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Likelihood analysis of seasonal cointegration

S. Johansen
European University Institute 

and
E. Schaumburg 

Princeton University

March 14, 1997

Abstract

The vector autoregressive mode! for seasonal cointegration is analysed. 
The general error correction model is discussed and conditions are found 
under which the process is integrated of order 1 at seasonal frequency 
and exhibits cointegration.

Under these conditions a representation theorem for the solution is 
given expressed in terms of seasonal random walks. Finally the asymp­
totic properties of the likelihood ratio test for cointegrating rank is given, 
and it is shown that the estimated cointegrating vectors are asymptoti­
cally mixed Gaussian. The results resemble the result for cointegration 
at zero frequency but expressed in terms of a complex Brownian motion. 
Tables are provided for asymptotic inference under various assumptions 
on the deterministic terms.

Keywords: Autoregressive process; Granger’s theorem; Error correc­
tion model; Complex Brownian motion.
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1 Introduction

This paper contains a systematic treatment of the statistical analysis of seasonal 
cointegration in the vector autoregressive model. The theory started with the 
paper by Hylleberg, Engle, Granger and Yoo (1990) which gave the main results 
on the representation and the univariate tests for cointegration at the various 
complex frequencies.

The paper on maximum likelihood inference by Lee (1992) set the stage for 
the analysis of multivariate systems. Unfortunately it does not treat all aspects 
of asymptotic inference, and the test for cointegration rank is only partially 
correct. The two papers by Gregoir (1993a,b) deal with a very general situation 
of unit roots allowing for processes to be integrated of order greater than 1, but 
do not treat likelihood inference.

The purpose of this paper is therefore to improve on the previous analysis 
and discuss maximum likelihood estimation, calculation of test statistics, and 
derivation of asymptotic distributions in the context of the vector autoregressive 
model. In the process of doing so it is natural to give the mathematical theory of 
the Granger representation, the error correction model, the role of the constant 
term and seasonal dummies, as well as the asymptotic distributions involved. 
The basic new trick is the introduction of the complex Brownian motion, which 
makes many of the calculations more natural and greatly simplifies the formulae 
for the limit distributions.

The model we are considering is thus the autoregressive model defined for 
a p— dimensional process X t by the equations

where we assume that the initial values X q, . . . ,  X  (+1 are fixed, and that the 
errors are i.i.d. with mean zero and variance O. In the derivations of estimators 
and test statistics we also assume that e( are Np(0, ST), but in the derivation 
of the asymptotic results this assumption is not needed. The deterministic 
terms Dt can contain a constant, a linear term or seasonal dummies. Various 
models defined by restrictions on the deterministic terms will be considered. The 
properties of the process generated by the equations (1) are as usual expressed 
in terms of the characteristic polynomial

(1)

A(z) = i - J 2  n ,v ,
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with determinant |j4(-z)|.

The paper is organized as follows, in Section 2 we discuss the error correc­
tion model for seasonal cointegration of processes that are integrated of order 
1 at seasonal frequency. This model is subsequently solved in the form of a 
Granger representation theorem, applying a general theorem about inversion 
of matrix polynomials. It is shown how this can be used to analyze the role 
of constant, linear term, and seasonal dummies, see Kunst and Franses (1994). 
In Section 3 we discuss the Gaussian likelihood analysis and the calculation 
of the maximum likelihood estimator in the model with unrestricted determin­
istic terms, as well as in some models defined by restrictions of deterministic 
terms. In Section 4 some technical asymptotic results on the behaviour of the 
processes and the product moments are given. Section 5 contains the asymp­
totic results for the maximum likelihood estimator of the cointegrating vectors, 
and the asymptotic distribution of the likelihood ratio test for cointegration 
rank at seasonal frequency are given.

In Appendix A a brief description of the matrix representation of complex 
matrices is given along with proofs of the technical results in Section 4. Finally 
Appendix B has the tables of the limit distribution of the likelihood ratio test for 
cointegrating rank for various models defined by restrictions on the deterministic 
terms.

2 The representation theorem and the error 
correction model

In this section we first give the necessary analytic results from the theory of 
polynomials A(z) with values in the set of p x p matrices. In Theorem 1 we 
discuss Laplace’s expansion for a polynomial around many points and show in 
Corollary 2 how this contains the formulation of an error correction model. The 
basic result, however, is Theorem 3 which is a necessary and sufficient condition 
for the inverse matrix polynomial to have poles of order 1. In Theorem 4 we 
give the interpretation of this result as a representation of the solution of the 
autoregressive equations allowing for integrated processes and cointegration at 
seasonal frequency, corresponding to Granger’s theorem for 1(1) processes. We 
apply the Granger representation theorem to discuss the role of constant, linear 
term, and in particular seasonal dummies. We conclude this section with some 
examples of models for annual, semi-annual and quarterly data.
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We are concerned with the roots of the equation \A(z)\ =  0 in particular 
the unit roots, for which |z| =  1. For a complex number Zi =  e 'e, the complex 
conjugate is the same as the inverse, z\ =  z f 1 =  e~'e. The representation 
results in Theorems 1 and 3 are valid for arbitrary complex numbers provided 
one replaces zm by z“ L

Corresponding to s distinct complex numbers z\, . . . ,  zs we introduce the 
polynomials

2.1 The error correction model

The error correction formulation is a simple consequence of Lagrange’s expan­
sion of A{z) around the s +  1 points z =  0, zlt . . . ,  zs :

Theorem 1 The polynomial A(z) can be expanded around the points 0, Zi, . . . ,  zs 
as follows

is zero for z =  0, Zi, . . . ,  zs and hence each of the entries can be factorized 
into p(z)z times a polynomial. It follows that the difference can be written as 
p(z)zA0(z) for some matrix polynomial Ao(z). ■

An immediate consequence of this is the error correction formulation, see 
Hylleberg, Engle, Granger and Yoo (1990).

Corollary 2 If Zj , . . . ,  zs are the roots of |A(z)| =  0 then the matrices A(zm) 
are of reduced rank such that A(zm) =  — with am and Pm complex ma­
trices of dimension p x rm and rank rm, and X t satisfies an error correction 
model

Pkjiz) — n Z mz) — (l-ztr)(j_ziz)i 2 /  Zj,Zk.

Proof. The matrix polynomial

P(L)Xt =  T ^ xa j r n - g ^ X t -p{L )A *(L )L X t +  et

=  -  Ao(L)p(L)Xt- l  +
( 2 )

3
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where we have introduced

_  Pm(L)L ^

The idea behind this formulation, see Theorem 4, and condition (4), is 
that X t is a non-stationary process and the lag polynomial p(L) makes this 
process stationary. The processes X [m\ m =  l , . . .  ,s  are non-stationary but, 
as we shall see below, the components of have the same common non- 
stationary trend which is removed by the linear combinations P’m, and P ^ X ^  
is stationary, so that the stationary ’’ differences” p(L)Xt react to equilibrium 
errors given by P*mX [m\ through the adjustment coefficients am. Note that 
since the roots may be complex, the coefficients am and Pm may be complex, 
but since the coefficients of A(z) are real, the roots and the coefficients am and 
pm come in complex conjugate pairs. We use the notation p*m =  p'Rm -  
for the so-called adjoint matrix. Note also that a different set of roots gives rise 
to a different error correction formulation.

