} 8$	す¢ ¢ ¢	石志守石志	$\stackrel{\text { O}}{\substack{\text { a }}}$	¢ ${ }_{\text {¢ }}^{6}$		
¢i	－3	く－30．0．	S－	ごo	くicie？	e	家：		

禺	Gin	oba	${\underset{\sim}{0}}_{\infty}^{\infty}$		$\underset{\sim}{6}$	¢		\pm	
30	00	000	Co．	家家家		S－		$\stackrel{+}{\square}$	

¢্ত ন	¢ ${ }_{\text {¢ }}$		$\stackrel{\sim}{\sim}{ }_{\sim}^{\infty}$			등		－
¢ ${ }^{\text {¢ }}$	$\stackrel{\sim}{e}^{\sim}$	¢ ¢ ¢ ¢ ¢ ¢	¢ ${ }_{\text {mo }}$	¢ ¢ ¢ ¢		家曾		

¢ֹ¢	તinco	Fin or cir	ત્লે	Nin તit		Fiob		
$\stackrel{3}{\circ}$	${ }^{\text {mº }}$	${ }_{\text {Non }}^{\substack{\infty \\ 0}}$	స్ర ત̀	${ }_{c}^{10}$		家寝		

$\stackrel{n}{0}$	$\underset{\sim}{\text { İ }}$		¢ $⿻ 上 丨_{6}^{6}$	酌気気		त ${ }_{\sim}^{\circ}$		
家宁	－0．	So ${ }^{\circ}$	30．	¢0．		或운		

¢	¢		太			G		®ั．	
eo	¢\％	¢ ${ }_{0}^{0}$	¢\％		¢ֻicio	${ }^{-1} 0$			

默気	\mathcal{G}^{∞}	可瓦㐌	全	ज为何	Eq ode	\rightrightarrows		0
¢0．	So	－0．	So	coie	iocioco	ei		

and technical activities
Administrative and support service
Public administration
 security
Education
Human health and social work activities
Arts，entertainment and
recreation
Other service activities 4 ふ Activities
households
employers
Managers
Professionals
Technicians and
Clerical support
$\frac{0}{\pi}$
Skilled agricultural，
forestry and fishery

kers
Craft and related trades workers
Plant and machine operators, and assemblers
Elementary occupations
Logged GDP in the birth country, average from 2002 to 2013
Age
Age ${ }^{2} / 100$
Female
Upper secondary educa less than lower secondary education
lower secondary education completed
post-secondary nontertiary education
tertiary education completed
Education is missing
Lower education, partner
Higher education,

틍․

Education is missing, partner	
	-0.015
	(0.055)
Married is omitted category	
Divorced	0.03
	(0.060)
Widowed	0.019
	(0.042)
Never married	0.111***
	(0.038)
Marital status is missing	0.003
	(0.065)
Feeling about household's income (cod	
Living comfortably on present income	-0.185***
	(0.028)
Difficult on present income	0.117***
	(0.015)
Very difficult present income	0.204***
	(0.039)
Feeling about household's income missing	0.025
Log household size	0.09
	(0.111)
Log household size ${ }^{2}$	-0.067
	(0.167)
Log household size ${ }^{3}$	0.030
	(0.060)
Paid work last week	0.008
	(0.040)
Paid work - missing	-0.044
	(0.134)
Ever had a paid job	0.353

Ever paid job-missing	0.392	0.627	0.409	0.606	0.401	0.607	0.427	0.620	0.421	0.633
	(0.425)	(0.495)	(0.429)	(0.499)	(0.425)	(0.490)	(0.432)	(0.506)	(0.418)	(0.473)
Paid work last week partner	0.039	0.041	0.047*	0.051*	0.047*	0.050*	0.047*	0.050**	0.051**	0.052**
	(0.023)	(0.024)	(0.024)	(0.025)	(0.025)	(0.026)	(0.023)	(0.024)	(0.024)	(0.024)
Paid work partner missing	0.010	-0.026	0.052	0.007	0.051	0.007	0.049	0.000	0.041	-0.004
	(0.056)	(0.063)	(0.059)	(0.067)	(0.058)	(0.066)	(0.059)	(0.067)	(0.060)	(0.067)
Ever unemployed for more than 12 months	0.062**	0.052**	0.062**	0.053**	0.062**	0.053**	0.059*	0.048*	0.060**	0.052**
	(0.026)	(0.023)	(0.028)	(0.024)	(0.028)	(0.025)	(0.029)	(0.025)	(0.028)	(0.024)
Ever unemployed missing	0.008	0.030	0.033	0.061	0.040	0.070	0.026	0.056	0.044	0.077
	(0.109)	(0.138)	(0.117)	(0.152)	(0.119)	(0.154)	(0.117)	(0.152)	(0.118)	(0.153)
Primary income source	wages is a r	frence categ								
Self-employed	$\begin{gathered} -0.129^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} -0.136^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} -0.105^{* *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.109^{* *} \\ (0.050) \end{gathered}$	$\begin{gathered} -0.101 * * \\ (0.047) \end{gathered}$	$\begin{gathered} -0.106^{* *} \\ (0.050) \end{gathered}$	$\begin{gathered} -0.105^{* *} \\ (0.048) \end{gathered}$	$\begin{gathered} -0.110^{* *} \\ (0.051) \end{gathered}$	$\begin{gathered} -0.104 * * \\ (0.047) \end{gathered}$	$\begin{gathered} -0.112 * * \\ (0.050) \end{gathered}$
Pension	$\begin{gathered} 0.065 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.043) \end{gathered}$	$\begin{aligned} & 0.078 * \\ & (0.039) \end{aligned}$	$\begin{aligned} & 0.075 * \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.076 * \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.073 \\ (0.046) \end{gathered}$	$\begin{aligned} & 0.074 * \\ & (0.039) \end{aligned}$	$\begin{gathered} 0.070 \\ (0.043) \end{gathered}$	$\begin{aligned} & 0.077 * \\ & (0.040) \end{aligned}$	$\begin{gathered} 0.072 \\ (0.044) \end{gathered}$
Unemployment benefits	$\begin{gathered} 0.011 \\ (0.060) \end{gathered}$	$\begin{aligned} & -0.033 \\ & (0.054) \end{aligned}$	$\begin{gathered} 0.035 \\ (0.056) \end{gathered}$	$\begin{aligned} & -0.013 \\ & (0.050) \end{aligned}$	$\begin{gathered} 0.034 \\ (0.056) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.050) \end{aligned}$	$\begin{gathered} 0.043 \\ (0.056) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.050) \end{aligned}$	$\begin{gathered} 0.045 \\ (0.057) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.051) \end{aligned}$
Social benefits	$\begin{gathered} 0.112^{* *} \\ (0.045) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.057) \end{gathered}$	$\begin{gathered} 0.131 * * * \\ (0.042) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.132 * * * \\ (0.042) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.128^{* * *} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.063 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.130^{* * *} \\ (0.043) \end{gathered}$	$\begin{gathered} 0.066 \\ (0.056) \end{gathered}$
Investment	$\begin{gathered} -0.345^{* * *} \\ (0.122) \end{gathered}$	$\begin{gathered} -0.429^{* * *} \\ (0.117) \end{gathered}$	$\begin{gathered} -0.276 * * \\ (0.124) \end{gathered}$	$\begin{gathered} -0.375^{* * *} \\ (0.121) \end{gathered}$	$\begin{gathered} -0.281 * * \\ (0.125) \end{gathered}$	$\begin{gathered} -0.374^{* * *} \\ (0.121) \end{gathered}$	$\begin{gathered} -0.283 * * \\ (0.125) \end{gathered}$	$\begin{gathered} -0.392^{* * *} \\ (0.122) \end{gathered}$	$\begin{gathered} -0.295^{* *} \\ (0.126) \end{gathered}$	$\begin{gathered} -0.387 * * * \\ (0.121) \end{gathered}$
Other	$\begin{aligned} & -0.026 \\ & (0.087) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.080) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.084) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.084) \end{aligned}$	$\begin{array}{r} -0.051 \\ (0.076) \end{array}$	$\begin{array}{r} -0.041 \\ (0.086) \end{array}$	$\begin{array}{r} -0.069 \\ (0.076) \end{array}$	$\begin{aligned} & -0.030 \\ & (0.085) \end{aligned}$	$\begin{aligned} & -0.061 \\ & (0.075) \end{aligned}$
Primary income source - missing	-0.082	-0.099	-0.054	-0.091	-0.054	-0.090	-0.060	-0.095	-0.055	-0.090
	(0.067)	(0.061)	(0.063)	(0.059)	(0.063)	(0.059)	(0.065)	(0.060)	(0.062)	(0.058)
Has a child in the household	-0.068	-0.061	-0.086**	-0.080**	-0.087**	-0.081**	-0.084**	-0.078**	-0.088**	-0.081**
	(0.042)	(0.045)	(0.037)	(0.039)	(0.037)	(0.039)	(0.037)	(0.038)	(0.036)	(0.038)
Has a child in the household - missing	-0.078	-0.107	0.032	-0.121	0.035	-0.120	0.022	-0.128	0.025	-0.128
	(0.165)	(0.159)	(0.170)	(0.197)	(0.170)	(0.196)	(0.167)	(0.196)	(0.168)	(0.196)
Linguistic minority: cut-off $=30 \%$, dummy	-0.045	-0.034	-0.051*	-0.037	-0.050*	-0.036	-0.042	-0.029	-0.036	-0.024
	(0.027)	(0.032)	(0.029)	(0.033)	(0.029)	(0.033)	(0.030)	(0.033)	(0.030)	(0.034)
Linguistic minority	0.063	-0.056	0.072	-0.054	0.064	-0.062	0.079	-0.054	0.071	-0.065

30\% - missing		
	(0.106)	(0.145)
Tenure: more than 20 years ago - reference category		
Tenure within last year	$\begin{gathered} -0.240^{* * *} \\ (0.084) \end{gathered}$	$\begin{gathered} -0.309^{* * *} \\ (0.069) \end{gathered}$
Tenure: 1-5 years ago	-0.103***	-0.142***
	(0.029)	(0.033)
Tenure: 6-10 years ago	-0.095*	-0.164***
	(0.047)	(0.052)
Tenure: 11-20 years ago	-0.082**	-0.097**
	(0.036)	(0.038)
Tenure missing	0.051	0.054
	(0.084)	(0.099)
Protestant - reference category		
Religion - missing	-0.001	-0.006
	(0.061)	(0.061)
Not belonging particular religion	0.031	0.050*
	(0.029)	(0.028)
Roman catholic	0.052	0.036
	(0.031)	(0.029)
Eastern orthodox	0.041	0.022
	(0.038)	(0.052)
Other Christiandenomination	-0.008	-0.034
	(0.089)	(0.079)
Jewish	-0.029	-0.114
	(0.071)	(0.081)
Islamic	0.008	0.141
	(0.051)	(0.090)
Other non-Christian	-0.055	-0.025
	(0.095)	(0.080)
Lives in metropolitan area	-0.001	-0.002
	(0.021)	(0.023)
Lives in metropolitan area - missing	0.111	0.179
	(0.180)	(0.195)
Wave two	-0.054	-0.071
	(0.042)	(0.042)

 	eicoeiciéieiciequó

No

Wave three
Wave four
Wave five
Wave six missing

(0.404)
-0.087
(0.333)
-0.474
(0.325)
-0.380
(0.442)
-0.613
(0.485)
0.095
(0.448)
-0.273
(0.400)
-0.716
(0.563)
-0.355
(0.724)
$0.901 * *$
(0.430)
0.065
(0.462)
$-1.917 * * *$
(0.413)
-0.562
(0.481)
-0.714
(1.061)
-0.484
(0.439)
-0.312
(0.405)
-0.457
(0.513)
$-1.611^{* * *}$
(0.480)
$-1.604 * * *$
(0.408)
-0.331
(0.423)
$-1.483 * * *$

(0.435)
-0.430
(0.455)
-0.418
(0.423)
$-1.060^{* *}$
(0.425)
-0.168
(0.417)
-0.088
(0.406)
-0.441
(0.443)
-0.064
(0.398)
-0.603
(0.407)
0.209
(0.409)
-0.213
(0.404)
0.111
(0.369)
-0.321
(0.406)
0.087
(0.434)
-0.421
(0.425)
-0.046
(0.416)
-0.101
(0.411)
-0.444
(0.388)
-0.583
(0.412)
-0.643
(0.406)
-0.359

Reg_130	(0.301)	(0.365)	(0.308)	(0.370)	(0.307)	(0.371)	(0.326)	(0.387)	(0.329)	(0.398)
	0.028	0.000	0.031	0.012	0.028	0.015	0.025	0.000	0.036	0.024
	(0.303)	(0.369)	(0.309)	(0.374)	(0.309)	(0.375)	(0.330)	(0.394)	(0.332)	(0.404)
Reg_131	0.023	-0.340	-0.001	-0.373	0.001	-0.344	0.030	-0.319	0.051	-0.270
	(0.305)	(0.489)	(0.312)	(0.495)	(0.311)	(0.512)	(0.330)	(0.524)	(0.333)	(0.526)
Reg_132	-0.353	-0.481	-0.324	-0.442	-0.320	-0.437	-0.354	-0.478	-0.361	-0.470
	(0.312)	(0.377)	(0.318)	(0.381)	(0.318)	(0.383)	(0.339)	(0.402)	(0.339)	(0.411)
Reg_133	0.096	-0.062	0.083	-0.059	0.087	-0.054	0.092	-0.054	0.121	-0.013
	(0.309)	(0.374)	(0.316)	(0.380)	(0.315)	(0.380)	(0.335)	(0.398)	(0.336)	(0.407)
Reg_134	-0.125	-0.253	-0.159	-0.282	-0.168	-0.287	-0.126	-0.254	-0.115	-0.223
	(0.322)	(0.385)	(0.325)	(0.385)	(0.323)	(0.385)	(0.344)	(0.403)	(0.344)	(0.414)
Reg_135	0.213	-0.031	0.185	-0.069	0.188	-0.067	0.209	-0.054	0.236	-0.024
	(0.304)	(0.385)	(0.306)	(0.386)	(0.306)	(0.388)	(0.325)	(0.403)	(0.329)	(0.416)
Reg_136	0.018	-0.120	0.000	-0.126	-0.004	-0.131	0.023	-0.110	0.040	-0.080
	(0.301)	(0.370)	(0.307)	(0.375)	(0.306)	(0.375)	(0.327)	(0.392)	(0.329)	(0.403)
Constant	0.492	3.013***	-0.113	3.229***	0.391	2.451***	0.039	2.919***	0.687	3.064***
	(0.743)	(0.658)	(0.849)	(0.676)	(0.864)	(0.653)	(0.926)	(0.735)	(0.795)	(0.680)
Observations	12024	11313	11416	10743	11411	10740	11412	10740	11416	10745
R-squared	0.138	0.152	0.140	0.155	0.141	0.156	0.142	0.157	0.145	0.159

Table A3.19 - The effect of average preferences for redistribution in a country of birth and cultural values on immigrants' preferences for redistribution in a residence country

	$\underset{\mathbf{r}}{\mathrm{ESS}}$	St.er.	\mathbf{R}^{2}	N	$\begin{aligned} & \text { ISSP } \\ & \mathbf{r} \\ & \hline \end{aligned}$	St.er.	\mathbf{R}^{2}	N
1. Country dummies as only controls	0.247***	(0.074	0.07	12924	0.356***	(0.099)	0.08	12083
RP	0.494***	(0.086)			0.420***	(0.135)		
Self-Expression (ESS)	0.154***	(0.029)	0.07	12924	0.091	(0.068)	0.07	10898
RP	0.279***	(0.091)			0.477***	(0.095)		
$\begin{aligned} & \text { Post-materialist index } \\ & \text { (WVS) } \end{aligned}$	-0.119**	(0.043)	0.07	11508	0.172***	(0.046)	0.09	11097
RP	0.246***	(0.073)			0.447***	(0.105)		
Autonomy Index (WVS, QoG)	0.242	(0.266)	0.07	12924	0.712**	(0.336)	0.08	12083
RP .	0.338***	(0.079)			0.483***	(0.107)		
Emancipative values index (WVS, QoG)	0.812***	(0.296)	0.07	12924	0.961**	(0.454)	0.08	12083
RP	0.365***	(0.085)			0.436***	(0.116)		
Voice Index (WVS,	0.879***	(0.203)	0.07	12924	0.715*	(0.274)	0.08	12083
2. Baseline, but fewer controls	0.357***	(0.061)	0.11	12914	0.213***	(0.071)	0.12	12075
RP	0.434***	(0.069)	0.11	12914	0.372***	(0.102)	0.12	10890
Self-Expression (ESS)	0.099***	(0.034)			0.072	(0.112)		
RP	0.405***	(0.056)	0.12	10490	0.372***	(0.087)	0.13	9965
Post-materialist index (WVS)	0.047	(0.041)			0.183***	(0.048)		
RP	0.327***	(0.066)	0.11	11577	0.303***	(0.063)	0.12	10738
Autonomy Index (WVS, QoG)	0.028	(0.258)			0.734**	(0.320)		
RP	$0.351^{* * *}$	(0.071)	0.11	11577	0.378***	(0.082)	0.12	10738
Emancipative values index (WVS, QoG)	0.400	(0.324)			1.137***	(0.409)		
RP	0.360***	(0.073)	0.11	11577	0.304***	(0.090)	0.12	10738
$\begin{aligned} & \text { Voice Index (WVS, } \\ & \text { QoG) } \end{aligned}$	0.457*	(0.246)			0.765***	(0.269)		
3. Baseline	0.344***	(0.0612)	0.12	12914	0.235***	(0.0694)	0.13	12075
RP	0.420***	(0.0633)	0.12	12914	0.352***	(0.0969)	0.12	10890
Self-Expression (ESS)	0.101***	(0.031)			0.063	(0.099)		
RP	0.384***	(0.0519)	0.12	10490	$0.395^{* * *}$	(0.0831)	0.14	9965
Post-materialist index (WVS)	0.023	(0.039)			0.156 ***	(0.045)		
RP	0.320***	(0.0652)	0.11	11577	0.325***	(0.0630)	0.13	10738
Autonomy Index (WVS, QoG)	0.033	(0.246)			0.719**	(0.319)		
RP	0.342***	(0.0684)	0.11	11577	0.377***	(0.0830)	0.13	10738
Emancipative values index (WVS, QoG)	0.393	(0.302)			1.013**	(0.391)		
RP	0.345***	(0.0705)	0.11	11577	0.306***	(0.0881)	0.13	10738
Voice Index (WVS, QoG)	0.347	(0.231)			0.622**	(0.257)		
3.1. other two measures of linguistic minority: cut-off $=10 \%$	0.392***	(0.068)	0.10	12914	0.297***	(0.0745)	0.12	12075
RP	0.458***	(0.068)	0.10	12914	0.405***	(0.105)	0.11	10890
Self-Expression (ESS)	0.089***	(0.030)			0.0327	(0.102)		
RP	0.418***	(0.059)	0.11	10490	0.427***	(0.0909)	0.13	9965
Post-materialist index (WVS)	0.015	(0.035)			0.142***	(0.0435)		
RP	0.362***	(0.0716)	0.10	11577	0.370***	(0.0670)	0.11	10738

