Economics Department

Testing of Seasonal Fractional Integration in U.K. and Japanese Consumption and Income

Luis A. Gil-Alaña
and
P.M. ROBINSON

EUI WORKING PAPERS

European University Institute

30001003240811

EUROPEAN UNIVERSITY INSTITUTE, FLORENCE

ECONOMICS DEPARTMENT

WP 330
EUR

EUI Working Paper ECO No. 98/20

Testing of Seasonal Fractional Integration in U.K. and Japanese Consumption and Income

LUIS A. GIL-ALAÑA
and
P.M. ROBINSON

All rights reserved.
No part of this paper may be reproduced in any form without permission of the authors.
© Luis A. Gil-Alaña and P.M. Robinson
Printed in Italy in July 1998
European University Institute
Badia Fiesolana
I - 50016 San Domenico (FI) Italy

TESTING OF SEASONAL FRACTIONAL INTEGRATION IN U.K. AND JAPANESE CONSUMPTION AND INCOME*

L.A. Gil Alaña ${ }^{1}$ and P.M. Robinson ${ }^{2}$
${ }^{1}$ European University Institute
Department of Economics
Badia Fiesolana
50016 SAN DOMENICO DI FIESOLE
ITALY
${ }^{2}$ London School of Economics
Department of Economics
Houghton Street
LONDON WC2A 2AE
ENGLAND

Abstract

The seasonal structure of quarterly U.K. and Japanese consumption and income is examined by means of fractionally-based tests proposed by Robinson (1994). These series were analyzed from an autoregressive unit root viewpoint by Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and Hylleberg, Engle, Granger and Lee (HEGL, 1993). We find that seasonal fractional integration, with amplitudes possibly varying across frequencies is an alternative plausible way of modelling these series. | Corresponding author: | L.A. Gil-Alaña
 Department of Economics

 European University Institute

 I-50016 San Domenico di Fiesole

 ITALY lana |
| :--- | :--- |

Phone: +39 (55) 4685 433/4 Fax: +39 (55) 4685202

\section*{JEL Classification: C22}

Keywords: Fractional integration; Nonstationarity; Seasonality.

[^0]
1. Introduction and summary

Many economic time series contain important seasonal components. A simple model for a time series y_{t} is a regression on dummy variables $S_{i t}$,

$$
\begin{equation*}
y_{t}=m_{o}+\sum_{i=1}^{s-1} m_{i} S_{i t}+\epsilon_{t}, \quad \epsilon_{t} \sim i i d \tag{1}
\end{equation*}
$$

where s is the number of time periods in a year and the m_{i} are unknown coefficients. Stochastic processes have also been widely used in modelling seasonality, for example the stationary seasonal ARMA

$$
\begin{equation*}
\Phi_{p}\left(L^{s}\right) y_{t}=\Theta_{q}\left(L^{s}\right) \epsilon_{t}, \quad \epsilon_{t} \sim i i d \tag{2}
\end{equation*}
$$

where $\Phi_{p}\left(L^{s}\right)$ and $\Theta_{q}\left(L^{s}\right)$ are polynomials in L^{s} (the seasonal lag operator) of orders p and q respectively, with the zeros of $\Phi_{\mathrm{p}}\left(\mathrm{L}^{5}\right)$ outside the unit circle and the zeros of $\Theta_{q}\left(L^{s}\right)$ outside or on the unit circle. If moreover the zeros of $\Theta_{q}\left(L^{s}\right)$ are strictly outside the unit circle, (2) can be written as an infinite autoregression

$$
\begin{equation*}
\rho\left(L^{s}\right) y_{t}=\epsilon_{t}, \quad \epsilon_{t} \sim \text { iid } \tag{3}
\end{equation*}
$$

with all roots of $\rho\left(\mathrm{L}^{s}\right)=0$ outside the unit circle, some of them in complex pairs with seasonal periodicities. As an alternative to (1) and (2), it may be appropriate to allow for stochastic seasonal nonstationarity, as is implicit in the practice of seasonal differencing (see eg. Box and Jenkins (1970)) whereby the operator $1-L^{s}$ produces a stationary weakly dependent sequence. For example, for quarterly data $\rho\left(L^{s}\right)=1-L^{4}$ can be factored as $(1-L)(1+L)\left(1+L^{2}\right)$, containing four zeros of modulus unity: one at zero frequency; one at two cycles per year, corresponding to frequency π; and two complex pairs at one cycle per year, corresponding to frequencies $\pi / 2$ and $3 \pi / 2$ (of a cycle 2π).

A good deal of empirical work has followed this approach: Hylleberg, Engle, Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal unit roots in quarterly U.K. nondurable consumption and disposable income, using a procedure that allows tests for unit roots at some seasonal frequencies without maintaining their presence at all such frequencies. This procedure allows inclusion of a constant, seasonal dummies and/or a time trend. Beaulieu and Miron (1993) extended the HEGY procedure to monthly data and examined twelve U.S. macroeconomic series in monthly and quarterly data. By contrast with previous studies, they concluded that evidence in favour of a seasonal unit root was weak. These findings have been seriously questioned by Hylleberg, Jorgensen and Sorensen (1993), who concluded that seasonality is in many cases variable, not fixed. Hylleberg, Engle, Granger and Lee (1993) (henceforth HEGL) performed the HEGY test on quarterly series of Japanese real
consumption and real disposable income, suggesting that income is integrated of order $1(\mathrm{I}(1))$ at 0 and all seasonal frequencies, $\pi / 2, \pi$ and $3 \pi / 2$, and consumption is $\mathrm{I}(1)$ at frequencies 0 and π, while some difficulty was found in separating unit roots at frequency $\pi / 2$ (and $3 \pi / 2$) from a deterministic seasonal pattern. Osborn (1993) suggested that a nonstationary periodic $\operatorname{AR}(1)$ or a periodically integrated $\mathrm{I}(1)$ processes could better be more useful.

Seasonal unit roots can be viewed not only in an autoregressive framework but also as a particular case of seasonal fractionally integrated processes. Consider the process

$$
\begin{equation*}
\left(1-L^{s}\right)^{d} y_{t}=u_{t} \tag{4}
\end{equation*}
$$

where $\mathrm{d}>0$ and u_{t} is an $\mathrm{I}(0)$ series, which is defined as a covariance stationary process with spectral density bounded and bounded away from zero at all frequencies. Clearly, y_{t} has s roots of modulus unity, all with the same integration order d. (4) can be extended to present different integration orders for each seasonal frequency, whereas y_{t} is stationary if all orders are smaller than $1 / 2$. We say that y_{t} has seasonal long memory at a given frequency if the integration order at that frequency is greater than zero. A seasonal series might also display only a single root at a particular frequency. For example, an integrated process with a single root at two cycles per year is:

$$
\begin{equation*}
(1+L)^{d} y_{t}=u_{t} \tag{5}
\end{equation*}
$$

and at one cycle per year:

$$
\begin{equation*}
\left(1+L^{2}\right)^{d} y_{t}=u_{t} . \tag{6}
\end{equation*}
$$

Thus, if u_{t} is $I(0)$ and $0<d<1 / 2, y_{t}$ will in both cases be covariance stationary with spectral density unbounded at frequency π in (5), and at frequencies $\pi / 2$ and $3 \pi / 2$ (of a cycle 2π) in (6).

Few empirical studies have been carried out in relation to seasonal fractional models. The notion of fractional Gaussian noise with seasonality was suggested by Jonas (1981) and extended in a Bayesian framework by Carlin, Dempster and Jonas (1985) and Carlin and Dempster (1989). Porter-Hudak (1990) applied a seasonal fractionally integrated model to quarterly U.S. monetary aggregate with the conclusion that a fractional ARMA model could be more appropriate than standard ARIMAs. Advantages of seasonal fractionally differencing models for forecasting monthly data are illustrated in Sutcliffe (1994), and another empirical application is found in Ray (1993).

In the following section we briefly describe some common tests for seasonal integration, and compare them with Robinson's (1994) tests for nonstationary hypotheses which permit testing of seasonal fractional integration of any stationary or nonstationary degree. Section 3 describes models to be tested, using Robinson's (1994) approach, to macroeconomic data of United Kingdom (Section 4) and Japan (Section 5) analyzed in HEGY (1990) and HEGL (1993) respectively. Section 6 contains some concluding remarks.

2. Tests for seasonal integration

We first consider the Dickey, Hasza and Fuller (DHF) (1984) test of ρ_{s} $=1 \mathrm{in}$

$$
\begin{equation*}
\left(1-\rho_{s} L^{s}\right) y_{t}=\epsilon_{t}, \quad \epsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right) \tag{7}
\end{equation*}
$$

The test is based on the auxiliary regression

$$
\begin{equation*}
\left(1-L^{s}\right) y_{t}=\pi y_{t-s}+\epsilon_{t} \tag{8}
\end{equation*}
$$

the test statistic being the t-ratio corresponding to π in (8). Due to the nonstandard asymptotic distributional properties of the t-ratios under the null hypothesis, DHF (1984) provide the simulated critical values for testing against the alternative $\pi<0$. In order to whiten the errors in (8), the auxiliary regression may be augmented by lagged $\left(1-L^{5}\right) y_{t}$, and with deterministic components, but unfortunately this changes the distribution of the test statistic. A limitation of DHF (1984) is that it jointly tests for roots at zero and seasonal frequencies, and therefore does not allow for unit roots at some but not all seasonal frequencies.

This defect is overcome by HEGY (1990) for the quarterly case. Their test is based on the auxiliary regression

$$
\begin{equation*}
\left(1-L^{4}\right) y_{t}=\pi_{1} y_{1 t-1}+\pi_{2} y_{2 t-1}+\pi_{3} y_{3 t-2}+\pi_{4} y_{3 t-1}+\epsilon_{t} \tag{9}
\end{equation*}
$$

where $y_{1 t}=\left(1+L+L^{2}+L^{3}\right) y_{t}$ removes the seasonal unit roots but leaves in the zero frequency unit root, $y_{2 t}=-\left(1-L+L^{2}-L^{3}\right) y_{t}$ leaves the root at π and $y_{3 t}=-\left(1-L^{2}\right) y_{t}$ leaves the roots at $\pi / 2$ and $3 \pi / 2$. The existence of unit roots at $0, \pi, \pi / 2$ (and $3 \pi / 2$) implies that $\pi_{1}=0, \pi_{2}=0$, and $\pi_{3}=\pi_{4}=0$ respectively. The t-ratio for π_{1} and π_{2} is shown by HEGY to have the familiar Dickey-Fuller distribution (see Fuller (1976)) under the null of $\pi_{1}=0$ and $\pi_{2}=0$ respectively, while the t-ratio for π_{3}, conditioned on $\pi_{4}=0$ has the distribution described by DHF (1984) for
$\mathrm{s}=2$. Also a joint test of $\pi_{3}=\pi_{4}=0$ is proposed based on the F-ratio, and the critical values of the distribution tabulated. A crucial fact in these tests is that the same limiting distributions are obtained when it is not known a priori that some of the π 's are zero: if the π 's other than the one to be tested are truly nonzero, then the process does not have unit roots at these frequencies and the corresponding y's are stationary. The regression is therefore equivalent to a standard augmented unit-root test. If however some of the other π 's are zero, there are other unit roots in the regression, but the corresponding y's are now asymptotically uncorrelated and the null distribution of the test statistic will not be affected by the inclusion of a variable with a zero coefficient which is orthogonal to the included variables. As in DHF (1984), the auxiliary regression has to be augmented by lagged dependent variables in order to whiten the errors, and deterministic components can be introduced in the auxiliary regression (9), though again the distribution changes. An extension of this procedure to allow joint HEGY-type tests for the presence of unit roots at zero and all seasonal frequencies, and only for the seasonal frequencies, is given in Ghysels et al. (1994). It is shown that the test statistics will have the same limiting distribution as the sum of the corresponding squared t-ratios for $\pi_{i}(i=1,2,3,4)$ in the former, and $\pi_{\mathrm{i}}(\mathrm{i}=2,3,4)$ in the latter test.

All these procedures test for a unit root in the seasonal AR operator and have stochastic nonstationarity as the null hypothesis. Canova and Hansen (1995) seasonally extend the test of Kwiatkowski et al. (1992), and propose a^{-} Lagrange multiplier test (the CH test) based on the residuals from a regression extracting the seasonal and other deterministic components, for testing the null of stationarity about a deterministic seasonal pattern. Hylleberg (1995) compares small sample properties of the HEGY and CH tests for seasonal unit roots in quarterly series, concluding that both tests complement each other. More recently, Tam and Reinsel (1996) propose a test for a unit root in the seasonal \odot_{\odot} MA operator, testing a deterministic seasonal null against a stochastic nonstationary alternative. They consider the (integrated) SMA(1) model,

$$
\begin{array}{ll}
y_{t}=\mu_{t}+\epsilon_{t}, & t=1-s, \ldots 0 \\
\left(1-L^{s}\right) y_{t}=\left(1-\alpha L^{s}\right) \epsilon_{t}, & t=1,2, \ldots \tag{11}
\end{array}
$$

where μ_{t} is a deterministic seasonal mean, so that $\mu_{\mathrm{t}}-\mu_{\mathrm{t}-\mathrm{s}}=0$, and ε_{t} is, initially, a white noise process. Thus, a test of $\alpha=1$ in (11) can be interpreted as a test of deterministic seasonality against the alternative $\alpha<1$ of stochastic integrated seasonality. The test can be extended to allow ε_{t} to be a stationary and invertible ARMA, and also to allow for a deterministic linear trend in y_{t}, leading to a different nonstandard null limit distribution.

The tests described above consider the possibility of only a single form of seasonal stochastic nonstationarity, in particular, unit roots. We now describe the tests of Robinson (1994), which can test any integer or fractional root of any order on the unit circle in the complex plane.

