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A bstract

This paper proposes an expected utility framework for the 
treatment of theoretical and empirical issues in technical analysis. 
Circumstances are found in which a technical analysts’ behaviour 
is ’rationalisable’ and schemes for learning such rational behav­
iour are considered. The decision theoretic perspective developed 
is shown to be useful in formalising a measure of trading rule 
optimality, in creating improved rules and in using these rules 
to create powerful model specification tests. The framework is 
shown to be useful in relating the efficacy of technical analysis to 
the efficiency of financial markets and an empirical analysis of this 
relationship is provided.

'This paper was previously circulated with the title ’An (Abridged) Theory of 
Technical Analysis’. The research leading to this paper was supported by a grant from 
I.K.Y.. Thanks are due to Dave Cass, Alex Gumbel, Mark Salmon and particularly 
Ramon Marimon for useful comments and suggestions on previous versions of this 
paper.
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1 Introduction and M otivation

Economists, until recently, have viewed technical analysis (or chartism) 
with a great degree of skepticism. Indeed, typically technical analysis was 
treated as an irrational mode of behaviour that can be approximated suf­
ficiently well by the conceptual construct of a ’noise trader’ (Black, 1986). 
This is somewhat paradoxical given the size and importance of the insti­
tutions utilising technical analysis: there are investment, consultants who 
sell exclusively technical services and all major investment banks employ 
technical analysts. There are also private institutions which collect and 
sell data for analysts; and there is a huge range of expensive computer 
software as well as dozens of magazines and books on the subject.

The paradox is particularly striking when we reflect that in most 
other applications of economic modelling, purely irrational agents are 
anathema. Furthermore, it is surprising that technical analysis lacks a 
behavioural foundation given that technical analysts are driven by clearly 
economic motives to make decisions which are inherently quantifiable.

Part of the reason why teclmical analysis was dismissed as an irra­
tional mode of behaviour was because it was inconsistent with a naive 
but popular reading of the efficient market hypothesis according to which 
prices followed a random walk (see for example Malkiel, 1996). However, 
it is now clear that the random walk is not a satisfactory model for prices 
and is neither a necessary nor a sufficient condition for market efficiency 
(see Fama, 1991 inter alia).

Apart from being inconsistent with the vogue in financial eco­
nomics, a further offence committed by technical analysis was that the 
rules constituting it were fuzzy and subjective. As put by Tewels, Harley 
and Stone: ’’Chart patterns are almost completely subjective. No study 
has yet succeeded in mathematically quantifying any of them. They 
are literally in the mind of the beholder...” 1. Thus a divide grew be­
tween financial theorists and analysts: in the words of a famous analyst,

1Quoted in Murphy (1986), p.17
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they believed that ” Chart reading is an art” 2 whereas theorists saw this 
activity as the latest branch of astrology3. Recently, however, Neftci 
(1991) has developed a methodology which has allowed economists to 
clearly distinguish which rules are well-defined in the sense of generating 
Markov-times. This has given economists a criterion according to which 
they can judge the formalisability of a rule and has therefore made it pos­
sible to study those aspects of technical analysis which are not artistic 
(i.e. are formalisable).

In conjunction with the provision of increasing evidence that tech­
nical trading rules are able to detect nonlinearities in financial time series 
(see e.g. Brock, Lakonishok and LeBaron, 1992 (henceforth Brock et al.), 
LeBaron (1992a,b), Levich et al.(1993) and the references therein), these 
recent developments have generated a significant interest in technical 
analysis. In particular, the recent literature has focused on applying and 
extending Brock et al.’s innovatory use of trading rules to characterise 
the distributions of financial time series.

This paper is primarily concerned with determining what the em­
pirical observation of the use of a trading rule implies for the rationality 
and preferences of its user. In particular, in Section 2, we seek to find 
conditions under which technical analysis is a ’rationalisable’ activity, in 
the sense of being consistent with expected utility maximisation.

In Section 3, we examine what becomes of technical analysts when 
they have limited information about the environment. If this is the case, 
analysts must learn their optimal actions, and we show how a decision 
theoretic approach to learning can be used to model this type of behav­
iour. This leads to the concept of an ’artificial technical analyst’, which 
formalises the loose notion of what it means for a rule to be good or 
’optimal’ (see Allen F. and Karjalainen 1996, Neely et al. 1996, Pictet et 
al. 1996, Taylor 1994, Allen P. and Phang 1994, Chiang 1992, Pau 1991).

2This is taken from Murphy (1986), which is considered a ’classic’ book on technical 
analysis.

investm ent analysts, who offer predictions based on the movement, of the stars 
are becoming quite popular in the last few years, e.g. Weingarten H., 1996, Investing 
by the Stars: Using Astrology in the Financial Markets, McGraw-Hill.

3

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Tliis formalisation is important because it indicates that an explicit mea­
sure of rule optimality can and should be derived from a specific utility 
maximisation problem and that a rule which is optimal for all agents will 
not usually exist.

In the next two sections, we turn to empirical applications of our 
framework. Section 4 investigates the importance of using an optimal rule 
when trading rule returns are applied to characterise financial serias. We 
find that it is ’easy’, for any specific rule to lead to misleading results 
when it is chosen in an ad hoc manner, but that tliis problem can be 
mitigated by using an optimal rule in such applications.

Section 5 constitutes an investigation of the (hitherto ignored) rela­
tionship between market efficiency and technical trading at both a theo­
retical and an empirical level. Concepts are introduced which are helpful 
in calculating the level of transaction costs necessary for past prices to 
be, in a specified sense, ’useless’ to risk-averse investors.

Section 6 closes this paper with a synopsis of its conclusions.

2 Technical analysis form alised

At a certain level of abstraction, technical analysis is the selection of 
rules determining (conditional on certain events) whether a position in a 
financial asset will be taken and whether tliis position should be positive 
or negative. One important difference between an analyst and a utility 
maximising investor is that the rules the analyst follows do not specify 
the magnitude of the positions he should take.

