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Abstract 

The performance of two ongoing regulatory frameworks for hydropower remuneration in Brazil is 

analysed. The former is the status quo design, where the individual operational risks are mitigated by a 

risk-sharing principle within a hydro pool structure. The latter is an insurance approach, where a security 

framework enables the hydro generators to transfer their risks to the consumers. Three different long-

term scenario settings are assessed by using stochastic optimisation techniques. The results suggest that 

the level of risk in the status quo design strongly relies on the generation mix evolution, notably thermal, 

rather than wind or solar generation. The current insurance approach is likely to drive a transfer of wealth 

from consumers to generators. This condition can be overcome by adapting the insurance premium 

setting criteria. 

Keywords 

Hydropower; Risk Assessment; Call Options Obligations; Energy Allocation Mechanism; SDDP 

modelling. 
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1. Introduction* 

Hydropower is the largest source of renewable electricity in the world with more than 1.2 TW of 

installed capacity, accounting for nearly 16% of the world’s total electricity production (IEA, 2018). In 

Brazil, hydropower accounts for the majority of the 148GW of installed capacity. Therefore, this 

technology is crucial for meeting Brazil’s current estimated annual consumption of 566 TWh/year, 

which is estimated to grow at 3.5% annually (EPE, 2017a). Due to the significant growth in non-hydro 

renewable energy source (RES) penetration, the market share of hydropower is projected to decline, 

reaching about 50% by 2026 (EPE, 2017a). Nevertheless, this source will continue to provide a 

significant part of Brazil’s electricity generation in the long-run (EPE, 2017b). 

According to IEA, (2012), since the early 1990s, one of the critical challenges for the development 

of hydropower projects is their financing. Hydropower development is capital intensive while the return 

on investment is climate dependent and may vary considerably from year to year, depending on the rain 

pattern. Thus, the power purchase design implemented for hydropower is a crucial element.  

Batlle (2013) states that the particularity of the “underlying commodity and the large diversity of 

typologies in electricity systems worldwide have led to the implementation of an enormous variety of 

alternative wholesale market designs.” Thus, the mode for remunerating hydropower varies from 

country to country, depending upon the level of market-based structures and the degree of unbundling1. 

Broadly, the approaches can range from centrally managed to wholesale markets. 

In Brazil, market design for hydropower is organised around long-term contracts for electricity 

generation. Under the current regulatory design for the electricity sector in Brazil, the responsibility 

coordinating and monitoring the generation and transmission facilities within the National 

Interconnected Grid (NIG) is executed by an Independent System Operator (ONS)2 (Francisco, 2012). 

ONS establishes and manages generation levels for each power plant, which is based on a mathematical 

program aimed at representing in detail the operation of hydro reservoirs. This mathematical program 

is solved using Stochastic Dual Dynamic Programming (SDDP) (Pereira and Pinto, 1991, 1985).  

The status quo (until 2015) hydro generation remuneration framework is called Energy Allocation 

Mechanism (EAM). This consists of coupling the hydro players in a pool whose synergy would then 

reduce individual hydrological natural volatility within Brazil’s river basins (RCBPS, 2002). This 

assumption strongly relies on the energy storage provided by the hydroelectric reservoirs and on 

complementary hydrologic regimes between some river basins. 

However, there has been concern regarding the robustness of this current market design, mainly due 

to recent climatic conditions in Brazil (extended drought), increasing renewable penetration and the 

current economic crisis (MME, 2017). Once the hydro generators are engaged with long-term contracts 

and ONS regulates the dispatch of the system-contracted capacity, generators run the risk of EAM not 

                                                      
* Bruno Goulart has been awarded the first fellowship within FSR and ANEEL Research Exchange Program, and thus the 

authors would like to thank both institutions for the remarkable experience in Florence. They would also like to express 

their gratitude to Vinicius Grossi and Alex Alves, who provided crucial support regarding Newave’s remote simulations. 

The authors would also like to thank Miguel Vazquez, Tim Schittekatte, Swetha Bhagwat, Tiago de Barros Correia, Luiz 

Augusto Barroso, Fernando Colli Munhoz and members of the FSR team for providing their valuable inputs as well as 

facilitating these results. 

1 Glachant et al., (2015)examine regimes for granting rights to use hydropower in fourteen European countries. Moreover 

Amundsen and Bergman, (2006) compare market structures in Nordpool with California, both having significant hydro 

resources and different experiences regarding power industry deregulation schemes.  

2 The responsibility of supervising and regulating ONS lies with the Brazilian Electricity Regulatory Agency (ANEEL) 

(Gomes and Poltronieri, 2018). 
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having sufficient energy production during adverse conditions to honour the sum of the correspondent 

market obligations.  

Climatic conditions are identified to play a vital role in the inability of hydro-generators to reach 

their required generation levels (Coelho et al., 2016). The hydrological natural inflow regime in Brazil 

has a cyclic pattern lasting 10-15 years (Hunt. et al., 2018). The cycles consist of large periods of drought 

with low hydropower production (Almeida Prado et al., 2016). The recent drought in Brazil, which 

started in 2013, has caused severe financial distress to hydropower generators (Hunt. et al., 2018). 

According to recent bulletins released by the market operator (CCEE, 2018a), roughly 82% of the 

financial obligations within the market (around 1.7 billion of euros) were not cleared. Most of the non-

clearances are attributed to judicial injunctions that have been issued to market players since the impasse 

regarding the hydropower pool’s shortfall (ANEEL, 2015a; MME, 2017).  

Thus, the hydro remuneration framework was diversified in 2015 by the introduction of a hedging 

mechanism as an alternative means of managing risk to the hydropower business model due to 

generation shortages. This mechanism is called the Insurance Call Option Obligation - ICO (ANEEL, 

2015b) However, it is also important to highlight that EAM and FEC continue to co-exist and generators 

may choose the mechanism to which they wish to subscribe3. 

In this paper, we analyse and compare the performance of EAM and the ICO in three different long-

term scenario settings, using an SDDP modelling methodology combined with a Monte Carlo approach. 

Performance is here addressed as the capability of the mechanism itself to provide positive economic 

outputs in the long-run. The key indicators used to assess the performance are thus the consumer utility 

and the hydro-generator utility in different scenario settings. An efficient allocation-design for the ICO 

is also addressed.  

This paper is structured as follows: In Section 2 the hydropower market design of Brazil is presented. 

This is followed by the description of the modelling approach used for this research in Section 3. The 

scenarios and key indicators used are discussed in Section 4. The result from the modelling is analysed 

in Section 5. Finally, conclusions and policy implications are provided in Section 6.  

2. Hydropower Market Design in Brazil and Policy Options 

The hydropower market design in Brazil consists of three phases. Before the procurement auction (first 

step), the energy policy authority (MME) issues a firm energy certificate (FEC) for each power plant. 

According to Mastropietro et al., (2016), these certificates aim to ensure supply-adequacy within the 

regulated procurement environment (captive consumers) or within the wholesale market, where 

stakeholders trade energy. 

As discussed by Maurer and Barroso, (2011)the calculation of FEC is a critical issue but at the same 

time, a complicated process, since it relies on the concept of firm energy. Georgakakos et al., (1997) 

define firm energy as “the energy ensured under adverse hydrologic and demand conditions”. Thus, it 

is determined based on the critical hydrologic known period (i.e. the lowest long-term estimated 

production) of each generator when interconnected to the grid (Georgakakos et al., 1997), considering 

the synergy among them. Since the FEC is obtained via a probabilistic calculation, there is a risk of a 

mismatch between the actual and the ex-ante estimated production from hydropower (Barroso et al., 

2003) 

Furthermore, it is important to underline that the regulatory framework establishes that the FEC 

defines the cap each generator can trade in the market. Hence a straightforward hedge for each generator 

                                                      
3 It is interesting to note that in literature several alternative market designs for remunerating hydropower in Brazil have been 

proposed by Calabria et al., (2018); Fernandes et al., (2018); Lino et al., (2003). However, these alternatives are not 

discussed in this paper.  