We observe $\left\{\left(\mathrm{y}_{\mathrm{y}}, \mathrm{z}_{\mathrm{i}}\right), \mathrm{t}=1,2, \ldots, \mathrm{n}\right\}$ where

$$
\begin{array}{ll}
y_{t}=\beta^{\prime} z_{t}+x_{t}, & t=1,2, \ldots, \\
\rho(L ; \theta) x_{t}=u_{t}, & t=1,2, \ldots, \\
x_{t}=0, & t \leq 0, \tag{14}
\end{array}
$$

where β is a (kxl) vector of unknown parameters and z_{t} is a (kxl) vector of deterministic variables that might include an intercept, a time trend and/or seasonal dummies; $\rho(L ; \theta)$, a prescribed function of L and the unknown (px1) parameter vector θ, will depend on the model tested; u_{t} is an $I(0)$ process with parametric spectral density

$$
f(\lambda ; \tau)=\frac{\sigma^{2}}{2 \pi} g(\lambda ; \tau), \quad-\pi<\lambda \leq \pi
$$

where the positive scalar σ^{2} and the ($\mathrm{q} \times 1$) vector τ are unknown, but g is of known form.

In general we wish to test the null hypothesis

$$
\begin{equation*}
\mathbf{H}_{o}: \theta=\mathbf{0} \tag{15}
\end{equation*}
$$

Under (15), the residuals are

$$
\tilde{u}_{t}=\rho(L) y_{t}-\tilde{\beta}^{\prime} w_{t}, \quad t=1,2, \ldots,
$$

where

$$
\rho(L)=\rho(L ; 0), \quad \tilde{\beta}=\left(\sum_{t=1}^{n} w_{t} w_{t}^{\prime}\right) \sum_{t=1}^{n} w_{t} \rho(L) y_{t}, \quad w_{t}=\rho(L) z_{t} .
$$

Unless g is completely known function (eg. $\mathrm{g} \equiv 1$, as when u_{t} is white noise) we have to estimate the nuisance parameter vector τ, for example by

$$
\begin{equation*}
\hat{\tau}=\operatorname{argmin}_{\tau \in T} \sigma^{2}(\tau) \tag{16}
\end{equation*}
$$

where T is a suitable subset of R^{q} and

$$
\sigma^{2}(\tau)=\frac{2 \pi}{n} \sum_{j=1}^{n-1} g\left(\lambda_{j} ; \tau\right)^{-1} I\left(\lambda_{j}\right)
$$

where

$$
I(\lambda)=\left|(2 \pi n)^{-1 / 2} \sum_{t=1}^{n} \tilde{u}_{t} e^{i t \lambda}\right|^{2}, \quad \lambda_{j}=\frac{2 \pi j}{n}
$$

The test statistic, derived from the Lagrange multiplier (LM) principle is

$$
\begin{equation*}
\hat{R}=\frac{n}{\hat{\sigma}^{4}} \hat{a}^{\prime} \hat{A}^{-1} \hat{a}=\hat{r}^{\prime} \hat{r} \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{r}=\frac{n^{1 / 2}}{\hat{\sigma}^{2}} \hat{A}^{-1 / 2} \hat{a}, \quad \hat{\sigma}^{2}=\sigma^{2}(\hat{\tau}), \quad \hat{a}=\frac{-2 \pi}{n} \sum_{j}^{*} \psi\left(\lambda_{j}\right) g\left(\lambda_{j} ; \hat{\tau}\right)^{-1} I\left(\lambda_{j}\right), \\
& \hat{A}=\frac{2}{n}\left(\sum_{j}^{*} \psi\left(\lambda_{j}\right) \Psi\left(\lambda_{j}\right)^{\prime}-\sum_{j}^{*} \Psi\left(\lambda_{j}\right) \hat{\epsilon}\left(\lambda_{j}\right)^{\prime}\left(\sum_{j}^{*} \hat{\epsilon}\left(\lambda_{j}\right) \hat{\epsilon}\left(\lambda_{j}\right)^{\prime}\right)^{-1} \sum_{j}^{*} \hat{\epsilon}\left(\lambda_{j}\right) \Psi\left(\lambda_{j}\right)^{\prime}\right), \\
& \psi\left(\lambda_{j}\right)=\operatorname{Re}\left(\frac{\partial}{\partial \theta} \log \rho\left(e^{i \lambda_{j}} ; 0\right)\right), \quad \hat{\epsilon}\left(\lambda_{j}\right)=\frac{\partial}{\partial \tau} \log g\left(\lambda_{j} ; \hat{\tau}\right)
\end{aligned}
$$

and \sum_{j}^{*} is a sum over λ_{j} such that $-\pi<\lambda_{j}<\pi . \quad \lambda_{j} \notin\left(\rho_{1}-\lambda_{1}, \rho_{1}+\lambda_{1}\right), 1=1,2, \ldots, \mathrm{~s}$,, such that $\rho_{1} l=1,2, \ldots, s<\infty$ are the distinct poles of $\rho(\mathrm{L})$. Note that $\hat{\mathrm{R}}$ is a function of the hypothesized differenced series which has short memory under (15) and thus, we must specify the frequencies and integration orders of any seasonal roots.

Robinson (1994) established under regularity conditions that

$$
\begin{equation*}
\hat{R} \rightarrow_{d} \chi_{p}^{2} \quad \text { as } n \rightarrow \infty, \tag{18}
\end{equation*}
$$

and also the Pitman efficiency property of LM in standard problems. If $\mathrm{p}=1$, an approximate one-sided $100 \alpha \%$ level test of (15) against alternatives

$$
\begin{equation*}
\mathbf{H}_{1}: \theta>0 \tag{19}
\end{equation*}
$$

rejects H_{0} if $\hat{\mathrm{r}}>\mathrm{z}_{\alpha}$, where the probability that a standard normal variate exceeds z_{α} is α, and conversely, a test of (15) against alternatives

$$
\begin{equation*}
\mathbf{H}_{1}: \quad \theta<0 \tag{20}
\end{equation*}
$$

rejects H_{o} if $\hat{\mathrm{r}}<-\mathrm{z}_{\alpha}$. A test against the two-sided alternative $\theta \neq 0$, for any p , rejects if $\hat{\mathrm{R}}$ exceeds the upper critical value of the $\chi_{\mathrm{p}}{ }^{2}$ distribution.

We can compare Robinson's (1994) tests with those in HEGY (1990). Extending (9) to allow augmentations of the dependent variable to render the errors white noise, and deterministic paths, the auxiliary regression in HEGY (1990) is

$$
\begin{equation*}
\phi(L)\left(1-L^{4}\right) y_{t}=\pi_{1} y_{1 t-1}+\pi_{2} y_{2 t-1}+\pi_{3} y_{3 t-2}+\pi_{4} y_{3 t-1}+\eta_{t}+\epsilon_{t}, \tag{21}
\end{equation*}
$$

where $\phi(\mathrm{L})$ is a stationary lag polynomial and η_{t} is a deterministic process that might include an intercept, a time trend and/or seasonal dummies. If we cannot reject the null hypothesis $\pi_{1}=0$ against the alternative $\pi_{1}<0$ in (21), the process will have a unit root at zero frequency whether or not other (seasonal) roots are present in the model. In Robinson's (1994) tests, taking (13) with

$$
\begin{equation*}
\rho(L ; \theta)=(1-L)^{d+\theta} \tag{22}
\end{equation*}
$$

with $\mathrm{d}=1$, (15) implies a single unit root at zero frequency. However, we could have instead

$$
\begin{equation*}
\rho(L ; \theta)=\left(1-L^{2}\right)^{d+\theta} \tag{23}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\rho(L ; \theta)=\left(1-L+L^{2}-L^{3}\right)^{d+\theta} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho(L ; \theta)=\left(1-L^{4}\right)^{d+\theta} \tag{25}
\end{equation*}
$$

If again $d=1$, under (15), x_{t} displays unit roots at frequencies zero and π in (23); zero and two complex ones corresponding to frequencies $\pi / 2$ and $3 \pi / 2$ in (24), or all of them in (25). Using HEGY's (1990) tests, the non-rejection of the null $\pi_{2}=0$ in (21) will imply a unit root at frequency π independently of other possible roots, and this can be consistent with (12)-(14) jointly with (23) or (25) among other possibilities covered by Robinson's (1994) tests. Furthermore, testing sequentially, (or jointly as in Ghysels et al. (1994)), the different null hypotheses in (21), if we cannot reject that $\pi_{i}=0$ for $i=1,2,3$ and 4 , the overall null hypothesized model in HEGY (1990) becomes:

$$
\begin{equation*}
\phi(L)\left(1-L^{4}\right) y_{t}=\eta_{t}+\epsilon_{t}, \quad t=1,2, \ldots, \tag{26}
\end{equation*}
$$

and we can compare it with the set-up in Robinson (1994), using (12)-(14) and (25) with

$$
\begin{equation*}
\phi(L) u_{t}=\epsilon_{t}, \quad t=1,2, \ldots \tag{27}
\end{equation*}
$$

which, with $\mathrm{d}=1$, under the null (15), becomes

$$
\begin{equation*}
\phi(L)\left(1-L^{4}\right) y_{t}=\phi(L) \beta^{\prime}\left(1-L^{4}\right) z_{t}+\epsilon_{t}, \quad t=1,2, \ldots \tag{28}
\end{equation*}
$$

Clearly, if we do not include explanatory variables in (12) and (21), (i.e. $\eta_{t}=$ $\mathrm{z}_{\mathrm{t}} \equiv 0$), (28) becomes (26), and including regressors, the difference between the two models will be due purely to deterministic components. Similarly, if we cannot reject $\pi_{1}=\pi_{2}=0$ but reject $\pi_{3}=\pi_{4}=0$ in (21), a plausible model in HEGY (1990) would be

$$
\begin{equation*}
\phi(L)\left(1-L^{2}\right) y_{t}=\eta_{t}+\epsilon_{t}, \quad t=1,2, \ldots, \tag{29}
\end{equation*}
$$

and the corresponding setting in Robinson's (1994) tests would be (12)-(14) and (27) with

$$
\rho(L ; \theta)=\left(1-L^{2}\right)^{1+\theta} .
$$

Robinson's (1994) tests allow testing different integration orders for each of the seasonal frequencies. Thus, instead of (25) we could consider for instance,

$$
\begin{equation*}
\rho(L ; \theta)=(1-L)^{d_{1}+\theta_{1}}(1+L)^{d_{2}+\theta_{2}}\left(1+L^{2}\right)^{d_{3}+\theta_{3}} \tag{30}
\end{equation*}
$$

and test the null $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)^{\prime}=0$ for different values of d_{1}, d_{2} and d_{3}. This possibility is also ruled out in HEGY (1990) and the other tests presented above, which just concentrate on the unit root situations.

We can also compare the tests of Robinson (1994) with those in Tam and Reinsel (1996), who considered

$$
\begin{array}{ll}
y_{t}=\mu_{t}+u_{t}, & t=1-s, \ldots 0, \\
\left(1-L^{s}\right) y_{t}=\left(1-\alpha L^{s}\right) u_{t}, & t=1,2, \ldots, \tag{32}
\end{array}
$$

where μ_{t} is as in (10), (i.e., $\mu_{t}-\mu_{t-s}=0$), and u_{t} is a stationary and invertible ARMA process. They tested

$$
\begin{equation*}
\mathbf{H}_{0}: \alpha=1 \tag{33}
\end{equation*}
$$

in (32) against the alternative $\alpha<1$. The non-rejection of (33) in (31) and (32) would imply that y_{t} follows a deterministic seasonal pattern plus a stationary stochastic process, (i.e., like (31) with $t=1,2, .$.), while its rejection would be evidence of seasonal integration. We can take fractional operators instead of the AR and MA ones in (32):

$$
\begin{equation*}
\left(1-L^{s}\right)^{d} y_{t}=\left(1-L^{s}\right)^{r} u_{t}, \quad t=1,2 \ldots \tag{34}
\end{equation*}
$$

with $\mathrm{d}>0$, and given the common factors appearing in both sides in (34), calling $\delta=\gamma-\mathrm{d}$, the model can be rewritten as (31) with

$$
\begin{equation*}
\left(1-L^{s}\right)^{8} y_{t}=u_{t}, \quad t=1,2, \ldots \tag{35}
\end{equation*}
$$

and we can test

$$
\begin{equation*}
\mathbf{H}_{0}: \delta=0, \tag{36}
\end{equation*}
$$

against the alternative $\delta>0$. Thus (32) and (35) are identical under the null. The null and alternative versions of (35) are covered by Robinson's (1994) setting, with $\beta^{\prime} z_{1}$ in (12) replaced by μ_{v}, and $\mathrm{s}=4, \mathrm{~d}=0$ and $\theta=\delta$ in (25).

The null χ^{2} limit distribution of Robinson's (1994) tests is constant across specifications of $\rho(L ; \theta)$ and z_{t} and thus does not require case by case evaluation of a nonstandard distribution, unlike of the other tests described. Ooms (1997) proposes Wald tests based on Robinson's (1994) model in (12)-(14), which have the same limit behaviour as LM tests of Robinson (1994), but require efficient estimates of the fractional differencing parameters. He suggests a modified periodogram regression estimation procedure of Hassler (1994), whose distribution is evaluated under simulation. Robinson's (1994) tests are applied to non-seasonal data by Gil-Alaña and Robinson (1997), and given the vast amount of empirical work based on AR structures, an empirical study of fractional based tests for seasonal data seems overdue.

3. Empirical applications

The relationship between consumption and income is arguably one of the most important in macroeconomics. The most influential and perhaps most widely tested view of this relationship is the permanent income hypothesis (see Hall (1989)). We concentrate on the univariate treatment of these two variables,
and apply different versions of Robinson's (1994) tests to some seasonally unadjusted, quarterly data for United Kingdom and Japan, using the same datasets as in HEGY (1990) and HEGL (1993) respectively.