Autonomy Index (WVS, QoG)	-0.047	(0.255)			0.644*	(0.326)		
RP	0.380***	(0.0740)	0.10	11577	0.418***	(0.0871)	0.11	10738
Emancipative values index (WVS, QoG)	0.262	(0.311)			0.916**	(0.398)		
RP.	0.386***	(0.0739)	0.10	11577	0.351***	(0.0950)	0.11	10738
Voice Index (WVS,	0.278	(0.240)			0.550**	(0.253)		
QoG)								
3.2. other two measures								
of linguistic minority: cut-off $=\mathbf{5 0 \%}$	0.392***	(0.0684)	0.10	12914	0.292***	(0.0745)	0.12	12075
RP	0.460***	(0.0683)	0.10	12914	0.401***	(0.105)	0.11	10890
Self-Expression (ESS)	0.090***	(0.030)			0.034	(0.101)		
RP	0.418***	(0.0588)	0.11	10490	0.423***	(0.0929)	0.13	9965
Post-materialist index (WVS)	0.016	(0.035)			0.143***	(0.044)		
RP	0.363***	(0.0718)	0.10	11577	0.366***	(0.0651)	0.11	10738
Autonomy Index (WVS, QoG)	-0.052	(0.256)			0.652**	(0.319)		
RP	0.381***	(0.0742)	0.10	11577	0.416***	(0.0867)	0.11	10738
Emancipative values index (WVS, QoG)	0.263	(0.311)			0.928**	(0.391)		
RP	$0.386^{* * *}$	(0.0742)	0.10	11577	0.349***	(0.0949)	0.11	10738
$\begin{aligned} & \text { Voice Index (WVS, } \\ & \text { QoG) } \end{aligned}$	0.279	(0.240)			0.559**	(0.251)		
4. Baseline, but more controls	0.340***	(0.0596)	0.12	12914	0.236***	(0.0681)	0.13	12075
RP	0.414***	(0.0618)	0.12	12914	0.341***	(0.0943)	0.12	10890
Self-Expression (ESS)	0.099***	(0.0307)			0.059	(0.0971)		
RP	0.383***	(0.0516)	0.12	10490	0.397***	(0.0839)	0.14	9965
Post-materialist index (WVS)	0.022	(0.0374)			0.155***	(0.0439)		
RP	0.316***	(0.0642)	0.11	11577	0.323***	(0.0645)	0.13	10738
Autonomy Index (WVS, QoG)	0.018	(0.244)			0.693**	(0.322)		
RP	$0.337^{* * *}$	(0.0672)	0.11	11577	0.374***	(0.0833)	0.13	10738
Emancipative values index (WVS, QoG)	0.368	(0.299)			0.978**	(0.391)		
RP	0.339***	(0.0685)	0.11	11577	0.303***	(0.0877)	0.13	10738
$\begin{aligned} & \text { Voice Index (WVS, } \\ & \text { QoG) } \end{aligned}$	0.314	(0.230)			0.590**	(0.255)		
5. Comprehensive	0.288***	(0.0662)	0.14	12024	0.215***	(0.0656)	0.15	11313
RP	0.369***	(0.0557)	0.14	12024	0.328***	(0.0852)	0.15	10202
Self-Expression (ESS)	0.179***	(0.0530)			0.139	(0.0830)		
RP	0.350***	(0.0754)	0.14	9773	0.345***	(0.0814)	0.16	9337
Post-materialist index (WVS)	-0.004	(0.0465)			0.144***	(0.0405)		
RP	0.245***	(0.0613)	0.13	10782	0.280***	(0.0595)	0.15	10071
Autonomy Index (WVS, QoG)	-0.012	(0.247)			0.643*	(0.329)		
RP	0.258***	(0.0571)	0.13	10782	0.355***	(0.0683)	0.15	10071
Emancipative values index (WVS, QoG)	0.632	(0.395)			1.131***	(0.361)		
RP	0.263***	(0.0597)	0.13	10782	0.275***	(0.0802)	0.15	10071
Voice Index (WVS,	0.410	(0.252)			0.615**	(0.236)		

Robust standard errors in parentheses $* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$

Figure A3.3-Effects of average cultural values in the country of origin on preferences for redistribution of immigrants. Comparisons of the 7 main specifications presented in the Table A3.19

APPENDIX FOR CHAPTER 4

Table A4.1 - Preferences for redistribution, missing values correction (Source: G-SOEP 1997, 2002, panel data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
East	0.436***	0.434***	0.420***	0.425***	0.373***
	(0.030)	(0.028)	(0.028)	(0.028)	(0.028)
Year 2002 (dummy)	0.069***	0.170***	-0.000	-0.036	0.103***
	(0.023)	(0.023)	(0.024)	(0.023)	(0.023)
East*2002	-0.128***	-0.163***	-0.072**	-0.140***	-0.177***
	(0.039)	(0.036)	(0.036)	(0.036)	(0.036)
Education, "no school" omitted					
College	-0.320**	-0.456***	-0.219	-0.576***	-0.165
	(0.148)	(0.131)	(0.133)	(0.134)	(0.133)
Vocational	-0.213	-0.340***	-0.212	-0.474***	-0.160
	(0.146)	(0.129)	(0.131)	(0.132)	(0.131)
Secondary school	-0.204	-0.254*	-0.073	-0.367***	-0.115
	(0.149)	(0.132)	(0.134)	(0.135)	(0.133)
Intermediate technical	-0.299*	-0.374***	-0.295**	-0.578***	-0.152
	(0.157)	(0.141)	(0.144)	(0.143)	(0.144)
In school	-0.217	-0.372**	-0.149	-0.456***	-0.079
	(0.166)	(0.150)	(0.152)	(0.152)	(0.152)
Age	-0.034**	-0.020	-0.023	-0.035**	-0.016
	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Age ${ }^{2}$	0.001**	0.000	0.001	0.001**	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age ${ }^{3}$	-0.000**	-0.000	-0.000*	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	-0.085***	-0.071***	-0.001	-0.017	0.020
	(0.023)	(0.022)	(0.022)	(0.022)	(0.022)
N of children	0.028*	0.042***	0.071***	0.030**	0.028**
	(0.015)	(0.014)	(0.014)	(0.014)	(0.014)
N of adults	0.015	0.053***	0.019	0.037***	0.011
	(0.012)	(0.012)	(0.012)	(0.011)	(0.011)
Marital status; "single" omitted					
Married	0.059	0.079**	0.018	0.058	0.090***
	(0.036)	(0.036)	(0.036)	(0.036)	(0.035)
Divorced	0.071	0.014	0.032	0.066	0.100**
	(0.054)	(0.052)	(0.052)	(0.053)	(0.051)
Married, but separated	0.033	-0.030	-0.007	0.111	0.127
	(0.083)	(0.080)	(0.081)	(0.083)	(0.082)
Widowed	-0.042	0.019	-0.050	-0.018	0.075
	(0.059)	(0.057)	(0.058)	(0.056)	(0.056)
Ln HH income (inflated to 2002)	-0.151***	$-0.262 * * *$	-0.136***	-0.216***	-0.152***
	(0.026)	(0.025)	(0.025)	(0.025)	(0.025)
Occupation, "blue-collar" omitted					
Civil servant	-0.131**	$-0.227 * * *$	0.083	-0.065	-0.130**
	(0.058)	(0.060)	(0.060)	(0.060)	(0.056)
Self-employed	-0.338***	-0.396***	-0.330***	-0.463***	-0.317***

	(0.051)	(0.053)	(0.054)	(0.054)	(0.051)
White-collar	-0.039	-0.059^{*}	0.009	$-0.103^{* * *}$	$-0.120^{* * *}$
	(0.035)	(0.033)	(0.033)	(0.033)	(0.032)
Currently in education	-0.021	-0.122^{*}	-0.003	-0.081	-0.062
	(0.071)	(0.067)	(0.068)	(0.068)	(0.067)
Unemployed	$0.142^{* * *}$	-0.014	$0.141^{* * *}$	-0.016	-0.055
	(0.052)	(0.048)	(0.048)	(0.048)	(0.047)
Retired	-0.119^{*}	$-0.130^{* *}$	0.119^{*}	0.008	-0.036
	(0.062)	(0.061)	(0.061)	(0.060)	(0.060)
Maternity	0.014	-0.058	0.103	$-0.197^{* *}$	-0.083
	(0.080)	(0.078)	(0.077)	(0.078)	(0.076)
Nonworking	-0.033	-0.040	$0.151^{* * *}$	-0.030	0.001
	(0.044)	(0.043)	(0.043)	(0.042)	(0.042)
Training	-0.007	0.023	-0.094	-0.044	-0.049
	(0.074)	(0.071)	(0.073)	(0.071)	(0.070)
Other nonworking	0.000	-0.102^{*}	0.057	-0.045	$-0.131^{* *}$
	(0.056)	(0.053)	(0.054)	(0.052)	(0.053)
Constant	$2.250^{* * *}$	$2.309^{* * *}$	$1.043 * * *$	$2.419 * * *$	$1.481^{* * *}$
	(0.352)	(0.340)	(0.339)	(0.340)	(0.333)
Observations					$180)$

Robust standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A4.2 - Preferences for redistribution, corrected missing values, only for native Germans (Source: G-SOEP 1997, 2002, panel data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
East	0.436***	0.436***	0.424***	0.433***	0.376***
	(0.030)	(0.028)	(0.028)	(0.028)	(0.028)
Year(dummy)	0.071***	0.177***	0.003	-0.037	0.101***
	(0.024)	(0.024)	(0.024)	(0.024)	(0.023)
East*2002	-0.125***	-0.163***	-0.070*	-0.143***	-0.176***
	(0.039)	(0.037)	(0.037)	(0.036)	(0.036)
Education, "no school" omitted					
College	-0.373**	-0.524***	-0.218	-0.645***	-0.225
	(0.161)	(0.135)	(0.141)	(0.139)	(0.139)
Vocational	-0.266*	-0.408***	-0.211	-0.541***	-0.217
	(0.159)	(0.133)	(0.139)	(0.136)	(0.137)
Secondary school	-0.263	-0.325**	-0.073	-0.441***	-0.182
	(0.162)	(0.136)	(0.142)	(0.139)	(0.139)
Intermediate technical	-0.347**	-0.448***	-0.292*	$-0.631^{* * *}$	-0.208
	(0.169)	(0.145)	(0.151)	(0.147)	(0.149)
In school	-0.274	-0.442***	-0.134	-0.509***	-0.135
	(0.178)	(0.154)	(0.160)	(0.157)	(0.157)
Age	-0.038**	-0.026	-0.024	-0.037**	-0.017
	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Age^{2}	0.001***	0.001*	0.001*	0.001**	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age ${ }^{3}$	-0.000***	-0.000	-0.000*	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Male	-0.085***	-0.066***	-0.003	-0.014	0.018
	(0.023)	(0.022)	(0.022)	(0.022)	(0.022)
N of children	0.034**	0.045***	0.072***	0.034**	0.031**
	(0.015)	(0.015)	(0.015)	(0.015)	(0.014)
N of adults	0.017	0.057***	0.023**	0.035***	0.010
	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)
Marital status; "single" omitted					
Married	0.058	0.079**	0.019	0.060	0.100***
	(0.037)	(0.037)	(0.036)	(0.036)	(0.036)
Divorced	0.057	0.029	0.040	0.089*	0.126**
	(0.055)	(0.053)	(0.053)	(0.054)	(0.052)
Married, but separated	0.034	-0.036	-0.015	0.087	0.098
	(0.086)	(0.083)	(0.083)	(0.085)	(0.085)
Widowed	-0.026	0.027	-0.050	-0.007	0.102*
	(0.060)	(0.058)	(0.059)	(0.058)	(0.057)
Ln HH income (inflated to 2002)	$-0.152^{* * *}$	-0.268***	-0.148***	-0.214***	-0.146***
	(0.027)	(0.026)	(0.025)	(0.025)	(0.025)
Occupation, "blue-collar" omitted					
Civil servant	-0.127**	-0.212***	0.103*	-0.056	-0.131**
	(0.058)	(0.061)	(0.061)	(0.060)	(0.057)
Self-employed	-0.340***	-0.387***	-0.316***	-0.449***	-0.308***
	(0.052)	(0.054)	(0.055)	(0.055)	(0.051)
White-collar	-0.036	-0.055	0.023	-0.096***	-0.116***
	(0.035)	(0.034)	(0.034)	(0.033)	(0.033)
Currently in education	-0.024	-0.126*	0.000	-0.077	-0.062
	(0.072)	(0.068)	(0.069)	(0.069)	(0.068)
Unemployed	0.141***	-0.019	0.139***	-0.021	-0.062
	(0.053)	(0.049)	(0.049)	(0.048)	(0.048)
Retired	-0.132**	-0.131**	0.140**	0.008	-0.045
	(0.064)	(0.062)	(0.063)	(0.062)	(0.062)
Maternity	0.002	-0.052	0.099	-0.190**	-0.072
	(0.081)	(0.079)	(0.078)	(0.079)	(0.077)
Nonworking	-0.046	-0.043	0.157***	-0.031	0.001
	(0.045)	(0.044)	(0.044)	(0.043)	(0.043)
Training	-0.020	0.020	-0.096	-0.052	-0.055
	(0.075)	(0.072)	(0.074)	(0.072)	(0.071)
Other nonworking	-0.008	-0.094*	0.061	-0.037	-0.123**
	(0.056)	(0.053)	(0.054)	(0.053)	(0.053)
Constant	2.350***	2.474***	1.133***	2.486***	1.509***
	(0.363)	(0.347)	(0.348)	(0.347)	(0.341)
Observations	17534	17532	17530	17559	17556
		standard err $\mathrm{p}<0.01, * * \mathrm{p}$	$\begin{aligned} & \text { in parenthes } \\ & 05, * p<0.1 \end{aligned}$		

Table A4.3 - Preferences for redistribution, rescaled, corrected missing values, only for native Germans (Source: G-SOEP 1997, 2002, panel data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
East	0.301***	0.279***	0.290***	0.281***	0.229***
	(0.018)	(0.017)	(0.019)	(0.019)	(0.017)
Year 2002(dummy)	0.027*	$0.108^{* * *}$	0.014	-0.009	$0.051 * * *$
	(0.015)	(0.014)	(0.015)	(0.015)	(0.014)
East*2002	-0.082***	-0.100***	-0.030	-0.099***	-0.110***
	(0.022)	(0.022)	(0.024)	(0.023)	(0.022)
Education, "no school" omitted					
College	-0.209**	-0.307***	-0.152*	-0.439***	-0.205**
	(0.081)	(0.081)	(0.087)	(0.096)	(0.082)
Vocational	-0.143*	-0.221***	-0.145*	-0.359***	-0.182**
	(0.079)	(0.080)	(0.086)	(0.094)	(0.081)
Secondary school	-0.124	-0.170**	-0.048	-0.320***	-0.153*
	(0.082)	(0.082)	(0.088)	(0.096)	(0.082)
Intermediate technical	-0.173**	-0.190**	-0.176*	$-0.372 * * *$	-0.192**
	(0.087)	(0.087)	(0.094)	(0.100)	(0.088)
In school	-0.129	-0.234**	-0.138	-0.384***	-0.152
	(0.093)	(0.093)	(0.101)	(0.108)	(0.093)
Age	-0.021**	-0.013	-0.022**	-0.019*	-0.016*
	(0.010)	(0.010)	(0.011)	(0.010)	(0.010)
Age ${ }^{2}$	0.000**	0.000*	0.001**	0.000**	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age ${ }^{3}$	$-0.000^{* *}$	-0.000*	-0.000**	-0.000**	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	$-0.036 * * *$	$-0.056 * * *$	-0.007	$-0.040 * * *$	-0.004
	(0.014)	(0.014)	(0.015)	(0.014)	(0.013)
N of children	0.019**	0.028***	0.054***	0.025***	0.021**
	(0.009)	(0.009)	(0.010)	(0.009)	(0.009)
N of adults	0.005	$0.036^{* * *}$	0.023***	0.025***	0.004
	(0.007)	(0.007)	(0.008)	(0.007)	(0.007)
Marital status; 'single" omitted					
Married	0.023	0.035	-0.001	0.017	$0.061 * * *$
	(0.022)	(0.022)	(0.024)	(0.023)	(0.022)
Divorced	0.048	-0.013	0.027	0.033	0.070**
	(0.034)	(0.033)	(0.035)	(0.035)	(0.033)
Married, separated	-0.034	-0.011	-0.021	0.037	0.055
	(0.047)	(0.046)	(0.053)	(0.053)	(0.050)
Widowed	-0.012	0.022	-0.029	-0.034	0.052
	(0.036)	(0.035)	(0.038)	(0.037)	(0.035)
Ln HH income (inflated to 2002)	$-0.088^{* * *}$	$-0.161^{* * *}$	$-0.110^{* * *}$	$-0.152 * * *$	$-0.094^{* * *}$
	(0.017)	(0.016)	(0.017)	(0.017)	(0.016)
Occupation, "blue-collar" omitted					
Civil servant	-0.077**	-0.142***	0.087**	-0.074**	-0.082**
	(0.037)	(0.036)	(0.040)	(0.037)	(0.033)
Self-employed	$-0.247 * * *$	-0.273***	-0.265***	-0.331***	$-0.222^{* *}$
	(0.034)	(0.031)	(0.036)	(0.033)	(0.031)

White-collar	$-0.047 * *$	$-0.052 * *$	-0.009	$-0.096^{* * *}$	$-0.095^{* * *}$
Currently	(0.021)	(0.021)	(0.022)	(0.022)	(0.020)
education	-0.021	-0.062	-0.038	-0.030	-0.037
Unemployed	(0.044)	(0.041)	(0.044)	(0.046)	(0.041)
	$0.076 * * *$	-0.005	$0.088^{* * *}$	-0.011	-0.022
Retired	(0.029)	(0.031)	(0.032)	(0.032)	(0.031)
	-0.036	-0.073^{*}	$0.089^{* *}$	-0.049	-0.056
Maternity	(0.038)	(0.038)	(0.042)	(0.040)	(0.038)
	0.023	-0.004	0.069	$-0.110^{* *}$	-0.058
Nonworking	(0.047)	(0.047)	(0.048)	(0.047)	(0.046)
	-0.001	-0.026	$0.115^{* * *}$	-0.027	-0.006
Training	(0.026)	(0.027)	(0.029)	(0.028)	(0.026)
	-0.001	0.009	-0.065	0.015	-0.040
Other nonworking	(0.044)	(0.044)	(0.047)	(0.046)	(0.043)
	-0.006	$-0.069^{* *}$	0.005	-0.050	$-0.083 * *$
Constant	(0.033)	(0.032)	(0.036)	(0.035)	(0.032)
	$4.961 * * *$	$4.978^{* * *}$	$4.479 * * *$	$5.228^{* * *}$	$4.690^{* * *}$
	(0.212)	(0.214)	(0.227)	(0.227)	(0.209)
Observations					
R-squared	17534	17532	17530	17559	17556