This leads us to the following definition of technical analysis:

Df.l: Technical A nalysis is the selection of a mapping d which 
maps the information set I t at t to a space of investment decisions f2.

Ass. 1: The space of investment decisions f l consists of three 
events {Long, Short, Neutral}— fl. We will use a more convenient integer 
representation of these events, so ft  = {1, —1,0}.

4
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The event space on which those conditions are written are usually 
some quantifiable variables such as the time series of prices, volatility, or 
the volume of trading (e.g. Bliune et al. 1994) of an asset. Here, we focus 
our attention on rules which are based solely on the realisation of a finite 
history of past prices. Restricting the information set of technical traders 
to past prices rather than, say, past volume is justified by the fact that in 
order to judge the effectiveness of any rule, prices at which trade occurs 
must necessarily be known. Hence, the restriction we will make allows 
an examination of technical analysis when the minimum information set 
consistent with its feasibility is available. This is made explicit in the 
assumption below.

Ass. 2: I f=  P( =  {PLl Pt-i, Pt-2 , ••}•

We use the standard notation £}(•) to refer to E (- / l t).

Technical Trading Rules and R ule Classes.

Observing the practice of technical analysis, we arc able to offer 
a sharper characterisation of the form that mappings P t —> {1,—1,0} 
actually take. It is the case that rules actually used differ over time 
and amongst analysts, but are often very similar and seem to belong 
to certain ’families’ of closely related rules, such as the ’moving aver­
age’ or ’range-break’ family (see Brock et al). These families belong 
to even larger families, such as those of ’trend-following’ or ’contrarian’ 
rules (see for example Lakonishok et al. 1993). Whilst it is difficult 
to observe widespread use of any particular rule, certain ’families’ are 
certainly very widely used. When we choose to analyze the observed be­
haviour of technical analysts, we will therefore need to utilise the concept 
of a rule family, because empirical observation of a commonly used type 
of mapping occurs at the level of the family rather than that of the indi­
vidual rule. We formalise the distinction between a rule and a family by 
defining and distinguishing technical trading rules and technical trading 
rule classes.

Df. 2: A Technical T rading R ule Class is a single valued 
function D : P £ x x —> Cl where x is a vector of parameters.

5
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Df. 3: A Technical T rading R ule is a single valued function:

dt - D (P t,x  =x) : P t—> O

which determines a unique investment position for each history of 
prices4.

2.1 T h e  revea led  p references o f  T echnical A n a ly sts

Having defined the main concepts required to describe technical analysis, 
we now attempt to identify investors who would choose to undertake 
this activity. In particular, we find restrictions on a rational (in the von 
Neumann-Morgenstern sense) agents’ preferences that guarantee he will 
behave (i.e. will be) a technical analyst.

For this purpose, consider the following simple but classic invest­
ment problem. An investor i has an investment opportunity set consist­
ing of two assets: A risky asset paying interest R t+1 (random at t) and 
a riskless asset (cash) which pays no interest. He owns wealth Wt and 
his objective is to maximise his next period expected utility of wealth 
by choosing the proportion of wealth 0 invested in the risky asset. We 
will assume 6 € [—1,1] reflecting the assumption that borrowing is not 
allowed but that shortselling of the risky asset is possible to a value de­
termined by current wealth. His expectations Et are formed on the basis 
of past prices P t, as dictated by A2.

Formally, the problem solved is:

max EtU'{Wt+1) 
ee|-i,i]

s.t. wM = ewt(i + Ri+i) + (i - o)wt

Or equivalently,

4Notice that any set of rule classes (1A}/=1 can be seen as a meta-class itself, 
where the parameter vector x =  (i,X j) determines a specific technical trading rule.
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(1)max E,Ui{Wt(\+ G R M )
«€[-1,11

The solution to (1) is obtained at:

0* =  arg max EtU \W t{l +  9Rt+1) (2)
oe[—i,i]

and assuming that expectations are conditional on past prices only, 
this implies:

0* : P t -* [-1,1]

So we see that an investor will not in general use trading rules 
as defined above, since he is interested not only in whether he should 
take a long or a short position but also what the size of this position 
is. An exception to this is the risk-neutral investor, whose maximisation 
problem is:

max Ei.(Wt( l+ 9 R t+1) (3)
ee[-u]

Which simplifies to:

max 9Et(Rl+i) (4)
ee[-i,ii

And in this case, 0 will optimally take bang-bang solutions. Let­
ting 0* be the risk-neutral investor’s optimal choice, and assuming that 
Ei{Rt+1) — 0 results in 0* =  0 (so that 0* is a single-valued function), 
then:

0; : P t -  n

Hence, we see that a risk-neutral investor conditioning on past 
prices, will choose technical trading rules. This result is summarised 
in the following proposition:

7
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Proposition  I: T he risk -neu tral investor solving (1) is an 
expected  u tility  m axim ising agent who always uses technical 
trad in g  rules. T hus, expected  u tility  m axim isation  and  techni­
cal analysis are  com patible.

On the basis of proposition I, we can define a technical analyst as 
a risk-neutral investor:

Df. 4. A Technical A nalyst, is a risk -neu tral investor who 
solves:

max dEt(Rl+1) (5)d(P,)€D

W here  D is a  function space including all functions w ith 
dom ain Rd'm(p‘) and  image {—1,0,1}.

The returns accruing to an analyst when he uses a rule d are 
dRt+i and will be denoted Rf+1.

Obviously, different trading rules will be associated with different 
returns.

