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The seasonal structure of quarterly U.K. and Japanese consumption and
income is examined by means of fractionally-based tests proposed by Robinson
(1994). These series were analyzed from an autoregressive unit root viewpoint
by Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and Hylleberg, Engle,
Granger and Lee (HEGL, 1993). We find that seasonal fractional integration,
with amplitudes possibly varying across frequencies is an alternative plausible
way of modelling these series.
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1. Introduction and summary

Many economic time series contain important seasonal components. A
simple model for a time series y, is a regression on dummy variables Sk,

y, =m) +;|f:;| misu + € ~id 0)

where s is the number of time periods in a year and the m, are unknown
coefficients. Stochastic processes have also been widely used in modelling
seasonality, for example the stationary seasonal ARMA

W)y, =e(Heo g - iid, @

where <p(Ls) and ©qLs) are polynomials in Ls (the seasonal lag operator) of
orders p and q respectively, with the zeros of <p(L9) outside the unit circle and
the zeros of 0 (L9 outside or on the unit circle. If moreover the zeros of ©qL5)
are strictly outside the unit circle, (2) can be written as an infinite autoregression

P(iny, =€, £ - iid, €]

with all roots of p(Ls)=0 outside the unit circle, some of them in complex pairs
with seasonal periodicities. As an alternative to (1) and (2), it may be
appropriate to allow for stochastic seasonal nonstationarity, as is implicit in the
practice of seasonal differencing (see eg. Box and Jenkins (1970)) whereby the
operator 1-LSproduces a stationary weakly dependent sequence. For example,
for quarterly data p(Ls) = 1-L4 can be factored as (1-L)(1+L)(1+L2), containing
four zeros of modulus unity: one at zero frequency; one at two cycles per year,
corresponding to frequency 7t; and two complex pairs at one cycle per year,
corresponding to frequencies 7t/2 and 37t/2 (of a cycle 2k).

A good deal of empirical work has followed this approach: Hylleberg,
Engle, Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal
unit roots in quarterly U.K. nondurable consumption and disposable income,
using a procedure that allows tests for unit roots at some seasonal frequencies
without maintaining their presence at all such frequencies. This procedure allows
inclusion of a constant, seasonal dummies and/or a time trend. Beaulieu and
Miron (1993) extended the HEGY procedure to monthly data and examined
twelve U.S. macroeconomic series in monthly and quarterly data. By contrast
with previous studies, they concluded that evidence in favour of a seasonal unit
root was weak. These findings have been seriously questioned by Hylleberg,
Jorgensen and Sorensen (1993), who concluded that seasonality is in many cases
variable, not fixed. Hylleberg, Engle, Granger and Lee (1993) (henceforth
HEGL) performed the HEGY test on quarterly series of Japanese real
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consumption and real disposable income, suggesting that income is integrated
of order 1 (1(1)) at 0 and all seasonal frequencies, Jt/2, n and 3n/2, and
consumption is 1(1) at frequencies 0 and n, while some difficulty was found in
separating unit roots at frequency n/2 (and 37t/2) from a deterministic seasonal
pattern. Osborn (1993) suggested that a nonstationary periodic AR(1) or a
periodically integrated 1(1) processes could better be more useful.

Seasonal unit roots can be viewed not only in an autoregressive
framework but also as a particular case of seasonal fractionally integrated
processes. Consider the process

(i - Ndyt = «, @)

where d > 0 and u, is an 1(0) series, which is defined as a covariance stationary
process with spectral density bounded and bounded away from zero at all
frequencies. Clearly, y, has s roots of modulus unity, all with the same
integration order d. (4) can be extended to present different integration orders
for each seasonal frequency, whereas v, is stationary if all orders are smaller
than 1/2. We say that y, has seasonal long memory at a given frequency if the
integration order at that frequency is greater than zero. A seasonal series might
also display only a single root at a particular frequency. For example, an
integrated process with a single root at two cycles per year is:

(1+ L)dyt = ut, ®)
and at one cycle per year:
(1+ L2dyt =ur 6)

Thus, if utis 1(0) and 0 < d < 1/2, ytwill in both cases be covariance stationary
with spectral density unbounded at frequency n in (5), and at frequencies n/2
and 3k/2 (of a cycle 2n) in (6).

Few empirical studies have been carried out in relation to seasonal
fractional models. The notion of fractional Gaussian noise with seasonality was
suggested by Jonas (1981) and extended in a Bayesian framework by Carlin,
Dempster and Jonas (1985) and Carlin and Dempster (1989). Porter-Fludak
(1990) applied a seasonal fractionally integrated model to quarterly U.S.
monetary aggregate with the conclusion that a fractional ARMA model could
be more appropriate than standard ARIMAs.  Advantages of seasonal
fractionally differencing models for forecasting monthly data are illustrated in
Sutcliffe (1994), and another empirical application is found in Ray (1993).
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In the following section we briefly describe some common tests for
seasonal integration, and compare them with Robinson’s (1994) tests for
nonstationary hypotheses which permit testing of seasonal fractional integration
of any stationary or nonstationary degree. Section 3 describes models to be
tested, using Robinson’s (1994) approach, to macroeconomic data of United
Kingdom (Section 4) and Japan (Section 5) analyzed in HEGY (1990) and
HEGL (1993) respectively. Section 6 contains some concluding remarks.

2. Tests for seasonal integration

We first consider the Dickey, Hasza and Fuller (DHF) (1984) test of ps
=1lin

(1 - psLo)yt = e, e, ~ iid (0,02. ©)
The test is based on the auxiliary regression
(1-LOyr = Kyts + e (8)

the test statistic being the t-ratio corresponding to 7 in (8). Due to the
nonstandard asymptotic distributional properties of the t-ratios under the null
hypothesis, DHF (1984) provide the simulated critical values for testing against
the alternative it < 0. In order to whiten the errors in (8), the auxiliary
regression may be augmented by lagged (1-L9yt, and with deterministic
components, but unfortunately this changes the distribution of the test statistic.
A limitation of DHF (1984) is that it jointly tests for roots at zero and seasonal
frequencies, and therefore does not allow for unit roots at some but not all
seasonal frequencies.

This defect is overcome by HEGY (1990) for the quarterly case. Their
test is based on the auxiliary regression

(1-L gy, = + n3y3._2 + *4y3M + ¢, 9)

where y,t= (1+L+L2+L3y, removes the seasonal unit roots but leaves in the zero
frequency unit root, yZ = -(1-L+L2L3yt leaves the root at k and y3= -(1-L2y,
leaves the roots at 7t/2 and 37t/2. The existence of unit roots at 0, 7, n/2 (and
3;t/2) implies that 7, = 0,72= 0, and ©3= jo&4= 0 respectively. The t-ratio for G
and 72 is shown by HEGY to have the familiar Dickey-Fuller distribution (see
Fuller (1976)) under the null of 7t, =0 and 72=0 respectively, while the t-ratio
for 73 conditioned on A= 0 has the distribution described by DHF (1984) for
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s=2. Also ajoint test of 73 ="74=0 is proposed based on the F-ratio, and the
critical values of the distribution tabulated. A crucial fact in these tests is that
the same limiting distributions are obtained when it is not known a priori that
some of the n’s are zero: if the n’s other than the one to be tested are truly
nonzero, then the process does not have unit roots at these frequencies and the
corresponding y’s are stationary. The regression is therefore equivalent to a
standard augmented unit-root test. If however some of the other 7t’s are zero,
there are other unit roots in the regression, but the corresponding y’s are now
asymptotically uncorrelated and the null distribution of the test statistic will not
be affected by the inclusion of a variable with a zero coefficient which is
orthogonal to the included variables. As in DHF (1984), the auxiliary regression
has to be augmented by lagged dependent variables in order to whiten the errors,
and deterministic components can be introduced in the auxiliary regression (9),
though again the distribution changes. An extension of this procedure to allow
joint HEGY-type tests for the presence of unit roots at zero and all seasonal
frequencies, and only for the seasonal frequencies, is given in Ghysels et al.
(1994). It is shown that the test statistics will have the same limiting
distribution as the sum of the corresponding squared t-ratios for &, (i= 1,2,3,4)
in the former, and it; (i = 2,3,4) in the latter test.