Assessment of the current regulatory framework for hydropower remuneration in Brazil 

European University Institute 3 

would be not to commit the entire FEC with contracts, thus leaving some free margin to be eventually 

cleared in the short-term, depending on the system’s conditions and each risk aversion criteria. 

The FECs are then procured in the auction process (second step), where its final terms yield the price 

per unit generated settled in the contracts. The regulatory framework establishes that FECs must be the 

maximum trade commitment each generator must manage within its business strategy. This management 

may lead to hedge strategies each generator ought to be aware of, depending on its judgment regarding 

the inherent uncertainties of hydropower production. 

EAM is thus a revenue adjustment mechanism applied in the last step, where hydropower trade 

commitments are contrasted with the plants’ real production and the imbalances are measured and 

valued accordingly to the spot price. Although individual production risks may be relieved by EAM, 

this is still a component of hydropower business where uncertainty plays a core role. 

2.1EAM status quo 

The EAM is based on a virtual sharing principle that requires the calculation of a Generation Scale 

Factor (GSF). The GSF is a ratio between the actual sum of all n individual hydro production (Qi) within 

EAM and the sum of the respective quantity of contracted FEC (FECi) over a set period t (usually one 

month). If the GSF value is greater than one, it would mean surplus production and vice-versa.  

 

𝐺𝑆𝐹 =
∑ 𝑄𝑖

𝑡
𝑛

𝑖=1

∑ 𝐹𝐸𝐶𝑖
𝑡

𝑛

𝑖=1

      (1) 

In Equation 1, it is assumed that all FEC within EAM was committed with contracts4. As stated before, 

the amount of electricity traded is capped by the FEC so that this value can be smaller in real-world 

strategies. The total income for the hydropower generator is dependent upon four variables, namely the 

spot price (pspot), GSF, FEC and the auction clearing price (pbid). Therefore, the total income (Y) is 

calculated as shown in Equation 2.  

 

𝑌 = [𝑝𝑏𝑖𝑑 + 𝑝𝑠𝑝𝑜𝑡 × (𝐺𝑆𝐹 − 1)] × 𝐹𝐸𝐶    (2) 

The EAM approach nets out individual imbalances and consequently reduces the risk for generators 

individually if there are negative correlations between the hydrological regime of the different 

participants or a long-term water storage capacity. Otherwise, it may increase the risk. Figure 1 

illustrates a simplified EAM allocation procedure for two plants. Therefore, in the case of surplus 

generation (GSF > 1), all generators would receive additional income and vice-versa. The magnitude 

would be dependent on the spot price and the cumulative generation of the hydropower plants.  

  

                                                      
4 This assumption does not compromise the analysis’ robustness or its results since its major goal is to evaluate EAM 

performance by itself. 
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Figure 1 – EAM allocation framework 

 

The following numerical example, based on the data from EPE, (2016), illustrates the functioning of 

this risk-share mechanism and its impact on the generator revenue. From the data, it is observed that the 

average auction clearing price (pbid) was BRL197/MWh. In this same year, averages spot price (pspot) 

and GSF were BRL317/MWh5 and 0.79 respectively (CCEE, 2017). Using equation two and ceteris 

paribus all other variables, a 34% reduction in the generator’s revenue (dY) would be noticed, again 

supposing that FEC had been entirely committed (100%) in trade contracts within the same period. A 

brief calculation of this example is presented below. 

 

𝑌 = [197 + 317(0,79 − 1)] × 𝐹𝐸𝐶 

𝑌 = [197 − 66] × 𝐹𝐸𝐶 = 197𝐹𝐸𝐶 − 67𝐹𝐸𝐶 = 130𝐹𝐸𝐶 

𝑑𝑌 = (1 −
130𝐹𝐸𝐶

197𝐹𝐸𝐶
) × 100 = 34% 

2.2 Insurance Call Option (ICO) 

As discussed in the previous section, in the status-quo EAM mechanism, the hydro generators share the 

risk of non-performance equally amongst themselves. Therefore, an individual generator is exposed to 

revenue risks that are beyond its generation capabilities. The insurance call option allows each 

hydropower generator to choose its level of risk exposure, thus making possible a revenue cap for EAM 

outputs, where the premium payment should pay off the avoided costs they would have to support in the 

status quo mode. 

The ICO is another hedging mechanism introduced in 20156 to manage risk to the hydropower 

business model due to generation shortages. As previously defined by Merton et al., (1978), in the 

business environment, the functional characterisation of a call option is to be an insurance against a 

                                                      
5 After an application of a standard weighted average approach based on the four sub-markets relative share among total 

market size. 

6 The first one would be the amount of FEC each generator compromises within energy trade contracts. It is important to 

note that EAM and FEC continue to co-exist and generators may choose the mechanism to which they wish to subscribe.  
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decline in the underlying stock’s value, where the investor can purchase the insurance without owning 

the asset. Like the traditional insurance contract, the call option price increases for larger coverage 

levels. The premium will also be higher for a longer maturity and coverage of a more volatile stock.  

Eydeland and Wolyniec, (2003) describe the call options in the energy markets as “the right, but not 

the obligation, to buy energy at a predetermined strike price”. ICO follows the same fundamental 

approach for securing the hydropower production shortfall rather than a price. In Figure 2, a schematic 

example of ICO is displayed. It is important to note that, once the strike GSF is reached, the income for 

the generator is annulled until it returns to this same reference. 

Figure 2 – ICO’s framework – Generators’ Perspective 

 

ICO provides the hydro market with different pricing and risk sharing rates between generators and 

consumers, where ANEEL plays the insurer’s role on behalf of the consumers (ANEEL, 2015b). The 

generator chooses the desired level of strike GSF to hedge its production risk and thus pays the 

corresponding risk premium.  

There are two types of product portfolios, namely SP and P products. The SP products allow the 

consumers to keep the full benefits that arise when there are surpluses registered within the EAM 

operation (GSF > 1), while in the P products, all positive revenues remain with the generator. Hence, 

since P products have smaller deductibles (events with surpluses), their premium values are higher than 

that of a mirrored product in the SP category (i.e. products with the same risk shares). ANEEL sets the 

risk premium for both product portfolio. In Table 1 the options available to the generators are shown.  
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Table 1 – ANEEL’s ICO main features 

Product 
Modality 

Secured 
GSF 

Strike 
Index 

Product 
Type 

Risk Premium 
(BRL/MWh) 

P  1 0 P100 12,75 

P  1 and < 0,99 1 P99 11,75 

P  1 and < 0,98 2 P98 10,75 

P  1 and < 0,97 3 P97 10,00 

P  1 and < 0,96 4 P96 9,00 

P  1 and < 0,95 5 P95 8,25 

P  1 and < 0,94 6 P94 7,50 

P  1 and < 0,93 7 P93 6,75 

P  1 and < 0,92 8 P92 6,00 

P  1 and < 0,91 9 P91 5,50 

P  1 and < 0,90 10 P90 4,75 

P  1 and < 0,89 11 P89 4,25 

SP < 1 0 SP100 9,50 

SP < 0,99 1 SP99 8,50 

SP < 0,98 2 SP98 7,50 

SP < 0,97 3 SP97 6,50 

SP < 0,96 4 SP96 5,50 

SP < 0,95 5 SP95 4,75 

SP < 0,94 6 SP94 4,00 

SP < 0,93 7 SP93 3,25 

SP > 0,92 8 SP92 2,50 

SP < 0,91 9 SP91 2,00 

SP < 0,90 10 SP90 1,25 

SP < 0,89 11 SP89 0,75 

ANEEL’s price setting approach was to sum, to the average EAM historical record cost, the expected 

value from a set of uniform payments series where the second costly annual event known would be 

completely amortised (taken as an indirect measurement for consumers’ risk aversion). The time-series 
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set, in its turn, was designed to consider the occurrence of the costly event in each year of its 25-time-

year horizon (ANEEL, 2015c)7. 