2.2 Granger’s representation theorem

We define the derivative /i(zm) of A(z) at z =  zm. If the polynomial \A(z)\ has 
a root at z =  z0 then .4(zo) is not invertible. We say that A(z)~x has a pole of 
order k (k =  0 ,1 , . . . )  at z =  zo if

lim (1 -  - ) kA~x(z)
z—'zo Zo

exists and is non-zero. We next prove a result that gives a necessary and 
sufficient condition for the inverse function to have a pole of order 1 at a point 
zo, say. This condition clearly requires .4(zo) to be singular, but we also need a 
condition on the derivative of A(z) at zo, which restricts the behaviour of A(z) 
in a neighbourhood of z0. For any (complex) matrix c of dimension p x r we 
define c± as a full rank (complex) matrix of dimension p x (p — r), such that 
Pc± =  0. Note that (c*)j_ =  (cj_)*-

T heorem  3 If the roots o/|(.4(z)| =  0 have the property that \z\ > l+<5 or that 
z € ( z i , . . . ,  zs) with \zm\ =  1, then A(zm) =  —am/3*m and the matrix polynomial 
A(z) is invertible on the disk \z\ <  1 +  <5 except at the points ( z i , . . . ,  zs), where 
A~x(z) has a pole. A necessary and sufficient condition for the pole to be of 
order 1 is that

l«m i^ (2m)/3mil  / o ,  m =  l , . . . , s .  (3)

4
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In this case we get an expansion o f A  J(z) of the form

A \z) =  +  Co(2).  ̂+  (*i, ■ ■ ,2S

where

(i -  zmz)A(z) 1 =  Cm =  - z m/3mX(a^ ±i ( z m)/3m l) ' q^ ± ,

and where Co(z) has a convergent power series for \z\ <  1 +  <5, that is, Cq{z) 
has no poles, and A~l(z) has poles of order 1. Moreover it holds that

Pm(z)z 
Pm(Zm) Zm

A~\z) =  Cm
1

(1 -  Zmz)
"1" C m { z ) ,  Z (Zl, • • • , Zs)

for some power series Cm(z), convergent for \z\ <  1 +  é.

Proof. The usual expression for the inverse of a matrix

A~\z)
Adj(A(z))

\A(z)\
z ^ ( z l t . . . , z s)

shows that A(z)~1 has poles at the roots z =  zi, . . . ,  zs since |A(zm)| =  0, m =  
1 , . . . ,  s. We want to show that such a pole at z =  zm is of order 1 and has thus 
the form

r  1wm /, _ \ i(1 ZmZ)
such that the continuous function Co(z) defined by

C0(z) = A(z) - 1 z ^  (z i , . . . , z , ),

has no poles in the disk \z\ <  1 +  6 , for some 6 > 0.

We prove this by investigating the functions in a neighbourhood of each of 
the poles and show that by subtracting the poles given in the sum we eliminate 
the poles in A~1 (z). Thus we first focus on the root z =  z\ where A(z\) =  —a(3*, 
and we have left out the subscript to simplify the notation.

Consider therefore a value of z such that 0 < \z — Z]| <  e. From the 
expansion

A(z) =  A{zi) + ( z -  Zx)A(zi) +  ( z -  Zx)2A i (z),

where A\{z) is a polynomial, it follows by multiplying by (a, aj_)* and 
that, since A(zi) =  —a/?*,

5
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A(z) =  (a ,oa )M(z ) ( /3 , /3±T=L_ )

f  -a*a/3*(3 0 \ / a *A (zi)0 (z -  2 1 ) -ZjaM(zi)/3± \
\ 0 0 /  \ a]_A(zi)/3(z -  Zi) - z 1a*LA {z l )/31 J
+(z  -  zi)A2(z),

for some polynomial A2{z). Here and in the following we often use such a 
notation for a remainder term, when we expand a polynomial or a power series.

The function A(z) is a matrix polynomial and therefore has no poles. 
Further

7/ \ _ _ (  01*0 /3 '13 z1a'A {z 1 )/3± \
[Zl> \  0 z l a*LA (z l )P 1 )

has full rank if and only if the assumption (3) holds since

\A(Zl)\ = (-ma'aWP'PWz^A/z^PA + 0.

In this case A(z) is invertible for \z -  zjj <  e for some e, such that 
0 < £ <min \zk — Zi\, and we find by the expansion

A l{ z ) = A  l{zi) +  { z - z x)M2(,z),

that for z A zi

A '(z) =  {p ,P LTAir^ A  1(z)(a,a±)*
=  AizAPJ-'a*, + m 3(z)
=  c 1t^ -z +  m 3(z)

where C\ is given in Theorem 3 and

M3 (z) =  ((2 -  Zi)(3, - /3 121)M 2(2)(q , Qj.)*.

Here M2(z) and M3(z) are convergent power series which are notations for the 
remainder terms in the expansions. Hence A _1(z) — C\ -p1-- -  has no pole at 
2 =  21 and extends by continuity to the point z =  Z\.

The same argument can be used to remove the other poles from A~l(z) 
and the theorem has been proved. ■

The next result is a representation of the solution of the error correction 
model (2).

6
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T heorem  4 Let the equation |d(.z)| =  0 have roots outside the unit disk and 
at Z \ , . . . , z s with absolute value 1. Let for m =  1, . . . ,  s

where am and /3m are p x rm of rank rm < p, and assume that

# 0 . (4)

Let X t be the solution of the error correction model (2), then X t is non- 
stationary and p(L)Xt and prn(L)p,7nX t can be made stationary by a suitable 
choice of initial distribution. In this case the processes X t and X',m> can be 
given the representation

x t =  ] T c m4 S t(rn)
ra= 1

+  E  + Vt,
771=1

and

where s jm̂

Xi( m )  _ Pm(E)Z/ 
Pm ( Zm ) Zm

Xt =  Cmz ^ s f f  +  z^Am +  Yt(m)

is given by

S(m) _
i=o

and the random variables Am depends on initial conditions such that P^Am 
and finally Yt and Y}™'1 are stationary processes.

(5)

(6)

=  0,

Thus the non-stationary process X t can be made stationary by the dif­
ference operator p(L) and, since P ^ X ^  is stationary, we call X t seasonally 
cointegrated at zm =  e,6m, or at frequency 9m, with cointegrating vectors Pm. 
Note that S^n) is not a random walk since AS,™’ =  are independent but 
not in general identically distributed. We call such a process a seasonal random 
walk. Note also the factor zlm in front of gives a type of non-stationarity 
that is different from the usual unit root non-stationarity. Finally note that 
since we allow for complex roots, the process X ^  and the coefficients am and 
0m are in general complex. Since, however, the data and the coefficients in A(z) 
are real, the roots come in complex conjugate pairs and hence a reduced rank 
condition at a complex root automatically implies a reduced rank condition at 
the complex conjugate root. This will complicate the statistical analysis below.

The difference between the results in Theorem 3 and Theorem 4 is that in 
order to interpret Theorem 3 for stochastic processes, care has to be taken of

7
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initial values in the representation (5) and (6) in order to translate the results 
about the power series into results about the lag operator.

Proof. From Theorem 3 we find
S

P(z)A[z)~1 =  ^ 2  Cmpm(z) +  p(z)C0(z).
m= 1

Expressed in terms of the lag operator L, defined by LXt =  X t-\, we get
S

p(L)Xt =  J 2  CmPm(L)et +  P(L)Yt, (7)
771= 1

where Yt =  Co{L)et- Since the right hand side is stationary this representation 
shows that we can choose the initial values of the process X t such that the 
process p(L)Xt becomes stationary.

We want to solve this equation for X t by removing the polynomial p(L) 
one factor at a time by summation.

Consider first the root z =  Z\. The definition of p(z) implies that

p(z) =  (1 -  ziz)pi(z), pm(z) =  (1 -  Ziz)pml(z), m ^ l ,  

and we can write equation (7) as

(1 — Z\L) — C\p\{L)et.P i{L )(xt -  Yt) -
m=2

Solving these equations we find
s t

Pi(L){Xt -  Yt) -  Cmpm\{L)et =  z[+1A +  ClPl(L)z[ * !% ». (8)
771=2 7 7 1= 0

Here A is the initial value of the left hand side. Next notice that 

Pi(L)z[ = p i(z1)z[,

such that result of the above calculations can be expressed as
S

Pl(L)(Xt - Y t -  C ^ lS l" -  z\A\) =  J 2  CmPmi(L)et, (9)
771=2

with A\ =  K we choose the initial values such that fi\Ai =  0, then we get 
the equation

S

Pi{L)P\Xt =  Pl(L)(3\Yt + Y ,P\C mPmx{L)et, t =  1,
771=2

8
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since 0\C\ =  0. This shows that, with this choice of initial values, we can 
represent pi(L)p'X t as a stationary process.

Equation (9) has exactly the same form as the one we started with in (7) 
except that the root z =  Z\ has been removed. In the same way we can succes­
sively eliminate the roots by summation of the equation each time subtracting 
a term of the form CmztrrlS<'t"l) +  z‘nAm from the left hand side and thereby prove 
the representation. ■

We next apply Theorem 3 to solve the autoregressive equations also in the 
case where they contain deterministic terms.

