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and
E. Schaumburg
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Abstract

The vector autoregressive mode! for seasonal cointegration is analysed.
The general error correction model is discussed and conditions are found
under which the process is integrated of order 1 at seasonal frequency
and exhibits cointegration.

Under these conditions a representation theorem for the solution is
given expressed in terms of seasonal random walks. Finally the asymp-
totic properties of the likelihood ratio test for cointegrating rank is given,
and it is shown that the estimated cointegrating vectors are asymptoti-
cally mixed Gaussian. The results resemble the result for cointegration
at zero frequency but expressed in terms of a complex Brownian motion.
Tables are provided for asymptotic inference under various assumptions
on the deterministic terms.

Keywords: Autoregressive process; Granger's theorem; Error correc-
tion model; Complex Brownian motion.
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1 Introduction

This paper contains a systematic treatment of the statistical analysis of seasonal
cointegration in the vector autoregressive model. The theory started with the
paper by Hylleberg, Engle, Granger and Yoo (1990) which gave the main results
on the representation and the univariate tests for cointegration at the various
complex frequencies.

The paper on maximum likelihood inference by Lee (1992) set the stage for
the analysis of multivariate systems. Unfortunately it does not treat all aspects
of asymptotic inference, and the test for cointegration rank is only partially
correct. The two papers by Gregoir (1993a,b) deal with a very general situation
of unit roots allowing for processes to be integrated of order greater than 1, but
do not treat likelihood inference.

The purpose of this paper is therefore to improve on the previous analysis
and discuss maximum likelihood estimation, calculation of test statistics, and
derivation of asymptotic distributions in the context of the vector autoregressive
model. In the process of doing so it is natural to give the mathematical theory of
the Granger representation, the error correction model, the role of the constant
term and seasonal dummies, as well as the asymptotic distributions involved.
The basic new trick is the introduction of the complex Brownian motion, which
makes many of the calculations more natural and greatly simplifies the formulae
for the limit distributions.

The model we are considering is thus the autoregressive model defined for
a p—dimensional process Xt by the equations

(D

where we assume that the initial values Xq,..., X (+1 are fixed, and that the
errors are i.i.d. with mean zero and variance O. In the derivations of estimators
and test statistics we also assume that e( are Np(0, ST), but in the derivation
of the asymptotic results this assumption is not needed. The deterministic
terms Dt can contain a constant, a linear term or seasonal dummies. Various
models defined by restrictions on the deterministic terms will be considered. The
properties of the process generated by the equations (1) are as usual expressed
in terms of the characteristic polynomial

Az) =i-J2n,v,



with determinant 4(-2)|.

The paper is organized as follows, in Section 2 we discuss the error correc-
tion model for seasonal cointegration of processes that are integrated of order
1 at seasonal frequency. This model is subsequently solved in the form of a
Granger representation theorem, applying a general theorem about inversion
of matrix polynomials. It is shown how this can be used to analyze the role
of constant, linear term, and seasonal dummies, see Kunst and Franses (1994).
In Section 3 we discuss the Gaussian likelihood analysis and the calculation
of the maximum likelihood estimator in the model with unrestricted determin-
istic terms, as well as in some models defined by restrictions of deterministic
terms. In Section 4 some technical asymptotic results on the behaviour of the
processes and the product moments are given. Section 5 contains the asymp-
totic results for the maximum likelihood estimator of the cointegrating vectors,
and the asymptotic distribution of the likelihood ratio test for cointegration
rank at seasonal frequency are given.

In Appendix A a brief description of the matrix representation of complex
matrices is given along with proofs of the technical results in Section 4. Finally
Appendix B has the tables of the limit distribution of the likelihood ratio test for
cointegrating rank for various models defined by restrictions on the deterministic
terms.

2 The representation theorem and the error
correction model

In this section we first give the necessary analytic results from the theory of
polynomials A(z) with values in the set of p x p matrices. In Theorem 1 we
discuss Laplace’s expansion for a polynomial around many points and show in
Corollary 2 how this contains the formulation of an error correction model. The
basic result, however, is Theorem 3 which is a necessary and sufficient condition
for the inverse matrix polynomial to have poles of order 1. In Theorem 4 we
give the interpretation of this result as a representation of the solution of the
autoregressive equations allowing for integrated processes and cointegration at
seasonal frequency, corresponding to Granger's theorem for 1(1) processes. We
apply the Granger representation theorem to discuss the role of constant, linear
term, and in particular seasonal dummies. We conclude this section with some
examples of models for annual, semi-annual and quarterly data.



We are concerned with the roots of the equation \A(Z)\ = 0 in particular
the unit roots, for which Jz] = 1. For a complex number Zi = e'e, the complex
conjugate is the same as the inverse, 2\ = zfl = e~'e. The representation
results in Theorems 1 and 3 are valid for arbitrary complex numbers provided
one replaces zm by z“ L

Corresponding to s distinct complex numbers z\, ..., zswe introduce the

polynomials

Pkjiz) — n  Z  mz) —(l-ztr)(_zi2)i 2/ Zj,Zk

2.1 The error correction model

The error correction formulation is a simple consequence of Lagrange’s expan-

sion of A{z) around the s + 1 pointsz= 0, zlt ..., zs:
Theorem 1 The polynomial A(z) can be expanded around the points 0, Zi, ..., zs
as follows

Proof. The matrix polynomial

is zero for z = 0, Zi, ..., zs and hence each of the entries can be factorized
into p(z)z times a polynomial. It follows that the difference can be written as
p(z)zA0(z) for some matrix polynomial Ao(z). =

An immediate consequence of this is the error correction formulation, see
Hylleberg, Engle, Granger and Yoo (1990).

Corollary 2 If Zj,..., zs are the roots of JA(z)] = 0 then the matrices A(zm)
are of reduced rank such that A(zm) = — with am and Pm complex ma-
trices of dimension p x rm and rank rm, and Xt satisfies an error correction
model

P(L)Xt = T ~ xajrn-g ™~ X t-p{L)A*(L)LXt+ et

= - Ao(L)p(L)Xt-1 +



where we have introduced

Pm(L)L ~

The idea behind this formulation, see Theorem 4, and condition (4), is
that Xt is a non-stationary process and the lag polynomial p(L) makes this
process stationary. The processes X[mM\m = 1I,... ,s are non-stationary but,
as we shall see below, the components of have the same common non-
stationary trend which is removed by the linear combinations Pm, and P * X~
is stationary, so that the stationary "differences” p(L)Xt react to equilibrium
errors given by PmX[m\ through the adjustment coefficients am. Note that
since the roots may be complex, the coefficients am and Pm may be complex,
but since the coefficients of A(z) are real, the roots and the coefficients am and
pm come in complex conjugate pairs. We use the notation pm = p'Rm-
for the so-called adjoint matrix. Note also that a different set of roots gives risc
to a different error correction formulation.

