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Fair Divisions as Attracting Nash Equilibria of

Simple Games

Marco Galbiati, IUE Florence∗

Abstract

We consider the problem of allocating a finite number of divisible ho-

mogeneous goods to N ≥ 2 individuals, in a way which is both envy-free
and Pareto optimal. Building on Thomson (2005 Games and Economic

Behavior), a new simple mechanism is presented here with the follow-

ing properties: a) the mechanism fully implements the desired divisions,

i.e. for each preference profile the set of equilibrium outcomes coincides

with the set of fair divisions; b) the set of equilibria is a global attractor

for the best-reply dynamics. Thus, players myopically adapting their

strategies settle down in an fair division. The result holds even if mixed

strategies are used.
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1 Introduction

Consider a set of individuals who have to divide a bundle of homogeneous

divisible goods among themselves. A referee, ignorant of the preferences of the

individuals, wants the players to end up in a fair division, defined as a division

which is both envy-free (EF ) and Pareto optimal (PO). Envy-freeness requires

that nobody prefers somebody else’s share to her own. Pareto optimality

excludes divisions like "everybody gets nothing", which are trivially envy-free

but certainly unappealing. Although alternative definitions of fairness are

possible, envy-freeness and efficiency have played a prominent role in the fair

division literature. The appeal of these properties is probably due to the fact

that, beside being intuitive, they refer to ordinal preferences and they do not

involve interpersonal utility comparisons.

Our fair division problem can be approached in different ways; to begin

with, it can be seen as a theoretical implementation problem. One can prove

that under the usual assumptions on preferences (strict monotonicity, conti-

nuity, convexity), the fair division correspondence is non-empty and satisfies

monotonicity and (vacously) no-veto power. As a consequence, our correspon-

dence is for example implemented by Maskin’s (1977, 2002) classic game form,

when there are at least 3 players. As widely recognized however, this litera-

ture aims at probing the theoretical bounds of implementation. Indeed, most

mechanisms in this pure implementation literature are aimed at proving the

implementability of classes of rules, rather than at providing a workable solu-

tion to applied problems. As a consequence these mechanisms usually suffer

from two practical problems: first, it is unlikely that real persons can manage

their large strategy spaces. Second, most of the existing mechanisms are essen-

tially coordination games with multiple equilibria; it is not clear how players

can coordinate on any one of them. We return on this point later on.

Beside the implementation literature there exists another line of research,

which follows a "procedural approach" to the fair division problem. Instead

of formally defining game forms and adopting precise equilibrium concepts,

these contributions give "protocols", mean to lead real claimants to a division.

Results along this line range from evolutions of a divide-and-choose procedure
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by Banach and Knaster, to methods of sequential allocation. For an author-

itative overview see Brams and Taylor (1996). These mechanisms are meant

to be as simple as possible in order to serve concrete cases of division. Most

of them could be formalized as game forms, but their equilibria are not often

investigated. Instead, players are assumed to use safety strategies. There are

of course some reasons for this: a) in many cases, manipulation of the mech-

anisms would be difficult, b) the Nash equilibria are so difficult to calculate

that they don’t seem a good predictor of play, c) the important properties

of safety (minmax) strategies make them an appealing solution concept. To

sum up, on one hand this literature yields mechanisms that are reasonably

manipulation-proof, workable and elegant. On the other, it lacks a full game-

theoretic formalization. More importantly, there is no known procedure in this

literature to yield divisions which are at the same time PO and EF .1

Ideally located between the implementation literature and the procedural

approach, there is the "Divide and Permute" mechanism (Thomson (2005)).

This is a formally defined game form, which implements fair divisions in pure

Nash equilibria (henceforth pNE), and which is also simple enough to be ap-

plied to real cases. However, Divide and Permute suffers from some important

drawbacks, which indeed motivate our paper. Before illustrating these lim-

itations, we briefly comment on "simplicity" in mechanism design, which is

Divide and Permute’s most appealing quality.

The issue of simplicity is in mechanism design is controversial because sim-

plicity itself is an elusive concept. However, the existing literature seems to

suggests that Divide and Permute (and so our games) are, in some sense, the

simplest possible ones for the problem in hand. Dutta et al (1995) make it

clear that, to implement Pareto efficient allocations, in equilibrium the mech-

anism must reveal the marginal rates of substitutions among goods. Thus, we

cannot hope to solve our problem without players announcing prices, or some-

thing de facto equivalent. On the other hand, Saijo et al.(1996) suggest four

properties as a definition of natural (i.e. simple) mechanisms: finite dimension

(of strategy spaces), feasibility (for any strategy profile, outcomes respect a

budget balance), best response (each player has a best reply against any strat-

1A famous mechanism, due to Brams and Taylor (1995), is for EF only.
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egy profile) and forthrightedness (in equilibrium each players receives what she

announced for herself). The canonic Maskin’s mechanism for example, violates

the first conditions, requiring players to announce preference profiles. On the

contrary, our mechanisms possess the first three properties and essentially the

forth one. Apart from Divide and Permute, there is one other "simple" game

to implement fair allocations, by Saijo et al.(1999). We comment later on this

mechanism; now we illustrate a major shortcoming of this game, limitation

also present in Divide and Permute.