Thus assume that X t is the solution to the equations 

A(L) X t +  $ A  =  et,

where A(z) satisfies the conditions set out in Theorem 3. In this case one gets
S

p(L)Xt =  'y ] Cmprn(L)(et +  'I*A) + p{L)Co(L)(tt +
771= 1

which can be solved for X t to give
s s t s

E  C m ^ S (r ] +  E  E  *mA + E  4À» +
771=1 771=1 J = 0  771=1

where Yt — E(Yt) is stationary, and Am depends on initial values such that 
PmAm =  0. It is seen that if Dj =  1, say, then the deterministic term gives rise 
to the term 4 E j = o  ZL =  *m i which remains bounded unless zm =  1 in 
which case we get a linear trend in the process. Similarly if A  =  t we find

t + 1 (1 -  z ^ 1)
1 -  «m ( 1 - ^ m ) 2 ’

which is a linear trend if zm ^  1 and a quadratic trend if zm =  1. Thus if 
'!> A  =  To+Tif we get a quadratic trend which vanishes, if we choose =  0.
If 3>j =  0, we get a linear trend which vanishes when A x To =  0. The next sub­
section discusses the same result for seasonal dummies.

2.3 The role of seasonal dummies

A special case of a deterministic term is when the data is measured with a 
given frequency s, say, per year, and we include seasonal dummies to pick up

9
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the changing mean in the process. We want to consider the case where the unit 
roots of the process are among the roots of unity corresponding to s, that is, 
of the form e ~ ^ , m =  1, . . . ,  s. This is the situation if for instance we have 
quarterly data and a root in the process at z =  1. We denote the roots of unity 
z-m, m =  1, . . . ,  s and assume for simplicity here that z\ — 1, z2> • • •. zs are 
roots of the process, s <  s. The results are easily modified if this is not the 
case.

The seasonal dummies are defined by the p vector Dt, with the property 
that Dt =  Dt-t-s- If we consider this as a difference equation the characteristic 
roots are exactly the roots of unity, and we can express the solution as

S

Dt =
m= 1

for some (real) linearly independent vectors dm which can be determined by the 
initial s values of Dt

d™ ~  1 zlnDj-
s J=1

With this notation we find that
t  t  S

j = 0 j = 0 n= 1
td-n ::P— dn, m — 1 , . . . ,  s,

n̂ m

which shows that the seasonal dummy generates a trend in the process

zLt

with coefficient C,n<bdTn at the unit root zm, m =  l , . . . , s .  For zrn ^  1 this 
trend has an oscillating behaviour due to the factor zlm> which is unwanted in 
the description of data. We can remove the trend by assuming the restriction 
on the parameters

Cm$dm =  0, or amL$dm =  0.

This result was first proved by Kunst and Franses (1995).

We reparametrize the model by introducing the parameters <t>m =  <Mm. 
The vectors drn come in complex conjugate pairs, which also holds for the new 
parameters. The deterministic terms in the equation becomes

S

$ a  =  X > " u4
m= 1

10
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We now restrict <f>m, m =  2 , . . . ,  s by a ^ ± <t>m =  0, or <I>m =  otmP'm- In this way 
we avoid the oscillating trends but leave the possibility open of a linear trend 
generated by the unit root 2 =  1. If we also want to restrict this we further 
assume that a'1L $1 =  0.

We conclude this section by a few illustrative examples.

2.4 Examples

We give here various simple examples for models for annual, semi-annual and 
quarterly data.

2.4.1 Annual data

If 2 =  1 is the only unit root in the process, then p(z) =  1 —2 and A t(1) =  X t-\, 
and we get that (2) reduces to the usual error correction model for 7(1) variables

AXt = a0'Xt„l + e t}

where we have left out further dynamics and deterministic terms.

2.4.2 Semi-annual data

If the unit roots are 2 =  ±1 in the process, then p(z) =  (1 — 2)(1 +  2) =  1 -  z2 
and we find

Xt(1)

x[2)
such that (2) becomes

Xt — Xt-2 = -otift^Xt-i + Xt-2) +  -aifi^Xt-i — Xt- 2) +  £t-

In this simple case we can interpret the results. Consider for instance a process 
consisting of semi-annual income and consumption. In this case X{^  is just the 
annual average, and the model specifies that this process is a non-stationary 7(1) 
process, which cointegrates, such that annual consumption follows annual in­
come in a stationary way through the cointegrating coefficients f3v The process 
X(2\ however, measures the variation within a year and the models specifies

^±3LXt = \ { x t^  +  x t. 2\

(1 ~ L)L-y< = \(Xt-i -

11
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A random walk S(1) and a seasonal random walk S(2)

Figure 1:

that such a process has a seasonal non-stationarity, which means that when 
averaged within a year it becomes stationary. The cointegration vector /32 spec­
ifies that linear combination of the annual variation of consumption and income 
that cointegrates.

Thus not only the non-stationary yearly averages but also the non-stationary 
seasonal variation within a year has to move together according to the model.

In order to understand the type of non-stationarity induced by a unit root 
at z — —1, consider the process

x t =  ( - iy s t(2) =  ( - i y ] T ( - i y £j = £ ( - i  Yet-j,
3=o 3=0

which enters the representation theorem. In Figure 1 we have generated e\,.. .  ,£t 
i.i.d. AT(0,1), T =  30.

Since the normal distribution is symmetric, the process S(t2) is a random 
walk, and the factor (—1)( changes the sign of every second term, which give 
rise to the oscillating behaviour that we see in seasonally varying processes. 
It is obvious from the picture that differencing such a process will not give

1 2
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stationarity, whereas one can obtain a stationary process by smoothing using a 
moving average.

Note that when the random walk is positive for an interval then X ( oscil­
lates sy jtematically between positive and negative valuer, but when S,<2) gets 
too close to zero, or a large draw of et occurs, then it can change sign with the 
result that the peaks of X t are shifted one period, such that ’’ summer becomes 
winter” . This property is an intrinsic property of processes generated by the 
error correction model allowing for seasonal cointegration. It is easy in the ex­
ample to check the role of constant, linear term and seasonal dummies on the 
behaviour of the process.

2.4.3 Quarterly data

Next we consider the situation where we have quarterly data and unit roots in 
the process at z — ±1, ±i. In this case have

p(z) =  (1 -  z)( l  +  z)( l  +  iz)( 1 — iz) — (1 -  z)4.

The processes that are needed in the error correction model are

x t(1) = 4(-^t-l + Xt- 2  + Xt-3 + Xt_4)
Xt(2) = -  X t - 2  + X (_3 — X(_4)
x<3) = 5j(X(_! + i X (_2 — X(_3 — iXt-4)
* ((4) = ~ii(Xt-l — iX t- 2  — Xt_3 + iXt-i)

The error correction model contains 4 terms, and we would like to express 
them using real variables, see also (15). If we let x ! 3) =  x i 3.* +  iX 1?* and 
X ((4) =  X ((3) =  X<3) -  iX '3) we find

= ± (X t_2 - X (. 4),

X '3) =  -  X t_3).

The error correction model then becomes

X t - X t ^  =  octf'X " +  a 2/?' XtW
+ (0‘rP'r + OciP',)(Xt-2 — x t_4)
+{0-rP'i -  OlP>R)(Xt- 1 — Xt- 3) +  £t,

13
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where we have absorbed the factor | into the coefficients, and for ease of notation 
we let q3 =  Qr +  iaj, a4 =  a 3, 0 3 =  0 R +  i0 h 0 4 =  0 3.

Note that the coefficient matrix to X t_ 2 — X t_4 is rather complicated. It 
need not even have reduced rank. The same parameters appear in the coefficient 
to Xt—i — X ts -  It has been suggested to assume that a R0'j — aiif3'R =  0, in order 
simplify the equations, but it is seen that this is a peculiar restriction on all the 
coefficients, which is hard to interpret. If we assume instead that 0j =  0 we get 
some simplification and the equations contain the term

2 — X t~i) — ai0'R(X t-1 — X t_3).

This has the advantage that only one linear combination of (1 — L2)X t appears, 
and the interpretation is that 0 '3R(X t- 2  — X t-t) is either stationary or cointe­
grates with its own lag. Thus we have a type of multicointegration. If we also 
assume that ai =  0 (or a R =  0) we get the simple result that the equation 
contains a term of the form aR0'R(X t~2 — X t- 4) and the interpretation that the 
process A t_2 — X t_ 4 cointegrates.