For both countries we follow the same procedure. We test (15) in a version of (12),

$$
\begin{equation*}
y_{t}=\beta_{1}+\beta_{2} t+\beta_{3} S_{1 t}+\beta_{4} S_{2 t}+\beta_{5} S_{3 t}+x_{t}, \quad t=1,2, \ldots \tag{37}
\end{equation*}
$$

with (13) and (14), where $S_{1 t}, S_{2 t}$ and $S_{3 t}$ are seasonal dummies. We test in a sequential fashion. Since the data are quarterly, we start by assuming that x_{t} in (37) has four roots and take $\rho(L ; \theta)$ as in (25). Given that θ is scalar, we test H_{0} (15) against the one-sided alternatives (19) and (20). In order to allow different integration orders at different frequencies we also consider

$$
\begin{equation*}
\rho(L ; \theta)=\left(1-L^{2}\right)^{d_{1}+\theta_{1}}\left(1+L^{2}\right)^{d_{2}+\theta_{2}} \tag{38}
\end{equation*}
$$

and more generally, (30). Therefore, $\theta=\left(\theta_{1}, \theta_{2}\right)$, under (38) and $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$, under (30) and we test here (15) against the two-sided alternative $\theta \neq 0$. Clearly, when departures are actually of the specialized form (25), a test of (15) directed against (25) will have greater power than ones directed against (38) or (30), but the tests have power against a wider range of alternatives.

Following this sequential way of testing we next assume x_{t} displays only three roots: two of them complex, corresponding to frequencies $\pi / 2$ and $3 \pi / 2$, and one real that might be either at zero or at frequency π. Thus, we perform the tests in case of (24) and

$$
\begin{equation*}
\rho(L ; \theta)=\left(1+L+L^{2}+L^{3}\right)^{d+\theta} \tag{39}
\end{equation*}
$$

and extending now the tests to allow different integration orders at the complex and at the real roots, we also consider two-sided tests where

$$
\begin{equation*}
\rho(L ; \theta)=(1-L)^{d_{1}+\theta_{1}}\left(1+L^{2}\right)^{d_{2}+\theta_{2}} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(L ; \theta)=(1+L)^{d_{1}+\theta_{1}}\left(1+L^{2}\right)^{d_{2}+\theta_{2}} . \tag{41}
\end{equation*}
$$

In a further group of tests, we assume the hypothesized model contains only two roots, one at zero frequency and the other at π. Again we look first at one-sided tests against (23) and then at two-sided tests against

$$
\begin{equation*}
\rho(L ; \theta)=(1-L)^{d_{1}+\theta_{1}}(1+L)^{d_{2}+\theta_{2}} . \tag{42}
\end{equation*}
$$

Finally we consider the possibility of a single root (or perhaps two complex ones), and therefore look at (22) as well as

$$
\begin{equation*}
\rho(L ; \theta)=(1+L)^{d+\theta}, \tag{43}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
\rho(L ; \theta)=\left(1+L^{2}\right)^{d+\theta} . \tag{44}
\end{equation*}
$$

The form of \hat{A} for these various choices of ρ is derived in the appendix. It is found that \hat{A}, interestingly, does not vary with the null hypothesized integration order d or integration orders d_{i}, clearly facilitating the computations. In all these cases the tests will be performed for different model specifications in (37). First we assume that $\beta_{\mathrm{i}} \equiv 0$ a priori; next $\beta_{\mathrm{i}}=0, \mathrm{i} \geq 2$, (including an intercept); next $\beta_{\mathrm{i}}=0, \mathrm{i} \geq 3$, (a time trend); next $\beta_{2}=0$, (an intercept and dummy variables); finally that all β_{i} are unknown. In all cases we consider a wide range of null hypothesized d (and d_{i} 's when $\mathrm{p}>1$), from 0.50 through 2.25 with 0.25 increments, and white noise u_{v}, though in some cases of interest we extend to $\mathrm{I}(0)$ parametric autocorrelation in u_{v}, allowing seasonal or non-seasonal AR structure. Clearly, non-rejections of (15) when d (and the d_{i} 's) equal 1 imply unit roots, and non-rejections with $\mathrm{d}=0$ will suggest deterministic models of form advocated by Tam and Reinsel (1996).

4. The U.K. case

We analyze the quarterly United Kingdom dataset used in HEGY (1990). c_{t} is \log consumption expenditure on non-durables and y_{t} is \log personal disposable income, from 1955.1 through 1984.4. The conclusions of HEGY (1990) were that c_{t} could be $\mathrm{I}(1)$ at each of the frequencies $0, \pi / 2$ (and $3 \pi / 2$) and $\pi ; y_{t}$ may contain only two roots, at zero and $\pi ; c_{t}-y_{t}$ can have four unit roots if dummies are not introduced, but two unit roots of the same form as in c_{t} if they are.

Table 1 reports results for the one-sided statistic $\hat{\mathrm{r}}$, when $\rho(\mathrm{L} ; \theta)$ in (13) is (25). First, in Table 1(i), we take u_{1} as a white noise process, and we observe that for the two individual series (c_{t} and y_{t}), the null is never rejected when d $=0.75$ and $\mathrm{d}=1$, and also that $\mathrm{d}=1.25$ is not rejected when we include as regressors an intercept and dummies. For the differenced series $\left(c_{t}-\mathrm{y}_{\mathrm{t}}\right)$, the
values of d where H_{o} is not rejected are slightly smaller ($\mathrm{d}=0.50$ and $\mathrm{d}=0.75$), and we see that the unit root null is clearly rejected in all cases, in favour of less nonstationary alternatives, suggesting that if the two individual series were in fact $\mathrm{I}(1)$, a degree of fractional cointegration may exist for a given cointegration vector ($1,-1$), using a simplistic version of the permanent income hypothesis theory as discussed by Davidson et al. (1978) for instance. The fact that the unit root null is never rejected for c_{t} is consistent with HEGY (1990), but this hypothesis is not rejected for y_{t} while HEGY (1990) found evidence of only two unit roots (at frequencies 0 and π) in this series. Various tests of this hypothesis will be performed later in a further group of tests. Also, HEGL (1990) allowed augmentations incorporating significant lagged values of the series. Thus, we also performed the tests with AR u_{c}. In Tables 1 (ii) and (iii)
(Table 1 about here)
we give results for $\operatorname{AR}(1)$ and $\operatorname{AR}(2) u_{1}$ respectively. Tests allowing higher order AR u_{t} were also performed obtaining similar results. When allowing seasonal AR structures of form $\Phi\left(L^{s}\right) u_{t}=\varepsilon_{1}$, or mixed seasonal/non-seasonal ARs we observed a lack of monotonic decrease in \hat{r} with respect to d in many cases. Such monotonicity is to be expected given correct specification and adequate sample size. In Tables 1 (ii) and (iii) monotonicity is achieved in nearly all cases and the unit root null is always rejected. The non-rejection values are $\mathrm{d}=0.50$ and $\mathrm{d}=0.75$, and in those cases where the former is rejected, always it is in favour of stationary alternatives. The lower integration orders observed in these two tables compared with Table 1(i) can in large part be due to the fact that the AR estimates are Yule-Walker ones, entailing roots that cannot exceed one in absolute value but can be arbitrarily close to it, so they pick up part of the nonstationary component.

Table 2 reports results of the two-sided tests \hat{R} in (17) when θ is (2×1). $\rho(\mathrm{L} ; \theta)$ is now given in (38) and therefore we allow different integration orders for the real and complex roots. We concentrate on the cases of no regressors, an intercept and a time trend. If there are no regressors, H_{0} is rejected in all cases for the individual series and the lowest test statistics are achieved when $\mathrm{d}_{1}=1$ and $\mathrm{d}_{2}=0.5$, indicating perhaps the importance of real roots over complex ones. For $c_{1}-y_{p}$, all non-rejections correspond to values of d_{2} (i.e. the integration order of the complex roots) smaller than d_{1} (i.e. the integration order for the two real roots), and the lowest value is now at $\mathrm{d}_{1}=0.75$ and $\mathrm{d}_{2}=0.50$. Including a constant or a time trend, results are similar in both cases: for c_{b}, all non-rejections occur when $\mathrm{d}_{1}=1.00,1.25$ or 1.50 and when $\mathrm{d}_{2}=0.50$ and 0.75 , with the lowest statistic at $d_{1}=1$ and $d_{2}=0.5$. For y_{t}, we observe only three
non-rejection cases corresponding to $\mathrm{d}_{1}=1.00,1.25$ and 1.50 , with $\mathrm{d}_{2}=0.50$, which might indicate that complex roots are not required when modelling this series, as pointed out in HEGY (1990). For $c_{t}-y_{t}$, there are some more nonrejections, with the lowest value at $d_{1}=0.75$ and $d_{2}=0.5$. Thus, we observe in all these tables a greater degree of integration for real roots than complex ones, and also smaller integration orders for $c_{t}-y_{t}$ than for c_{t} and y_{t}.

(Tables 2 and 3 about here)

In Table 3 we extend these tests to allow different integration orders at zero and π and thus $\rho(\mathrm{L} ; \theta)$ is in (30). The results are consistent with the previous ones: in fact, when there are no regressors, the null hypothesis is always rejected for c_{t} and y_{t} while for $c_{t}-y_{t}$ there are some non-rejections, with the lowest value achieved at $d_{1}=1$ and $d_{2}=d_{3}=0.50$ (i.e. the same alternative as in Table 2). Including a constant or time trend, the lowest value of the statistics occurs when $\mathrm{d}_{1}=1$ and $\mathrm{d}_{2}=\mathrm{d}_{3}=0.50$ for c_{1} and $\mathrm{c}_{\mathrm{t}}-\mathrm{y}_{\mathrm{t}}$, and when $\mathrm{d}_{1}=$ $1.50, \mathrm{~d}_{2}=1.00$ and $\mathrm{d}_{3}=0.50$ for y_{t}. All these results seem to emphasize the importance of the root at zero frequency over the others, given its greater integration order.

Following this sequential way of testing we next assume x_{t} can be modelled with three roots and thus, remove from (25) the root, at zero frequency (in which case $\rho(L ; \theta)$ adopts the forms (39) or (41)), or at π (i.e., $\rho(L ; \theta)$ as in (24) or (40)). Though we do not present the results, they show that H_{0} is rejected in all series and across all cases, indicating the importance of these two roots, as was suggested in HEGY (1990).

In the next group of tables we suppose x_{1} has only two roots, at zero and π. First we take $\rho(L ; \theta)$ as in (23), so the same integration order is assumed at both frequencies. This way of specifying the model is interesting in view of results in HEGY (1990), who suggested that only two unit roots at these frequencies were present in y_{t}, and in some cases for $c_{t}-y_{t}$. Results for white noise u_{t} are given in Table 4(i). Monotonicity is now always achieved and the non-rejection values occur when $d=0.75$ and 1 for c_{t} and y_{t}, and when $d=0.50$ for $c_{t}-y_{t}$, suggesting again the possibility of a fractional cointegration relationship at these two frequencies for the cointegrating vector $(1,-1)$. The hypothesis of two unit roots ($d=1$) is always rejected for c_{t} if we include regressors. These rejections are in line with HEGY (1990),

(Table 4 about here)

who indicated that complex unit roots should be included. For y_{t} we observe that $d=1$ is not rejected in 3 of the 5 possible specifications in (37), which is also consistent with HEGY (1990). If u_{t} follows a seasonal AR (Tables 4(ii) and (iii)), the non-rejections occur for d between 0.50 and 1 for the individual series, but only when $\mathrm{d}=0.50$ there are non-rejections for $\mathrm{c}_{\mathrm{i}}-\mathrm{y}_{\mathrm{t}}$. We observe in these tables more non-rejection cases for y_{t} than for the other two series when testing the unit root null, as is once more consistent with HEGY (1990).

In Table 5 we allow integration orders to differ between zero and π frequencies and thus, $\rho(\mathrm{L} ; \theta)$ is as in (42). If there are no regressors, H_{0} is always rejected and the lowest statistics are obtained at $\mathrm{d}_{1}=1.25$ and $\mathrm{d}_{2}=0.50$ for c_{t} and y_{1}, and at $d_{1}=0.50$ and $d_{2}=1.50$ for $c_{1}-y_{v}$, so if there are no regressors but x_{1} displays two real roots, the root at zero appears more important than the seasonal one for the individual series but the one at π is most important when modelling $c_{t}-y_{t}$. Including a constant or a time trend, the results are consistent with those in Table 4(i), where the only non-rejection case with an intercept or a time trend was $\mathrm{d}=0.75$ for y_{t}. In Table 5 this alternative is narrowly rejected but not $\mathrm{d}_{1}=0.75$ and $\mathrm{d}_{2}=0.50$, and in all the other situations, H_{0} is rejected as in Table 4(i).

(Tables 5 and 6 about here)

Finally we assume x_{t} has only two complex roots, at $\pi / 2$ and $3 \pi / 2$, or a single one either at π or zero. Thus $\rho(\mathrm{L} ; \theta)$ takes the form given in (44), (43) and (22) respectively. As expected, H_{0} is always rejected in the first two cases, given the importance of the root at zero frequency to describe trending behaviour. Table 6 gives results of \hat{r} for white noise u_{t} and $\rho(L ; \theta)$ as in (22), and we observe here that if there are no regressors, the $I(1)$ null is not rejected for c_{t} and y_{t}, but is strongly rejected for $c_{t}-y_{t}$ with stationary alternatives (d < © 0.5) being more plausible. There are few non-rejections in this table and they correspond to values of d ranging between 0.50 and 1 for the individual series. For $c_{t}-y_{v}$, the only two non-rejection cases occur at $d=0.50$ if dummies are included, but for the remaining specifications, this null is strongly rejected in favour of stationary alternatives. The fact that the unit root is rejected in this table for all series when some regressors are included in (37) is consistent with HEGY (1990), who suggest the need of at least one seasonal unit root.