3 Technical A nalysts and learning.

Let us assume henceforth that the technical analyst does not know E,,(Rt,+i) 
but has a history of observations of Pt on the basis of which he must de­
cide his optimal action. This decision is a standard problem in learning 
theory where an agent must learn his optimal response in a game played 
against the (market) environment. Whilst these learning problems are 
conceptually simple, the key in solving them is inferring the correct con­
ditioning of the data and this may often prove difficult. As a practical 
matter, any solution method can only be expected to give an approxi­
mation to the true solution. There are two approaches to modelling the 
analysts’ learning problem given a learning sample of past prices, and 
they each give approximations which are valuable in different contexts.
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They are chosen according to different, metrics on the basis of which 
potential solutions may be judged, which are derived from:

i) ’Statistical’ loss functions : In this case, the objective is to learn 
Et{Rt+1), typically involving the selection of an estimator R l+ y for Rt+i 
through the choice of parameters from a set of models, (e.g. GARCH 
models) according to some goodness of fit criterion, such as least squares 
or maximum likelihood. It is then straightforward for the analyst replace 
E t(Rt+1) with Rl+ ], and hence determine d*. We will refer to this method 
as the ’Econometric approach’ to learning, as this techniques involved are 
of an econometric nature.

li) Context dependent loss functions: In this case, the objective is 
to learn d’ directly. This is achieved by choosing d*, an estimate for d* 
which has been found to give in-sample optimal solutions to (5) from a 
specified function space D. This method may be termed the ’Decision 
theoretic approach’, since in decision theory learning is not focused on 
determining the underlying stochastic environment, but in determining 
an action which is an optimal decision for a specified agent.

The two approaches differ in their focus, since the latter does not 
even involve the formation of an explicit expectation for Rt+j .  The use of 
different loss functions for learning implies that we do not expect the two 
methods to yield the same solutions unless the ’true’ solution is contained 
in both postulated models. Even then, the two approaches give the same 
solution only asymptotically and under certain regularity conditions. The 
advantage of the decision theoretic approach in the context of this paper 
is that it leads to rules which are optimal with respect to the technical 
analysts’ loss function rather than with respect to a statistical criterion5 
the properties of which may be irrelevant for the objective at hand.

Empirical studies tend to confirm that this distinction is important. 
For example, Leitch and Tanner (1991) show that standard measures of 
predictor performance are bad guides for the ability of a predictor to dis­

5An effort to develop a methodology for constructing econometric models based 
on general loss functions is under way (see e.g. CliristolTerson and Dicbold (1995) and 
the references therein). A fully operational methodology of this form should bridge 
the gap between the econometric and decision theoretic approach to learning.
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cern sign changes of the underlying variable6. Also, Taylor (1994) finds 
that trading based on a channel trading rule outperforms a trading rule 
based on ARIMA forecasts because the former is able to predict sign 
changes more effectively than the latter. This is likely to be due to the 
fact that the ARIMA forecast is chosen according to the ’wrong’ criterion, 
(i.e. to minimise least squares)7. Finally, Kandel and Stambaugh (1996) 
show that statistical fitness criteria arc not necessarily good guides for 
whether a regression model is useful to a rational (Bayesian) investor. 
These theoretical and empirical considerations suggest that any reason­
able model of analysts’ learning must be based on a decision theoretic 
perspective. Thus, this paper gives a decision theoretic treatment of the 
analysts’ learning problem.

A crucial ingredient in forming a decision theoretic approach to 
technical analysis is an appropriate functional space from which to choose 
trading rules d. Just as the econometrician has a set of models for the 
distribution F (R t+i /P t), (e.g. GAR.CH, random walk models, etc.) from 
which he chooses a member, the analyst needs a set of rrrles from which

6The technical analyst is clearly interested in the sign of R t+ \ , not its magnitude. 
In particular, the magnitude of Rt+t is irrelevant for his decision problem if sign(Rt+]) 
is known. Hence, he seeks a predictor Ei (Ri+ j) which takes account of his loss 
function by being accurate in terms of a sign-based metric. Satchcll and Timmerman 
(1995) show that, in general, standard least square error predictors do not have this 
property. Their proof derives from the fact that unless the distribution of F (R t ) is 
restricted, there is a non-monotonic relationship between a predictor’s squared errors 
and the probability of it correctly predicting sign(R t+1 ).

7A  number of studies of technical trading implicitly or explicitly assume away 
the possibility that there exists a nonmonotonic relationship between the accuracy 
of a prediction in terms of a metric based on Euclidean proximity and a metric 
based on the probability of predicting a sign change correctly. Examples are Taylor 
1989a,b,c, Allen and Taylor 1989, Curcio and Goodhart 1991 and Arthur et al. 1996, 
who reward agents in an artificial stockmarket according to traditional measures of 
predictive accuracy. When the assumption is made explicit its significance is usually 
relegated to a footnote, as in Allen and Taylor 1989, fn. p.58, 'our analysis has been 
conducted entirely in terms of the accuracy of chartist forecasts and not in terms of 
their profitability or 'economic value ’ although one would expect a close correlation 
between the two As we have argued however, the preceding statement is unfounded 
and the results of the above studies must be treated with extreme caution.
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to choose his optimal rule. Ideally, we would like to have a procedure 
for checking whether a family of rules or a set of families contain the 
universally optimal rule, but it is doubtful if such a process exists. Hence 
we instead choose families which are empirically observed, reflecting the 
belief that they have been developed by analysts of the real world to 
serve them (according to their loss function) in a way analogous to that 
in which econometric models serve econometricians. The next section 
illustrates with an example how an analyst learns an optimal rule from 
a rule class.

3.1 Learning th e  O ptim al M oving  A v era g e  T rading  
R u le

The moving average rule class is one of the most popular rule classes 
used by technical analysts and has appeared in most studies of technical 
analysis published in economics journals. For these reasons, we will use it 
to illustrate how a technical analyst would learn the optimal rule within 
the moving average class. Let us begin with a definition8 of this class:

D f 6: T he M oving Average rule class M A (P (,x f) is a t ra d ­
ing rule class s.t.:

MA{ P t,x ) =

where P t = 
x  =

X = 
N =
A =

1 if Pt > (1 +
o if (1 _  <  Pi < (1 +

- l i f P t < ( l - A ) a $ = i  
[F), Pt-1, •••, Pl- n \,
{n, A},
{N,A },
{1,2, ...A}, this is the ’memory’ of the MA 
{A : A > 0} this is the ’filter’ of the MA

( 6)

8 As defined, the moving average class is a slightly restricted version of what Brock 
et al. (1991, 1992) refer to as the ’variable length moving average class’ (in particular, 
the restriction arises from the fact that the short moving average is restricted to have 
length 1).