We get a different error correction model if the process only has roots at 
2 =  1, ±i, since then p(z) =  (1 — z)( l  -I- iz)( 1 — iz) =  (1 — z)(l +  z2). In this 
case

X [l)

X t(2)

X t(3)

{± ^ l L X t = 1- ( X t. l +  X t. 3),

( l - D ( l - i L )  1
— (! — i)2 LXt -  ^
( l - L ) ( l + i L ) _ L X t=  1

(1 +  i)2 2(l +  f) (A * t.

-  iA X (_2), 

+  iA X (_2).

We find the real and imaginary part as follows:

v (2) _ 1 a X  Y^2! _—A 2 XA Ht -  - A 2A (_ i , A j t -  - A  A t-1-

The error correction model becomes

X £ -  X t-i  +  X (_2 -  X t_3
=  a i0 4(Xt~i +  X t-3 ) +  (aR(3R +  oti(5\) A 2X t_ j +  (aR0j — ai0'R) A 2X (_ i +  £t.

In this section we have given a general version of the Granger Represen­
tation Theorem which clarifies when we get a seasonally cointegrated solution 
to the autoregressive equations and when the solution is integrated of order 1
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at the seasonal frequency. We also gave a discussion of the trends generated by 
constant, linear term and seasonal dummies, and what restrictions are neces­
sary in order to avoid them, if the unit roots of the process are among the roots 
of unity corresponding to the frequency of the data. In the next section we use 
these results to define the statistical model we want to analyze.

3 The model for seasonal cointegration and its 
statistical analysis

In this section we define the statistical model for autoregressive processes of 
order 1 at seasonal frequency which allows for seasonal cointegration. We give 
various models defined by restrictions on the deterministic terms. We discuss 
the Gaussian maximum likelihood estimation and the formulation of some hy­
potheses on the cointegrating ranks and some interesting hypotheses on the 
cointegrating vectors and the adjustment coefficients.

3.1 The statistical models defined by restrictions on the 
deterministic terms

The p—dimensional vector autoregressive model for seasonal cointegration is 
defined by the equations

s k

p(L)Xt =  amFrnX™ +  £  I> (£ )* ,_ ,•  +  + £ « , < =  1.........T. (10)
m =  1 j = l

Here et are i.i.d. /Vp(0, fi), and the parameters am,0 m, m =  1, . . . ,  s, T,, j  
1, . . . ,  k, $  and $1 are freely varying, except that the a m and come in com­
plex conjugate pairs. We assume that Dt consists of deterministic terms. Note 
that the lag length is l =  k +  s. The dimension of am and /3m is p x  rm, and the 
initial values are fixed.

If in particular the roots of the process are also roots of unity, correspond­
ing to a given frequency s of the data, we can introduce seasonal dummies Dt 
in the model. As seen in Section 2 they give rise to trends in the process and 
it was shown how these can be avoided by restriction of the parameters. We 
decompose the parameter $  as <I>Dt =  ^ 4 -

15
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We give here the model where we assume that there are no trends in the 
process so that <I>m =  amp'm, for some pm x 1 matrix pm, m =  1, . . . ,  s, which 
imply that

- ! > - ( £ ) ' ( ! ’ ) (n)
k s

+  y ^ r  jp(L)Xt- j  +  ^mzln +  £(•
j=1 m=s+l

If we want to allow for a linear trend we do not restrict at zero frequency 
but use the model

p(L)Xt =  ax(5\x[l) +  ! > " >  (  Pm )  (  T  )  (12)
m —2 \  P m  /  \  z m  )

k s

+  y ^SjP(L)Xt-j +  ^1 +  y~l Qmzln+et-
j— 1 m = s + l

In these two last models the parameters specified are varying freely, with 
the only restriction that the parameters am, (3m and <I>m come in complex con­
jugate pairs. Note how the roots of unity that do not correspond to unit roots 
in the process enter with pairwise unrestricted coefficients and do not give rise 
to trends in the process.

3.2 Some algorithms for the estimation

The statistical analysis of (10) leads to a non-linear regression problem since the 
coefficients am and f3m enter through their product. We here discuss estimation 
of the model without restrictions on the deterministic term and mention in the 
end of this subsection how to modify the algorithm if the deterministic terms 
are restricted, as in models (11) and (12).

Since the cointegration model (10) does not restrict the matrices Tj and 
$  we can concentrate the likelihood function with respect to these and define 
the residuals Rot, R^L> and Ret by regression of p(L)Xt, X (tm' and et on Dt and 
lagged values of p(L)Xt. Thus we get the equation

S

Rot =  Y ,  ^ P ’mRu ' +  (13)
771= 1

16
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An algorithm for estimating this model, see Boswijk (1995), can be found 
by noting that for fixed 0  coefficients the model is a linear regression model that 
determines the a's and fi by simple regression of p variables Rot on X]m=i Tm 
variables , . . . ,  0 ^ R ^  ■ For fixed values of a and Q, however, we have a
linear regression model in the (3 coefficients which can be estimated by gener­
alized least squares. This determines a switching algorithm, which in each step 
increases the likelihood function, but the second step involves vectorizing 0 m so 
we need a total of p^Zm=i rm regressors.

Another algorithm can be based on the first and second derivatives of the 
likelihood function and an application of the Gauss Newton algorithm. This 
algorithm also involves a large number of variables in general.

Finally we describe an algorithm which is slightly simpler, and which 
can be proved to give estimators which are asymptotically equivalent to the 
maximum likelihood estimators, since the regressors X (i,n> are asymptotically 
uncorrelated, in the sense that

see Corollary 7.

The idea of the algorithm is that when focussing on one frequency we 
can concentrate out the other regressors by ignoring the constraint of reduced 
rank at these other frequencies, see Lee (1992). We illustrate the situation of a 
complex root, since the real roots 1 and —1 are easily handled the same way.

Consider therefore the situation where, say, zi =  e'° and z2 =  e~,e are two 
complex roots with 0 < 9 < n. Note that A(e'e) =  A(e~'e) and A (!2) =  a J1*. For 
notational reasons we use a and 0  without subscripts now and let cq =  a, c*2 =  
a, 0 l =  0, and 02 — 0. Thus we write the model equation (13) as

T

t=i

S

Rot =  O0TR® +  c& B tÿ  +  am0 ^ R ^  +  Ret. (14)
m=3

We concentrate with respect to R^ 1 where m /  (1,2), that is, we remove 
the restriction of reduced rank at Z3 , . . .  ,zs. This gives residuals £/ot, Uit, and
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Uet and we find the equations

Uot =  otfi'Uit +  a/3 U\t +  Uet
=  2Real[(aR +  ia j)(0R -  i0I)'{URt +  iUIt)\ +  Uct 
=  2 [(aR0'R +  aiP'j)URt +  {&rP'i — ^iP'rW h] +  Uet

=  2(aR, -a i )

=  à (3 '( URt
UH

0R —01 
01 0R

+  Uet,

uRt
UIt

Un

where we use the notation 

0 r  —0 i0 _  (  Vr ~Vl
V 01 0R

,à  =  2 (aR, —a/) ,  a  = cur - a i  
on a R

(15)

In Appendix A the matrix representation of complex numbers and matri­
ces is explained. This representation is noted throughout by boldface. Since 
the roots come in complex pairs the sum J2 m=3 is real, such that
both Uot and Uet are real. The statistical problem appears to be a reduced rank 
regression problem, at least if p > 2r, but the matrix 0  is not unrestricted but 
has complex structure.

In order to express the partially maximized likelihood function we intro­
duce the product moments

Su 

Sxo 

Soo 

Se 1

(2P x 2p),

t=l 
T

Um
Ult

Kt, (2p x p ) ,

T~l ^  UotUgt, ( p x p ) ,  

Um

t= 1 
T

T - ^ U et
UIt

(p x 2p ) .

Finally we define Sn.o =  Sn — 5io50015oi.

For fixed value of 0  we can concentrate the likelihood function with respect 
to the parameters a =  2(aRl —aj)  and ft and find, apart from a constant factor,

LmL(0) =  |ft| =  |S00 -  Sox0(0'Sn0 r 10'Slo\ =  |Soo|^|^- (16)
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This minimization cannot be solved as an eigenvalue problem since the 2p x 
2r matrix (5 has complex structure while Sn and Sn.o do not have complex 
structure.