It is important to underline that ANEEL’s ICO yields different EAM results among generators and 

consumers, depending on the modality of the insurance procured (SP or P), on the GSF strike (risk 

sharing commitment) and on the premium value itself. Thus, the same EAM outcome would yield two 

distinct positions: one for the companies, the other for consumers.  

Hence, we may disjoint the second term of equation 2 into four sets, the first two related to 

consumers’ revenue, also relying on whether it would be related to a P product (YP
C) or an SP one (YSP

C). 

The other two sets would be linked to the generator, both also committed to product’s modalities (YP
G) 

or (YSP
G). In these equations, pay represents premium value and GSFstk the strike GSF. 

 

𝑌𝑃
𝐶 = { 

𝑝𝑎𝑦                                                                                                                  𝐺𝑆𝐹 ≥ 1

𝑝𝑎𝑦                                                                                     𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 ≥ 𝐺𝑆𝐹𝑠𝑡𝑘

[𝑝𝑠𝑝𝑜𝑡 + 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹] × 𝐹𝐸𝐶                         𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 < 𝐺𝑆𝐹𝑠𝑡𝑘

       (3) 

 

 𝑌𝑆𝑃
𝐶 = { 

[𝑝𝑠𝑝𝑜𝑡 + 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹] × 𝐹𝐸𝐶                                                         𝐺𝑆𝐹 ≥ 1

𝑝𝑎𝑦                                                                                        𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 ≥ 𝐺𝑆𝐹𝑠𝑡𝑘

[𝑝𝑠𝑝𝑜𝑡 + 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹] × 𝐹𝐸𝐶                            𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 < 𝐺𝑆𝐹𝑠𝑡𝑘

   (4) 

  

𝑌𝑃
𝐺 = {

[𝑝𝑠𝑝𝑜𝑡 − 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹]  × 𝐹𝐸𝐶                                                     𝐺𝑆𝐹 ≥ 1

[𝑝𝑠𝑝𝑜𝑡 − 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹]  × 𝐹𝐸𝐶                        𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 ≥ 𝐺𝑆𝐹𝑠𝑡𝑘

−𝑝𝑎𝑦                                                                                 𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 < 𝐺𝑆𝐹𝑠𝑡𝑘

        (5) 

 

𝑌𝑆𝑃
𝐺 = { 

−𝑝𝑎𝑦                                                                                                           𝐺𝑆𝐹 ≥ 1

[𝑝𝑠𝑝𝑜𝑡 + 𝑝𝑎𝑦] × [−1 + 𝐺𝑆𝐹] × 𝐹𝐸𝐶                         𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 ≥ 𝐺𝑆𝐹𝑠𝑡𝑘

−𝑝𝑎𝑦                                                                              𝐺𝑆𝐹 < 1, 𝐺𝑆𝐹 < 𝐺𝑆𝐹𝑠𝑡𝑘

       (6) 

Consider the following example for ease of understanding: If a generator chooses the P99 option, it must 

pay a premium of 11.75 BRL/MWh, while its insurance covers every EAM output whose GSF is less 

than 0.99. Since it is a P modality procurement, every event whose GSF is equal to or greater than 0.99 

(including the ones with surpluses, GSF >1) remains as part of the generator’s ordinary revenue. 

Meanwhile, if the generator chooses an SP99, it will pay a lower premium of 8.50 BRL/MWh, while its 

protection against shortages would have the same coverage as a P99 case. The difference resides in the 

revenue from surplus events. In the SP99 scenario, the generator will not receive any income from 

surplus events, as they are now part of the consumer’s saving.  

3. Model Description 

For this analysis, a similar approach as the one adopted by the Brazilian government for issuing FEC 

grants to hydropower plants is followed. Hence, SDDP simulations with Newave, the Brazilian official 

computational tool (Maceira et al., 2008), were run in its static mode. This means that the system’s 

seasonal boundary conditions, such as load, transmission lines and power plants capabilities and 

constraints, RES generation, are all previously fixed and kept constant throughout the optimisation time 

horizon. 

                                                      
7 This was the average remaining concession period for existing hydropower assets by the time the regulation was issued. 
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The static simulation approach is preferred for determining FEC in Brazil because such an approach 

is strictly related to the definition of firm energy. In the Brazilian context, firm energy is a key issue for 

assessing the hydropower system’s supply reliability and hence adopted as a structural dimensioning 

parameter (República Federativa do Brasil, 2004). The aim here is not to evaluate the system’s short-

term supply adequacy, influenced by the system’s boundary conditions dynamics and interactions. 

Instead, it is to assess its average performance in a broader range of operational scenarios, seeking to 

check whether key operational outputs meet the planning criteria established by the national energy 

council (CNPE, 2008). 

Indeed, the concept of firm production capacity is old (Arvanittdis and Rosing, 1970) and it is linked 

to the capability to generate electricity in a natural sequence of dry years (Lima et al., 2016). It also 

relies on the calculation of the maximum continuously amount of energy that can be produced by the 

entire hydro pool, with their synergy operational benefits and all their operational constraints being 

coordinated by a centralised operator. Furthermore, (Labadie, 2004) presents several approaches to 

modelling firm production capacity founded in the literature.  

Nonetheless, the firm energy is usually calculated through an iterative process (Faria et al., 2009). 

For a given energy demand over a period, the hydro system optimal policy is determined, where any 

energy deficit is thus computed (Faria et al., 2009). Whether this deficit violates a pre-determined cap, 

the demand is reduced until it stays below the maximum reference. Otherwise, the demand is increased. 

In order not to have this analysis affected by the system’s short-term boundary conditions, static 

simulations are employed. Hence while dynamic simulations yield a short-term supply-adequacy 

overview, usually applied for plants’ dispatch and spot market pricing, static simulations seek to provide 

a broader panorama for the system’s reliability in the long-run. 

Within the current regulatory framework (MME, 2016), a static simulation is applied with the 

NEWAVE model as follows: for a given average energy demand, fixed within a 5-year-period, an SDDP 

routine is carried out until the average marginal operational costs (MOC) meet the marginal expansion 

cost (MEC)8 , and the average shortages stay under 5% of the system’s total load. If both boundary 

conditions are not met, a new load is established. The iteration for load continues until the maximum 

load level, which simultaneously follows the two caps, is reached. Arvanittdis and Rosing, (1970) 

defined this final demand as a critical or firm load. 

The equivalence of marginal operational costs and marginal expansion cost assures that, on average, 

the system expansion’s costs, whose expenditures are the sum of the operational costs plus the new 

investments, are economically equivalent to the current ones. This assumption turns the SDDP 

simulations compatible to each other (i.e. their outputs are under the same economic equilibrium), 

despite not having the same load or mix shares and results being necessarily derived from the same 

optimal policies. A concise mathematical formulation of the SDDP algorithm is presented below, based 

on Pereira, (1989). 

