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1 Introduction

It is hard to understand what the relevance is of uncertainty, diversity,

and complexity for organizational design, communication, and decision{

making if not the resulting di�culty in making correct choices and the

accompanying likelihood of erroneous decisions.1 Indeed, Herbert Simon

has made a point of stressing that it are the limited cognitive capabilities

of individual human beings that requires organizational decision{making

to be multi{person decision{making. However, words like \errors", \er-

roneous decisions", \fallible decision{makers" and the like, are virtually

absent from the literature on organizational design and communication.

This may be the result of the predominantly mechanistic characterization

of organizational communication as information processing which tends

to focus on channels of communication and messages sent.2 The presence

of a full rationality assumption forms another obstacle to a discussion of

faulty decision{making.3 Moreover, many authors tend to use abstract

phrases like organizational agents that are \a�ected by" or \prompted

by" their environment and its characteristics, or information about threats

and opportunities in the environment that \initiates" or \in
uences" or-

ganizational actions, by which the authors perhaps implicitly refer to the

possibility of error{prone decision{makers. In any event, faulty decision{

1There is a large literature dealing with the e�ect of uncertainty, diversity, and com-

plexity on organizational design in general and on decision{making and organizational

communication in particular. See Galbraith (1973), March and Simon (1993), Thomp-

son (1968), and many of the contributions in Jablin et al. (1987) and in Hirokawa

and Poole (1986). Contributions to the principal{agent literature and the literature on

pricing behaviour may serve as other examples.
2Some recent contributions to the economics literature on organizational design that

equate communication to information processing are Radner (1993), and Bolton and

Dewatripont (1994).
3See the discussion of the various perspectives on organizational communication in

Krone et al. (1987), and in Euske and Roberts (1987). In the principal{agent literature,

the optimality of the contract, and hence the absence of errors, is guaranteed by the

rationality of the contract designer.
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making receives explicit attention from only two small, complementary

sets of papers.

Concerning the causes of systematically erroneous decisions, Donald

Campbell provides various explanations based on certain human traits.

With action preferred to paralysis (especially when a decision should even-

tually be taken), and in the presence of an associative memory, human

beings show a tendency to �ll gaps in messages and information that re-

ach them, and to assimilate current information to past information on

the basis of particular clues and similarities.4 Miller provides an indeed

dramatic example showing how a long distance between the original source

of a message and the eventual user of the message may radically distort

the content of the message:

\A reporter was present at a hamlet burned down by the U. S.

Army's 1st Air Cavalry Division in 1967. Investigation showed

that the order from the division headquarters to the brigade

was: \On no occasion must hamlets be burned down." The

brigade radioed the battalion: \Do not burn down any hamlets

unless you are absolutely convinced that the Viet Cong are

in them." The battalion radioed the infantry company at the

scene: \If you think there are any Viet Cong in the hamlet,

burn it down." The company commander ordered his troops:

\Burn down that hamlet."5

Although I am not sure what the reason was behind the replacement of

the unconditional order \On no occasion must hamlets be burned down"

by the conditional command \Do not burn down any hamlets unless you

are absolutely convinced that the Viet Cong are in them," it seems hard

to interpret as a random error. Indeed, it might be that on previous

occasions the order send by division headquarters had had this conditional

4See Campbell (1959), pp. 341{351.
5Miller quoted in Huber and Daft (1987), p. 150.
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structure. The current message may have been interpreted by association

as a conditional command.

Campbell also notes that if a group of persons has to decide on an

issue the variation in their opinion is likely to diminish as a result of com-

munication between the members of the group. He is not speci�c, however,

about the precise way group communication a�ects the variety of opini-

ons.6 At the time Campbell wrote, communication theory was still in its

infancy, but even contemporary accounts of group communication theory

pay scant attention to the interaction between communication structure

and resulting errors. Randy Hirokawa and Dirk Scheerhorn (1986) do

not go beyond the claim that \the social in
uence exerted on the group

by individual members will e�ectively facilitate or prevent the occurrence

of (. . . ) potential sources of faulty group decision{making" (p. 76). In

Gouran and Hirokawa (1986) various ways to counter erroneous inferences

and decisions are listed, but the role of communication structure is not

mentioned.

Indeed, the only thorough discussion of the way structure and er-

rors interact that I am aware can be found in a series of papers by Raj

Sah and Joseph Stiglitz, and by Shmuel Nitzan, Jacob Paroush et al. In

either case, agents must decide whether to accept or to reject a project.

An error arises when a good project is rejected or when a bad project is

accepted. Sah and Stiglitz characterise an agent by a pair of probabilities

capturing the likelihood with which these errors arise. They compare sim-

ple organizational architectures that di�er with respect to the sequential

structure of the project screening process in terms of the expected value of

the projects that are eventually implemented. Nitzan, Paroush et al., on

the other hand, characterise an agent by the overall probability of faulty

decisions, and ignore sequential decision structures.7

6Campbell (1959), pp. 360{362
7Sah and Stiglitz (1985, 1986, 1988). Papers by Hendrikse (1992), Ioannides (1987),

and Koh (1992, 1993a, 1993b, 1994a, 1994b) extend results obtained by Sah and Stig-

litz. For the other approach see, e.g., Nitzan and Paroush (1982) and Karotkin, Nitzan
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In this paper I use Sah and Stiglitz' framework, and address the

following two questions. Suppose that some agents are more error{prone

than others, what then should be their optimal ordering within a given

organizational structure? Who should be the �rst to evaluate a project,

who should be next? Does the positioning of agents matter at all? This

leads to the second question. How much does one need to know about

the screening qualities of the individual agents to allocate them correctly?

Suppose the ordering of agents matters. Does the ordering depend on the

relative quality (who is the better agent?) or does it depend on the exact

qualities of the agents under examination?

In theory, then, one can distinguish organizational structures on the

basis of the detail in information necessary to �nd the optimal allocation

of heterogeneous agents to positions within these structures. This pa-

per classi�es organizational structures on the basis of such informational

requirements.

The interest in such a classi�cation stems from a few observations.

First of all, if more detail cannot be obtained, or it can be acquired but

only in a distorted form and at a cost, organizations that require less

detailed information for the determination of the optimal positioning of

agents have a clear advantage over structures requiring more detailed in-

formation, ceteris paribus8.

Secondly, with any increase in detail necessary to optimally position

heterogeneous agents, errors becomes more likely. Although an organiza-

tional form requiring information that is more detailed than some other

structure may perform better if the employees have been positioned cor-

rectly, its performance may be highly sensitive to errors in the positioning

of agents. Indeed, these errors may cause the former to perform worse

than the latter. Probably, the less detail required, the more robust a

decision structure is to such errors.

and Paroush (1988).
8Ceteris paribus, since the organization that requires more detailed information may

perform better than the other when the information needed is actually available.
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Thirdly, this paper suggests a novel way to think about the comple-

xity of an organization. The notion of complexity �gures prominently in

the literature on the design of organizational structures. A structure is

called complex if it contains many interdependent parts whose individual

functioning is of importance to the overall performance of the organiza-

tion. The more complex an organization the heavier the demands on its

information processing capacities.9 The analysis in the sections that fol-

low contributes to the literature on organizational design by discussing the

complexity of an organization in terms of the level of detail in information

required to optimally structure error{prone agents.