All these procedures test for a unit root in the seasonal AR operator and
have stochastic nonstationarity as the null hypothesis. Canova and Hansen
(1995) seasonally extend the test of Kwiatkowski et al. (1992), and propose a
Lagrange multiplier test (the CH test) based on the residuals from a regression
extracting the seasonal and other deterministic components, for testing the null
of stationarity about a deterministic seasonal pattern. Hylleberg (1995) compares
small sample properties of the HEGY and CH tests for seasonal unit roots in
quarterly series, concluding that both tests complement each other. More
recently, Tam and Reinsel (1996) propose a test for a unit root in the seasonal
MA operator, testing a deterministic seasonal null against a stochastic
nonstationary alternative. They consider the (integrated) SMA(I) model,

y, = P, + ¢, t = I-s,...0, (10)

(L-L*)yt = (l-alOe, t = 12, (11)

where p, is a deterministic seasonal mean, so that p,- p,.s= 0, and ¢, is, initially,
a white noise process. Thus, a test of a = 1in (11) can be interpreted as a test
of deterministic seasonality against the alternative a < 1 of stochastic integrated
seasonality. The test can be extended to allow et to be a stationary and
invertible ARMA, and also to allow for a deterministic linear trend in y,, leading
to a different nonstandard null limit distribution.
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The tests described above consider the possibility of only a single form
of seasonal stochastic nonstationarity, in particular, unit roots. We now describe
the tests of Robinson (1994), which can test any integer or fractional root of any
order on the unit circle in the complex plane.

We observe {(y,,zt), t=1,2,...,n} where

y, = P;Z, +*r, t = 1,2,..., (12)
p(L;0)x, = ut, t=12.., (13)
x =0, t <0, (14)

where @is a (kxl) vector of unknown parameters and z, is a (kxI) vector of
deterministic variables that might include an intercept, a time trend and/or
seasonal dummies; p(L;0), a prescribed function of L and the unknown (pxI)
parameter vector 0, will depend on the model tested; u, is an 1(0) process with
parametric spectral density

2
A = A£(ALT), -n <\ <n,
n

where the positive scalar 02 and the (gxl) vector x are unknown, but g is of
known form.

In general we wish to test the null hypothesis
HGC 0=0. (15)

Under (15), the residuals are

« = p(i)y, - P;w, t=12..,
where
pL) = p(Z;0, p = Ww £ WpLyt wt=p(L)zr
(t»i [ <i

Unless g is completely known function (eg. g = 1, as when ut is white noise) we
have to estimate the nuisance parameter vector x, for example by

t = argmm o2(t), (16)

where T is a suitable subset of Rqand



C (K *YI(QY),

I(X) = [7TinA 1Y uek\2,
f=I

The test statistic, derived from the Lagrange multiplier (LM) principle is

R = —a'A'ld = fr, (17)
a4
where
_r - =
f = — A "a a2=o2t), a = £ <KAg(A; ) UAY),
a2 n vy
-
E i»s(vkVv/i“E wpwp' E E
J
= «&?|")logp(«?'A&0)j, e(l) =  logg(lyt)
and isasumover ~ such that-71< < 7L A£ (pi-\pi+A,), 1=1.2,....5,

such that p, 1= 1,2,...,s < °° are the distinct poles of p(L). Note that R is a
function of the hypothesized differenced series which has short memory under
(15) and thus, we must specify the frequencies and integration orders of any
seasonal roots.

Robinson (1994) established under regularity conditions that
R “d Xe as n - ~ (18)

and also the Pitman efficiency property of LM in standard problems. 1fp =1,
an approximate one-sided 100a% level test of (15) against alternatives

H: 9>0 (19)

rejects HOif r > zit, where the probability that a standard normal variate exceeds
za is a, and conversely, a test of (15) against alternatives



H: 0<0 (20)

rejects HOif r < -za. A test against the two-sided alternative 0* 0, for any p,
rejects if R exceeds the upper critical value of the x2 distribution.

We can compare Robinson’s (1994) tests with those in HEGY (1990).
Extending (9) to allow augmentations of the dependent variable to render the
errors white noise, and deterministic paths, the auxiliary regression in HEGY
(1990) is

<t>(L)(I- LYyt = + W2y2l., + n3y32 + itdydx, +q, +e, (21)

where ()() is a stationary lag polynomial and r)tis a deterministic process that
might include an intercept, a time trend and/or seasonal dummies. If we cannot
reject the null hypothesis 7, = 0 against the alternative it, < 0 in (21), the
process will have a unit root at zero frequency whether or not other (seasonal)
roots are present in the model. In Robinson’s (1994) tests, taking (13) with

p(L;0) = (1- L)d'9 (22)

with d = 1, (15) implies a single unit root at zero frequency. However, we
could have instead

p(L;6) = (1- L2d' 6, (23)

or alternatively

p(L:0) = (1- L +L2- Z3d+e (24)
or
p(L;0) = (1 - L*f* e. (25)

If again d = 1, under (15), x, displays unit roots at frequencies zero and 7 in
(23) ; zero and two complex ones corresponding to frequencies tt/2 and 3nl2 in
(24) , or all of them in (25). Using HEGY’s (1990) tests, the non-rejection of the
null €2= 0 in (21) will imply a unit root at frequency it independently of other
possible roots, and this can be consistent with (12)-(14) jointly with (23) or (25)
among other possibilities covered by Robinson’s (1994) tests. Furthermore,
testing sequentially, (or jointly as in Ghysels et al. (1994)), the different null
hypotheses in (21), if we cannot reject that &, = 0 for i= 1,2,3 and 4, the overall
null hypothesized model in HEGY (1990) becomes:



@>(L)(1- Lyt = r, + e t=12., (26)

and we can compare it with the set-up in Robinson (1994), using (12)-(14) and
(25) with

<)t = e t=12.., (27)
which, with d = 1, under the null (15), becomes

<1 - L*)y, = WP'(1- tdz, * ef *=1,2,.... (28)
Clearly, if we do not include explanatory variables in (12) and (21), (i.e. rjt=
z, 5 0), (28) becomes (26), and including regressors, the difference between the
two models will be due purely to deterministic components. Similarly, if we
cannot reject jt, = A2 = 0 but reject 7, = 4= 0 in (21), a plausible model in
HEGY (1990) would" be

>E)L - LAyt = T( + e t=12,.., (29)

and the corresponding setting in Robinson’s (1994) tests would be (12)-(14) and
(27) with

p(L;0) = (1- L21*6,

Robinson’s (1994) tests allow testing different integration orders for each of the
seasonal frequencies. Thus, instead of (25) we could consider for instance,

p(L;0) = (@- Ld*f(l + L) @1 + LS (30)
and test the null 0 = (0,,0203)" = 0 for different values of d,, d2and d3 This
possibility is also ruled out in HEGY (1990) and the other tests presented above,

which just concentrate on the unit root situations.