2.2 Granger’s representation theorem

We define the derivative /i(zm) of A(z) at z = zm. If the polynomial \A@Z)\ has
a root at z = z0 then .4(zo) is not invertible. We say that A(z)~x has a pole of
order k (k=10,1,...) at z= zo0 if

ZILrgo(l- - ) kA~x(2)

exists and is non-zero. We next prove a result that gives a necessary and
sufficient condition for the inverse function to have a pole of order 1 at a point
z0, say. This condition clearly requires .4(zo) to be singular, but we also need a
condition on the derivative of A(z) at zo, which restricts the behaviour of A(z)
in a neighbourhood of z0. For any (complex) matrix ¢ of dimension p X r we
define ¢t as a full rank (complex) matrix of dimension p x (p —r), such that
Pct = 0. Note that (c*)j_ = (cj)*-

Theorem 3 If the roots o/](.4(z)] = 0 have the property that \A\ > I+<5 or that
z € (zi,..., zs) with \an\= 1, then A(zm) = —amBm and the matrix polynomial
A(z) is invertible on the disk M\ < 1+ $except at the points (zi,..., zs), where
A~x(z) has a pole. A necessary and sufficient condition for the pole to be of
order 1 is that

lam i (2m)/3mil /o, m= 1,...,s. 3

4



In this case we get an expansion of A J(z) of the form
ANz) = + Co(2). A+ (*i, m m2S
where
(i - zmz)A(z) 1= Cm= -zmBmX(@a™+i(zm)3ml) g™+,

and where Co(z) has a convergent power series for Y\ < 1+ <§ that is, Cq{z)
has no poles, and A~1(z) has poles of order 1L Moreover it holds that

1
Pm(z)z A~\z) = Cm "Tcemiz), z (2, *e+,25)
Pm(Zm) Zm (1 - Zmz)

for some power series Cm(z), convergent for M\ < 1+ é.

Proof. The usual expression for the inverse of a matrix

Adj(A(2))

A~\2) z™N(zlt...,z5)
AR\
shows that A(z)~1has poles at the roots z = zi, ..., zssince |JAm)] = 0, m =
1,...,s. We want to show that such a pole at z = zmis of order 1 and has thus
the form
/L N
@ zm

such that the continuous function Co(z) defined by
CO(z) = A(z)-1 z "~ (zi,...,z,),

has no poles in the disk N\ < 1+ 6, for some 6 > 0.

We prove this by investigating the functions in a neighbourhood of each of
the poles and show that by subtracting the poles given in the sum we eliminate
the poles in A~1(z). Thus we first focus on the root z = 2\ where A(z\) = —a(3*,
and we have left out the subscript to simplify the notation.

Consider therefore a value of z such that 0 < \z —Z]] < e. From the
expansion
A(z) = A{zi) + (z- Z2X)A(zi) + (z- 292Ai(z),

where A\{z) is a polynomial, it follows by multiplying by (a, aj_)* and
that, since A(zi) = —a/?*,



A(z) = (a,0a)M(z)(/3,/3£T=L_)
f -a*a/3*(3 O\ / a*A(zi)0(z - 21) -ZjaM(zi)/3+ \
\ 0 0/ \ al_A@zi)/3(z - zi) -z 181 A{zl)/31 3
+(z - zi)A2(2),

for some polynomial A2{z). Here and in the following we often use such a

notation for a remainder term, when we expand a polynomial or a power series.

The function A(z) is a matrix polynomial and therefore has no poles.
Further
77\ __( 00213 zla'A{zl)/3 \
[2I> \ 0 zlaLA(zl)P1)

has full rank if and only if the assumption (3) holds since

\AZIN= (-ma'aWP'PWz~A/zPA +Q

In this case A(z) is invertible for \z - zjj < e for some e, such that
0 < £ <min \&k—2Z\, and we find by the expansion

A H{z)=A I{zi) + {z-zxX)M2(,2),
that for z A zi

A '(z) = {p,PLTAIMA 1(z)(aat)*
= AizAPJ-'a*, + m3(z)
cleN-z+ m3(z)

where C\ is given in Theorem 3 and
M3(z) = ((2 - Zi)3,-/1312)M2(2)(q, Qj.)*.

Here M2(z) and M3(z) are convergent power series which are notations for the
remainder terms in the expansions. Hence A_1(z) —C\-p%- has no pole at
2 = 21 and extends by continuity to the point z = A\

The same argument can be used to remove the other poles from A~I(z)
and the theorem has been proved. m

The next result is a representation of the solution of the error correction
model (2).



Theorem 4 Let the equation |d(z)] = 0 have roots outside the unit disk and
atz\,..., zs with absolute value 1. Letform= 1, ..., s

where am and /3n are p x rm of rank rm < p, and assume that

#0. (4)

Let Xt be the solution of the error correction model (2), then Xt is non-
stationary and p(L)Xt and pm(L)p7/ Xt can be made stationary by a suitable
choice of initial distribution. In this case the processes Xt and X',nm» can be
given the representation

xt= 1T cm4Stm + E + W, ®)
ra=1 771=1
and
PM(E)Z/ m)

Xi" — Xt = Crz~Asff + z7Am + Y (6)

Pm(Zm) Zm
where sjnm is given by
S(m) _
i=o0
and the random variables Am depends on initial conditions such that PAAm = 0,
and finally Yt and Y}™1are stationary processes.

Thus the non-stationary process Xt can be made stationary by the dif-
ference operator p(L) and, since P X" is stationary, we call Xt seasonally
cointegrated at zm = e,6m or at frequency 9m, with cointegrating vectors Pm.

Note that S”n) is not a random walk since AS,™" = are independent but
not in general identically distributed. We call such a process a seasonal random
walk. Note also the factor zim in front of gives a type of non-stationarity

that is different from the usual unit root non-stationarity. Finally note that
since we allow for complex roots, the process X  and the coefficients am and
Omare in general complex. Since, however, the data and the coefficients in A(z)
are real, the roots come in complex conjugate pairs and hence a reduced rank
condition at a complex root automatically implies a reduced rank condition at
the complex conjugate root. This will complicate the statistical analysis below.

The difference between the results in Theorem 3 and Theorem 4 is that in
order to interpret Theorem 3 for stochastic processes, care has to be taken of



initial values in the representation (5) and (6) in order to translate the results
about the power series into results about the lag operator.

Proof. From Theorem 3 we find

P(z)A[z)~1= ~2 Cnpm(z) + p(z)C0(2).
m=1

Expressed in terms of the lag operator L, defined by LXt= Xt-\, we get
S

p(L)Xt= J2 CmPm(L)et + P(L)Yt, @
T

where Yt = Co{L)et- Since the right hand side is stationary this representation
shows that we can choose the initial values of the process Xt such that the
process p(L)Xt becomes stationary.

We want to solve this equation for Xt by removing the polynomial p(L)
one factor at a time by summation.

Consider first the root z = 2\ The definition of p(z) implies that
p(z) = (1 - ziz)pi(z), pm(z) = (1 - Ziz)pml(z), m 1,

and we can write equation (7) as

(1 —2\L) Pi{L)(xt- Yt)- —C\p\{L)et.
m=2

Solving these equations we find

s t
Pi(L){Xt- Yt)- Crpm\{L)et = z[+1A + CIPI(L)z[  *1%».  (8)

771=2 771=0
Here A is the initial value of the left hand side. Next notice that
Pi(L)z[ =pi(z1)z[,

such that result of the above calculations can be expressed as

PI(L)(Xt-Y t- CAISI" - 2\AA\) = J2 CmPmi(L)et, ©)

771=2

with A\ = K we choose the initial values such that fi\Ai = 0, then we get
the equation

Pi{L)P\Xt = PI(L)B\Yt+ Y ,P\CnPmx{L)et, t = 1,

771=2

8



since ONC\ = 0. This shows that, with this choice of initial values, we can
represent pi(L)p'Xt as a stationary process.