Summarizing now the main results obtained in the U.K. case, we can say that if x_{t} in (37) is $I(d)$ with four roots of the same order and u_{t} is white noise, the values of d where the null is not rejected range between 0.75 and 1 for the individual series and are slightly smaller for the difference $c_{t}-y_{t}$. If u_{t} is AR, d
ranges between 0.50 and 0.75 for the three series considered. Allowing different integration orders at each frequency, we observe that the root at zero frequency seems more important than the seasonal ones, and the seasonal root at π appears also more important than the two complex ones at $\pi / 2$ and $3 \pi / 2$. Modelling x_{t} as an integrated process with three roots, the null is strongly rejected when the excluded root is at zero. If the excluded root is the real seasonal π, the null is also rejected in practically all cases, suggesting the importance of these two roots. If we take x_{t} as $I(d)$ with two real roots, the model seems more appropriate for y_{t} than for c_{t} or $c_{t}-y_{t}$, which is in line with results in HEGY (1990). Finally, modelling x_{t} as fractionally integrated with a single root at zero frequency, the range of d where H_{0} is not rejected goes from 0.50 to 1 for the individual series but close to stationarity for $c_{t}-y_{t}$, but using a single seasonal root at frequency π or a pair of complex ones at frequencies $\pi / 2$ and $3 \pi / 2$ seems inappropriate in view of the great proportion of rejections.

5. The Japanese case

We analyze here the \log of total real consumption $\left(c_{t}\right)$, the \log of real disposable income $\left(y_{t}\right)$, and the difference between them $\left(c_{t}-y_{t}\right)$ in Japan from 1961.1 to 1987.4 in 1980 prices. These series have been analyzed in HEGL (1993) to test the presence of seasonal integration and cointegration. In this work (and in an earlier version (HEGL (1991)), they apply the HEGY (1990) tests to these data and their conclusions can be summarized as follows: for c_{t}, integration is obtained at all frequencies $0, \pi / 2,3 \pi / 2$ and π if there are no regressors in the model or if only a time trend is included; however, if dummies are also included, only two unit roots are observed, one at zero frequency and one at frequency π. For y_{t}, unit roots are not rejected at any frequency when there are no regressors or when a time trend and/or dummies are introduced, but if only an intercept is included the unit root at zero frequency is rejected. Finally, for $c_{t}-y_{t}$, unit root nulls are not rejected at any frequency, independently of the regressors used.

Table 7 is analogous to Table 1 , showing the one-sided test statistic $\hat{\mathrm{r}}$ when $\rho(\mathrm{L} ; \theta)$ in (13) takes the form (25). Table 7(i) reports results for white noise u_{t}, and the first thing that we observe is that if $\beta_{i} \equiv 0$ in (37), we cannot reject (15) for $d=0.75$ and $d=1$ in either c_{t} or y_{t}, while in $c_{t}-y_{t}$, these two cases are also not rejected, along with $\mathrm{d}=0.50$. When regressors such as an intercept, a trend or seasonal dummies are included, the unit root hypothesis is rejected in both series in favour of more nonstationary alternatives ($\mathrm{d}>1$), but in some cases we observe a lack of monotonicity with respect to d, in particular
when we include an intercept, and an intercept and dummies for c_{v}, and an intercept and dummies for y_{t}. Looking at $c_{t}-y_{t}$, monotonicity is now always achieved and the nulls of $\mathrm{d}=0.75$ and $\mathrm{d}=1$ are never rejected. We could conclude from this table that if $\rho(\mathrm{L} ; \theta)=1-\mathrm{L}^{4}$, and u_{t} is in fact white noise, the two individual series are clearly nonstationary with d greater than 1 in most cases; however their difference seems less nonstationary (with $\mathrm{d} \leq 1$), suggesting that some fractional cointegration could exist between both series, for the cointegrating vector $(1,-1)$. The fact that $d=1$ is not rejected for c_{t} and y_{t} when there are no regressors, and for $c_{1}-y_{t}$ independently of the regressors used in (37), is consistent with the results in HEGL (1993) though they allow AR structure in the differenced series. Therefore in Tables 7(ii) and (iii) we suppose that u_{t} in (13) is an $\operatorname{AR}(\mathrm{q})$ with $\mathrm{q}=1$ and 2. Monotonicity is now observed in many cases, especially for $c_{t}-y_{t}$. The range of non-rejection values of d goes from 0.50 through 1 for c_{t} and $c_{1}-y_{t}$, and from 0.50 through 1.25 for y_{t}. When $\mathrm{d} \gg$ $1.25, \mathrm{H}_{0}$ is rejected in all cases where monotonicity is achieved. As we explained before for the U.K. case, this smaller degree in the integration order

(Table 7 about here)

of the series (compared with Table 7(i)), could be in large part due to competition between integration order and AR parameters in describing the nonstationary component. If we concentrate on the $\operatorname{AR}(1)$, we see that the unit root is not rejected for y_{t} but is for c_{t} when dummy variables are included in the model, again in line with HEGL (1993).

So far we have assumed that the four roots in x_{t} must have the same integration order. In the following tables we allow integration orders to differ between complex roots and real ones. Table 8 corresponds to two-sided tests when $\rho(\mathrm{L} ; \theta)$ in (13) takes the form given in (38) and we present results for β_{i} $\equiv 0, \beta_{\mathrm{i}}=0, \mathrm{i} \geq 2$, and finally $\beta_{\mathrm{i}}=0, \mathrm{i} \geq 3$. When there are no regressors, the null is rejected in all cases for both c_{t} and y_{t} with the lowest value of the statistics achieved when $\mathrm{d}_{1}=1$ and $\mathrm{d}_{2}=0.50$, suggesting that perhaps the complex roots are not required and only two roots (at frequencies zero and π) are needed. Looking at $\mathrm{c}_{1}-\mathrm{y}_{\mathrm{v}}$, we observe some non-rejection cases: if $\mathrm{d}_{1}=\mathrm{d}_{2}$, the null is not rejected when the integration order is $0.50,0.75$ and 1 . These three possibilities were not rejected in Table 7(i) when we considered the onesided tests, but the lowest test statistics are now achieved when $d_{1}=0.75$ and $\mathrm{d}_{2}=0.50$. Including an intercept or a time trend, we observe now some nonrejections for c_{t} and y_{t}. Starting with c_{v}, H_{0} is not rejected when $d_{1}=1.25$ or 1.50 and $\mathrm{d}_{2}=0.50,0.75$ or 1 , observing therefore a greater degree of integration at zero and π frequencies than at $\pi / 2$ and $3 \pi / 2$. Similarly, for y_{t}, all non-
rejections occur when d_{1} is slightly greater than d_{2}, and for $c_{1}-y_{1}$, the lowest test statistics are obtained at $d_{1}=d_{2}=0.75$. The null hypothesis of a unit root at all frequencies $\left(d_{1}=d_{2}=1\right)$ is not rejected in this series which is again consistent with Table 7(i) and with results given in HEGL (1993).

(Tables 8 and 9 about here)

In Table 9 we are slightly more general in the specification of $\rho(L ; \theta)$ in (13), and a different integration order is allowed at each frequency. Therefore $\rho(L ; \theta)$ takes the form (30) and again in this table, we present results for cases of no regressors, an intercept, and a time trend, with white noise u_{t}. Similarly to Table 8, when there are no regressors the null is always rejected for the individual series with the lowest value obtained at $d_{1}=1.50$ and $d_{2}=d_{3}=0.50$, indicating therefore the importance of the root at zero frequency. For $c_{t}-y_{t}$ there are non-rejections at some alternatives with the lowest value obtained at $d_{1}=$ $1.50, d_{2}=0.50$ and $d_{3}=1$, but the case of $d_{1}=d_{2}=d_{3}=1$ is rejected. Finally, including an intercept or a time trend, the results are similar in both cases. For c_{v}, the lowest test statistic is obtained when $d_{1}=1.50, \mathrm{~d}_{2}=1.00$ and $\mathrm{d}_{3}=0.50$; for y_{t}, when $\mathrm{d}_{1}=1.50$, and $\mathrm{d}_{2}=\mathrm{d}_{3}=1.00$, and for $\mathrm{c}_{\mathrm{t}}-\mathrm{y}_{\mathrm{t}}$, when $\mathrm{d}_{1}=1.00, \mathrm{~d}_{2}=$ 0.50 and $\mathrm{d}_{3}=1.00$. All these results corroborate the importance of the root at zero frequency over the others for the three series.

Performing the tests under the assumption that $\rho(L ; \theta)$ is of forms (24) or (39)-(41), we always rejected. Thus, following this sequential way of performing the tests, we next assume that x_{1} has only two roots, one at zero frequency and the other at π. First we take $\rho(L ; \theta)$ as in (23), so θ consists of a single parameter. Tables 10 (i)-(iii) give results for one-sided tests with white noise and seasonal AR u_{t}. In Table $10(i)$ we observe that monotonicity is always achieved, though the results are quite variable across the different specifications of (37). Starting with c_{v}, if there are no regressors, the nonrejection values of d range between 0.75 and 1.25 ; when a time trend is considered, the only non-rejection case occurs at $\mathrm{d}=0.50$, and including dummies the values of d where the null is not rejected are 1 and 1.25. For y_{t}, if there are no regressors, the null is not rejected when $\mathrm{d}=0.75$ and 1 ; including an intercept, the only non-rejection value occurs at $\mathrm{d}=0.5$, and with seasonal dummies, the only non-rejection value of d is 0.75 . For $c_{t}-y_{t}$, the null is rejected in favour of stationary alternatives for the first three cases, however, including dummies, it is not rejected when $\mathrm{d}=0.50$. For the unit root null, our results are consistent with those of HEGL (1993). In fact,
(Table 10 about here)
the unit root null is not rejected for c_{t} when dummies are included, but is nearly always rejected for y_{t} and $c_{t}-y_{t}$, due perhaps to exclusion of unit roots at frequencies $\pi / 2$ and $3 \pi / 2$, as was suggested by these authors. Modelling u_{t} with seasonal AR, in Tables 10 (ii) and (iii), we observe that for c_{1}, the values of d range between 0.5 and 1.25, and the unit root null is now never rejected. However, looking at y_{t}, the unit root null is rejected in favour of less nonstationary alternatives in all cases except when there are no regressors where the unit root is not rejected. Since this null hypothesis is not rejected for c_{t}, but it is for y_{t} and $c_{t}-y_{t}$, again results in this case with seasonal AR u_{t} support the evidence found in HEGL (1993) that only two unit roots (at frequencies zero and π) were present in c_{t}. For $c_{t}-y_{t}$, only when there are no regressors and $d=$ 0.50 is the null not rejected, and in all other cases, stationary alternatives seem more plausible, so again here, a certain degree of fractional cointegration seems to exist at these two frequencies, according to the permanent income hypothesis.

Table 11 reports results extending the tests to allow different integration orders at the same two frequencies. We observe across this table just a single case where the null is not rejected and it corresponds to c_{t} when there are no regressors and $\mathrm{d}_{1}=1.25$ and $\mathrm{d}_{2}=0.50$. Results here are consistent with those given in Table 10(i) when we tested a scalar θ, especially for cases of an intercept and a time trend: with an intercept, we saw in Table 10(i) that the only non-rejection case was for y_{t} with $d=0.50$. In Table 11 this hypothesis is rejected but it corresponds to the lowest value of the test statistics obtained across the table. Similarly for the case of a time trend, the only non-rejection in Table 10 (i) corresponded to c_{t} with $\mathrm{d}=0.50$ and again this hypothesis produces the lowest statistic in Table 11.

(Tables 11 and 12 about here)

Finally, we examine the case of x_{t} containing a single root, and concentrate on the case when this root is at zero, i.e. (22). Table 12 shows results merely for white noise u_{t}, and we observe that the unit root null is not rejected for c_{t} and y_{t} when there are no regressors, but strongly rejected for $c_{t}-y_{t}$, in favour of stationary alternatives (with $\mathrm{d}<0.5$). There are few non-rejections in this table (only 5 of the 120 cases presented), and apart from the two cases of a unit root, the other three non-rejection cases correspond to $\mathrm{d}=0.5$ with a time trend for c_{t}, and $d=0.75$ with seasonal dummies for y_{t}. In case of $c_{t}-y_{t}$, the null is rejected in favour of stationary alternatives for the whole variety of specifications in (37), suggesting that at this zero frequency, a certain degree of fractional cointegration might also occur and referring again to the permanent income hypothesis. We also performed the tests allowing AR u_{v}, but we
observed here very few cases where monotonicity was achieved across the different values of d . This can be explained because seasonality is not captured now by first differences, and the deterministic components do not seem sufficient to pick up this effect. As a complement to this, on including a seasonal AR, monotonicity was achieved in practically all cases, with results very similar to those for white noise u_{t} in Table 12. Modelling x_{t} with a single root at frequency π (i.e., (43)) or as an $I(d)$ process with two complex roots corresponding to frequencies $\pi / 2$ and $3 \pi / 2$ (i.e., (44)), produced rejections for all cases and across all series.

