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ABSTRACT

Multivariate tests of fractionally integrated hypotheses are proposed in this
article.  They are a natural generalization of the univariate tests of Robinson
(1994) for testing unit roots and other nonstationary hypotheses. The functional
forms of the tests, based on the score, Wald and likelihood ratio principles are
calculated in both, the time and the frequency domain. Some simulations based
on Monte Carlo experiments are also carried out at the end of the article.

Key words: Multivariate tests, score tests, Wald tests, LR tests, fractional
differencing, unit roots.
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1 Introduction

In this article I extend the univariate tests of Robinson (1994) to a general
multivariate context, testing the presence of unit roots and other nonstationarities
on the residuals in a multiple time series system. The multivariate case is
relevant in order to analyze the interrelationships between different variables,
and it can provide a more detailed insight into properties and stochastic
behaviour than the univariate work. In particular, we will initially take the
underlying 1(0) sequence to be contemporaneously correlated but uncorrelated
in time, then going on to extend the treatment to a general case of 1(0)
parametric autocorrelation. Multivariate tests for unit roots have been widely
analyzed in the literature, and they are commonly related to the problem of
cointegration, testing the number of common unit roots in a system of equations,
(e.g., Johansen (1988)). The test statistics proposed here go beyond that in the
sense that they will allow us to test not only unit roots, but also fractional roots
of any order for each one of the time series analyzed.

We consider a multivariate regression model of form

Y, =Z,(8) + Xt, t=12,.., Q)
with
X, =0, t <0, 2)

where the column vectors Y, and X, each has N components, and by 8 we mean
a (K x 1) vector of real parameters, and Zt(5) is a (N x 1) vector of possibly
non-linear functions of 8 and, in general a number of predetermined variables.
We will assume that under the null hypothesis to be tested and described below,
X, in (1) and (2) satisfies

*(£)*, = Ut t =12, 3)

where <.(1) is a (N x N) diagonal matrix function of the backshift operator L,
and U, is a (NxI) 1(0) vector process' with mean zero and weak parametric
correlation. We consider a given matrix function <>(z;0) of the complex variate
z and the p-dimensional vector 0 of real-valued parameters, where O(z;0) = O(z)
for all z such that 1z I= 1if and only if the null hypothesis defined by

HO: 0 =0 @1

1 We define an 1(0) vector process U,, t = 0,+1,..., as a covariance stationary vector
process with spectral density matrix f(X) that is finite and positive definite.
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holds, where there is no loss of generality in using the vector of zeros instead
of an arbitrary given vector. In doing so, we can cast (3) in terms of a nested
composite parametric null hypothesis, within the class of alternatives

®(£:6)*t = u, t=12,.. (5)

We take ®(z) to have uthdiagonal element of form

for a given h*, given distinct real numbers w*, j=3,4,..huon the interval (0,rc) and
given real numbers Y, for j=1,—h“. Thus, a model like (3) will include a wide
range of possibilities to be tested for each time series, such as 1(d) processes
with a single root at zero frequency, if puz) = (1 -2z)d;2 quarterly 1(d) processes
with four roots if puz) = (1-z4d 1/f noise processes if puz) = (1-z)I2 etc.

We specify now O(z;0) in a way such that we take each diagonal element
of O(z;0), p.,(z;0), to depend on 0 but not necessarily involving all elements of
0. To do that, we take

(6)

where for each combination (u,j), 0- = 0, for some 1, and for each 1, there is at
least one combination (u,j) such that 0,“ = 0,, where 0, corresponds to the I'h
element of 0. This is a fairly general specification in the sense that we allow for
duplications not only within equations but also across equations. Furthermore,
this way of specifying <€Xz,0) permits us to specifically consider situations where
0 is the same across all equations, and also the case when 0 is taken as strictly
different for each equation. This will be illustrated with some examples in
Section 4.

We adopt the normalization puO;0) = 1for all 0 and u= 1,2,...N, and we
assume that puz;0) is differentiable in 0 on a neighbourhood of 0 = 0 for all |
z 1= 1 Also we assume that for any u,v = 1,2,.,.,N

det(Ew) < o (7)

2 Note that this specification includes the unit root case when d = 1



where Ew =j - J(e@A)eMAY + ef@)k)eM(k)")d\

aiogpuea;0)

and eCOW ae (8

for real X and e(U(X) as the conjugate vector of eli)(X). Note that the (p x 1)
vector e((X) is independent of 0 given the linearity of log puelX¥0) with respect
to 0 in (6). In particular, its real part takes the form

Alilog 2sin-  + 6log|2cosj + 5 log12(cos X - coswy) |,

for 1=1,..,,p and |X| < n, where 6j,1= 1if 0™ =0, and 0 otherwise. Condition
(7) is not satisfied when testing unit roots nested in AR alternatives of form:
puz;0) = (1 - (@ +0)z), but it is satisfied by fractional alternatives of form:
puz;0) = (1 -z) ke for example.

It should also be noted that under the null hypothesis, defined in (4), the
model will be completely specified by (I)-(3), and it can be redefined as

= JT,(8) + U, 9

where W,(5) = (WIt(8);W2(8);...;WN(8))’, with Wu(5) = puL)Zu(8). (9) is a
very general form of a regression model which includes multivariate linear and
non-linear models and simultaneous equation systems, and its possible non-linear
nature is motivated given that in economics and the physical sciences,
multivariate regression models that are essentially of a non-linear nature have
frequently been proposed to describe phenomena that may be of a continuous
nature but are sampled at equal intervals of time. (See e.g. Robinson (1972),
(1977)).

The initial discussion of the tests will assume that Ut in (3) is a white
noise vector process, so the only nuisance parameters will be the elements of
Zt(S) in (1) and those of the variance-covariance matrix of Ut. Then, we will
extend the tests to a quite general form of 1(0) autocorrelation in U,, which will
include as specific examples, the type of multiple autoregressive-moving average
(ARMA) models.

We will start by presenting the functional forms of the test statistics based
on the three general principles when deriving nested parametric hypotheses,
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namely, the score, Wald and likelihood-ratio principles, and we will do so for
the two situations mentioned above, that is, white noise and weak parametric
autocorrelation in Ut. As usual, it should be possible to show that the tests
based on these three principles will have the same null limit distribution (a %2
distribution where p is the number of restrictions tested). However, we do not
present rigorous proofs of the asymptotic properties, but rather informal
statements. It will undoubtedly be possible to extend the asymptotic null and
local distribution theory of Robinson (1994) for the scalar case, to our
multivariate situation under natural generalizations of his conditions. Once we
have obtained the functional forms of the tests, we will rewrite them for two
cases of particular interest: First, when 0 in (5) is the same across all diagonal
elements in O(z;0) and then, we will consider the case when 0O is strictly
different for each element in <t>(z,0). Finally, some simulations based on Monte
Carlo experiments will be carried out in order to study the finite-sample
behaviour of versions of the tests. Appendices 1and 2 show the derivations of
the test statistics of Sections 2 and 3 respectively.

2. Score test for white noise U,

In this section | describe a score test for the null hypothesis (4) in a model
given by (1), (2) and (5), under the presumption that U, in (5) is a vector
sequence of zero mean uncorrelated in time random variables, with unknown
variance-covariance matrix K. One definition for the score test is as follows.
Let L(r() be an objective function (such as the negative of the log-likelihood)
and take tj = (0’,u’)’, where tj = (0’,v’)” are the values that minimizes L(tj)
under the null hypothesis. A score test (see Rao (1973), page 418) is then given
by

dixr\) po(dL{Tj) dz.(n)\ dLW le=o (10)
dir | v 1 d] e

where the expectation is taken under the null hypothesis prior to substitution of
v. However, the same asymptotic behaviour will be expected if we replace the
inverted matrix appearing in (10) by alternative forms such as the sample
average or the Hessian. For convenience in the derivation below, we will make
use of the expected information matrix, so the score test will take the form

Gian7 d) e (1

We now describe the test statistic. We take L in (11), with T = (0°,8’,a”)’
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and a = v(K), to be the negative of the log-likelihood based on Gaussian Ut.
In Appendix 1 it is shown that (11) takes the form

S = Ta'(A')la“ 12)

where a' is a (p x 1) vector of form

de = (13>

u=1 v=1 5=1

and !j/u) is obtained by expanding

tf(X) = /ic[eMHA)] as £ ip"™ cos Xs.

T-1

* - e e <™xe |i-x|*: (14)

OUis the (u,v)lhelement of K I dwis the (u,v)lhelement of K; and Cu(s;S) is
the (u,v)thelement of C(j(s), where

K=1E U0()0,05); Cj(s) = + E UHa)0,JoY;
lci lc

0t(8) = 0(L)Y't- Wi(@8), and 8 must be at least a T12 consistent estimate of the
true value 8.