Turning to the results, I show which organizational structures re-

quire no information at all about the screening capabilities of the agents.

These structures are all characterized by the fact that every agent only

evaluates a project if the preceding agents have all accepted the project or

all preceding agents have rejected the project. The second class of struc-

tures are those that require only ordinal knowledge about the qualities

of the agents. This class of structures is characterized by the fact that

every agent's decision can be �nal. In other words, there is not an agent

whose evaluation will always be followed by some other agent's evaluation,

irrespective of the former agent's decision to accept or reject. Indeed, the

mere presence of one agent whose decision will always be followed by some

other agent's evaluation is enough to make ordinal information insu�cient

to �nd the optimal ordering of agents.

Section 2 describes the model in detail. Section 3 states the main

propositions. Section 4 concludes. The proofs of the lemma's can be found

in the appendix.

9See Galbraith (1973), Huber and Daft (1987), Jablin (1987), and Scott (1981)

among many others.
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2 The Model

In this section I rigorously characterize the main elements of the mo-

del: the project environment, the agents, di�erent degrees of �neness of

information about the screening capabilities of the agents, and the orga-

nizations.

2.1 The Project Environment

There exists a pool of projects of size 1. Projects can be either of good

quality, q = g (which is the case with probability �), or of bad quality,

q = b (which is the case with probability 1 � �). An implemented, good

project gives rise to a pro�t X1, while an implemented, bad project leads

to a loss equal to �X2.

2.2 The Agents

An agent i 2 I = f1; : : : ; ng can either accept, A, or reject, R, a project.

That is, the action set Di equals Di = fA;Rg for every i 2 I . Agent i is

characterized by a pair of probabilities (pgi ; p
b
i ). The �rst element stands

for the probability with which agent i accepts a good quality project, while

the second represents the probability with which he accepts bad projects.

This pair of probabilities captures the screening capabilities of i. I assume

that an agent is fallible: some bad projects are accepted, while some good

ones are rejected. Moreover, I assume that an agent is \better" than a

randomizing device using a fair coin. Having projects selected by the toss

of a coin means that half of the good and half of the bad projects are

accepted. An agent does better, in that he accepts more than one out of

two good projects, and rejects more than half of the time a bad project.10

10De�ning \agent i is better than a randomizing device using a fair coin" in terms of

the sign of the di�erence in pro�ts generated by the addition of i or the device to some
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De�nition 1 Agent i will be called better than a randomizing device using

a fair coin if and only if pbi < 1=2 < pgi .

Similarly, agent i will be called better than agent j if the former accepts

more good projects than the latter, and rejects more bad projects than

the latter.

De�nition 2 For any two agents i and j, agent i is called better than

agent j if and only if pgi > pgj and pbi < pbj. That i is better than j will be

denoted by i � j.

Assuming that every agent is better than a fair coin, but still fallible then

amounts to:

Assumption 1 For every agent i 2 I, 0 < pbi < 1=2 < pgi < 1.

The set I will only contain agents whose screening characteristics are

ordered in the following way.

Assumption 2 For every i; j 2 I either i � j or j � i.

The possibility of identical agents is therefore excluded. This only strengt-

hens the results I derive below. Although the agents are ordered in this

sense, this does not mean that this ordering is known. In this chapter, I

distinguish three types of information concerning the screening capabili-

ties of the agents: no information at all, ordinal information, and cardinal

information. The distinction is based on the degree of �neness of infor-

mation.

existing organization A is, in general, de�cient as it makes the ordinal statement of i

being better or not than the device dependent on cardinal knowledge of the probabilities

characterizing the agents working in A. The only case in which such cardinal knowledge

is not required is when agent i is better or not than the device according to de�nition 1.

The same holds, mutatis mutandis for the de�nition of agent i being better than agent

j.
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De�nition 3 If there is no information about the screening capabilities

of any agent i 2 I, one does not know the pair (pgi ; p
b
i ) of any agent, nor

can one order the agents using de�nition 2. Indeed, one only knows that

agents are fallible, and that they are better than a fair coin.

The other extreme in terms of richness of information about the agents is

cardinal information:

De�nition 4 There is cardinal information about the screening capabili-

ties of all the agents i 2 I if for every i the pair (pgi ; p
b
i ) is known.

In between no information at all and cardinal information about all the

agents there is the situation of ordinal information.11 Ordinal information

means information about the ordering of agents in terms of their screening

qualities.

De�nition 5 There is ordinal information about the screening capabilities

of the agents i 2 I if only the ordering based on assumption 2 is known,

and agents are known to be fallible and to be better than a randomizing

device using a fair coin.

2.3 The organizations

An organization is characterized by its structure and by the distribution

of agents over the organizational positions.

De�nition 6 An organizational structure � is a �nite binary arbore-

scence, i.e., an organizational structure is a �nite, directed, rooted tree,

in which at every node � two edges start.12
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Figure 1: An organizational structure �

An example is the structure shown in �gure 1. The nodes stand for

organizational departments, bureaus, or desks, and the directed edges

represent the direction of 
ow of evaluated projects. The labels on the

edges starting at a node are associated with the actions taken at that

node. Since an organizational structure is a binary arborescence, every

node � can be reached by just one, �nite, ordered series of Accept and/or

Reject decisions. Every node will be indexed by this series of decisions.

For example, a node that is reached after an acceptance and a successive

rejection, will be denoted by �ar. The root is denoted by �. That part of

the structure that starts with the node �aa is itself a structure, and will be

called a sub{structure. It will be indexed by the unique series of decisions

through which it can be reached. Hence, the sub{structure starting after

�rst an acceptance and then a rejection is denoted by �AR.

11I am not claiming that this is the only type of information between both extremes.

Indeed, the analysis in the next section suggests that a few other degrees of �neness

could be usefully introduced.
12The organization is a tree, since no project reaches one and the same desk twice.

It is a rooted tree, since one and the same bureau is the �rst to evaluate every project.
The tree is directed because projects 
ow just in one direction between two successive

bureaus. The tree is binary, since at every organizational position a project can either

accepted or rejected. Finally, the tree is �nite since the number of nodes the structure

contains is �nite. For a discussion of graph terminology and concepts see, for example,

L. R. Foulds (1992).
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It will be useful to let j, l, and k stand for a �nite series of A's and

R's (or of a's and r's).13 The symbol �j may even stand for the root �,

and analogously �j may denote the whole structure �.

For every pair of nodes (�j ; �l) let !(�j ; �l) denote the �rst common

predecessor of �j and �l. Graphically, this is the �rst node that is on both

the path back from �j to the root �, and on the path back from �l to the

root. The sub{structure �(�j ; �l) is important in the determination of the

di�erence in pro�t ensuing from swapping nodes �j and �l.