Thomson’s (1999) and Saijo et al.’s (1999) game forms are a good solu-

tion to the problem of complexity, but they suffer from the other drawback

common to most implementation literature: being coordination games, these

mechanisms present an equilibrium selection problem. This feature is bound

to emerge whenever one sets about to implement a generically multi-valued

rule. What happens is that, for example, there is one equilibrium for each fair

division. These latter are many and cannot be ranked in the same way by all

players, so it is not clear which one should emerge, if ever. Althugh inavoidable,

this problem must be dealt with. Achieving fair divisions is about enabling

people to agree, so if we posit that our players are able to coordinate, we assume

the problem away rather than solving it. Moreover, the coordination problem

is worsened when the outcome function is discontinuous. As already pointed

out by Postlewaite and Wettstein (1989), discontinuity is highly regrettable in

implementation, because little mistakes on the part of players may imply the

target to be missed by much. It is not clear if the continuity problem can be

solved in game forms implementing EF and PO allocations. Up to now, there

are no mechanisms with this property.

In this paper, the coordination problem is overcome by a learning argu-

ment. In addition to full implementation, we require that the equilibria of a

mechanism be limit points of a dynamic adjustment process. More precisely,

the game form presented here has the following features a) its strategy spaces

and outcome functions are simple in the sense of Saijo et al. (1996); b) it

fully implements the fair division rule in pure strategy Nash equilibria; c) for

a version of perturbed best reply similar to that in Cabrales (1999), its out-

come converge with probability one to an ε-equilibrium. In turn, the set of
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ε-equilibria is a neighborood of the set of fair divisions; thus the limit out-

comes of our game are ε-fair, in a sense to be made precise later on. In a word:

we have implementation of fairness in Nash equilibrium, and dynamic imple-

mentation of ε-fairness in ε-equilibrium. It will finally be noted that those

mixed-strategy equilibria which produce non-fair divisions are weeded out by

the dynamics.

Recent works (Cabrales 1999, Cabrales and Ponti 2000) find some conver-

gence results in classic mechanisms.2 In particular Cabrales (1999) shows that

discrete best reply dynamics, applied to Maskin’s (1977) game form, singles

out stable Nash equilibria. However, as we argued above, these general game

forms are not suitable for concrete fair division problems. Being concerned

with the issue of simplicity, our game seems a better solution to the problem

in hand.

The next Section 2 lays down some notation and states the division problem

in formal terms. Following Thomson (2005), from which this work evidently

draws, Section 3 presents three game forms. The first two give respectively EF

and PO divisions. The third one, combination of the previous two, implements

divisions which are at the same time EF and PO. Section 4 deals with the

dynamic properties of this final game form and Section 5 concludes.

2 Notation and general setting

We have an endowment of l homogeneous divisible goods, to be divided among

N individuals. No restriction is imposed on N but finiteness. The endowment

is represented by a vector ω ∈ Rl
+. Players have strictly monotonic, continuous,

convex preferences over own bundles of goods, i. e. over vectors z ∈ Rl
+.

Individual preferences are occasionally described with the symbols ºi, with

º representing a profile of preferences. The set of all ºs satisfying strict
monotonicity, continuity, convexity is indicated with R.

2Cabrales (1999) analyzes a slightly modified version of Maskin’s (1977) game form as

presented by Repullo (1987). Cabrales and Ponti (2000) consider Sjöström (1994) mecha-

nism.
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We define Z as the set of partitions of ω among the N players:

Z =
n
z = (z1...zN) ∈

¡
Rl
+

¢N
: Σzi = ω

o
Given a preference profile º∈ R, the set of efficient divisions is defined as:

PO(º) = {z ∈ Z : z is Pareto optimal in Z for º}

Instead, envy-free divisions are allocations whereby no player prefers somebody

else’s share to his own:

EF (º) = {z ∈ Z : zi ºi zj∀i, j}

Finally, the set of fair divisions is

F (º) = EF (º) ∩ PO (º)

The correspondence F : R → Z is the "fair division rule". It is well known

thatF (º) is non-empty for any º in R.3 It is also easy to show by means

of continuity arguments, that F is generically a proper (non-single valued)

correspondence.

We now cast the fair division problem in the framework of implementation

theory. A game form for our problem is a couple Γ = hS, hi such that: S = ×Si
is some product strategy space, and g is an outcome function g : S → Z.