Equation (9) has exactly the same form as the one we started with in (7)
except that the root z = 2\ has been removed. In the same way we can succes-
sively eliminate the roots by summation of the equation each time subtracting
a term of the form CmztS&'l) + z'nAm from the left hand side and thereby prove
the representation. m

We next apply Theorem 3 to solve the autoregressive equations also in the
case where they contain deterministic terms.

Thus assume that Xt is the solution to the equations
AL)Xt+ $A = et

where A(z) satisfies the conditions set out in Theorem 3. In this case one gets

p(L)Xt = 'y ]Crmpm(L)(et + '1*A) + p{L)Co(L)(tt +

which can be solved for Xt to give

S S t S

Ecmrse )+ E E "MA+E 4A»+
771=1 771=1 J=0 771=1

where Yt — E(Yt) is stationary, and Am depends on initial values such that

PmAm = 0. It is seen that if Dj = 1, say, then the deterministic term gives rise

to the term 4E j=0 4. = *m i which remains bounded unless zm= 1 in

which case we get a linear trend in the process. Similarly if A = t we find

t+1  @- z7D)
1- «m (1-~m)2’
which is a linear trend if zm ~ 1 and a quadratic trend if zm = 1. Thus if
>A = TO+Tif we get a quadratic trend which vanishes, if we choose = 0.

If 3 = 0, we get a linear trend which vanishes when A xTo = 0. The next sub-
section discusses the same result for seasonal dummies.

2.3 The role of seasonal dummies

A special case of a deterministic term is when the data is measured with a
given frequency s, say, per year, and we include seasonal dummies to pick up



the changing mean in the process. We want to consider the case where the unit
roots of the process are among the roots of unity corresponding to s, that is,

of the form e~”", m = 1, ..., s. This is the situation if for instance we have
quarterly data and a root in the process at z = 1. We denote the roots of unity
zmm = 1, ..., s and assume for simplicity here that 2\ — 1, z2>eee. zs are

roots of the process, s < s. The results are easily modified if this is not the
case.

The seasonal dummies are defined by the p vector Dt, with the property
that Dt = Dtts- If we consider this as a difference equation the characteristic
roots are exactly the roots of unity, and we can express the solution as

S

Dt =
m=1

for some (real) linearly independent vectors dmwhich can be determined by the
initial s values of Dt

davM~ 1 zInDj-

s F1
With this notation we find that
t t S
ton P—dn,m —1,..., s,
j=0 j=0  n=1 mm

which shows that the seasonal dummy generates a trend in the process
zLt

with coefficient C,n<bdln at the unit root zm, m = 1,...,s. For zm ™ 1 this
trend has an oscillating behaviour due to the factor zh® which is unwanted in
the description of data. We can remove the trend by assuming the restriction
on the parameters

Cndm= 0, or amL$dm= 0.

This result was first proved by Kunst and Franses (1995).

We reparametrize the model by introducing the parameters m = <Mm.
The vectors dmcome in complex conjugate pairs, which also holds for the new
parameters. The deterministic terms in the equation becomes

10



We now restrict $m,m = 2,..., s by a”+<tm= 0, or <tm = onPm- In this way
we avoid the oscillating trends but leave the possibility open of a linear trend
generated by the unit root 2 = 1. If we also want to restrict this we further
assume that a'lL.$1 = 0.

We conclude this section by a few illustrative examples.

2.4 Examples

We give here various simple examples for models for annual, semi-annual and
quarterly data.

2.4.1 Annual data

If 2= 1is the only unit root in the process, then p(z) = 1—2 and A(l) = Xt-\,
and we get that (2) reduces to the usual error correction model for 7(1) variables

AXt= a0'Xt,l +et

where we have left out further dynamics and deterministic terms.

2.4.2 Semi-annual data

If the unit roots are 2 = +1 in the process, thenp(z) = 1 —2)(1 + 2) = 1- z2
and we find

X1 NESLX=\(xtr + xt 2

X[ -~ LLye= \(Xti -

such that (2) becomes
Xt—Xt2 = -otift"Xt-i + Xt-2) + -aifi*Xt-i —Xt-2) + £t

In this simple case we can interpret the results. Consider for instance a process
consisting of semi-annual income and consumption. In this case X{" isjust the
annual average, and the model specifies that this process is a non-stationary 7(1)
process, which cointegrates, such that annual consumption follows annual in-
come in a stationary way through the cointegrating coefficients f3v The process
X (2\ however, measures the variation within a year and the models specifies

11



A random walk S(1) and a seasonal random walk S(2)

Figure L

that such a process has a seasonal non-stationarity, which means that when
averaged within a year it becomes stationary. The cointegration vector /2 spec-
ifies that linear combination of the annual variation of consumption and income
that cointegrates.

Thus not only the non-stationary yearly averages but also the non-stationary,
seasonal variation within a year has to move together according to the model.

In order to understand the type of non-stationarity induced by a unit root
at z ——1, consider the process

xt= (-iys@= (-iy]T(-iyf = £ (-i Yet,
3=0 30

which enters the representation theorem. In Figure 1 we have generated e\,... ,£t
i.i.d. AT(0,1), T = 30.

Since the normal distribution is symmetric, the process S¢2) is a random
walk, and the factor (—1)( changes the sign of every second term, which give
rise to the oscillating behaviour that we see in seasonally varying processes.
It is obvious from the picture that differencing such a process will not give

12



stationarity, whereas one can obtain a stationary process by smoothing using a
moving average.

Note that when the random walk is positive for an interval then X ( oscil-
lates sy jtematically between positive and negative valuer, but when S,<9 gets
too close to zero, or a large draw of et occurs, then it can change sign with the
result that the peaks of Xt are shifted one period, such that "summer becomes
winter”. This property is an intrinsic property of processes generated by the
error correction model allowing for seasonal cointegration. It is easy in the ex-
ample to check the role of constant, linear term and seasonal dummies on the
behaviour of the process.

2.4.3 Quarterly data

Next we consider the situation where we have quarterly data and unit roots in
the process at z —+1, *i. In this case have

p(z)= Q- 2)(1 + 2)(I +iz)(1—iz) —(1 - 2)4.
The processes that are needed in the error correction model are

X ) 4N+ Xt-2 + X3 + Xt 4)
XQ = - Xt-2 + X(3—X(9%
x<3 5 (X(! +iX(2—X(3—iXt-4)
* @ ~i(Xt-l —iXt-2 —Xt3+ iXti)

The error correction model contains 4 terms, and we would like to express

them using real variables, see also (15). If we let x!3 = x i3+ iX1?* and
X@ = X3 = X<3 - iX'3 we find

+(Xt2-X (.4),

- Xt.3).

X3

The error correction model then becomes

Xt-XtN = octf'X" + a2? XWw
+ (OrPr + CciP,)(4-2 —x t 4)
+{0-rPi - OIPR)(Xt- 1 —Xt-3) + £t,

13



where we have absorbed the factor | into the coefficients, and for ease of notation
we let q3= Qr + iaj, a4 = a3,03=0R+i0h 04=103.

Note that the coefficient matrix to Xt 2 —Xt_4 is rather complicated. It
need not even have reduced rank. The same parameters appear in the coefficient
to Xt—+—Xts- It has been suggested to assume that aRR0'j —aiif3R = 0, in order
simplify the equations, but it is seen that this is a peculiar restriction on all the
coefficients, which is hard to interpret. If we assume instead that 0j = 0 we get
some simplification and the equations contain the term

2—Xt~i) —ai0’R(Xt-1 —Xt_3).