Robust standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A4.4-Preferences for redistribution, rescaled, corrected missing values, only for native Germans and immigrants with additional controls for tenure

VARIABLES	(1) When Unemploye d		(2) When Sick	(3) For Family	(4) In Old-Age
			(5) When Requiring Care		
	$0.288^{* * *}$	$0.241^{* * *}$	$0.259^{* * *}$	$0.255^{* * *}$	$0.223^{* * *}$
East in East	(0.020)	(0.020)	(0.021)	(0.021)	(0.019)
	0.053	$0.238^{* * *}$	$0.214^{* * *}$	$0.217^{* * *}$	$0.138^{* * *}$
Turks (West)	(0.048)	(0.047)	(0.051)	(0.049)	(0.047)
	0.057	$0.204^{* *}$	0.136	0.145	$0.175^{* *}$
Poles (West)	(0.090)	(0.083)	(0.091)	(0.095)	(0.089)
	0.150	$0.329^{* * *}$	$0.249^{* *}$	$0.270^{* *}$	$0.278^{* *}$
Russians (West)	$0.102)$	(0.113)	(0.120)	(0.114)	(0.111)
	$0.283^{* *}$	$0.285^{* *}$	0.233^{*}	0.116	0.206
Kazakhs (West)	(0.119)	(0.119)	(0.135)	(0.123)	(0.126)
	0.011	$0.090^{* * *}$	0.001	-0.017	$0.043^{* * *}$
Year 2002	(0.016)	(0.015)	(0.017)	(0.016)	(0.015)
	$-0.064^{* * *}$	$-0.062^{* * *}$	0.003	$-0.068^{* * *}$	$-0.091^{* * *}$
East in East 02	(0.024)	(0.024)	(0.026)	(0.025)	(0.024)
	-0.036	$-0.141^{* * *}$	$-0.148^{* * *}$	-0.023	$-0.109^{* *}$
Turks (West) 02	(0.052)	(0.052)	(0.055)	(0.054)	(0.054)
Poles (West) 02	-0.082	$-0.185^{* *}$	-0.165	-0.155	$-0.217^{* *}$
	(0.105)	(0.087)	(0.109)	(0.101)	(0.090)
Russians (West) 02	-0.111	-0.117	-0.021	0.202^{*}	-0.115
	(0.120)	(0.123)	(0.113)	(0.117)	(0.108)
Kazakhs (West) 02	-0.120	-0.170	-0.214	0.027	-0.115

	(0.139)	(0.138)	(0.165)	(0.130)	(0.139)
Tenure, 4 categories	0.019	0.027	0.027	0.044	0.046
	(0.033)	(0.032)	(0.035)	(0.037)	(0.032)
Age	-0.008	-0.003	-0.014	-0.013	-0.014
	(0.012)	(0.012)	(0.013)	(0.012)	(0.012)
Age ${ }^{2}$	0.000	0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age^{3}	-0.000	-0.000	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Education, "no school" omitted					
College	-0.101*	-0.125**	-0.114**	-0.178***	-0.100*
	(0.056)	(0.055)	(0.057)	(0.061)	(0.057)
Vocational	-0.031	-0.045	-0.102*	-0.099*	-0.057
	(0.053)	(0.052)	(0.054)	(0.058)	(0.055)
Secondary school	-0.020	-0.002	-0.021	-0.054	-0.017
	(0.054)	(0.053)	(0.055)	(0.059)	(0.056)
Intermediate technical	-0.083	-0.026	-0.154**	-0.124*	-0.052
	(0.066)	(0.066)	(0.071)	(0.070)	(0.068)
In school	-0.003	0.033	-0.001	-0.173*	-0.029
	(0.084)	(0.083)	(0.098)	(0.092)	(0.086)
Male	-0.028*	-0.054***	-0.004	-0.019	0.010
	(0.015)	(0.015)	(0.016)	(0.016)	(0.014)
N of children	0.007	0.020**	0.038***	0.015	0.018**
	(0.009)	(0.009)	(0.010)	(0.010)	(0.009)
N of adults	-0.002	0.033***	0.018**	0.029***	0.005
	(0.008)	(0.007)	(0.008)	(0.008)	(0.007)
		Marital status,	ngle" omitted		
Married	0.054**	0.034	0.015	0.029	0.049**
	(0.024)	(0.024)	(0.026)	(0.025)	(0.023)
Divorced	0.041	-0.036	0.019	0.015	0.053
	(0.038)	(0.037)	(0.039)	(0.038)	(0.036)
Married, but separated	-0.010	-0.014	0.026	0.079	0.086
	(0.049)	(0.051)	(0.058)	(0.056)	(0.053)
Widowed	0.009	0.033	0.005	-0.030	0.061
	(0.039)	(0.038)	(0.042)	(0.039)	(0.037)
Ln HH income (inflated to 2002)	-0.106***	-0.182***	-0.120***	-0.187***	-0.102***
	(0.017)	(0.017)	(0.018)	(0.018)	(0.017)
Occupation, "blue-collar" omitted					
Civil servant	-0.114***	-0.158***	0.039	-0.059	-0.080**
	(0.040)	(0.039)	(0.044)	(0.040)	(0.035)
Self-employed	-0.233***	$-0.267 * * *$	-0.259***	-0.286***	-0.227***
	(0.036)	(0.033)	(0.038)	(0.035)	(0.032)
White-collar	-0.049**	-0.057***	-0.023	-0.070***	-0.088***
	(0.022)	(0.021)	(0.023)	(0.023)	(0.021)
Currently in education	0.013	-0.105*	-0.029	0.020	-0.042
	(0.058)	(0.055)	(0.059)	(0.060)	(0.053)
Unemployed	0.041	0.002	0.077**	0.022	-0.025
	(0.029)	(0.030)	(0.032)	(0.033)	(0.031)
Retired	-0.016	-0.061	0.069	-0.020	-0.051
	(0.040)	(0.040)	(0.044)	(0.042)	(0.039)
Maternity	0.037	-0.015	0.041	-0.063	-0.059
	(0.049)	(0.050)	(0.050)	(0.050)	(0.049)
Nonworking	-0.012	-0.025	0.091***	0.007	0.004
	(0.026)	(0.026)	(0.029)	(0.028)	(0.026)
Training	0.020	0.054	-0.045	0.102*	0.011

	(0.057)	(0.055)	(0.060)	(0.057)	(0.057)
Other nonworking	0.010	-0.079**	-0.013	-0.036	-0.117***
	(0.037)	(0.035)	(0.039)	(0.038)	(0.035)
Constant	4.762***	4.724***	4.318***	4.943***	4.362***
	(0.281)	(0.279)	(0.306)	(0.302)	(0.278)
Observations	15562	15567	15568	15589	15587
R -squared	0.042	0.054	0.042	0.054	0.031

Figure A4.1 - Effect of time on preferences for redistribution baseline controls with additional controls for tenure (for native Germans and immigrants)

Table A4.5-Age regressions for preferences for redistribution (rescaled, corrected missing values, only for native Germans and immigrants) (Source: G-SOEP 1997, 2002, panel data set)
$\left.\begin{array}{lccccc}\hline & & (1) \\ \text { When Unemployed }\end{array} \quad \begin{array}{c}(2) \\ \text { When Sick }\end{array}\right)$

Observations	15562	15567	15568	15589	15587
R-squared	0.046	0.058	0.045	0.061	0.034

Robust standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table A4.6-Cohort regressions for preferences for redistribution (rescaled, corrected missing values, only for native Germans) (Source: G-SOEP 1997, 2002, panel data set)

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
East	0.139**	0.151**	0.140*	0.042	0.081
	(0.066)	(0.063)	(0.073)	(0.070)	(0.061)
Turks	0.284	0.263*	0.248	0.054	-0.186
	(0.268)	(0.138)	(0.256)	(0.275)	(0.226)
Poles	-0.186	-0.146	-0.513*	-0.151	-0.266
	(0.220)	(0.164)	(0.263)	(0.179)	(0.361)
Russians	0.111	0.053	-0.015	0.047	0.059
	(0.147)	(0.186)	(0.352)	(0.216)	(0.245)
Kazakhs	0.297	0.572**	-0.174	-0.030	0.380
	(0.196)	(0.235)	(0.177)	(0.243)	(0.248)
Year 2002 (dummy)	0.014	0.098***	0.001	-0.013	0.041***
	(0.016)	(0.015)	(0.017)	(0.016)	(0.015)
East*2002	-0.064***	-0.062***	0.005	-0.069***	-0.091***
	(0.024)	(0.024)	(0.026)	(0.025)	(0.024)
Turks * 2002	-0.029	$-0.130 * * *$	-0.135**	-0.007	-0.097*
	(0.051)	(0.050)	(0.054)	(0.053)	(0.052)
Poles * 2002	-0.069	-0.165**	-0.150	-0.122	-0.188**
	(0.102)	(0.083)	(0.105)	(0.098)	(0.087)
Russians * 2002	-0.094	-0.090	-0.001	0.227**	-0.070
	(0.115)	(0.119)	(0.106)	(0.111)	(0.103)
Kazakhs * 2002	-0.107	-0.145	-0.179	0.066	-0.084
	(0.137)	(0.136)	(0.163)	(0.130)	(0.136)
Cohorts, "youngest" omitted					
Young	0.027	0.003	-0.055	-0.050	0.002
	(0.059)	(0.057)	(0.061)	(0.059)	(0.057)
Middle	0.113*	0.083	-0.020	0.041	0.043
	(0.061)	(0.059)	(0.063)	(0.061)	(0.059)
Old	0.206***	0.215***	0.124*	0.217***	0.131**
	(0.062)	(0.061)	(0.065)	(0.062)	(0.061)
young * East	-0.029	0.019	-0.004	-0.055	-0.048
	(0.071)	(0.068)	(0.078)	(0.075)	(0.066)
young * Turks	-0.319	-0.081	-0.092	-0.012	0.165
	(0.270)	(0.145)	(0.257)	(0.276)	(0.229)
young * Poles	0.251	0.281	0.504*	0.187	0.342
	(0.236)	(0.182)	(0.276)	(0.195)	(0.372)
young * Russians	-0.122	0.185	0.090	-0.178	0.065
	(0.188)	(0.229)	(0.389)	(0.246)	(0.281)
young * Kazakhs	-0.139	-0.477*	0.208	-0.120	-0.383
	(0.219)	(0.251)	(0.212)	(0.256)	(0.271)
middle * East	-0.158**	-0.055	-0.098	-0.180**	-0.125*
	(0.071)	(0.068)	(0.078)	(0.075)	(0.066)
middle * Turks	-0.444	-0.110	-0.196	-0.066	0.223
	(0.274)	(0.154)	(0.263)	(0.283)	(0.235)

middle * Poles	-0.042	0.223	0.574**	-0.141	0.092
	(0.233)	(0.187)	(0.279)	(0.196)	(0.374)
middle * Russians	-0.216	0.062	0.064	-0.083	-0.260
	(0.200)	(0.217)	(0.368)	(0.246)	(0.276)
middle * Kazakhs	-0.198	-0.444*	0.360*	-0.208	-0.558**
	(0.219)	(0.246)	(0.199)	(0.255)	(0.273)
old * East	-0.272***	-0.225***	-0.255***	-0.408***	-0.263***
	(0.070)	(0.068)	(0.077)	(0.074)	(0.065)
old * Turks	-0.464*	-0.193	-0.262	-0.128	0.161
	(0.273)	(0.151)	(0.263)	(0.280)	(0.233)
old * Poles	-0.014	0.225	0.520*	0.053	0.349
	(0.233)	(0.198)	(0.290)	(0.201)	(0.377)
old * Russians	-0.132	0.201	0.152	0.010	0.199
	(0.187)	(0.237)	(0.379)	(0.259)	(0.281)
old * Kazakhs	-0.386	-0.490	0.357	-0.056	-0.325
	(0.271)	(0.310)	(0.251)	(0.324)	(0.319)
Education, "college" omitted					
Vocational	0.076***	0.084***	0.017	0.085***	0.048***
	(0.019)	(0.019)	(0.020)	(0.020)	(0.018)
Secondary school	0.097***	0.135***	0.105***	0.144***	0.096***
	(0.028)	(0.028)	(0.030)	(0.029)	(0.027)
Intermediate technical	0.025	0.106**	-0.034	0.058	0.060
	(0.043)	(0.044)	(0.050)	(0.043)	(0.045)
In school	0.115	0.162**	0.104	-0.019	0.074
	(0.070)	(0.069)	(0.087)	(0.078)	(0.070)
No school	0.113**	0.124**	0.122**	0.166***	0.077
	(0.057)	(0.057)	(0.059)	(0.062)	(0.058)
Male	-0.029*	-0.056***	-0.007	-0.020	0.008
	(0.015)	(0.015)	(0.016)	(0.016)	(0.014)
N of children	0.008	0.023***	0.039***	0.016*	0.020**
	(0.009)	(0.009)	(0.010)	(0.009)	(0.009)
N of adults	0.002	0.036***	0.024***	0.032***	0.008
	(0.008)	(0.007)	(0.008)	(0.008)	(0.007)
Marital status; "single" omitted					
Married	0.051**	0.032	0.025	0.042*	0.039*
	(0.023)	(0.023)	(0.025)	(0.024)	(0.022)
Divorced	0.041	-0.035	0.036	0.030	0.045
	(0.037)	(0.036)	(0.038)	(0.038)	(0.035)
Married, but separated	-0.010	-0.011	0.042	0.094*	0.081
	(0.049)	(0.050)	(0.058)	(0.055)	(0.053)
Widowed	-0.001	0.026	-0.000	-0.016	0.054
	(0.038)	(0.037)	(0.041)	(0.038)	(0.036)
Ln HH income (inflated to 2002)	-0.105***	$-0.182 * * *$	-0.119***	-0.186***	$-0.100^{* * *}$
	(0.017)	(0.017)	(0.018)	(0.018)	(0.017)
Occupation, "blue-collar" omitted					
Civil servant	-0.108***	-0.162***	0.045	-0.060	-0.085**
	(0.040)	(0.039)	(0.044)	(0.040)	(0.035)
Self-employed	-0.232***	-0.271***	-0.255***	-0.289***	-0.235***
	(0.036)	(0.033)	(0.038)	(0.035)	(0.032)
White-collar	-0.052**	-0.063***	-0.025	-0.079***	-0.097***
	(0.022)	(0.021)	(0.023)	(0.023)	(0.021)
Currently in education	0.028	-0.108*	-0.040	-0.005	-0.034
	(0.059)	(0.056)	(0.058)	(0.060)	(0.052)
Unemployed	0.040	-0.002	0.073**	0.018	-0.032
	(0.030)	(0.030)	(0.032)	(0.032)	(0.031)

Retired	-0.035	$-0.077 * *$	0.015	-0.007	-0.040
	(0.030)	(0.031)	(0.033)	(0.032)	(0.030)
Maternity	0.028	-0.027	0.026	-0.080	-0.067
	(0.049)	(0.050)	(0.050)	(0.050)	(0.049)
Nonworking	-0.022	-0.041	$0.074 * * *$	-0.007	-0.009
	(0.026)	(0.026)	(0.028)	(0.027)	(0.026)
Training	0.018	0.046	-0.063	0.068	0.009
	(0.057)	(0.054)	(0.059)	(0.057)	(0.056)
Other nonworking	0.012	$-0.080^{* *}$	-0.022	-0.039	$-0.112^{* * *}$
	(0.036)	(0.034)	(0.038)	(0.037)	(0.035)
Constant	$4.686^{* * *}$	$4.744^{* * *}$	$4.241^{* * *}$	$4.962 * * *$	$4.339^{* * *}$
	(0.148)	(0.148)	(0.163)	(0.154)	(0.145)
Observations	15562	15567	15568	15589	15587
R-squared	0.046	0.058	0.046	0.062	0.036

Robust standard errors in parentheses *** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A4.7- Number of observations in different cohorts of Germans and immigrants

cohorts	Germans West	Germans East	Turks	Poles	Russians	Kazakhs	Total
youngest	219	181		7			
young	1547	840	256	57	6	9	431
middle	1311	885	97	54	31	30	2752
old	1631	979	134	31	23	27	2405
Total						12	2810
	4708	2885	494	151	82	78	8398

Figure A4.2 - Effect of age on redistribution preferences of Germans and migrants, linear predictions, baseline controls plus sample-age interactions