Preferences over bundles naturally define preferences over partitions, for which

we use the symbol º again to simplify notation: for x, y ∈ Z we have x ºi y

when xi ºi yi. Preferences over bundles thus define preferences over divisions

and hence over outcomes of Γ. Given a preference profile, game form Γ then

becomes a properly defined game Γ0 = hS, h,ºi. Consider now the set of

pure Nash equilibria of Γ0, which we indicate with pNE(º) (or simply pNE),

and the corresponding set of equilibrium outcomes g [pNE(º)]. Game form
Γ fully implements F in pure Nash equilibria when g [pNE(º)] = F (º) for
every º∈ R.

One caveat: the sets EF , PO, F are dependent on the preference profile,

and so is the set pNE for a given a mechanism. For correctness, explicit

3Perhaps Varian (1974) noticed this first. For example, a competitive equilibrium where

all player’s bundles have the same value is a fair allocation.
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reference to the preference profile should be maintained. However, all proofs

in this paper will evidently go through whatever the chosen º∈ R. This is

different from saying that the statements are themselves evident, but it spares

us pedantic references to º every time we talk about equilibria. Thus for

example, when we have the term "pNE" in a statement, this actually stands

for "pNE(º)" and the statement will be valid for all º∈ R -which is the kind

of result we need for implementation.

Our problem is twofold. First of all, we want to fully implement the corre-

spondence F in Nash equilibria by some mechanism Γ. Then, we want the set

of equilibria to be an attractor for some dynamics, to be described later on.

3 Viable fair division games

This section presents three game forms implementing respectively envy-free, ef-

ficient and fair divisions. Our mechanisms evidently draw on Thomson (2005);

they are an improvement over this latter because: i) they feature symmetric

strategy spaces ii) their equilibria are learned by myopic players, as shown in

Section 4. Following most of the implementation literature (see e.g. Maskin

et al 2002 and references therein), we consider pure strategies only. This re-

striction is innocuous, as discussed in Section 4.

3.1 Envy freeness: ΓEF

The first game implements EF divisions. Like all other games in this paper,

it is a one-shot game. We first describe it informally as if it were a sequential

game, to clarify its logic.

Each of the N players suggests an allocation and one of these proposals, say

z, is selected (we see in a moment how). Then, the mechanism enables each

player to choose his favourite share in z, whatever others’ strategies. Thus, in

equilibrium it will be the case that all players receive their favourite shares

in z. More in detail, how is z selected? Beside suggesting an allocation, each

player i names an integer and another player ki 6= i. The integers are fed fed

into a modulo game, and thus select one player (the "winner", w). Then, the

7



"reference division" z is the one suggested by the player indicated by winner:

z = zk
w
. On the other hand, how can players choose any share in zk

w
? Every

i announces a permutation of the shares (πi); these permutations are then

applied to zk
w
in any predetermined order, before the resulting allocation is

finally given out. It is clear that by playing an opportune πi, every i can to

reshuffle the shares in his favour, obtaining his preferred share in zk
w
.

Note that the winner’s choice of z is limited by the fact that kw 6= w.

Similarly, we must also restrain the choice of kw in selecting the reference

allocation z.4 We do so imposing a punishment on the loosers (so on kw as

well) in case zk
w 6= zw. By so doing, it will turn out that in equilibrium each

player can pick any share in any of the proposals {zi}i=1..N , which in turn
ensures envy-freeness (actually even more).

With a slight abuse of notation, let us write N = {1, 2, ..N} and define Π
the set of permutations N → N . A formal description of the game follows.

Game form ΓPO is hS, hi :

Si = (Z ×Π×N ×N − 1) ∀i so si = (zi, πi, ni, ki).
h : S → Z is defined for the winner and the loosers as:

hw = zk
w

πN◦..◦π2◦π1(w) (the winner)

hi6=w =

(
zk

w

πN◦..◦π2◦π1(i) if z
kw = zw

0 otherwise
(the loosers)

where w =
P

i n
i
modN

The idea of eliminating envy via permutations is borrowed from "Divide

and Permute" (Thomson (2005)). There however, only two players suggest

divisions, while all others play permutations. In our games, N proposals in-

stead of two may seem somewhat redundant. However, equal strategy spaces

seem more appropriate for an (ex ante) equal treatment of players. As a more

substantial innovation, we introduce a modulo game which awards the winner

immunity to punishments. This is substantial as it yields better dynamic prop-

erties: it can easily be seen that the best reply dynamics (is likely to) produces
4If w (or kw) could choose any reference allocation z ∈ Z, he would propose a division

whereby only one share is different than zero, allocating it to himself with an opportune

permutation. All players would then prefer to be winners (or kw), so there would be no pure

strategy equilibrium.
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cycles in Divide and Permute, while in our mechanism it yields convergence.