As a conclusion we can summarize the main results obtained for the Japanese case by saying that if x_{t} is $I(d)$ with four seasonal roots of the same order d, and u_{t} is white noise, the values of d where the null is not rejected are at least one for c_{t} and y_{t}, and less than or equal to one for $c_{t}-y_{t}$. If u_{t} is $A R, d$ ranges in most cases from 0.50 to 1 for the three series, and allowing different integration orders for the different frequencies, the most noticeable fact is the relative importance of the root at zero frequency over the others. Excluding one of the real roots (either at zero or at frequency π), H_{0} is rejected in practically all situations, indicating the importance of these roots. Taking x_{t} as $I(d)$ with two roots, at zero and at frequency π, if u_{t} is white noise, the null is not rejected for c_{t} when d ranges between 0.75 and 1.25 while for y_{t} and $c_{t}-y_{t}$ the nonrejection cases correspond to $d<1$. Modelling here u_{t} as seasonal AR, the unit root null is not rejected for c_{t} but is for the other two series, and if we permit different integration orders at these two frequencies, the only non-rejection case occurs for c_{t}, with the integration order at zero frequency slightly greater than at π. Finally, if we assume that x_{t} has a single root at zero or at frequency π (or two complex ones corresponding to frequencies $\pi / 2$ and $3 \pi / 2$), the unit root hypothesis will be rejected in practically all cases in favour of less nonstationary alternatives.

6. Concluding remarks

We have presented a variety of model specifications for quarterly consumption and income data in Japan and U.K.. Given the number of possibilities covered by Robinson's (1994) tests, one cannot expect to draw unambiguous conclusions about the very best way of modelling these series. In fact, using these tests, the null hypothesized model will permit different deterministic paths; different lagged structures allowing roots at some or all seasonal frequencies (as well as at zero frequency), each of them with a possibly different integration order; and different ways of modelling the $I(0)$ disturbances
u_{1}. Looking at the results presented above as a whole, some common features are observed for all series in both countries, however, and they can be summarized as follows:

First, modelling x_{t} as a quarterly $I(d)$ process (so $\rho(L)=1-L^{4}$) seems to be appropriate when u_{t} is white noise or a non-seasonal AR, but not if u_{t} is a seasonal AR. This can be explained because seasonality can be captured in this case either by quarterly integration or by seasonal dummies in (37). We also observe that integration orders seem slightly smaller if u_{t} is AR rather than white noise, due perhaps to the AR picking up part of the nonstationary component. The results emphasize the importance of real roots over complex ones, given the greater integration order observed for the former, and this is even clearer when we allow different integration orders for each frequency. Excluding one real root results in rejecting the null in practically all situations. If $\rho(\mathrm{L} ; \theta)$ is given by (23), we observe some non-rejections if u_{t} is white noise, and allowing $I(0)$ parametric autocorrelation, the results are now better for the case of seasonal AR than for non-seasonal AR processes. This can be explained because the lagged function $\rho(\mathrm{L})$ does not now seem to capture seasonality at all and therefore the seasonal AR component may play an important role in this situation. Separating here the roots at zero and at π, the results emphasize the importance of the root at zero, but modelling the series as a simple $\mathrm{I}(\mathrm{d})$ process with a single root does not seem appropriate in most of the cases.

Another common feature observed across all these tables is the fact that integration orders for the individual series seem to range between 0.50 (or 0.75) and 1.25 , independently of the lagged function used when modelling x_{t} in (13) and the inclusion or not of deterministic parts in (37), indicating clearly the nonstationary nature of these series. (In fact, though it was not shown in the tables, the null was practically always rejected when d ranged between 0 and 0.50 and therefore, we found conclusive evidence against deterministic patterns of the form proposed in Tam and Reinsel (1996)); however, $c_{t}-y_{t}$ seems less integrated in practically all situations. Therefore, if we consider that the series are well modelled by a given function $\rho(\mathrm{L})$, a certain degree of fractional cointegration would exist between consumption and income for a given cointegration vector $(1,-1)$, using a very simplistic version of the permanent income hypothesis.

We can finally compare these results with those obtained in HEGL (1993) and HEGY (1990) for unit root situations. Results in HEGL (1993) for Japanese data indicated the presence of unit roots at all frequencies for y_{t} and $c_{t}-y_{t}$, and the same conclusions hold for c_{t} if dummies were not included in the model but
only the two real unit roots would be present if these dummy variables were included. If we look now at our tables we observe that the unit root null is not rejected for y_{t} in any specification in (37) when $\rho(L ; \theta)$ adopts the form in (25) with $A R u_{t}$. Similarly for $c_{t}-y_{t}$, we cannot reject the unit root null for the same $\rho(L ; \theta)$ and white noise u_{t}. For c_{t}, the null of four unit roots is not rejected when there are no dummies, but if they are included non-rejections will occur when $\rho(L ; \theta)$ takes the form of (23) with white noise or seasonal AR u_{t}. For the U.K. case, results in HEGY (1990) suggested that four unit roots could be present for c_{c}, and for $c_{t}-y_{t}$ if dummies were not included, and two real unit roots for y_{t}, and for $c_{t}-y_{t}$ if they were included. Our results again show a certain consistency with theirs, given that the unit root null is not rejected for consumption if $\rho(L ; \theta)$ is (25) with white noise u_{t}, and for income this hypothesis is not rejected if $\rho(L ; \theta)$ takes the form of (23) and u_{t} is white noise or a seasonal AR.

APPENDIX

In this appendix we analyze the matrix \hat{A} in \hat{R} in (17) when $\rho(L ; \theta)$ in (13) adopts the form in (30), and u_{t} is white noise so that

$$
\hat{A}=\frac{2}{n} \sum_{j}^{*} \Psi\left(\lambda_{j}\right) \Psi\left(\lambda_{j}\right)^{\prime}
$$

where $\psi(\lambda)=\left(\psi_{1}(\lambda), \psi_{2}(\lambda), \psi_{3}(\lambda)\right)^{\prime}$ for $|\lambda| \leq \pi$, with

$$
\begin{aligned}
& \Psi_{1}(\lambda)=\operatorname{Re}\left[\log \left(1-e^{i \lambda}\right)\right]=\log \left|2 \sin \frac{\lambda}{2}\right|=-\sum_{r=1}^{\infty} \frac{\cos r \lambda}{r}, \\
& \Psi_{2}(\lambda)=\operatorname{Re}\left[\log \left(1+e^{i \lambda}\right)\right]=\log \left(2 \cos \frac{\lambda}{2}\right)=-\sum_{r=1}^{\infty}(-1)^{r} \frac{\cos r \lambda}{r}, \\
& \Psi_{3}(\lambda)=\operatorname{Re}\left[\log \left(1+e^{2 i \lambda}\right)\right]=\log |2 \cos \lambda|=-\sum_{r=1}^{\infty}(-1)^{r} \frac{\cos 2 r \lambda}{r} .
\end{aligned}
$$

Then \hat{A} can be approximated in large samples by

$$
\tilde{A}=\frac{1}{\pi} \int_{-\pi}^{\pi} \psi(\lambda) \psi(\lambda)^{\prime} d \lambda=\left(\tilde{A}_{i j}\right)
$$

where

$$
\begin{aligned}
& \tilde{A}_{11}=\tilde{A}_{22}=\tilde{A}_{33}=\sum_{r=1}^{\infty} r^{-2} \propto \frac{\pi^{2}}{6}=1.644, \\
& \tilde{A}_{13}=\tilde{A}_{31}=\tilde{A}_{23}=\tilde{A}_{32}=\frac{1}{2} \sum_{r=1}^{\infty}(-1)^{r} r^{-2} \propto-0.411, \\
& \tilde{A}_{12}=\tilde{A}_{21}=\sum_{r=1}^{\infty}(-1)^{r} r^{-2} \propto-0.822 .
\end{aligned}
$$

the above expressions. Thus, if $\rho(L ; \theta)$ is given by $(25), \psi(\lambda)=$ $\psi_{1}(\lambda)+\psi_{2}(\lambda)+\psi_{3}(\lambda)$ and $\tilde{A}=1.64$; under (38), $\psi(\lambda)=\left[\psi_{1}(\lambda)+\psi_{2}(\lambda), \psi_{3}(\lambda)\right]^{\prime}$ and the (2×2) matrix $\tilde{\mathrm{A}}=\left[(1.64,-0.82)^{\prime} ;(-0.82,1.64)^{\prime}\right] ;$ under $(24), \psi(\lambda)=$ $\psi_{1}(\lambda)+\psi_{3}(\lambda)$ and $\tilde{A}=2.46 ;$ under (39), $\psi(\lambda)=\psi_{2}(\lambda)+\psi_{3}(\lambda)$ and $\tilde{A}=2.46$; under (40), $\psi(\lambda)=\left[\psi_{1}(\lambda), \psi_{3}(\lambda)\right]_{\tilde{\sim}}^{\prime}$ and $\tilde{\mathrm{A}}=\left[(1.64,-0.41)^{\prime} ;(-0.41,1.64)^{\prime}\right]$; under (41), $\psi(\lambda)=\left[\psi_{2}(\lambda), \psi_{3}(\lambda)\right]^{\prime}$ and $\tilde{\mathrm{A}}=\left[(1.64,-0.41)^{\prime} ;(-0.41,1.64)^{\prime}\right] ;$ under (23), $\psi(\lambda)=\psi_{1}(\lambda)+\psi_{2}(\lambda)$ and $\tilde{A}=1.64 ;$ under (42), $\psi(\lambda)=\left[\psi_{1}(\lambda), \psi_{2}(\lambda)\right]^{\prime}$ and $\tilde{A}=$ $\left[(1.64,-0.82)^{\prime} ;(-0.82,1.64)\right.$ ']; under (22), (43) or (44), $\psi(\lambda)=\psi_{1}(\lambda), \psi_{2}(\lambda)$ or $\psi_{3}(\lambda)$ respectively, with $\tilde{A}=1.64$ in each case.

Allowing AR (q) $u_{v}, g(\lambda ; \tau)$ below (14) takes the form

$$
\left|1-\sum_{j=1}^{q} \tau_{j} e^{i j \lambda}\right|^{-2}
$$

and \hat{A} will be given by the expression below (17), with the $1^{\text {lh }}$ element of $\hat{\varepsilon}(\lambda)$ given by

$$
\hat{\epsilon}_{l}(\lambda)=2\left(\cos l \lambda-\sum_{j=1}^{q} \hat{\tau}_{j} \cos (l-j)\right) g(\lambda ; \hat{\tau})
$$

A diskette with the FORTRAN code for the tests is available from the authors on request.

REFERENCES

Beaulieu, J.J. and J.A. Miron, 1993, Seasonal unit roots in aggregate U.S. data, Journal of Econometrics 55, 305-331.
Box, G.E.P. and G.M. Jenkins, 1970, Time series analysis: forecasting and control, San Francisco: Holden-Day.
Canova, F. and B.E. Hansen, 1995, Are seasonal patterns constant over time? A test for seasonal stability, Journal of Business and Economic Statistics 13, 237-252.
Carlin, J.B. and A.P. Dempster, 1989, Sensitivity analysis of seasonal adjustments: empirical case studies, Journal of the American Statistical Association 84, 6-20.
Carlin, J.B., A.P. Dempster and A.B. Jonas, 1985, On methods and models for Bayesian time series analysis, Journal of Econometrics 30, 67-90.
Davidson, J.E., D.F. Hendry, F. Srba and S. Yeo, 1978, Econometric modelling of aggregate time series relationships between consumer's expenditure and income in the U.K., Economic Journal 91, 704-715.
Dickey, D.A., D.P. Hasza and W.A. Fuller, 1984, Testing for unit roots in seasonal time series, Journal of the American Statistical Association 79, 355367.

Fuller, W.A., 1976, Introduction to statistical time series, Willey Series in Probability and Mathematical Statistics, Willey, New York, NY.
Ghysels, E., H.S. Lee and J. Noh, 1994, Testing for unit roots in seasonal time series: some theoretical extensions and a Monte Carlo investigation, Journal of Econometrics 62, 415-443.
Gil-Alaña, L.A. and P.M. Robinson, 1997, Testing of unit root and other nonstationary hypotheses in macroeconomic time series, Journal of Econometrics 80, 241-268.
Hall, R.E., 1989, Consumption, modern business cycle theory, ed. R.J. Barro, Cambridge, Harvard University Press.
Hassler, U., 1994, Misspecification of long memory seasonal time series, Journal of Time Series Analysis 15, 19-30.
Hylleberg, S., 1995, Tests for seasonal unit roots. General to specific or specific to general?, Journal of Econometrics 69, 5-25.
Hylleberg, S., R.F. Engle, C.W.J. Granger and H.S. Lee, 1991, Seasonal cointegration. The Japanese consumption function, 1961.1-1987.4, Discussion paper, University of California, San Diego, C.A.
Hylleberg, S., R.F. Engle, C.W.J. Granger and H.S. Lee, 1993, Seasonal cointegration. The Japanese consumption function, Journal of Econometrics 55, 275-298.
Hylleberg, S., R.F. Engle, C.W.J. Granger and B.S. Yoo, 1990, Seasonal
integration and cointegration, Journal of Econometrics 44, 215-238.
Hylleberg, S., C. Jorgensen and N.K. Sorensen, 1993, Seasonality in macroeconomic time series, Empirical Economics 18, 321-335.
Jonas, A.B., 1981, Long memory self similar time series models, unpublished manuscript, Harvard University, Dept. of Statistics.
Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, 1992, Testing the null hypothesis of stationary against the alternative of a unit root, Journal of Econometrics 54, 159-166.
Ooms, M., 1997, Flexible seasonal long memory and economic time series, Preprint.
Osborn, D.R., 1993, Discussion of Engle et al., 1993, Journal of Econometrics 55, 299-303.
Porter-Hudak, S., 1990, An application of the seasonal fractionally differenced model to the monetary aggregate, Journal of the American Statistical Association 85, 338-344.
Ray, B.K., 1993, Long range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model, International Journal of Forecasting 9, 255-269.
Robinson, P.M., 1994, Efficient tests on nonstationary hypotheses, Journal of the American Statistical Association 89, 1420-1437.
Sutcliffe, A., 1994, Time series forecasting using fractional differencing, Journal of Forecasting 13, 383-393.
Tam, W. and G.C. Reinsel, 1996, Tests for seasonal moving average unit root in ARIMA models, Journal of Business and Economic Statistics (forthcoming).