Clearly, as in the univariate tests of Robinson (1994), concise formulas
for \JQ are available in some simple cases; for example, YS9 = -s'], when
puL;0) = (1 - L)dte for any real d. However, we can also express the test
statistic in the frequency domain and, under certain suitable conditions',
approximate this to obtain an alternative, asymptotically equivalent, form, alin
(13) can be written as

E * "7 (e((A) + eM(X))I1J\-j)dX,

V=1

where e()(A) is as in (8) and £V(X) is the conjugate vector of «*>(*); iW(*;S)is

1 These conditions are basically a generalization of those of Robinson (1994), requiring
technical assumptions on pu (and thus on e(u(X)) to justify approximating integrals by sums.



the (u,v)thelement in the cross-periodogram of U,(8) = (Ult(8);...;UN(8))":
Iwtt, 1) = wuX;b)WM ~ ), wjtx-,& =-A = E ujb)eal
\j2nT <

where the line over W\(X;8) denotes complex conjugate. To see the previous
result note that alin (13) can be decomposed into

u=1 5=1 2 Us1 v=1 5=1
v*u

and it can be shown that

T-1
iUC (s:6) = f2[(e(u)(X) + ew (X)) 1IX;b)dX,
r-i
and E + ibv,C,(s;6)) =

17 (e@A) + eMO))IIX:)AX + 1/ (@A) + i UA)M(A;:8)A.

Also, under suitable conditions, keeping 6 Wand 6W/fixed, A" in (14)
becomes asymptotically

e e BXV (15)

u=1 V=1 5=1
and using Parseval’s relationship, this quantity can be expressed as

EE /00 + AN =EE

=l vl u v-1
since (15) can also be decomposed into

EdtE  =E

5651 i=| zTm

N N
and E £ a“6,, £ (e,«e»" * -

A U=l ov=l 5=1

YU



ev(X)eu(X)'dX.
4w

=E E

Therefore, the score statistic in (12) can be approximated in the frequency
domain by the expression

Sf = Taf (Af)' af (16)
where
= 17

Y «=1 v=I r ( )

and
nA

Af = 'ZP(EIEI c(iOVIV ¢ (v)'IV COVIV t WV (18)
u=1 v=

Ar = 27tr/T, and the sums on the asterisk are over Arin M where M = {Z, -#t
<X<n; XE£ (P-A;PH+A), 1=1,2,...,s}, such that p,, 1=1,2,...s are the distinct poles
on £UX) on (n,Tt] for u= 1,2,...N. Note that if, for example, puL;9) is given
by (1-L)d9, we calculate e((Ar) as

Xr X.-
fo[e, )(XD] = illW(XD = log 25in3 , and Im[e, (An] =
with r= 1,2,...,T-1, (see e.g., Zygmund (1979), page 5).

We should expect that under some regularity conditions, (basically a
natural generalization of those in Robinson (1994)), the test described below will
have the same optimal asymptotic properties as Robinson’s (1994) univariate
tests. These conditions impose a martingale difference assumption on the white
noise vector U,;2 also W as defined in Appendix 1 must be a positive definite
matrix; and puz;0), u= 1,2...,N must belong to Class H as defined in Robinson
(1994), with BAV(X) satisfying the same conditions as M(A) in that paper. We
believe that under these conditions, (12) and (16) will have a null limit x®
distribution, and under local alternatives of form Ha 9 = 0T= 8T m, a %&Vv)
distribution with a non-centrality parameter v, which is optimal under

2 Thatis, E(U, IB_) =0 and E(U, U,” I B,,) = K, where B, is the a-field of events
generated by Us, s <t



Gaussianity of Ut.

Thus, a large-sample 1000t%-level test for rejecting HO (4) against the
alternative: H,: 0*0, will be given by the rule: "Reject HO if Sl (or Sf)
> Xpa' where P(X2>X\a)=«

3. Score test for weakly parametrically correlated U,

The test statistics presented in Section 2 can be robustified to allow
weakly parametrically autocorrelated U,. We can consider the model in (1), (2),
and (5), with Utin (5) as a vector process with N components generated by a
parametric model of form

Ut = t=12.., (19)
j-o
where e, is a vector white noise process, and K is now the unknown variance-
covariance matrix of et. In relation with (19), the corresponding spectral density
matrix is

fein) = ek(An) K kAT (20)

where  k(A;i) = E A(i;T)eai, and k¥ means the complex conjugate
jo
transpose of k.

A number of conditions are required on A and f in Appendix 2 when
deriving the test statistic; their practical implications being that though U, is
capable of exhibiting a much stronger degree of autocorrelation than multiple
autoregressive moving average ARMA processes, its spectral density matrix
must be finite, with eigenvalues bounded and bounded away from zero. Thus,
it cannot include fractional processes with positive or negative differencing
parameters.

By extending the argument in Section 2 and Appendix 1, we show in
Appendix 2 that, under Gaussianity of U,, an approximate score statistic for
testing (4) in (1), (2), (5) and (19) is

S TS BI16 (21)



N N
z 1 r u=lv=l

and B is C-D’E 1D, where

N
c="EE
Z1 r uyv=l
1 > N af o
6'm ~ T £ (SW "W )Jr <~r>n tf2°
AN ouv=l GT
and
\(in ; - 3f(Xr )X
— *rnx)—-— f (Anx ’
©- 2TE, rt (rx) dx Arx) dx

IY(A;8) is the (u,v)lhelement of the periodogram of U,, Iy*jS), as was given in
Section 2; fuXr;t) and fWArf) correspond to the (u,v)helements of f(*r;f)
and f'(X"t) respectively, with

f(A;f) = k(A1) K k(A;D*
2it
and
t =argminTeT. Elogdet f(Xr;t) + tr[f_10Xr;x) lu(Ar;a) (22)

< N~

where T is a compact subset of g-dimensional Euclidean space.

We can see that the test statistic obtained in (21) becomes (16) when we
consider the case of white noise Ut. In such situation, fu{Ar;x) = 6IN27t, and
rXvc) = 27tdw. Then,

* N N

+y "YU M )*v

= r n=1lv=1

yEE~™VE(MA)-(VA))UM ) = af in (17).

* u=l v=I r

Similarly,
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N N
C= Af in (18),
ANl or o=l vl

and finally, D and E are now zero matrices, so we have that S in (21) takes the
same form as Srin (16).

Extending the conditions in Robinson (1994) to this multivariate context,
we should expect that, allowing a martingale difference assumption on

e, in (19), with £ "i712M(/;t)|] < 0o, where |JA| means any norm

for the matrix A, for example the square root of the maximum eigenvalue of
A*A; with W as a positive definite matrix; pu u= 1,...,N, satisfying the same
conditions as in Section 2; and fwA;x), and 3fumA;X)/3x satisfying a
Lipschitz condition in X of order g > 1/2, for all u,v= 1,..,,N, then, under Hc (4):
S = XRas T —°°, and S should also satisfy the same asymptotic efficiency
properties as S' and Sfin Section 2.

4, Particular cases of the score tests

In the preceding sections we have presented three different versions of the
score test statistic: (12), which corresponds to the time domain representation
of the test for white noise Ut; (16), which approximates (12) in the frequency
domain; and (21) which is the frequency domain version of the test statistic for
weakly parametrically autocorrelated Ut In this section we consider two
particular cases of interest for each version of these tests. The first case
corresponds to the test statistic when we take 0 in (5) as a (p x 1) vector
containing exactly the same elements across all diagonal elements in <t>(z,0),
while the second case takes this vector 0 as strictly different for each diagonal
element in ®(z;0).

We illustrate this with two simple examples in a bivariate model: First
we test if one of the series is an I(d,) process and if the other is 1(d2. Thus, we
consider that both series have a root at the same zero frequency, though with
different integration orders. In the second example, we consider that the series
might differ in the number of roots in its bivariate representation. Thus, we test
the same hypothesis, (1(d,)), for the first series and a quarterly 1(d2) process in
the second one. Therefore, the model will be specified, under the null
hypothesis, in the first of these examples as



1L f 0 K K
= m
o (1 if1 X3y
and in the second as

(X t-l. 0 -

1 ~Lf 0 .

( t=1.2,..., (£2)
X, t U2,

where X, = (XIt,X2)’ = 0 for t<0, and U, = (UIlLUZ)’ follows an 1(0) process.

4.a Same 6 across the equations

We consider the model in (1), (2), and (5), but now we take 4>(z;0) to be

of form such that its uth diagonal element is

n “+0

pu(z;0) = 0 - z) Q1 N (@ - 2coswz + 221

j-3
and for each j, 9j = 0, for some 1 and for each 1, there is at least one j such that
Oy = 0,. Therefore we take the parameter vector 0 to be exactly the same across
all equations in (5), and the difference between one equation and another comes
now through the coefficients Y! for i=I,2,...,huand u=I,2,...,N. Thus, in the first
example, the model will be specified as

\
0 x 'K

o G -L)d*, XM U 2t,

and we will test here the null hypothesis, HG: 9 = 0, against the alternative, Ha:
0 * 0. Given that in this case 0 is a scalar, we can also consider one-sided
tests for the same null hypothesis against the alternatives: Hal: 0 <0 or Ha2
0> 0.