APPENDIX FOR CHAPTER 6

Table A6.1 - Effect of unemployment in 1997, West and East Germans (Source: G-SOEP 1997)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	$\begin{gathered} 0.065 \\ (0.040) \end{gathered}$	$\begin{gathered} -0.021 \\ (0.039) \end{gathered}$	$\begin{gathered} 0.097 * * \\ (0.043) \end{gathered}$	$\begin{aligned} & -0.033 \\ & (0.042) \end{aligned}$	$\begin{gathered} -0.077 * * \\ (0.039) \end{gathered}$
East	$\begin{gathered} 0.295^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 0.267 * * * \\ (0.018) \end{gathered}$	$\begin{gathered} 0.293 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} 0.281 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} 0.230^{* * *} \\ (0.018) \end{gathered}$
Education, "no school" omitted					
College	$\begin{gathered} -0.178^{*} \\ (0.107) \end{gathered}$	$\begin{gathered} -0.283 * * * \\ (0.104) \end{gathered}$	$\begin{aligned} & -0.075 \\ & (0.115) \end{aligned}$	$\begin{gathered} -0.458^{* * *} \\ (0.112) \end{gathered}$	$\begin{gathered} -0.268^{* * *} \\ (0.104) \end{gathered}$
Vocational	$\begin{aligned} & -0.169 \\ & (0.105) \end{aligned}$	$\begin{gathered} -0.234^{* *} \\ (0.103) \end{gathered}$	$\begin{aligned} & -0.094 \\ & (0.113) \end{aligned}$	$\begin{gathered} -0.390^{* * *} \\ (0.110) \end{gathered}$	$\begin{gathered} -0.235 * * \\ (0.102) \end{gathered}$
Secondary school	$\begin{gathered} -0.116 \\ (0.107) \end{gathered}$	$\begin{aligned} & -0.203^{*} \\ & (0.105) \end{aligned}$	$\begin{gathered} 0.034 \\ (0.115) \end{gathered}$	$\begin{gathered} -0.368^{* * *} \\ (0.113) \end{gathered}$	$\begin{gathered} -0.214^{* *} \\ (0.104) \end{gathered}$
Intermediate technical	$\begin{gathered} -0.223^{*} \\ (0.115) \end{gathered}$	$\begin{gathered} -0.189^{*} \\ (0.113) \end{gathered}$	$\begin{aligned} & -0.095 \\ & (0.124) \end{aligned}$	$\begin{gathered} -0.413 * * * \\ (0.121) \end{gathered}$	$\begin{gathered} -0.258 * * \\ (0.112) \end{gathered}$
In school	$\begin{aligned} & -0.129 \\ & (0.126) \end{aligned}$	$\begin{gathered} -0.281 * * \\ (0.123) \end{gathered}$	$\begin{aligned} & -0.130 \\ & (0.135) \end{aligned}$	$\begin{gathered} -0.455 * * * \\ (0.132) \end{gathered}$	$\begin{gathered} -0.229^{*} \\ (0.122) \end{gathered}$
Age	$\begin{gathered} -0.035^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.031^{* *} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.034^{* *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.019 \\ (0.014) \end{gathered}$	$\begin{aligned} & -0.025^{*} \\ & (0.013) \end{aligned}$
Age ${ }^{2}$	$\begin{gathered} 0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.000^{*} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000^{*} \\ & (0.000) \end{aligned}$
Age ${ }^{3}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.000^{*} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$
Male	$\begin{gathered} -0.037 * * \\ (0.018) \end{gathered}$	$\begin{gathered} -0.054 * * * \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.019) \end{aligned}$	$\begin{gathered} -0.045^{* *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.018) \end{gathered}$
N of children	$\begin{gathered} 0.025^{* *} \\ (0.012) \end{gathered}$	$\begin{gathered} 0.025^{* *} \\ (0.011) \end{gathered}$	$\begin{gathered} 0.047 * * * \\ (0.013) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.012) \end{gathered}$	$\begin{aligned} & 0.020^{*} \\ & (0.011) \end{aligned}$
N of adults	$\begin{gathered} 0.009 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.056 * * * \\ (0.012) \end{gathered}$	$\begin{gathered} 0.035^{* * *} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.031^{* *} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.012) \end{gathered}$
Marital status; "single" omitted					
Married	$\begin{gathered} 0.007 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.059 * * \\ (0.029) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.082 * * * \\ (0.029) \end{gathered}$
Divorced	$\begin{gathered} 0.060 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.042) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.046) \end{gathered}$	$\begin{aligned} & 0.074^{*} \\ & (0.042) \end{aligned}$
Married, but separated	$\begin{aligned} & -0.054 \\ & (0.071) \end{aligned}$	$\begin{gathered} 0.081 \\ (0.069) \end{gathered}$	$\begin{gathered} 0.040 \\ (0.076) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.075) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.069) \end{gathered}$
Widowed	$\begin{aligned} & -0.032 \\ & (0.047) \end{aligned}$	$\begin{gathered} 0.073 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.050) \end{gathered}$	$\begin{aligned} & 0.076^{*} \\ & (0.046) \end{aligned}$
Ln HH income (inflated to 2002)	-0.099***	-0.195***	-0.079***	-0.165***	-0.103***
Occupation, "blue-collar" omitted	(0.023)	(0.022)	(0.025)	(0.024)	(0.022)
Civil servant	$\begin{gathered} -0.100^{* *} \\ (0.047) \end{gathered}$	$\begin{gathered} -0.192 * * * \\ (0.046) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.050) \end{gathered}$	$\begin{aligned} & -0.076 \\ & (0.049) \end{aligned}$	$\begin{gathered} -0.125^{* * *} \\ (0.045) \end{gathered}$
Self-employed	-0.274***	-0.285***	$-0.273 * * *$	-0.386***	-0.253***

	(0.042)	(0.041)	(0.046)	(0.045)	(0.041)
White-collar	-0.048^{*}	$-0.062^{* *}$	-0.031	$-0.103^{* * *}$	$-0.118^{* * *}$
	(0.027)	(0.027)	(0.030)	(0.029)	(0.027)
Currently in education	-0.034	$-0.124^{* *}$	-0.063	-0.029	-0.065
	(0.057)	(0.056)	(0.062)	(0.061)	(0.056)
Retired	-0.083	-0.096^{*}	0.046	0.003	-0.044
	(0.053)	(0.052)	(0.057)	(0.056)	(0.051)
Maternity	-0.033	0.008	-0.012	-0.083	-0.075
	(0.068)	(0.067)	$(0.074$	(0.072)	(0.066)
Nonworking	-0.016	-0.019	$0.116^{* * *}$	-0.005	-0.011
	(0.035)	(0.035)	(0.038)	(0.037)	(0.034)
Training	-0.046	-0.028	-0.042	0.055	-0.032
	(0.062)	(0.061)	(0.067)	(0.065)	(0.060)
Other nonworking	-0.058	-0.086^{*}	-0.046	-0.018	-0.076^{*}
	(0.045)	(0.044)	(0.048)	(0.047)	(0.044)
Constant	$5.196^{* * *}$	$5.354^{* * *}$	$4.244^{* * *}$	$5.218^{* * *}$	$4.843^{* * *}$
	(0.279)	(0.273)	(0.300)	(0.294)	(0.271)
Observations					
R-squared	9344	9339	9333	9353	9352

Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A6.2 - Effect of previous experience of unemployment on preferences for redistribution (Source: G-SOEP 1992-1997)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	$\begin{gathered} 0.038 \\ (0.042) \end{gathered}$	$\begin{gathered} -0.036 \\ (0.041) \end{gathered}$	$\begin{aligned} & 0.086^{*} \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (0.044) \end{aligned}$	$\begin{gathered} -0.093 * * \\ (0.041) \end{gathered}$
Unemployment experience from 1992 to 1996	0.061**	0.040	0.052*	0.060**	0.054**
East	$\begin{gathered} (0.026) \\ 0.286^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} (0.025) \\ 0.264 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} (0.028) \\ 0.290^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} (0.027) \\ 0.277 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} (0.025) \\ 0.226^{* * *} \\ (0.018) \end{gathered}$
Education, "no school" omitted College	$\begin{aligned} & -0.190^{*} \\ & (0.109) \end{aligned}$	$\begin{gathered} -0.294 * * * \\ (0.107) \end{gathered}$	$\begin{gathered} -0.059 \\ (0.118) \end{gathered}$	$\begin{gathered} -0.452 * * * \\ (0.116) \end{gathered}$	$\begin{gathered} -0.255 * * \\ (0.106) \end{gathered}$
Vocational	$\begin{aligned} & -0.179^{*} \\ & (0.107) \end{aligned}$	$\begin{gathered} -0.247 * * \\ (0.105) \end{gathered}$	$\begin{gathered} -0.076 \\ (0.116) \end{gathered}$	$\begin{gathered} -0.382 * * * \\ (0.113) \end{gathered}$	$\begin{gathered} -0.222 * * \\ (0.105) \end{gathered}$
Secondary school	$\begin{aligned} & -0.126 \\ & (0.110) \end{aligned}$	$\begin{gathered} -0.220^{* *} \\ (0.108) \end{gathered}$	$\begin{gathered} 0.059 \\ (0.119) \end{gathered}$	$\begin{gathered} -0.362 * * * \\ (0.116) \end{gathered}$	$\begin{aligned} & -0.194^{*} \\ & (0.107) \end{aligned}$
Intermediate technical	$\begin{gathered} -0.243^{* *} \\ (0.117) \end{gathered}$	$\begin{gathered} -0.223^{*} \\ (0.115) \end{gathered}$	$\begin{aligned} & -0.095 \\ & (0.127) \end{aligned}$	$\begin{gathered} -0.429 * * * \\ (0.124) \end{gathered}$	$\begin{gathered} -0.268^{* *} \\ (0.115) \end{gathered}$
In school	$\begin{aligned} & -0.145 \\ & (0.128) \end{aligned}$	$\begin{gathered} -0.298^{* *} \\ (0.126) \end{gathered}$	$\begin{aligned} & -0.109 \\ & (0.138) \end{aligned}$	$\begin{gathered} -0.454 * * * \\ (0.135) \end{gathered}$	$\begin{aligned} & -0.205 \\ & (0.125) \end{aligned}$
Age	$\begin{gathered} -0.038^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.036^{* * *} \\ (0.014) \end{gathered}$	$\begin{gathered} -0.035^{* *} \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.015) \end{aligned}$	$\begin{gathered} -0.024^{*} \\ (0.013) \end{gathered}$
Age ${ }^{2}$	$\begin{gathered} 0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001 * * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001^{* * *} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.000^{*} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.000^{*} \\ & (0.000) \end{aligned}$
Age ${ }^{3}$	$\begin{gathered} -0.000 * * * \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{*} \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$
Male	-0.042**	-0.059***	-0.008	-0.051***	0.003

	(0.018)	(0.018)	(0.020)	(0.019)	(0.018)
N of children	0.021*	0.027**	0.044***	0.015	0.017
	(0.012)	(0.012)	(0.013)	(0.013)	(0.012)
N of adults	0.009	0.057***	0.039***	0.034**	0.008
	(0.012)	(0.012)	(0.014)	(0.013)	(0.012)
Marital status; "single" omitted					
Married	0.008	0.050*	-0.003	0.003	0.073**
	(0.030)	(0.029)	(0.032)	(0.032)	(0.029)
Divorced	0.063	-0.003	0.012	0.017	0.072*
	(0.044)	(0.043)	(0.048)	(0.046)	(0.043)
Married, but separated	-0.089	0.037	0.017	0.075	0.019
	(0.073)	(0.071)	(0.079)	(0.077)	(0.071)
Widowed	-0.035	0.065	-0.008	0.004	0.071
	(0.048)	(0.047)	(0.052)	(0.050)	(0.047)
Ln HH income (inflated to 2002)	-0.090***	-0.196***	-0.079***	-0.159***	-0.093***
	(0.023)	(0.023)	(0.025)	(0.025)	(0.023)
Occupation, "blue-collar" omitted					
Civil servant	-0.100**	-0.187***	0.037	-0.070	$-0.121^{* * *}$
	(0.047)	(0.046)	(0.051)	(0.050)	(0.046)
Self-employed	-0.274***	-0.286***	-0.273***	-0.384***	-0.241***
	(0.042)	(0.042)	(0.046)	(0.045)	(0.041)
White-collar	-0.049*	-0.060**	-0.026	-0.099***	-0.113***
	(0.028)	(0.027)	(0.030)	(0.029)	(0.027)
Currently in education	-0.048	-0.136**	-0.065	-0.040	-0.054
	(0.058)	(0.057)	(0.063)	(0.062)	(0.057)
Retired	-0.079	-0.098*	0.044	0.003	-0.037
	(0.053)	(0.053)	(0.058)	(0.057)	(0.052)
Maternity	-0.044	-0.003	0.001	-0.078	-0.068
	(0.070)	(0.069)	(0.076)	(0.074)	(0.068)
Nonworking	-0.011	-0.018	0.096**	0.010	-0.001
	(0.039)	(0.038)	(0.042)	(0.041)	(0.038)
Training	-0.049	-0.033	-0.038	0.058	-0.029
	(0.062)	(0.061)	(0.068)	(0.066)	(0.061)
Other nonworking	-0.058	-0.095**	-0.039	-0.029	-0.094**
	(0.046)	(0.045)	(0.050)	(0.049)	(0.045)
Constant	5.192***	5.449***	4.218***	5.184***	4.736***
	(0.286)	(0.282)	(0.310)	(0.303)	(0.279)
Observations	8944	8939	8935	8954	8953
R -squared	0.058	0.070	0.052	0.069	0.045

Table A6.3-Effect of future experience of unemployment on preferences for redistribution (Source: G-SOEP 1997-2002)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	0.055	-0.065	0.081^{*}	-0.044	-0.082^{*}
	(0.043)	(0.043)	(0.047)	(0.046)	(0.042)
Unemployment					
from 1998 to 2002	experience	0.023	$0.093^{* * *}$	0.061^{*}	$0.069^{* *}$
0.034					

	(0.029)	(0.028)	(0.031)	(0.030)	(0.028)
East	0.278***	0.245***	0.271***	0.245***	0.207***
	(0.020)	(0.020)	(0.022)	(0.022)	(0.020)
Education, "no school" omitted					
College	-0.188*	-0.290***	-0.105	-0.395***	-0.264**
	(0.113)	(0.111)	(0.122)	(0.119)	(0.110)
Vocational	-0.175	-0.252**	-0.116	-0.338***	-0.228**
	(0.110)	(0.108)	(0.120)	(0.117)	(0.107)
Secondary school	-0.118	-0.196*	0.017	-0.291**	-0.184*
	(0.113)	(0.111)	(0.123)	(0.120)	(0.110)
Intermediate technical	-0.228*	-0.198*	-0.122	-0.377***	-0.215*
	(0.122)	(0.120)	(0.132)	(0.129)	(0.119)
In school	-0.172	-0.340***	-0.182	-0.414***	-0.238*
	(0.134)	(0.132)	(0.146)	(0.143)	(0.131)
Age	-0.035**	-0.030**	-0.041**	-0.027	-0.033**
	(0.016)	(0.015)	(0.017)	(0.017)	(0.015)
Age ${ }^{2}$	0.001**	0.001**	0.001***	0.001*	0.001**
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age^{3}	-0.000**	-0.000**	-0.000***	-0.000**	-0.000*
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	-0.035*	-0.057***	0.003	-0.039*	0.008
	(0.020)	(0.019)	(0.021)	(0.021)	(0.019)
N of children	0.021*	0.019	0.038***	0.008	0.016
	(0.013)	(0.013)	(0.014)	(0.014)	(0.012)
N of adults	0.015	0.053***	0.044***	0.034**	0.002
	(0.013)	(0.013)	(0.015)	(0.014)	(0.013)
Marital status; "single" omitted					
Married	0.031	0.053*	0.015	0.024	0.084***
	(0.032)	(0.031)	(0.035)	(0.034)	(0.031)
Divorced	0.083*	-0.011	0.024	0.038	0.060
	(0.047)	(0.046)	(0.051)	(0.050)	(0.046)
Married, but separated	-0.053	0.056	0.048	0.080	0.032
	(0.078)	(0.077)	(0.085)	(0.083)	(0.076)
Widowed	-0.008	0.085	0.038	0.030	0.103**
	(0.053)	(0.052)	(0.057)	(0.056)	(0.051)
Ln HH income (inflated to 2002)	-0.105***	-0.182***	-0.093***	-0.176***	-0.098***
	(0.025)	(0.025)	(0.028)	(0.027)	(0.025)
Occupation, "blue-collar" omitted					
Civil servant	-0.133***	-0.190***	0.020	-0.075	-0.139***
	(0.050)	(0.049)	(0.055)	(0.053)	(0.049)
Self-employed	-0.280***	-0.264***	-0.254***	-0.368***	-0.268***
	(0.046)	(0.045)	(0.050)	(0.048)	(0.045)
White-collar	-0.038	-0.052*	-0.008	-0.080**	-0.109***
	(0.029)	(0.029)	(0.032)	(0.031)	(0.029)
Currently in education	-0.026	-0.143**	-0.061	-0.004	-0.072
	(0.064)	(0.062)	(0.069)	(0.068)	(0.062)
Retired	-0.027	-0.077	0.050	0.027	-0.050
	(0.059)	(0.058)	(0.064)	(0.063)	(0.058)
Maternity	-0.020	-0.032	0.009	-0.055	-0.050
	(0.074)	(0.073)	(0.080)	(0.079)	(0.072)
Nonworking	0.021	0.018	0.135***	0.056	0.019
	(0.041)	(0.040)	(0.045)	(0.043)	(0.040)
Training	-0.007	0.010	-0.020	0.040	-0.022
	(0.068)	(0.067)	(0.074)	(0.072)	(0.067)
Other nonworking	-0.028	-0.089*	-0.069	-0.006	-0.117**

	(0.049)	(0.048)	(0.053)	(0.052)	(0.048)
Constant	$5.240^{* * *}$	$5.276^{* * *}$	$4.443^{* * *}$	$5.337^{* * *}$	$4.929^{* * *}$
	(0.312)	(0.307)	(0.339)	(0.331)	(0.304)
Observations	7692	7690	7689	7701	7700
R-squared	0.055	0.065	0.048	0.062	0.042

Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$
Table A6.4 - Effect of current, previous and future experience of unemployment on preferences for redistribution in 1997 (Source: G-SOEP 1992-2002)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	$\begin{gathered} 0.041 \\ (0.045) \end{gathered}$	$\begin{gathered} -0.064 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.059 \\ (0.048) \end{gathered}$	$\begin{gathered} -0.100^{* *} \\ (0.044) \end{gathered}$
Experience of unemployment from 1992 to 1996	0.035	0.021	$0.057 *$	0.056*	0.060**
Experience of unemployment from 1998 to 2002	(0.028) 0.025	$\stackrel{(0.028)}{0.085 * * *}$	(0.031) 0.047	(0.030) $0.055 *$	(0.027) 0.027
East	$\begin{gathered} (0.029) \\ 0.275^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} (0.029) \\ 0.245 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} (0.032) \\ 0.266^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} (0.031) \\ 0.245^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} (0.029) \\ 0.200^{* * *} \\ (0.020) \end{gathered}$
Education, "no school" omitted College	$\begin{aligned} & -0.208^{*} \\ & (0.113) \end{aligned}$	$\begin{gathered} -0.301 * * * \\ (0.112) \end{gathered}$	$\begin{gathered} -0.111 \\ (0.124) \end{gathered}$	$\begin{gathered} -0.413 * * * \\ (0.121) \end{gathered}$	$\begin{gathered} -0.277 * * \\ (0.111) \end{gathered}$
Vocational	$\begin{gathered} -0.191^{*} \\ (0.111) \end{gathered}$	$\begin{gathered} -0.263^{* *} \\ (0.109) \end{gathered}$	$\begin{aligned} & -0.121 \\ & (0.121) \end{aligned}$	$\begin{gathered} -0.354 * * * \\ (0.118) \end{gathered}$	$\begin{gathered} -0.242 * * \\ (0.108) \end{gathered}$
Secondary school	$\begin{gathered} -0.139 \\ (0.114) \end{gathered}$	$\begin{aligned} & -0.211 * \\ & (0.112) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.124) \end{gathered}$	$\begin{gathered} -0.313 * * * \\ (0.121) \end{gathered}$	$\begin{gathered} -0.202 * \\ (0.111) \end{gathered}$
Intermediate technical	$\begin{gathered} -0.256^{* *} \\ (0.122) \end{gathered}$	$\begin{gathered} -0.229^{*} \\ (0.121) \end{gathered}$	$\begin{aligned} & -0.145 \\ & (0.133) \end{aligned}$	$\begin{gathered} -0.410^{* * *} \\ (0.130) \end{gathered}$	$\begin{gathered} -0.244 * * \\ (0.120) \end{gathered}$
In school	$\begin{aligned} & -0.205 \\ & (0.135) \end{aligned}$	$\begin{gathered} -0.358 * * * \\ (0.133) \end{gathered}$	$\begin{aligned} & -0.187 \\ & (0.147) \end{aligned}$	$\begin{gathered} -0.433 * * * \\ (0.144) \end{gathered}$	$\begin{aligned} & -0.246^{*} \\ & (0.132) \end{aligned}$
Age	$\begin{gathered} -0.041^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.034 * * \\ (0.016) \end{gathered}$	$\begin{gathered} -0.043 * * \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.030^{*} \\ & (0.017) \end{aligned}$	$\begin{gathered} -0.034 * * \\ (0.015) \end{gathered}$
Age ${ }^{2}$	$\begin{gathered} 0.001 * * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001 * * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001 * * \\ (0.000) \end{gathered}$	$\begin{gathered} 0.001^{* *} \\ (0.000) \end{gathered}$
Age^{3}	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{* *} \\ (0.000) \end{gathered}$	$\begin{gathered} -0.000^{*} \\ (0.000) \end{gathered}$
Male	$\begin{gathered} -0.035^{*} \\ (0.020) \end{gathered}$	$\begin{gathered} -0.059^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.040^{*} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.019) \end{gathered}$
N of children	$\begin{gathered} 0.019 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.038 * * * \\ (0.014) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.012) \end{gathered}$
N of adults	$\begin{aligned} & 0.011 \\ & (0.014) \\ & \quad \text { Marital } . \end{aligned}$	$\begin{gathered} 0.053 * * * \\ (0.013) \\ \text { tus; "single, } \end{gathered}$	$\begin{gathered} 0.043 * * * \\ (0.015) \end{gathered}$ omitted	$\begin{gathered} 0.033^{* *} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.013) \end{gathered}$
Married	$\begin{gathered} 0.034 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.032) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.034) \end{gathered}$	$\begin{gathered} 0.078 * * \\ (0.031) \end{gathered}$
Divorced	$\begin{gathered} 0.099 * * \\ (0.048) \end{gathered}$	$\begin{gathered} -0.018 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.046) \end{gathered}$
Married, but separated	$\begin{aligned} & -0.055 \\ & (0.079) \end{aligned}$	$\begin{gathered} 0.043 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.086) \end{gathered}$	$\begin{gathered} 0.070 \\ (0.084) \end{gathered}$	$\begin{gathered} 0.030 \\ (0.077) \end{gathered}$

Widowed	$\begin{gathered} -0.010 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.076 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.057) \end{gathered}$	$\begin{aligned} & 0.097 * \\ & (0.052) \end{aligned}$
Ln HH income (inflated to 2002)	-0.094***	-0.186***	-0.090***	-0.173***	-0.094***
	(0.026)	(0.025)	(0.028)	(0.027)	(0.025)
Occupation, "blue-collar" omitted					
Civil servant	$\begin{gathered} -0.131 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} -0.188 * * * \\ (0.050) \end{gathered}$	$\begin{gathered} 0.020 \\ (0.055) \end{gathered}$	$\begin{gathered} -0.067 \\ (0.054) \end{gathered}$	$\begin{gathered} -0.138^{* * *} \\ (0.050) \end{gathered}$
Self-employed	$\begin{gathered} -0.276^{* * *} \\ (0.046) \end{gathered}$	$\begin{gathered} -0.262 * * * \\ (0.045) \end{gathered}$	$\begin{gathered} -0.258 * * * \\ (0.050) \end{gathered}$	$\begin{gathered} -0.370^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} -0.258^{* * *} \\ (0.045) \end{gathered}$
White-collar	$\begin{gathered} -0.040 \\ (0.030) \end{gathered}$	$\begin{aligned} & -0.052^{*} \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.032) \end{aligned}$	$\begin{gathered} -0.078 * * \\ (0.032) \end{gathered}$	$\begin{gathered} -0.104^{* * *} \\ (0.029) \end{gathered}$
Currently in education	$\begin{aligned} & -0.049 \\ & (0.064) \end{aligned}$	$\begin{gathered} -0.152 * * \\ (0.063) \end{gathered}$	$\begin{aligned} & -0.062 \\ & (0.070) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.068) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (0.063) \end{aligned}$
Retired	$\begin{aligned} & -0.032 \\ & (0.059) \end{aligned}$	$\begin{aligned} & -0.076 \\ & (0.058) \end{aligned}$	$\begin{gathered} 0.053 \\ (0.065) \end{gathered}$	$\begin{gathered} 0.028 \\ (0.063) \end{gathered}$	$\begin{aligned} & -0.042 \\ & (0.058) \end{aligned}$
Maternity	$\begin{aligned} & -0.024 \\ & (0.074) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.073) \end{aligned}$	$\begin{gathered} 0.013 \\ (0.081) \end{gathered}$	$\begin{aligned} & -0.053 \\ & (0.079) \end{aligned}$	$\begin{aligned} & -0.044 \\ & (0.072) \end{aligned}$
Nonworking	$\begin{gathered} 0.013 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.041) \end{gathered}$	$\begin{gathered} 0.123 * * * \\ (0.045) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.044) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.040) \end{gathered}$
Training	$\begin{gathered} -0.015 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.067) \end{gathered}$	$\begin{gathered} -0.021 \\ (0.075) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.073) \end{gathered}$	$\begin{gathered} -0.023 \\ (0.067) \end{gathered}$
Other nonworking	$\begin{gathered} -0.037 \\ (0.049) \end{gathered}$	$\begin{gathered} -0.096^{* *} \\ (0.049) \end{gathered}$	$\begin{gathered} -0.072 \\ (0.054) \end{gathered}$	$\begin{gathered} -0.015 \\ (0.053) \end{gathered}$	$\begin{gathered} -0.120^{* *} \\ (0.048) \end{gathered}$
Constant	$\begin{gathered} 5.286 * * * \\ (0.315) \end{gathered}$	$\begin{gathered} 5.377 * * * \\ (0.311) \end{gathered}$	$\begin{gathered} 4.450 * * * \\ (0.344) \end{gathered}$	$\begin{gathered} 5.384 * * * \\ (0.336) \end{gathered}$	$\begin{gathered} 4.925 * * * \\ (0.308) \end{gathered}$
Observations	7591	7589	7588	7600	7599
R-squared	0.056	0.066	0.049	0.063	0.042

> Standard errors in parentheses
> $* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A6.5-Effect of unemployment in 2002, West and East Germans (Source: G-SOEP 2002)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	$0.088^{* *}$	0.010	0.073	0.011	0.049
East	(0.045)	(0.044)	(0.047)	(0.046)	(0.042)
Education, "no school" omitted	$0.224^{* * *}$	$0.189^{* * *}$	$0.255^{* * *}$	$0.181^{* * *}$	$0.115^{* * *}$
College	(0.019)	(0.019)	(0.020)	(0.020)	(0.018)
	-0.240	$-0.314^{* *}$	$-0.323^{* *}$	$-0.390^{* * *}$	-0.103
Vocational	(0.146)	(0.142)	(0.153)	(0.149)	(0.136)
	-0.117	-0.193	-0.292^{*}	$-0.304^{* *}$	-0.093
Secondary school	(0.145)	(0.141)	(0.152)	(0.147)	(0.135)
	-0.142	-0.123	-0.239	-0.252^{*}	-0.061
Intermediate technical	(0.147)	(0.143)	(0.154)	(0.149)	(0.137)
In school	-0.115	-0.181	$-0.362^{* *}$	-0.308^{*}	-0.089
	(0.154)	(0.150)	(0.162)	(0.157)	(0.144)
Age	-0.122	-0.172	-0.262	-0.305^{*}	-0.043
	(0.159)	(0.155)	(0.167)	(0.162)	(0.149)
	-0.007	0.006	-0.011	-0.019	-0.007

	(0.014)	(0.013)	(0.015)	(0.014)	(0.013)
Age ${ }^{2}$	0.000	-0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age ${ }^{3}$	-0.000	-0.000	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	-0.034*	-0.058***	-0.006	-0.034*	-0.015
	(0.019)	(0.018)	(0.019)	(0.019)	(0.018)
N of children	0.011	0.033**	0.062***	0.033**	0.022*
	(0.013)	(0.013)	(0.014)	(0.013)	(0.012)
N of adults	-0.009	0.031***	0.018	0.041***	0.007
	(0.012)	(0.012)	(0.013)	(0.013)	(0.012)
Marital status; "single" omitted					
Married	0.054*	0.007	-0.006	0.027	0.046
	(0.031)	(0.031)	(0.033)	(0.032)	(0.030)
Divorced	0.042	-0.032	0.035	0.045	0.072*
	(0.044)	(0.043)	(0.047)	(0.045)	(0.042)
Married, but separated	-0.007	-0.104	-0.068	-0.014	0.059
	(0.072)	(0.070)	(0.076)	(0.073)	(0.068)
Widowed	0.009	-0.025	-0.057	-0.073	0.031
	(0.049)	(0.048)	(0.052)	(0.050)	(0.046)
Ln HH income (inflated to 2002)	-0.071***	-0.141***	-0.146***	-0.156***	-0.092***
	(0.022)	(0.021)	(0.023)	(0.022)	(0.021)
Occupation, "blue-collar" omitted					
Civil servant	-0.056	-0.080	0.157***	-0.067	-0.025
	(0.052)	(0.051)	(0.054)	(0.053)	(0.049)
Self-employed	-0.220***	-0.260***	-0.254***	-0.271***	-0.186***
	(0.045)	(0.044)	(0.047)	(0.046)	(0.042)
White-collar	-0.049*	-0.041	0.017	-0.089***	-0.069**
	(0.029)	(0.029)	(0.031)	(0.030)	(0.028)
Currently in education	-0.010	-0.002	-0.022	-0.049	-0.011
	(0.062)	(0.061)	(0.066)	(0.064)	(0.059)
Retired	0.012	-0.052	0.135**	-0.104*	-0.064
	(0.054)	(0.052)	(0.056)	(0.055)	(0.051)
Maternity	0.072	-0.015	0.142**	-0.140**	-0.045
	(0.068)	(0.066)	(0.071)	(0.069)	(0.064)
Nonworking	0.019	-0.036	0.115***	-0.054	0.001
	(0.039)	(0.038)	(0.041)	(0.039)	(0.037)
Training	0.038	0.038	-0.096	-0.038	-0.050
	(0.062)	(0.061)	(0.065)	(0.063)	(0.059)
Other nonworking	0.050	-0.055	0.066	-0.094*	-0.091**
	(0.048)	(0.046)	(0.050)	(0.049)	(0.045)
Constant	4.634***	4.518***	4.733***	5.083***	4.460***
	(0.302)	(0.294)	(0.318)	(0.308)	(0.285)
Observations	8190	8193	8197	8206	8204
R-squared	0.039	0.043	0.047	0.041	0.019

[^20]*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

Table A6.6-Effect of previous experience of unemployment on preferences for redistribution (Source: G-SOEP 1992-2002)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Unemployed	$\begin{gathered} 0.059 \\ (0.046) \end{gathered}$	$\begin{gathered} -0.008 \\ (0.045) \end{gathered}$	$\begin{gathered} 0.042 \\ (0.049) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.044) \end{gathered}$
Experience of unemployment from 1992 to 2001	0.059**	0.034	0.084***	0.042*	0.033
East	$\begin{gathered} (0.024) \\ 0.214 * * * \\ (0.020) \end{gathered}$	$\begin{gathered} (0.024) \\ 0.182^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} (0.026) \\ 0.245^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} (0.025) \\ 0.169^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} (0.023) \\ 0.113^{* * *} \\ (0.019) \end{gathered}$
Education, "no school" omitted College	$\begin{aligned} & -0.233 \\ & (0.146) \end{aligned}$	$\begin{aligned} & -0.309 * * \\ & (0.142) \end{aligned}$	$\begin{aligned} & -0.326^{* *} \\ & (0.153) \end{aligned}$	$\begin{aligned} & -0.385^{* * *} \\ & (0.149) \end{aligned}$	$\begin{aligned} & -0.108 \\ & (0.136) \end{aligned}$
Vocational	$\begin{aligned} & -0.108 \\ & (0.145) \end{aligned}$	$\begin{aligned} & -0.194 \\ & (0.141) \end{aligned}$	$\begin{aligned} & -0.295^{*} \\ & (0.152) \end{aligned}$	$\begin{aligned} & -0.294 * * \\ & (0.147) \end{aligned}$	$\begin{aligned} & -0.094 \\ & (0.135) \end{aligned}$
Secondary school	$\begin{aligned} & -0.140 \\ & (0.147) \end{aligned}$	$\begin{aligned} & -0.136 \\ & (0.143) \end{aligned}$	$\begin{aligned} & -0.258^{*} \\ & (0.154) \end{aligned}$	$\begin{aligned} & -0.268^{*} \\ & (0.149) \end{aligned}$	$\begin{aligned} & -0.073 \\ & (0.137) \end{aligned}$
Intermediate technical	$\begin{aligned} & -0.088 \\ & (0.155) \end{aligned}$	$\begin{aligned} & -0.161 \\ & (0.151) \end{aligned}$	$\begin{aligned} & -0.368^{* *} \\ & (0.163) \end{aligned}$	$\begin{aligned} & -0.278 * \\ & (0.158) \end{aligned}$	$\begin{aligned} & -0.071 \\ & (0.145) \end{aligned}$
In school	$\begin{aligned} & -0.197 \\ & (0.164) \end{aligned}$	$\begin{aligned} & -0.199 \\ & (0.159) \end{aligned}$	$\begin{aligned} & -0.291^{*} \\ & (0.171) \end{aligned}$	$\begin{aligned} & -0.301 * \\ & (0.166) \end{aligned}$	$\begin{aligned} & -0.039 \\ & (0.153) \end{aligned}$
Age	$\begin{aligned} & -0.001 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.014) \end{aligned}$
Age ${ }^{2}$	$\begin{aligned} & 0.000 \\ & (0.000) \end{aligned}$				
Age ${ }^{3}$	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$				
Male	$\begin{aligned} & -0.042^{*} \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.063^{* * *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.038^{* *} \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.018) \end{aligned}$
N of children	$\begin{aligned} & 0.012 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.034^{* *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.060^{* * *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.036^{* *} \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.023 * \\ & (0.013) \end{aligned}$
N of adults	$\begin{aligned} & -0.009 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.036 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.015 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0.046 * * * \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.006 \\ & (0.012) \end{aligned}$
Marital status; "single" omitted					
Married	$\begin{aligned} & 0.049 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.009 \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.031 \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.039 \\ & (0.031) \end{aligned}$
Divorced	$\begin{aligned} & 0.035 \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.042 \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.045 \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.064 \\ & (0.043) \end{aligned}$
Married, but separated	$\begin{aligned} & -0.010 \\ & (0.075) \end{aligned}$	$\begin{aligned} & -0.082 \\ & (0.073) \end{aligned}$	$\begin{aligned} & -0.043 \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.028 \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.087 \\ & (0.071) \end{aligned}$
Widowed	$\begin{aligned} & -0.000 \\ & (0.050) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.048) \end{aligned}$	$\begin{aligned} & -0.051 \\ & (0.052) \end{aligned}$	$\begin{aligned} & -0.077 \\ & (0.050) \end{aligned}$	$\begin{aligned} & 0.022 \\ & (0.047) \end{aligned}$
Ln HH income (inflated to 2002)	$-0.062 * * *$	$-0.149^{* * *}$	$-0.131^{* * *}$	$-0.166^{* * *}$	$-0.083 * * *$
	(0.023)	(0.022)	(0.024)	(0.023)	(0.022)
Occupation, "blue-collar" omitted					
Civil servant	$\begin{aligned} & -0.057 \\ & (0.053) \end{aligned}$	$\begin{aligned} & -0.076 \\ & (0.051) \end{aligned}$	$\begin{aligned} & 0.168 * * * \\ & (0.055) \end{aligned}$	$\begin{aligned} & -0.052 \\ & (0.053) \end{aligned}$	$\begin{aligned} & -0.022 \\ & (0.050) \end{aligned}$
Self-employed	$\begin{aligned} & -0.220^{* * *} \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.255^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.244 * * * \\ & (0.047) \end{aligned}$	$\begin{aligned} & -0.261^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & -0.191^{* * *} \\ & (0.043) \end{aligned}$
White-collar	$\begin{aligned} & -0.051^{*} \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (0.029) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (0.031) \end{aligned}$	$\begin{aligned} & -0.081^{* * *} \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.071^{* *} \\ & (0.028) \end{aligned}$

Currently in education	0.009		-0.043	-0.030	-0.075
	(0.065)	(0.063)	(0.068)	(0.066)	(0.062)
Retired	0.027	-0.064	$0.136^{* *}$	-0.095^{*}	-0.059
	(0.055)	(0.053)	(0.058)	(0.056)	(0.052)
Maternity	0.049	0.011	0.138^{*}	-0.097	-0.072
	(0.073)	(0.071)	(0.077)	(0.075)	(0.069)
Nonworking	0.031	-0.053	$0.091^{* *}$	-0.056	-0.016
	(0.042)	(0.041)	(0.044)	(0.043)	(0.040)
Training	0.100	0.062	-0.050	0.041	0.006
	(0.067)	(0.065)	(0.071)	(0.068)	(0.064)
Other nonworking	0.061	-0.062	0.038	-0.080	$-0.097^{* *}$
	(0.050)	(0.049)	(0.052)	(0.051)	(0.047)
Constant	$4.446^{* * *}$	$4.695^{* * *}$	$4.798^{* * *}$	$5.182^{* * *}$	$4.373^{* * *}$
	(0.316)	(0.307)	(0.332)	(0.321)	(0.298)
Observations					
R-squared	7712	7715	7718	7729	7727
	0.042	0.045	0.049	0.044	0.020

Standard errors in parentheses

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

Table A6.7-Effect of years of unemployment on preferences for redistribution (Source: GSOEP 1992-2002)