TABLE 1
$\hat{\mathbf{r}}$ in (17) with $\rho(\mathrm{L} ; \theta)=\left(1-\mathrm{L}^{4}\right)^{\mathrm{d}+\theta} \quad$ (U.K. data)

TABLE 2: $\hat{\mathbf{R}}$ in (17) with $\rho(L ; \theta)=\left(1-L^{2}\right)^{d 1+\theta 1}\left(1+L^{2}\right)^{d 2+\theta 2}$ and white noise $u_{1} \quad$ (U.K. data)

		No intercept and no trend			Intercept		$c_{1}-y_{t}$	Intercept and time trend		
d_{1}	d_{2}	c_{i}	y_{1}	$c_{1}-y_{1}$	c_{1}	y_{1}		c	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$
0.50	0.50	52.45	52.15	3.42 '	79.34	83.17	11.36	33.55	40.66	3.65 '
0.50	0.75	60.69	60.37	9.92	88.99	91.84	22.06	46.54	48.22	10.31
0.50	1.00	67.35	66.99	14.87	96.04	99.10	31.11	54.20	53.60	15.80
0.50	1.25	72.87	2.47	18.35	102.02	105.50	38.64	59.62	57.75	19.94
0.50	1.50	77.53	77.09	20.95	107.41	111.28	45.04	63.87	61.09	23.15
0.75	0.50	19.80	19.76	1.05 '	12.96	18.85	0.86'	7.51	14.80	0.86
0.75	0.75	25.89	25.85	5.65 '	23.48	26.73	4.90^{\prime}	16.69	21.37	4.82'
0.75	1.00	31.25	31.19	10.25	31.01	33.24	9.40	23.30	26.30	9.24
0.75	1.25	36.06	35.98	13.73	36.87	38.92	13.17	28.11	30.26	12.80
0.75	1.50	40.45	40.34	16.43	41.85	44.05	16.36	31.94	33.59	15.69
1.00	0.50	8.31	8.29	2.03 '	0.86 '	5.43 '	$2.76{ }^{\text {' }}$	1.03 '	5.61 '	2.75
1.00	0.75	11.56	11.57	$4.20{ }^{\prime}$	6.07	10.23	$4.48{ }^{\prime}$	6.47	10.40	4.46'
1.00	1.00	14.42	14.44	7.73	11.13	14.03	7.61	11.48	14.06	7.59
1.00	1.25	17.08	17.10	10.62	14.86	17.17	10.23	15.03	17.03	10.22
1.00	1.50	19.61	19.62	12.90	17.78	19.92	12.30	17.74	19.60	12.30
1.25	0.50	8.60	8.55	4.99 ${ }^{\text { }}$	0.98 '	$3.89{ }^{\text { }}$	5.88	1.36	4.47 '	$5.91{ }^{\prime}$
1.25	0.75	10.58	10.56	$5.34{ }^{\prime}$	4.14'	7.44	6.20	$4.78{ }^{\prime}$	7.98	6.26
1.25	1.00	12.05	12.04	7.84	8.23	10.23	8.52	8.93	10.61	8.58
1.25	1.25	13.24	13.24	10.04	11.18	12.46	10.57	11.71	12.59	10.63
1.25	1.50	14.30	14.31	11.73	13.34	14.42	12.07	13.60	14.27	12.13
1.50	0.50	11.09	11.01	8.22	2.96	$5.40{ }^{\prime}$	8.93	3.22 '	6.04	8.89
1.50	0.75	12.97	12.92	7.49	$5.14{ }^{\prime}$	8.19	8.41	5.57 '	8.93	8.37
1.50	1.00	14.16	14.12	9.30	8.68	10.28	10.22	9.35	11.04	10.20
1.50	1.25	14.90	14.87	11.08	11.10	11.67	12.03	11.89	12.38	12.04
1.50	1.50	15.39	15.36	12.34	12.54	12.76	13.28	13.35	13.35	13.31

TABLE 3: $\hat{\mathbf{R}}$ in (17) with $\rho(\mathrm{L} ; \theta)=(1-\mathrm{L})^{\mathrm{d} 1+\theta 1}(1+\mathrm{L})^{\mathrm{d} 2+\theta 2}\left(1+\mathrm{L}^{2}\right)^{\mathrm{d}+\theta 3}$ and white noise $u_{t} \quad$ (U.K. data)

			No intercept and no trend			Intercept			Intercept and time trend		
d	d_{2}	d_{3}	${ }_{5}$	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{4}$	$\overline{c_{t}}$	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$	c_{1}	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$
0.50	0.50	0.50	127.05	126.62	10.53	164.90	171.34	28.14	76.44	95.29	11.08
0.50	0.50	1.00	152.82	152.31	26.92	193.94	198.38	59.74	112.61	117.81	28.76
0.50	0.50	1.50	169.81	169.18	35.71	212.63	218.33	81.57	127.96	130.52	39.38
0.50	1.00	0.50	142.22	141.65	26.75	184.11	191.31	59.23	104.44	118.39	29.54
0.50	1.00	1.00	165.31	164.67	53.77	209.65	215.12	105.01	142.48	139.65	59.23
0.50	1.00	1.50	180.43	179.68	67.65	226.66	232.99	133.04	158.39	151.31	75.56
0.50	1.50	0.50	150.03	149.37	37.56	196.00	203.51	80.41	117.98	128.19	42.68
0.50	1.50	1.00	170.47	169.75	65.60	218.48	224.71	126.01	150.78	146.37	73.77
0.50	1.50	1.50	184.05	183.24	78.90	234.23	241.05	151.84	164.90	156.38	89.06
1.00	0.50	0.50	21.14	21.23	2.00 '	2.11 '	$7.68{ }^{\prime}$	$3.10{ }^{\prime}$	2.15 '	7.91	3.05 '
1.00	0.50	1.00	32.90	33.08	11.08	13.72	18.10	12.88	13.78	18.22	12.76
1.00	0.50	1.50	42.95	43.14	17.44	21.12	25.66	19.76	20.99	25.47	19.62
1.00	1.00	0.50	34.51	34.56	4.70 '	11.11	23.34	4.20 '	11.61	24.20	4.21 '
1.00	1.00	1.00	50.50	50.61	14.55	35.02	42.05	11.58	35.77	42.70	11.60
1.00	1.00	1.50	63.55	63.64	23.00	49.17	55.45	18.64	49.29	55.41	18.68
1.00	1.50	0.50	43.38	43.39	9.64	19.96	35.22	8.32	20.30	35.77	8.33
1.00	1.50	1.00	59.88	59.92	27.72	49.19	56.68	23.42	49.65	56.71	23.42
1.00	1.50	1.50	72.94	72.96	41.97	64.53	70.88	37.01	64.43	70.11	36.92
1.50	0.50	0.50	11.07	10.99	9.41	8.22	12.24	10.38	8.67	12.65	10.37
1.50	0.50	1.00	14.13	14.11	26.61	28.72	28.64	27.95	29.62	29.17	27.95
1.50	0.50	1.50	15.38	15.37	38.31	41.79	42.13	39.74	42.71	42.74	39.74
1.50	1.00	0.50	15.57	15.54	6.04'	2.54 '	6.03'	6.53 '	2.62 '	6.32 '	6.50
1.50	1.00	1.00	21.47	21.53	9.41	8.79	11.69	10.53	8.87	11.84	10.52
1.50	1.00	1.50	25.43	25.52	13.63	13.54	15.15	15.15	13.47	14.94	15.17
1.50	1.50	0.50	20.77	20.74	8.93	6.09 '	12.07	9.28	6.03 '	12.23	9.24
1.50	1.50	1.00	29.37	29.42	11.63	19.63	23.26	11.43	19.50	23.13	11.42
1.50	1.50	1.50	35.65	35.72	16.43	29.30	31.77	15.58	28.84	31.08	15.60

[^1]TABLE 4
$\hat{\mathbf{r}}$ in (17) with $\rho(L ; \theta)=\left(1-\mathbf{L}^{2}\right)^{d+\theta}$ (U.K. data)

TABLE 5
$\hat{\mathbf{R}}$ in (17) with $\rho(\mathbf{L} ; \theta)=(1-\mathrm{L})^{\mathrm{d} 1+\theta 1}(1+\mathrm{L})^{\mathrm{d} 2+\theta 2}$ and white noise $\mathbf{u}_{\mathbf{i}} \quad$ (U.K. data)

		No intercept and no trend			Intercept			Intercept and a time trend		
d_{1}	d_{2}	c_{1}	y_{1}	$c_{1}-y_{1}$	$c_{\text {t }}$	y_{t}	$\mathrm{c}_{1}-\mathrm{y}_{1}$	c_{1}	y_{t}	$\mathrm{c}_{1}-\mathrm{y}_{1}$
0.50	0.50	81.29	80.38	16.06	26.81	101.13	10.85	11.79	25.48	14.58
0.50	0.75	91.34	90.37	16.37	36.50	115.60	10.93	11.41	34.07	14.88
0.50	1.00	99.46	98.47	15.89	47.24	128.02	10.49	10.60	41.85	14.42
0.50	1.25	106.20	105.24	15.08	59.01	139.06	10.00	9.86	49.40	13.68
0.50	1.50	111.95	111.01	14.15	71.59	149.02	9.68	9.40	56.85	12.84
0.75	0.50	25.29	24.99	19.09	18.45	4.73 '	18.05	18.45	5.34 '	18.37
0.75	0.75	32.42	32.03	20.13	18.45	8.54	19.12	18.89	8.81	19.50
0.75	1.00	38.66	38.21	20.12	17.44	11.96	19.18	18.42	11.25	19.61
0.75	1.25	44.23	43.76	19.63	16.05	15.71	18.78	17.62	13.57	19.26
0.75	1.50	49.27	48.81	18.88	14.48	20.06	18.17	16.65	16.15	18.68
1.00	0.50	7.24	7.25	20.56	21.21	6.40	19.78	21.08	6.44	19.80
1.00	0.75	10.61	10.54	22.31	22.44	9.50	21.59	22.28	9.60	21.61
1.00	1.00	13.63	13.50	22.84	22.56	10.58	22.20	22.37	10.70	22.22
1.00	1.25	16.43	16.26	22.80	22.32	10.84	22.27	22.13	10.98	22.30
1.00	1.50	19.09	18.90	22.46	21.90	10.88	22.08	21.71	11.03	22.11
1.25	0.50	6.36	6.50	20.82	21.75	8.43	20.02	21.94	8.80	20.02
1.25	0.75	8.21	8.30	23.13	23.41	12.62	22.36	23.62	13.09	22.36
1.25	1.00	9.65	9.70	24.05	23.77	14.25	23.32	23.99	14.76	23.32
1.25	1.25	10.86	10.87	24.35	23.76	14.59	23.67	24.01	15.12	23.67
1.25	1.50	11.97	11.94	24.33	23.62	14.39	23.73	23.88	14.92	23.73
1.50	0.50	8.26	8.43	20.47	21.94	9.54	19.68	22.14	9.82	19.69
1.50	0.75	9.86	10.02	23.22	24.01	14.73	22.45	24.23	15.11	22.46
1.50	1.00	10.93	11.06	24.43	24.53	17.12	23.70	24.77	17.55	23.72
1.50	1.25	11.67	11.77	24.95	24.64	17.94	24.24	24.89	18.40	24.26
1.50	1.50	12.21	12.28	25.13	24.62	18.04	24.45	24.88	18.51	24.47

$'$ Non-rejection values for the null hypothesis (15) at 95% significance level.

TABLE 6
\hat{r} in (17) with $\rho(L ; \theta)=(1-L)^{d+\theta}$ and white noise $u_{1} \quad$ (U.K. data)

Series	$z_{1} \backslash d$	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25
	--	9.89	3.91	-0.30'	-2.55	-3.73	-4.43	-4.87	-5.18
	1	1.57’	-4.49	-4.76	-5.01	-5.23	-5.42	-5.59	-5.74
c_{1}	I,T	-3.32	-4.31,	-4.74	-5.02	-5.25	-5.44	-5.61	-5.76
	I,S	11.91	-0.91,	-3.37	-4.28	-4.83	-5.18	-5.42	-5.61
	I,T,S	3.84	-1.13'	-3.34	-4.34	-4.87	-5.21	-5.45	-5.64
	--	9.83	3.87	-0.31'	-2.55	-3.73	-4.42	-4.86	-5.17
	I	8.65	-3.00	-4.31	-4.95	-5.37	-5.65	-5.85	-6.00
y_{1}	I,T	1.13 '	-2.69	-4.27	-4.99	-5.41	-5.67	-5.87	-6.02
	I,S	11.76	-0.86'	-3.49	-4.60	-5.24	-5.61	-5.85	-6.02
	I,T,S	4.76	-0.77'	-3.44	-4.66	-5.28	-5.64	-5.87	-6.04
	--	-3.66	-4.26	-4.63	-4.87	-5.06	-5.22	-5.38	-5.52
	I	-3.00	-4.20	-4.61	-4.87	-5.07	-5.24	-5.40	-5.54
$c_{t}-y_{t}$	I,T	-3.50	-4.23	-4.61	-4.87	-5.07	-5.24	-5.39	-5.54
	I,S	-1.09,	-3.67	-4.42	-4.85	-5.13	-5.34	-5.51	-5.65
	I,T,S	-1.95'	-3.63	-4.42	-4.85	-5.13	-5.34	-5.50	-5.65

[^2]TABLE 7
\hat{r} in (17) with $\rho(L ; \theta)=\left(1-L^{4}\right)^{d+\theta} \quad$ (Japanese data)