We can also compare the tests of Robinson (1994) with those in Tam and
Reinsel (1996), who considered

y, = H + t = 1-S,...0, (31)
(I-L Yy, =(l-ai> ( t=12,.., (32)

where p, is as in (10), (i.e., p,-pks=0), and u, is a stationary and invertible
ARMA process. They tested



H, a=1 (33)

in (32) against the alternative a < 1 The non-rejection of (33) in (31) and (32)
would imply that y, follows a deterministic seasonal pattern plus a stationary
stochastic process, (i.e., like (31) with t = 1,2,..), while its rejection would be
evidence of seasonal integration. We can take fractional operators instead of the
AR and MA ones in (32):

(1~L9dyt = (1-Lyut, t = 12., (34)

with d > 0, and given the common factors appearing in both sides in (34),
calling 8 = y - d, the model can be rewritten as (31) with

(1-LOS, = t = 12, (35)

and we can test
H, 8=0, (36)

against the alternative 8 > 0. Thus (32) and (35) are identical under the null.
The null and alternative versions of (35) are covered by Robinson’s (1994)
setting, with 3zt in (12) replaced by p,, and s=4, d =0 and 0 = 8 in (25).

The null 9%2limit distribution of Robinson’s (1994) tests is constant across
specifications of p(L;0) and z, and thus does not require case by case evaluation
of a nonstandard distribution, unlike of the other tests described. Ooms (1997)
proposes Wald tests based on Robinson’s (1994) model in (12)-(14), which have
the same limit behaviour as LM tests of Robinson (1994), but require efficient
estimates of the fractional differencing parameters. He suggests a modified
periodogram regression estimation procedure of Hassler (1994), whose
distribution is evaluated under simulation. Robinson’s (1994) tests are applied
to non-seasonal data by Gil-Alana and Robinson (1997), and given the vast
amount of empirical work based on AR structures, an empirical study of
fractional based tests for seasonal data seems overdue.

3. Empirical applications

The relationship between consumption and income is arguably one of the
most important in macroeconomics. The most influential and perhaps most
widely tested view of this relationship is the permanent income hypothesis (see
Hall (1989)). We concentrate on the univariate treatment of these two variables,
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and apply different versions of Robinson’s (1994) tests to some seasonally
unadjusted, quarterly data for United Kingdom and Japan, using the same
datasets as in HEGY (1990) and HEGL (1993) respectively.

For both countries we follow the same procedure. We test (15) in a
version of (12),

Yy, = B +PX+Mn +PAr +P3+"m 1=1A-. (37>

with (13) and (14), where Sk, S2 and S3 are seasonal dummies. We test in a
sequential fashion. Since the data are quarterly, we start by assuming that x, in
(37) has four roots and take p(L;0) as in (25). Given that 6 is scalar, we test HO
(15) against the one-sided alternatives (19) and (20). In order to allow different
integration orders at different frequencies we also consider

p(L;0) = (1- LX te' (1+ L2 ™\ (38)

and more generally, (30). Therefore, 0 = (0,,02” under (38) and (0,,0203’
under (30) and we test here (15) against the two-sided alternative 0 * O.
Clearly, when departures are actually of the specialized form (25), a test of (15)
directed against (25) will have greater power than ones directed against (38) or
(30), but the tests have power against a wider range of alternatives.

Following this sequential way of testing we next assume xt displays only
three roots: two of them complex, corresponding to frequencies 7t/2 and 3u/2,
and one real that might be either at zero or at frequency n. Thus, we perform
the tests in case of (24) and

p(L;0) = (A+L +12+ L3d0 (39)

and extending now the tests to allow different integration orders at the complex
and at the real roots, we also consider two-sided tests where

p(L;0) = @-if¥ 1+L2"1 (40)
and
p(L;0) = @ +L)d*l 1+L2d" 2 (41)

In a further group of tests, we assume the hypothesized model contains
only two roots, one at zero frequency and the other at n. Again we look first
at one-sided tests against (23) and then at two-sided tests against



p(L:6) = (1- if ' (I+L)" 6. (42)

Finally we consider the possibility of a single root (or perhaps two
complex ones), and therefore look at (22) as well as

p(L;0) = (1- L)d%, (43)
and finally,
p(L;0) = (1 + L2d* (44)

The form of A for these various choices of p is derived in the appendix.
It is found that A, interestingly, does not vary with the null hypothesized
integration order d or integration orders di; clearly facilitating the computations.
In all these cases the tests will be performed for different model specifications
in (37). First we assume that (ij=0 a priori;next [{=0, i> 2, (including an
intercept); next P, = 0, i > 3, (a time trend); next p, = 0, (an intercept and
dummy variables); finally that all P, are unknown. In all cases we consider a
wide range of null hypothesized d (and d,’s when p > 1), from 0.50 through 2.25
with 0.25 increments, and white noise u,, though in some cases of interest we
extend to 1(0) parametric autocorrelation in ut, allowing seasonal or non-seasonal
AR structure. Clearly, non-rejections of (15) when d (and the d”s) equal 1
imply unit roots, and non-rejections with d = 0 will suggest deterministic models
of form advocated by Tam and Reinsel (1996).

4, The U.K. case

We analyze the quarterly United Kingdom dataset used in HEGY (1990).
¢, is log consumption expenditure on non-durables and y, is log personal
disposable income, from 1955.1 through 1984.4. The conclusions of HEGY
(1990) were that ctcould be 1(1) at each of the frequencies 0, 7t/2 (and 3n/2) and
7t ytmay contain only two roots, at zero and n; cty, can have four unit roots
if dummies are not introduced, but two unit roots of the same form as in ct if
they are.

Table 1 reports results for the one-sided statistic r, when p(L;0) in (13)
is (25). First, in Table I(i), we take u, as a white noise process, and we observe
that for the two individual series (c, and yf), the null is never rejected when d
= 0.75 and d = 1, and also that d = 1.25 is not rejected when we include as
regressors an intercept and dummies. For the differenced series (cty,), the
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values of d where HOis not rejected are slightly smaller (d = 0.50 and d = 0.75),
and we see that the unit root null is clearly rejected in all cases, in favour of
less nonstationary alternatives, suggesting that if the two individual series were
in fact 1(1), a degree of fractional cointegration may exist for a given
cointegration vector (1,-1), using a simplistic version of the permanent income
hypothesis theory as discussed by Davidson et al. (1978) for instance. The fact
that the unit root null is never rejected for c, is consistent with HEGY (1990),
but this hypothesis is not rejected for y, while HEGY (1990) found evidence of
only two unit roots (at frequencies 0 and 7t) in this series. Various tests of this
hypothesis will be performed later in a further group of tests. Also, HEGL
(1990) allowed augmentations incorporating significant lagged values of the
series. Thus, we also performed the tests with AR u,. In Tables 1(ii) and (iii)

(Table 1 about here)

we give results for AR(1) and AR(2) u, respectively. Tests allowing higher
order AR u, were also performed obtaining similar results. When allowing
seasonal AR structures of form <>Lsjut = e,, or mixed seasonal/non-seasonal
ARs we observed a lack of monotonic decrease in r with respect to d in many
cases. Such monotonicity is to be expected given correct specification and
adequate sample size. In Tables I(ii) and (iii) monotonicity is achieved in
nearly all cases and the unit root null is always rejected. The non-rejection
values are d = 0.50 and d = 0.75, and in those cases where the former is
rejected, always it is in favour of stationary alternatives. The lower integration
orders observed in these two tables compared with Table I(i) can in large part
be due to the fact that the AR estimates are Yule-Walker ones, entailing roots
that cannot exceed one in absolute value but can be arbitrarily close to it, so
they pick up part of the nonstationary component.