In the second example, the model will take the form

(1 -L)4 *e'(1 +2,)02(1 +L2)6} 0

k 0 (1 -L)V 6,(1 +L)dI* \\ +L2f-~\ X2



12

which, under the null hypothesis, HO: 0 = (0,,0203’ = 0, becomes (E2), implying
that X2 behaves as a quarterly 1(d2 process, and therefore, with all roots with
the same integration order d2 Clearly we could also have tested a model,
allowing different integration orders at zero and at seasonal frequencies.

This specification is a particular case of the general model presented in
Section 1 where now

3logp (e‘A0)
eMUl) = — 39 ~ = £A) f°r aU “=12"'M (23)

(23) implies that A forall u= 1,2,...,N, and then, we can immediately
describe the functional forms of the three test statistics. Starting with white
noise U,, substituting (23) in (12) - (14), the time domain version of the test
statistic is

S'1T = Talnw 'r1a'l (24)
where
-1 N N
al = * E cMvC us:s = "E +, tr [K cMI.
sE:1 l.ﬁ\/:l ) s=1 [ )]
and
=ty N N

SR yw e e, T mSHM

Expressing now the test statistic in terms of its frequency domain
representation

S'l = Ta?' {A?) 'a" (25)

where

&\E (M))+E(W *YV
r

1 u=l

) H")e(Ar)'+e(Ar)i(Ar)')uf=|: 6"-d,,1:irE e(*,W Eu:1

V=1

?2 E t(K) i(KY y E W W
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Finally, allowing weak parametric autocorrelation in U,, substituting (23)
in (21), we obtain that the test statistic is

SI = TbI[Cl- DIE~ID')'1b' (26)

where

b=~ E @K +i(")EE IJK&nKrt =

W E E =/AE "ar
*or

cl= y-E (eaniary +

m=1 v=I

| E w w 7 = Mg tKAY) lira/, (27)
_ AW c(~)
= TTE(H)-WOEE(M)

A 1df&:,t)
_+EwWw Wr/a.y dx \tr /(At)- OTr

o ! 9 1

(28)

"dAK &
d_- K\ . S 29
= E fr A*-,%) i /ar-0 n (29)

4.b Different 0’s across equations

A second case of interest might be when we take the (p x 1) vector 0
appearing in (5) to be equal to (01;02;...;0N)’, where 0“is a (pux 1) vector
affecting only the uth equation. That is, the vector of parameters involving 0
will be strictly different for each equation. We can now write down the ulh
diagonal element in ®(z;0) as
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.
PUz09=(i -z)  “d +2)' % [ (L-1cOSWiZ+22)" (30)
»3

where for each j, 0,1= 0“ for some 1, and for each 1 there is at least one j such
that 0," = 0“. Thus, in the first of the examples mentioned above, the model will
be of form

\
1-Lf*6 0 Kn 'k

0 @a-L)y»\ 20
with 0 = (0% 02’ = (0J; Of)’, and in the second example

(1-L)d\ 1+ L) &XI+L26 0 'K

0 (1-L)MNF(A+TAI(1+LD) ~ x23

with 0 = (01; 02)’ = (0| ,0j ,0j; 0; ,02,02)".

Again this way of specifying the model is a particular case of the general
model presented in Section 1L We need to define the (pux 1) vectors

dlogp (et;0)
CYW = ~ d T e 5 /(W = Jfe[eM(A)L

forall u=1,2,...,N, sharing the same properties as e(U(A) and MU(A) in Sections
1-3. To show that this is a particular case of the general specification given
before, we just need to note that

= pu (CY)
where Puis a (p x pu matrix of I’s and 0’s of form

(0

and substituting (31) in (12), (16) and (21) we can easily obtain the functional
forms for the three test statistics. Starting again with white noise U,, in the time
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domain representation, and noting that = p™ fAd) where fAY comes from
expanding f (X) as CO0S Xs, the test statistic takes the form
$H
§'2 = Ta'2 (A')'1la'2 (32)
where & >, o« - - £ dVE
«1ll e+ m «1N
and A'2 = , with atv=0X v £ (33)
«w +m dNN)

The corresponding test statistic in the frequency domain representation is

S/2 = T&IAAfY' a'2 (34)
J1
dp
where afl = , with of =~ £ ~ E e @XVvM).
1 v=I r
\°-N/
and
‘an .. alN
A? = (39)
&Nl mm VWV
with

«X = =\w uwlUA"UK)"'- (36)



Finally, the test statistic in the frequency
parametrically autocorrelated U, takes the form

S2 = Tbh2[C2- DAE)ID2)"1b2

b2 = K with bl =

h,gj

11 e IN
c2

Liv/ e “JW/
with

o
D2 = K

K,
with

v,  dfIX"x)

K= Re EA HETM

and Ewremains unchanged, i.e. as in (29).

5. Wald tests

16

domain for weakly

@7

(38)

(39)

(40)

Once we have obtained the functional forms of the score test statistics, we
can use and extend the derivations of previous sections to obtain representations
of the tests based on the Wald and likelihood-ratio principles. In this section we
concentrate on Wald tests, and present functional forms of the three cases
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studied before, i.e., the time domain and the frequency domain versions of the
tests for white noise Ut, and the frequency domain representation when U, is
weakly parametrically autocorrelated.

5.a Wald test for white noise Ut

Here we describe a Wald test for the null hypothesis (4) in the model (1),
(2), and (5) under the presumption that U, in (5) is a vector sequence of zero
mean uncorrelated random variables, with unknown variance-covariance matrix
K. Recalling from Section 2, g = (07,8’,a’)\ L(r|) is the negative of the log-
likelihood based on Gaussian Ut, (with a minimum at g = q), and given the
asymptotic block diagonality of the second derivative matrix of L(q), (see (A 13)
in Appendix 1), a general form of the Wald test can be written as

41
dodo'J 1)

though any other Tl2consistent estimate of g, under (4) could also be adopted
in (41).

We start by specifying the test statistic in its time domain representation.
Denoting q any admissible value of q, the negative of the log-likelihood, apart
from a constant, can be expressed as

(42)
where Ut(6,8) = <IXL;0) Y, - W,(8), and the supscript Y on L(q) indicates the

time domain form of the log-likelihood. By the same arguments as those given
in Appendix 1 it can be shown that

Wn)

aeae'

N T-1 T-s N

u=l s=I f=1 v=1 m=1

where cfiw= {K (a)Jwand UWO0,8) is the uhelement of U,(0,8). Taking now
the expectation in this last expression, evaluated under the null (4) and at 8 =
8, it is zero for the first summand, and for the second term becomes
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N N T-1
T7-s) EEE ANV uiis)uie)) =
rgE E “VE (43)

given the uncorrelatedness in Ut.

Substituting now (43) in (41), we obtain that a Wald test statistic in the
time domain context takes the form

We = T6IA-d\ (44)

where 0!is obtained throughout the minimization of L(r|) in (42), using TI2 -
consistent estimates 8 and ft, under the null hypothesis (4), and

A -
S=1 V. 1)1\ v=l
that is, adopting the same form as in (14).

For the frequency domain version of the test statistic, we can approximate
the negative of the log-likelihood function as

Mn) = |logdetdJ-A:(d)j + (45)
where 1j(Ar,0,8) is now the cross-periodogram of 11,(0,8) evaluated at A=27tr/T.
Starting with the derivation with respect to 9,

0z/(F) _ 0 °

*E tr[W VU~r~;*)]
00 00V r
N N
«E —vec'(/,,(A;0;6)) vecnrd)') - "EEE v dv,
ruo ) roe= x| 00

and using the same arguments as in Appendix 2, under suitable conditions, this
last expression becomes asymptotically

"EEE MW +

r u=1v=l



19

and thus, d2Lf(r[) Id0d 0’ evaluated at 0 = 0 and at 8 = 8 becomes
asymptotically

"E E\ | +s,(")H sA ) +eM(K))'L(K*'>*w
r u-\ v=
whose expectation for large T will be given by
LEEE (™)) +5,(")" Gimed-
N u=1 v=
Therefore, a Wald test statistic in this context will adopt the form
W = T Af& (46)

where Of is obtained now throughout the mininimization of Lf(r)) in (45) with
T12- consistent estimates 8 and d. under the null, and

A7 TAEEE (s A>+S)(*>) (A"K )+ *UAL

T u-iT v=1

= the e e {*aK)zM(Ky + 6“v d->

by the same arguments as those given in previous sections.

5b Wald test for weakly parametrically correlated U,

Analogously to what we did for the score test, we can now robustify the
test statistic in (46), to allow for weak parametric autocorrelation in Ut. We take
U, as in (19) and again here, the same conditions as those given in Section 3
and Appendix 2 will be required on U, to obtain the test statistic. Recalling T)
from Section 3, the Wald test in this context will take the form

e fBe jﬂ Iy
where f| is the value that minimizes L(r|) in Appendix 2, though again any other
Tl2consistent estimate can be adopted, and

F& = %o - or Fit F

where F
1F X0 Fir)
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is the expected information matrix. Now, given the derivations carried out in
Appendix 2, a Wald test statistic will adopt the form

W = TQ'(C-D' (£) 1D ) 6 (47)

with C,D and E as in (21), t as in (22) and 0 obtained by minimizing L(r|) in
(B4) in Appendix 2 with t = f.