This has the advantage that only one linear combination of (1 —L2)Xt appears,
and the interpretation is that 0'R(Xt-2 —Xt-t) is either stationary or cointe-
grates with its own lag. Thus we have a type of multicointegration. If we also
assume that ai = 0 (or aR = 0) we get the simple result that the equation
contains a term of the form aRO'R(Xt~2—Xt-4) and the interpretation that the
process At_2 —Xt_4 cointegrates.

We get a different error correction model if the process only has roots at
2 = 1, i, since then p(z) = 1 —z)(I +iz)(1—iz) = (L —z)(I + z2). In this
case

X[I) /AL X t= 4Xtl+Xt3),

v@ (7D 0-iL) 1 - iAx(o
— (! —i)2  LXt- A '
(-L)(1+iL)_LXt= 1 _

XQ @+ )2 21 + f (ATt TIAX(CD:

We find the real and imaginary part as follows:
XD — I oX(_i, Xf2 ——2At1-
The error correction model becomes

XE- Xt-i + X((2- Xt.3
= ai0s(Xt~i + Xt-3) + (aREBR+ datiG\)A2xt_j + (aR0j —ai0'R)A2x (_i + £t

In this section we have given a general version of the Granger Represen-
tation Theorem which clarifies when we get a seasonally cointegrated solution
to the autoregressive equations and when the solution is integrated of order 1

14



at the seasonal frequency. We also gave a discussion of the trends generated by
constant, linear term and seasonal dummies, and what restrictions are neces-
sary in order to avoid them, if the unit roots of the process are among the roots
of unity corresponding to the frequency of the data. In the next section we use
these results to define the statistical model we want to analyze.

3 The model for seasonal cointegration and its
statistical analysis

In this section we define the statistical model for autoregressive processes of
order 1 at seasonal frequency which allows for seasonal cointegration. We give
various models defined by restrictions on the deterministic terms. We discuss
the Gaussian maximum likelihood estimation and the formulation of some hy-
potheses on the cointegrating ranks and some interesting hypotheses on the
cointegrating vectors and the adjustment coefficients.

3.1 The statistical models defined by restrictions on the

deterministic terms

The p—dimensional vector autoregressive model for seasonal cointegration is
defined by the equations

s k
p(L)Xt= amFrnX™ + £ I>(£)*,_,e + +£«,<= L. T. (10)
m=1 j=1
Hereetare i.i.d. Mp(0, fi), and the parametersam,0m, m= 1, ..., s, T,, ]
1, ..., k, $ and %L are freely varying, except that the am and come in com-

plex conjugate pairs. We assume that Dt consists of deterministic terms. Note
that the lag length is | = k+ s. The dimension of amand /ZAnis px rm, and the

initial values are fixed.
If in particular the roots of the process are also roots of unity, correspond-
ing to a given frequency s of the data, we can introduce seasonal dummies Dt

in the model. As seen in Section 2 they give rise to trends in the process and
it was shown how these can be avoided by restriction of the parameters. We

decompose the parameter $ as <I>Dt = N4 -
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We give here the model where we assume that there are no trends in the
process so that ¢m = amgm, for some pmx 1 matrix pm, m = 1, ..., s, which
imply that

->-(CE) () (n)
k s
+y~rjp(L)Xt-j + "mzin + £«
j=1 m=s+

If we want to allow for a linear trend we do not restrict at zero frequency
but use the model

p(L)Xt = ax(b\x[)+ !'>"> (Pm) (T ) (12)
m—2 \ Pm 7/ \ zm )
k s
+y ASjP(L)Xt-j + M+ y~I QmzIn+et-
j—l m=s+|

In these two last models the parameters specified are varying freely, with
the only restriction that the parameters am, (3mand <m come in complex con-
jugate pairs. Note how the roots of unity that do not correspond to unit roots
in the process enter with pairwise unrestricted coefficients and do not give rise
to trends in the process.

3.2 Some algorithms for the estimation

The statistical analysis of (10) leads to a non-linear regression problem since the
coefficients amand f3menter through their product. We here discuss estimation
of the model without restrictions on the deterministic term and mention in the
end of this subsection how to modify the algorithm if the deterministic terms
are restricted, as in models (11) and (12).

Since the cointegration model (10) does not restrict the matrices Tj and
$ we can concentrate the likelihood function with respect to these and define
the residuals Rot, R™>and Ret by regression of p(L)Xt, X f{m' and eton Dt and
lagged values of p(L)Xt. Thus we get the equation

S

Rot=Y,”~PmRu"+ (13)

771=1
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An algorithm for estimating this model, see Boswijk (1995), can be found
by noting that for fixed 0 coefficients the model is a linear regression model that
determines the a's and fi by simple regression of p variables Rot on X]Jm=i Tm
variables , ..., 0ONR "™ mFor fixed values of a and Q, however, we have a
linear regression model in the (3 coefficients which can be estimated by gener-
alized least squares. This determines a switching algorithm, which in each step
increases the likelihood function, but the second step involves vectorizing 0 mso
we need a total of p*Zm=i rm regressors.

Another algorithm can be based on the first and second derivatives of the
likelihood function and an application of the Gauss Newton algorithm. This
algorithm also involves a large number of variables in general.

Finally we describe an algorithm which is slightly simpler, and which
can be proved to give estimators which are asymptotically equivalent to the
maximum likelihood estimators, since the regressors X {,/> are asymptotically
uncorrelated, in the sense that

t=i
see Corollary 7.

The idea of the algorithm is that when focussing on one frequency we
can concentrate out the other regressors by ignoring the constraint of reduced
rank at these other frequencies, see Lee (1992). We illustrate the situation of a
complex root, since the real roots 1 and —1 are easily handled the same way.

Consider therefore the situation where, say, zi = €'° and z2 = e~,e are two
complex roots with 0 < 9 < n. Note that A(e'e) = A(e~'e) and A(2) = a JI* For
notational reasons we use a and 0 without subscripts now and letcq = a, ¢2 =
a, 0l = 0, and 02—0. Thus we write the model equation (13) as

Rot = O0TR® + c& Bty + anD"R "™ + Ret. (14)

m=3

We concentrate with respect to R* 1 where m/ (1,2), that is, we remove
the restriction of reduced rank at Z3,... ,zs. This gives residuals £/ot, Uit, and



Uet and we find the equations

Uat otfi'Uit + a/3 UNt + Ukt
= 2Real[(aR+ iaj)(0OR- i0)'{URt + iUIt)\+ Ut

= 2[(@aROR+ aiP'j)URt + {&rPi — iPrWh] + Uet

uR 15
= 2(aR,-ai) OR —01 Un (15)
01 OR uit
UR

= a(3' Ukt,

Cluy *

where we use the notation
~ -ai
(Y = - @R —an,a = T

Voir oR on aR

In Appendix A the matrix representation of complex numbers and matri-
ces is explained. This representation is noted throughout by boldface. Since
the roots come in complex pairs the sum J2 nr3 is real, such that
both Uot and Uket are real. The statistical problem appears to be a reduced rank
regression problem, at least if p > 2r, but the matrix O is not unrestricted but
has complex structure.

In order to express the partially maximized likelihood function we intro-
duce the product moments

Su (2P x 2p),
S UMkt (2oxp)
0 y ,
= Ult PP
.
Soo T~1~ UotUgt, (pxp),
t=1
! u
S1 T-~ua (P X 2p).
Ult

Finally we define Sn.o = Sn —5io50050i.