Table 2 reports results of the two-sided tests R in (17) when 0 is (2x1).
p(L;0) is now given in (38) and therefore we allow different integration orders
for the real and complex roots. We concentrate on the cases of no regressors,
an intercept and a time trend. If there are no regressors, HO is rejected in all
cases for the individual series and the lowest test statistics are achieved when
d, = 1land d2= 0.5, indicating perhaps the importance of real roots over
complex ones. For cty,, all non-rejections correspond to values of d2 (i.e. the
integration order of the complex roots) smaller than d, (i.e. the integration order
for the two real roots), and the lowest value is now at d, = 0.75 and d2= 0.50.
Including a constant or a time trend, results are similar in both cases: for ct, all
non-rejections occur when d, = 1.00, 1.25 or 1.50 and when d2= 0.50 and 0.75,
with the lowest statistic at d, = 1 and d2= 0.5. For yt, we observe only three
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non-rejection cases corresponding to d, = 1.00, 1.25 and 1.50, with d2= 0.50,
which might indicate that complex roots are not required when modelling this
series, as pointed out in HEGY (1990). For c,-y,, there are some more non-
rejections, with the lowest value at d, = 0.75 and d2= 0.5. Thus, we observe
in all these tables a greater degree of integration for real roots than complex
ones, and also smaller integration orders for c,-yt than for ct and yt.

(Tables 2 and 3 about here)

In Table 3 we extend these tests to allow different integration orders at
zero and n and thus p(L;0) is in (30). The results are consistent with the
previous ones: in fact, when there are no regressors, the null hypothesis is
always rejected for ¢, and y, while for c,-yt there are some non-rejections, with
the lowest value achieved at d, = 1 and d2= d3= 0.50 (i.e. the same alternative
as in Table 2). Including a constant or time trend, the lowest value of the
statistics occurs when d, = 1and d2= d3= 0.50 for c, and cty,, and when d, =
1.50, d2= 1.00 and d3= 0.50 for y,. All these results seem to emphasize the
importance of the root at zero frequency over the others, given its greater
integration order.

Following this sequential way of testing we next assume X, can be
modelled with three roots and thus, remove from (25) the root, at zero frequency
(in which case p(L;0) adopts the forms (39) or (41)), or at % (i.e., p(L;0) as in
(24) or (40)). Though we do not present the results, they show that HO is
rejected in all series and across all cases, indicating the importance of these two
roots, as was suggested in HEGY (1990).

In the next group of tables we suppose x, has only two roots, at zero and
Tt First we take p(L;0) as in (23), so the same integration order is assumed at
both frequencies. This way of specifying the model is interesting in view of
results in HEGY (1990), who suggested that only two unit roots at these
frequencies were present in yt, and in some cases for c,-yt. Results for white
noise u, are given in Table 4(i). Monotonicity is now always achieved and the
non-rejection values occur when d = 0.75 and 1for c, and yt, and when d = 0.50
for c,-y,, suggesting again the possibility of a fractional cointegration relationship
at these two frequencies for the cointegrating vector (1,-1). The hypothesis of
two unit roots (d=I) is always rejected for ct if we include regressors. These
rejections are in line with HEGY (1990),

(Table 4 about here)
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who indicated that complex unit roots should be included. For y, we observe
that d=I is not rejected in 3 of the 5 possible specifications in (37), which is
also consistent with HEGY (1990). If ut follows a seasonal AR (Tables 4(ii)
and (iii)), the non-rejections occur for d between 0.50 and 1 for the individual
series, but only when d = 0.50 there are non-rejections for c,-y,. We observe in
these tables more non-rejection cases for y, than for the other two series when
testing the unit root null, as is once more consistent with HEGY (1990).

In Table 5 we allow integration orders to differ between zero and n
frequencies and thus, p(L;0) is as in (42). If there are no regressors, HO is
always rejected and the lowest statistics are obtained at d, = 1.25 and d2= 0.50
for ct and y,, and at d, = 0.50 and d2 = 1.50 for c,y, so if there are no
regressors but xtdisplays two real roots, the root at zero appears more important
than the seasonal one for the individual series but the one at n is most important
when modelling ct-yt. Including a constant or a time trend, the results are
consistent with those in Table 4(i), where the only non-rejection case with an
intercept or a time trend was d = 0.75 for yt. In Table 5 this alternative is
narrowly rejected but not d, = 0.75 and d2= 0.50, and in all the other situations,
HOis rejected as in Table 4(i).

(Tables 5 and 6 about here)

Finally we assume x, has only two complex roots, at nil and 3ji/2, or a
single one either at 7 or zero. Thus p(L;0) takes the form given in (44), (43)
and (22) respectively. As expected, HOis always rejected in the first two cases,
given the importance of the root at zero frequency to describe trending
behaviour. Table 6 gives results of r for white noise ut and p(L;0) as in (22),
and we observe here that if there are no regressors, the 1(1) null is not rejected
for c, and y,, but is strongly rejected for ct-yt with stationary alternatives (d <
0.5) being more plausible. There are few non-rejections in this table and they
correspond to values of d ranging between 0.50 and 1 for the individual series.
For cty, the only two non-rejection cases occur at d = 0.50 if dummies are
included, but for the remaining specifications, this null is strongly rejected in
favour of stationary alternatives. The fact that the unit root is rejected in this
table for all series when some regressors are included in (37) is consistent with
HEGY (1990), who suggest the need of at least one seasonal unit root.

Summarizing now the main results obtained in the U.K. case, we can say
that if xtin (37) is 1(d) with four roots of the same order and ut is white noise,
the values of d where the null is not rejected range between 0.75 and 1 for the
individual series and are slightly smaller for the difference c,-y,. If u, is AR, d
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ranges between 0.50 and 0.75 for the three series considered. Allowing different
integration orders at each frequency, we observe that the root at zero frequency
seems more important than the seasonal ones, and the seasonal root at n appears
also more important than the two complex ones at n/2 and 3n/2. Modelling X,
as an integrated process with three roots, the null is strongly rejected when the
excluded root is at zero. If the excluded root is the real seasonal 7, the null is
also rejected in practically all cases, suggesting the importance of these two
roots. If we take x, as 1(d) with two real roots, the model seems more
appropriate for y, than for ct or c,-yt, which is in line with results in HEGY
(1990). Finally, modelling x, as fractionally integrated with a single root at zero
frequency, the range of d where HOis not rejected goes from 0.50 to 1 for the
individual series but close to stationarity for c,-yt, but using a single seasonal
root at frequency 7 or a pair of complex ones at frequencies n/2 and 3n/2 seems
inappropriate in view of the great proportion of rejections.

5. The Japanese case

We analyze here the log of total real consumption (ct), the log of real
disposable income (yt), and the difference between them (c,-yt) in Japan from
1961.1 to 1987.4 in 1980 prices. These series have been analyzed in HEGL
(1993) to test the presence of seasonal integration and cointegration. In this
work (and in an earlier version (HEGL (1991)), they apply the HEGY (1990)
tests to these data and their conclusions can be summarized as follows: for c,
integration is obtained at all frequencies O, n/2, 3n/2 and n if there are no
regressors in the model or if only a time trend is included; however, if
dummies are also included, only two unit roots are observed, one at zero
frequency and one at frequency n. For yt, unit roots are not rejected at any
frequency when there are no regressors or when a time trend and/or dummies
are introduced, but if only an intercept is included the unit root at zero
frequency is rejected. Finally, for c,-yt, unit root nulls are not rejected at any
frequency, independently of the regressors used.