De�nition 7 Let �(�j ; �l) be de�ned as the sub{structure that starts with

node !(�j ; �l).

�(�j ; �l) is, in some sense, the smallest sub{structure that contains both

�j and �l.

Example In �gure 1, !(�ar ; �aa) = �a, while the sub{structure �(�ar; �aa)

equals �A.

Figure 2 shows the three di�erent ways in which a node can be connected

to its successive sub{structure(s). There are three basic building blocks

that allow one to build any organizational structure. The �rst is a node

�j , an edge labeled A, and a sub{structure �jA. This building block is

called a hierarchical connection, and will be represented by �jH�jA; the

second is a node �j , an edge labeled R, and a sub{structure �jR. Such a

building block is called a polyarchical connection, and will be represented

by �jP�jR; and thirdly a node �j , an edge labeled A, a sub{structure

�jA, an edge R, and a sub{structure �jR. This building block is coined

an omniarchical connection, and will be denoted byO(�j;�jA;�jR). Since

any sub{structure can be considered a structure itself, any organizational

structure can be recursively constructed using these three building blocks.

This can be done in either of two ways. Either one adds nodes at the ends

13Capitals will be used for (possible degenerate) sub{organizations, and small letters

for single nodes.
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A

R

A
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Connection

� �A
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R

�R

R

A

R

Omniarchial

Connection

Figure 2: The three building blocks

of the arrows of nodes that are part of existing structures, or one adds

nodes \in front of" existing structures, by having the arrows of the new

nodes connecting to the existing structure(s). The latter way of forming

structures is used in the proofs of the propositions in this chapter.

To make clear that a structure takes on a particular form, the sym-

bol \
S
=" is used. Hence, �

S
= �P�A becomes a meaningful expression.

Example (continued) The structure in �gure 1 is uniquely described by

the expression �
S
= �HO(�a; �aaP�aar ; �ar).

A structure that contains only hierarchical (polyarchical) connections is

called a pure hierarchy (polyarchy). A pure structure refers to either of

these. A linear structure may contain both hierarchical and polyarchical

connections, but does certainly not have omniarchical connections. A li-

near structure consisting of both hierarchical and polyarchical connections

is called a mixed linear structure. The linearity refers to the fact that the

graphical representation of such a structure can be linear, with all nodes

on one line, and with the label on the horizontal connection between any

two nodes either R or A.
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Associated with every structure � is a probability function p(�; q),

which gives the probability with which a project of quality q will be ac-

cepted. Often, the notation p(�), without special reference to the precise

quality q, will be used instead of p(�; q). Obviously, the precise proba-

bility depends on the identity of the agents located at the various nodes.

Let p(�j) stand for the probability that a project will be accepted at node

�j , and p(�j) for the probability that sub{structure �j accepts a project.

Exploiting the fact that � can be recursively constructed, one can de�ne

p(�) using the following recursive de�nition.

p(�j) =

8>>><
>>>:

p(�j)p(�jA) if �j
S
= �jH�jA

p(�j) + (1 � p(�j))p(�jR) if �j
S
= �jP�jR

p(�j)p(�jA) + (1� p(�j))p(�jR) if �j
S
= O(�j;�jA;�jR)

(1)

Example (continued) Consider the example, depicted in �gure 1, of

�
S
= �HO(�a; �aaP�aar; �ar) . Its probability function equals

p(�) = p(�) [p(�a) (p(�aa) + (1� p(�aa))p(�aar)) + (1 � p(�r))p(�ar)]

(2)

Within a given structure, the heterogeneous agents have to be allocated

to nodes in such a way as to maximize the expected pro�t.

De�nition 8 An allocation � : I ! � is a mapping from the set of agents

I to the set of organizational positions �.14

An organization speci�es both a structure and an allocation of agents to

organizational positions.

De�nition 9 The pair (�; �) is called an organization.

14Note that the allocation is a mapping from agents to nodes, not from nodes to

agents. This implies no limitation in the framework studied here as I exclude the

possibility of identical agents. Note moreover that one needs to increase the number

of agents with the number of organizational positions.
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The probability that an organization (�; �) accepts a project of

quality q is denoted by p(�; �; q). It can be calculated by substituting

into the probability function p(�; q) the values of pqi in the organizational

positions according to the allocation �. Take the example of structure

�
S
= O(�; �aP�arH�ara; �r), and suppose that the allocation of agents

(1; 2; 3; 4; 5) equals �(1) = (�), �(2) = (�a), �(3) = (�aa), �(4) = (�ar),

and �(5) = (�aar). The probability that organization (�; �) accepts a

project of good quality then becomes

p(�; �; g) = pg1 [p
g
2(p

g
3 + (1 � pg3)p

g
5) + (1� pg2)p

g
4] (3)

The expected pro�t of organization (�; �) equals

E(�;�; �) = �X1p(�; �; g) � (1� �)X2p(�; �; b) (4)

Let ��

�
(I) be the set of allocations ��

�
(I) that maximizes expression (4) for

a given structure � (and for a given set I). The question the propositions

in the next section answer is twofold. First of all, which structures � allow

the elements of ��

�
(I) to be determined using no information about the

characteristics of the agents at all? And secondly, which structures � make

ordinal information about these characteristics necessary and su�cient to

�nd the optimal allocation.

In proving these propositions the following notation is useful. If, for

a given structure �, the allocation of two agents to a pair of organizational

positions j and l can be swapped without a�ecting the expected pro�t of

the organization this will be denoted by j � l. If, for a given structure �

the agent located at node j is better than the agent at node l this will be

written as j � l. Indeed, it proves to be convenient to say that \node j is

better than node l" instead of \the agent located at node j is . . . ". In a

similar vein, it will be convenient to \swap nodes", instead of \swapping

agents" at particular nodes.

The exclamation mark \!" above a symbol means \should", or, in

other words, that the relationship containing some binary operator to

13



which the exclamation mark is added is required to hold for some other

condition to be satis�ed. This other condition is usually the limitation

of the optimizer's knowledge to ordinal information about the characte-

ristics of the agents. For example, \j
!

� l" should be read as \node j

should be better than node l", or better still, \the agent located at node j

should be better than the agent at node l". Similarly, �
!S
= �H�A means

that the structure � should be equal to �H�A. The symbol \
O
) " will

be used in conjunction with statements containing exclamation marks:

\statement1
O
) statement2", where both statements contain an excla-

mation mark, means that if statement1 should hold, then one can deduce

that statement2 should hold using exclusively ordinal information.

3 The Results

This section shows that the only structures that require no information

about the screening capabilities of the agents in order to �nd the best

allocation of these agents to organizational positions are the pure hierarchy

and the pure polyarchy. It is also shown that the only structures for which

ordinal information is both su�cient and necessary when determining the

best allocation of heterogeneous agents are linear structures. The mere

presence of one omniarchical connection implies the need to use cardinal

information about some agents to �nd the optimal allocation.