For fixed value of O we can concentrate the likelihood function with respect
to the parameters a = 2(aRl —aj) and ft and find, apart from a constant factor,

Lmi(0) = [t]= B®D- Sox0(0'Sn0 r D'Slo\= |Soo |- @6)
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This minimization cannot be solved as an eigenvalue problem since the 2p x
2r matrix (5 has complex structure while Sn and Sn.o do not have complex
structure.

We can minimize (16) by an iterative procedure us'ig the Gauss Newton
algorithm or we can use the idea of switching between (a, 12) and (3 in (15).
Applying the switching algorithm here only involves 2prm parameters from the
cointegrating relations and a similar number from the adjustment coefficients.

Finally the maximum likelihood estimator can be calculated iteratively as
follows. For fixed values of /32, ===, Ps we can concentrate the likelihood function
with respect to <2, , as. Then the equations have the form (15) and we can
apply the switching algorithm to determine a\ and . One can save time by
not switching to convergence. Next fix /?1;/?3,..., (3Sand repeat the procedure
as above. In this way one can by focussing on one frequency at a time reduce
the dimension of the matrices involved in the regressions.

If instead we consider the problem of reduced rank at 9 = 0 or 7 then
we get the product moments as before but now with say, corrected for
all the other components. In this case all residuals are real and the matrices
Sa, Soi, and Soo are all of dimension p x p, and the problem can then be solved
by reduced rank regression, see Lee (1992).

Finally we can use the same ideas to estimate the models (11) and (12)
with the various restrictions on the deterministic terms. The coefficients <,
with j > s, and possibly j = 1, can be concentrated out in the preliminary
regression, and in the reduced rank regressions we just replace Xfm' by the
extended variables (XfT#¥, z‘'n)'. Corresponding to the equation (15) we get

$mZm+ $mzm = 27~ (N 4) = 2Re($flm + i$ml)(cos(9mt) + isin(Omt))
2($fimCOS(9nmt) + $ nv sin(Omt)),

and
PmAn. + Pmtn = 2(P*m QO8(6mt) + Pm, sin(Omt)).
In this case we define the regressors derived from as
cos{6mt), sin(Omi))’

and the cointegrating coefficient is

~ PmR ~&ml »
PmR Pml
Pml PmMR

\ Pml PmR j
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This shows how, in model (11) we can concentrate out the coefficients 4>j, j > s,
using simple regression. The switching algorithm is then applied to the extended
variables, where the residuals are extended by a cos or a sin. In model (12) we
eliminate by regression and do not extend the variable X {1\

The algorithm has been programmed in Gauss, see Schaumburg (1996)
and RATS, see Dahl Pedersen (1996).

3.3 Hypotheses of interest

The main hypothesis of interest is of course the test for reduced rank at the var-
ious complex frequencies. This requires maximization of the likelihood function
under model H(r), that is, the assumption of reduced rank r at the complex
frequency 9 as discussed in the previous subsection. We then compare the
obtained maximum with the maximum obtained from the unrestricted VAR,
which corresponds to r = p. Thus the test statistic is

Other hypotheses of interest are hypotheses on the cointegrating coeffi-
cients /3. The most interesting perhaps is the hypothesis that /3 is real, since
without this simple structure the interpretation becomes rather tedious. This
hypothesis is formulated by Lee (1992), and in the present notation becomes
the restriction

" P ( O ] f C ) 1 (1D
Due to the non-identification of /3 we can give an equivalent formulation
of the hypothesis as OR = fil. Finally we can consider the assumption that

which allows for a simple interpretation, see the examples in sub-section 2.4.
The maximization of the concentrated likelihood function (16) under any of
these restrictions again requires an iterative algorithm for finding the maximum.
By comparing the obtained maxima with and without the restrictions (17) and
(18) we obtain the likelihood ratio test statistic.

Clearly if there are prior hypotheses about the structure of the cointegrat-
ing relations we can test those by the likelihood ratio test, by suitably modifying
the algorithm for finding the maximum.
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The asymptotic results that allow these procedures to be used are given
in the next sections.

4 Asymptotic results

This section deals with some technical results on asymptotic behaviour of vari-
ous processes and product moments. The proofs are given in the Appendix A.
We assume throughout that the processes are generated by the autoregressive
equations without deterministic terms and that the e are i.i.d. with mean zero
and variance ST We start with the sums S~ and then find the limiting behav-
iour of and finally investigate Sn, Sio>Soo and SEi which are based on the
residuals from the regression (15).

The limit distribution of the random walk S is found in Chan and Wei
(1988) who show the following result:

Lemma 5 If = Y?j=0zmEj anc”zm exp(iOm), then
AN oem( < mrU) + iwNT)(«)) = Stwm 6m= | f cHET<"m

where and WAnm are independent Brownian motions with variance mag‘tg;
Q. Moreover these Brownian motions are independent for different values of 9m.

Another result that follows from their calculations is the following.
Theorem 6 For T —o00

t-2J2 ~o6men f WmWndu, (20)
i—

- 6men f Wm{dW?¥). (21)
i=i w°
If further f(t) is a matrix valued function such that F(t) = X~=i/(*) is

bounded, then
T

T~2  Stmf(t)sln) A 0. (22
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In the study of the asymptotic properties of the product moments that
appear in the statistical analysis we need to know the joint behaviour of all the
random walks that come from the various components xj/r> From Theorem 6
one obtains

Corollary 7 The asymptotic properties of the product moment matrices are
given by

f wmwmduc;n, (23)
t=i NY
T
T~2  X{m)x tn)* -U 0) Zn 7~ Zmi (24)
«1
T #
1Y 2x?net Z#mCm \ wm(dwmy. (25)
TTt X

Next we want to find the asymptotic properties of the product moment
matrices Soo, <Sic> Sli and SJE These are defined in terms of the residuals
Uot, U\, Uet which in turn are defined in terms of the processes X P, XP and
p(L)Xt corrected for X ~ for m ~ (1,2).

In the following we let zi = €'°, 0 < 9 < n, and define S(1) = Sp+
xP =XP+IXP anda Q\= HCO\Nwith the matrix representation

of the complex processes, see Appendix A, we use the notation

) _. - —
S RN A

(26)
such that the complex representation
X = c.s®A + op(T
in matrix notation becomes
Sy = dp -dp smi ~sm=i \ (axt0) sn@Q\

dp dp sn-i  SP-i / V—8ni®>) oxt0) )
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From this we find by multiplying from the right by (1,0)' that
i cos(f0) "
CiSft +0p1 ).
STt gingta) ) )
Define the cr—field Tt as

Tt=o0 {**£)*,_,,.. ,p(L)Xt-k,(rmXImM\ m / (1,2)},

that is, the er-field generated by the stationary processes in the model equation
except those that are derived from X $ and X~ 1 Note that Ttis generated by
variables before time t, since x jn* depends on lagged X t.