Table 7 is analogous to Table 1, showing the one-sided test statistic r
when p(L;0) in (13) takes the form (25). Table 7(i) reports results for white
noise u,, and the first thing that we observe is that if 3 = 0 in (37), we cannot
reject (15) for d = 0.75 and d = 1 in either c, or yt, while in cty,, these two
cases are also not rejected, along with d = 0.50. When regressors such as an
intercept, a trend or seasonal dummies are included, the unit root hypothesis is
rejected in both series in favour of more nonstationary alternatives (d > 1), but
in some cases we observe a lack of monotonicity with respect to d, in particular
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when we include an intercept, and an intercept and dummies for ct, and an
intercept and dummies for yt. Looking at ctyt monotonicity is now always
achieved and the nulls of d = 0.75 and d = 1 are never rejected. We could
conclude from this table that if p(L;0) = 1-L4, and utis in fact white noise, the
two individual series are clearly nonstationary with d greater than 1 in most
cases; however their difference seems less nonstationary (with d < 1), suggesting
that some fractional cointegration could exist between both series, for the
cointegrating vector (1,-1). The fact that d = 1is not rejected for c, and y, when
there are no regressors, and for c,-ytindependently of the regressors used in (37),
is consistent with the results in HEGL (1993) though they allow AR structure
in the differenced series. Therefore in Tables 7(ii) and (iii) we suppose that u,
in (13) is an AR(q) with g = 1and 2. Monotonicity is now observed in many
cases, especially for c,-y,. The range of non-rejection values of d goes from
0.50 through 1 for ct and c,-yt, and from 0.50 through 1.25 for yt. When d >
1.25, HO is rejected in all cases where monotonicity is achieved. As we
explained before for the U.K. case, this smaller degree in the integration order

(Table 7 about here)

of the series (compared with Table 7(i)), could be in large part due to
competition between integration order and AR parameters in describing the
nonstationary component. If we concentrate on the AR(1), we see that the unit
root is not rejected for ytbut is for ct when dummy variables are included in the
model, again in line with HEGL (1993).

So far we have assumed that the four roots in x, must have the same
integration order. In the following tables we allow integration orders to differ
between complex roots and real ones. Table 8 corresponds to two-sided tests
when p(L;0) in (13) takes the form given in (38) and we present results for pj
=0,Pi=0,i>2, and finally P, = 0, i > 3. When there are no regressors, the
null is rejected in all cases for both c, and y, with the lowest value of the
statistics achieved when d, = 1 and d2 = 0.50, suggesting that perhaps the
complex roots are not required and only two roots (at frequencies zero and JX)
are needed. Looking at c,-yt, we observe some non-rejection cases: if d, = d2
the null is not rejected when the integration order is 0.50, 0.75 and 1 These
three possibilities were not rejected in Table 7(i) when we considered the one-
sided tests, but the lowest test statistics are now achieved when d, = 0.75 and
d2=0.50. Including an intercept or a time trend, we observe now some non-
rejections for c, and yt. Starting with c,, HOis not rejected when d, = 1.25 or
1.50 and d2=0.50, 0.75 or 1, observing therefore a greater degree of integration
at zero and iz frequencies than at @2 and 3n/2. Similarly, for y,, all non-
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rejections occur when d, is slightly greater than d2 and for c,-yt, the lowest test
statistics are obtained at d, = d2= 0.75. The null hypothesis of a unit root at all
frequencies (d, = d2= 1) is not rejected in this series which is again consistent
with Table 7(i) and with results given in HEGL (1993).

(Tables 8 and 9 about here)

In Table 9 we are slightly more general in the specification of p(L;0) in
(13), and a different integration order is allowed at each frequency. Therefore
p(L;0) takes the form (30) and again in this table, we present results for cases
of no regressors, an intercept, and a time trend, with white noise ut Similarly
to Table 8, when there are no regressors the null is always rejected for the
individual series with the lowest value obtained at d, = 1.50 and d2= d3= 0.50,
indicating therefore the importance of the root at zero frequency. For c,-y, there
are non-rejections at some alternatives with the lowest value obtained at d, =
1.50, d2= 0.50 and d3= 1, but the case of d, = d2= d3= 1is rejected. Finally,
including an intercept or a time trend, the results are similar in both cases. For
ct, the lowest test statistic is obtained when d, = 1.50, d2= 1.00 and d3= 0.50;
for y, when d, = 150, and d2= d3= 1.00, and for cty, when d, = 1.00, d2=
0.50 and d3= 1.00. All these results corroborate the importance of the root at
zero frequency over the others for the three series.

Performing the tests under the assumption that p(L;0) is of forms (24) or
(39)-(41), we always rejected. Thus, following this sequential way of
performing the tests, we next assume that x, has only two roots, one at zero
frequency and the other at n. First we take p(L;0) as in (23), so 0 consists of
a single parameter. Tables 10(i)-(iii) give results for one-sided tests with white
noise and seasonal AR ur In Table 10(i) we observe that monotonicity is
always achieved, though the results are quite variable across the different
specifications of (37). Starting with ct, if there are no regressors, the non-
rejection values of d range between 0.75 and 1.25; when a time trend is
considered, the only non-rejection case occurs at d = 0.50, and including
dummies the values of d where the null is not rejected are 1and 1.25. For yt,
if there are no regressors, the null is not rejected when d = 0.75 and 1; including
an intercept, the only non-rejection value occurs at d = 0.5, and with seasonal
dummies, the only non-rejection value of d is 0.75. For cty,, the null is rejected
in favour of stationary alternatives for the first three cases, however, including
dummies, it is not rejected when d = 0.50. For the unit root null, our results are
consistent with those of HEGF (1993). In fact,

(Table 10 about here)
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the unit root null is not rejected for ¢, when dummies are included, but is nearly
always rejected for y, and c,-yt, due perhaps to exclusion of unit roots at
frequencies Jt/2 and 3w{2, as was suggested by these authors. Modelling ut with
seasonal AR, in Tables 10(ii) and (iii), we observe that for ct, the values of d
range between 0.5 and 1.25, and the unit root null is now never rejected.
However, looking at yt the unit root null is rejected in favour of less
nonstationary alternatives in all cases except when there are no regressors where
the unit root is not rejected. Since this null hypothesis is not rejected for c,, but
it is for yt and ctyt, again results in this case with seasonal AR u, support the
evidence found in HEGL (1993) that only two unit roots (at frequencies zero
and Jt) were present in ct. For ctyt, only when there are no regressors and d =
0.50 is the null not rejected, and in all other cases, stationary alternatives seem
more plausible, so again here, a certain degree of fractional cointegration seems
to exist at these two frequencies, according to the permanent income hypothesis.

Table 11 reports results extending the tests to allow different integration
orders at the same two frequencies. We observe across this table just a single
case where the null is not rejected and it corresponds to ¢, when there are no
regressors and d, = 1.25 and d2= 0.50. Results here are consistent with those
given in Table 10(i) when we tested a scalar 0, especially for cases of an
intercept and a time trend: with an intercept, we saw in Table 10(i) that the only
non-rejection case was for y, with d = 0.50. In Table 11 this hypothesis is
rejected but it corresponds to the lowest value of the test statistics obtained
across the table. Similarly for the case of a time trend, the only non-rejection in
Table 10(i) corresponded to c, with d = 0.50 and again this hypothesis produces
the lowest statistic in Table 11.