Married	$\begin{aligned} & 0.048 \\ & (0.032) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.031) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.034) \end{aligned}$	$\begin{aligned} & 0.030 \\ & (0.033) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (0.031) \end{aligned}$
Divorced	$\begin{aligned} & 0.033 \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.044) \end{aligned}$	$\begin{aligned} & 0.041 \\ & (0.047) \end{aligned}$	$\begin{aligned} & 0.044 \\ & (0.046) \end{aligned}$	$\begin{aligned} & 0.059 \\ & (0.043) \end{aligned}$
Married, but separated	$\begin{aligned} & -0.010 \\ & (0.075) \end{aligned}$	$\begin{aligned} & -0.081 \\ & (0.073) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.078) \end{aligned}$	$\begin{aligned} & 0.030 \\ & (0.076) \end{aligned}$	$\begin{aligned} & 0.085 \\ & (0.071) \end{aligned}$
Widowed	$\begin{aligned} & -0.003 \\ & (0.050) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (0.048) \end{aligned}$	$\begin{aligned} & -0.053 \\ & (0.052) \end{aligned}$	$\begin{aligned} & -0.078 \\ & (0.050) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.047) \end{aligned}$
Ln HH income (inflated to 2002)	$\begin{aligned} & -0.064^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.147 * * * \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.129^{* * *} \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.165^{* * *} \\ & (0.023) \end{aligned}$	$\begin{aligned} & -0.083^{* * *} \\ & (0.022) \end{aligned}$
Occupation, "blue-collar" omitted					
Civil servant	$\begin{aligned} & -0.068 \\ & (0.052) \end{aligned}$	$\begin{aligned} & -0.075 \\ & (0.050) \end{aligned}$	$\begin{aligned} & 0.162 * * * \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (0.053) \end{aligned}$	$\begin{aligned} & -0.026 \\ & (0.049) \end{aligned}$
Self-employed	$\begin{aligned} & -0.228^{* * *} \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.252 * * * \\ & (0.043) \end{aligned}$	$\begin{aligned} & -0.245^{* * *} \\ & (0.046) \end{aligned}$	$\begin{aligned} & -0.261 * * * \\ & (0.045) \end{aligned}$	$\begin{aligned} & -0.193 * * * \\ & (0.042) \end{aligned}$
White-collar	$\begin{aligned} & -0.060^{* *} \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.033 \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.019 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.081^{* * *} \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.074 * * * \\ & (0.027) \end{aligned}$
Currently in education	$\begin{array}{r} -0.025 \\ (0.064) \end{array}$	$\begin{aligned} & -0.037 \\ & (0.062) \end{aligned}$	$\begin{aligned} & -0.030 \\ & (0.067) \end{aligned}$	$\begin{aligned} & -0.068 \\ & (0.065) \end{aligned}$	$-0.030(0.060)$
Retired	$\begin{gathered} 0.018 \\ (0.053) \end{gathered}$	$\begin{aligned} & -0.056 \\ & (0.052) \end{aligned}$	$\begin{gathered} 0.142 * * \\ (0.056) \end{gathered}$	$\begin{aligned} & -0.090^{*} \\ & (0.054) \end{aligned}$	$\begin{aligned} & -0.060 \\ & (0.050) \end{aligned}$
Maternity	$\begin{gathered} 0.038 \\ (0.073) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.071) \end{gathered}$	$\begin{aligned} & 0.138^{*} \\ & (0.076) \end{aligned}$	$\begin{aligned} & -0.093 \\ & (0.074) \end{aligned}$	$\begin{aligned} & -0.075 \\ & (0.069) \end{aligned}$
Nonworking	$\begin{gathered} 0.020 \\ (0.039) \end{gathered}$	$\begin{aligned} & -0.045 \\ & (0.038) \end{aligned}$	$\begin{gathered} 0.092^{* *} \\ (0.041) \end{gathered}$	$\begin{aligned} & -0.048 \\ & (0.040) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.037) \end{aligned}$
Training	$\begin{gathered} 0.085 \\ (0.066) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.064) \end{gathered}$	$\begin{aligned} & -0.053 \\ & (0.069) \end{aligned}$	$\begin{gathered} 0.045 \\ (0.067) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.063) \end{gathered}$
Other nonworking	$\begin{gathered} 0.050 \\ (0.048) \end{gathered}$	$\begin{aligned} & -0.055 \\ & (0.047) \end{aligned}$	$\begin{gathered} 0.040 \\ (0.051) \end{gathered}$	$\begin{aligned} & -0.074 \\ & (0.049) \end{aligned}$	$\begin{gathered} -0.100^{* *} \\ (0.046) \end{gathered}$
Constant	$\begin{gathered} 4.500 * * * \\ (0.312) \end{gathered}$	$\begin{gathered} 4.654 * * * \\ (0.303) \end{gathered}$	$\begin{gathered} 4.761 * * * \\ (0.327) \end{gathered}$	$\begin{gathered} 5.135^{* * *} \\ (0.317) \end{gathered}$	$\begin{gathered} 4.372 * * * \\ (0.294) \end{gathered}$
Observations	7721	7724	7727	7738	7736
R-squared	0.042	0.045	0.048	0.043	0.020

Table A6.8-Effect of years of unemployment on preferences for redistribution (Source: GSOEP 1992-2002)

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old- Age	(5) When Requiring Care
Unemployment years. "0" omitted	$0.076^{* *}$	0.035	$0.098^{* * *}$	$0.065^{* *}$	0.056^{*}
1	(0.030)	(0.030)	(0.032)	(0.031)	(0.029)
2	0.050	-0.024	0.010	-0.037	-0.020
	(0.043)	(0.041)	(0.045)	(0.043)	(0.040)
3	0.032	0.063	0.066	0.034	0.009
	(0.051)	(0.049)	(0.053)	(0.051)	(0.048)
4	$0.142^{* *}$	0.026	$0.206 * *$	0.083	0.022
	(0.067)	(0.065)	(0.070)	(0.068)	(0.063)
5	0.064	-0.035	0.064	0.016	0.054
	(0.082)	(0.080)	(0.086)	(0.084)	(0.078)
6	0.118	$0.197 *$	0.139	0.143	0.152

	(0.105)	(0.102)	(0.110)	(0.106)	(0.099)
7	0.043	0.012	0.262*	-0.061	0.028
	(0.131)	(0.128)	(0.138)	(0.134)	(0.125)
8	0.145	0.219	0.134	0.391**	0.236
	(0.170)	(0.165)	(0.178)	(0.172)	(0.161)
9	0.074	0.029	0.039	-0.202	0.330*
	(0.188)	(0.183)	(0.197)	(0.191)	(0.178)
10	0.432	-0.216	0.179	-0.743**	-0.138
	(0.299)	(0.291)	(0.313)	(0.304)	(0.283)
11	0.725	0.013	1.623***	0.695	0.716*
	(0.458)	(0.445)	(0.480)	(0.465)	(0.434)
East	0.214***	0.183***	0.246***	0.172***	0.112***
	(0.020)	(0.020)	(0.021)	(0.021)	(0.019)
Education, "no school" omitted					
College	-0.214	-0.316**	-0.288*	-0.379**	-0.080
	(0.147)	(0.143)	(0.154)	(0.150)	(0.137)
Vocational	-0.092	-0.200	-0.256*	-0.287*	-0.068
	(0.146)	(0.142)	(0.152)	(0.148)	(0.136)
Secondary school	-0.125	-0.141	-0.221	-0.258*	-0.049
	(0.148)	(0.144)	(0.155)	(0.150)	(0.138)
Intermediate technical	-0.073	-0.171	-0.332**	-0.274*	-0.047
	(0.156)	(0.152)	(0.163)	(0.159)	(0.146)
In school	-0.183	-0.207	-0.252	-0.292*	-0.016
	(0.164)	(0.160)	(0.172)	(0.167)	(0.154)
Age	-0.003	-0.001	-0.021	-0.020	-0.007
	(0.015)	(0.014)	(0.015)	(0.015)	(0.014)
Age ${ }^{2}$	0.000	0.000	0.000	0.000	0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Age ${ }^{3}$	-0.000	-0.000	-0.000	-0.000	-0.000
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Male	-0.043**	-0.063***	-0.013	-0.038**	-0.016
	(0.019)	(0.019)	(0.020)	(0.019)	(0.018)
N of children	0.014	0.035***	0.061***	0.037***	0.024*
	(0.014)	(0.013)	(0.014)	(0.014)	(0.013)
N of adults	-0.009	0.036***	0.014	0.046***	0.005
	(0.013)	(0.013)	(0.014)	(0.013)	(0.012)
Marital status; "single" omitted					
Married	0.050	0.007	0.010	0.031	0.038
	(0.032)	(0.031)	(0.034)	(0.033)	(0.031)
Divorced	0.033	-0.032	0.037	0.038	0.057
	(0.045)	(0.044)	(0.047)	(0.046)	(0.043)
Married, but separated	-0.010	-0.084	-0.042	0.028	0.083
	(0.075)	(0.073)	(0.078)	(0.076)	(0.071)
Widowed	-0.000	-0.028	-0.051	-0.078	0.020
	(0.050)	(0.048)	(0.052)	(0.050)	(0.047)
Ln HH income (inflated to 2002)	-0.064***	$-0.147 * * *$	-0.130***	$-0.166 * * *$	$-0.082 * * *$
	(0.023)	(0.022)	(0.024)	(0.023)	(0.022)
Occupation, "blue-collar" omitted					
Civil servant	-0.061	-0.072	0.169***	-0.048	-0.024
	(0.052)	(0.051)	(0.054)	(0.053)	(0.049)
Self-employed	-0.225***	-0.250***	-0.242***	-0.257***	-0.191***
	(0.044)	(0.043)	(0.046)	(0.045)	(0.042)
White-collar	-0.057**	-0.031	0.022	-0.077***	$-0.073 * * *$
	(0.028)	(0.028)	(0.030)	(0.029)	(0.027)
Currently in education	-0.021	-0.035	-0.028	-0.066	-0.029
	(0.064)	(0.062)	(0.067)	(0.065)	(0.060)

Retired	0.017	-0.057	$0.142^{* *}$	-0.090^{*}	-0.061
	(0.053)	(0.052)	(0.056)	(0.054)	(0.050)
Maternity	0.041	0.018	0.142^{*}	-0.090	-0.071
	(0.073)	(0.071)	(0.076)	(0.074)	(0.069)
Nonworking	0.019	-0.046	$0.092^{* *}$	-0.050	-0.016
	(0.040)	(0.039)	(0.041)	(0.040)	(0.037)
Training	0.090	0.069	-0.048	0.049	0.005
	(0.066)	(0.064)	(0.069)	(0.067)	(0.063)
Other nonworking	0.053	-0.054	0.043	-0.072	$-0.096^{* *}$
	(0.048)	(0.047)	(0.051)	(0.049)	(0.046)
Constant	$4.488^{* * *}$	$4.670^{* * *}$	$4.739^{* * *}$	$5.141^{* * *}$	$4.360^{* * *}$
	(0.313)	(0.304)	(0.328)	(0.317)	(0.295)
Observations	7721	7724	7727	7738	7736
R-squared	0.043	0.046	0.051	0.046	0.021

Standard errors in parentheses
*** $\mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$
Table A6. 9 - The effect of transition into unemployment on preferences for redistribution, fixed effect model, controls for time varying variables: income, marital status, education and number of persons in HH (Source: G-SOEP, panel data set)

East Germans	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Unemployed	0.052	-0.046	0.073	-0.010	0.080
	(0.067)	(0.067)	(0.071)	(0.069)	(0.067)
Year 2002	-0.039	0.019	0.002	$-0.060^{* *}$	-0.042
	(0.029)	(0.028)	(0.030)	(0.030)	(0.028)
Log HH income	$-0.133^{* *}$	-0.031	-0.063	-0.069	-0.047
	(0.065)	(0.064)	(0.068)	(0.067)	(0.064)
Number of persons	0.029	-0.036	0.060^{*}	-0.002	-0.005
in HH					
	(0.029)	(0.029)	(0.031)	(0.030)	(0.029)
1. Married - reference group					
2. Married, but	-0.017	-0.005	$0.475^{* * *}$	-0.224	-0.297^{*}
separated					
	(0.172)	(0.171)	(0.182)	(0.178)	(0.171)
3. Single	0.112	0.120	0.121	-0.024	-0.012
	(0.114)	(0.114)	(0.120)	(0.118)	(0.113)
4. Divorced	-0.240	-0.084	0.211	-0.299^{*}	-0.225
	(0.152)	(0.151)	(0.160)	(0.157)	(0.151)
5. Widowed	-0.284^{*}	$-0.383^{* *}$	0.045	$-0.339^{* *}$	$-0.323^{* *}$
Years of education	$-0.037)$	(0.158)	(0.167)	(0.162)	(0.156)
	(0.017)	0.028	0.014	-0.016	0.007
Constant	$5.480^{* * *}$	(0.017)	(0.018)	(0.018)	(0.017)
	(0.513)	$3.571^{* * *}$	$3.568^{* * *}$	$4.383^{* * *}$	$3.983^{* * *}$
Observations	4,027	(0.511)	(0.541)	(0.531)	(0.509)
R-squared		4,026	4,029	4,034	4,038
Number of pers.nr.	2,283	0.015	2,283	2,284	2,281

VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Unemployed	0.099	-0.160**	0.013	0.055	-0.087
	(0.075)	(0.070)	(0.080)	(0.075)	(0.071)
Year 2002	0.020	0.119***	0.008	-0.004	0.050***
	(0.020)	(0.018)	(0.021)	(0.020)	(0.019)
Log HH income	-0.075*	-0.063	0.003	-0.050	0.039
	(0.045)	(0.042)	(0.048)	(0.045)	(0.042)
Number of persons in HH	0.013	0.039**	0.046**	0.035*	0.034*
	(0.021)	(0.020)	(0.023)	(0.021)	(0.020)
1. Married - reference group					
2. Married, but separated	-0.234*	0.005	-0.263**	0.123	-0.017
	(0.121)	(0.113)	(0.128)	(0.120)	(0.114)
3. Single	-0.008	0.067	-0.039	0.011	0.034
	(0.072)	(0.068)	(0.077)	(0.072)	(0.068)
4. Divorced	-0.090	-0.008	0.068	0.065	0.122
	(0.101)	(0.095)	(0.108)	(0.101)	(0.096)
5. Widowed	-0.204*	0.069	-0.051	-0.007	-0.159
	(0.121)	(0.112)	(0.127)	(0.118)	(0.112)
Years of education	-0.021*	-0.023**	-0.025**	-0.021*	-0.016
	(0.012)	(0.011)	(0.013)	(0.012)	(0.011)
Constant	4.628***	3.928***	3.384***	3.902***	3.243***
	(0.357)	(0.334)	(0.380)	(0.357)	(0.337)
Observations	7,711	7,717	7,713	7,724	7,721
R -squared	0.004	0.014	0.005	0.003	0.006
Number of pers.nr.	4,343	4,346	4,343	4,346	4,343

Standard errors in parentheses
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

APPENDIX FOR CHAPTER 7

Table A7.1 - Effect of current, previous and future HH net income per capita (decile) on demand for redistribution, base line controls

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
RP in 1997					
HH net income decile per person in 1995-1997	-0.015***	-0.032***	-0.021***	-0.029***	-0.018***
	$\begin{gathered} (0.004) \\ 9571 \end{gathered}$	(0.004) 9567	(0.004) 9560	(0.004) 9579	(0.004) 9578
HH net income decile per person in 1995-1997	-0.008	-0.028***	-0.012**	-0.024***	-0.014***
	(0.005)	(0.005)	(0.006)	(0.006)	(0.005)
HH net income decile per person in 1992-1994	-0.008	-0.006	-0.013***	-0.008	-0.007
	(0.005)	(0.005)	(0.006)	(0.006)	(0.005)
Observations	9121	9118	9111	9130	9129
HH net income decile in 1995-1997	-0.010**	-0.021***	-0.023***	-0.027***	-0.015***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
HH net income decile per person in 2000-2002	-0.007	-0.017***	0.000	-0.006	-0.005
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Observations	7968	7965	7962	7972	7973
RP in 2002					
HH net income decile per person in 2000-2002	-0.014***	-0.028***	-0.028***	-0.033***	-0.019***
	$\begin{gathered} (0.004) \\ 8413 \end{gathered}$	(0.004) 8414	(0.004) 8420	$\begin{gathered} (0.004) \\ 8426 \end{gathered}$	(0.004) 8425
HH net income decile per person in 2000-2002	-0.015**	-0.027***	-0.020***	-0.021***	-0.019***
	(0.006)	(0.006)	(0.007)	(0.006)	(0.006)
HH net income decile per person in 1998-1999	0.011	0.006	0.007	0.001	0.008
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)
HH net income decile per person in 1995-1997	-0.008	-0.009	-0.020**	-0.014*	-0.007
	(0.007)	(0.007)	(0.008)	(0.007)	(0.007)
HH net income decile per person in 1992-1994	0.000	0.000	-0.000	0.000	0.000
	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
Observations	7457	7460	7463	7469	7469

[^21]Table A7.2 - Effect of current, previous and future HH net income, OECD-modified scale (decile) on demand for redistribution, base line controls

VARIABLES	(1) When Unempl.	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
RP in 1997					
HH net income decile (OECD) per capita in 1995-1997	-0.017***	-0.031***	-0.019***	-0.029***	-0.019***
	(0.003) 9571	(0.003) 9567	(0.004) 9560	(0.003) 9579	(0.003) 9578
HH net income decile (OECD) per capita in 1995-1997	-0.007	-0.027***	-0.010*	-0.027***	-0.016***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
HH government income decile (OECD) per capita in 1992-1994	-0.011**	-0.006	-0.013**	-0.003	-0.005
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Observations	9057	9054	9047	9066	9065
HH net income decile (OECD) per capita in 1995-1997	-0.014***	-0.020***	-0.019***	-0.025***	-0.013***
	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)
HH net income decile (OECD) per capita in 2000-2002 (OPOUM)	-0.003	-0.017***	-0.003	-0.009*	-0.010**
	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)
Observations	7968	7965	7962	7972	7973
RP in 2002					
HH net income decile (OECD) per capita in 2000-2002	-0.015***	-0.028***	-0.027***	-0.030***	-0.018***
	$\begin{gathered} (0.004) \\ 8412 \end{gathered}$	(0.003) 8413	(0.004) 8419	$\begin{gathered} (0.004) \\ 8425 \end{gathered}$	(0.003) 8424
HH net income decile (OECD) per capita in 2000-2002	-0.013**	-0.021***	-0.016***	-0.017***	-0.016***
	(0.006)	(0.006)	(0.006)	(0.006)	(0.005)
HH net income decile (OECD) per capita in 1998-1999	0.006	0.002	-0.001	-0.007	0.008
	(0.007)	(0.006)	(0.007)	(0.007)	(0.006)
HH net income decile (OECD) per capita in 1995-1997	-0.010	-0.011*	-0.021***	-0.013*	-0.009
	(0.007)	(0.007)	(0.007)	(0.007)	(0.006)
HH net income decile (OECD) per capita in 1992-1994	0.002	-0.000	0.004	0.003	-0.001
	(0.006)	(0.005)	(0.006)	(0.006)	(0.005)
Observations	7413	7416	7419	7426	7426

[^22]Table A7.3 - Transition matrix for monthly household net income for two years 1997 and 2002, frequencies

	1	2	3	4	5	6	7	8	9	10	Total in 2002
in 1997											
1	473	161	64	35	22	30	10	11	8	6	820
2	129	323	167	93	57	31	31	18	9	4	862
3	77	139	229	170	108	38	41	21	15	8	846
4	45	71	155	206	166	116	70	31	28	9	897
5	36	80	77	143	198	150	113	86	30	12	925
6	29	50	67	83	126	205	153	127	60	15	915
7	31	27	51	64	83	162	191	155	121	35	920
8	17	13	39	44	57	86	157	233	202	97	945
9	24	17	21	36	29	58	67	167	293	174	886
l0	29	15	19	15	35	26	42	52	141	529	903
Total	890	896	889	889	881	902	875	901	907	889	8,919

Figure A7.1 - Net household income mobility in ten decile groups from 1997 to 2002, \% of initial deciles

Table A7.4 Transition matrix for monthly household net income per capita for two years 1997 and 2002, frequencies

	1	2	3	4	5	6	7	8	9	10	Total
1	505	152	90	63	30	19	14	7	9	6	895
2	156	275	194	128	71	43	24	6	11	10	918
3	92	182	220	152	87	80	42	20	21	4	900
4	26	94	177	206	158	100	83	30	24	6	904
5	36	66	77	148	194	141	93	50	50	25	880
6	18	32	38	91	161	168	141	91	70	44	854
7	18	34	41	34	78	169	201	155	99	61	890
8	17	27	41	49	60	99	164	235	135	72	899
9	10	14	25	22	44	57	72	223	277	167	911
10	3	8	8	20	22	26	42	68	186	485	868
Total	881	884	911	913	905	902	876	885	882	880	8,919

Figure A7.2 - Net household income mobility per capita in ten decile groups from 1997 to $2002, \%$ of initial deciles

Figure A7.3 visualises difference in immobility between three measure of income and makes it clear that mean weighted income reveals less immobility at least in the lower income deciles: the difference is from 6 to 10 percent in the first three deciles.