Series	(i) With white noise u_{1} $z_{1} \backslash d$	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25
	--	2.61	0.77 '	-1.02'	-2.36	-3.22	-3.76	-4.12	-4.37
c_{1}	I	4.36	2.64	3.05	1.36,	-0.89,	-2.54	-3.50	-4.04
	I,T	9.12	7.28	3.83	0.00 '	-2.72	-3.76	-4.01	-4.17
	I,S	4.41	2.80	4.39	2.95	0.34 '	-1.78'	-3.06	-3.76
	I,T,S	10.02	8.34	5.14	1.04 '	-2.11	-3.51	-3.99	-4.24
y_{1}	--	2.54	0.72^{\prime}	-1.05'	-2.38	-3.23	-3.77	-4.13	-4.38
		4.70	3.34	2.21	-0.08,	-2.10	-3.37	-4.06	-4.44
	I,T	7.80	6.04	2.54	-0.91'	-3.11,	-3.76	-3.77	-3.86
	I,S	4.95	4.12	4.78	2.33 ,	-0.57'	-2.63	-3.72	-4.25
	I,T,S	10.28	8.48	5.10	0.84 '	-2.30	-3.69	-4.19	-4.44
$c_{1}-y_{t}$	--	1.53 '	-0.08'	-1.77'	-2.93	-3.63	-4.05	-4.33	-4.52
	I	2.41	0.46 '	-1.54'	-2.84	-3.60	-4.05	-4.34	-4.54
	I,T	2.34	0.45 ,	-1.54'	-2.86	-3.58	-3.82	-3.89	-4.02
	I, S	3.42	0.35 ,	-1.79',	-3.06	-3.76	-4.15	-4.39	-4.55
	I,T,S		0.34 '	-1.79'	-3.06	-3.76	-4.15	-4.39	-4.55
Series	(ii) With $\operatorname{AR}(1) u_{1}$ $z_{1} \backslash d$	0.5	0.75	1.00	1.25	1.50	1.75	2.00	$2.25 \geq$
$c_{\text {t }}$	--	-3.13,	-3.50 ,	-3.83 ,	-4.13,	-4.38	-4.57	-4.71	-4.83
	1	-1.59'	-0.67',	-0.51,	-1.79'	-2.78	-3.50	-3.99	-4.30
	I,T	2.57	1.01 '	-0.65'	-2.01	-3.19	-3.82	-4.09	-4.27 ¢
	I, I , S	-2.87 -1.05	-3.21 -2.67	-3.31 -3.30	-3.51 -3.63	-3.73 -4.12	-4.05	-4.35 -4.64	-4.56
y_{1}	--	-3.01	-3.47	-3.82	-4.12	-4.37	-4.57	-4.71	-4.83
	I	-0.03'	0.87 '	0.23 ,	-1.38'	-2.67	-3.52	-4.03	-4.34
	I,T	3.09	2.07	0.24 ,	-1.64',	-3.09	-3.67	-3.80	-3.96
	I,S	-2.51,	-2.37 ,	-1.71 ,	-1.88'	-2.50	-3.34	-3.99	-4.36
	I,T,S	0.29 ,	-1.41 ,	-1.61'	-1.98	-3.08	-3.91	-4.28	-4.49
$c_{t}-y_{t}$	--	0.87 ,	-0.84'	-2.29	-3.21	-3.77	-4.13	-4.37	-4.54
	I	1.94 ,	-0.01,	-1.78,	-2.91	-3.59	-4.01	-4.28	-4.48
	I,T	1.89 ',	-0.02,	-1.78 '	-2.93	-3.58	-3.86	-4.00	-4.16
	I,S	1.34',	-1.29',	-2.66	-3.46 -3.46	-3.95 -3.95	-4.25	-4.44	-4.58 ¢
	I,T,S	1.29'	-1.29'	-2.66	-3.46	-3.95	-4.25	-4.45	-4.58¢
Series	(iii) $\underset{\mathrm{z}_{1} \backslash \mathrm{~d}}{\text { With }} \operatorname{AR}(2) \mathrm{u}_{\mathbf{t}}$	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25
	--	-3.19	-3.53	-3.81	-4.09	-4.34	-4.54	-4.70	-4.82
$c_{\text {t }}$		-1.53'	-0.51',	-0.85,	-2.14	-2.96	-3.56	-4.01	-4.36
	I,T	1.77 '	0.16	-1.35,	-2.37	-3.30	-3.88	-4.15	-4.34
	I,S	-2.90 ,	-3.26	-3.56	-3.82	-3.99	-4.24	-4.48	-4.66
	I,T,S	-1.23 '	-2.84	-3.60	-3.92	-4.29	-4.60	-4.74	-4.83
y_{t}	--	-3.08	-3.50	-3.80	-4.09	-4.34	-4.54	-4.70	-4.82
	I	-0.29'	0.75',	0.20 '	-1.31',	-2.54	-3.41	-3.96	-4.30
	I,T	2.69	1.61 '	0.04 '	-1.55'	-3.04	-3.66	-3.77	-3.93
	I,S	-2.54,	-2.57	-2.53	-2.78	-3.05	-3.57	-4.07	-4.39
	I,T,S	0.11 ,	-1.99	-2.59	-2.72	-3.33	-3.97	-4.31	-4.51
$c_{t}-y_{t}$	--	0.80 '	-0.88'	-2.27	-3.18	-3.75	-4.11	-4.36	-4.53
	I	1.85 ,	0.03 ',	-1.72,	-2.89	-3.60	-4.02	-4.30	-4.49
	I,T	1.81 ,	-0.01,	-1.72'	-2.91	-3.59	-3.85	-3.97	-4.12
	I,T,S	0.45 0.40	-1.67',	-2.77 -2.77	-3.47 -3.47	-3.94 -3.94	-4.24	-4.44	-4.58
	I,T,S	0.40 '	-1.68'	-2.77	-3.47	-3.94	-4.24	-4.44	-4.58

TABLE 8: $\hat{\mathbf{R}}$ in (17) with $\rho(\mathbf{L} ; \theta)=\left(1-\mathrm{L}^{2}\right)^{d 1+01}\left(1+\mathrm{L}^{2}\right)^{\mathrm{d}^{22+\theta 2}}$ and white noise $\mathrm{u}_{\mathbf{t}} \quad$ (Japanese data)

		No intercept and no trend		
d_{1}	$\mathrm{~d}_{2}$	c_{1}	y_{l}	$\mathrm{c}_{1}-\mathrm{y}_{1}$
0.50	0.50	41.03	39.76	5.25
0.50	0.75	47.92	46.58	12.86
0.50	1.00	53.35	51.97	19.48
0.50	1.25	57.72	56.32	24.32
0.50	1.50	61.28	59.88	28.05
0.75	0.50	17.12	16.72	0.42
0.75	0.75	22.42	22.01	2.95
0.75	1.00	27.06	26.61	8.97
0.75	1.25	31.19	30.72	14.18
0.75	1.50	34.94	34.45	18.52
1.00	0.50	7.76	7.64	3.58
1.00	0.75	10.73	10.62	1.45
1.00	1.00	13.33	13.22	4.71
1.00	1.25	15.72	15.59	7.98
1.00	1.50	17.98	17.84	10.53
1.25	0.50	8.07	7.98	8.32
1.25	0.75	9.93	9.91	4.61
1.25	1.00	11.30	11.30	6.64
1.25	1.25	12.40	12.40	9.30
1.25	1.50	13.37	13.37	11.08
1.50	0.50	10.37	10.25	12.16
1.50	0.75	12.16	12.13	7.72
1.50	1.00	13.30	13.31	8.85
1.50	1.25	13.99	14.02	11.58
1.50	1.50	14.45	14.48	13.53

Intercept		
c_{t}	y_{t}	$\mathrm{c}_{\mathrm{i}}-\mathrm{y}_{\mathrm{t}}$
64.79	63.91	6.83
72.81	75.60	15.02
79.24	83.19	23.76
84.92	89.31	30.32
90.11	94.67	35.22
22.81	13.95	4.30
34.46	30.38	0.50
42.28	43.89	5.08
48.55	53.78	11.17
54.07	61.56	16.86
8.74	8.21,	10.28
22.43	5.76	2.66
35.55	14.50	2.39
45.91	26.86	4.86
54.34	38.69	7.33
1.82	11.98	15.19
3.85	2.95	7.92
11.73	0.30	6.31
20.03	4.29	8.09
27.56	9.91	9.77
3.37	16.22	18.62
0.37	9.18	11.92
2.37	3.32,	9.91
6.04	3.81,	11.01
9.44	5.56	13.00

Intercept and time trend			
c_{1}	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$	
167.85	107.69	6.49	
192.19	150.17	14.47	
20.174	168.45	23.03	
207.12	178.07	29.41	
210.65	183.90	34.14	
77.49	29.81	4.23	
117.38	68.97	0.52	
137.50	100.85	5.16	
150.13	123.02	11.27	
159.27	138.97	16.96	
11.04	8.56	10.27	
29.89	6.90	2.67	
48.00	18.11	2.41	
62.37	33.81	4.89	
74.08	49.01	7.35	
1.96	14.05	15.31	
0.36	5.22,	8.04	
5.01	0.43,	6.41	
10.88	2.47	8.20	
16.30	6.18	9.88	
6.01	19.15	19.08	
3.78	14.25	12.22	
5.14	7.65	9.29	
7.96	8.00	10.92	
9.94	9.71	12.92	

TABLE 9: $\hat{\mathbf{R}}$ in (17) with $\rho(\mathbf{L} ; \theta)=(1-\mathrm{L})^{d 1+\theta 1}(1+\mathrm{L})^{d 2+\theta 2}\left(1+\mathrm{L}^{2}\right)^{d 3+\theta 3}$ and white noise $\mathbf{u}_{\mathbf{i}} \quad$ (Japanese data)

			No intercept and no trend		
d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$	c_{t}		y_{t}
0.50	$\mathrm{c}_{1}-\mathrm{y}_{\mathrm{t}}$				
0.50	0.50	0.50	103.66	101.27	21.28
0.50	0.50	1.00	125.45	122.99	49.44
0.50	0.50	1.50	138.97	136.53	63.60
0.50	1.00	0.50	117.27	114.99	43.61
0.50	1.00	1.00	136.62	134.40	94.74
0.50	1.00	1.50	148.39	146.29	120.92
0.50	1.50	0.50	123.50	121.33	57.72
0.50	1.50	1.00	140.31	138.24	107.66
0.50	1.50	1.50	150.64	148.71	131.71
1.00	0.50	0.50	18.90	18.50	2.03
1.00	0.50	1.00	29.47	28.91	2.04
1.00	0.50	1.50	38.39	37.60	3.03
1.00	1.00	0.50	31.34	30.89	6.50
1.00	1.00	1.00	45.88	45.45	16.30
1.00	1.00	1.50	57.62	57.14	29.12
1.00	1.50	0.50	39.66	39.20	8.21
1.00	1.50	1.00	54.65	54.24	26.23
1.00	1.50	1.50	66.40	65.97	43.02
1.50	0.50	0.50	10.33	10.11	2.94
1.50	0.50	1.00	13.25	13.06	1.78
1.50	0.50	1.50	14.41	14.16	2.00
1.50	1.00	0.50	14.23	14.01	11.25
1.50	1.00	1.00	19.69	19.56	7.84
1.50	1.00	1.50	23.28	23.11	11.94
1.50	1.50	0.50	19.04	18.81	12.79
1.50	1.50	1.00	27.05	26.95	12.38
1.50	1.50	1.50	32.83	32.72	20.29

Intercept			Intercept and time trend		
c_{1}	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$	c_{t}	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{4}$
141.71	136.00	18.03	281.38	181.08	17.54
166.31	169.76	49.62	334.06	276.40	48.41
183.92	188.44	66.73	346.47	298.25	64.88
154.99	157.32	44.85	320.99	259.76	43.82
177.59	188.17	129.43	366.44	370.88	127.32
194.11	205.87	176.67	377.28	395.97	173.92
164.44	169.23	63.62	335.74	292.35	62.24
185.10	196.22	152.38	371.11	383.19	150.03
200.60	212.57	196.08	379.89	403.28	193.24
9.87	3.73 '	4.01 ',	10.73	3.66 '	4.01 '
32.10	4.74'	0.53 '	36.42	$4.94{ }^{\prime}$	0.54 '
45.26	8.71	$1.04{ }^{\prime}$	50.98	8.85	$1.04{ }^{\prime}$
24.98	12.03	11.13	28.27	12.33	11.12
81.47	39.02	7.86	100.22	44.08	7.87
113.61	79.39	17.82	142.03	92.80	17.82
40.61	16.16	11.31	47.66	17.03	11.30
106.91	65.41	15.61	135.75	77.02	15.62
138.79	115.71	32.58	179.06	142.14	32.60
9.57	3.89	$3.94{ }^{\text {' }}$	11.15	4.33 '	$3.99{ }^{\prime}$
31.88	3.95 ,	$1.19{ }^{\prime}$	35.86	$4.40{ }^{\prime}$	1.20 '
44.10	5.65 '	$1.34{ }^{\prime}$	48.52	6.02 '	1.35 '
3.24 '	14.26	16.43	4.79 '	16.22	16.73
3.62 '	1.58'	7.17 '	$3.57{ }^{\prime}$	3.72'	7.13'
11.54	$5.77{ }^{\prime}$	10.30	9.18	8.36	10.26
5.20 '	16.52	18.79	6.49 '	19.23	19.22
14.48	6.84'	10.62	9.75	8.65	10.47
30.45	13.79	16.00	18.91	12.28	15.69

TABLE 10

$$
\hat{\mathbf{r}} \text { in }(17) \text { with } \rho(L ; \theta)=\left(1-L^{2}\right)^{d+\theta} \quad \text { (Japanese data) }
$$