(Tables 11 and 12 about here)

Finally, we examine the case of x, containing a single root, and
concentrate on the case when this root is at zero, i.e. (22). Table 12 shows
results merely for white noise u,, and we observe that the unit root null is not
rejected for ¢, and yt when there are no regressors, but strongly rejected for c,-y,,
in favour of stationary alternatives (with d < 0.5). There are few non-rejections
in this table (only 5 of the 120 cases presented), and apart from the two cases
of a unit root, the other three non-rejection cases correspond to d = 0.5 with a
time trend for c,, and d = 0.75 with seasonal dummies for yt. In case of cty,,
the null is rejected in favour of stationary alternatives for the whole variety of
specifications in (37), suggesting that at this zero frequency, a certain degree of
fractional cointegration might also occur and referring again to the permanent
income hypothesis. We also performed the tests allowing AR ut, but we
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observed here very few cases where monotonicity was achieved across the
different values of d. This can be explained because seasonality is not captured
now by first differences, and the deterministic components do not seem
sufficient to pick up this effect. As a complement to this, on including a
seasonal AR, monotonicity was achieved in practically all cases, with results
very similar to those for white noise ut in Table 12. Modelling xt with a single
root at frequency 7 (i.e., (43)) or as an 1(d) process with two complex roots
corresponding to frequencies 7t/2 and 3tt/2 (i.e., (44)), produced rejections for
all cases and across all series.

As a conclusion we can summarize the main results obtained for the
Japanese case by saying that if x, is 1(d) with four seasonal roots of the same
order d, and v, is white noise, the values of d where the null is not rejected are
at least one for c, and y,, and less than or equal to one for c,-yt. If u, is AR, d
ranges in most cases from 0.50 to 1 for the three series, and allowing different
integration orders for the different frequencies, the most noticeable fact is the
relative importance of the root at zero frequency over the others. Excluding one
of the real roots (either at zero or at frequency 7t), HOis rejected in practically
all situations, indicating the importance of these roots. Taking x, as 1(d) with
two roots, at zero and at frequency . if u, is white noise, the null is not rejected
for ¢, when d ranges between 0.75 and 1.25 while for yt and cty, the non-
rejection cases correspond to d < 1 Modelling here u, as seasonal AR, the unit
root null is not rejected for c, but is for the other two series, and if we permit
different integration orders at these two frequencies, the only non-rejection case
occurs for c, with the integration order at zero frequency slightly greater than
at 7. Finally, if we assume that x, has a single root at zero or at frequency Jt (or
two complex ones corresponding to frequencies nil and 37t/2), the unit root
hypothesis will be rejected in practically all cases in favour of less nonstationary
alternatives.

6. Concluding remarks

We have presented a variety of model specifications for quarterly
consumption and income data in Japan and U.K.. Given the number of
possibilities covered by Robinson’s (1994) tests, one cannot expect to draw
unambiguous conclusions about the very best way of modelling these series. In
fact, using these tests, the null hypothesized model will permit different
deterministic paths; different lagged structures allowing roots at some or all
seasonal frequencies (as well as at zero frequency), each of them with a possibly
different integration order; and different ways of modelling the 1(0) disturbances
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ut. Looking at the results presented above as a whole, some common features
are observed for all series in both countries, however, and they can be
summarized as follows:

First, modelling x, as a quarterly 1(d) process (so p(L) = 1-L4) seems to
be appropriate when ut is white noise or a non-seasonal AR, but not if u, is a
seasonal AR. This can be explained because seasonality can be captured in this
case either by quarterly integration or by seasonal dummies in (37). We also
observe that integration orders seem slightly smaller if u, is AR rather than white
noise, due perhaps to the AR picking up part of the nonstationary component.
The results emphasize the importance of real roots over complex ones, given the
greater integration order observed for the former, and this is even clearer when
we allow different integration orders for each frequency. Excluding one real
root results in rejecting the null in practically all situations. If p(L;0) is given
by (23), we observe some non-rejections if u, is white noise, and allowing 1(0)
parametric autocorrelation, the results are now better for the case of seasonal AR
than for non-seasonal AR processes. This can be explained because the lagged
function p(L) does not now seem to capture seasonality at all and therefore the
seasonal AR component may play an important role in this situation. Separating
here the roots at zero and at 7, the results emphasize the importance of the root
at zero, but modelling the series as a simple 1(d) process with a single root does
not seem appropriate in most of the cases.

Another common feature observed across all these tables is the fact that
integration orders for the individual series seem to range between 0.50 (or 0.75)
and 1.25, independently of the lagged function used when modelling x, in (13)
and the inclusion or not of deterministic parts in (37), indicating clearly the
nonstationary nature of these series. (In fact, though it was not shown in the
tables, the null was practically always rejected when d ranged between 0 and
0.50 and therefore, we found conclusive evidence against deterministic patterns
of the form proposed in Tam and Reinsel (1996)); however, c,-yt seems less
integrated in practically all situations. Therefore, if we consider that the series
are well modelled by a given function p(L), a certain degree of fractional
cointegration would exist between consumption and income for a given
cointegration vector (1,-1), using a very simplistic version of the permanent
income hypothesis.

We can finally compare these results with those obtained in HEGL (1993)
and HEGY (1990) for unit root situations. Results in HEGL (1993) for Japanese
data indicated the presence of unit roots at all frequencies for y, and ct-yt, and
the same conclusions hold for c, if dummies were not included in the model but
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only the two real unit roots would be present if these dummy variables were
included. If we look now at our tables we observe that the unit root null is not
rejected for yt in any specification in (37) when p(L;0) adopts the form in (25)
with AR ut. Similarly for ct-yt, we cannot reject the unit root null for the same
p(L;0) and white noise ut. For ct, the null of four unit roots is not rejected when
there are no dummies, but if they are included non-rejections will occur when
p(L;0) takes the form of (23) with white noise or seasonal AR ut. For the U.K.
case, results in HEGY (1990) suggested that four unit roots could be present for
¢,, and for c,-y, if dummies were not included, and two real unit roots for y,, and
for c,-y, if they were included. Our results again show a certain consistency
with theirs, given that the unit root null is not rejected for consumption if p(L;0)
is (25) with white noise ut, and for income this hypothesis is not rejected if
p(L;0) takes the form of (23) and u, is white noise or a seasonal AR.
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APPENDIX
In this appendix we analyze the matrix A in R in (17) when p(L;9) in (13)
adopts the form in (30), and u, is white noise so that
o= * * (%
i = n{:i, («*(*/,

where V(&) = (MLA), I2X), t/AA))’ for I Al < 7, with

)i = &llog(l - ea)] = log 2sin—— = £ COiTA
~ . B , CosrA
= ReUogd +eiX)) = |09(2C“ N -rfél(-]) r
ifAA) = Re[log(l +e2ikj] = logR2cosA| = coszry

r

Then A can be approximated in large samples by

T

A= —fyX)IX)AX = (Ay),
T 7
where
A A2 = A= g0 - — = 1644
=l
A 3 Ai As A2 L
A aAi = E(-irr'2 - -0822
r-1

A in (17) approximates n times the expected value of the second derivative
matrix of the log-likelihood with respect to the (pxl) parameter vector 0. (See
Robinson (1994), page 1433). Thus, given the non-diagonality of A, we rule out
the possibility of testing, as in HEGY (1990), for the presence of roots
independently of the existence of other roots at any other frequencies in the
process.

For the remaining specifications of p(L;0), A can be easily obtained from
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the above expressions.  Thus, if p(L;0) is given by (25), W(X) =
WIA)WRAX)+y3”) and A = 1.64; under (38), V(X = N/LA)H/ZAA)N/A?%)] and
the (2x2) matrix A = [(1.64,-0.82)"; (-0.82, 1.64)]; under (24), \i(X) =
W,A)XH/AX) and A = 2.46; under (39), t/(A) = VAAXMI™) and A = 2.46;
under (40), V(A) = \f,O)NFX)] and A = [(1.64,-0.41)"; (-0.41, 1.64)’]; under
(42), i = [W2AA),yJA)] and A = [(1.64,-0.41)"; (-0.41, 1.64)"]; under (23),
WA) = t/,(A)ArAA) and A =1.64; under (42), V(%) = [,A)MZAA)] and A =
[(1.64,-0.82)’; (-0.82, 1.64)’]; under (22), (43) or (44), /(A) = t|/,(X), W2AX) or
WrdA) respectively, with A = 1.64 in each case.