More details are in Section 4.

We have the following

Lemma 1 Game form ΓEF fully implements the EF correspondence in pure

Nash equilibria, that is:

i) s ∈ pNE ⇒ h(s) ∈ EF

ii) z ∈ EF ⇒ ∃s ∈ pNE : h(s) = z.

Proof. To prove pNE ⇒ EF , suppose s ∈ pNE, h (s) = z. It must then be

the case that zk
w
= zw. For if it were otherwise, any j 6= w could conveniently

deviate by playing a) nj :
P

i n
i
modN = w = j; b) kj = j + 1; c) a πj that

gives him a non-zero share (which exists in zj+1 because the zis are partitions

of ω). As a consequence, the range of shares that each player can reach by

deviating contains ρ = {zwi }i=1..N . Then, if ui (s) is the utility that i receives
from share s, in equilibrium it must be hi = argmax

r
ui (z

w
r ) ∀i. Hence, the

outcome hi = zwπN◦..◦π2◦π1(i) is envy-free.

To prove EF ⇒ pNE suppose z ∈ EF . The strategy profile s∗ : si =

(z, id, 1, 1), with id the identity permutation, gives division z. Profile s∗ is also

a pNE: in fact: i) facing s∗−i, the range of shares attainable by i is {z1...zN};
ii) because z ∈ EF , profile s∗ allocates to each player his preferred shared in

this range. That is, s∗ is a profile of mutual best replies.

3.2 Pareto optimality: ΓPO

We now present a game that implements PO+ allocations, that is Pareto op-

timal allocations where nobody receives a zero share. PO+ allocations are

clearly a superset of fair allocations, and some of them may generate envy.

We don’t worry about these latter, though, as they will be ruled out by ΓEF ,

so we are not interested in their implementation. Again, we first describe the

mechanism informally, giving it a flavour of a sequential game to illustrate its

logic.

The key to optimality is that every Nash outcome will be a competitive

equilibrium for some appropriate price vector. Welfare-theorem arguments
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then ensure Pareto efficiency. A little more in detail, each player i makes a

proposal, i.e. suggests an allocation/price vector di = (zi, pi). The mechanism

selects one particular such d (we say in a moment how this is done). The

selected proposal naturally defines N budget sets Bi, i = 1..N , one for each

player. The game is built in such a way that each player i can obtain his

favourite share within Bi. Thus, in equilibrium all i maximize within Bi, i.e.

a competitive equilibrium results. Like in ΓEF , two elements are essential in

the construction: a) which proposal is selected? b) how can players choose

their preferred shares? As for a), each player names an integer to be used in a

modulo game. Also, each i indicates another player. The selected d is the one

suggested by the player named by w, the winner of the modulo game. As for

b), each player i calls a "reservation share" zi, which he does receive if both: i)

he wins the modulo game and ii) zi is "reasonable", that is if zi ∈ Bi

³
dk

i
´
. If

instead w claims for himself a share zi /∈ Bw

¡
dk

w¢
, he’s punished with a zero

share. As for the loosers of the modulo game, they receive what is prescribed

for them by dk
w
, but only if player kw’s proposal accomodates both i) w’s

proposal dw and ii) claim zw; otherwise, they are punished with a zero share.

The reason of the first punishment is clear: were the winner unrestrained,

every i would try to be winner and there would be no equilibrium. The reason

for the second punishment (on the loosers of the modulo game) will become

apparent in the proof of Lemma 2.5

To formally describe the game we need more notation. Define D as the set

of allocation-price proposals whereby every i gets a non-zero bundle:

D =
©
(z, p) ∈ Z × Rl

++ : p
Tzi > 0

ª
For a given proposal d = (z, p), the budget set of player i is:

Bi(d) =
©
x ∈ Rl

+ : 0 ≤ x ≤ ω, pTx ≤ pTzi
ª

We can now describe the mechanism:

Game form ΓPO is hS, hi :

Si = D × Zi ×N × (N − 1) ∀i so si = ((pi, zi) , zi, ni, ki).
5We might impose such punishment on kw only. Lemma 2 and all subsequent results

would still hold, but the definition of the outcome functions would take one extra line.
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h : S → Z is defined for the winner and the loosers as:

hw =

(
zw if zw ∈ Bw

¡
dk

w¢
0 otherwise

(the winner)

hi6=w =

(
zk

w

i if dk
w
= dw and zw = zww

0 otherwise
(the loosers)

Lemma 2 Game form ΓPO fully implements PO+ partitions in pNE, that is:

i) s ∈ pNE ⇒ h(s) ∈ PO+

ii) z ∈ PO+ ⇒ ∃s ∈ pNE : h(s) = z.