𝛼𝑡(𝑋𝑡) = 𝐸
(𝐴𝑡|𝑋𝑡)

[𝑚𝑖𝑛
𝑈𝑡

(𝐶𝑡(𝑈𝑡) +
1

𝜔
𝛼𝑡+1(𝑋𝑡+1))] ∀𝑡 = 𝑇, 𝑇 − 1, … ,1∀𝑋𝑡 (7) 

Subject to  

𝑋𝑡+1 = 𝑓𝑡(𝑋𝑡, 𝐴𝑡, 𝑈𝑡)      (8) 

𝑔𝑡+1(𝑋𝑡+1) ≥ 0      (9) 

ℎ𝑡(𝑈𝑡) ≥  0       (10) 

                                                      
8 At the reference date of this work, MEC was BRL193/MWh. There is a tolerance of BRL2.00/MWh for this match, where 

BRL is an acronym for the Brazilian currency. 
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Where t indexes the stages (T planning horizon, which is 60 months for FEC problem) X is a vector that 

represents the state variables. α(X) denotes the expected value of the operation cost throughout the 

planning horizon under the optimal operation policy. A│X represents the probability distribution of the 

inflows A, conditioned by the state X, E(.) is the expected value operator. U the decision vector for each 

stage, C(U) the immediate cost related to the decision U,  the discount rate, f(X,A,U) the state transition 

equation, g(X) the set of constraints on the state vector and h(U) the set of constraints for the decision 

vector (Pereira, 1989). 

Since the hydropower concession grant period is 30 years and the FEC planning horizon is 60 months 

(five years), an extension period over FEC’s common outputs had to be addressed. Hence a Monte Carlo 

(MC) simulation (Shapiro, 2003) was applied to the optimal policy originally released by Newave. 

Generally, the evolution of the power system along the stages has a tree-like structure, where each 

branch corresponds to an alternative solution to the problem presented in Equations 7-10 (Pereira, 1989). 

Several operational trajectories may occur throughout the default horizon of five years since the SDDP 

routine had been converged.  

The MC approach entails randomly coupling six samples from each of the optimal policy trajectories 

output by Newave. That would be just an expansion of the original horizon which aims to mimic 

system’s long-term scheduling. If we assume that the original decision-tree had been sufficiently 

explored (i.e. its combination of operational policies may be a reliable subset of the countless optimal 

possibilities that may occur in real practice) and that the electricity mix share might be somewhat 

considered representative for the system’s evolution throughout the future period under consideration. 

The convergence of the MC procedure was evaluated following an approach suggested by Yang, 

(2011), basically adopting the coefficient of variance (CV) as an indicator to control MC convergence. 

We assumed that a difference of less than 1% in the CV for EAM releases was negligible. Also, a Net 

Present Value (NPV) approach was utilised to assess the impact on consumer and generator economics 

utility. ANEEL’s yearly regulatory weighted average cost of capital (WACC) of 9.63% (ANEEL, 

2015c) was used for these calculations. Figure 3 illustrates a schematic flow of the methodological 

approach that was addressed. 
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Figure 3 – General Model Description 

 

The first step was preparing the input files required by Newave for each of the three scenarios, whose 

data and details will be described in the next section. After that, a loop routine with Newave simulations 

was carried out observing the description made in Section 3, until the convergence criteria had been 

met. This procedure led to two thousand exemplars of 5-year optimal policy sequences. Their horizon-

extension was made by applying the MC technique, which consisted of randomly sampling six 

exemplars of the five-year-sequences and then coupling them in a row, yielding thirty-year optimal 

policy trajectories. A regulatory discount rate (WACC) is applied to each element of the thirty-year 

sequences, whose NPV’s statistical properties were the base for indicators’ formulation and the 

following risk economic analysis. 

4. Scenarios and Indicators 

Three scenarios have been used to assess the economic performance of the EAM. The first one (baseline 

scenario) consisted of evaluating the current system configuration. The second scenario was based on 

the most recent reference expansion roadmap published by the Brazilian government (EPE, 2017a). The 

third was a what-if scenario, also extracted from the official plan, where no new hydro plant would be 

built within the planning horizon.  

An important aspect regarding scenario selection was to evaluate official outlooks rather than make 

arbitrary choices. This enabled the authors to yield relevant policy insights that are based on the 

Brazilian energy authorities’ conceived vision of the future. More details for each of these will be 

provided in the next sections.  
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4.1 Scenario 1 (Baseline) 

This scenario is based on an EPE, (2017b) supply-adequacy study that was carried out throughout 2017, 

using the system’s consolidated data from 2016, but with its operational and economic effects only in 

2018. The generation mix share considered is presented in Figure 4. The technologies were merged into 

three main themes: Hydro, Thermal and RES. These data also include all previously procured assets 

whose trade operations shall start within the 2016-2026 horizon.  

Figure 4 – Mix Share in 2016 (Total Installed Capacity of 148GW) 

 

 

4.2 Scenario 2 (RES26) 

This scenario is based on the mainstream roadmap released by the government (EPE, 2017a). So it is a 

recent indicative reference about the system’s expected expansion. It indicates a significant increase in 

the share of RES, with more than 23.5 GW of new assets being procured by 2026. RES is indeed 

forecasted to form 30% of the electricity mix share by 2026. Figure 5 illustrates the ten-year expansion 

trajectory for the three merged technologies, as well as the mix share evolution based on the average 

generation. 

In this outlook, new hydro assets procurement has also been considered, as the government expects 

to launch some new hydro plants within the planning horizon. The selection of hydro expansion is based 

on previously observed technical, economic and environmental parameters provided by public inventory 

data9 that best fitted the expansion optimisation criteria (EPE, 2017a)10. The list of best indicative plants 

is presented in the Annex. One common and essential feature among them is that all are run-of-river 

hydroelectric plants. The total new installed capacity of hydroelectric plants would be of 2.6 GW. 

  

                                                      
9 A public repository where one may find results of optimal hydropower river basin exploitation studies, all them approved 

by the Regulator, whose data publicity is fully available.  

10 Whose objective function is to minimize total investment plus operational costs, subject to the main operational restrictions 

for the load attendance. A more complete description of the model is provided by EPE, (2017a).  
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Figure 5 – Mix share evolution and the Ten-Year Expansion Plan 

 

4.3 Scenario 3 (NoHydroRES26) 

The official expansion plan also provides a what-if scenario that assumes complete restrictions on 

building new hydro plants throughout the planning horizon. This is a relevant scenario in Brazil 

considering the current social and environmental constraints for developing new hydro projects, which 

are adding to the energy source investment and operational costs. Indeed, higher development costs and 

risks are nudging developers to explore and opt for alternate hydropower solutions (Ansar et al., 2014). 

The NoHydroRES26 scenario would lead to the construction of 2GW of new coal plants, whose 

unitary costs would be of 100BRL/MWh (EPE, 2017a). Regardless of the increase in greenhouse 

emissions, their affordable operational costs and national availability would make them more attractive 

according to government’s expansion criteria. In the context of RES, the source would have a small 

relative decrease of 1.4% in the mix share (22.6GW). Mix evolution is presented in Figure 6. 
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Figure 6 – Mix share evolution and the “no hydro” scenario within the Expansion Plan  

 

4.4 Other variables 

All other variables used in the analysis can be checked in EPE, (2017a) and EPE, (2017b). We highlight 

in Table 2 the most relevant ones. Recall that the equivalence of marginal operational and expansion 

costs ensures that the three scenarios are comparable to each other, despite not holding the same average 

load or the same mix shares. Nevertheless, the same load trend has been applied in both future outlooks, 

which is why RES26 and NoHydroRES26 present the same average load. Finally, also to keep the results 

compatible with each other, the same discount rate has been applied within each NPV simulations 

horizon. 