Allowing AR (q) u,, g(™;T) below (14) takes the form
ii r2

and A will be given by the expression below (17), with the 1helement of £(X)
given by

= 2(coslk - i;cos(/-y))g(A.;t).

A diskette with the FORTRAN code for the tests is available from the authors
on request.
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1 TABLE 1

rin (17) with p(L;9) - (1-Lyde (U.K. data)

(i) Wiih white noise u,
Series z,v d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

4 3.31 102- -100° -2.43 -3.32 -3.88 -4.25 451
i 5.09 131 -1.11* -.2.00 -2.79 -3.42 -3.86 -4.18

1
C LT 2.65 041+ -126' -2.33 -3.02 -3.46 -3.75 -3.99
1S 5.17 132 -109' -187- -2.62 -3.24 -3.70 -4.04
IT,S 2.70 031 -125 -.2.23 -2.87 -3.34  .3.72 -4.04
3.29 101 -100° -2.42 .331 -3.87 -4.24 .4.50
1 5.16 125+ -096- -1.81" -.261 -3.25 .3.72 .4.08
y IT 2.50 045 -106" -2.11 -2.84 -3.37 -3.76 -4.07
|S 5.16 121> -.097 -176' -2.53 -3.16 -3.64 -4.00
1,T,S 2.41 0.39: -106' -2.06 -2.76 -3.28 -3.69 -4.02
.ﬂ -0.66° -148' -2.21 -2.84 -3.32 -3.69 -3.99 -4.24
| 109 -137: -2.39 -3.05 -3.53 -3.88 -4.15 -4.37
e -y, ILr .0.20° -.144- .2.39 -.3.06 -3.53 .3.86 -411 .4.32
I.S 134 -1.19° .2.21 -2.89 -3.41 -3.79  -4.08 -4.32
IL,TS 0.0F -126- -221 -2.92 -3.43 -3.82 411 -4.35

(i) With AR(1) u,

Series z, \ I\ 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25
\ 3.26 3.62 3.96 4.27 4.52 4.72 4.87 4.98

1 -

c, 1T 107 .0.82° -2.32 .3.25 -3.81L -4.16 -4.39 .455

1,8 .2.27 -2.65 .3.34 .3.75 .4.05 429 -4.49 -4.65

1,T,S 1.08- -2.64 338 .3.81 -4.10 -4.32 .4.50 -4.65

3.26 .3.62 -3.96 -4.27 452 471 -4.86 -4.98

I 181 .1.77° -2.59 -3.32 -3.85 .4.23 .4.49 .4.69

v, T 024 .169° -2.69 -3.40 -3.90 -4.25 -4.50 .4.6§

1S 2.43 .2.52 301 -3.47 .3.87 -4.18 -4.43 .4.62

1,T.S 123 .2.32 .2.99 -351 -3.90 -421 -4.44 .463

0.86° -185 -2.60 -3.17 -3.59 391 .4.17 -.4.38

I 030" -179° -2.66 -3.25 -3.69 -4.01 .4.25 -4.45

ct-y, T 062" -180° -2.66 -3.26 -3.69 -3.99 -4.22 .441

1,s / 029 -167° -2.52 .3.13 -3.58 -3.93 -4.20 -4.41

IL,TS ¢ 057 -169° -2.52 -3.14 -3.60 -3.94 421 .4.43

(iii) With AK(2) u.

Series z,\ 05 075 100 125 150 175 2.00 225

.3.30 -3.62 -3.91 421 .4.48 -4.69 -4.85 .4.98

1 S1.11° -110° -2.25 -3.18 -3.77 -4.16 -4.42 -461

c, AT 045 -1.17° -2.47 .3.32 .3.85 -4.18 .4.39 -454

1,S .2.35 .2.80 -3.49 -3.88 .4.15 -4.36 -4.54 .4.68

1,T,S ©1.29- -2.81 353 -3.93 -4.20 -4.39 .455 .4.68

.3.29 -3.61 391 421 -4.47 .468 -4.85 -4.98

I 213 227 -2.89 -3.47 .3.92 426 -451 -4.69

v, 1T ©1.10° -2.19 -2.96 -3.54 .3.97 .4.29 .451 -4.69

1,S 262 .2.81 -3.20 -3.59 -3.92 .4.20 -4.43 .461

1,T.S ©179- -2.64 .3.18 -36: -3.95 -4.23 .4.45 462

090" -2.02 -2.79 -331 -3.69 -3.97 -4.20 -4.40

| 068 -1.99 .2.83 -3.39 .3.78 -4.07 .4.29 -4.47

¢ =Y 1T 071 -1.96 -2.82 -3.39 -3.78 -4.06 -4.27 -4.44

b 1,5 069 -190° .2.72 -3.29 -3.70 -4.02 -4.26 -4.46

17,8 067 -188 .271 -3.29 371 ~t03 428 4.47

 Non-rejection values for the null hypothesis (15) at 95% significance level, — No intercept, no
time trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; 1,S: Intercept and

seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 2: R in (17) with p(L;0) = (I-L2d+0, (1+L2)d?® and white noise u, (U.K. data)

No intercept and no trend Intercept Intercept and time trend
d d2 c, y. cyt c v, ceey. c Y, Y,
0.50 0.50 5245 5215 3.42° 7934 8317 1136 3355 4066  3.65
0.50 0.75 60.69 60.37  9.92 88.99 91.84 22.06 4654 4822 1031
0.50 1.00 67.35 66.99 14.87 96.04 99.10 3111 5420 5360 15.80
0.50 125 7287 247 18.35 102.02 10550 38.64 59.62 57.75 1994
0.50 150 7753  77.09  20.95 107.41 111.28 45.04 63.87 61.09 23.15
0.75 0.50 19.80 19.76 1.05° 1296 1885  0.86° 7.51 1480  0.86’
0.75 0.75 2589 2585 5.65 2348 2673 4.90° 16.69 21.37  4.82’
0.75 1.00 3125 3119 1025 3101 3324  9.40 2330 2630 924
075 125 36.06 3598 1373 36.87 3892 1317 2811 3026  12.80
0.75 150 4045 40.34 1643 4185 4405 16.36 3194 3359 15.69
100 0.50 831 8.29 2.03’ 0.86° 5.43° 276 103 561" 275
100 0.75 1156 1157  4.20° 6.07 1023 4.48’ 6.47 1040  4.46°
100 1.00 1442 1444 773 1113 1403 761 1148 1406  7.59
100 125 1708 1710 1062 1486 1717 1023 1503 1703 10.22
100 150 1961 1962  12.90 1778 1992  12.30 1774 1960 1230
125 0.50 8.60 8.55 4.99’ 0.98° 3.89" 5.88 136° 4470 591
125 0.75 1058 1056  5.34’ 414’ 744 6.20 478 7.98 6.26
121 100 1205 1204 7.84 8.23 1023 852 8.93 10.61 8.58
125 125 1324 1324  10.04 1118 1246 1057 171 1259 1063
125 150 1430 1431 1173 1334 1442 1207 1360 1427 1213
150 0.50 11.09 1101 8.22 2.96° 540" 893 3.22°  6.04 8.89
150 0.75 1297 1292 749 514>  8.19 8.41 557" 893 8.37
150 1.00 1416 1412 9.30 8.68 1028  10.22 9.35 1104  10.20
150 125 1490 1487 1108 1110 1167 1203 1189 1238 1204
150 150 1539 15636 12.34 1254 1276 1328 1335 1335 1331