Proof. To prove pNE ⇒ PO+ we show that, in equilibrium, each i is getting

his favourite share within his budget balance Bi (and these Bis are defined

by a unique allocation and price vector). First observe that in equilibrium

there is no i : hi = 0 (any i can win the modulo game in order to pick a

particular dk and any share zi ∈ Bi

¡
dk
¢
). Thus, dk

w
= dw and hi = zwi ∀i.

As a consequence, the range of allocations over which any i is maximizing in

equilibrium is ρi = {0}∪j 6=iBi

¡
dk
¢
. Because at least two players are making the

same suggestion (dk
w
= dw), we have Bi

¡
dk

w¢ ⊆ ρi ∀i. Thus, a Nash outcome
a fortiori maximises ui within Bi

¡
dk

w¢∀i. As a consequence, hi = zk
w

i ∀i is
a competitive equilibrium with prices pk

w
and initial endowments zk

w

i ∀i (and
zero-trade).

To prove z ∈ PO+ ⇒ ∃s ∈ pNE : h(s) = z, suppose z ∈ PO+. By

the second welfare theorem, there is a price vector p that supports z as a

competitive equilibrium. The strategy profile s∗ : si = (z, p, 1)∀i yields z and
is a pNE. To see this latter fact, note that the range of allocations reachable

for i is {0} ∪Bi (z, p); because z∗ is assumed to be a competitive equilibrium,

every person optimizes within his budget, i.e. s∗ is a profile of reciprocal best

replies.

Note the role of the punishments on the loosers. We cannot allow the

winner to name himself as proposer of d -otherwise any i would try to be

winner so there would be no equilibrium. Thus, we assign to i a range of

attainable shares ρi = {0}∪k 6=iBi

¡
dk
¢
. Then, if there were equilibria in which

all proposals are different, there would not exist a single d : Bi (d) ⊆ ρi ∀i. As
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a consequence, players would not be maximizing within a collection {Bi (d)}i
defined by a unique price vector/endowments, as in a competitive equilibrium.

Introducing a punishment when dk
w 6= dw, we force the.existence of at least two

identical proposals, which in turn ensures that such a {Bi (d)}i does exist. On
the other hand, punishing the case zw 6= zk

w

w is the simplest way to respect a

physical constraint. Infact: in our construction dk
w
must become the "reference

proposal"; now, if we are to give zw to the winner we can distribute zk
w

i to all

loosers i only if zw = zk
w

w (indeed: ω −
P

i6=w z
kw

i = zk
w

w ). Thus we must avoid

zw 6= zk
w

w ; the simplest means to this is a punishment like the one above.

Finally: we could simplify the game eliminating the reservation proposal

zi. Player w could be allowed to receive any zw ∈ Bw (.) by naming it in his dw,

instead of indicating it separately as "reservation share". The loosers would

then be punished if dk
w 6= dw. A reservation proposal however makes it easier

to prove the dynamic properties shown later on.

A few remarks put ΓPO in relation with Thomson (2005). The idea of

reaching efficiency via a competitive equilibrium is borrowed from there. How-

ever, like for ΓEF , we have a game with equal strategy spaces to ensure an

(ex-ante) equal treatment of players. Other radical changes are introduced to

obtain better dynamic properties (it is easy to show that Thomson’s efficiency

game is likely to cycle for the best reply dynamics).

3.3 Fairness: ΓF

The following mechanism combines elements of ΓEF and ΓPO to fully imple-

ments fair divisions. As in the previous games, a fair allocation emerges as a

proposal made by (at least) two players. More in detail, each player: i) names

a proposal di and a reservation share zi, ii) names an integer n ∈ N , , iii)

indicates another proposal ki, iv) chooses a permutation πi. The winner of

the modulo selects one proposal, to be taken as reference allocation (proposal

dk
w
). Then, the outcome function allows any player to pick any bundle within

Bw

¡
dk

w¢
or, if he prefers, any share appearing in zk

w
.6 As in ΓPO, we force

6In equilibrium, w’s best share in Bw will be already present in zk
w

, and is reached via

permutations.
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dk
w
= dw in equilibrium by punishing the loosers if this is not the case. As a

result, players maximize within a family of budget balances defined by a unique

price vector, so the reference allocation zk
w
is efficient. Permutations then en-

sure that each player can reach any share in zk
w
, thus ensuring envy-freeness.

A formal description follows.

Game form ΓF is hS, hi :

Si = D × Zi ×N × (N − 1)×Π ∀i so si = ((pi, zi) , zi, ni, ki, πi).
h : S → Z is defined for the winner and the loosers as:

hw =

(
zw if zw ∈ Bw

¡
dk

w¢
and dk

w 6= dw

zk
w

πN◦..◦π2◦π1(w) otherwise
(the winner)

hi6=w =

(
zwπN◦..◦π2◦π1(i) if d

kw = dw

0 otherwise
(the loosers)

Recalling Lemma 1) and Lemma 2), the following is simply shown:

Proposition 1 Game form ΓF fully implements F partitions in pNE.