11

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Suppose a technical analyst postulates this as a set of models from 
which to choose his trading rule at time t. Then he effectively substitutes 
his objective function (5) with

m axM A {P t,n ,X )E l(Rt+l) (7)n,A

Since in any practical application Et(Rt+i) is unknown, the optimal 
solution (n*, A*) needs to be learned on the basis of rn past prices. When 
there is little information about the distribution of P t, a natural estimate 
(n*,A*) for the optimal solution is9:

(n*, Â*) =  arg max £££_mA M (Pi,n, A)P,+1 (8)

Let us fix ideas with an example. Suppose an analyst solving (8) 
wanted to invest on the Dow Jones Industrial Average and had ac­
cess to m =  250 daily observations of tins index at t, so that I t = 
{Pt,P t_ i , ..., Pt_24fl}. W hat rule would he choose? Figure I plots the an­
swer to tins question10 repeated 6157 times from 1=1/6/1962 till 31/12/198611.

Insert Figure I Here

The above figure plots a sequence of rules, denoted {d{n\, A})}j}lr}7 , 
which arc optimal in a recursive sample of 250 periods. Such rules d* 
which are optimised in the period before 1, yield out of sample returns 
which shall be denoted P .//j. It may be interesting to note that these rules

9If X)Ri+i converges uniformly to E (M A (P t ,n , \ ) R t+ i) as
m  —» oo, then (n*,A*) —> (n*,A*).

10The moving average parameters were restricted so that N  =  {1 ,2 ,..., 200} and A 
was discretiscd to A =  {0,0.005,0.01,0.015,0.02} . This discretisation allowed us to 
solve (8) by trying all dim (N) • dim(A) =  1000 points composing the solution space.

u This data corresponds to the third subperiod used by Brock el al. and to most 
of the data used by Gen cay (1996).
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correspond to what Arthur (1992) terms ’temporarily fulfilled expecta­
tions’ of optimal rules. It is difficult to interpret the sharp discontinuities 
observed in these expectations.

These optimal rules are important in investigations of any aspect 
of empirically observed rule classes in the same way that an estimated 
GARCH model is necessary for the evaluation of the usefulness of GARCH 
models in describing financial scries. The reason for tliis will be illus­
trated in the next section.

4 The advantages of basing investigations 
of Technical A nalysis on optim ally  learned 
rules.

Much of the economic literature on technical trading rules has asked 
whether popular types of rules such as the moving average class, will 
yield returns in excess of what would be expected under some hypothe­
sized distribution of stock returns (e.g. Brock et, ai, Levich and Thomas 
(1993), Ncftci (1991), etc.). A serious criticism levied against this type 
of analysis arises from the fact that it involves a testing methodology 
which is not closed. The methodology is not closed in the sense that the 
choice of rules to be tested is ad hoc since it is made according to non­
rigorous and often implicit criteria. Whilst this is clearly unappealing 
from a theoretical viewpoint, one might argue that at a practical level, a 
closed methodology in which optimally learned rules are used would yield 
very similar results. If so, the ad hoc approach to rule choice might seem 
justified (at least as a basis for empirical tests) because of its simplicity.

The objective of this section is to empirically refute this argument 
by showing that the results drawn from empirical investigations of rule 
returns depend crucially on the choice of rules and that therefore the 
received ad hoc approach to testing trading rule returns entertains two 
grave lacunae. These are:
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i. ’Striking’ or ’anomalous’ results may be coincidental. The likeli­
hood of such coincidences appearing in the literature is augmented 
by the fact that published research is biased in favour of reporting 
’anomalies’ over ’regularities’. In Section 4.1, we show that analysis 
based on a small sample of ad hoc rules is subject to the possibil­
ity of leading to spurious conclusions since the distribution of rule 
returns in a class is very diverse and hence small samples of rules 
are unrepresentative.

ii. Results may be less striking than they ought to be, because ad hoc. 
selection is by definition suboptimal. Hence, analysis based on ad 
hoc rules is likely to be weaker than that based on optimally chosen 
rules. This is shown in Section 4.2.

While the effect of the two problems on the content of the reported 
conclusions work in opposite directions, they by no means cancel out; 
rather, the two effects compound the overall uncertainty regarding the va­
lidity of conclusions drawn when they arc present12. However, by apply­
ing the decision theoretic approach to technical analysis proposed above, 
we can overcome the problem of arbitrariness and close the methodol­
ogy for testing hypotheses on return distributions of rule classes; this is 
achieved by restricting the economists’ choice of rules to be the same as 
the rationalisable rules which are learned by a technical analyst13. This 
not only eliminates the arbitrariness, but also makes the hypothesis we 
are testing more precise, since we can characterise the rule the returns of 
which we are testing as an optimal action of a specific agent.

12The seriousness of these pitfalls should be expected to increase with the size of 
the rule classes from which a rule is arbitrarily chosen.

130 f  course, a degree of arbitrariness remains in the economists’ selection of the 
rule class to be tested. However, we have already mentioned that there exists much 
stronger empirical evidence on the basis of which to choose a rule class than for any 
specific rule.
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4.1 T h e  d istr ib u tion a l d iversity  o f  ad h oc T echnical 
T rading R ules

As has been remarked, the specific rules chosen for analysis by econo­
mists examining trading rule returns belong to classes which are known 
to be used widely; the same is not true for the specific rules and it has 
proved difficult to argue on any a priori grounds that these rules were 
representative of the rule classes to which they belong. This could how­
ever be supported on empirical gr ounds if the distributions of rule returns 
belonging to the same class were sufficiently similar14, fn this case, any 
rule could be used as a proxy for the class as a whole15.

Unfortunately, as we shall illustrate below, these distributions typ­
ically do differ significantly. Figure 2 shows the returns accruing to each 
rule belonging to the moving average class if it were consistently applied 
during the period 1/6/1962-31/12/1986 on the DJIA.