Table 2- Other Variables used in the analysis 

Scenario 

Average 

Load 

(MWavg) 

Load Annual 

Average 

Trend (%) 

NPV Annual 

Discount 

Rate (%) 

Baseline 67.309 - 

9,63 RES26 
92.447 3.5 

NoHydroRES26 

4.5 Indicators 

In the analysis, it is key to understand that we discuss only the second term of equation two, since the 

first part (bid price and the FEC) may to some extent be considered flat elements within hydropower 
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revenues. We are particularly interested in a subset of equation two’s second part, which defines EAM 

operational unit values (EAMuv): 

 

𝐸𝐴𝑀𝑢𝑣 = 𝑝𝑠𝑝𝑜𝑡 × [𝐺𝑆𝐹 − 1]    (11) 

EAMuv indicates the difference between actual revenue the hydro-generator would earn if compared to 

the expected revenue entirely based on FEC. If GSF is less than one, EAMuv would be a negative 

indicating a deficit and vice-versa. 

Furthermore, since EAM results rely on the stochastic properties of the system operation, EAMuv was 

the variable computed using the methodology described in Section 3. The WAAC discount rate was 

applied to each EAMuv operational cash flow time-series over the defined horizon (30 years). Moreover, 

since this framework yields 80.000 net present values for EAMuv, the 5% quantile (Q5) of the respective 

probability density was used to establish a benchmark reference. 

From the generator perspective, a negative Q5 value would mimic a conservative hedge price-cap 

that entrepreneurs would be likely to pass-through in their project finance to protect it from EAM 

dynamics11. Conversely, a positive value would be a reference of the maximum discount hydro 

generators would be willing to bid (Pbid) to have the right to run the hydro asset business. From the 

customer side, Q5 could be taken as an indirect measurement of consumer’s utility (impact on the 

electricity tariff), since this hedge (positive or negative) ought to be partially or entirely reflected in the 

Pbid price settled in ordinary auctions carried out in the regulated environment.  

In this research, we opted to focus on a straightforward interpretation of Q5 within consumers’ 

economic positions: i) If consumers are enrolled with EAM outputs (policy option 2), their economic 

utilities would correspond to Q5 measured within each of the two incomes modalities, YP
C or YSP

C. ii) If 

consumers do not have a direct enrolment12 within EAM operation (policy option 1), Q5 ought to be 

always null. Finally, combining consumers’ and generators’ economic utilities would yield a 

measurement for the market’s effectiveness, here stated as a market utility. 

5. Results and Analysis 

5.1 EAM Status Quo results  

Based on the methodology described in Section 3, the EAM Status Quo results from the model are 

presented13. The simulation indicates that, in the baseline scenario, the EAM would more likely drive a 

negative impact on the revenues of the hydropower generators. The results suggest a probability of only 

18% of having a positive NPV over the given time horizon. Conversely, the RES26 scenario shows a 

97% probability of positive NPV and, in the NoHydroRES26, the same metric would be 76% (See the 

probabilities densities in Figure 7).  

  

                                                      
11 Indeed, a very important issue regarding this subject is the setting firm’s willingness to take risk in specific markets, which 

is a fairly complex subject (de Maere d’Aertrycke et al., 2017). The assumption made here (adopting the 5% quantile) was 

an empirical choice, whose aim was to focus more on the policies’ general implications rather than their specific 

complexities, especially setting a common base where comparison between different designs could be done.  

12 We mean direct enrolment because EAM performance should indirectly affect pbid (and thus tariffs) within the regulated 

environment since its economic feasibility is a relevant part of any hydropower project finance.  

13 Model validation results using historical data for comparison are provided in the Annex.  
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Figure 7 – EAM Economic Performance  

 

It is important to remember that, in both future scenarios, RES expansion is similar (difference of 

1.43%). The main difference was the substitution of 2.6GW of hydro plants for 2.4GW (2GW coal) 

thermal sources in NoHydro26. Hence, we may conclude that slight differences among the expansion 

portfolios, especially related to the controllable sources share (i.e. substituting non-controllable run-of-

river hydro plants for controllable thermal), may yield substantial differences regarding EAM output 

ranges and frequencies. From the three probability densities within the horizontal axis in Figure 7, it is 

observed that the corresponding spectrum and shapes varied significantly between the three scenarios.  

The consumer and generator utilities values in the three scenarios are also displayed in Figure 7. The 

economic imbalance for EAM in the baseline is also reflected in its utility value since Q5 was a negative 

value of BRL -3.28/MWh. As stated before, this can be interpreted as the cap hedge price a hydro 

generator would be willing to pass-through in his auction strategy to mitigate EAM risk operation within 

his business. The deviation of the utility measurement, either positive or negative, would be partially or 

entirely considered by generators in their final auction bid and thus be reflected in contracts’ prices 

traded between generators and consumers within the regulated environment. 

In the RES26, on the other hand, we observe that hydro generators would likely to have a positive 

impact of BRL0.23/MWh on their welfare. Consequently, not only benefiting the hydro-generators 

directly but also the consumers indirectly, since this could be the maximum discount a generator would 

be willing to offer in its bid strategy to be more competitive in the auction process. NohydroRES26 

scenario, in its turn, would yield an intermediate pattern, where there would still have a negative 

perspective regarding hydro pool performance in the long-run, here measured as BRL -1.82/MWh. This 

last outcome was mainly driven by the substitution of the run-of-river hydropower for coal plants, whose 

unitary costs of BRL100/MWh would likely yield them to be a load-based source in most of the 

operational scenarios14, thus directly competing with controllable hydro sources (hydroelectric with 

reservoirs) for the preferable dispatch. 

                                                      
14 Yet since average MOC had been previously settled equal to BRL 193/MWh, coal unitary costs are far under this central 

reference, what thus turn them to be a load-based dispatchable source. 
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5.1.1 Impact of generation mix features on EAM results. 

The average simulation outputs are presented in Figure 8. In the chart, relative RES participation is 

structurally higher in both future scenarios (RES26 and NoHydroRES26) as compared to the baseline. 

Nonetheless, RES installed capacity might be considered quite the same in the two cases (see Section 

3.3), what yields similar results regarding generation share and meeting load requirement. Furthermore, 

although hydro and thermal relative participation is more or less the same in future scenarios, EAM 

densities shown in Figure 7 differ significantly from each other. Hence, it can be concluded that the 

participation of RES at the currently forecasted levels does not have a significant impact on the EAM 

risk matrix and thus its economic performance.  

Figure 8 – Average Mix Generation Share 

 

The role of the main features related to EAM risk dynamics can be better understood when comparing 

EAM indexes in a broader range of results (Figure 9). Looking at these outcomes, we realise that there 

is a relatively higher hydro generation in the RES26mix scenario than in the other two, for almost every 

operational trajectory. Taking also into account that RES growth would be similar in both future 

conditions, the increase in hydro production in RES26 could be attributed to the presence of more non-

controllable sources (what includes RES technologies and run-of-river hydro plants) instead of thermal 

sources as in NoHydroRES26.  