A small digression is in order. It might be true that one observes

ex post that the level of expected pro�ts is left una�ected after a swap

of agents between two nodes. This may be the case for some speci�c

structure and some precise values of the characteristics of all the agents

involved, with the latter depending on the organizational structure. One

might then be tempted to conclude that \the ordering of agents does not

matter". It is not in this sense that I use here the phrase \swapping agents

leaves the expected pro�t una�ected." With the latter I mean that one

knows ex ante and on the basis of the structure only, that swapping agents

14



is immaterial as far as the level of pro�ts is concerned.

The results can be derived using binary swappings of agents and

comparing the ensuing di�erence in pro�t. The di�erence in pro�t resul-

ting from swapping (agent i at) node �j and (agent i0 at) node �l will be

denoted by �E(�; �j ; �l). Let me denote the probability that a project

of quality q reaches node !(�j ; �l) by p
q(� ! !(�j ; �l)). The di�erence in

pro�t can then be written as

�E(�; �j ; �l) = �X1 (�j ; �l; g)� (1� �)X2 (�j ; �l; b) (5)

where

 (�j ; �l; q) := (pq(�j)� pq(�l))p
q(�(�j ; �l))p

q(� ! !(�j ; �l)) (6)

for q 2 fg; bg. The dependence of  (�) on q will often remain implicit,

by simply writing  (�j ; �l). The function pq(�(�j ; �l)) depends at most

on the characteristics of agents located at nodes that are part of the sub-

structure �(�j ; �l). Note that p
q(�(�j ; �l)) is not equal to the probability

with which some substructure accepts a project of quality q. Instead, it is

merely a function of the characteristics of the agents located at nodes in

the substructure �(�j ; �l). Remember that this substructure is the smal-

lest substructure of � that contains both �j and �l.
15 The probability

pq(� ! !(�j ; �l)) is equal to one for q 2 fg; bg if and only if � = !(�j ; �l).

Example (continued) Suppose one swaps the agents at the nodes �aa

and �ar. Then  (�j ; �l) equals

 (�j ; �l) = (p(�aa)� p(�ar)) [p(�a)(1� p(�aar))� (1� p(�a))] p(�)

15To be speci�c, the function pq(�(�j ; �l)) depends exclusively on the (agents at the)

nodes on the path connecting !(�j ; �l) and �j , and connecting !(�j ; �l) and �l, and

on all the successors of �j and of �l.

15



As noted in section 2, any structure can be built recursively by adding

nodes that precede existing structures. Suppose one has written out the

expression for the change in pro�t �E(�; �j ; �l) for some pair (�j ; �l)

in �k = �(�j ; �l), the smallest sub{structure containing both �j and �l.

Suppose one makes a new structure by adding a node that precedes the

existing structure �k in a polyarchical or hierarchical way. Or suppose

one constructs a new structure by combining two existing structures, one

of which is �k, in an omniarchical way. Does such an expansion change

the expression �E(�; �j ; �l)? Can it change the answer to the question

whether information is required to allocate �j and �l correctly? Can it

a�ect the level of detail in information required to allocate them correctly?

Can this addition a�ect the optimal ordering of agents at nodes �j and

�l?

As far as the expression �E(�; �j; �l) is concerned, it cannot a�ect

pq(�(�j ; �l)) as this part of the expression depends exclusively on nodes

in �(�j ; �l), a set which is left unchanged by adding a node \at the front",

and, in particular, before node !(�j ; �l) of the pre{existing structure. It

does a�ect, however, pq(� ! !(�j ; �l)), where � is the newly added node.

Indeed, the probability with which a project reaches the sub{structure

�(�j ; �l) decreases.

Saying that no information is needed to optimally order the agents

located at nodes �j and �l means the same as saying that swapping the

position of agents at these positions leaves the expected pro�t una�ected,

irrespective of the characteristics of the agents. Therefore, if no informa-

tion is needed �E(�; �j ; �l) = 0. Since all that is known about the value

of pq(� ! !(�j ; �l)) is that it is equal to one (if � = !(�j ; �l)) or less than

one (if � 6= !(�j ; �l)), and since p
q(�j) 6= pq(�l) for q 2 fg; bg, the only way

to ensure �E(�; �j; �l)
!
= 0 is by imposing pq(�(�j ; �l))

!
= 0 for q 2 fg; bg,

where the latter condition should hold for any pair of characteristics of

the agents involved. Moreover, this condition is clearly su�cient. There-

fore, if it can be shown that no information is needed to allocate agents

correctly to the pair (�j; �l) then p
q(�(�j ; �l))

!
= 0 must be shown to hold
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for q 2 fg; bg, and vice versa. If this condition can be shown to hold for a

sub{structure �k = �(�j ; �l), the condition can also be shown to hold for

the overall structure �, as the set of nodes on which it depends stays the

same. In short, if no information is required to correctly allocate agents to

a pair of nodes in �k, no information is needed to allocate a pair of agents

to the same pair of nodes when this structure is merely a sub{structure

in a larger structure �. And hence, if the ordering of a pair of nodes can

be proved not to matter in �k, it can be proved not to matter in �.

By the same token, the necessity and su�ciency of ordinal informa-

tion concerning agents' characteristics for optimal allocations extends from

a sub{structure �k = �(�j ; �l) to a structure � as a whole. Lemma 1 is

instrumental in this respect. It shows that the sign of pq(�(�j ; �l)) should

be the same for q = b and q = g for ordinal information to be su�cient.

Lemma 1 In any structure �, for ordinal information to be su�cient to

determine sign[�E(�; �j ; �l)] the condition

sign[pg(�(�j ; �l))]
!
= sign[pb(�(�j ; �l))] (7)

must hold.

This analysis shows that the characteristics of the agents preceding the

node !(�j ; �l) are not relevant as to whether no information, ordinal in-

formation, or cardinal information is necessary and su�cient to correctly

allocate agents to nodes �j and �l. Let me state this in the following

observation as this proves useful for future reference.

Observation 1 Whether no knowledge at all, ordinal information, or

more than ordinal information is necessary and su�cient to correctly allo-

cate heterogeneous agents to the pair of nodes (�j ; �l) only depends on the

(characteristics of the agents located at) nodes contained in �(�j ; �l). In

other words, the structure preceding node !(�j ; �l) and the agents located

at such nodes can be ignored for this purpose.
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One can also conclude that adding nodes to existing structures cannot

decrease the required level of detail in information needed to allocate cor-

rectly every pair of agents.

Proposition 1 For any �nite number of nodes, and for all pairs of cha-

racteristics (pgi ; p
b
i ), i = 1; : : : ; n, the only structures in which no infor-

mation is required to correctly allocate heterogeneous agents are the pure

hierarchy and the pure polyarchy.