Insert Figure II here

The figure above is meant to illustrate the problem with the ad hoc 
approach whereby specific rules are used as proxies for the distribution of 
expected returns of a whole class. The highest mean return from a rule 
in this class is much higher than the lowest mean return. To be more

14Most. of the literature has focused only on the distribution of the first moments 
of rule returns. Notice that an analysts’ optimal choice of rule is likely to produce 
rule returns which are most ’striking’ in terms of first moment, because it is only in 
terms of this moment that his choice is optimised.

15That. this is the case is suggested by Brock et al, who say that ’Recent results in 
Leliaron (1990) Jor foreign exchange markets suggest that the results are not sensitive 
to the actual lengths of the rules used. We have replicated some of those results for 
the Dow index’, pl734, fn. The ’recent results’ to which Brock et al refer are a plot 
of a certain statistic of 10 rules. Apart, from the fact that 10 rules constitute a small 
sample, the minimum statistic is almost half the size of the maximum statistic - so it 
is not entirely clear that these results support the claim made.

On the other hand, the conclusions Brock et al. draw are valid because it so happens 
that the rules they chose did not display extreme behaviour and in fact are valid a 
fortiori since they generated sub-average returns.
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precise, the mean return of the best rule is 1270 times larger than that 
of the worst rule. Since the means are taken from samples with more 
than 6000 observations, the conclusion is very strong. This difference 
indicates a very large variance in returns accruing to rules within the 
same class. Furthermore, the morphology of the best and worst rules is 
very similar: The best rule is the three period moving average with no 
filter M  A (3,0) and the worst is the four period moving average with a 2 
percent filter M A (4,0.02).

The conclusions wc draw from these results are the following:

i. It is easy to ex post find a rule that will have; ’unusual’ expected 
returns. Rule returns have large variance.

ii. The expected returns of rules display significant variance even within 
small areas of the classes’ parameter space. This is important 
because some authors choose to calculate returns for a few rules 
sampled evenly from the space of all rules, reflecting the implicit 
assumption that rules are ’locally’ representative. However, this 
assumption is unfounded.

4 .2  O p tim al v s. R ep resen ta tive  retu rn s d istribu­
tion s

Having illustrated that a small sample of rules from a class is insufficient 
for an analysis of the class as a whole, wc now turn to a different issue. 
The purpose of this section is to show that even when a sufficiently large 
sample of rules are used for inferences about the mean performance of 
a class, this is still a bad way of judging the returns accruing to a user 
of. a trading ride class. The reason for tins, is that a technical analyst 
who at t chooses d* from D, should be expected to have learned to make 
a better-than-average choice of d. Imposing the use of an ’average’ rule 
is like estimating a GARCH model for a time series by choosing the 
GARCH specification which has average rather than ’minimum’ least 
squared errors. We therefore conclude that ’representative’ choices of
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rules cannot be expected to be as good as the rules chosen by an agent 
who bases his decision on past experience. What this implies is that the 
trading rule returns obtained from following optimally learned trading 
rules /Jjf+j should be expected to be greater than Itf+] for any d which is 
fixed with at the beginning of time.

The following table which utilises some of the information in Brock 
et a/.16 (1991, Table V) is intended to show that indeed, the results 
reported there on the basis of various fixed rules d are much weaker than 
those which can be drawn by using the time-varying optimal rule d* 
derived in section 3.

Insert Table I here

The table indicates that all t-ratios are much higher for the opti­
mal rule we have developed. Hence, this table allows us to reject the 
hypothesis that the returns of the DJIA are normally, identically and in­
dependently distributed17 with much greater confidence than that offered 
by Brock et aids analysis18. Taken together, the results of this section 
constitute a strong case for the selection of trading rules according to 
an explicit criterion, such as the one we obtain in Section 3 by teaching 
analysts to choose rules which have performed well in the past.

5 M arket efficiency and technical trad in g

It is often heard that ’If markets arc efficient, then (technical) analysis of 
past price patterns to predict the future will be useless’, (Malkiel, 1992).

16Notc that Brock et al. (1992) reproduce only a part of this table
17The table also cont ains information which is sufficient to show that the Cumby- 

Modest (1987) test for market timing would, if the riskless interest rate were zero, 
confirm the ability of a technical analyst learning optimal rules to conduct market 
timing.

18lt is expected that the optimal rule will be equally powerful as a specification test 
for other hypothesised distributions including those considered by BLL (AR, GARCH- 
M, EGAItCH). However, we must leave confirmation of this for future research.
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In tliis section, we attempt to develop a way of analysing the relationship 
between the efficiency of markets and the efficacy of technical analysis. 
However, at present there seems to be little consensus as to what an 
efficient market is (see LeRoy 1989 and Fama 1991) consequentially to 
the lack of an accepted model of financial markets. Most of the non- 
tautological definitions that have been proposed seek in their weak forms 
to incorporate the idea that profitable intertemporal arbitrage is not 
possible19 (Ross, 1987). In its very weakest forms, this is interpreted as 
meaning that once transaction costs are included, no risk-averse agent can 
increase his utility by attempting to ’time’ the market. This statement is 
so weak that some authors (for example LeR.oy, 1989, pl613 fn.) consider 
this notion of market efficiency to be intestable.. However we shall show 
below how this test can be conducted if we assume that the time series 
of prices is the market clearing equilibrium of an economy with a single 
risky asset.

We will refer to the version of the efficient market hypothesis that 
we have described as the Lack of Intertemporal Arbitrage (LIA) Hypoth­
esis and discuss its implications for technical trading rules. We assume 
there exist agents in the market who are involved in solving (1), which 
we repeat here for convenience:

max E t& iW A l+ O R m )  (1)
0€]-l,l 1

We will say that LIA is confirmed if knowledge of past prices does 
not affect the optimal actions of any market participant solving (1).