TABLE 11
$\hat{\mathbf{R}}$ in (17) with $\rho(\mathrm{L} ; \theta)=(1-\mathrm{L})^{\mathrm{d} 1+\theta 1}(1+\mathrm{L})^{\mathrm{d} 2+\theta 2}$ with white noise $\mathbf{u}_{\mathbf{t}} \quad$ (Japanese data)

No intercept and no time trend

d_{1}	d_{2}	$c_{\text {c }}$	y_{t}	$c_{1}-y_{t}$	$c_{\text {t }}$	y_{1}	$\mathrm{c}_{1}-\mathrm{y}_{1}$
0.50	0.50	63.67	58.38	18.26	34.93	7.74	20.83
0.50	0.75	72.47	67.13	17.99	44.65	9.18	20.85
0.50	1.00	79.47	74.24	17.20	54.82	11.70	20.29
0.50	1.25	85.18	80.15	16.25	65.42	15.58	19.54
0.50	1.50	89.94	85.14	15.22	76.26	20.99	18.66
0.75	0.50	21.45	19.22	21.17	17.19	22.08	22.54
0.75	0.75	27.81	25.23	21.55	16.67	22.32	23.18
0.75	1.00	33.37	30.59	21.26	15.33	21.87	23.15
0.75	1.25	38.30	35.44	20.80	13.70	21.14	23.00
0.75	1.50	42.74	39.86	20.26	11.99	20.19	22.77
1.00	0.50	6.44	6.18	22.31	20.65	22.58	22.75
1.00	0.75	9.51	8.92	23.11	21.44	23.32	23.62
1.00	1.00	12.28	11.41	23.09	21.33	23.38	23.72
1.00	1.25	14.85	13.76	22.92	20.94	23.29	23.71
1.00	1.50	17.28	16.02	22.70	20.41	23.14	23.67
1.25	0.50	5.75 '	6.22	22.60	21.39	22.70	22.72
1.25	0.75	7.42	7.73	23.69	22.60	23.65	23.79
1.25	1.00	8.73	8.86	23.82	22.76	23.79	23.95
1.25	1.25	9.84	9.80	23.77	22.65	23.77	23.96
1.25	1.50	10.86	10.64	23.68	22.45	23.72	23.95
1.50	0.50	7.58	8.19	22.55	21.63	22.67	22.56
1.50	0.75	9.01	9.59	23.91	23.20	23.84	23.86
1.50	1.00	9.97	10.48	24.13	23.53	24.06	24.08
1.50	1.25	10.63	11.03	24.15	23.55	24.08	24.11
1.50	1.50	11.11	11.39	24.11	23.49	24.05	24.11

\because Non-rejection values for the null hypothesis (15) at 95% significance level.

Intercept and time trend		
c_{t}	y_{t}	c_{i} - y_{l}
7.15	12.41	20.43
8.78	11.44	20.46
11.30	10.22	19.93
15.21	9.05	19.23
20.81	8.10	18.40
14.80	20.34	22.36
14.41	20.46	22.98
13.36	20.00	22.94
12.12	19.35	22.78
10.85	18.57	22.56
20.50	22.47	22.73
21.24	23.17	23.60
21.09	23.20	23.70
20.67	23.08	23.68
20.12	22.91	23.64
21.80	22.84	22.73
23.08	23.81	23.81
23.31	23.98	23.97
23.28	23.99	23.99
23.16	23.96	23.98
21.92	22.80	22.58
23.55	24.00	23.89
23.93	24.24	24.11
24.00	24.29	24.16
23.99	24.28	24.16

TABLE 12

\hat{r} in (17) with $\rho(L ; \theta)=(1-L)^{d+\theta}$ and white noise $u_{t} \quad$ (Japanese data)

Series	$z_{1} \backslash d$	0.5	0.75	1.00	1.25	1.50	1.75	2.00	2.25
c_{1}	--	8.47	3.43	-0.37'	-2.49	-3.61	-4.27	-4.70	-4.99
	I	3.17	-4.31	-4.61	-4.83	-5.02	-5.18	-5.33	-5.46
	I,T	-1.51 '	-3.93	-4.59	-4.85	-5.04	-5.19	-5.33	-5.46
	I,S	12.74	3.01	-2.47	-4.54	-5.37	-5.68	-5.83	-5.93
	I,T,S	16.98	5.30	-2.52	-4.86	-5.47	-5.69	-5.82	-5.91
y_{1}	--	7.35	2.47	-1.07'	-2.98	-3.98	-4.57	-4.95	-5.21
		-2.71	-4.98	-5.11	-5.27	-5.42	-5.55	-5.67	-5.78
	I,T	-4.03	-4.82,	-5.10	-5.28	-5.43	-5.56	-5.68	-5.78
	I, S	11.76	-0.13',	-3.38	-4.26	-4.62	-4.81	-4.96	-5.08
	I,T,S	10.31	$0.31{ }^{\prime}$	-3.42	-4.35	-4.64	-4.79	-4.90	-5.00
$c_{t}-y_{t}$	--	-4.74	-5.09	-5.31	-5.47	-5.60	-5.72	-5.82	-5.91
	I	-4.95	-5.16	-5.32	-5.47	-5.60	-5.71	-5.82	-5.91
	I,T	-4.89	-5.14	-5.32	-5.47	-5.60	-5.72	-5.83	-5.91
	I, S	-2.88	-4.56	-5.10	-5.35	-5.51	-5.63	-5.74	-5.82
	I,T,S	-2.91	-4.56	-5.10	-5.35	-5.50	-5.60	-5.67	-5.73

[^3]

EUI WORKING PAPERS

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge

- depending on the availability of stocks - from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf

Publications of the European University Institute

To	The Publications Officer European University Institute Badia Fiesolana I-50016 San Domenico di Fiesole (FI) - Italy Telefax No: +39/55/4685 636 e-mail: publish@datacomm.iue.it http://www.iue.it
From	Name
	Address.
\square Please send me a complete list of EUI Working Papers \square Please send me a complete list of EUI book publications \square Please send me the EUI brochure Academic Year 1998/99	

Please send me the following EUI Working Paper(s):

No, Author
Title:
No, Author
Title:
No, Author
Title:
No, Author
Title:

Date

Working Papers of the Department of Economics Published since 1997

ECO No. 97/1
Jonathan SIMON
The Expected Value of Lotto when not all
Numbers are Equal
ECO No. 97/2
Bernhard WINKLER
Of Sticks and Carrots: Incentives and the
Maastricht Road to EMU
ECO No. 97/3
James DOW/Rohit RAHI
Informed Trading, Investment, and
Welfare
ECO No. 97/4
Sandrine LABORY
Signalling Aspects of Managers'
Incentives
ECO No. 97/5
Humberto LÓPEZ/Eva ORTEGA/Angel
UBIDE
Dating and Forecasting the Spanish
Business Cycle
ECO No. 97/6
Yadira GONZÁLEZ de LARA
Changes in Information and Optimal Debt
Contracts: The Sea Loan
ECO No. 97/7
Sandrine LABORY
Organisational Dimensions of Innovation
ECO No. 97/8
Sandrine LABORY
Firm Structure and Market Structure: A Case Study of the Car Industry

ECO No. 97/9
Elena BARDASI/Chiara MONFARDINI
The Choice of the Working Sector in Italy: A Trivariate Probit Analysis

ECO No. 97/10
Bernhard WINKLER
Coordinating European Monetary Union
ECO No. 97/11
Alessandra PELLONI/Robert
WALDMANN
Stability Properties in a Growth Model

ECO No. 97/12
Alessandra PELLONI/Robert
WALDMANN
Can Waste Improve Welfare?
ECO No. 97/13
Christian DUSTMANN/Arthur van

SOEST

Public and Private Sector Wages of Male Workers in Germany

ECO No. 97/14
Søren JOHANSEN
Mathematical and Statistical Modelling of Cointegration

ECO No. 97/15
Tom ENGSTED/Søren JOHANSEN
Granger's Representation Theorem and Multicointegration

ECO No. 97/16
Søren JOHANSEN/
Ernst SCHAUMBURG
Likelihood Analysis of Seasonal Cointegration

ECO No. 97/17
Maozu LU/Grayham E. MIZON
Mutual Encompassing and Model Equivalence

ECO No. 97/18
Dimitrios SIDERIS
Multilateral Versus Bilateral Testing for Long Run Purchasing Power Parity: A Cointegration Analysis for the Greek Drachma

ECO No. 97/19
Bruno VERSAEVEL
Production and Organizational Capabilities

ECO No. 97/20
Chiara MONFARDINI
An Application of Cox's Non-Nested Test to Trinomial Logit and Probit Models

ECO No. 97/21
James DOW/Rohit RAHI
Should Speculators be Taxed?

ECO No．97／22
Kitty STEWART
Are Intergovernmental Transfers in Russia Equalizing？

ECO No．97／23
Paolo VITALE
Speculative Noise Trading and Manipulation in the Foreign Exchange Market

ECO No．97／24
Günther REHME
Economic Growth，（Re－）Distributive
Policies，Capital Mobility and Tax
Competition in Open Economies
ECO No．97／25
Susana GARCIA CERVERO
A Historical Approach to American Skill
Differentials
ECO No．97／26
Susana GARCIA CERVERO
Growth，Technology and Inequality：An
Industrial Approach
ECO No．97／27
Bauke VISSER
Organizational Structure and Performance
ECO No．97／28
Pompeo DELLA POSTA
Central Bank Independence and Public
Debt Convergence in an Open Economy
Dynamic Game
ECO No．97／29
Matthias BRUECKNER
Voting and Decisions in the ECB
ECO No．97／30
Massimiliano MARCELLINO
Temporal Disaggregation，Missing
Observations，Outliers，and Forecasting：
A Unifying Non－Model Based Procedure
ECO No．97／31
Marion KOHLER
Bloc Formation in International Monetary
Policy Coordination
ECO No．97／32
Marion KOHLER
Trade Blocs and Currency Blocs：A
Package Deal？

ECO No．97／33
Lavan MAHADEVA
The Comparative Static Effects of Many Changes

ECO No．97／34
Lavan MAHADEVA
Endogenous Growth with a Declining Rate of Interest

ECO No．97／35
Spyros VASSILAKIS
Managing Design Complexity to Improve on Cost，Quality，Variety，and Time－to－ Market Performance Variables

ECO No．97／36
Spyros SKOURAS
Analysing Technical Analysis

米米米

ECO No．98／1
Bauke VISSER
Binary Decision Structures and the
Required Detail of Information
ECO No．98／2
Michael ARTIS／Massimiliano
MARCELLINO
Fiscal Solvency and Fiscal Forecasting in Europe

ECO No．98／3
Giampiero M．GALLO／Barbara PACINI Early News is Good News：The Effects of Market Opening on Market Volatility

ECO No．98／4
Michael J．ARTIS／Zenon G．
KONTOLEMIS
Inflation Targeting and the European
Central Bank
ECO No．98／5
Alexandre KOLEV
The Distribution of Enterprise Benefits in Russia and their Impact on Individuals＇ Well－Being

ECO No．98／6
Kitty STEWART
Financing Education at the Local Level：A Study of the Russian Region of Novgorod

ECO No. 98/7
Anna PETTINI/Louis PHLIPS
A Redistributive Approach to Price and Quality Discrimination

ECO No. 98/8

Aldo RUSTICHINI/Andrea
ICHINO/Daniele CHECCHI
More Equal but Less Mobile? Education
Financing and Intergenerational Mobility in Italy and in the US

ECO No. 98/9
Andrea ICHINO/Pietro ICHINO
Discrimination or Individual Effort?
Regional Productivity Differentials in a Large Italian Firm

ECO No. 98/10
Andrea ICHINO/Rudolf WINTEREBMER
The Long-Run Educational Cost of World War II. An Example of Local
Average Treatment Effect Estimation
ECO No. 98/11
Luca FLABBI/Andrea ICHINO
Productivity, Seniority and Wages. New
Evidence from Personnel Data
ECO No. 98/12
Jian-Ming ZHOU
Is Nominal Public but De Facto Private
Land Ownership Appropriate? A
Comparative Study among Cambodia, Laos, Vietnam; Japan, Taiwan Province of China, South Korea; China, Myanmar; and North Korea

ECO No. 98/13
Anna PETTINI
Consumers' Tastes and the Optimal Price Gap

ECO No. 98/14
Christian DUSTMANN/Najma
RAJAH/Arthur VAN SOEST
School Quality, Exam Performance, and Career Choice

ECO No. 98/15
Ramon MARIMON/Juan Pablo NICOLINI/Pedro TELES
Electronic Money: Sustaining Low
Inflation?

ECO No. 98/16
Michael ARTIS/Marion KOHLER/ Jacques MÉLITZ
Trade and the Number of OCA's in the World

ECO No. 98/17
Nuala O'DONNELL
Why Did Earnings Inequality Increase in Ireland: 1987-1994?

ECO No. 98/18
Luis A. GIL-ALAÑA
Fractional Integration in the Purchasing Power Parity

ECO No. 98/19
Luis A. GIL-ALAÑA
Multivariate Tests of Fractionally Integrated Hypotheses

ECO No. 98/20
Luis A. GIL-ALAÑA/
P.M. ROBINSON

Testing of Seasonal Fractional Integration in U.K. and Japanese Consumption and Income

[^0]: *: Research supported by ESRC Grant R000235892.

[^1]: ‘$:$ Non-rejection values for the null hypothesis (15) at 95% significance level.

[^2]: ': Non-rejection values for the null hypothesis (15) at 95% significance level; --: No intercept,no time trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.

[^3]: $':$ Non-rejection values for the null hypothesis (15) at 95% significance level; $--:$ No intercept, no trend and no seasonal dummies; I: Intercept; I,T: Intercept and trend; I,S: Intercept and seasonal dummies; I,T,S: Intercept, trend and seasonal dummies.