We define the variances and covariances

! p(L)Xt
Eco 700

Var < Tt
r ( |) Eflo ~00
b)

Lemma 8 The following identities hold

Top = aTpp, @7

Eoo = a'Tippa 4- 12 (28)
~00.0oE0L= Q2 1, (29)

Tpp —Tgg0+ E ~ gE”oEqiqg = 0. (30)

Theorem 9 The asymptotic properties of the product moment matrices defined
from X['\ corrected for the processes x[mM\ rn 1,2, are given by

T-isn A 1 WWdWCnO<or <7

sic- \ciJ WAWO (' j,0<oy< T

where
-w jl)

< > < >
Furthermore we have the relations

0 Sufi — Tpo, 0 Sio—» E”o, Soo —* Eoo, P S\c —0.
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Note that Sn is 2p x 2p but does not have complex structure. The limit of
T~1Sn, however, has complex structure as do the matrices Ci and W 1. Note
also that the Wi process appearing in Theorem 9 above is just the complex
valued Brownian motion IT) from Lemma 5 in the matrix representation of the
complex process.

5 Asymptotic inference on rank and cointegrat-
ing relations

The main result about the estimator (3 is that it is asymptotically mixed
Gaussian such that asymptotic inference on the coefficients can be conducted
in the x2 distribution. The test statistic for hypotheses on the rank at sea-
sonal frequency has a limit distribution, which is similar to the usual one, when
expressed in terms of the complex Brownian motion

5.1 The asymptotic distribution of /3

Although resorting to numerical algorithms for calculating (3 is necessary, we
can use the derived expression for the likelihood function (16) to obtain the
asymptotic distribution of the maximum likelihood estimator. We do this by
exploiting the fact that /3 must be a solution to a set of first order conditions
for maximizing (16).

The parameter (3 is not identified unless normalized in some way. This
normalization can be accomplished by defining (3h—/3(b'/3) _1 for some b (2p x
2r) of complex structure with the property that (3'h has full rank. For the
analysis in the following it is convenient first to normalize the estimator on the
true value (3 and choose b = /3 = (3(J3'(3)~l. We thus define f3 = /3(/3,/3)~1 and
note that

—P)=0
Thus we only have to investigate the limit of TOL(j3—3). We give the results for
the model without deterministic terms and later mention how they are modified
for the models (11) and (12).

Theorem 10 The asymptotic distribution of the cointegration vector (3 in the
model with no deterministic terms is mixed Gaussian and given by

T {3 FF'du}-1 f F(dV)',
Jo Jo
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where
F=RCwi1

and
rla‘'n;lw v
where

n o Qr f PR -01
o n a, KO0, OR

fir =

Thus there is some redundancy built into the result, but the notation is chosen
such that it coincides with the usual one for the unit root z = 1, see Johansen
(1991).

Proof. The proof that the maximum likelihood estimator is consistent can
be given along the same lines as the proof of consistency in Johansen (1996),
where it is pointed out that due to the fact that the cointegration model is a
sub-model of a Gaussian regression model, it is possible to find an upper bound
of the likelihood function outside a neighborhood of the true value. This can
then be applied to prove consistency. In the following we assume that (3 exists
and is consistent.

The concentrated likelihood function is given by
-2 log L(p) = Tlog + Tlog |So].
We next want to make an expansion of the likelihood function around the

maximum, and we use the expansion

log [(x+ h)'A(Xx + h\ = log \XXAX\ + 2tr{(x'Ax)~1x'Ah} + 0(\h\2). (31)

This gives the first order condition
tr{[(piSnP)~I~'Su - (p,Sn.op)-10"'sn.o\n} = 0,
for all h of complex structure. This implies that
KP'SnPr'&Sn ~ Cp'Sn.0P)-1p'Sn.oJc = 0, (32)

where [.. .]Jc denotes the complexified matrix, see Appendix A. We first find the
weak limit for the matrix in (32) before it is complexified. Multiplying from the
right by /3X, which has complex structure, we find

(p'Sn ~Pylp 's11f3+ - Cp'Sn.oP)-1-dSn.oP1_
= ((p'SnP)-1-_(p'Sn.0P)-Yp'snpl + (p'SumP " P SI0SNSOIP+
= (73/3 —"0I3.0)P SUP+ + SoiP+ + °p(I)-
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-/ -p -/ - p
We have here applied the results in Theorem 9 that 3Su(3 —E~, (3Sn.o/3 —=*
E'gp and Soo EQo. Prom (15) we find

Soil31 = &(3'Snf3+ + Sei/3x = d(/3 —/3)'Sn/3x + Su/3 + Sei(31.
Inserting this above we find

O'Pff~ ™Bp.o+ ~.0W o0 d)/3Sn/3X
+EO0g o™MwS oil(d (/3 —F3)"'(3x(3+Sn(3x + St:i/3X)
= -a'n-~an - [3)/3x/3xSn/3x + 5£1/3x),

since the first term is zero by (30) and the coefficient simplifies by (29). The
weak limit of this is

-a'ir aB'i f FF'du+i(/,0) / (dW~"F'
4 do 2 do

where we have used the notation B for the weak limit of By = T/3X(/3 - (3),
see (29). Thus the limit of (32) becomes

1 f1 1 ri lc
d'firdB'- /| FF'du- -d'fi_1(/,0) / (dW~F' =0.
4 do 2 do

We still have to simplify this result before we can solve the equation for B. We
get, since B' f* FF'du and fg(dWi)F' have complex structure, that the first
order condition (32) is equivalent to

d'fi-1aJcB'i f F F 'd u [aTT~fy0)]0/ (dW~F'= 0.
[ ] s 2[ y )]cb(

This is now solved for B and we therefore want to find the two complexified
matrices. We find

and
[a'fi-1(/, 0)]c= a'O j1,
for
n =,n 0
c ‘on
which shows that
B = FFduj jT F(dw1'fijla(a'fiela)-1

Next we give a result for the estimator of /3 normalized on a matrix b,
that is, (3b= (3(b'f3)~I.
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Theorem 11 Consider the seasonal frequency 2\ = e'B, and the matrix /3 with
complex structure normalized by /3'b = 1. In the model with no deterministic
terms O h is consistent and asymptotically mixed Gaussian,

T(Ob-(3)Z (1- /3bf)p£[£ FIFt]13 FIAVI\ (33)

where
Fi(u) = ~Cjw ~u),
V~/u) =

The asymptotic conditional variance matrix is
(1 - 130"3x[f IFjFidwI-~KI - b/3) ® (a'fi*a)-1, (34)
Jo

which by Theorem 9 is estimated consistently by

T(I - [36h")BLIARLS \ \ filL{l - b&) 0 (d'fird*)-1 (35)

Thus linear and non-linear hypotheses on the coefficients of the just iden-
tified vector f3bcan be tested asymptotically by construction of t—ratios using
(35) as variance matrix.

Proof. The proof of (33) follows from Theorem 10 by the expansion
& = (/- (3(b'(3)-1b")CO - /3)(b'/3)“1+ Op(13- RJ2).

The proof that (34) is a consistent estimator follows from Theorem (9). =

If we instead consider the models (11) or (12) we get much the same
results. A detailed study will show that the estimated cointegrating vectors /3n
are T consistent but their extension pmis only Ti consistent. This gives some
difficulties in the formulation, but the end result is that one can treat the full
extended vector as asymptotically Gaussian with a variance matrix given by
(35), see Harbo et al. (1996) for the details in the case of zero frequency.