5.c Particular cases
We can stress the two cases of interest mentioned in Section 4. First, we
consider 9 is exactly the same parameter vector across all equations in (5). The

test statistic for white noise U, in the time domain representation takes the form

w'l = te‘u(Al) e (48)

with A = NY,
and O(L as in (44) but minimizing L‘(d) with 4>(L;0) as defined in Section 4.a.

The frequency domain version is

Wi = T (Af) ¥ (49)

with as in (46), and A-' = N tit(AD "KXn,

N

r
and if Ut is weakly parametrically autocorrelated, the test statistic becomes

Wl = TO0I(Cl- Du(£)-' DIl)01 (50)
with 0" as in (47), and CJ1 D1land E as in (27), (28) and (29) respectively.

Finally, we consider the different versions of the test statistics when we
take the parameter vector 0 to be strictly different for each equation in (5). The
time domain representation for white noise U, is

W2 = TOZ (AL 02 (51)

with ORas in (44), i.e. minimizing (42) under the null hypothesis (4) and using
now the new matrix d>(L;0) specified in (30) and ARas in (33). The frequency
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The frequency domain version of the test statistic is

wfl = Tofl (Af2) &2 (52)

with S2 as in (46) and An as in (35) and (36); and finally, if U, is weakly
parametrically autocorrelated, the test statistic becomes

W2 - TO02(C2- DI () D2 02 (53)
with 02as in (47) and C2 D2and E as in (38-40).

6. Likelihood ratio tests

We can also compute pseudo likelihood ratio test statistics under the same
situations as in previous sections. Starting with the case of white noise U,, a
pseudo log-likelihood ratio test will adopt the form

LR =2 (L(fj)- L(r})

where L(r|) is the negative of the log-likelihood; f) = (O’; 8’; &)” as in Section
2, and f| = (S’; 8; a’)’, where 6 minimizes L(0’; S’;6c’) and a is obtained using
0 and 8. First we concentrate on the time domain version of the test. From
previous sections, we can write

= -TogdetAT(<x) + ET, (54)

and similarly,
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T

:llogdetec_t) ¢ N (55)

Using (54) and (55), we can write a pseudo log-likelihood ratio test statistic as
LR" = riog™>" (56)
getect)

where

r -

1
™g = 4 £ ~8)"8)"

U,(8) = U,(8), and 8 is as given in Section 2 (i.e., a Tl2consistent estimate of
8 under the null hypothesis) , and

LT .
K(a) = -Tt£_ Ufi'&Ufij)"
i
and 0' obtained throughout the minimization of L(r|) based on 8 and &

Similarly, we can derive the test statistic in its frequency domain
representation. Again from previous sections we have that

Lf(n) = ~logdet|*-£(d)j + tr[K(ay{
-NT|092n + l|ogdetect) + ntr

= C +-K/Iogdet(Ar(a), where C = -W:(l-longt)

and similarly,
Lf(r\) - C + ~logdet/f(d).
Thus, a pseudo LR test statistic in this context can be approximated by

LRf = T log ®AT® (57)
detAT(a)

where now
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& =fE W )
and
*(5) =

and Of minimizes the frequency domain version of the log-likelihood based on
8 and ft.

Extending the tests for weak parametric autocorrelation in U,, the test
statistic takes the form

LR = Tlo 58
gdetect) (58)
where
m) = "E'riy*"T)1f*s)]
w
and
*(5) = AE'r[/(M ) 1
&

r

with f, t, Ofand 8 as they were given in all previous pages.

Finally, for the two particular cases considered in Section 4, the test
statistics will take the same form as in (56), (57) and (58) with the only
difference in the specification of the matrix ®(L;0) appearing in (5).

7. Finite sample performace

In this final section we examine the finite sample behaviour of some of
the test statistics presented in previous sections, by means of Monte Carlo
simulations. All calculations were carried out using Fortran and the NAG’s
library random number generator, on LSE’s VAX computer. Given the variety
of tests and the number of possibilities covered by them, we concentrate on a
bivariate model where the null hypothesis will be two time series following a
random walk. We will consider a model of form
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‘-D#¢ o0 At un’

t=12 (59)
, o (1-Die, X3,
X, = (XIt, X2)’=0 forall t<0, (60)
where under the null hypothesis given by:
h,;e=(0, €9’ =0, (61)

U, = (Ult, U2)” will be initially, a white noise vector process with mean zero and
variance-covariance matrix X First, and without loss of generality, we assume
that X = 12 but we also present results, for a given positive definite matrix X
in order to check if the test statistics are robust for a different specification of
X We look first at rejection frequencies of the score test statistic given in (32),
for fractional alternatives, where (0j)i=2 in (59) takes values: -0.8; -0.6; -0.4; -
0.2; 0; 0.2; 0.4; 0.6 and 0.8. Then, we generate Gaussian series for different
sample sizes (50, 100 and 200 observations) taking 5000 replications of each
case, and present results for four different nominal sizes: 10%, 5%, 2.5% and
1%. The reason for focusing on the test statistic given in (32), (i.e., the time
domain version), rather than in its frequency domain representation (i.e., (34)),
is that the latter form of the test statistic is much more expensive
computationally in terms of CPU time. We know that in finite samples, the
results of the two test statistics can vary substantially, though asymptotically the
difference will be negligible.

In Table 1 we present rejection frequencies of the test statistic S'2in (32)
when X = 12 for three different sample sizes (T = 50, 100 and 200) and a
nominal size of 10%. Tables 2-4 are similar to Table 1 but with nominal sizes
of 5%, 2.5% and 1%, respectively. Looking across these tables, we see that the
sizes of the tests are too small in all cases, however they tend to improve as we
increase the number of observations. For example, we observe in Table 1 (a
= 10%), that when the sample size is 50, the size is 3.3%, but increases to 5.3%
when T = 100, and to 7.2% when T = 200. Similarly in Table 2 (a = 5%), the

(Tables 1 - 4 about here)
sizes are 1.2% for T = 50, 2.0% for T = 100, and 3.2% for T = 200. The same

behaviour is observed in Tables 3 and 4, with all sizes smaller than nominal
ones but increasing with the number of observations. If we concentrate now on
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small departures from the null (61), we observe that these rejection frequencies
increase strongly, especially when the sample size is large (e.g. T = 200). This
increase is more marked when 9, and 02take the same value, though it is also
noticeable when 0, and 02are different. In Table Ic (T = 200, a = 10%) we
see that the lowest rejection probability, apart from that of the true model (0, =
02=0), is 0.827 which is obtained when 9, = 0 and 02 = -0.2, and becomes
0.993 when 9, = 02= -0.2. Similarly in Table 2c, (when T = 200 and a = 5%),
the values for the same alternatives are 0.671 and 0.997; in Table 3c (a =
2.5%) are 0.495 and 0.941, and in Table 4c (a = 1%) 0.279 and 0.848.

Another remarkable feature of these results is that when the sample size
is small (e.g. T = 50), it seems that there is a bias toward positive values of 0,
and 02 This bias is especially clear when the nominal size is also small. We
can see through Tables 2a, 3a and 4a that if 0, and 02are both greater than or
equal to O, rejection frequencies are always greater than those obtained when the
values of 0, and 02were less than or equal to 0. Taking nominal sizes of 2.5%
and 1%, this bias also appears for a sample size of 100 observations (Tables 3b
and 4b); however, increasing the sample size to 200 observations, the bias tends
to disappear. A particularly poor result is obtained in Table 4a (T =50; a =
1%), when 0, (or 02 is equal to 0 and 02 (or 0,) is negative. In such situations,
the rejection probabilities never exceed 0.100. Again these results improve
considerably when we increase the sample size to 100 or 200 observations
(Tables 4b and 4c). Finally we observe that in all cases, rejection frequencies
increase with absolute value of 0 and with sample size T, and when T = 200,
the rejection probability of 1is obtained in most of the cases when |0; |H2> 0.4
for a = 10% and 5%, and when 10(|i=2- 0.6 for a =2.5% and 1%.

Tables 5-8 report rejection frequencies of the same statistic as above, but
now we take X as a positive definite matrix of form: [(1,1)’; (1,2)’]. In doing
so, we can see if the test statistic is robust to a different specification of the
variance-covariance matrix of the differenced residuals. Table 5 is the
counterpart of Table 1 for the new variance-covariance matrix X  Similarly,
Tables 6-8 corresponds to Tables 2-4 above. We observe now that sizes are
slightly greater than before, but again too small with respect to nominal ones
though increasing with the sample size T. In Table 5 (a = 10%), we see that

(Tables 5-8 about here)
sizes are now 3.9% for T = 50; 6.1% for T = 100; and 7.5% for T = 200.