D f 4.1. The Lack of In te rtem p o ra l A rb itrage  (LIA) H y­
po thesis holds in a m arket in which th ere  ex ist agents who 
solve (1) and  have u tility  functions u, 6 U if V i

arg max EU*(Wt{ 1 +  0Rl+l) /P t) =  0* V P L (9)0€[—1.1]

19A notable exception is Olsen ct. al. 1992, who propose a definition according 
to which ’efficient markets...are a requirement for relativistic effects and thus for 
developing successful forecasting and trading models’.
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where:

6* =  arg^miut EUl{Wt{ 1 +  0/Vm )) (10)

W here  E (-/P t) is th e  tru e  expecta tion  conditional on P ( 
and  E(-) is th e  expecta tion  of the tru e  m arginal d istribu tion .

What this definition implies is that the true joint distribution F (R t+i, P t) 
is such that knowledge of P, in no way affects the actions of any market 
participant; it does not mean that F(R l+i) =  F (R t+i/ P t). For example, 
suppose P , is only useful for predicting third and higher order moments 
of the distribution. Then in a market with mean-variance agents, actions 
will not be affected by knowledge of P ( although in a market populated 
with other types of agents this may be the case. Hence, according to 
our definition, a market is efficient with respect to a class of agents and 
the efficiency of a market can be viewed as a function of the wideness of 
this class. Formally, efficiency is determined by the wideness of the space 
of utility functions V  for which we accept the null hypothesis that LIA 
holds when we test:

f/o(LIA) : arg max EU1(Wl( 1 +  0Rt+\)/P t) =  9* for some P ( (11)0€[—l,lj

versus

(Not LIA) : arg max EUl(Wt(l +  9R,t+\) /P t) ^  6* for some P (0Ç[—l,lj
(12)

5.1 T echnical T rading R ules and LIA

5.1.1 A sufficient condition on rule re tu rn s  for th e  re jection  of 
LIA

If the distributions F(R/,+i) and F(R l+i/P t) are known, then testing LIA 
is straightforward. When this is not the case, the usual approach for this
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type of test is to use an estimated model for the unknown distributions. 
Here we take an alternative testing approach based on technical trading 
rule returns.

In particular, noticing that H j necessarily holds if there exists a 
trading rule d(Pt) s.t.:

ElP(W t(l + 0'd{P f) / W )  > ElPiW A  1 +  0*Rt+1)) (13)

We conclude that a test for LIA based on trading rules, can be 
obtained by replacing Hi with:

: 3 d  s.t. E lT W il+ O 'R i+ J )  > EU i(Wt( l + P R t+1)) (14)

Whilst this alternative hypothesis is weaker than (12), we shall see 
that it is still powerful. We show this below where we in turn test Ho 
vs. H :> under risk-neutral, mean-variance and risk-averse specifications 
o fU \

5.1.2 T he R isk-N eutral Case

In this case, by the linear structure of U’, Ht> becomes (assuming 0* is 
positive, i.e. E (R l+l) > 0):

H ? : 3 d  ,s.t.E(Rt+l) > E (R L+l) (15)

Suppose we use the optimal moving average rules {d(n*, AJ1)}®^7 
derived in section 3 and the corresponding returns R%‘ j to test H™. 
Then referring to the table below, we conclude that the probability that 
Ho (LIA) is accepted is extremely low.
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Mean Return St. Dev. Pr(/2f+j <  Rt 11) 
0.0002334 0.008459 -
0.000801 0.008335 8,887e-5

Table II  Note that the last column was calculated by 
assuming normality of both. Rt+j and Rf+]

Hence we can conclude with great confidence tha t there exist in­
tertemporal arbitrage opportunities (LIA is rejected) for risk-neutral 
agents investing in the market for the DJIA index.

Rules
R-i+i
Rd'" t+ l

5.1.3 T he M ean-V ariance Case

Suppose now that U' is not linear, but instead is such that i has mean- 
variance utility. Is it still the case that LIA is violated? The reason 
this might not be the case is that although there exists a rule satisfying 
(16) it involves greater variance than RL+i and hence is not preferred by 
mean-variance agents. For example, LeRoy (1989) argues that:

...even  though the existence of serial dependence in  conditional expected 
returns im plies that different form ulas fo r  trading bonds and stock w ill generate 
different expected returns, because of risk, these a lternative trading rules are 
utility-decreasing relative to the optim al buy-and-hold strategies.

In order to take account of this possibility when testing for LIA, 
H™  is the relevant alternative hypothesis where H™v is exactly as in 
(15), only \J' is a quadratic utility function and hence i is interested only 
in the mean and variance of Rt \ \ and i?f+].

However, the following proposition shows that if there exists a rule 
that mean-dominates a long position, then it will also variance dominate 
it and hence the case LeR.oy describes can never occur.

P roposition  II: If m arket re tu rn s  R t f] Eire m ean dom inated  
by th e  d is tribu tion  of a ru les’ re tu rn s  R f ( l b u t a re  positive, then  
th e  meirket re tu rn s  will also be VEiriance-dominated.

Proof:
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Notice that we are interested in unconditional distributions20, i.e. 
in the case when It is unknown and hence <2(P*) is a random variable. 
This is implied by the notation since E(Rl+l) =  E{Et{Rl+l) /  I t).