5.2 Test for cointegrating rank

This section contains a test to determine the rank r of B at the seasonal fre-
quency Zi = e'°. We here concentrate on deriving the result for testing at strictly
complex frequencies, which yields a result similar to the usual test but involv-
ing complex Brownian motions. We focus on the model without deterministic
terms and give the results for the other cases without proof.
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Theorem 12 The asymptotic distribution of the test statistic for the hypothesis
of r < p cointegrating relations at complex seasonal frequency is asymptotically
distributed as i i

ytr{] (@B)B'(] BB'du)}-1[ B(dB)}, (36)

where B is standard complex Brownian motion of dimension 2(p —r)

The distribution is tabulated by simulation in Table 1

Proof. Prom (16) we find that the maximized likelihood function for p = r

becomes Sigl
'Sil.
1Sl 37)
ISi:
and hence that the likelihood ratio test statistics can be found as

Q-7(H(r)\H(p)) = ISnll/3'Sn.oM
|Sn.o] |/3S.,/3]

Now choose /3j_ orthogonal to j3 and use the identities
IGMJ'1]s 0]IGRA)!

p'SnP  p'SnPx
p'xSnfl PxSnPi

p'Snp\ p'LSnP% - i3+SnP (p'Snp) P'suPA
P'SuP 1 PxSu.pK |
and a similar one for the matrix Su o to prove the expression

-2109Q(/I(r) f/(p)) = -Tlog~™ 7 (38)
\Pi-S\Lj}PL

The idea of the proof is to derive the asymptotic distribution of (38) by
noting that it is a function of j3, for which the distribution is derived in Theorem

11.
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From the consistency of /3 and /3X it follows from Theorem 9 that
A N AN'jCifo WMW'IHuCi/3l = i j 1FF'du,

and the same result holds for 0 SnogOL. Thus the ratio in (38) tends to 1,
and we therefore get the result, applying (31),

~2 log Q(H(r)\H(p))
= —Tlog \I -

= tr{(r-131510 " 1)-U3'xS10.~ W50L " x } + oP(1).

We want to find the limit of this quantity. First we consider

Sp&= So— SOP(83Sufr) So
—>S00 ~ EmE~E/» = 0 + oiUppa’ — = fi-

Next we consider

# 15108 = - piSnO(psupylpsw

= /"xNie + &tSn/3a’ —*x5n~"E~E”™0 + o/>(l)
/3XSU - f3+Sn0 - 0)a‘'+ oP(1)

=012SU- 0+xSu& jr+(&- /3)d + op(l)

From Theorem 9 we find that this converges towards

ifoF(dW'i) ( J) - i/oF(dW',)nrla(a'n-1a)-la

i £ HoTW)(/- ni-la(a'nela)-1a") ( ' )

i £ F(dW'Dax(a'xn@ax)-la'tnc( J) .
Thus we find that

GiW oA A - \ £ F(AW)DMJIAdW JF 4,

where A7 is given by

M = ax(a'xnax) laxf2c( ) n1( q) n@al(@incx)'lai,
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such that

Mc = ‘a'l"cflc Inca l(a'in(ad) ‘an

(oM o)r=n-°
The asymptotic distribution is then given by
i-1rl
tr{[L £f'dul jf F(dWi)M (dWDF'}

= tr{]jf FF'duj jT F(dW'))Mc (dWjIF'},

since both the matrices f(' FF'du and fg F(dW'1l) have complex structure.
Combining the results we find that

-2\0gQ(H(r)\H(p))~+tr{j\dB)B*) £ BB'du J* B(dB")},

where
B =(a'dncax)-iaiWw 1

By choosing to express the result in terms of the complex Brownian motion
we find that, apart from the factor |, the result looks very much like the result
for the real case, see Johansen (1991), for z = 1, and Lee (1992) for the case
z — —1. The result given in (36) corresponds to formula (3.35) in Lee (1992).
The calculations of the likelihood ratio statistics (3.34), however, are not correct
and there is an error in the proof giving the asymptotic properties. The choice
of 6g cannot be made as stated just below (A.42). The resulting formula for the
limit distribution is, however, correct.

Finally consider the test for cointegration rank at complex frequency when
there are deterministic terms in the model.

Theorem 13 In model (11) the asymptotic distribution of the test statistic for
the hypothesis of r < p cointegrating relations at complex seasonal frequency is
asymptotically distributed as

Jtr{ AdB)H'(] lHH‘du)-lJ-(I): H(ctB")}, (39)
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where B is standard complex Brownian motion of dimension 2(p —r) and H =
(B',/)'. The limit distribution is tabulated in Table 2.

Note how the properties of the extended process (X[nmtz~J' are reflected
in the extended Brownian motion H.

Finally if we consider model (12) which allows for a linear trend in the
process we find the same result but with the definition of H changed.

Theorem 14 In model (12) the asymptotic distribution of the test statistic for
the hypothesis of r < p cointegrating relations at complex seasonal frequency is
asymptotically distributed as

\tr{ [ (dB)H'(/ HH'du)-1/ H(dB")}, (40)
2 Jo Jo Jo

where B is standard complex Brownian motion of dimension 2(p —r) and
H=(B'"-B"/)"

Again the process H reflects the properties of the extended process X
but this time corrected for the average B corresponding to fitting an unrestricted
constant in the equations. The limit distribution is tabulated by simulation in
Table 3.

1
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Appendix A
A 1. Complex matrices and real matrices with complex structure

Complex number z = a + ib can be represented by the matrix

a —b\
b a )’

in the sense that this representation preserves linear operations and also complex
multiplication, that is, if

(a+ ib)(c + id) = e 4 if,

a ~b\fc -d}y_ e -f
b a ){d [ f e

We represent the complex p x g matrix = A + iB by the real 2p x 2q matrix F

then

A -B
B A

F =

Throughout we use boldface to denote the real matrices with this complex
structure. Note that if F* = Al —iB' then F* has the representation

We shall say that F is complex, but that F has complex structure.

We consider the transformation of a 2p x 2q matrix to a matrix of complex
structure given by

A B

(c™) co + 0 )(2 2)(-°.)]
A+D B-C A B
2\C-B A+D c D

We can discuss this by the transformation

1= (y 07
such that 12= — and T = — Then for a 2p x 2q matrix M we have

MC= -(M + IMI").
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and if M has complex structure then IMF = M, such that M = Mc. If M is
any 2p x 2g matrix and h has complex structure then

(Mh)c= ~ (Mh + IA/hF) = i(M h + IMFIhF) =A(M + IMF)h =M ch.

Finally notice that if tr{A/h} = 0 for all h with complex structure then Mc —0,
since

tr{Mh} = tr{(Mh)c} = tr{Mch} = 0
for all h with complex structure implies that Mc = 0.
A 2. Asymptotics

This appendix contains brief proofs of some of the technical results stated
in Section 4.

Proof of Theorem 6. The first result (20) follows by the continuous
mapping theorem and the second (21) by noting that AS{r>= zhet.

The third result (22) follows by a partial summation. Let |JA]2= tr{ A’A}
for a complex matrix, and let ¢ = sup, |F(t)]. Then

T-"z~s”™~m sr

=T-2Z h SIm)(F(t) - F(t- 1)Stn>

= T~2E L i 5€m)F(<)Stn)*- T~2ZU SI-1 + AS'm))F(f - I)(S*"i. + AStn))*
= T-2MF(T)5™n)*- T~2Z ti St-iF(f - 1)AStn)*

-T-2Z ti AStmF(f- D5(i*- T~2E h As{mF(t - I)A5)*~

(41)
The first term is written as
(T-54r0)T-1F(T)(T-4s”n)*) ~ 0O,
since F is bounded and converges weakly. The second and third terms

are evaluated as follows:

E\T-2E h SAFit-VAS~
<cT~2E h FISC|F]A5tM)Y
<CiT-2E L t*e O(T-i).