Proof. To prove pNE ⇒ F , observe first that in a pNE it must be dk
w
= dw

so that hi = zwπN◦..◦π2◦π1(i)∀i. For if it were otherwise, kw would be better off
by playing dk

w
= dw (all other players too would rather deviate, to win the

modulo game and choose opportune strategies). Also, because any player can

be winner and receive zw ∈ Bw

¡
dk

w¢
, in equilibrium it must be the case that

every player is maximizing within ∪
j 6=i

Bi (d
j) = ∪

j=1...N
Bi (d

j) ⊇ Bi

¡
dk

w¢
. Thus,

hi is a competitive equilibrium allocation with prices/endowments
¡
pk

w
, zk

w¢
,

i.e. is efficient. Also, thanks to the permutations, hi = zwπN◦..◦π2◦π1(i) maximizes

ui over {zk
w

j }j=1..N for each i, i.e. it’s envy-free.

As for the reverse inplication, consider a particular z ∈ F . Being z ∈ PO+,

there is a positive price vector p that sustain it as a competitive equilibrium.

Then, it is immediate that strategies si = (z, p, zi, 1, 1, id) are a pNE producing

outcome z.

We now turn to the simplicity properties by Saijo et al (1996) cited in the

Introduction. It’s immediately checked that ΓF respects balancedness, best

response and finite-dimension of strategy spaces. Forthrightedness requires

that in equilibrium each player receives what he suggests. Thus, this property
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is satisfied by our game up to a permutation at worst (for any fair z, there

is a forthrighted equilibrium where each i announces z plus the null permu-

tation). Apart from Thomson (2005), the other "simple" game to implement

fair divisions (see Introduction) is in Saijo et al.(1999). There, players only

announce two quantities and prices. Our mechanism may seem less simple be-

cause it require players to suggest: i) full allocations, which is more than two

bundles plus ii) additional elements like permutations and integers. However

two objections should be raised: a) if the only requirements on the outcome

function are feasibility, best response and forthrightedness, then our games are

no more complex than Saijo et al.(1999)’s: m-dimensional strategies can be

summarized into n-dimensional messages (n < m) by means of space-filling

curves. b) if, on the other hand, we care about additional aspects of "sim-

plicity", then our mechanism is arguably simpler than Saijo et al.(1999)’s. In

particular, best replies can be immediately computed for our games, while they

involve complex computations in Saijo et al.(1999). This is a crucial advantage

when studying the dynamic properties of the mechanism.

4 Dynamic implementation

As argued in the Introduction, bare implementation is somewhat unsatisfac-

tory for our problem: given the (necessary) multiplicity of equilibria of a mech-

anism, it is not clear if/how any of them can be coordinated upon. This is not

a problem for game form ΓF though, because its equilibria can be "learned".

More precisely: a perturbed version of the best reply dynamics converges to

the set of ε-equilibria with probability one. In turn, ε-equilibrium outcomes are

"ε-fair" in a sense to be clarified soon. The necessity to consider ε-equilibria

(and ε-fair outcomes) will become apparent in due course.

Given ε > 0 and strategy profile bs the set of ε-best replies of player i is:
BRε(bs) = {s∗ ∈ Si : ui[hi

¡
s∗, bs−i¢] ≥ ui[hi

¡
si, bs−i¢]− ε ∀si ∈ Si}

Accordingly, we define BR0 (.) = BR (.) the set of pure best replies.7 With

7The fact we consider pure strategies only is not a limitation, as we show later on.
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this notation, the set of ε-equilibria is

NEε = {s : si ∈ BRε(s
−i) ∀i}

As anticipated, we will obtain convergence to ε-equilibria. What are then the

fairness properties of the corresponding outcomes? We have the following

Lemma 3 ε-equilibrium outcomes of ΓF belong to the following set Fε of "ε-

fair" allocations:

Fε = {z ∈ Z : [ /∃z0 ∈ Z : ui (z
0
i) ≥ ui (zi) + ε ∀i] ∧ [ui (zi) ≥ ui (zj)− ε ∀i, j]}

Observe that Fε can rightly be said the set of "ε-fair" allocations because

there: i) no gain is possible for everyone, that exceeds ε; ii) no individual is

more than ε-envious. Also, Also, the set Fε evidently shrinks to F as ε →
0. Reminding the proof of Proposition 1, establishing the above Lemma is

immediate:

Proof. If z is an ε-equilibrium outcome then ui (zi) ≥ ui (zj)− ε∀i, j (evident
because i can get j’s share via permutations). On the other hand, suppose

∃z0 : ui (z0i) ≥ ui (zi) + ε ∀i. Because each i can obtain any share in Bi (z, p),

it is pz0i > pzi ∀i. Summing over i we get pω = pz0 > pz = pω.