We can minimize (16) by an iterative procedure us'ig  the Gauss Newton 
algorithm or we can use the idea of switching between (a, 12) and (3 in (15). 
Applying the switching algorithm here only involves 2prm parameters from the 
cointegrating relations and a similar number from the adjustment coefficients.

Finally the maximum likelihood estimator can be calculated iteratively as 
follows. For fixed values of /32, • • •, Ps we can concentrate the likelihood function 
with respect to <*2, ,  as. Then the equations have the form (15) and we can 
apply the switching algorithm to determine a\ and . One can save time by 
not switching to convergence. Next fix /?1; /?3, . . . ,  (3S and repeat the procedure 
as above. In this way one can by focussing on one frequency at a time reduce 
the dimension of the matrices involved in the regressions.

If instead we consider the problem of reduced rank at 9 =  0 or 7r then 
we get the product moments as before but now with say, corrected for 
all the other components. In this case all residuals are real and the matrices 
Sa , Soi, and Soo are all of dimension p x p, and the problem can then be solved 
by reduced rank regression, see Lee (1992).

Finally we can use the same ideas to estimate the models (11) and (12) 
with the various restrictions on the deterministic terms. The coefficients <!>_, 
with j  >  s, and possibly j  =  1, can be concentrated out in the preliminary 
regression, and in the reduced rank regressions we just replace Xfm' by the 
extended variables (XfTn>', z‘n)'. Corresponding to the equation (15) we get

$ mZm +  $mZm =  2 ^ ( ^ 4 )  =  2 Re($flm +  i$ mI)(cos(9mt) +  i sin(0mt))
=  2($fimCOS(9mt) +  $ m/ sin(0mt)),

and
PmAn. +  Pmtn =  2(P*m COS(6mt) +  Prn, sin(0mt)).

In this case we define the regressors derived from as

cos{6mt), sin(0mi))' 

and the cointegrating coefficient is

 ̂ P m R ~ & m l  ^

Pm R P m l

P m l P m R

\ P m l Pm R  j

19
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This shows how, in model (11) we can concentrate out the coefficients 4>j, j  > s, 
using simple regression. The switching algorithm is then applied to the extended 
variables, where the residuals are extended by a cos or a sin. In model (12) we 
eliminate by regression and do not extend the variable X {1\

The algorithm has been programmed in Gauss, see Schaumburg (1996) 
and RATS, see Dahl Pedersen (1996).

3.3 Hypotheses of interest

The main hypothesis of interest is of course the test for reduced rank at the var­
ious complex frequencies. This requires maximization of the likelihood function 
under model H(r),  that is, the assumption of reduced rank r at the complex 
frequency 9 as discussed in the previous subsection. We then compare the 
obtained maximum with the maximum obtained from the unrestricted VAR, 
which corresponds to r =  p. Thus the test statistic is

Other hypotheses of interest are hypotheses on the cointegrating coeffi­
cients /3. The most interesting perhaps is the hypothesis that /3 is real, since 
without this simple structure the interpretation becomes rather tedious. This 
hypothesis is formulated by Lee (1992), and in the present notation becomes 
the restriction

'’ • ( o ' f c ) '  (17)
Due to the non-identification of /3 we can give an equivalent formulation 

of the hypothesis as 0 R =  fil . Finally we can consider the assumption that

which allows for a simple interpretation, see the examples in sub-section 2.4. 
The maximization of the concentrated likelihood function (16) under any of 
these restrictions again requires an iterative algorithm for finding the maximum. 
By comparing the obtained maxima with and without the restrictions (17) and 
(18) we obtain the likelihood ratio test statistic.

Clearly if there are prior hypotheses about the structure of the cointegrat­
ing relations we can test those by the likelihood ratio test, by suitably modifying 
the algorithm for finding the maximum.
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The asymptotic results that allow these procedures to be used are given 
in the next sections.

4 Asymptotic results

This section deals with some technical results on asymptotic behaviour of vari­
ous processes and product moments. The proofs are given in the Appendix A. 
We assume throughout that the processes are generated by the autoregressive 
equations without deterministic terms and that the e are i.i.d. with mean zero 
and variance ST We start with the sums S ^  and then find the limiting behav­
iour of and finally investigate Sn , Sio> Soo and S£i which are based on the 
residuals from the regression (15).

The limit distribution of the random walk S is found in Chan and Wei 
(1988) who show the following result:

Lemma 5 If =  Y?j=ozm£j anc  ̂zm exp(i0m), then

^  t>m ( < m>(U) + iw\m)(«)) =  Smwm, 6m =  | f  ° <6= “ < '”■

(19)where and W\m̂ are independent Brownian motions with variance matrix 
Q. Moreover these Brownian motions are independent for different values of 9m.

Another result that follows from their calculations is the following.

Theorem 6 For T —> oo

t - 2  J 2  ^  6m6n f  WmWndu,
i—i

-  6m6n f  Wm{dW*).
i=i ■'°

( 20)

(21)

If further f(t)  is a matrix valued function such that F(t) =  X^=i /(*) is 
bounded, then

T

T~2 S (tm)f(t)s ln)‘ A  0. (22)
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In the study of the asymptotic properties of the product moments that 
appear in the statistical analysis we need to know the joint behaviour of all the 
random walks that come from the various components xj/n>. From Theorem 6 
one obtains

Corollary 7 The asymptotic properties of the product moment matrices are 
given by

t=i J
f  w mw'mduc;n, 
'0

(23)

T
T~2 X t(m)x t(n)* -U 0 

«=1

T 1

) Zn 7̂  Zmi

i»l

(24)

' - 1Y 2 x ? n)e’t Z # mCm \ 
TTt J<

w m(dwmy .
)

(25)

Next we want to find the asymptotic properties of the product moment 
matrices Soo, <S'io> S'li and SjE. These are defined in terms of the residuals 
Uot, U\t, Uet which in turn are defined in terms of the processes X P , X P  and 
p(L)Xt corrected for X ^  for m ^  (1,2).

In the following we let zi =  e'°, 0 < 9 < n, and define S,(1) =  Sp + 
X P  = XP+iXP and C\ = +iC\1\ With the matrix representation

of the complex processes, see Appendix A, we use the notation

y(l) ic.i ( cP i i (sp c( 1) °Ity(l)AIt xP { dp c(p r  * l ^ o(l)°Rt
r(D -

such that the complex representation
(26)

X ((1) =  C .S ^ z l +  oP(T(i) =t

in matrix notation becomes

X'» = dp -dp 
dp dp

s m-i ~s n~i \ ( cos(t0) sin(tO) \
sn-i SP - i / V — sin(i6>) cos(t0) )

22
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From this we find by multiplying from the right by (1,0)'  that

Define the cr—field Tt as

C iS f t  (
cos(f0) 

— sin {td) ) +op(T*).

Tt = o  { * * £ )* ,_ , , . .  .,p (L )X t- k,(rmX lm\ m /  (1,2) }  ,

that is, the er-field generated by the stationary processes in the model equation 
except those that are derived from X $  and X ^ 1. Note that Tt is generated by 
variables before time t, since x j m* depends on lagged X t.

We define the variances and covariances

' p(L)Xt
Var <r(;l) Tt Eoo ^00 

Eflo ^00

Lem m a 8 The following identities hold

Top = àTpp, (27)

Eoo = à'Tippà 4- 12, (28)

0̂0. ô hoEoo1 = Q 12 1, (29)
Tpp — Tqq0 +  E ^ qE^oEqq’ q  =  0. (30)

T heorem  9 The asymptotic properties of the product moment matrices defined 
from X [‘ \ corrected for the processes x [ m\ rn 1,2, are given by

T ~ i S n  A J  WiWjdwC'n 0 < 0! < 7T,

Sic -  \ C i  J  Ŵ dWO' ( '  j , 0 < 0y <  7T,
where

W ,=

Furthermore we have the relations

- w j l)
< > < >

0 Sufi —* Tj0 0 , 0  Sio —» E^o, Soo —* Eoo, P S\c —> 0.

23

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Note that Sn is 2p x 2p but does not have complex structure. The limit of 
T~lSn, however, has complex structure as do the matrices C i and W 1. Note 
also that the W i process appearing in Theorem 9 above is just the complex 
valued Brownian motion IT) from Lemma 5 in the matrix representation of the 
complex process.