Thus the second and third term tend to zero, and the last term is evaluated as

T~2E\E L i AS,(m)F(t - 1)A5 ()
< cT-2E I=L FJAStM)|FIASt) e O(T~1).
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Proof of Corollary 7. The relation

r-26 x (mx (n). =t 2£ + 0,(1),
(:]_ (:1

shows that the asymptotic behaviour of the product moments depends on the
boundedness of .
i /= \I+1

vV~'=tt _ 1 (Zmzn)

2 Z| =

t=0 """ 1- mn
which remains bounded by if zm” zn. Thus for zm/ zn the product moment
will converge to zero, whereas for zm= zn we get the limit stated, which proves

(23) and (24). The result (25) follows from (21). ]

Thus the reason that the mixed moments tend to zero is not that they are
asymptotically independent (which they are) but the factor z*z”* which appears
in the summation. The factor zin comes from the representation of X,<r) and
also implies that the limit of T~I does not involve the limit of

JZLi £t but rather the limit of zIrEt-

Proof of Lemma 8. Prom the model equations

/I viD\ 3 k
p(L)Xt= aft ft + 5] am@BnX{m + ]T r]P(L)Xt"N + e(,
\ 1t 7/ m—3 j—1

it follows by taking conditional variances and covariances given the lagged values
of p(L)Xt and the remaining linear combinations PmX[ra>that (27) and (28)
hold.

In order to prove (29) we write it as
EM = E/Do ‘ Eoo,
and introduce the normalized vector
u= Q_%q Ej]3.

After some reductions, applying E®o = dE” the relation (29) reduces to

vl = (I —«'(/ + uv)~lu)vi{l + uul),
which follows from the identity

u'(l + uu)~lu= (uu) (I + u'u)-1.
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Next we multiply in (30) by 30 and and find
Sfla.o —S33 + E”~o”oo™ofl = 0,

which is zero by the definition of S”.o- |

Proof of Theorem 9. We first give a result for product moments of
x [mand Xt'Hcorresponding to complex roots zmand zn :

v (m)
m
T x®
-
CToAC mS -1 co's(tem) cos(ten) ~f:os(tem)sm(ten) \ _ ,
=1 - sin(fOm) cos(£0n)  sin(t9m)sm(t9n) ) i1 m °P

The matrix in the middle is
1/ cos((Om- 9n)t) + cos((Om+ 9n)t) sin((9m- 9n)t) - sin((9m+ 9n)t) \
2 Vsin((0On- 9m)t) - sin((#m+ 9n)t) cos((9m- 6n)t) - cos{(9m+ 6n)t)) ) *
which remain bounded when summed unless 9m = 9n, in which case the matrix

equals
1/1 0N\ 1/ cos(2t9m) - sin(2t9m) \

2\0 1/ + 2\ —sin(2E0m) - cos(2E0m) ) '
where the last term is bounded when summed.
Hence converges to zero if n ™ m and for n —m has the same
limit as

Ta .
EZLLrlp 2! o(myo(m.r
t=

N jCm W mwW'mduC'm.

Similarly we find that for zm complex

ottt (X <

= CmT~"E LisS(AS<m) ( J) + oP(l)

- $cmfw n(dwny ( J).
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If either zmor z,, are real similar results can be proved. Finally we want
the results for the product moment matrices constructed from the residuals Ut-
It is clear that the limit of the product moments of X ~ and are not
influenced by the preliminary regression on the lagged values of p(L)Xt, since
these are stationary. The matrix Su is M{1,]) corrected for the other processes.

Since the mixed moments T~1 converge to zero, the limit of T~1Sn is the
same as that of Similarly the limit of M|\' is the same as that of
Su. n
Appendix B
Tables

In this Appendix the asymptotic distributions of the likelihood ratio test
statistics for cointegrating rank at complex frequency are tabulated. The limit
distributions all have the form

\trj (dB)H' Jjf HH'du] H(dB)]j , (42)

where B is a 2(p —r)—dimensional complex Brownian motion, and H is some
process derived from B depending on the model for the deterministic terms.

The Brownian motion B is approximated by a 400 - step random walk
and the statistic is calculated 100.000 times or 500.000 times.

The approximation formulae used are as follows. Let B = (BR, B'j)1denote
a 2(p—)-dimensional Brownian motion, and let (Et)t>0 be a sequence of 2(p-r)-
dimensional i.i.d. AZp r)(0,1) variables, then

- f BUB)-,

and
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Table 1 Quantiles of the limit distribution for cointegration rank at seasonal
frequency for model (10) with no determinstic terms, given by (42) with H = B.
The number of iterations is 500.000, and the random walk has 400 steps.
pr 001 005 010 050 075 080 085 090 09 0975 0.99
00228 0114 0234 150 295 341 399 480 620 757 945
421 574 673 114 146 155 166 181 204 226 253
16.3 194 213 292 341 355 370 391 423 453 489
363 411 438 548 615 632 653 679 720 757 803
64.1 705 742 833 966 987 100 105 110 114 119
99.6 108 112 129 139 142 145 149 155 160 166
143 153 158 178 190 193 196 201 207 213 220
jie! 206 211 23 248 251 255 260 268 274 282
252 265 272 299 313 317 32 327 336 343 32
318 333 341 370 387 391 396 402 411 419 429
391 408 417 449 467 472 477 484 494 503 513
472 490 500 535 555 560 566 573 584 594 605

KREBwOwWw®w~NoOo~»WNPR

Table 2. Quantiles of the limit distribution for cointegration rank at seasonal
frequency for model (11) with restricted seasonal dummies and constant, given
by (42) with H = (B', /)'. The number of iterations is 100.000, and the random
walk has 400 steps
pr 00L 005 010 050 075 080 085 090 095 0975 0.99
1 0457 106 163 591 972 108 122 139 169 198 235
2 104 136 156 253 324 345 371 408 469 530 614
3 305 361 397 555 669 703 744 802 896 991 112
4 600 686 737 95 113 117 123 131 144 157 174
5 993 111 118 148 169 175 183 193 210 226 247
6 148 163 172 210 237 244 253 266 286 305 331
7 206 224 235 283 315 324 33 30 374 397 428
8 273 296 309 366 404 415 428 446 473 501 537
9 32 377 393 459 504 516 532 552 58 615 657
10 438 468 486 563 615 629 646 669 705 74 786
1 534 569 50 678 73 751 7/ 797 838 877 927
12 639 679 703 802 867 88 907 936 982 1024 1078
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Table 3: Quantiles of the limit distribution for cointegration rank at seasonal
frequency for model (12) with restricted seasonal dummies and unrestricted
constant, given by (42) with H = (B' - B', I)’. The number of iterations is
100.000, and the random walk has 400 steps

pPr 001 005 010 050 075 080 08 090 09 0975 099

0238 0923 158 549 832 911 101 114 135 155 180
870 112 128 196 241 252 267 286 317 345 379
254 295 320 419 479 496 516 541 579 616 66.0
5.1 559 593 724 802 823 848 830 928 974 103
829 905 948 1M1 121 123 130 136 142 148

124 133 138 158 170 173 181 18 195 202
173 184 190 214 228 231 249 257 266
230 243 250 278 294 298 309 318 327 338
295 310 319 350 368 373 379 386 397 407 420
369 386 395 431 451 457 497 512
451 470 481 521 54 550 567 582 596 613
540 562 574 619 645 652 661 671 688 704 723

BHIR
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