Proof As the proposition makes a statement about the whole space of

organizational structures, and since structures can be recursively de�ned

I apply the principle of structural induction, which is the structural equi-

valent of the principle of mathematical induction. In the basis step one

proves that the statement holds for certain basic structures with a speci�c

number of nodes. One then supposes that the statement holds for any

structure containing at most n nodes, and then proves that the statement

holds for any structure containing n + 1 nodes. This is called the hypo-

thesis step or the induction hypothesis.16

(() The simplest pure hierarchy and polyarchy both contain two no-

des. The probability function of a pure hierarchy with two nodes equals

p(�) = p(�)p(�a), which is clearly independent of the ordering of the

agents. The same is true for a polyarchy consisting of two agents, as its

probability function amounts to p(�) = p(�) + p(�r) � p(�)p(�r). So the

implication holds for the basic forms. Now assume that the implication

holds for all structures � containing at most n nodes. Consider the struc-

tures (a) �0 = �H�, (b) �0 = �P�, and (c) �0 = O(�;�1;�2). Since in

(c) the resulting structure is not pure the implication is trivially true. In

case of (a), for �0 = �H� to be pure, � should be pure. If � is a pure

hierarchy, so is �0, and it is straightforward to see that no information is

required to correctly allocate agents. If �0 is a pure polyarchy, the resul-

ting structure � is linear, i.e., not pure, and so the implication is trivially

16For a formal statement of the principle see Fitting (1990).
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true. The same line of reasoning can be used in case of (b). This shows

that any pure hierarchy or polyarchy does not require information about

the agents for them to be correctly allocated.

()) Of the three basic structures, the hierarchy of two nodes, the poly-

archy containing two nodes, and the omniarchy of three nodes, only the

�rst two do not require information. Moreover, they are pure. This pro-

ves the basis step. Assume that the implication holds for all structures �

containing at most n nodes. Consider the structures (a) �0 = �H�, (b)

�0 = �P�, and (c) �0 = O(�;�1;�2).

In (a), if no information is required for �0 then no information is required

for �. This follows from observation 1. So, by the induction hypothesis

� should be pure. If � equals a pure polyarchy, swapping the (agents

located at) positions � and �a gives rise to

 (�; �a) = (p(�) � p(�a))p(�AR) (8)

For p(�AR) = 0, the structure �AR should be empty, in which case �0

would be a pure hierarchy of two nodes. The implication applies and is

true. If p(�AR) > 0, ordinal information is required as �
!

� �a should

hold. Hence, the implication is trivially true. If � equals a pure hierarchy,

then so is �0. Clearly no information is required. This proves that in case

(a) the implication holds. By the same token, the implication holds in

(b).

In case of (c), for no information to be required for �0, no information

should be required for �i, i = 1; 2. By the induction hypothesis �1 and

�2 are pure. Swapping � and any node in, say, �1 reveals that ordinal

information is required. This shows that the implication is trivially true.

�

The second proposition characterizes the organizational structures for

which ordinal information is both su�cient and necessary when determi-

ning the optimal allocation of heterogeneous agents. If ordinal information
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is to be su�cient, pairwise comparisons of the type, \Should the better

agent be located at node j or at node l?" provide the required insight into

the ordering of the agents. The series of lemmas that follows is needed in

the proof of the proposition.

Lemma 2 states that if � contains at least two nodes, for ordinal

information to be su�cient to prove that pq(�j)
!

> p(�) for either q = b

or q = g, the �rst two elements of organization � should be hierarchically

connected.

Lemma 2 If � contains at least two nodes and is linear, then

pq(�j)
!

> pq(�)
O
) �

!S
= �jH�jA (9)

for any �jA, and either q = b or q = g.

Lemma 3 is the analogous result for pq(�j)
!

< pq(�):

Lemma 3 If � contains at least two nodes and is linear then

pq(�j)
!

< pq(�)
O
) �

!S
= �lP�lR (10)

for any �jA, and where either q = b or q = g.

The following lemma states that if ordinal information is su�cient to show

that �j � �l, then this su�ciency extends to all orderings �j � �k where

the position of �l and �k can be swapped without a�ecting organizational

performance.

Lemma 4 Consider any three nodes �j , �l, and �k that are part of a linear

structure �, and suppose that ordinal information is su�cient to show that

�j � �l and �l � �k hold. Then ordinal information is su�cient to show

that �j � �k holds.
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Lemma 5 states that ordinal information is not su�cient to prove that

one single node �l is better or worse than a linear structure �.

Lemma 5 Ordinal information is not su�cient to prove that

sign[pg(�l)� pg(�)]
!
= �sign[pb(�l)� pb(�)] (11)

holds in a linear structure �.

However, it cannot be shown either, using exclusively ordinal information,

that the opposite holds:

Lemma 6 Ordinal information is not su�cient to prove that

sign[pg(�l)� pg(�)]
!
= sign[pb(�l)� pb(�)] (12)

holds in a linear structure �.

The lemmas 7 and 8 state that if the two structures �j and �l are charac-

terized by the same connection between the �rst node and the subsequent

sub{structure, ordinal information is not enough to show sign[pg(�j) �

pg(�l)]
!
= sign[pb(�j)� pb(�l)].

Lemma 7 Assume that �j
S
= �jH�jA and �l

S
= �lH�lA. Then ordinal

information information is not su�cient to show sign[pg(�j)� pg(�l)]
!
=

sign[pb(�j)� pb(�l)].

Lemma 8 Assume that �j
S
= �jP�jR and �l

S
= �lP�lR. Then ordinal

information information is not su�cient to show sign[pg(�j)� pg(�l)]
!
=

sign[pb(�j)� pb(�l)].

In lemma 1 it was shown that sign[pg(�(�j ; �l))]
!
= sign[pb(�(�j ; �l))]

for ordinal information to be su�cient. Imagine that one reduces the

di�erence between any pair of characteristics pq(�k) and pq(�k0), for all
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�k; �k0 2 �(�j ; �l), while maintaining the ordering of these agents. Clearly,

if in the limit of no di�erence at all between any agents the function pq(�)

takes on opposite signs for q = b and for q = g, then pq(�) will also assume

opposite sign for any ordering of the agents as long as their characteristics

are almost identical. This is made precise in the following lemma for a

special case:

Lemma 9 If pg(�(�j ; �l)) ! x for pg(�k) ! 1 for all �k 2 �(�j ; �l),

and if pb(�(�j ; �l)) ! y for pb(�k) ! 0 for all �k 2 �(�j ; �l), and where

sign[x] = �sign[y], then ordinal information is not su�cient to determine

the optimal ordering of �j and �l.

Note carefully that the lemma does not state that x should equal 1 and

that y should equal 0. This does not have to hold as pq(�(�j ; �l)) is not

the probability of acceptance of �(�j ; �l). I am now able to prove the

second proposition of this chapter:

Proposition 2 For any number of nodes, and for any pair of characte-

ristics (pg1; p
b
i ) of the agents, i = 1; : : : ; n, the only structures for which

ordinal information is both necessary and su�cient are structures that are

linear.

Proof (() First the basis step. Consider the two simplest linear structu-

res, �H�aP�ar and �P�rH�ra. It is straightforward to see that ordinal in-

formation is necessary and su�cient. This proves the basis step. Suppose

that the implication holds for all structures � containing at most n nodes,

and consider (a) �0 = �H�, (b) �0 = �P�, and (c) �0 = O(�;�1;�2).