Ex hypothesi, E ( j ) > E (R M ) > 0

=> E(dt ■ Ri+i) > E{Rt-yi) > 0

=> [E(dt ■ R l+1 )]2 > [E(RM ) f  (16)

And clearly,

[dt]2 • < R*+1 =► E([dt]2 ■ R*+1) < E (R 2l+1) (17)

Together the two above inequalities imply (using the fact that
V ar(X) = E (X 2) -  E (X )2):

Var(dt ■ Rt+i) < Var(Rl+i) (18)

Or equivalently,

Var(R%+1) < Var(Rt+i) ■

★

C orollary II. 1: H™ is a sufficient condition for H™v when
E(R/,+i) > 0, where H™~v is the mean-variance version of (14), i.e.:

H™v : 3 d s.t. EU l(Wt +  VTtr /? f+1)) > E U \W t +  Wt8*Rt+l))

for every EU l(x) which is increasing w.r.t E(x), decreasing w.r.t Var(x)

20The result holds a fortiori (and also much more trivially) if It is known.
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This follows almost trivially from Prop. II. To show it, notice that 
ex hypot.hesi:

E(Rdl+1) > E(R t+i) > 0

So by Prop. II:

Var(Rt+1) < Var(R t+1) 

These two inequalities imply also that:

E(Wt + Wte'Rl_n )) > E(W, + W ^ R l+1))
Var{Wt + Wte'R!l+l)) < Var(W t + Wl8 'R t+ a))

Since ELJi(x) is a mean-variance function, it directly follows that: 

H ?v : 3 d  s.t. E U \W t +  Wte'R?+1)) > EU ^W t +  Wt0*Rl+l)) 

and hence a weaker form of H™v is:

: £ « , )  > E (R l+1) > OB

Hence it follows that the risk-neutral case implies the mean-variance 
case and that there existed arbitrage opportunities for mean-variance 
agents in the market for the DJIA. Indeed, note that Proposition II is 
confirmed in Table II.

5.1.4 T he Risk-A  verse Case

In this case, Ho is a great deal more complicated to test. An exception 
arises when Rt+\ and /^ +1 are normally distributed. Then:

P roposition  III: If  RM  and R!1l+1 a re  norm ally  d istr ib u ted
and E(R$+1) > E(Rt ^i) > 0, th en  R$+i stochastically  dom inates 
f?t+i (and hence all risk-averse agents will p refer
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Proof:

In normal environments mean-variance domination and stochastic 
domination are equivalent (Hanoch and Levy, 1969). This together with 
Proposition II yield the desired conclusion. ■

If the assumptions of Proposition III are not known to be satisfied, 
we can reformulate (14) in terms of a stochastic domination criterion of 
R fn  over This is shown in Proposition IV below:

P roposition  IV: A sufficient condition for (14) is th a t  E (R l+\) > 
0 and 3 d s.t M(pi) > 0 V 7 and M(7) > 0 for a t least one 7,where:

M (7) =  P  Rt+idF(Rt+1) -  f  ^ +1d G « , )

P roo f

As is well known, the condition of Proposition IV is a sufficient 
condition for:

ElF(Rt+1) > E U \R m ) V concave IP

Notice now that when E (R l+1) > 0 then O' > 0 and so +
Q*x)) is also concave in x, since:

& lP(W t(l +6»*x)) = W fi'U ' > 0 

£ iU '(W t(l + P x ) )  = (Wt0*)2U" < 0 

Therefore it must also be that

ElP(Wt(l + r < , ) )  > ElP{Wt{l + 99Rl+l))m

Hence, (14) can replaced with:

: 3 d s.t. f  R t+1dF(Rt+1) -  f  R^+,dG(R^+1) > 0 V7 (19)
J —OO J—OO
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and the inequality is strict for at least one 7

Whilst a formal statistical test of (16) is feasible, it is incredi­
bly cumbersome computationally (sec Tolley and Pope, 1988) especially 
when, as here, there are many observations on R t+i and R$+1. Here, 
we offer a casual evaluation of whether Ho can be rejected by inspecting 
a plot of the sample version of M  (7) for the optimal moving average 
returns iZf+j.

Insert Figure 3 Here

Observing figure 3, we notice that for small 7, M (7) < 0  . This in­
dicates that the minimum returns from the optimal trading rule resulted 
in smaller returns than the long position. Hence, for example, an agent 
with a minimax utility function would prefer no t to  use the trading rule. 
Therefore, it is unlikely that can be rejected and thus we are unable 
to show that the use of trading rules or conditioning on past prices is 
utility increasing for all risk-averse agents.

5 .2  E fficiency w ith  T ransaction C osts

So far we have shown that without transaction costs, there existed an ar­
bitrage opportunity for agents in the DJIA index who had mean-variance 
utility. We now turn to see how the inclusion of transaction costs affect 
these results. First of all, transaction costs will alter the analysts’ learn­
ing problem; hence, we replace (8) with:

(n*,Â*) =  arg max {EttJ _ TOM A (P(,n,A)H£+1
n €  N,ACA

-c \M A (P u n ,\ )  -  M A (P i-1,n,X)\} (20)
c are proportional transaction costs

r - 1 BI57And derive jd (n £, A£) j  and R£v,for various levels of c. Our ob-
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jective will be to determine the level of transaction costs21 c for which 
Hq can be rejected in favour of / / ”“ at the 95% confidence level22.

In Table III below we have, amongst other tilings, tabulated the 
returns from a rule used by the analyst who solves (17). The level of costs 
at which Ho can be rejected under the assumption tha t R l+},B f+i ~  N  
i.i.d. is represented by the line dividing Table III. Notice that this table 
incorporates the special case c = 0, as described in Table II.

Rules Mean Return St. Dev. P r {R't < B t) n ? I f ( i  +  Rl)
Market B,t 0.0002334 0.008459 - 2.378
Opt. TTR

1! o 0.000801 0.008335 8.887e-05 110.7
c=0.0001 0.0007304 0.008328 0.0005109 71.41
c=0.0002 0.0006911 0.008321 0.001238 55.88
c=0.0003 0.0006196 0.008318 0.00533 35.63
c=0.0004 0.0005508 0.008311 0.01788 22.99
c=0.0005 0.0004893 0.008305 0.0452 15.44
c=0.0006 0.0004707 0.00829 0.058 13.67
c=0.0007 0.0003741 0.00828 0.1755 7.101
c—0.0008 0.0003099 0.008273 0.3061 4.456
c—0.0009 0.0002763 0.008205 0.3876 3.453r—1oooIIo 0.0002191 0.008215 0.5379 2.13

21Note that as defined, the cost of switching from a long to a short position and 
vice versa is 2c.