Across Tables 6-8 we see that in five cases (Tables 6c, 7b, 7c, 8a and 8c), sizes
are the same as when X = 12 while in the other four cases (Tables 6a, 6b, 7a
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and 8b) they are slightly greater, but not exceeding in 0.02% those results
obtained across Tables 2-4. A bias for positive values of 0, and 02 is again
observed when nominal sizes and sample sizes are small; however, the
pathological cases observed in Table 4a have now disappeared (Table 8a). All
rejection frequencies increase with sample size T, but in a few cases, we now
observe a lack of monotonicity of these rejections with respect to (0j)iH 2 when
the sample size is small and (0j)H 2takes low values. Comparing these results
in Tables 5-8 with those obtained in Tables 1-4, we see that in most of the
cases, rejection frequencies are now slightly greater, but in general, results are
similar across all tables, suggesting that the test statistic is not affected much by
the different specifications of the variance-covariance matrix X

In Tables 9 and 10 we present empirical sizes of the test in the frequency
domain representation. Table 9 reports sizes of the test statistic SRin (34),
assuming first, in Table 9a, that X = 12 while in Table 9b we take X = [(1,1);
(1,2)’]. As in all previous tables, we see that sizes are very small when T =
50, however they improve considerably when we increase the sample size.
Comparing empirical sizes in Table 9a with those in Tables 1-4, we see that
they are very similar. When T = 50 the sizes are now slightly smaller than in
the time domain versions of the tests, but when T = 100 or 200, they are slightly
greater. We should mention here that results obtained in Table 9 (and also in
Table 10) have been obtained using 1000 replications of each case, (unlike the
5000 replications used in Tables 1-8). Therefore the difference may be largely
due to the different number of replications used. When X * 12 (Table 9b) the

(Tables 9 and 10 about here)

same conclusions hold, with empirical sizes smaller than nominal ones but
increasing with T, and observing few differences with respect to empirical sizes
obtained in the time domain representation of the tests across Tables 5-8.
Comparing results in Table 9b with those obtained in Table 9a, we again
observe few differences, with the highest one occurring when T = 50 and a =
10%; in this case, the empirical sizes are 2.8% in Table 9a and 3.6% in Table
9b, while in the remaining cases, the differences are not greater than 0.03%
between both tables.

Finally, Table 10 reports sizes for the test statistic S2 in (37), i.e., the
frequency domain representation of the test when U, is weakly parametrically
autocorrelated.  In Table 10a we assume that U, follows a VAR(l)
representation, and we choose the parameterization
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05 0.2

(Uni fuit-il eu

KJ 03 05 K J 2t

where e, is normally distributed with mean zero and variance-covariance matrix
12 In Table 10b we consider a VMA(I) structure on U, using the same
parameters as in the VAR(I) case. That is,

/N
K + f05 0.2 “en.

Q J (0.3 05, \ 2t'ly
and again e, normally distributed with mean 0 and variance 12

(63

In both tables we see that sizes are now too large for all nominal sizes,
especially when T = 50, however, as we increase the number of observations,
these empirical sizes reduce and then tend to approximate to nominal ones.
Thus, for the VAR(l) case (Table 10a), we see that if the number of
observations is 200, the sizes are 10.4% fora = 10%; 6.0% for a = 5%; 3.1%
fora = 2.5%; and 1.2% for a = 1%. When the VMA(I) structure is considered
(Table 10b), empirical sizes are now slightly greater than in the VAR(I) case,
but again we observe a considerable improvement when we increase the number
of observations.  Similar results were obtained when we used different
parameters in (62) and (63) and a different variance-covariance matrix for the
residuals e,.

As a conclusion, we can summarize the results obtained across these
tables by saying that the score test statistics obtained in sections 2 -5 seem to
be adequate to test the null hypothesis of a random walk in this bivariate
context. Though sizes are smaller than nominal ones in most of the cases, the
performance of these tests seems quite good even for small departures of the
null hypothesis (61), especially as we increase the number of observations.
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Appendix 1: Derivation of the score statistic S

The negative of the log-likelihood under (1), (2), (5), and Gaussianity of
U,, can be expressed, apart from a constant as

, T 1T
L(6,6,d) = I2Iogdettf(d) + ) e U ffifiywr'UjfiM

:
= logdet/f(a) + 5 *(«)m'®(i;0)X1(6), (Al)

for any admissible a and 8, where U,(0,8) = d>(L; 0)X,(8) and X,(8) =Y, - Z,(8).

Starting with the first derivatives in (11),

3L(06d) = d L . 1

- 26 5E: d ) 1<>(L0)X,(6)
aPIz:0_  dpiL-.0)

SE g, X6 K(d) 1t/,(0,6)

aiogp,(L;0) ir fa » aiogPw(L;0)

30 30 ~(d) 1(7,(08)

where U,(0,8) = (U],(0,8);..;UN(0,8))” and X,(8) = (X,,(8);..;XN(8))\ and
evaluating now this last expression at 0 = 0 we obtain

E [e@)(DF/iy8);...;ew (L) [/,,,($)])/ « d r 1f/,(8) (-42)
where e(ii)(l) = Slogstl)(i;O) can be expanded as E 'lU Ls,

in view of (8) and below, and the expression in (A2) becomes

Vi s=|



E anuvo
E E~Xx -39
™ E 2°UH)

I<=1 5=1
V=1

where |Yis the (u,v)thelement of K(a) ' and

Cls,6) = f1,,,(6) Uv,J&).
1 t=1

Calling LO = L(ii)e0 the first derivative with respect to 8 is

<t =IL B (yi-266) fon(in AT -1 (ZI(TT-2(6))
3 36 2f

“wGEAO) ) S LE W

y/ ®(L) AT(@)-" wi(6)]

N P
1

A AE »,(sma)-iif{5) - f:|

36 24

JL 3IF(5 e A L dwxb
E_—() Jf‘l(")-E_—WX)
@ 36 =5 36
]Ll_- 3»yf(8)

5 “5;‘—“ (%) 1U,(&m

From (Al) we have that LOcan be expressed as

(A3)

(A5)

30

EENE MPEGY  =TE GEEPeu~ (%
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?logdetE(dc) + —Ztr[jC(a)_15(é)I,

T

where S(0) =y | Ut(0) Ut(0Y, and differentiating LOwith respect to ¢c leads to
=]

MrIK(ayl(@K@)] - strlK(ayl(dK(@)K(@) 1S(6)] (A6)

-jtr [(cma)K(ay1(s(6) - TK(a)) ATd) 1]

“1(vec(dK(a))y (K(ayl ® K(a)1) vec(S(5) - TK(a) )

=-xdv(K(a)yD'm(K{ay' ® K(ay') vec(S(6) - TK(a)), (A7)

where Dm is the duplication matrix, and using the well known result that
tr[ABCD] = (vec A)’(D’ ® B)(vec C). Then, from (A7) we easily observe that

?aE = -’édL(KW~1® m y 1) vec (S(&)- TK(a)). A8)

Next we look at the second derivative matrices appearing in (11), and first

concentrate on the (pxp) matrix 32LJd 030’. From the left-side in the equality
in (Ad)

N T-1 T-s
dLo

w EEtrEWEA"V).

and then we have that

:e[a_Z' E sg E dq@ﬂo) !l"()))E é'-unji)
EETE"-([[E 3ap<

=E E tfE IE *\EW)+
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E t*yE M )E W e ¢?2'«U-(4)nm
u=l 5=1 f=I v=I \m =I ;

In order to form (11), we need to take the expectation of this last
expression. (Note that it is evaluated at 0 = 0, i.e. under HO (4)). It is zero for
the first summand given the uncorrelatedness in U, and since it involves terms
of the form Uulmand Uvt§ for m,s > 0. The expectation of the second
summand is

E E *!.’E a'if E E(UJHUJl))
n=1 5=1 v=1 =1

. 7-1 / v N N oy
EEEwW m?ﬂ#)'b“*f =rEi-~ EE (@ Ir(w)
U=1 v=1 5=1 oot L yuot vt

Again from the first equality in (A4), we have that dLJdO can be rewritten as

- K(™)Z*wpwYv.it - k., M

U=1 5=1 f=1

and from this expression, we observe that

_f_:_ 77 :p'47j.EE *f)bE TO)gE - PulL)Yul x
06 51 Ll \A

0006 “4

N N
* E - W E"p/rv,,)] =
v=
MV V f+5V
E » E (— " E +W E 6
tt=1 5=1 t=1 06 v=1 v=1 067

* o™, (8) 0~,(4) A
p-W~"™E qgv --77 - —"~ E dvPVvW AN
06" 06" v-i

vV or-i ts g
AR AR 5 )+ ()t o-an is)

u=1 5=1 f=1 06 v-i 08
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dwWJb) . sip, (8)
=-£ £ e«f a'T ia«)— ~ ~ ¢49)
f=1 J=1 v=1 =1 38’ 36

For the derivation of d7L,/r)05a’, we have that calling P,(8) = [P,,(8);...;PN(8)]
the (p x N) matrix appearing in (A3), then
8L,
30
respect to (t:

T
P,(&K(a) 1(7,(6), and differentiating this expression with
t

T T
~~AP*(b)k \dk)k IUb) = -£((/,(6)® P~vectf-'idiOK")
=1 %)

;
=-£ (t/,(6)® i>,(6))(/T*'® K~)Dmdv(k)
i=

where K = K(oc), and therefore,

&L i
——2- = £ (Uth) ® IAW ~d)'1® K(dYI)Dm (410)
303a @

Finally in order to complete the Hessian in (11) we still have to calculate some
second derivatives with respect to 8 and a. From (A5)

eTL L dwi(s)
3838 38 é —y - " Cemn - N6
3«((8) ,dW.(&) . m, , dvec 31F(8) |

o (AID
36 36 36" 06
Next we consider d2LJd 83 a’, and since

dL JL 31P(8
—£ = — (—) K(a)~lU (6), differentiating this expression w.r.t. a,

38 t-l 38



JL d\V<6)
T —— *(*)1(dK(a))K(ayl U,(6)
0] 58

_,  UIY® aW  vecfrdrvtffd))~)]
%Zi as
us)! & dW&  (K(a) ' 0 ~(d)-)D dv{K(a)),
58

and therefore,

a2l 17.8) 0 Wi (/f(d)- 0 7f(d)*)2) .
asad’ as

The final term in (11) that we should look at is 32L,/3ct) a’.