Note that in case (c) the structure is not linear, and therefore the impli-

cation is trivially true.

In (a), if �0 = �H� is linear then � should be pure or linear. If � is a

pure hierarchy then so is �0, and so the implication does not apply. If �

is a pure polyarchy, then �0 is linear. Write �0 = �H�aP�AR, with �AR
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a pure polyarchy. Therefore, �a � �ar � � � � � �ar:::r. Moreover, �
!

� �a

and thus, by lemma 4, �
!

� �ar ; : : : ; �ar���r etc. That is, ordinal information

is necessary and su�cient.

If, on the other hand � is linear, then, by the induction step, ordinal

information is necessary and su�cient for � to be correctly organized. So,

by obervation 1, ordinal information is necessary for structure �0. Take

any node �j 2 �. Then either (i) �j = �jH�jA or �j is the �nal node, or

(ii) �j = �jP�jR.

In (i), if all links between � and �j are hierarchical (or if �j = �a), then

� � �j . In the contrary case, �
!

� �j .

In (ii), �
!

� �r.

()) Of all the structures that contain at most three nodes, the implication

holds: if ordinal information is necessary and su�cient, then the structure

is linear. This is the basis step. Now suppose that the implication holds

for all structures with at most n nodes, and consider (a) �0 = �H�, (b)

�0 = �P�, and (c) �0 = O(�;�1;�2).

In case (a), if ordinal information is necessary and su�cient for �0 = �H�

then ordinal information must be su�cient (and perhaps be necessary) for

�. This follows from observation 1. So, � is pure or linear by the induction

step.

If � is a pure hierarchy, then �0 is a pure hierarchy and therefore, by

proposition 1 no information is required. If � is a pure polyarchy, then �0

is linear. If � is linear, then �0 is linear. This proves the correctness of

the implication in case of (a).

Case (b) can be solved in the same fashion.

Finally case (c). Suppose ordinal information is necessary and su�cient.

Then, by observation 1, ordinal information should be su�cient for �1

and �2. Therefore, by the induction step, �1 and �2 are linear or pure.
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I split this case up in four sub{cases: (i) �0 S
= O(�; �aH�AA; �rP�RR),

(ii) �0 S
= O(�; �aP�AR; �rP�RR), (iii) �0 S

= O(�; �aH�AA; �rH�RA), and

(iv) �0 S
= O(�; �aP�AR; �rH�RA).

(i) Consider swapping the nodes �a and �r, and in particular

 (�a; �r) = (p(�a)� p(�r))p(�(�a; �r)) (13)

with

p(�(�a; �r)) = p(�)p(�AA) + (1 � p(�))p(�RR)� (1� p(�)) (14)

If p(�j) ! 1 for all �j 2 �(�a; �r), then p(�(�a; �r)) ! 1 , while if

p(�j) ! 0 for all �j , then p(�(�a; �r)) ! �1. Then, by lemma 1 and 9,

ordinal information is not su�cient.

(ii) The analysis is based on the expression

 (�a; �r) = (p(�a)� p(�r))p(�(�a; �r))

with

p(�(�a; �r)) = p(�)(1 � p(�AR))� (1� p(�))(1� p(�RR)) (15)

If p(�j)! 0 for all �j 2 �(�a; �r), then p(�(�a; �r))! �1, and therefore

sign[pq(�(�a; �r))]
!
= �1 (16)

for q 2 fg; bg. Let me �rst look at the good projects. If pg(�AR) <

pg(�RR) then pg(�(�a; �r)) > 0, which violates condition (16). So the

remaining case is pg(�AR)
!

> pg(�RR). From

 (�; �a) = (p(�)� p(�a))(�(�; �a)) (17)

with

p(�(�; �a)) = p(�AR)� (p(�r) + (1� p(�r))p(�RR)) (18)
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one can deduce that �AR

S

6= �arP�ARR by lemma 8. Hence, of the three

possible orderings of pg(�), pg(�AR), and pg(�RR) satisfying pg(�RR)
!

<

pg(�AR), namely pg(�)
!

< pg(�RR)
!

< p(�AR), pg(�RR)
!

< pg(�)
!

< pg(�AR),

and pg(�RR)
!

< pg(�AR)
!

< pg(�), only the latter does not require �AR
!S
=

�arP�ARR. Instead, this ordering requires �AR
!S
= �arH�ARA, and �RR

!S
=

�rrH�RRA. The latter inequality should hold for otherwise one cannot

show using ordinal information only that pg(�RR)
!

< pg(�AR)

On the other hand, for the bad quality projects, one cannot impose

pb(�AR)
!

> pb(�RR), as this, in combination with pg(�AR)
!

> pg(�RR), and

with the restriction on the structures of �AR and �RR would require more

than ordinal information by lemma 7. But, imposing pb(�AR)
!

< pb(�RR)

on its own is not enough to show pb(�(�; �a)) < 0, and so a restriction of

the type pb(�)
!

> pb(�AR) would be needed. However, any restriction of

this type, in conjunction with the restriction pg(�RR)
!

< pg(�AR)
!

< pg(�),

would lead to the insu�ciency of ordinal information, either by lemma 5

or 6. That is, in case (ii) more than ordinal information is needed.

(iii) From  (�; �r) = (p(�)� p(�r))(�(�; �r)) with

p(�(�; �r)) = p(�a)p(�AA)� p(�AR) (19)

in combination with lemma 7 it follows that �AR

!S

6= �arH�ARA. From

 (�a; �r)

 (�a; �r) = (p(�a)� p(�r))p(�(�a; �r)) (20)

with

p(�(�a; �r)) = p(�)p(�AA)� (1� p(�))p(�AR) (21)

If p(�j) ! 1 for all �j 2 �(�a; �r), then p(�(�a; �r)) ! 1, and therefore,

from lemma 1 it follows that

sign[pq(�(�a; �r))]
!
= + (22)
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for both q = b and q = g. In particular, pb(�(�a; �r))
!

> 0, which requires

at least pb(�AA)
!

> pb(�RA), and some restriction on pb(�). Since �RA

!S

6=

�raH�RAA, the only possible restriction is pb(�AA)
!

> pb(�RA)
!

> pb(�).

The same line of reasoning as used in (ii) leads to the conclusion that

ordinal information is not su�cient either in this case.

(iv) Once again, the analysis is based on the expression p(�(�a; �r)):

 (�a; �r) = (p(�a)� p(�r)) [p(�) � (p(�)p(�AR) + (1� p(�))p(�RA))]

(23)

If p(�)
!

> max(p(�AR); p(�RA)) for q 2 fg; bg, then both pg(�)
!

> pg(�AR)

and pb(�)
!

> pb(�AR) should hold. Lemma 6 shows that more than or-

dinal information is required to prove these statements jointly. By the

same token, p(�)
!

< min(p(�AR); p(�RA)) cannot be proved using ordinal

information only. Hence,

pq(�) 2 (min (pq(�AR); p
q(�RA)) ;max (pq(�AR); p

q(�RA))

for both q = b and q = g is the only remaining possibility. In view of

lemmas 5 and 6, this gives rise to two possibilities:

(a) pg(�)
!