Figure A7.3 - Income immobility across deciles for three measures of income

Table A7.5-Effect of transition to another household net income decile on demand for redistribution

Table A7.6 - Effect of transition to another household net income decile on demand for redistribution, models with base line controls

All Germans	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
HH income deciles	$-\mathbf{0 . 0 2 4 * * *}$	-0.004	-0.006	-0.009	-0.004

	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
Year 2002	-0.006	0.074***	0.012	-0.029**	0.012
	(0.013)	(0.012)	(0.014)	(0.013)	(0.012)
HH members	0.025*	0.017	0.039**	0.009	0.011
	(0.015)	(0.014)	(0.016)	(0.015)	(0.014)
(1 Married)	-0.067	0.098	0.004	0.097	-0.042
2. Married but separated	(0.081)	(0.079)	(0.087)	(0.083)	(0.079)
	-0.021	0.082	-0.041	-0.045	-0.010
3. Single	(0.055)	(0.054)	(0.059)	(0.057)	(0.054)
	-0.050	0.000	0.062	-0.044	-0.022
4. Divorced	(0.070)	(0.069)	(0.075)	(0.072)	(0.068)
	-0.273***	-0.072	-0.100	-0.236***	-0.285***
5. Widowed	(0.084)	(0.081)	(0.090)	(0.085)	(0.081)
	-0.021**	-0.008	-0.018*	-0.017*	-0.007
Years of education	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)
	4.267***	3.479***	3.497***	$3.739 * * *$	3.640***
Constant	(0.119)	(0.116)	(0.127)	(0.121)	(0.116)
	15240	15242	15242	15258	15262
Observations	0.005	0.005	0.002	0.004	0.002
R -squared	8449	8452	8451	8446	8449
Number of pers. nr.	-0.024***	-0.004	-0.006	-0.009	-0.004

East Germans

VARIABLES	(1) When Unemployed East	(2) When Sick East	(3) For Family East	$\begin{gathered} \text { (4) } \\ \text { In Old-Age } \\ \text { East } \\ \hline \end{gathered}$	(5) When Requiring Care East
HH income deciles	$\begin{gathered} -\mathbf{0 . 0 2 3 * *} \\ (0.010) \\ -0.033 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.010) \\ 0.024 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.010) \\ 0.012 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.010) \\ -0.059 * * * \\ (0.021) \end{gathered}$	$\begin{gathered} 0.007 \\ (0.010) \\ -0.039^{*} \\ (0.021) \end{gathered}$
HH members	$\begin{gathered} 0.037 \\ (0.023) \end{gathered}$	$\begin{gathered} -0.021 \\ (0.024) \end{gathered}$	$\begin{aligned} & 0.043^{*} \\ & (0.025) \end{aligned}$	$\begin{gathered} -0.011 \\ (0.025) \end{gathered}$	$\begin{gathered} -0.031 \\ (0.024) \end{gathered}$
(1 Married)					
2. Married but separated	0.061	0.180	0.289**	0.011	-0.151
	(0.121)	(0.124)	(0.130)	(0.129)	(0.125)
3. Single	$\begin{gathered} 0.026 \\ (0.096) \end{gathered}$	$\begin{gathered} 0.078 \\ (0.099) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (0.103) \end{aligned}$	$\begin{gathered} -0.121 \\ (0.103) \end{gathered}$	$\begin{aligned} & -0.065 \\ & (0.099) \end{aligned}$
4. Divorced	$\begin{gathered} -0.004 \\ (0.116) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.119) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.124) \end{gathered}$	$\begin{aligned} & -0.131 \\ & (0.123) \end{aligned}$	$\begin{gathered} -0.112 \\ (0.118) \end{gathered}$
5. Widowed	$\begin{gathered} -0.261^{* *} \\ (0.124) \end{gathered}$	$\begin{aligned} & -0.186 \\ & (0.126) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.132) \end{aligned}$	$\begin{gathered} -0.408 * * * \\ (0.130) \end{gathered}$	$\begin{gathered} -0.413 * * * \\ (0.126) \end{gathered}$
Years of education	$\begin{gathered} -0.028^{*} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.015) \end{gathered}$
Constant	$\begin{gathered} 4.472 * * * \\ (0.203) \end{gathered}$	$\begin{gathered} 3.362 * * * \\ (0.207) \end{gathered}$	$\begin{gathered} 3.308 * * * \\ (0.216) \end{gathered}$	$\begin{gathered} 3.926 * * * \\ (0.215) \end{gathered}$	$\begin{gathered} 3.615^{* * *} \\ (0.208) \end{gathered}$
Observations	5935	5931	5938	5943	5949
R -squared	0.009	0.004	0.003	0.009	0.007
Number of pers. nr.	3291	3291	3292	3286	3291

West Germans

VARIABLES	(1) When Unemployed West	(2) When Sick West	(3) For Family West	$\begin{gathered} \text { (4) } \\ \text { In Old-Age } \\ \text { West } \\ \hline \end{gathered}$	(5) When Requiring Care West
HH income deciles	$\begin{gathered} -0.022 * * * \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.008) \end{aligned}$	$\begin{gathered} -0.008 \\ (0.007) \end{gathered}$
Year 2002	$\begin{gathered} 0.011 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.102 * * * \\ (0.016) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.017) \end{aligned}$	$\begin{gathered} 0.041 * * * \\ (0.016) \end{gathered}$
HH members	$\begin{gathered} 0.014 \\ (0.019) \end{gathered}$	$\begin{aligned} & 0.035^{*} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.036^{*} \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.019 \\ (0.019) \end{gathered}$	$\begin{aligned} & 0.033^{*} \\ & (0.018) \end{aligned}$
(1 Married)					
2. Married but separated	-0.156	0.046	-0.198*	0.153	0.037
	(0.108)	(0.102)	(0.116)	(0.108)	(0.102)
3. Single	$\begin{gathered} -0.037 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.064) \end{gathered}$	$\begin{aligned} & -0.050 \\ & (0.073) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.068) \end{aligned}$	$\begin{gathered} 0.023 \\ (0.064) \end{gathered}$
4. Divorced	$\begin{aligned} & -0.079 \\ & (0.089) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (0.084) \end{aligned}$	$\begin{gathered} 0.056 \\ (0.095) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.089) \end{gathered}$	$\begin{gathered} 0.034 \\ (0.084) \end{gathered}$
5. Widowed	$\begin{gathered} -0.276^{* *} \\ (0.114) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.106) \end{gathered}$	$\begin{gathered} -0.137 \\ (0.121) \end{gathered}$	$\begin{gathered} -0.108 \\ (0.111) \end{gathered}$	$\begin{aligned} & -0.189 * \\ & (0.105) \end{aligned}$
Years of education	$\begin{gathered} -0.018 \\ (0.011) \end{gathered}$	$\begin{gathered} -0.023^{* *} \\ (0.010) \end{gathered}$	$\begin{gathered} -0.030^{* *} \\ (0.012) \end{gathered}$	$\begin{gathered} -0.020^{*} \\ (0.011) \end{gathered}$	$\begin{aligned} & -0.017 * \\ & (0.010) \end{aligned}$
Constant	$\begin{gathered} 4.154 * * * \\ (0.147) \end{gathered}$	$\begin{gathered} 3.498 * * * \\ (0.139) \end{gathered}$	$\begin{gathered} 3.558^{* * *} \\ (0.157) \end{gathered}$	$\begin{gathered} 3.619 * * * \\ (0.147) \end{gathered}$	$\begin{gathered} 3.625^{* * *} \\ (0.138) \end{gathered}$
Observations	9305	9311	9304	9315	9313
R -squared	0.004	0.011	0.004	0.002	0.004
Number of pers. nr.	5158	5161	5159	5160	5158

Table A7.7-Effect of transition to another decile of household net income per capita on demand for redistribution

All Germans	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of HH income per person	-0.016***	-0.014***	-0.017***	-0.015***	-0.011**
	(0.005)	(0.005)	(0.006)	(0.006)	(0.005)
Year 2002	$\begin{aligned} & -0.017 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.061 * * * \\ (0.011) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.040^{* * *} \\ (0.012) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.011) \end{gathered}$
Constant	$\begin{gathered} 4.031^{* * *} \\ (0.031) \end{gathered}$	$\begin{gathered} 3.512 * * * \\ (0.030) \end{gathered}$	$\begin{gathered} 3.446^{* * *} \\ (0.033) \end{gathered}$	$\begin{gathered} 3.583 * * * \\ (0.032) \end{gathered}$	$\begin{gathered} 3.619^{* * *} \\ (0.030) \end{gathered}$
Observations	18167	18166	18164	18191	18189
R-squared	0.001	0.005	0.001	0.003	0.001
Number of pers. nr.	10957	10956	10956	10961	10959
East Germans					
VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed East	When Sick East	For Family East	$\begin{aligned} & \text { In Old-Age } \\ & \text { East } \end{aligned}$	When Requiring Care East
Deciles of HH income per person	-0.009	0.009	-0.009	-0.002	0.003
	(0.009)	(0.009)	(0.009)	(0.009)	(0.009)

Year 2002	-0.054***	0.022	0.004	-0.065***	-0.040**
	(0.018)	(0.018)	(0.019)	(0.019)	(0.018)
Constant	4.175***	3.566***	3.563***	3.679***	$3.680 * * *$
	(0.042)	(0.043)	(0.045)	(0.045)	(0.044)
Observations	7075	7068	7076	7083	7087
R-squared	0.004	0.001	0.000	0.004	0.002
Number of pers. nr.	4281	4279	4283	4278	4280
West Germans					
VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed West	When Sick West	For Family West	In Old-Age West	When Requiring Care West
Deciles of HH income per person	-0.018**	-0.025***	-0.022***	-0.021***	-0.018***
	(0.007)	(0.007)	(0.007)	(0.007)	(0.007)
Year 2002	0.005	0.082***	-0.004	-0.027*	0.030**
	(0.015)	(0.014)	(0.016)	(0.015)	(0.014)
Constant	3.932***	3.478***	3.376***	3.523***	3.576***
	(0.044)	(0.041)	(0.047)	(0.044)	(0.041)
Observations	11092	11098	11088	11108	11102
R-squared	0.002	0.011	0.002	0.003	0.003
Number of pers. nr.	6676	6677	6673	6683	6679

Table A7.8 - Effect of transition to another decile of household net income per capita on demand for redistribution, fixed models with base line controls, fixed effects mode

All Germans	(1)	(2)	(3)	(4)	(5)
VARIABLES	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of HH income per person	-0.016***	$-0.010 \text { * }$	-0.011*	-0.014**	-0.009
	(0.006)	(0.006)	(0.006)	(0.006)	(0.006)
Year 2002	$\begin{aligned} & -0.012 \\ & (0.013) \end{aligned}$	$\begin{gathered} 0.072 * * * \\ (0.012) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.014) \end{gathered}$	$\begin{gathered} -0.033^{* *} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.012) \end{gathered}$
HH members	$\begin{aligned} & -0.011 \\ & (0.015) \end{aligned}$	$\begin{gathered} 0.004 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.023 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.000 \\ & (0.014) \end{aligned}$
(1 Married) 2. Married but separated	-0.069	0.094	-0.001	0.091	-0.046
3. Single	$\begin{gathered} (0.081) \\ -0.015 \\ (0.055) \end{gathered}$	$\begin{gathered} (0.079) \\ 0.085 \\ (0.054) \end{gathered}$	$\begin{gathered} (0.087) \\ -0.038 \\ (0.059) \end{gathered}$	$\begin{gathered} (0.083) \\ -0.041 \\ (0.057) \end{gathered}$	$\begin{gathered} (0.079) \\ -0.008 \\ (0.054) \end{gathered}$
4. Divorced	$\begin{aligned} & -0.031 \\ & (0.070) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.064 \\ (0.075) \end{gathered}$	$\begin{aligned} & -0.039 \\ & (0.072) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.068) \end{aligned}$
5. Widowed	$\begin{gathered} -0.252 * * * \\ (0.084) \end{gathered}$	$\begin{gathered} -0.066 \\ (0.081) \end{gathered}$	$\begin{gathered} -0.092 \\ (0.090) \end{gathered}$	$\begin{gathered} -0.225^{* * *} \\ (0.085) \end{gathered}$	$\begin{gathered} -0.280 * * * \\ (0.081) \end{gathered}$
Years of education	$\begin{gathered} -0.019^{* *} \\ (0.009) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (0.009) \end{aligned}$	$\begin{gathered} -0.018^{*} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.016^{*} \\ (0.009) \end{gathered}$	$\begin{aligned} & -0.007 \\ & (0.009) \end{aligned}$
Constant	$\begin{gathered} 4.313 * * * \\ (0.126) \end{gathered}$	$\begin{gathered} 3.547 * * * \\ (0.123) \end{gathered}$	$\begin{gathered} 3.564 * * * \\ (0.135) \end{gathered}$	$\begin{gathered} 3.827 * * * \\ (0.129) \end{gathered}$	$\begin{gathered} 3.704 * * * \\ (0.123) \end{gathered}$
Observations	17251	17251	17248	17274	17274

R-squared Number of pers. nr.	$\begin{gathered} 0.004 \\ 10460 \\ \hline \end{gathered}$	$\begin{array}{r} 0.006 \\ 10461 \\ \hline \end{array}$	$\begin{aligned} & 0.002 \\ & 10457 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.004 \\ & 10462 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.002 \\ & 10461 \\ & \hline \end{aligned}$
East Germans					
VARIABLES	(1) When Unemployed East	(2) When Sick East	(3) For Family East	$\begin{gathered} \text { (4) } \\ \text { In Old-Age } \\ \text { East } \\ \hline \end{gathered}$	(5) When Requiring Care East
Deciles of HH income per person	-0.006	0.012	-0.000	0.003	0.007
	(0.010)	(0.010)	(0.010)	(0.010)	(0.010)
Year 2002	$\begin{aligned} & -0.038^{*} \\ & (0.020) \end{aligned}$	$\begin{gathered} 0.026 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.013 \\ (0.021) \end{gathered}$	$\begin{gathered} -0.061 * * * \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.038^{*} \\ & (0.020) \end{aligned}$
HH members	$\begin{gathered} 0.011 \\ (0.023) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (0.023) \end{aligned}$	$\begin{aligned} & 0.045^{*} \\ & (0.025) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.024) \end{aligned}$
(1 Married) 2. Married but separated	0.075	0.190	0.285**	0.020	-0.149
	(0.122)	(0.124)	(0.130)	(0.129)	(0.125)
3. Single	$\begin{gathered} 0.027 \\ (0.096) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.099) \end{gathered}$	$\begin{gathered} -0.027 \\ (0.103) \end{gathered}$	$\begin{aligned} & -0.122 \\ & (0.103) \end{aligned}$	$\begin{aligned} & -0.068 \\ & (0.099) \end{aligned}$
4. Divorced	$\begin{gathered} 0.016 \\ (0.115) \end{gathered}$	$\begin{gathered} 0.046 \\ (0.119) \end{gathered}$	$\begin{gathered} 0.066 \\ (0.124) \end{gathered}$	$\begin{gathered} -0.124 \\ (0.122) \end{gathered}$	$\begin{gathered} -0.115 \\ (0.118) \end{gathered}$
5. Widowed	$\begin{gathered} -0.242^{*} \\ (0.124) \end{gathered}$	$\begin{aligned} & -0.195 \\ & (0.126) \end{aligned}$	$\begin{aligned} & -0.043 \\ & (0.132) \end{aligned}$	$\begin{gathered} -0.405 * * * \\ (0.130) \end{gathered}$	$\begin{gathered} -0.422 * * * \\ (0.126) \end{gathered}$
Years of education	$\begin{gathered} -0.025^{*} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.022 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.016) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.016) \end{aligned}$	$\begin{gathered} 0.014 \\ (0.015) \end{gathered}$
Constant	$\begin{gathered} 4.433^{* * *} \\ (0.212) \end{gathered}$	$\begin{gathered} 3.292 * * * \\ (0.216) \end{gathered}$	$\begin{gathered} 3.324 * * * \\ (0.225) \end{gathered}$	$\begin{gathered} 3.896 * * * \\ (0.224) \end{gathered}$	$\begin{gathered} 3.605 * * * \\ (0.216) \end{gathered}$
Observations	6724	6717	6727	6732	6737
R-squared	0.007	0.005	0.003	0.009	0.007
Number of pers. nr.	4080	4077	4081	4075	4079
West Germans					
VARIABLES	(1) When Unemployed West	(2) When Sick West	(3) For Family West	$\begin{gathered} \text { (4) } \\ \text { In Old-Age } \\ \text { West } \\ \hline \end{gathered}$	(5) When Requiring Care West
Deciles of HH income per person	-0.021***	-0.020***	-0.016*	-0.023***	-0.016**
	(0.008)	(0.007)	(0.008)	(0.008)	(0.007)
Year 2002	$\begin{gathered} 0.004 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.096^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.019 \\ & (0.017) \end{aligned}$	$\begin{gathered} 0.036^{* *} \\ (0.016) \end{gathered}$
HH members	$\begin{aligned} & -0.026 \\ & (0.019) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.011 \\ & (0.019) \end{aligned}$	$\begin{gathered} 0.011 \\ (0.018) \end{gathered}$
(1 Married) 2. Married but separated	-0.162	0.043	-0.202*	0.148	0.034
	(0.108)	(0.102)	(0.116)	(0.108)	(0.102)
3. Single	$\begin{aligned} & -0.031 \\ & (0.068) \end{aligned}$	$\begin{gathered} 0.095 \\ (0.064) \end{gathered}$	$\begin{aligned} & -0.047 \\ & (0.073) \end{aligned}$	$\begin{gathered} -0.001 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.064) \end{gathered}$
4. Divorced	$\begin{aligned} & -0.061 \\ & (0.088) \end{aligned}$	$\begin{gathered} -0.011 \\ (0.084) \end{gathered}$	$\begin{gathered} 0.062 \\ (0.095) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.088) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.083) \end{gathered}$
5. Widowed	$\begin{gathered} -0.258^{* *} \\ (0.114) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.106) \end{gathered}$	$\begin{gathered} -0.128 \\ (0.121) \end{gathered}$	$\begin{gathered} -0.097 \\ (0.111) \end{gathered}$	$\begin{gathered} -0.181 * \\ (0.105) \end{gathered}$
Years of education	-0.017	-0.022**	-0.029**	-0.019*	-0.017