We introduce a last assumption; we comment it along the dynamics:

A1) the set of possible proposals D = {.., d, ..} is finite and
at least one of features a z ∈ Fε.

4.1 Dynamics’ specification

We call s(t) =
¡
s1 (t) , s2 (t) .., sN (t)

¢
the strategy profile played at time t. To

save notation, we use BR (s−i (t)) or BRi (t) interchangeably, or even BR (t)

when there is no doubt about index i. Consider then the following discrete-

time adjustment process:

D1) At each t, with probability pi ∈ (0, 1) player i updates his strategy;
D2) When i updates at t,

i) if si (t− 1) ∈ BRε(t− 1) then si(t) = si (t− 1)
ii) otherwise, any si ∈ BR (t− 1) is played with prob.> 0.
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In words: at each time t, a random draw with probability pi decides whether

player i can update his strategy (the only constraint imposed on pi is that it

be uniformly bounded in time within (0, 1)). When the random draw gives to

i the possibility to update at t, player i chooses any best reply to the observed

action profile s−i (t− 1); however, he does not change his strategy if this turns
out to be already an ε-best reply. Note that underA1) the set BRi (.) is finite

(because finite is Si), thus D2 ii) is legitimate.

The set of rest points is

RP = {s : prob (s (t+ 1) = s | s (t) = s) = 1}

It should be clear that the set of rest points coincides with that of ε-Nash

equilibria: RP = NEε. We will prove that RP is also an attractor.

We now comment on D2) and A1). An equilibrium is reached when an

equilibrium allocation (within an appropriate proposal d) is suggested. In

turn, by implementation only fair allocations can appear in equilibrium. Now,

because new proposals are put forward randomly (by D2 ii), if players update

strategies whenever they have an improving deviation (instead of an at least

ε-improving one), an equilibrium would never emerge: the set F has a zero

measure in Z so fair proposals are too "rare" to be hit by our players. We have

two ways out: either we ensure some form of monotonicity (which amounts to

new assumptions on the adustment process), or we give the target equilibrium

set some mass. We choose the second way, and we do this considering Fε,

the set of ε-Nash outcomes. As we discussed above, it is appropriate to label

Fε the set of ε-Nash outcomes, because these latter are "ε-fair". The reason

to introduce A1) is essentially the same motivating D2). In equilibrium we

need w and kw to make the same proposal d. Thus, if ds were drawn from an

infinite pool, no particular d could be agreed upon. The finiteness assumption

could be disposed of if players had some preference for agreeing. To keep

the assumptions on dynamics simple and general we prefer to introduce A1)

-which seems quite reasonable anyway. Finally, note that A1) does not make

D2) redundant. Infact, if we insisted on fairness (instead of ε-fairness) we

would run into the problem that there exist no finite set of allocations that

includes a fair one whatever the preference profile, while this is what is needed
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for implementation.

Finally, we putD1) andD2) in relation with the literature. D1) allows any

number of players to update at t; a different assumption appears for example

in Kim and Sobel (1995), where updating is sequential (assumption I). As it

will be clear from the proof of Proposition 2, we only require that sequential

updating be possible. As for D2), it does not rules out the adoption of non-

best replies. Similar formulations appear in Cabrales (1999), who allows for

less-than-ε-improving updatings, but assumes that a non-improving strategy

is never adopted (assumption Y3). It can be noted that there too it was

necessary to consider ε-equilibria to obtain sure convergence.

4.2 Convergence to fair divisions

The focus of this work is on fair divisions. Although similar claims can be

proven for game forms ΓEF and ΓPO, we only give the main result about ΓF .

Proposition 2 Under A1, D1 and D2, mechanism ΓF is such that

∀s (0) , prob [s (t) ∈ RP ]→ 1 as t→∞.

In words: whatever the starting point, sooner or later the process stops.

Also, becauseRP = NEε the limit allocation are in the set of "ε-fair" divisions.

The intuition behind convergence is simple. For any s−i and any division z,

there is a best reply whereby z is suggested (the winner’s payoff is not affected

by his own d). Thus, if the updating process goes on for a sufficiently long time,

an ε-fair division (perhaps up to permutations) will eventually be suggested.

At this point, provided that some conditions hold on current proposals, no

player will gain from upsetting z as reference division. Instead, it will be

sufficient that permutations are adjusted until the shares are allocated without

envy. The resulting strategies will be an ε-equilibrium, so a rest point. The

following proof puts this in formal terms.