2 (pg(�AR); pg(�RA)) and pb(�)
!

2
�
pb(�RA); pb(�AR)

�
. The

former condition implies �AR
!S
= �arH�ARA (see lemma 2), while the latter

requires �AR
!S
= �arP�ARR (see lemma 2). These conditions cannot be

satis�ed at the same time.

(b) pg(�)
!

2 (pg(�RA); p
g(�AR)) and pb(�)

!

2
�
pb(�AR); p

b(�RA)
�
. The

same con
icting requirements concerning the structure of �RA as under

(a) show the insu�ciency of ordinal information. �

It should be clear from the proof, and in particular from the �rst part,

that there is a very simple procedure that ensures a correct allocation of

agents to nodes in a linear (pure or mixed) structure.
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Corollary 1 Consider any linear structure � (eiher pure or mixed). Then

a procedure to correctly allocate heterogeneous agents to the nodes �j 2 �

is to position the best agent at the �rst node, the second best at the second,

etc., until the last position has been �lled.

Note that this procedure holds for any linear structure �, independent of

the particular arrangement of the individual nodes. Correctly allocating

agents to positions in the presence of omniarchical relationships is much

more complicated, and is beyond the scope of this chapter.

4 Conclusion

To err is human. The literature on organizational design, however, lar-

gely foregoes a detailed analysis of the importance this proverbial truth

may have on the empirical studies it contains and on the recommendati-

ons it proposes. This chapter has related the presence of fallible agents

to the detail of information required to position such agents correctly in

organizational communication structures. This classi�cation of informa-

tion induces a typology of structures characterized by increasing levels of

complexity.

Sah and Stiglitz conjectured that the relative simplicity of obser-

ved organizational structures re
ects their alleged robustness to changes

in the environment.17 This chapter suggests another, complementary ex-

planation. It is the organizational designer's limited knowledge about

the characteristics of the employees in combination with the costs of ob-

taining such information that prohibits her from designing complex and

theoretically superior structures. This type of argument is similar to the

one proposed in the literature on contract design. The limited cognitive

capabilities and knowledge of the contract designer are put forward as

17See Sah and Stiglitz (1988, p. 467).
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reasons why real world contracts are extremely simple when compared to

the optimal contracts derived in the literature.

Although reference was made to the possible di�erences in robust-

ness of structures I have not dealt with this issue in this chapter. One

might want to know which organizational building blocks are robust, and

how their robustness is related to its internal structure and the distribu-

tion of employees. The simplicity of the agents' binary decision problem

as modelled in this chapter may provide an ideal playground to gain in-

sight into these matters. Relatedly, but from an empirical angle, one

might like to gain understanding of the robustness of commonly observed

communication structures.

Appendix: Proofs

In this appendix, the proofs of the lemmas are given.

Proof of lemma 1 Suppose one wants to know whether �E(�; �j ; �l) >

0. If

�E(�; �j; �l) = �X1 (�j ; �l; g) � (1 � �)X2 (�j ; �l; b) > 0 (A.2)

then the agents located at node �j and at �l are well positioned, while if

the di�erence is negative, the position of the agents should be swapped.

Equation (A.2) is equivalent to

(pg(�j)� pg(�l))

(pb(�j)� pb(�l))

pg(�(�j ; �l))

pb(�(�j ; �l))

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))
>

1� �

�

X2

X1

(A.3)

for  (�j ; �l; b) > 0 and

(pg(�j)� pg(�l))

(pb(�j)� pb(�l))

pg(�(�j ; �l))

pb(�(�j ; �l))

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))
<

1� �

�

X2

X1

(A.4)

for  (�j ; �l; b) < 0.
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I show that if one is in possession of ordinal information only, equa-

tion (A.3) cannot be shown to hold, while equation (A.4) can be shown

to hold if and only if the condition in equation (7) is satis�ed. Gi-

ven the limitation to ordinal information, the values of the constituent

parts on the LHS of equations (A.3) and (A.4) are not known. Consi-

der �rst equation (A.3). Since the right hand side is larger than zero,

(pg(�j)� pg(�l))p
g(�(�j ; �l))p

g(� ! !(�j ; �l))
!

> 0 should hold.

The intuition behind the proof is to �x a certain allocation of agents

to nodes, and to vary the values of the agents' characteristics, while re-

specting the ordering of the agents. Remember that the word \orde-

ring" refers to the ordering of the screening qualities of agents at various

nodes (\agent located at node �j is better than agent located at �l").

Suppose a certain allocation � applies, inducing an ordering of agents

over organizational nodes, and conduct the following mental experiment.

Keep the value of (pb(�j) � pb(�l)) and of pb(�(�j ; �l)) �xed, while re-

ducing the di�erence between pg(�j) and pg(�l), without violating the

ordering of �j and �l. Since �(�j ; �l) contains just a �nite number of

nodes, 0 � jpg(�(�j ; �l))j < Mg. Therefore,

(pg(�j)� pg(�l))

(pb(�j)� pb(�l))

pg(�(�j ; �l))

pb(�(�j ; �l))

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))
! 0 (A.5)

for pg(�j)! pg(�l). Similarily, it can be shown that

(pg(�j)� pg(�l))

(pb(�j)� pb(�l))

pg(�(�j ; �l))

pb(�(�j ; �l))

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))
!1 (A.6)

for pb(�j)! pb(�l) without violating the ordering of the agents. That is,

one and the same ordering of agents can give rise to any positive number.

Hence, ordinal information is not enough to show that equation (A.3)

holds. For the same reason, ordinal information is not su�cient in case

of equation (A.4) if (pg(�j) � pg(�l))p
g(�(�j ; �l))p

g(� ! !(�j ; �l)) < 0.
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Indeed, the only possibility when ordinal information may be su�cient is

when

(pg(�j)� pg(�l))

(pb(�j)� pb(�l))

pg(�(�j ; �l))

pb(�(�j ; �l))

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))

!

< 0 (A.7)

for (pb(�j)�pb(�l))pb(�(�j ; �l))pb(�! !(�j ; �l))
!

< 0. Because of assump-

tion 2, the expression

pg(�j)� pg(�l)

pb(�j)� pb(�l)
< 0

holds for every pair of agents, while

pg(� ! !(�j ; �l))

pb(� ! !(�j ; �l))
> 0

and therefore, in the light of equation (A.7), for ordinal information to be

su�cient

sign[pg(�(�j ; �l))]
!
= sign[pb(�(�j ; �l))] (A.8)

should hold, which is condition (7). �

Proof of lemma 2 Consider pg(�j)
!

> pg(�) (the same line of reasoning

applies for q = b). Then, either (i) �
S
= �lP�jR or (ii) �

S
= �lH�jA as � is

linear. In case (i), pg(�j)
!