(A12)

Differentiating (A6) with respect to (& and recalling again K = K(Oc), we have

~ArIk=\dk)k=\dK)] + -trik~d K" dk)"1S(8)]

+ -2tr[K \dK)k'\dk)K 15(8)]

~Lr[(AK)K \dK)K™] +rr(d/0*\dk) K)S(B)K 1]

=--yec(dk)\k=1® K Ivec(dK) +vec(dk)\k 1S(8)K ' ® K~') veo(dk)

= I® k DDmdv(k)+dVK)Di(k's(8)k'® k") D nuiv(k),

obtaining as a final expression for d2LJd ad A’

-[iD'(AT(d)10 K(d)-")Dm + Dj,(/f(d) , S(S)*(d)-10 K(ay')Dm

We can get now consistent and efficient estimates of 5 and a by equating

34
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(A5) and (A8) to zero; however, for practical purposes and in order to simplify
the computations, we can take any Tl/2-consistent estimates of 8 and a. We will
assume that 8 is a consistent estimate of 8 and we will take K = K((x) = T 1S(8).

It follows then from previous pages that

al(°-°’d) - E. E t"E. «U»>E
Ss=i t=i V=1

C7D u=i
TE E E = rE EE ~“a'c ,(*$).
«=1 5=1 V=1 1f:| uU=1 5=1 V=1
1058 _ e Eroa  i-i 1A,
3030/

and the asymptotic expectation matrix in (11) multiplied by /T will take the
form

\
a 0
0
W 0 (A13)

0 0 -D”K1® K )Dm
\ A /

»xff- EE °"°E

tt=1 V=1 5=1
W = limr
35 36" ;

is a positive definite matrix by assumption. (Note that the block diagonality in
(A13) follows from expressions (A9), (A10) and (A12), given that 61
consistently estimates Ow and Ut(8) has zero expectation).
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Appendix 2: Derivation of the score statistic S

For the derivation of the score test statistic in this context of weak
parametric autocorrelation in U, we assume that k and K in (20) are
parameterized separately, so t is taken to specify k and a to specify K. Thus,
the spectral density matrix of U,(9;8) for any admissible 8 and t is

f(Ara;t) = = k(X;i)K (d) k(A;t>* (B7)
u

where  k(A.;t) = JMA(j;t)eaE
jo

It is also assumed that A(O;t) = IN(the N-rowed identity matrix) for any
Xin Euclidean space Rq and that f(X,;ft;t) is a finite, positive matrix, with
eigenvalues bounded and bounded away from zero at any frequency on a
neighborhood N’ of X and M' of a. Also, we assume that each element of
f(A;t), Tw(A;t), as defined below (B4), must be continuous in (At) fort e N°
and have first and second derivatives with respect to 't continuous in (A.t) for
Xe N*~

Taking now T = (07;a’;8’;'G)\ the negative of the log-likelihood based on
Gaussianity of Ut can be expressed as

I(f) = -logdetJ(ot;f) + ~ UfO.&y.T'fd;*) U(0,5), (B2)

where U(0,8) = (U,(0,8); UZ0,8);... ;UT(0,8))\ and J(ri,t) is a (NT x NT)
matrix with Js,(&ct) = f*e,(~>0(X;a;i)dX in the (t,s) block of N2elements,

J , e
for any admissible tic, o an-é t. However, given the computational difficulty of
this expression, especially when N and T are large, under suitable conditions,
(B2) can be approximated by

L(0;a;8;f) = |logdetf(”~;d;-t) + trff H~Adj2y 0 jfi)], (B3)
z Zr

where 1j(Ar;0;8) is the periodogram of U,(0;8) evaluated at frequencies Xr =
27tr/T and the sum on * is as described in Section 2.

Calling now 8 any Tl2consistent estimate of 8 and & as defined in
Appendix 1, we can concentrate both out and consider

L(6;f) = L(0;d;8;f) :|;ogdetf(Ar;t) +’Z\ E r [ f YAr-t)iu(Xr,0)], (B4)
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where

KK*):-Z&-KW m w w ,
and
iI"X-Q) = W(X;,QW(.X;,Q\ with W(A;0) =-L -£ 1//0;8)e*V.
\j2nT A
Then we can express a score test statistic as:

3L(0%) J 3 32L(0;0)i' £ (02L(0;)]]' IE[0ZL(0;%)i  OL(6;t)
se' [\ 0000 { ooot'" J , 3xOx/ ; [ 0t00' j 00

where the expectations are taken under the null hypothesis (4) prior to
substitution of t, where t can be any consistent estimate of x under (4).

0 0Be(BS5)

We start with 5L (9;t)/3 9, and from (B4), we see that it is

it fAvec'C/"ne))) vec(f-\xrf)
2V 136

=i E E E d"KQ A, ®6)

rou=l v=l

where IWAr;9) is the (u,v)thelement of fu(Ar;9), and f W(Xr;X) is the (u,v)thelement
of f'(A.r;x). We first concentrate on

31 (M) | -
00 100 06 M?lltE E uuy0;6)Uvs(0;6)eitt-sH 100
T T (0logpu(L;0) ot
: Uvs(0;6)e o
24k =31 0o uuio;s) Uws(0:6) '

[Ologp (L 0)

N & w7 e

_ i(t=s)Xr + 1 ,
7 BB E tW ) u> T e v e co



T-1 Tm T T Tm
r-yE | vjtwjlt).** **E <V rEE
27T r=l os=l ATL- f=1os=l

and, under suitable conditions, (with m= 1,2,...,M < T-I, for sufficiently large
M), this expression becomes asymptotically

(%Mr)+EMK)) KM m

Substituting now (B7) in (B6) we obtain that c>L(6;t)/ <0 |9 0 is asymptotically

ACEE E (e(u(f) + S, (AD) Tuv(Xrd)E™ (Xrii). (B8)

z r u-l v=l

We next examine the second derivative matrices appearing in (B5), and
we start with 32L(0;t)/3030".
N N
3*1(0;t) 3/1JAT,0) )
. AN N f (X,,l)
3030" i EEEW ) + e(v)(N) 30"

and using again (B7), this last expression evaluated at 0 = 0, becomes for large
T

“EEE (S)(*n + *(#)) +S)(M)/)U N6)IV(M),

u=l v=l

whose asymptotic expectation is
N *
NEEE (SA>+i<H) 4

given that, heuristically, if f(A.;t) is continuous in X, E(IMA)) —=T_,, fu(X;x), for
fixed X (See Brillinger (1981)). We can write this last expression as

«

&£ (B W (M)S,A1)/+8) (M) e/ +S) (M)A, (A) +E(v,(NeWWV)

X /jxn)nxni) =jIErLPI§ y v~ E_I to /V )

+{E E (N E fIK>vnx,i)

v=I

38
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+"EEEM NM"sA -)" 4 «e<FrRe< m
Arou=\ v=l

which first two summands will be approximately zero noting that

Efnrvirry = Y LOCOWPE> = 1

E ew (Mett)(/ - TAK)%)(Ky - 0. (B10)

for all uv = 1,2,.,N. To see this last result, note that approximating the sum
by an integral

f% ,(» % ,* ft e2e%*ef
-it -it1 1 m'1

[e0] 00

= N2 N *(cosAs + isinA,5)52 'I'm¥(coskm + isix\Xm)dX

:EE JcosxscosxmdX - JsinXssinxmdX = 0,
s~1 m-1
\_*

and identically for the second term in (BIO).