When RES26 and NoHydroRES26 generation expansion quantities are compared, the former would 

have more non-controllable sources (+2.6GW of run-of-river plants), instead of low-cost coal thermal 

(+2GW). Thus, having less controllable thermal supply raises the RES26 hydro generation’s pattern to 

a higher level compared to the baseline scenario. On the other hand, because no hydro asset is foreseen 

in NoHydroRES26, the opposite effect (GSF structural decrease) is observed in this outlook, making 

the system more reliant on thermal generation assets.  
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Figure 9 – GSF indexes  

 

Reservoirs average storages also corroborate these remarks. This result is presented in Figure 10. We 

may realise that reservoir depletion is structurally higher (lower average levels) in RES 26 than in the 

other two. Meanwhile, NoHydroRES26 reservoir average storages follow the baseline pattern very 

closely. 

Figure 10 – Reservoir Average Storages  

 

Since hydro performance was much more sensitive to thermal growth than to RES augment, we may 

conclude that RES penetration itself, on average, might not have significant influence over EAM long-

term performance. For instance, comparing NohydroRES26 with the baseline, despite the increase of 

12% in RES mix share (+22.6GW), the hydro dispatch in both cases was very similar. Indeed, as long 

as the system’s increment of demand might be fully met by expansion of RES (this also may include 
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run-of-river hydro assets), the net demand to be supplied by controllable sources (i.e. water reservoirs 

and thermal power) stays the same, thus not interfering in the optimal scheduling decision-problems’ 

boundary conditions. 

5.1.2 Impact of generation mix features on spot price 

In Figure 11, spot price cumulative probabilities are presented. While RES26 has the most evident 

difference compared to the baseline, NoHydroRES26 presents an intermediate pattern. Before analysing 

the main causes for this observation, an important feature to highlight is that the three curves have the 

same average value since they were all derived from an optimisation procedure whose MOC had to be 

equal to MEC (See Section 3). This parity is vital to make them comparable with each other, as they all 

simultaneously tend towards the same economic criteria. 

Figure 11 – Spot price Cumulative Probabilities 

 

An essential remark from the spot price’s statistical properties shown in Figure 11 is that the futures 

scenarios display higher slopes than baseline’s, until a price near BRL300/MWh. After this reference, 

the slopes’ trends shift. This is relevant because surplus events within EAM usually happen within the 

lower tail of the spot price cumulative distribution function. Surplus events are likely to happen when 

both reservoir levels and hydrologic inflows are favourable, thus driving water values and MOC 

downwards. 

Conversely, EAM deficits are likely to happen when water values and MOC are at their higher 

pattern. If so, we conclude that the slopes of future cumulative probabilities, especially in RES26, 

improve EAM economic performance in its two strands: surpluses are more highly valued, while deficits 

are less penalised. However, the key is to understand the reason behind this occurrence.  

In Figure 12 a subset of the spot price cumulative distribution is displayed, where the curves group 

the only spot price that is linked with EAM surplus events. From the graphs, we can realise that most of 

these events occur when the spot price is below the MEC reference. Moreover, RES26’s spot price is 

far greater than in the baseline, within almost 95% of the probability spectrum. This is related to thermal 

supply curve shapes and might be considered as a core reason for the EAM economic performance 

improvement observed in RES26 scenario, particularly compared to the other ones.  
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Figure 12 – Spot price within EAM’s Surpluses Events  

 

From Figure 11, it is observed that the price near of BRL300/MWh appears to be an important inflexion 

point within all these scenarios, where both future cumulative probabilities functions shift from being 

higher to lower, compared to the benchmark reference (baseline). This is a price reference where thermal 

supply curve shapes have an almost 90-degree slope, whose unitary costs shift from approximately 

BRL300/MWh to above BRL400/MWh (see Figure 13). 

Indeed, due to the strong correlation water values and MOC have with thermal supply curve 

characteristics (Pereira et al., 1998)15, a great augment of the thermal unitary costs in any part of its 

power availability domain might enhance hydropower generation in the correspondent range of the 

operational costs interval. Hence, the point where any singular inflexion occurs within the thermal 

supply dominium is crucial for the final relative energy allocation between hydro or thermal sources. 

For instance, in the future scenarios here addressed, the 90-degree-slopes are close to thermal’s relative 

usage of 50% (percentage of thermal power availability regarding its full capability), whereas, in the 

baseline, this represents more than 75%. 

  

                                                      
15 Indeed, hydrothermal systems’ optimal scheduling is a problem coupled in time (a decision in present affects operating 

costs in the future), which thus deals with minimizing current and future costs. The latter is the opportunity cost associated 

with savings in displaced thermal generation now or in the future (Pereira, 2000). Water values might be interpreted as the 

derivates of the immediate or the future costs functions with respect to storage in the reservoirs. Mathematically, these are 

the simplex multipliers (shadow prices) derived from the water balance equation, one of the specific constraints contained 

in the set of state transition equations generally resumed in Equation 8. The optimal usage of the reservoirs is at the point 

which equalizes immediate and future water values. 
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Figure 13 – Thermal Supply Curves 

 

Another important feature is that if MEC is taken as an empirical reference for measuring thermal base-

load relative participation within the power mix, we realize that, in the baseline scenario, almost 50% 

of the thermal portfolio has unitary costs below this reference, whereas, in the two future scenarios 

(RES26 and NoHydroRES26), this same reference is near 30%. This relative decrease certainly 

contributes to pushing hydro prevalence among the preferable dispatch and thus EAM performance. 

Furthermore, RES26 and NoHydroRES26 thermal supply’s curves show significant plateaus next to 

the BRL450/MWh unitary cost. This feature comes from more than 12GW of thermal gas-fired plants 

foreseen in the plan (EPE, 2017a). This significant thermal volume above CME makes their portfolios 

relatively more expensive compared to the baseline. The influence of these elements over thermal 

dispatch is presented in the Annex.  

Therefore, it is observed that slight differences in thermal supply curves cause significant 

consequences over optimal hydrothermal allocation. This last statement leads to at least an important 

remark. How important might thermal generation’s physical and economic features be for hydropower 

dispatch and thus on EAM economic performance. From the results shown, small differences in RES26 

and NohydroRES26 thermal’s supply power availability and unitary costs caused relevant differences 

in spot price realisations and the hydrothermal optimal trade-off quantities. These are the core variables 

regarding EAM economic performance (See Equation 11). 

5.2 Insurance Call Options Results  

The results from the implementation of ICO in the three scenarios are presented in Figure 14. In all 

graphs, lines represent the expected value for EAM outputs and, the shaded area, the confidence interval 

of 90% for the same variable. Moreover, for ease of comparison between the two policy options, the 

utility indicators for the ICO approach are presented in Tables 3 to 5. 

From Figure 14 it is observed that the confidence intervals for consumers’ economics positions are 

larger than the same for generators. Furthermore, SP modality provides less volatility to generators than 

the mirrored P product. This is because the EAM surpluses are not part of generators’ revenue when 

they opt for any SP product. SP100 is insurance whose coverage ensures complete flat revenues for 

generators onwards. Indeed, SP100 works as a hedge premium the generator would be willing to pay 

aiming to keep EAM uncertainty entirely out of their hydropower business. 
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Another conclusion is that ICO’s design does not yield perfect monotonic behaviours within GSF 

strike’s range. The original trends observed in most of EAM economic outputs displayed in Figure 14 

(i.e. decreasing utilities for consumers while strikes values grow, or the opposite, for generators) start to 

shift its initial tendency within its default dominium (strikes vary from zero to eleven). When this 

happens, the premium value no longer reflects the risk supported by the insured (generator). Therefore, 

there is a scope for the insurance improvement design.  