Constant	(0.011)	(0.010)	(0.012)	(0.011)	(0.010)
	4.246***	3.644***	3.659***	3.779***	3.731***
	(0.158)	(0.150)	(0.169)	(0.159)	(0.149)
Observations	10527	10534	10521	10542	10537
R -squared	0.004	0.013	0.005	0.004	0.004
Number of pers. nr.	6380	6384	6376	6387	6382
Standard errors in parentheses *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$					

Table A7.9-Effect of transition on preferences for redistribution of East and West Germans, fixed effect models (Source: G-SOEP 1997, 2002, panel data set)
East Germans

VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Deciles of mean weighted income	-0.018	-0.005	-0.013	-0.007	-0.008
	(0.015)	(0.016)	(0.016)	(0.016)	(0.015)
Year 2002	$\begin{aligned} & -0.046 \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.045 \\ (0.029) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.031) \end{gathered}$	$\begin{gathered} -0.068^{* *} \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.012 \\ & (0.029) \end{aligned}$
Constant	$\begin{gathered} 4.209^{* * *} \\ (0.062) \end{gathered}$	$\begin{gathered} 3.623 * * * \\ (0.064) \end{gathered}$	$\begin{gathered} 3.569^{* * *} \\ (0.067) \end{gathered}$	$\begin{gathered} 3.709 * * * \\ (0.067) \end{gathered}$	$\begin{gathered} 3.704 * * * \\ (0.064) \end{gathered}$
Observations	4106	4102	4107	4115	4116
R -squared	0.006	0.002	0.001	0.006	0.001
Number of persnr	2265	2265	2266	2264	2265
West Germans					
VARIABLES	(1) When Unemployed	(2) When Sick	(3) For Family	(4) In Old-Age	(5) When Requiring Care
Deciles of mean weighted income	-0.012	-0.013	-0.004	-0.024*	-0.012
	(0.013)	(0.012)	(0.014)	(0.013)	(0.012)
Year 2002	0.006	$0.080 * * *$	-0.024	-0.015	0.040*
	$\begin{gathered} (0.024) \\ 3.891^{* * *} \end{gathered}$	$\begin{gathered} (0.023) \\ 3.389^{* * *} \end{gathered}$	$\begin{gathered} (0.026) \\ 3.284^{* * *} \end{gathered}$	$\begin{gathered} (0.024) \\ 3.520^{* * *} \end{gathered}$	${ }^{(0.023)}$
Constant	(0.077)	(0.072)	(0.082)	(0.076)	(0.072)
Observations	6084	6089	6086	6087	6087
R -squared	0.000	0.005	0.001	0.003	0.001
Number of persnr	3342	3344	3344	3344	3342

Table A7.10 - Effect of transition into other government income decile on preferences for redistribution of East and West Germans, fixed effect model with baseline controls (Source: G-SOEP 1997, 2002, panel data set)

East Germans

| | | (1) | (2) | (3) | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| VARIABLES | When Unemployed | (4)
 When Sick | (5)
 For Family | In Old-Age | When Requiring Care |
| Deciles of mean | -0.018 | 0.004 | -0.009 | -0.007 | -0.011 |

weighted income					
	(0.016)	(0.016)	(0.017)	(0.017)	(0.016)
Year 2002	-0.017	0.053*	0.038	-0.059*	-0.004
	(0.031)	(0.032)	(0.033)	(0.033)	(0.031)
HH members	0.018	0.011	0.036	-0.044	-0.044
	(0.027)	(0.028)	(0.029)	(0.029)	(0.027)
(1 Married)					
2. Married but separated	0.168	0.135	0.195	-0.083	-0.130
	(0.150)	(0.154)	(0.163)	(0.161)	(0.153)
3. Single	0.265**	0.163	-0.031	-0.036	-0.031
	(0.124)	(0.128)	(0.134)	(0.134)	(0.127)
4. Divorced	0.105	0.001	0.095	-0.275*	-0.153
	(0.131)	(0.136)	(0.144)	(0.141)	(0.134)
5. Widowed	-0.181	-0.245	-0.184	-0.478***	-0.503***
	(0.149)	(0.154)	(0.163)	(0.160)	(0.153)
Years of education	-0.045**	0.000	-0.007	-0.031	0.013
	(0.019)	(0.019)	(0.020)	(0.020)	(0.019)
Constant	4.625***	3.513***	3.539***	4.258***	$3.730 * * *$
	(0.253)	(0.260)	(0.273)	(0.271)	(0.259)
Observations	3913	3910	3917	3923	3924
R -squared	0.014	0.005	0.003	0.014	0.008
Number of persnr	2165	2165	2166	2163	2165
West Germans					
VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
Deciles of mean weighted income	-0.010	-0.004	0.005	-0.022	-0.012
	(0.014)	(0.013)	(0.015)	(0.014)	(0.013)
Year 2002	0.007	0.101***	-0.030	0.005	0.057**
	(0.026)	(0.024)	(0.027)	(0.026)	(0.024)
HH members	0.002	0.048**	0.002	0.019	0.021
	(0.025)	(0.023)	(0.026)	(0.025)	(0.023)
(1 Married)					
2. Married but separated	-0.134	0.135	-0.380**	0.090	-0.180
	(0.145)	(0.137)	(0.154)	(0.144)	(0.136)
3. Single	0.004	0.208**	-0.066	0.071	0.051
	(0.088)	(0.083)	(0.094)	(0.088)	(0.083)
4. Divorced	-0.030	0.063	-0.002	0.074	0.015
	(0.114)	(0.108)	(0.122)	(0.114)	(0.108)
5. Widowed	-0.113	0.169	0.035	-0.013	-0.023
	(0.140)	(0.128)	(0.147)	(0.134)	(0.127)
Years of education	-0.016	-0.024*	-0.031**	-0.027**	-0.031**
	(0.014)	(0.013)	(0.015)	(0.014)	(0.013)
Constant	4.064***	$3.410 * * *$	3.603***	3.739***	$3.822^{* *}$
	(0.199)	(0.188)	(0.212)	(0.199)	(0.188)
Observations	5750	5753	5749	5752	5752
R -squared	0.002	0.012	0.005	0.005	0.006
Number of persnr	3193	3195	3194	3194	3192

Table A7.11 - Effect of income growth on demand for redistribution for different income groups of upward mobile Germans

East Germans VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
FE, upward low income (1-3 deciles in 1997)	-0.040***	-0.012	-0.010	-0.030*	-0.029**
	(0.014)	(0.015)	(0.016)	(0.016)	(0.015)
Number of Is	1110	1110	1110	1109	1110
FE, upward medium income (4-6 deciles in 1997)	-0.024	0.048**	0.022	-0.023	0.038
	(0.024)	(0.023)	(0.024)	(0.025)	(0.024)
Number of Is	730	730	730	730	730
FE, upward high income (7-9 deciles in 1997)	-0.008	0.098**	-0.032	-0.054	-0.025
	(0.048)	(0.048)	(0.050)	(0.046)	(0.045)
Number of Is	374	374	374	374	374
West Germans VARIABLES	(1)	(2)	(3)	(4)	(5)
	When Unemployed	When Sick	For Family	In Old-Age	When Requiring Care
FE, upward low income (1-3 deciles in 1997)	-0.016	0.011	-0.014	-0.028*	-0.014
	(0.014)	(0.013)	(0.014)	(0.014)	(0.014)
Number of Is	997	999	1000	999	998
FE, upward medium income (4-6 deciles in 1997)	-0.003	-0.011	-0.024	-0.038**	0.007
	(0.018)	(0.018)	(0.019)	(0.019)	(0.017)
Number of Is	839	839	838	839	838
FE, upward high income (7-9 deciles in 1997)	-0.006	0.099***	0.038	-0.006	0.062**
	(0.033)	(0.031)	(0.036)	(0.032)	(0.030)
Number of Is	1026	1026	1026	1026	1026

Robust standard errors in parentheses

$$
* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1
$$

[^0]:
 ${ }^{2}$ https://www.bloomberg.com/news/videos/2017-01-18/lagarde-advanced-economies-seeing-middle-class-crisis

[^1]: ${ }^{3}$ I have used the classification of Indo-European languages to create the index of linguistic similarity. The classification is attached in the Appendix.

[^2]: ${ }^{4}$ The theory of family tree was strongly criticised (Nichols 1997; Dixon 2002). However, most linguists recognise that this theory is appropriate and useful in many circumstances in spite the fact that it "cannot explain every type of relationship between languages" (Campbell \& Poser, 2008, p. 319). .

[^3]: ${ }^{5}$ Inglehart and Welzel suggested the division of different countries into cultural zones in their book Modernization, Cultural Change, and Democracy: The Human Development Sequence (2005). They asked questions measuring attitudes, beliefs and values in the World Values Survey in "more than eighty societies containing 85 percent of the world's population". Based on the estimates of people's attitudes, beliefs and values in different domains like family, work, religion, environment, politics, and sexual behavior, they suggested two dimensions of the cross-cultural variation: traditional versus secular-rational values on the y-axis and survival versus self-expression values on the xaxis. If plotted in a two-dimensional space, societies cluster in the very specific clusters robust over time. These clusters are cultural zones. More information can be found here:

[^4]: ${ }^{6}$ European Social Survey (2014). ESS 1-6, European Social Survey Cumulative File, Study Description. Bergen: Norwegian Social Science Data Services.

[^5]: ${ }^{7}$ The detailed description of the measurement of the emancipative values, autonomy and voice indexes can be found in the web appendix or the book Freedom rising (Should both words of the title be capitalized? Should the title be in Italics or quotation marks?) (http://www.cambridge.org/us/academic/subjects/politics-international-relations/comparative-politics/freedom-rising-human-empowerment-and-quest-emancipation)

[^6]: ${ }^{8}$ The detailed information on data deviation and links to ESS documentation are available in the do-files (available on request).
 ${ }^{9}$ Luttmer and Singhal used the data for GDP in 2004. Since there are more time points in my research, I have averaged GDP per capita for all the years of ESS survey (since 2002 till 2013).

[^7]: ${ }^{10}$ Specification of the baseline model with fewer controls: the specification 1 plus logged GDP per capita averaged for 2002-2013 for country of birth, age, gender, education (broad classification: low, secondary, higher), partner's education (broad classification), marital status, feelings about household income, main sources of income, logged household size, paid work over the previous 7 days, children in a household, experience of long term unemployment, living in a metropolitan area, dummies for ESS rounds, dummies for missing regressors.
 ${ }^{11}$ Specification of the baseline model: the specification 2 plus squared age divided by 100 , ever had a paid job, a partner has paid work, a dummy for the linguistic minority (a respondent's primary language spoken at home is spoken by less than 30 percent of the native population), tenure in the country, religion. The other two measures of linguistic minority were also tested: respondent's primary language spoken at home is spoken by less than 10 and 50 percent of the native population.
 ${ }^{12}$ The baseline model with more controls: the specification 3 plus a dummy for a citizenship in a country, participation in the last national elections, a dummy for attendance of religious services at least once a month.
 ${ }^{13}$ Comprehensive controls: the specification 4 plus dummies for regions in all the countries, GINI in a country of birth (for the last available year), the main activity for the last 7 days, a membership in a trade union or similar, mother's educational attainments, father's educational attainments, an industry of employment, occupation.

[^8]: ${ }^{14}$ However, data for the extensive subsample of immigrants and the WVS measure for preferences for redistribution did not confirm the conclusion that was valid for the ESS and ISSP subsamples. The most likely reason is that the measure for redistribution preferences in ESS and WVS are not identical. The second reason may be a compositional effect: a modified set of the countries of origin changed the outcome. Deviation of the preferences for redistribution of immigrants from some countries when compared to preferences of natives is close to zero, whereas in some cases the deviation is salient. Namely, the positive correlation between average preferences in the country of origin and deviation of immigrants' preferences of natives to a large extend is defined by migrants from Portugal, Italy and Slovenia on the one hand, as their demands are higher compared to natives in the countries where they live. And on the other hand, migrants from Denmark and Netherlands, have less demand for redistribution compared to natives. For example, immigrants from Portugal demonstrate significantly higher demand for redistribution compared to natives, and average preferences for redistribution in Portugal is higher compared to other European countries. However, WVS does not have data for this subsample. Consequently, exclusion of this subsample of immigrants from the empirical test reduces the effect of culture. Substantial reasons can also take place. For example, immigrants to and from some countries may experience a higher level of political integration than from others and these differences may be determined by different macro and micro reasons, which caused the initial decision to migrate. Apart from this, the level of awareness of the general ideology of redistribution may be different for people outside European discourse and their attitudes to the role of government may be random to some extent.

[^9]: ${ }^{15}$ These conclusions are based on cross-sectional data analysis which allowed me to grasp intergenerational effects, yet it could be considered both as an advantage and as a limitation. I try, in turn to estimate how individual preferences for redistribution change over time by means of panel data analysis.

[^10]: ${ }^{16}$ The USSR Law of 20 May 1991 "On the Procedure for Exit from the Union of Soviet Socialist Republics and Entry into the Union of Soviet Socialist Republics of USSR Citizens" (the Bulletin of USSR Peoples' Deputies Congress and of the USSR Supreme Soviet, 1991, No 24, p. 687 was followed by the Resolution of the Russian Federation Supreme Soviet of 22 December 1992 "On the Enactment in the Territory of the Russian Federation of the USSR Law "On the Procedure of Exit from the USSR and Entry into the USSR of the USSR Citizens" (the Bulletin of Peoples Deputies Congress of the Russian Federation and of the Russian Federation Supreme Soviet, 1993, No 1, p. 19).

[^11]: ${ }^{17}$ As I showed in the previous section, the last argument is to a large extent debatable: even if formal political and economic institutions were borrowed from the former West part of Germany, informal institutions in the Eastern part may have also affected the political and economic climate of the country.

[^12]: ${ }^{18}$ The sample for the study includes subjects who were in the labour market in both periods. If someone retired in the second period he was excluded from the sample.

[^13]: ${ }^{19}$ I use annual "household post-government income" for the robustness check. The variable "household postgovernment income" aggregates income after taxation from all the sources indicated by household members separately in the previous year, including government transfers, namely: "the sum of total family income from labour earnings, asset flows, private retirement income, private transfers, public transfers, and social security pensions minus total family taxes". In turn, labour earnings included "wages and salary from all employment including training, selfemployment income, bonuses, overtime, and profit-sharing", asset flows - "income from interest, dividends, and rent", private transfers such as "payments from individuals outside of the household including alimony and child support payments", public transfers such as "housing allowances, child benefits, subsistence assistance from the Social Welfare Authority, special circumstances benefits from the Social Welfare Authority, government student assistance, maternity benefits, unemployment benefits, unemployment assistance, and unemployment subsistence allowance", social security pensions such as "payments from old age, disability, and widowhood pension schemes", total family taxes such as "income taxes and payroll taxes (health, unemployment, retirement insurance and nursing home insurance taxes)". In principle, this measure of income should relate to monthly income multiplied by twelve. However, this measure may include occasional and irregular income, seasonal or temporal variation in income, like thirteenth month payments, for example, as well as lack of income in some months of the year. Besides, the description of income sources is more detailed here which is why we may expect that this measure captures individual welfare better. All the household members were asked about their income from all sources.
 ${ }^{20} \mathrm{https}: / /$ www.diw.de/documents/dokumentenarchiv/17/diw_01.c.38392.de/fr_haushalt_en.pdf
 ${ }^{21} \mathrm{https}: / / \mathrm{www} . d i w . d e / d o c u m e n t s / d o k u m e n t e n a r c h i v / 17 / d i w _01 . c .38973 . d e / \mathrm{fr}$-personen_en.409775.pdf

[^14]: ${ }^{22}$ OECD Project on Income Distribution and Poverty, via www.oecd.org/social/inequality.htm

[^15]: ${ }^{23}$ From OECD Project on Income Distribution and Poverty, via www.oecd.org/social/inequality.htm

[^16]: Note: Estimates are from linear models with robust clustered errors. DV is measured on a scale of 1-5 (" 1 " corresponds to "only private forces", " 5 " to "only the state"). Standard errors in parentheses, ${ }^{* * *} \mathrm{p}<0.01, * * \mathrm{p}<0.05$, * $\mathrm{p}<0.1$. All estimates are controlled for: sex, age, age squared, East Germany, education, number of children in a HH, number of adults in HH, marital status, log HH income, occupation. The number of cases for the models is not constant because of different specifications of the models are used and a distribution of missing values across the variables is not even.

[^17]: ${ }^{24}$ I also used total household post-government income for a robustness check. Total household post-government income, calculated as "the sum of total family income from labour earnings, asset flows, private retirement income, private transfers, public transfers, and social security pensions minus total family taxes", is counted per year (Grabka, 2011). Results for the total household post-government income are pretty similar to net household income and are available if required.

[^18]: 25 "The government must do more to reduce the income gap between rich and poor Canadians", 5-point scale, rescaled dummy.
 26 "One. The government should see that everyone has a decent standard of living, OR, two, the government should leave it to the people to get ahead", dummy.

[^19]: unemployed

[^20]: Standard errors in parentheses

[^21]: Standard errors in parentheses
 *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$

[^22]: Standard errors in parentheses
 *** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05, * \mathrm{p}<0.1$