5 Asymptotic inference on rank and cointegrat­
ing relations

The main result about the estimator (3 is that it is asymptotically mixed 
Gaussian such that asymptotic inference on the coefficients can be conducted 
in the x 2 distribution. The test statistic for hypotheses on the rank at sea­
sonal frequency has a limit distribution, which is similar to the usual one, when 
expressed in terms of the complex Brownian motion

5.1 The asymptotic distribution of /3

Although resorting to numerical algorithms for calculating (3 is necessary, we 
can use the derived expression for the likelihood function (16) to obtain the 
asymptotic distribution of the maximum likelihood estimator. We do this by 
exploiting the fact that /3 must be a solution to a set of first order conditions 
for maximizing (16).

The parameter (3 is not identified unless normalized in some way. This 
normalization can be accomplished by defining (3h — /3(b'/3) _1 for some b (2p x 
2r) of complex structure with the property that (3'h has full rank. For the 
analysis in the following it is convenient first to normalize the estimator on the 
true value (3 and choose b  =  /3 =  (3(J3'(3)~l . We thus define f3 =  /3(/3,/3)~1 and 
note that

— P) =  0-
Thus we only have to investigate the limit of T 0 L(j3—(3). We give the results for 
the model without deterministic terms and later mention how they are modified 
for the models (11) and (12).

Theorem 10 The asymptotic distribution of the cointegration vector (3 in the 
model with no deterministic terms is mixed Gaussian and given by

T {(3 FF'du}-1 f  F (dV)',
Jo Jo

24
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where

and

where

F =  |3'i C 1W 1

fir =
n o 
o n

r 1a ' n ; 1w v

Qr

a ,
f  PR 
K 0 ,

- 0 1
0R

Thus there is some redundancy built into the result, but the notation is chosen 
such that it coincides with the usual one for the unit root z =  1, see Johansen 
(1991).

Proof. The proof that the maximum likelihood estimator is consistent can 
be given along the same lines as the proof of consistency in Johansen (1996), 
where it is pointed out that due to the fact that the cointegration model is a 
sub-model of a Gaussian regression model, it is possible to find an upper bound 
of the likelihood function outside a neighborhood of the true value. This can 
then be applied to prove consistency. In the following we assume that (3 exists 
and is consistent.

The concentrated likelihood function is given by

- 2  log L(p)  =  T log +  T log  |Sbo|.

We next want to make an expansion of the likelihood function around the 
maximum, and we use the expansion

log |(x +  h)'A(x +  h)\ =  log \x'Ax\ +  2tr{(x'Ax)~1x'Ah} +  0(\h\2). (31)

This gives the first order condition

tr{[(pi SnP)~l ~p'Su -  (p,Sn.op ) - 10 's n .o\h} =  0,

for all h of complex structure. This implies that

KP'SnPr'& Sn ~ Cp'Sn.0P )-1p'Sn.o]c =  0, (32)

where [.. .]c denotes the complexified matrix, see Appendix A. We first find the 
weak limit for the matrix in (32) before it is complexified. Multiplying from the 
right by /3X, which has complex structure, we find

(p'Sn ~Py1p 's 11f3± -  Cp'Sn.oP)-1~plSn .oP1_
=  ((p 'SnP )-1 -_(p'Sn.0P ) -1)p 'sn p 1 +  (p'SumP ^ P  S10S ^S 0lP±
=  (^3/3 — ^0l3.o)P SuP±  +  SoiP± +  °p(l)-

25

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



~ / -  p -  / -  p
We have here applied the results in Theorem 9 that (3 Su(3 —> E ^ , (3 Sn.o/3 —* 
Ê go and Soo E0o. Prom (15) we find

Soil31 =  &(3'Snf3± +  Sei/3x =  d(/3 — /3)'Sn/3x +  Su/3± + Sei(31.

Inserting this above we find

O-'Pff ~ ^Bp.o +  ^ . o W o o  d)/3 Sn/3X 
+E0g ô /wS qq1 (d(/3 — f3)'(3±(3±Sn(3x +  St:i/3X) 
=  - à 'n - ^ à ^  -  /3)'/3x/3'x Sn/3x +  5£1/3x ),

since the first term is zero by (30) and the coefficient simplifies by (29). The 
weak limit of this is

- à ' i r a B 'i  f  F F ' d u + i ( / , 0 )  /  (d W ^ F ' 
4 do 2 do

where we have used the notation B for the weak limit of B y =  T/3X (/3 -  (3), 
see (29). Thus the limit of (32) becomes

I f 1 1 r1 l c
d 'f i^ d B '-  /  FF'du - - d ' f i _1( / ,0 )  /  (d W ^ F ' = 0 .

4 do 2 do
We still have to simplify this result before we can solve the equation for B. We 
get, since B ' f*  FF'du and fg(dW i)F' have complex structure, that the first 
order condition (32) is equivalent to

[d 'f i-1a ]c B 'i  f  F F ' d u [aT T ^fyO )]0 /  ( d W ^ F ' =  0.
4 do 2 do

This is now solved for B and we therefore want to find the two complexified 
matrices. We find

and

for

which shows that

[â 'fi-1 ( / ,  0)]c =  a 'O j 1,

n  =  , n  0
c ‘ o n

B  =  FF'du'j jT F (d W 1) ' f i ; 1a ( a ' f i c- 1a ) - 1.

Next we give a result for the estimator o f /3 normalized on a matrix b, 
that is, (3b =  (3(b'f3)~l .
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Theorem  11 Consider the seasonal frequency z\ =  e'B' , and the matrix /3 with 
complex structure normalized by /3'b =  1. In the model with no deterministic 
terms 0 h is consistent and asymptotically mixed Gaussian,

T (0b - ( 3 ) Z ( I -  /3b f )p± [ £  F 1F'1dtt]-1 J  F l(dVl)\ (33)

where
F i(u) =  ^ C jW ^ u ) ,
V ^ u ) =

The asymptotic conditional variance matrix is

( /  -  /3b')/3x [ f 1 F jF id w l-^ K l -  b/3') ®  ( a ' f i ^ a ) - 1, (34)
Jo

which by Theorem 9 is estimated consistently by

T (I  -  [3bh')(3L[AfjLS \ \ f i L{I -  b & ) 0  ( d ' f i ^ d * ) - 1. (35)

Thus linear and non-linear hypotheses on the coefficients of the just iden­
tified vector f3b can be tested asymptotically by construction of t— ratios using 
(35) as variance matrix.

P roof. The proof of (33) follows from Theorem 10 by the expansion 

&  =  ( /  -  (3(b'(3)-lb')C0 -  /3)(b'/3)“ 1 +  Op(|/3 -  /3|2).

The proof that (34) is a consistent estimator follows from Theorem (9). ■

If we instead consider the models (11) or (12) we get much the same 
results. A detailed study will show that the estimated cointegrating vectors /3m 
are T  consistent but their extension pm is only Ti consistent. This gives some 
difficulties in the formulation, but the end result is that one can treat the full 
extended vector as asymptotically Gaussian with a variance matrix given by 
(35), see Harbo et al. (1996) for the details in the case of zero frequency.

5.2 Test for cointegrating rank

This section contains a test to determine the rank r of /3 at the seasonal fre­
quency Zi =  e'°. We here concentrate on deriving the result for testing at strictly 
complex frequencies, which yields a result similar to the usual test but involv­
ing complex Brownian motions. We focus on the model without deterministic 
terms and give the results for the other cases without proof.
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T heorem  12 The asymptotic distribution of the test statistic for the hypothesis 
of r < p cointegrating relations at complex seasonal frequency is asymptotically 
distributed as i i

\tr{ [  (dB )B '( [  B B 'du)-1 [  B (d B ')}, (36)
2 Jo Jo Jo

where B is standard complex Brownian motion of dimension 2(p — r)

n  =  ( B n  - B , \
\ Bj Br )  ‘

The distribution is tabulated by simulation in Table 1

P roof. Prom (16) we find that the maximized likelihood function for p =  r 
becomes

i I'S'ii.ol— I -Soo I ■
ISi:

and hence that the likelihood ratio test statistics can be found as

ISnll/3'Sn.o^lQ-7(H(r)\H(p)) =
|Sn.o||/3S„/3|

Now choose /3j_ orthogonal to j3 and use the identities

IGMJ'I|s11|IG&A)'I

p'SnP p'SnPx 
p'xSnfl PxSnPi 

p'Snp\

P'SuP  I

p'LSnP± -  i3'±SnP (p 'S n p ) P 'su P A 

PxSu.p K  |

and a similar one for the matrix Su o to prove the expression

-21ogQ (//(r)| f/(p )) =  - T l o g ^ 7
\P i-S\l.j}P L

(37)

(38)

The idea of the proof is to derive the asymptotic distribution of (38) by 
noting that it is a function of j3, for which the distribution is derived in Theorem 
11.
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From the consistency of /3 and /3X it follows from Theorem 9 that

A  ^  ^ ' jCi f o W 1W'1duCi/31 = i  j 1 FF'du,

and the same result holds for 0'̂ _Snog0L. Thus the ratio in (38) tends to 1, 
and we therefore get the result, applying (31),

~2 log Q(H(r)\H(p))
=  —T log \I -

=  tr { ( r - 13 l 5 11. ^ 1) - 1/3'xS10. ^ 001d501. ^ x }  +  oP( 1).