Furthermore, because each curve in Figure 14 shows an inflexion within their shape (non-monotonic 

function), they end up representing local optimal points. Hence the inflexion points in each generator 

and consumer curves represent the optimal trade-off between risk share and net expected return, 

according to their perspective, thus each becoming its own reference for assessing the attractiveness of 

the insurance options.  

It is also observed that the ICO performance differs depending on the scenario. In baseline and 

NoHydroRES26's trajectories, for instance, P92 maximises generator returns, while in RES26, P89 

would be the preferable choice. This can be explained by the improvement in EAM economic 

performance that is driven by RES26 mix’s boundary conditions (see the previous Section). Since EAM 

would likely yield positive NPVs in this case, it would make managing EAM negative outputs less 

costly, which would make the maximum strike GSF (equal to eleven) the most suitable choice. 
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Figure 14 – ANEEL’s ICO Assessment 
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Table 3 - Baseline Scenario  

Modality Utility Strike GSF (%) 

0 1 2 3 4 5 6 7 8 9 10 11 

P 

Consumer  -1,46 -1,79 -2,12 -2,33 -2,59 -2,78 -2,87 -2,90 -2,95 -2,87 -2,87 -2,73 

Generator  -2,08 -1,75 -1,42 -1,21 -0,94 -0,74 -0,62 -0,58 -0,53 -0,59 -0,57 -0,71 

Market  -3,54 -3,54 -3,54 -3,54 -3,53 -3,52 -3,50 -3,48 -3,48 -3,46 -3,44 -3,44 

SP 

Consumer  -0,07 -0,40 -0,73 -1,03 -1,28 -1,48 -1,57 -1,60 -1,64 -1,57 -1,57 -1,44 

Generator  -3,21 -2,88 -2,56 -2,28 -2,05 -1,86 -1,79 -1,77 -1,73 -1,80 -1,80 -1,95 

Market  -3,28 -3,28 -3,29 -3,31 -3,33 -3,34 -3,36 -3,37 -3,37 -3,37 -3,37 -3,39 

Table 4 - RES26 Scenario 

Modality Utility Strike GSF (%) 

0 1 2 3 4 5 6 7 8 9 10 11 

P 

Consumer  -0,20 -0,54 -0,87 -1,05 -1,33 -1,48 -1,58 -1,63 -1,66 -1,66 -1,77 -1,78 

Generator  -0,27 0,07 0,40 0,58 0,85 1,03 1,15 1,25 1,40 1,45 1,61 1,68 

Market -0,47 -0,47 -0,47 -0,47 -0,48 -0,45 -0,43 -0,38 -0,26 -0,21 -0,16 -0,10 

SP 

Consumer  3,46 3,13 2,80 2,53 2,25 2,10 1,99 1,94 1,90 1,89 1,78 1,76 

Generator  -3,21 -2,88 -2,56 -2,33 -2,07 -1,93 -1,87 -1,87 -1,82 -1,87 -1,78 -1,78 

Market 0,25 0,25 0,24 0,20 0,18 0,17 0,12 0,07 0,08 0,02 0,00 -0,02 

Table 5 - NoHydroRES26 Scenario 

Modality Utility Strike GSF (%) 

0 1 2 3 4 5 6 7 8 9 10 11 

P 

Consumer  -1,27 -1,60 -1,93 -2,13 -2,44 -2,58 -2,68 -2,78 -2,93 -2,82 -2,70 -2,67 

Generator  -0,99 -0,65 -0,33 -0,13 0,19 0,34 0,43 0,55 0,71 0,62 0,56 0,54 

Market  -2,26 -2,25 -2,26 -2,26 -2,25 -2,24 -2,25 -2,23 -2,22 -2,2 -2,14 -2,13 

SP 

Consumer  1,39 1,05 0,73 0,45 0,13 -0,01 -0,10 -0,21 -0,36 -0,26 -0,14 -0,12 

Generator  -3,21 -2,88 -2,56 -2,30 -2,00 -1,88 -1,82 -1,73 -1,60 -1,75 -1,90 -1,95 

Market -1,82 -1,83 -1,83 -1,85 -1,87 -1,89 -1,92 -1,94 -1,96 -2,01 -2,04 -2,07 

From the consumers’ perspective, SP100 seems to be the most attractive option, regardless of mix 

scenario, risk aversion criterion (strike GSF) or product modality (P or SP). On the generator side, P 

products would be the preferable ones, no matter the scenario mix. Nonetheless, the strike GSF choice 
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would be influenced by the mix expansion dynamics, since the best trade-off option is different among 

the mix options addressed here.  

When checking CCEE data regarding ICO’s settlements (CCEE, 2018b), most generators opted for 

the SP100 product, followed by SP92 and other types of SP products. There has been no procurement 

for P products. A first possible explanation for this is that hydropower developers may not apply a 

standard approach for assessing EAM’s risk variability. Different methodological approaches lead to 

widely differing results, which may drive distinct final risk perceptions among hydropower stakeholders 

as well. The discussion here does not claim to be the only possible framework regarding EAM risk 

assessment and pricing.  

Furthermore, SP products have an important property of substantially reducing generators’ cash flow 

volatility. This might be an attribute sought by market participants since within hydro asset’s initial 

years there is usually the more intense cost of capital expenditure (both debt and equity), which might 

significantly enhance generator’s propensity for call options that enable flat incomes. This could be 

reinforced if a decadal cyclical drought takes place, stressing the system’s reliability and, consequently, 

hydro’s cash flow. 

5.2.1 ICO’s sensitivity assessment 

A sensitivity analysis was carried out to assess the performance of ICO allocation among a broader set 

of prices and strikes combinations. The results for baseline scenario are shown in Figure 15, where the 

domain for strikes GSF was kept the same, while the price varied from 1 to 20BRL/MWh. In this figure, 

grey degrees vary from darker (lower GSF strikes values) to lighter (higher GSF strikes). Benchmark 

represents the status quo market utility value (i.e. BRL3.28/MWh). 

From Figure 15, we observe that for the same risk allocation share, economic utilities have a linear 

trend regarding premium values setting. So, if GSF strikes are fixed, consumers’ utility rises with the 

increase of premium values. The opposite effect is observed for the generators. Moreover, due to the 

linear relationship between economic utility and premium values, the relative difference among them 

(market utility) stays the same, regardless of the premium value. Because of this parity, for instance, if 

a market-design were to maintain a ‘null’ result for the consumers, it would always lead to an outcome 

for generators below the benchmark reference, regardless the final premium value set. Hence, this would 

be an inadequate premise since it would make the insurance useless for generators.  
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Figure 15 – ICO’s broad set of parameters combinations 

 

On the other hand, if the premise were to annul generators’ economic utility within the premium range 

considered, this could not be entirely achieved in the SP modality, since the cost driven by the premium 

payment could not be compensated by the revenue from surplus scenarios in EAM. In P modality, 

ensuring a null result for the generator would correspond to allocating results to consumers that are 

worse than the benchmark reference, which would also be an unprofitable design. 

5.2.2 ICO’s optimisation 

The second sensitivity analysis carried out applied an alternative approach for setting premium values. 

It consisted of selecting the common point in Figure 15 where consumers’ and generator’s utilities 

matched each other, emulating a supply-demand equilibrium. The results are shown in Table 6, as well 

as its relative differences among ANEEL16.  