Now we look at the (p x g) matrix d2L(9;t)/d 93t in (B5) which,
evaluated at 9 = 0, is

(, » N N
" Je ee +eMK) ) ijx FM KA~
r u v=
N N
-/ tt
Z r u=lv=l oT
and whose expectation for large T is
1* = » dfw(Arsz)
A E E E (*»<*)+ (BI11)

r «1 v-1 dX'
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This last expression can also be shown in terms of the derivatives of f
with respect to t (instead of the derivatives of its inverse, f'). (B11) can be
expressed as

- A (M2)
- 2T g
dfWX;,i)
"EE (573)
A v4 u=1 oT
dra-i) df\X i) d fuxrils
where i
di* di, dl9 7
Now using the relationship
al~‘a ;i) d/Uu:i) ..
r = -/ A;i) . A(ND),
dii di.
we have that
N d/* (Xr;i) WKA) oo
KD g ~Ge=! o
and
3/ & & . al(ArT)
AKA) = -f \X;,i) .
di, di,

implying this two equalities that

* dfrX-i) dfIX-A) o,
HUKA) 1 ' —}-{_—/pW (M 4)

ox%
and
? N * }
El _-E,-E—) fIKs) = - E/ - Q/Jd)?, i) )

respectively. Substituting now (B14) in (B12) and (B15) in (B13), (BIl)



becomes

* N

Ndfuv (W -

_2ed s»(vE /' - tE E

L r «1 = at 2 r v=l

N N
NE EE MV *
Z r u=l v=l 0T

Finally, we look at the (gxq) matrix d 2_(8;t)/dt 51",
3L(0;t)/at is

41

(B 16)

The uth element of

if T -\ / af" 1A t),
si o U(AGE)
! u 7 nor
B trV i, .. 3f(Art) af'c”t) (AR
2n CEM gr A0
_ ; dAW
2, dT o
Then, — , evaluated at 0 =0, becomes-.
if dfr»wW W W ~ w/,
2r drv dxu dxudzv axv axH
?2-1, azn -t) . ala-t) a/"'a ;t)
f W ~L L f -f (W -
( aLi U5tV ( ht., at
Ain ADFtW -ily L, dA W L& Aw
2r at 0tf KR
a/(Art) HArY) 2Vt .
ax dx,dx. yM)+
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I iXri) djjlix":t)f' (xA\)Jdﬂxri)f"'\xr;x)/,,(*,;«) ),
0x,

”

and whose asymptotic expectation is

- df(A. ;) - 0f(Art) ~

fo(r)— —— f  (*%)

2r at,. at. (M7)

Substituting now (B8), (B9), (B11) and (B17) in (B5), evaluated at t = t, we
form (21).



True model: 0, = 02= 0.

Table la): T =50
0, /02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table Ib): T = 100
0, /0,

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table Ic): T =200
0,/02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

1.000
.999
.996
979
933
.954
.985
.999

1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

.999
.998
.982
.902
.768
.823
.952
.994
.999

1.000
1.000
1.000
1.000
.998
.999
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

TABLE 1

.939
172
428
128
.033
.203
.661
.930
.992

1.000
.999
.933
417
.053
518
.967
.999

1.000

1.000
1.000
1.000
.834
072
.858
.999
1.000

a=10%
-04 -0.2
998 977
.984  .904
910 .677
674 322
430 126
563 .308
863 746
978  .953
999 995
-04  -0.2
1.000 1.000
1.000 1.000
1.000 .989
989  .805
935 411
971 .756
999 .987
1.000 .999
1.000 1.000
-04  -0.2
1.000 1.000
1.000 1.000
1.000 1.000
1.000 .993
1.000 .827
1.000 .988
1.000 1.000
1.000 1.000
1.000 1.000

1.000

Rejection frequencies of SRin (32) with |
No. of replications: 5000

0.2

.952
.829
.576
.316
.206
.336
124
.944
.992

0.2

1.000
.999
979
751
.516
767
.984

1.000

1.000

0.2

1.000
1.000
1.000
.984
.849
.984
.999
1.000
1.000

=12

0.4

.088
.953
871
751
.660
725
.894
979
.998

0.4

1.000
1.000
.999
.987
.964
.985
.998
1.000
1.000

0.4

1.000
1.000
1.000
1.000

.999
1.000
1.000
1.000
1.000

0.6

.998
.994
.982
.957
.939
.944
.980
.995
.999

0.6

1.000
1.000
1.000
1.000

.999

.999
1.000
1.000
1.000

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
.999
997
.996
.992
.994
997
.999

1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000



True model: 0, = 02=0.

Table 2a): T =50
0,7e2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 2b): T = 100
e,/e2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 2¢): T =200
0,7e2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

.999
.997
.980
.888
741
.805
.944
.993
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

-0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

.998
.986
919
.700
457
591
.873
977
.999

1.000
1.000
1.000
.998
.087
.996
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

TABLE 2

.981
918
.726
.394
170
.350
.769
.959
.996

1.000
1.000
.998
.958
.798
.922
.997
1.000
1.000

-0.4

1.000
1.000
1.000
1.000

.999

.999
1.000
1.000
1.000

= 5%

-0.2 0
889 744
.708  .462
400 181
132 .039
.037  .012
205 137
.659 582
927 .904
991 987
-0.2 0
1.000 1.000
998 .989
.958  .803
.618 .221
206 .020
.637 425
975 949
999 999
1.000 1.000
-0.2 0
1.000 1.000
1.000 1.000
1.000 .999
997 .680
671 .032
.969 .808
999 999
1.000 1.000
1.000 1.000

Rejection frequencies of S'2in (32) with | =12

No. of replications: 5000

0.2

811
.601
.358
.209
147
.256
.648
.920
.988

0.2

1.000
.996
925
.632
426
.693
975

1.000

1.000

0.2

1.000
1.000
1.000
.966
793
972
.999
1.000
1.000

0.4

947
.879
778
.660
.585
.646
.846
.967
.997

0.4

1.000
1.000
.998
.976
.945
.976
997
1.000
1.000

0.4

1.000
1.000
1.000
1.000

.999
1.000
1.000
1.000
1.000

0.6

.993
.984
.962
.935
910
.923
.968
.992
.999

0.6

1.000
1.000
1.000
1.000

.999

.999
1.000
1.000
1.000

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

.999
.998
.996
.990
.987
.989
.996
.998
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000



TFrue-medek 8, = ob= 0.

Table 3a): T =50
0, /02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 3b): T = 100
0, /02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 3c): T = 200
0, /02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

.997
.985
.905
.666
404
.548
.863
.976
.999

1.000
1.000
1.000
1.000
.997
.999
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

.982
.926
.745
412
.182
.358
776
.960
.997

1.000
1.000
1.000
.992
.953
.980
.999
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

TABLE 3

a

.905
.750
471
174
.053
.228
681
.935
.993

1.000
1.000
.992
.880
591
.836
.992
1.000
1.000

1.000
1.000
1.000
1.000
.996
.999
1.000
1.000
1.000

= 25 %
-0.2 0
672 416
428 187
170 .054
044 010
011 004
137 100
578 516
900 .872
986 979
0.2 0
999 998
995 955
880  .602
413 .092
.089 .010
527 349
91 .928
999  .999
1.000 1.000
02 0
1.000 1.000
1.000 1.000
1.000 .996
941 495
495 014
941 754
999  .999
1.000 1.000
1.000 1.000

0.2

.563
371
.232
143
.105
.198
581
.891
.984

0.2

.999
.983
.834
.526
.354
.621
.963
.999
1.000

0.2

1.000
1.000
.999
.934
742
.957
.999
1.000
1.000

Rejection frequencies of S'2in (32) with I =12
No. of replications: 5000

0.4

.869
.784
.682
.585
521
575
.798
.956
.994

0.4

1.000
.999
.993
.963
.924
963
.996

1.000

1.000

0.4

1.000
1.000
1.000
1.000

.999
1.000
1.000
1.000
1.000

0.6

.982
.965
.940
.906
.880
.895
951
.988
.999

0.6

1.000
1.000
1.000
.999
.998
.999
1.000
1.000
1.000

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

998
995
992
986
981
984
993
998

1000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000



True model: 0, =02=0.