We want to find the limit of this quantity. First we consider

Sqo.& = Soo — S0iP ((3 Sufr) S\o
—> Soo ~ Em E ^ E /»  =  0  +  oiUppa' — =  fi-

Next we consider

# lS10/3 =  -  p ±S n 0 ( p s up y lp s w
=  /^x^ie +  &±Sn/3a' — ^ x 5n^E^E ^o +  o/>(l)
=  /3'XSU -  f3'±Sn 0  -  0 )a ‘ + oP( 1)
=  0 ±SU -  0 ±Su& jr ±(& -  /3)d' +  op (l)

From Theorem 9 we find that this converges towards

ifoF(dW'i) (  J )  -  i/oF(dW',)nr1a(a 'n -1a )-la'

= i £  F(oTW'1)(/ -  ni- 1a(a'ne- 1a )-1a') (  '  )

= i £  F(dW'1)ax(a'xnca x)-1a'±nc (  J )  .

Thus we find that

/9'i W ooA iA  -  \  £  F(dW[)M J^ d W ’J F 1- ,

where A7 is given by

M =  ax(a'xn cax)_1a xf2c (  q )  n_1 (  q )  n ca 1(a'i n ca x ) '1a i ,

29

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



such that

Mc =  ‘ a 'l^ c flc  1n ca 1 (a'i n (.a J.) ‘ a^

: ( o M o ) r = ^ - ‘
The asymptotic distribut ion is then given by

i - 1 rl
t r { [ L  f f  'duJ j f  F (d W i)M  (d W 1)F '}

=  t r {| jf  FF 'duj jT F (d W 'j)M c (d W jJ F '},

since both the matrices f (‘ FF'du and fg F (dW '1) have complex structure. 
Combining the results we find that

-2\ogQ (H (r )\H(p ) )^± tr { j\ dB)B ' )  £  B B 'du  J *  B (d B ')},

where
B =(a'J.nca x) - ia iW 1.

By choosing to express the result in terms of the complex Brownian motion 
we find that, apart from the factor |, the result looks very much like the result 
for the real case, see Johansen (1991), for z =  1, and Lee (1992) for the case 
z — — 1. The result given in (36) corresponds to formula (3.35) in Lee (1992). 
The calculations of the likelihood ratio statistics (3.34), however, are not correct 
and there is an error in the proof giving the asymptotic properties. The choice 
of 6q cannot be made as stated just below (A.42). The resulting formula for the 
limit distribution is, however, correct.

Finally consider the test for cointegration rank at complex frequency when 
there are deterministic terms in the model.

T heorem  13 In model (11) the asymptotic distribution of the test statistic for 
the hypothesis of r < p cointegrating relations at complex seasonal frequency is 
asymptotically distributed as

Jtr{ AdB)H'( [ 1 HH'du)-1 f  H(ctB')}, (39)
2 Jo Jo Jo
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where B  is standard complex Brownian motion of dimension 2 (p — r) and H =  
(B ', / ) ' .  The limit distribution is tabulated in Table 2.

Note how the properties of the extended process (X[m̂ 't z^J' are reflected 
in the extended Brownian motion H.

Finally if we consider model (12) which allows for a linear trend in the 
process we find the same result but with the definition of H changed.

T heorem  14 In model (12) the asymptotic distribution of the test statistic for 
the hypothesis of r < p cointegrating relations at complex seasonal frequency is 
asymptotically distributed as

\tr{ [  (dB)H '( /  H H 'du)-1 /  H (dB ')}, (40)
2 Jo Jo Jo

where B is standard complex Brownian motion of dimension 2(p — r) and 
H =  ( B ' - B ', / ) ' .

Again the process H reflects the properties of the extended process X , 
but this time corrected for the average B corresponding to fitting an unrestricted 
constant in the equations. The limit distribution is tabulated by simulation in 
Table 3.
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A pp en d ix  A

A  1. C om plex  m atrices and real m atrices w ith  com plex  structure

Complex number z =  a +  ib can be represented by the matrix

a —b \ 
b a ) '

in the sense that this representation preserves linear operations and also complex 
multiplication, that is, if

(a + ib)(c +  id) =  e 4- if,

H
then

a ~b \ f  c - d  \ _  f  e - f  
b a ) { d  c ) ~  \ f  e 

We represent the complex p x q matrix = A + iB by the real 2p x 2q matrix F

F = A - B  
B A

Throughout we use boldface to denote the real matrices with this complex 
structure. Note that if F" =  A! — iB' then F* has the representation

We shall say that F  is complex, but that F has complex structure.

We consider the transformation of a 2p x 2q matrix to a matrix of complex 
structure given by

( c * )
A B 
C D

A + D  B - C
+ 0 ) ( 2  2 ) ( - ° , ; ) ]

A B 
C D2 \ C - B  A + D

We can discuss this by the transformation

I = ( °  “ 7 W  0

such that I2 =  —I and T =  —I Then for a 2p x 2q matrix M  we have

M C = - ( M  +  I M l ' ) .
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and if M  has complex structure then IM F =  M , such that M  =  M c. If M  is 
any 2p x 2q matrix and h has complex structure then

(M h)c =  ^ (M h +  IA/hF) =  i ( M h  +  IM FlhF) = ^ ( M  +  IM F)h  = M ch.

Finally notice that if tr{A /h } =  0 for all h with complex structure then Mc — 0, 
since

tr{Mh} =  tr{(Mh)c} =  tr{Mc h } =  0 

for all h with complex structure implies that M c =  0.

A  2. A sym ptotics

This appendix contains brief proofs of some of the technical results stated 
in Section 4.

P ro o f  o f  T heorem  6. The first result (20) follows by the continuous 
mapping theorem and the second (21) by noting that AS(tn> =  zlnet.

The third result (22) follows by a partial summation. Let |A|2 =  tr{ A’ A}  
for a complex matrix, and let c =  sup, |F(t)|. Then

T - ’ z ^ s ^ m s r
=  T - 2 Z h  Slm)(F(t) -  F(t -  l) )S t(n>*
=  T ~2 E L i 5t(m)F(<)St(n)* -  T~2 Z U S I - I  +  A S 'm))F (f -  l)(S*” i. +  A St(n))* 
=  T - 2Ŝ m)F(T)5^n)* -  T~2 Z t i  S t-iF (f -  l)A S t(n)*
- T - 2 Z t i ASt(m)F (f -  l )5 (("i* -  T~2 E h  A s{m)F(t -  l )A 5 (<n)*.

(41)
The first term is written as

( T - 5 4 ro)) T -1F (T )(T -4s^ n)*) ^  0,

since F  is bounded and converges weakly. The second and third terms
are evaluated as follows:

E\T~2 E h  S ^ F i t - V A S ^
<cT ~2 E h  F|St(̂ |F|A5t(n)*|
< c i T - 2E L  t* e  O (T - i) .