Proof. of Proposition 2

The winner’s payoff does not depend on his own d. On the other hand,

the winner’s range of attainable shares is the largest. Thus, it is always a best

reply to win the modulo game and make a new proposal d. As a consequence,

17



any profile of proposals {di}i=1..N in DN will emerge before some time t, with

probability tending to 1 as t → ∞. In particular, a profile d∗ will be put

forward containing a z∗ such that

i) ∀i, j it is ui (z∗i ) + ε ≥ ui (z
0) ∀z0 ∈ Bi (d

j);

ii) if ui(zrj ) + ε ≥ ui(z
∗
i ) for some i, j, r then there is no k

i = r.

By assumptionA1, proposals under i)-ii) do exist inDN : any {(z, p) , (z, p) , .., (z, p)},
with z ∈ Fε and p an appropriate supporting price vector satisfies i)-iii) inde-

pendently of the played strategies.8

Condition i) ensures that, if d∗ has emerged, there is no advantage for

the winner to select a different proposal dj -by so doing, he could reach some

z0 ∈ Bi (d
j). On the other hand, ii) says that if division zr 6= z∗ is more

attractive for i than z∗ (because it contains a certain share zrj ), then z
r cannot

become a reference division, because no one named player r (if player k had

named player r, i could make k win to have zr adopted as reference allocation).

Once d∗ is put forward, it is sufficient that the next updater chooses di =

di
∗
and πi : πN ◦ ...πi ◦ ... ◦ π1(.) = id, and the outcome is z∗. Conditions i)-ii)

ensure that the resulting strategy profile is a ε-Nash equilibrium (infact, no

player, has a convenient deviation, because z∗i is the best share for each i, in

the range of attainable shares). As a consequence the given strategy profile is

a rest point.

Remark 1 (Mixed Strategies) Our games yield full implementation in pure-

strategy equilibria. However, implementation fails when mixed strategy equilib-

ria are used. This is a fact known to happen in many classic implementation

mechanisms. Consider for example ΓEF and the case of two players. The strat-

egy profile where each player: i) assigns everything to one share, ii) randomly

choose between the swap and the id permutation with probability 1
2
, is clearly a

NE. However, its outcome is non-EF with probability 1
2
. If we look at the dy-

namics though, we still find that the limit outcomes are fair. The reason is sim-

ple. Proposition 2) shows that a rest point does emerge; then, because players

8There might exist others such ds, too. We don’t go into details, but it is clear that the

finer is the grid of possible allocation/prices, the more likely it is that there will be many

such proposals, making convergence faster.
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best respond to observed strategies (not to mixtures), if σ =
¡
σ1, ..., σN

¢
∈ RP

then each σi must be a best reply against each action profile in the support of σ

itself. It follows that any realized outcome from a rest point is an equilibrium

outcome, which is fair by implementation.

5 Conclusions

The focus of this paper is on a classic fair division problem: allocating homo-

geneous divisible goods among players, in a way that is both envy-free and

efficient. While the existence of these divisions is a well established fact, the

implementation side of the problem has been less thoroughly studied.

This paper gives a procedure with the following properties: a) the procedure

is a formally defined game form; we look at its Nash equilibria; b) strategy

spaces are symmetric and relatively simple: essentially players are requested

to announce division proposals and price vectors. Quite straightforward is

also the outcome function: best replies are immediately calculated for any

strategy profile. Most importantly c) the equilibria are learned by players who

update their strategies according to best-reply dynamics. Features a) and b)

partly appear in Thomson (2005), to which this paper is inspired. Feature c)

is new and, I suggest, important for a mechanism to be meaningful solution

to an applied implementation problem, especially in the presence of multiple

equilibria.

The mechanisms presented here are tailored to a specific kind of dynamics.

Although some rationality is embodied in the concept of Nash equilibrium,

the considered dynamics are definitely myopic. Thus, one might doubt that

players choose at t best replies to t − 1 observed actions. For example, if
the shares are given out only when a rest point is reached, why should we

exclude that a Nash equilibrium is deviated from? Even if a deviation from a

NE is not immediately convenient, it might trigger further deviations by other

players, so the final result might be a net gain for the first deviator. Similarly,

one might be interested in looking at coalitional equilibrium concepts. These

considerations evidently lead away from the Nash equilibrium concept.

In keeping with the classic implementation theory, this paper concentrates

19



on Nash equilibria, and in particular on pure-strategy equilibria. However,

mixed strategy equilibria as well are taken care of. In particular, mixed strate-

gies with (random) non-fair outcomes cannot be rest point; this result descends

directly from the assumptions on dynamics. If we do not accept such specifi-

cation of dynamics, mixed strategy could become relevant again either when

i) players observe mixed strategies -which would not be very realistic either,

or when ii) players form complex beliefs about their opponents’ strategies. In

the latter case, we should again abandon Nash implementation, and look at

appropriately defined sequential equilibria.
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