> pg(�) = pg(�l)+(1�pg(�l))p
g(�lR). However,

for pg(�j)�pg(�l) su�ciently small, and for any ordering of �j , �l, and the

nodes of �lR, p
g(�j) < pg(�l) + (1 � pg(�l))p

g(�lR) holds. Hence, ordinal

information is not su�cient. In case (ii), pg(�) = pg(�l)p
g(�l). Hence, if

pg(�j) > pg(�l) then p
g(�j) > pg(�). That is, ordinal information can be

su�cient. �

Proof of lemma 3 The proof used for lemma 2 also applies, mutatis

mutandis, for this lemma. �

Proof of lemma 4 By proposition 1 if �l � �k then either only hierar-

chical or only polyarchical building blocks are used in connecting nodes �l
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and �k. Therefore �k 2 �(�j ; �l). Since ordinal information is su�cient

to show that �j
!

� �l, pq(�(�j ; �l))
!

> 0 can be shown to hold using ordi-

nal information only. Since �l � �k, �l 2 �(�j ; �k), and p(�(�j ; �k)) =

p(�(�j ; �l)). Hence, sign[p
q(�(�j ; �k))] = sign[pq(�(�j ; �l))], and so �j

!

�

�k. �

Proof of lemma 5 Suppose pg(�l)
!

> pg(�j) and pb(�l)
!

< pb(�j) (the

same line of reasoning that follows can be applied to the opposite case

pg(�l)
!

< pg(�j) and p
b(�l)

!

> pb(�j)). Then, from lemma 2, �j
!S
= �jH�jA,

while lemma 3 shows that �j
!S
= �jP�jA. This is a contradiction. �

Proof of lemma 6: I discuss the case where (i) pg(�l)
!

> pg(�) and

pb(�l)
!

> pb(�), and the case where (ii) pg(�l)
!

< pg(�) and pb(�l)
!

< pb(�)

in turn.

(i) From lemma 2, �
!S
= �jH�jA, implying that

pq(�l)
!

> pq(�)
O
)

8><
>:
pg(�l)

!

> pg(�j) ^ pb(�l)
!

> pb(�jA) or

pb(�l)
!

> pb(�j) ^ pg(�l)
!

> pg(�jA)
(A.9)

where �jA is either (a) a degenerate (sub{)organization equal to �jA =

�ja, or (b) a proper (sub{)organization containing at least two nodes. In

case (a), the conditions in equation (A.9) can be rewritten as

pq(�l)
!

> pq(�)
O
)

8><
>:
�l

!

� �j ^ �ja
!

� �l or

�j
!

� �l ^ �l
!

� �ja
(A.10)

However, since �
!S
= �jH�ja, �j � �ja holds, and thereore, by lemma 4

either �l
!

� �j � �ja or �j � �ja
!

� �l, which violates either condition

mentioned in equation (A.10). This shows that both pg(�l)
!

> pg(�) and

pb(�l)
!

> pb(�) cannot be shown using ordinal information only when

�jA = �ja.
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In case (b), pq(�l)
!

> pq(�jA)
O
) �jA

!S
= �jaH�jAA. Since �

!S
=

�jH�jaH�jAA, �j � �ja should hold. Consider the top line of condi-

tion A.9 �rst. Since �j � �ja should hold, the condition can be rewritten

as �l
!

� �j � �ja ^ pb(�l)
!

> pb(�jA). The latter part boils down to

pb(�l)
!

> pb(�jA) = pb(�ja)p
b(�jAA), which, together with p

b(�l)
!

< pb(�ja),

implies pb(�l)
!

> pb(�jAA). That is, �AA should be hierarchically structu-

red, and one enters an in�nite regress. However, structures are assumed

to be �nite. Therefore, more than ordinal information is required. The

proof of the insu�ciency of ordinal information in case of the condition at

the bottom line of (A.9) proceeds in the same fashion.

(ii) From lemma 3, �
!S
= �aP�jR, implying that

pq(�l)
!

< pq(�)
O
)

8><
>:
pg(�l)

!

< pg(�j) ^ pb(�l)
!

< pb(�jR) or

pb(�l)
!

< pb(�j) ^ pg(�l)
!

< pg(�jR)

(A.11)

The same way of reasoning as under (i) applies. Hence, ordinal informa-

tion is not su�cient to show that both pg(�l) < pg(�) and pb(�l) < pb(�)

hold. �

Proof of lemma 7 I discuss the case sign[pg(�j)�p
g(�l)]

!
= sign[pb(�j)�

pb(�l)] = + (This implies no limitation as one can freely interchange

the structures �j and �l). Since �j
S
= �jH�jA and �l

S
= �lH�lA,

pg(�j)
!

> pg(�l) equals pg(�j)p
g(�jA)

!

> pg(�l)p
g(�lA), while p

b(�j)
!

>

pb(�k) amounts to pb(�j)p
b(�jA)

!

> pb(�l)p
b(�lA). For both these conditi-

ons to hold either of the following set of conditions must hold:

8>>>>>>><
>>>>>>>:

pg(�j)
!

> pg(�l)

pg(�jA)
!

> pg(�lA)

pb(�j)
!

> pb(�lA)

pb(�jA)
!

> pb(�l)

(A.12)
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or 8>>>>>>><
>>>>>>>:

pb(�j)
!

> pb(�l)

pb(�jA)
!

> pb(�lA)

pg(�j)
!

> pg(�lA)

pg(�jA)
!

> pg(�l)

(A.13)

In case of condition (A.12) it follows from pb(�j)
!

> pb(�lA) that �lA
!S
=

�laH�lAA, which in turn implies that pb(�j)
!

> pb(�la)pb(�lAA) and �l �

�la. Moreover, since pg(�j)
!

> pg(�l), �j
!

� �l holds. Therefore �j
!

� �l �

�la or pb(�la)
!

> pb(�j). The latter implication together with pb(�j)
!

>

pb(�la)pb(�lAA) shows that pb(�j)
!

> pb(�lAA) should hold. That is �lAA
!S
=

�laaH�lAAA, and one enters an in�nite regress. This proves that ordinal

information is insu�cient, since the structures are �nite. In case of con-

dition (A.12) one enters an in�nite regress for the same reason. �

Proof of lemma 8 The structure of the conditions that should hold for

sign[pg(�j)�pg(�l)]
!
= sign[pb(�j)�pb(�l)] = + are identical to the struc-

ture of the conditions of lemma 7. One can now derive an in�nite regress

by showing that �j should be an in�nite pure polyarchy, which is impos-

sible given the limitation to �nite structures. �

Proof of lemma 9 Since the function p(�(�j ; �l)) is continuous in its

arguments, any ordering of the nodes �k 2 �(�j ; �l), with values pg(�k)

su�ciently close to 1 satis�es sign[pg(�(�j ; �l))] = sign[x].

Similarily, any ordering of the nodes �k 2 �(�j ; �l), with values

pb(�k) su�ciently close to 0 satis�es sign[pb(�(�j ; �l))] = sign[y]. That is,

one and the same ordering can give rise to opposite signs of p(�(�j ; �l)).

Then, by lemma 1, ordinal information is not su�cient. �
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