Thus the second and third term tend to zero, and the last term is evaluated as

T~2E\ E L i AS,(m)F(t -  l )A 5 ((n)*|
<  cT -2E l=1 F|ASt(m)|F|ASt(n)*| e  0(T ~l).
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P ro o f o f  C orollary  7. The relation

r - 2£ x (m)x (n). =  t ~2 £  +  0 ,(1 ),
(=1 (=1

shows that the asymptotic behaviour of the product moments depends on the 
boundedness of

T i /= \T+1
V ~ '  =t t _ 1 ( Zm z n )
2 _ ,  Zm z n  1 _  = ,t=0 1 ■cm*n

which remains bounded by if zm ^ zn. Thus for zm /  zn the product moment 
will converge to zero, whereas for zm =  zn we get the limit stated, which proves 
(23) and (24). The result (25) follows from (21). ■

Thus the reason that the mixed moments tend to zero is not that they are 
asymptotically independent (which they are) but the factor z^z^ which appears 
in the summation. The factor zlrn comes from the representation of X,<m) and 
also implies that the limit of T~l does not involve the limit of

JZLi £t but rather the limit of zlm£t-

P ro o f o f  Lem m a 8. Prom the model equations

/  v l1) \ 3 k
p(L)Xt =  aft f t  +  5 ]  am/3‘mX t(m) +  ] T  r  ]P(L)Xt^  +  e(,

\  It / m —3 j —1

it follows by taking conditional variances and covariances given the lagged values 
of p(L)Xt and the remaining linear combinations P'!mX[ra'> that (27) and (28) 
hold.

In order to prove (29) we write it as

E^o =  E/30.o ‘ Eoo, 

and introduce the normalized vector
_ 1 i

u =  Q 2q EJ3.

After some reductions, applying E^o =  d E ^  the relation (29) reduces to 

v! =  (I — « ' ( /  +  uv!)~lu)v!{I +  uu1), 

which follows from the identity

u'(I +  uu')~lu =  (u'u) (I +  u 'u)-1 .
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Next we multiply in (30) by 3.0 and and find

Sfla.o — S/3/3 +  E^o^oo^ofl =  0,

which is zero by the definition of S^.o- ■

P ro o f o f  T heorem  9. We first give a result for product moments of 
x [ m̂ and Xt’1-1 corresponding to complex roots zm and zn :

T
v ( m )

y(m)
A It

T

=  T -2^ C mS - 1
t= 1

cos(tem) cos(ten) ~ cos(tem) sm(ten) \ ,
-  sin(f0m) cos(£0n) sin(t9m)sm(t9n) )  i_1 m °P

The matrix in the middle is

1 /  cos((0m -  9n)t) +  cos((0m +  9n)t) sin((9m -  9n)t) -  sin((9m + 9n)t) \
2 V. sin((0n -  9m)t) -  sin((#m +  9n)t) cos((9m -  6n)t) -  cos{(9m + 6n)t)) )  '

which remain bounded when summed unless 9m =  9n, in which case the matrix 
equals

1 / 1  0 \ 1 /  cos(2t9m) -  sin(2t9m) \
2 \ 0  1 /  +  2 \ — sin(2£0m) -  cos(2£0m) )  ' 

where the last term is bounded when summed.

Hence converges to zero if n ^  m and for n — m has the same
limit as

1 T1 rp 2 \   ̂ o(m) o(7n),/"'l/
2 1 / „

t=l

^  l- C m W mW'mduC'm.

Similarly we find that for zm complex

-  r - '  t ! . ,  ( (X! )  <

= CmT~' E L i sS (A S< m))' (  J )  + oP(l)

-  $cmf w m(dwmy ( J ) .
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If either zm or z„ are real similar results can be proved. Finally we want 
the results for the product moment matrices constructed from the residuals Ut- 
It is clear that the limit of the product moments of X ^  and are not
influenced by the preliminary regression on the lagged values of p(L)Xt, since 
these are stationary. The matrix Su is M1(11,1) corrected for the other processes. 
Since the mixed moments T~1 converge to zero, the limit of T~1Sn is the 
same as that of Similarly the limit of M [\' is the same as that of
Su . ■

A ppen d ix  B 

Tables

In this Appendix the asymptotic distributions of the likelihood ratio test 
statistics for cointegrating rank at complex frequency are tabulated. The limit 
distributions all have the form

\tr j  (dB)H' Jjf HH'du] H(dB)'j , (42)

where B is a 2(p — r)—dimensional complex Brownian motion, and H is some 
process derived from B depending on the model for the deterministic terms.

The Brownian motion B is approximated by a 400 - step random walk 
and the statistic is calculated 100.000 times or 500.000 times.

The approximation formulae used are as follows. Let B =  (B‘R, B'j)1 denote 
a 2(p—r)-dimensional Brownian motion, and let (£t)t>0 be a sequence of 2(p -r )-  
dimensional i.i.d. Ar2{p_r)(0,1) variables, then

and

-  f  BUB)- ,
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Table 1: Quantiles of the limit distribution for cointegration rank at seasonal 
frequency for model (10) with no determinstic terms, given by (42) with H =  B. 
The number of iterations is 500.000, and the random walk has 400 steps.

P-r 0.01 0.05 0.10 0.50 0.75 0.80 0.85 0.90 0.95 0.975 0.99
1 0.0228 0.114 0.234 1.50 2.95 3.41 3.99 4.80 6.20 7.57 9.45
2 4.21 5.74 6.73 11.4 14.6 15.5 16.6 18.1 20.4 22.6 25.3
3 16.3 19.4 21.3 29.2 34.1 35.5 37.0 39.1 42.3 45.3 48.9
4 36.3 41.1 43.8 54.8 61.5 63.2 65.3 67.9 72.0 75.7 80.3
5 64.1 70.5 74.2 88.3 96.6 98.7 101 105 110 114 119
6 99.6 108 112 129 139 142 145 149 155 160 166
7 143 153 158 178 190 193 196 201 207 213 220
8 194 205 211 235 248 251 255 260 268 274 282
9 252 265 272 299 313 317 322 327 336 343 352
10 318 333 341 370 387 391 396 402 411 419 429
11 391 408 417 449 467 472 477 484 494 503 513
12 472 490 500 535 555 560 566 573 584 594 605

Table 2: Quantiles of the limit distribution for cointegration rank at seasonal 
frequency for model (11) with restricted seasonal dummies and constant, given 
by (42) with H =  (B', /) '. The number of iterations is 100.000, and the random 
walk has 400 steps

p-r 0.01 0.05 0.10 0.50 0.75 0.80 0.85 0.90 0.95 0.975 0.99
1 0.457 1.06 1.63 5.91 9.72 10.8 12.2 13.9 16.9 19.8 23.5
2 10.4 13.6 15.6 25.3 32.4 34.5 37.1 40.8 46.9 53.0 61.4
3 30.5 36.1 39.7 55.5 66.9 70.3 74.4 80.2 89.6 99.1 112
4 60.0 68.6 73.7 96.5 113 117 123 131 144 157 174
5 99.3 111 118 148 169 175 183 193 210 226 247
6 148 163 172 210 237 244 253 266 286 305 331
7 206 224 235 283 315 324 335 350 374 397 428
8 273 296 309 366 404 415 428 446 473 501 537
9 352 377 393 459 504 516 532 552 584 615 657
10 438 468 486 563 615 629 646 669 705 741 786
11 534 569 590 678 735 751 771 797 838 877 927
12 639 679 703 802 867 885 907 936 982 1024 1078
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Table 3: Quantiles of the limit distribution for cointegration rank at seasonal 
frequency for model (12) with restricted seasonal dummies and unrestricted 
constant, given by (42) with H =  (B' -  B', I)'. The number of iterations is 
100.000, and the random walk has 400 steps______________________________

P-r 0.01 0.05 0.10 0.50 0.75 0.80 0.85 0.90 0.95 0.975 0.99
1 0.238 0.923 1.58 5.49 8.32 9.11 10.1 11.4 13.5 15.5 18.0
2 8.70 11.2 12.8 19.6 24.1 25.2 26.7 28.6 31.7 34.5 37.9
3 25.4 29.5 32.0 41.9 47.9 49.6 51.6 54.1 57.9 61.6 66.0
4 50.1 55.9 59.3 72.4 80.2 82.3 84.8 88.0 92.8 97.4 103
5 82.9 90.5 94.8 111 121 123 126 130 136 142 148
6 124 133 138 158 170 173 177 181 188 195 202
7 173 184 190 214 228 231 235 241 249 257 266
8 230 243 250 278 294 298 303 309 318 327 338
9 295 310 319 350 368 373 379 386 397 407 420
10 369 386 395 431 451 457 464 472 485 497 512
11 451 470 481 521 544 550 558 567 582 596 613
12 540 562 574 619 645 652 661 671 688 704 723
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