"It is important, to note that Proposition II can be extended to the case of trans­
action costs if these are small enough. The same is not true for Proposition I if trans­
action costs are proportional. For a more extensive discussion of technical analysis 
with transaction costs see Skouras, 1997.
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Table III: The first column indicates which level of costs is 
under consideration. The next two columns indicate the empirical 
mean and the standard deviation of the rules’ returns (note that 
Prop. II is confirmed). The fourth, column shows the probability 
(under the assumption of normal distributions) that the m.ean 
returns from a specific rule were smaller or equal to those of a 
non market timer. The final column shows the cumulative returns 
from each strategy during the whole time period.

The table indicates that at the 5% level of significance, LIA will 
be accepted for c > 0.06%. The mean return of the optimal rule remains 
larger for c <  0.09% (but not for the usual margin of confidence). Whilst 
these levels of c are probably high enough to guarantee that in today’s 
cost conditions LIA might be violated23, costs were certainly larger at 
the beginning of the sample we have considered. How large the decrease 
in transaction costs has been and how it has affected different types of 
investors is a question which is beyond the scope of this paper, so we do 
not attempt to answer it. We must add the warning that the time-series 
used is not adjusted for dividends- and hence our results are likely to be 
biased against LIA.

6 Conclusions

This paper has been organised around the objective of developing de­
finitions and assumptions which would allow technical analysis to be 
approached in a utility maximisation framework. Its starting point is 
the illustration that technical analysis is consistent with expected util­
ity maximisation in a typical investment problem when preferences are 
risk-neutral.

Viewing technical analysis as the decision problem of an agent learn­
ing to maximise his expected utility, formalises the notion of ’optimal

23 An investor with access to a discount broker, c.g. via email, can purchase 1000 
shares of a company listed on the NYSE for SM.95.
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technical analysis’ hitherto loosely alluded to in various papers. The for­
malisation is revealing because it clearly illustrates that a rule can only 
be optimal with respect to a specific decision problem and hence a spe­
cific class of rules, a level of transaction costs, a position in the market 
and most importantly a utility function. This indicates that a generally 
optimal technical analysis is a chimera and that when rules are chosen, 
it is useful to base this choice on an explicit criterion based on a decision 
problem.

In a more empirical vein, we show that using learned rules can 
lead to inferences winch are more powerful than those based on arbitrary 
rules as well as subject to fewer data-mining problems. Consequently, we 
suggest that model specification tests based on rule returns as pioneered 
by Brock et al. (1992) should be augmented by use of ’artificial’ technical 
analysts in the spirit of Sargent (1993).

Finally, we have tried to investigate the relationship between trad­
ing rule returns and market efficiency. This investigation has limited 
itself to developing and applying a way of empirically rejecting LI A, the 
hypothesis that past prices do not affect investment decisions. The con­
clusion drawn from our empirical test is that if the DJIA is the only 
risky asset in an economy, the hypothesis can be rejected for agents with 
mean-variance utility facing low enough transaction costs; however, the 
same is not true for all risk-averse agents. We interpret the magnitude 
of transaction costs for which this hypothesis is rejected as a measure of 
market inefficiency.

Natural extensions of this work lie mainly in empirical applications 
of the developed framework. Firstly, further development of the idea that 
technical analysis is an effective form of prediction for certain types of 
loss functions is warranted, since it is likely that this could lead to the 
development of useful classes of trading rules. Secondly, a more detailed 
application of the ’optimal’ rule to model specification tests could yield 
significant insights as to the nature of financial time-series. Finally, it is 
quite easy to extend the framework so as to allow the technical analyst 
to choose rules conditional on variables other than past prices. This 
indicates that, in principle, even fundamental analysis is not beyond the
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scope of this ’theory of technical analysis’.
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Rule N(buy) N(sell) Buy Sell Buy>0 Sell>0 buy-sell
TjOng VI 6157 0 0.00023 - - - -

Brock ct al 
(nt) A t )
(50,0) 3468 2036 0.00036

(0.90076)
-0.0004

(-1.16108)
0.5167 0.4879 0.00041

(1.78607)
(50,0.01) 2782 1985 0.00053

(1.64014)
0.00003

(-0.70959)
0.5230 0.4861 0.00049

(1.89872)
(150,0) 3581 2424 0.00037

(0.94029)
-0.00012

(-1.49333)
0.5205 0.4777 0.00049

(2.11283)
(150,0.01) 3292 2147 0.00035

(0.80174)
-0.00018

(-1.67583)
0.5216 0.4742 0.00052

(2.13824)
(200,0) 3704 2251 0.00037

(0.92753)
-0.00016

(-1.64056)
0.5173 0.4780 0.00053

(2.23379)
(200,0.01)

Average

3469 2049 0.00038
(0.96907)
0.00037

-0.00018
(-1.66579)

- 0.00011

0.5189 0.4763 0.00056
(2.26328)
0.00048

Opt. TTR, 
{ d K A * ) } ^ 7

3313 2650 0.00095
(3.95033)

-0.00067
(-4.57949)

0.5337 0.4675 0.00162
(7.34848)

Table I. The first row of this table indicates which rule is being used. The rules in 

parentheses represent members of the. moving average class, as they constitute 

specifications of pairs of (nt,At). The second and third rows indicate the number 

of buy and sell signals generated. The fourth and fifth indicate the mean return 

on days on which buy and sell signals have occurcd. The next two columns report 

the proportion of days in which buy or sell signals were observed in which returns 

were greater than zero. Finally, the last column reports the difference between 

buy and sell signals. The numbers in parentheses report results of t — tests testing 

whether the numbers above them are different to zero2'1 Fortheexacttcsts, sc.cBrocke.tal.(1992
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Evolution of optimal moving average window (lamda) overtime

Figure 1: Evolution of each optimal parameter n *  and A* respectively, during 
t e [Ts , T f ] .
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?
l-

Figure 2: Mean Returns of each rule (n, A). The mean is taken over 
t e [ T „ T f }.
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Figure 3: This is M (7) the sample version of M (7)

3G
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