Table 4a): T =50
e,/e2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 4b): T = 100
0, /02

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 4c): T = 200
0,/7€2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

.962
.875
.646
.288
.098
281
734
.950
.995

1.000
1.000
1.000
997
.976
.990
.999
1.000
1.000

-0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

.874
.704
403
.136
.034
.205
663
.928
.991

1.000
1.000
.998
.958
.801
.923
997
1.000
1.000

-0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

TABLE 4

.096
.035
.010
.001
.001
.066
442
.830
.970

979
.805
.307
.026
.004
279
.897
.998
1.000

1.000
1.000

.275
.005
.686

1.000
1.000

a=1%
04 -02
651  .289
406 134
164 039
040 .006
010 .003
136 .091
573 494
898 .862
985 977
04 02
1.000 .995
997 956
962 .688
692 .199
295 .025
685 .405
980 .937
1.000 .999
1.000 1.000
-0.4 -0.2
1.000 1.000
1.000 1.000
1.000 .999
999 .848
971 279
.998 .892
1.000 .999
1.000 1.000
1.000 1.000

0.2

.293
.204
141
.096
.070
141
.500
.850
974

0.2

.991
.925
.685
416
281
.530
.945
.999
1.000

1.000
1.000

Rejection frequencies of S'2in (32) with X =12
No. of replications: 5000

0.4

.740
.661
.583
.500
438
.500
.739
931
.988

0.4

1.000
.998
.982
941
.892
.944
.994

1.000

1.000

0.4

1.000
1.000
1.000

.999
1.000
1.000
1.000
1.000

0.6

.956
.933
.905
.869
.832
.853
932
.983
.997

0.6

1.000
1.000
1.000
.998
997
.999
.999
1.000
1.000

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

.994
.990
.986
979
973
.976
.989
.997
.999

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000



TABLE 5
Rejection frequencies of SRin (32) with E =

True model: 0, = 02= 0. No. of replications: 5000
a=10%
Table 5a): T =50
0,/02 -08 -06 -04 -02 0 0.2 04 06 08
-0.8 1.000 .999 .998 .997 .998 .999 .999 1.000 1.000
-0.6 1.000 .998 .989 969 .982 .997 .999 1.000 1.000
-0.4 998 .987 912 770 .841 975 .998 1.000 1.000
-0.2 998 968 .768 .346 .319 .816 .983 .999 1.000
0 998 985 .834 323 .039 431 921 .994 999
0.2 999 997 974 813 442 340 .824 987 .998
0.4 1000 .999 .998 981 .917 824 .895 .985 .999
0.6 1.000 1.000 1.000 .999 995 987 .987 .996 .999
0.8 1.000 1.000 1.000 .999 .999 .999 .999 .999 1.000

Table 5b): T = 100

0./02 08 -06 04 -02 0 02 04 06 08
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 .999 996 .998 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 .996 813 .764 .997 1.000 1.000 1000
0 1.000 1.000 .998 .768 .061 .821 .998 1.000 1.000
02 1.000 1.000 1000 995 825 .765 .992 1.000 1.000
0.4 1.000 1.000 1.000 1.000 .999 .994 998 1.000 1.000
06 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5¢): T =200

0,/e2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .993 .991 1.000 1.000 1.000 1.000
0 1.000 1.000 1.000 .990 .075 .989 1.000 1.000 1.000
0.2 1.000 1.000 1.000 .988 .989 .983 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

47



True model: 0, = 02= 0.

Table 6a): T =50
e,/e2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 6b): T = 100
e,/le2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

Table 6¢): T = 200
Oile2

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8

-0.8

.999
.997
.988
975
.986
.996
.999
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

-0.6

.998
.987
.930
.861
913
.984
.998
1.000
1.000

1.000
1.000
1.000

.999
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

TABLE 6

a=5%
-04 -02
990 .979
932 .866
743 503
500 .152
618 149
916  .685
992 .960
999  .998
999 999
-04  -02
1.000 1.000
1.000 1.000
999  .982
983 .630
992 594
1.000 .985
1.000 1.000
1.000 1.000
1.000 1.000
-04 -02
1.000 1.000
1.000 1.000
1.000 1.000
1.000 .979
1.000 .968
1.000 1.000
1.000 .999
1.000 1.000
1.000 1.000

.986
921
.625
144
.014
.340
.879
.991
.999

1.000
1.000
.993
571
.021
.754
.999
1.000
1.000

1.000
1.000
1.000
970
.032
.980
1.000
1.000
1.000

0.2

997
.986
.920
.688
327
.256
.764
979
.999

0.2

1.000
1.000
1.000
.989
.750
.689
.989
1.000
1.000

0.2

1.000
1.000
1.000
1.000
979
972
.999
1.000
1.000

Rejection frequencies of S'2in (32) with E =

0.4

.999
.998
.992
.964
.882
.766
.846
977
.999

0.4

1.000
1.000
1.000
1.000
.998
.988
.997
1.000
1.000

0.4

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.6

1.000
.999
.999
.996
.087
978
976
.992
.999

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.6

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

No. of replications: 5000

0.8

1.000
1.000
1.000
.999
.999
.997
.997
.999
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
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TABLE 7

Rejection frequencies of SRin (32) with 52 =

True model: 9, = 02= 0. No. of replications: 5000
a=25%

Table 7a): T =50

0, /02 08 -06 -04 -02 0 02 04 06 08
-0.8 997 987 942 889 921 .981 .996 .999 .999
-0.6 984 928 .786 .634 753 939 .992 999 .999
-0.4 937 786 .487 243 366 .817 .977 .996 .999
-0.2 876 627 247 051 005 553 934 .991 .999
0 918 737 374 061 .005 251 .835 .982 .998
0.2 980 .937 .814 556 261 .196 .709 .968 .995
0.4 996 992 973 .927 826 .702 .798 .963 .996
0.6 999 999 998 .993 983 .969 .968 .988  .997
0.8 999 999 999 999 .999 998 .997 .998 1.000

Table 7b): T = 100

0,/02 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 .993 939 .975 1.000 1.000 1.000 1.000
-0.2 1.000 .999 938 431 .380 .972 1.000 1.000 1.000
0 1.000 1.000 .974 392 .010 .668 .996 1.000 1.000
0.2 1.000 1.000 .999 971 .689 .618 .983 1.000 1.000
0.4 1.000 1.000 1.000 1.000 .997 985 .997 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7c): T =200

6, IC2 08 -06 -04 -02 0 02 04 06 08
.08 1000 1.000 1.000 1.000 1.000 1.000 1000 1.000 1.000
.0.6 1000 1.000 1000 1.000 1.000 1.000 1.000 1.000 1000
04 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.0.2 1000 1000 1000 .942 922 1,000 1000 1.000 1.000
0 1000 1000 1.000 .920 .014 966 1.000 1.000 1.000
0.2 1000 1000 1000 1.000 .968 .957 1000 1.000 1.000
0.4 1000 1000 1.000 1.000 1.000 .999 1000 1.000 1.000
0.6 1000 1.000 1.000 1.000 1.000 1.000 1.000 1000 1.000

0.8 1000 1000 1000 1.000 1.000 1.000 1.000 1.000 1.000
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TABLE 8

Rejection frequencies of S'2in (32) with E =

True model: 0, = 02= 0. No. of replications:
a=1%

Table 8a): T =50

0, /02 -08 -06 -04 -02 0 0.2 0.4 0.6
-0.8 966 .890 .722 552 651 .883 975 .993
-0.6 .885 .720 452 263 402 .797 965 .992
-0.4 716 446 184 006 .137 643 .938 991
-0.2 553 .260 .062 .007 .016 .404 .880 .984

0 .638 .400 .140 021 .001 .182 .769 .973
0.2 879 791 634 415 190 .140 .632 .947
0.4 971 955 930 .870 .763 .640 .735 .947
0.6 993 993 989 .982 971 .949 952 .982
0.8 999 999 998 999 997 996 .996 .998

Table 8b): T = 100

e /e2 08 06 -04 -02 0 02 04 06
0.8 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000
0.6 1.000 1.000 .999 .994 .997 1.000 1.000 1.000
0.4 1000 .999 963 .792 .907 .998 1.000 1.000
0.2 1000 995 .798 .213 205 .938 .999 1.000
0 1000 .998 .898 .198 .003 579 .992 1.000
0.2 1.000 1.000 .997 .934 600 .533 .976 1.000
0.4 1.000 1.000 1.000 1.000 .993 .974 .994 1.000
0.6 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000
08 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8c): T = 200

e,/e2 -08 -06 -04 -02 0 0.2 0.4 0.6
-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 .853 .810 1.000 1.000 1.000

0 1.000 1.000 1.000 .819 .005 .942 1.000 1.000
0.2 1.000 1.000 1.000 1.000 .948 .929 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5000

0.8

.998
.998
.998
.998
.995
.994
.994
.996
.999

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.8

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

50



TABLE 9

Table 9a: Empirical sizes of S'2in (34) with X =1,

True model: 0, = 02= 0. No. of replications: 1000
T\a 10% 5% 2.5% 1%
50 0.028 0.012 0.001 0.000
100 0.058 0.019 0.010 0.006
200 0.074 0.038 0.020 0.008

Table 9b: Empirical sizes of S'2in (34) with X = ( i- él

True model: 0, = 02=0. No. of replications: 1000
T\a 10% 5% 2.5% 1%
50 0.036 0.012 0.002 0.000
100 0.057 0.021 0.008 0.005
200 0.076 0.035 0.017 0.006
TABLE 10

Table 10a: Empirical sizes of S2in (37) with a VAR(I) structure on U,

True model: 0, = 02= 0. No. of replications: 1000
T\a 10% 5% 2.5% 1%
50 0.134 0.074 0.040 0.017
100 0.123 0.069 0.035 0.014
200 0.104 0.060 0.031 0.012

Table 10b: Empirical sizes of S2in (37) with a VMAC(I) structure on

True model: 02= 02= o- No. of replications: 1000
T\a 10% 5% 2.5% 1%
50 0.207 0.154 0.127 0.097
100 0.137 0.090 0.054 0.045

200 0.131 0.062 0.038 0.023
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