  

                                                      
16 In order to make this specific comparison fully suitable, another MC simulation where the cash flow period designated to 

be 25 years had been run. 
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Table 6 – Risk Premium Values and Relative Differences to ANEEL 

Product Type 
Optimal 

Risk Premium 
(BRL/MWh) 

ANEEL’s 
Risk Premium 
(BRL/MWh) 

Relative 
Difference (%) 

P100 11,94 12,75 -6,4 

P99 11,93 11,75 1,5 

P98 11,90 10,75 10,7 

P97 11,78 10,00 17,8 

P96 11,55 9,00 28,3 

P95 11,38 8,25 37,9 

P94 10,94 7,50 45,9 

P93 10,30 6,75 52,6 

P92 9,67 6,00 61,2 

P91 8,98 5,50 63,3 

P90 8,24 4,75 73,5 

P89 7,33 4,25 72,5 

SP100 4,98 9,50 -47,6 

SP99 4,97 8,50 -41,5 

SP98 4,92 7,50 -34,4 

SP97 4,76 6,50 -26,8 

SP96 4,48 5,50 -18,6 

SP95 4,30 4,75 -9,5 

SP94 3,79 4,00 -5,3 

SP93 3,09 3,25 -4,9 

SP92 2,48 2,50 -0,8 

SP91 1,75 2,00 -12,5 

SP90 0,99 1,25 -20,8 

SP89 0,07 0,75 -90,7 

The common ordered pair (premium value and economic utility) would thus yield individual positions 

where risk share and expected net returns would be the same. If these assumptions might be considered 

suitable, the results presented in Table 6 provide a conclusion that based on the model results from this 

paper, most ANEEL’s P products should have their premium values enhanced (except P100), while SP 

premiums should be lowered. 
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5.3 Comparative Analysis 

The comparative analysis between the two policy options relies strongly on the discussion presented in 

Section 4.5. In the baseline scenario, none of the ICO results would yield better economic revenues for 

consumers than the neutral position they had had within EAM status quo. As may be observed in Table 

3, all consumers’ utilities are negative (worse than null), regardless of mix scenario or product’s 

modality or type.  

Meanwhile, consumers would have their positions improved if any of SP modality takes part in 

RES26 scenario (see Table 4), while generators would not have any incentive to procure them, as they 

would not yield better economic utilities than the ones originally pushed by EAM status quo directives. 

In NohydroRES26 perspective, SP100 to SP96 would provide a better result for consumers, while the 

most suitable options would still be available for generators.  

Nevertheless, the analysis carried out in the previous section suggests that ICO design may lead to 

an overall improvement in the system level welfare compared to the status-quo EAM if a criterion of 

equivalent welfares is set as an ICO priority design goal. Because EAM status quo has higher hedge 

costs, ICO design could push a compromise solution where individual welfare decrease would possibly 

yield a better market equilibrium, benefiting both consumers and generators. 

It is also observed that ICO yields higher market economic utilities when compared to the same 

hypothesis in EAM status quo. This is because ICO’s conceptual framework establishes a new money 

entrance within the EAM operation, whereas the overall amount of energy transacted in the hydro pool 

remains the same. Thus, if the total ratio between financial and energetic resources rises, and the GSF 

average index tends to be a negative value (i.e. Baseline and NoHydroRES26), the adverse global result 

increases as well. On the other hand, if the long-term economic indicator for EAM is positive (i.e. in 

RES26 scenario), ICO would drive a higher overall market indicator than the status quo policy. 

6. Conclusions and Policy Implications 

In this research, two policy approaches for designing risk share among hydropower operations in Brazil 

were assessed. The system’s expansion criteria and dynamics may influence EAM performance and thus 

hydropower economic feasibility. For instance, EAM is likely to be an unprofitable mechanism for 

hydro-generators within the current mix configuration since its thermal portfolio has a relatively great 

share of base-load units, thus competing with hydropower for the preference of the dispatch. Conversely, 

it may become feasible only by modifying thermal base-load and peak-load expansion parameters. The 

thermal economic and physical characteristics are the main features that impact EAM performance.  

On average, the participation of RES does not have a significant bearing on EAM results in the long-

run. Indeed hydropower would be positively impacted in a scenario with more dependence on non-

controllable resources (RES or run-of-river hydro) than when reliant on base-load thermal generation. 

This is valid when RES growth is always fully met by the same increment in the system’s load, thus not 

significantly modifying the system’s controllable merit order that is dynamically constituted between 

the hydropower reservoirs and the thermal portfolio.  

It can also be concluded that the current ICO approach drives a significant transfer of wealth from 

consumers to generators and does not yield perfect monotonic behaviours within GSF’s strike range, 

indicating scope for its improvement. From the consumers’ perspective, SP100 seems to be the least bad 

option, regardless of mix scenario, risk aversion criterion (strike GSF) or product modality (P or SP). 

On the generator side, P products would be the preferable ones, no matter the scenario mix.  

Conversely, ICO design may lead to an overall improvement in the system level welfare compared 

to the status-quo EAM, if a criterion of equivalent welfares (i.e. same expected results for both 

generators and consumers) is set as an ICO design goal. Because EAM status quo has higher hedge 



Bruno Goulart F. Machado and Pradyumna Bhagwat 

28 Robert Schuman Centre for Advanced Studies Working Papers 

costs, ICO design could lead to a compromise solution where individual welfare decreases would 

possibly yield a better market arrangement, benefiting both consumer and generators in the end.  
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Annexe 

Table 7 – Indicative Hydro Plants of the Expansion Plan (EPE, 2017a) 

NAME SIZE (MW) START-UP YEAR 

Telêmaco Borba  118 2023 

Tabajara 350 2024 

Apertados 139 2025 

Ercilândia 87 2025 

Foz do Piquiri 93 2025 

Castanheira 140 2026 

Porto Galeano 81 2026 

Bem Querer 709 2026 

Itapiranga 725 2026 

Figure 16 – Thermal Average Generation 

 

Model Reliability 

The model’s stochastic outputs may not be very distinct from the empirical probability function released 

by the operational record. Hence, the EAM unitary value densities were compared, while historical data 

was gathered from 2001 until 2017 (CCEE, 2018a). This approach was essentially coupling GSF indexes 

and correspondent’s spot prices accordingly to Equation 1117. In Figure 17 both curves are shown. 

                                                      
17 The marginal operational costs from Newave were taken as reasonable proxies for the market’s spot prices. Yet the spot 

prices in Brazil are weekly based and are calculated within a coupling-in-time procedure where the long-term optimal 

policy provided by Newave is read and desegregated by another SDDP modeling algorithm (Decomp model). Decomp 

yields weekly optimal dispatch targets for each plant and the correspondent marginal costs for each of the four markets that 

compose the national system. To convert the weekly spot prices record into a monthly base, a load-weighted-average 

approach accordingly to each market relative share was done. 
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Figure 17 – Static Simulation Calibration 

 

When looking at the two curves, one may realise that baseline scenario ranges and probabilities are close 

to the same ones from the historical record. Indeed, as mentioned in section 3, static simulations are 

designed to provide the system’s reliability assessment. So if the system has been so far planned and 

operated steady, a static simulation approach could not be very far from its historical record. The 

compromise conditions regarding FEC’s loop convergence (see Figure 3) are presented in Table 8. 

Table 8 - Compromise conditions for FEC’s convergence 

Scenario 
Critical Load 

(MWavg) 

Average MOC 

(BRL/MWh) 

Average 

Shortages 

(%) 

Baseline 84.410 192,61 0,21 

RES26 99.112 191,24 0,37 

NoHydroRES26 97.827 191,45 0,29 

Another relevant aspect was setting the sample size within the MC simulation. The number settled was 

80.000, based on the results shown in Figure 18, where a difference for the coefficient of variation less 

than 1% was established as a target goal (red line).  
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Figure 18 – Monte Carlo Setting  
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