TABLE 3: R in (17) with p(L;0) = (1-L)duei (1+L)d2®2 (1+L2)**3and white noise u, (U.K. data)

No intercept and no trend Intercept Intercept and time trend
d d2 c y. cty, c V. Ay« c y. cy,
0.50 0.50 0.50 127.05 126.62 1053 164.90 171.34 2814 76.44 9529  11.08
0.50 0.50 1.00 152.82 15231  26.92 19394 19838 59.74 11261 11781 28.76
0.50 0.50 1.50 169.81 169.18 3571 212.63 21833 81.57 127.96 13052 39.38
0.50 1.00 0.50 14222 14165 26.75 18411 19131  59.23 104.44 11839 29.54
0.50 100 1.00 16531 164.67 53.77 209.65 21512 105.01 14248 139.65 59.23
0.50 1.00 1.50 180.43 179.68 67.65 226.66 232.99 133.04 158.39 15131 75.56
0.50 1.50 0.50 150.03 149.37 37.56 196.00 20351  80.41 117.98 12819 42.68
0.50 1.50 1.00 17047 169.75 65.60 218.48 22471 126.01 150.78  146.37  73.77
0.50 150 1.50 184.05 18324 78.90 23423 241.05 151.84 164.90 156.38  89.06
1.00 0.50 0.50 2114 2123 2.00° 211" 768  3.10 215" 791 3.05
100 0.50 1.00 3290 3308 11.08 1372 1810 12.88 1378 1822 1276
1.00 0.50 1.50 4295 4314 1744 2112 2566  19.76 2099 2547  19.62
1.00 1.00 0.50 3451 3456  4.70° 1111 2334 4.20° 1161 2420 4.21°
100 1.00 1.00 50.50 50.61 1455 3502 4205 1158 3577 4270  11.60
1.00 1.00 1.50 6355 63.64 23.00 49.17 5545 1864 4929 5541 1868
1.00 150 0.50 4338 4339 964 19.96  35.22 8.32 2030 3577 8.33
1.00 150 1.00 59.88 59.92 27.72 49.19  56.68 23.42 4965 5671 2342
1.00 150 1.50 7294 7296  41.97 6453 70.88  37.01 64.43 7011  36.92
150 0.50 0.50 11.07 1099 941 822 1224 1038 8.67 12.65  10.37
150 0.50 1.00 1413 1411  26.61 2872 2864 27.95 2962 2917 27.95
150 0.50 1.50 1538 1537 3831 4179 4213 39.74 4271 4274 39.74
150 1.00 0.50 1557 1554  6.04 254  6.03° 653 2.62° 632" 6.50
150 1.00 1.00 2147 2153 9.41 8.79 1169 1053 8.87 11.84  10.52
150 1.00 150 2543 2552 1363 1354 1515 1515 1347 1494 1517
150 1.50 0.50 2077 20.74 8.93 6.09" 1207 9.28 6.03° 1223 9.24
150 150 1.00 2937 2942 1163 19.63 2326  11.43 1950 2313 1142
150 150 150 3565 3572 1643 29.30 3177 1558 28.84 31.08 15.60

* Non-rejection values for the null hypothesis (15) at 95% significance level.
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TABLE 4
rin (17) with p(L;0) = (1-L3d% (U.K. data)

Series z,\ d 0.5 0.75 1.00 125 150 175 2.00 2.25
523 2.04 -0.47' -2.00 -2.87 -3.38 -3.72 -3.95
1 2.06 -4.26 -4.74 -4.86 -4.95 -5.01 -5.04 -5.06
1T -3.21 -430 -471 -4.89 -4.98 -503 -5.06 -5.09
1,s 7.14  0.17" -2.49 -3.40 -3.98 -4.33 -453 -4.66
1,T,S 2.60 -0.66° -2.50 -3.48 -4.03 -4.34 -4.54 -4.66
518 2.00 -0.51' -2.03 -2.89 -3.40 -3.74 -3.97
1 6.47 -0.69° -2.81 -3.64 -4.16 -4.47 -4.65 -4.76
1T 1.99 -1.05" -2.80 -3.72 -4.23 -4.49 -4.65 -4.76
1.S 752 152" 1.16° -2.38 -3.23 -3.75 -4.07 -4.28
1,T,S 4.09 0.96° -1.18" -2.50 -3.29 -3.78 -4.08 -4.28
-3.97 -4.47 -4.77 -493 -501 -5.05 ~-5.07 -5.08
1 -3.11 -4.35 -4.70 -4.86 -4.94 -498 -501 -5.03
c -, LT -3.76  -4.40 -4.70 -4.86 -4.94 -4.99 -502 -5.04
1,s -0.54* -3.03 -3.84 -427 -451 -4.66 -4.75 -4.82
1,T,S -1.64" -3.06 -3.85 -4.27 -451 -4.66 -4.75 -4.81
W ith seasonal AR(1) u,
Series z,\d 0.5 0.75 1.00 1.25 150 175 2.00 2.25
1.93° 1.17° -0.49" -2.09 -3.10 -3.66 -3.99 -4.19
1 0.62° -1.40° -2.27 -2.66 -2.92 -3.12 -3.27 -3.40
1T -0.77° -1.68" -2.28 -2.67 -2.94 -3.15 -3.34 -3.51
1,8 1.87° -0.54" -2.40 -3.13 -3.59 -3.87 -4.05 -4.17
I.T.S 0.80° -1.12" -2.41 -3.17 -3.60 -3.88 -4.05 -4.18
1.91° 1.13" -0.54" -2.12  -3.12 -3.69 -4.01 -4.20
1 1.65" -1.06" -2.45 -3.09 -3.50 -3.76 -3.92 -4.03
1T 0.56° -1.26" -2.44 -3.13 -3.53 -3.77 -3.94 -4.08
1.S 2.05 0.55° -1.46" -2.59 -3.39 -3.88 -4.16 -4.33
1,T.S 1.95° 0.17° -1.49" -2.69 -3.45 -3.90 -4.17 -4.34
» -2.14 -2.76 -3.25 -3.58 -3.80 -3.93 -4.02 -4.0¢
I -2.06 -2.80 -3.19 -3.42 -358 -3.70 -3.79 -3.8%
c -y, 1T -2.19 -2.81 -3.19 -3.42 -3.58 -3.71 -3.81 -3.91
1,S -1.35° -2.92 -3.54 -391  -4.14 -429 -4.40 -4.48
1,T,S -1.86° -2.92 -3.54 -3.91  -4.14 -429 -4.40 -4.48
W ith seasonal AR(2) u
Series z,\ d * 0.5 0.75 1.00 125 150 175 2.00 225
1.94° 1.08" -0.49’ -2.11 -3.14 -3.71 -4.03 -4.22
I 1.27° -0.85" -2.00 -2.65 -3.11 -3.42 -3.64 -3.80
1T -0.19" -1.15" -2.00 -2.66 -3.13 -3.46 -3.71 -3.92
1.S 2.08 -0.45° -2.14 -2.90 -3.47 -3.85 -4.09 -4.26
I.T.S 0.74* -0.99° -2.15 -2.93 -3.47 -3.84 -4.09 -4.26
1.92° 1.05° -0.54" -2.15 -3.17 -3.73 -4.04 -4.23
I 1.94 -0.70" -1.95" -2.69 -3.26 -3.67 -3.94 -411
1T 0.54" -0.91" -1.95" -2.72 -3.28 -3.67 -3.93 -4.12
1.S 224 0.54" -1.50" -2.59 -3.38 -3.87 -4.16 -4.34
I.T.S 1.86" 0.10" -1.53" -2.70 -3.43 -3.89 -4.17 -4.35
. -1.91" -2.65 -3.30 -3.75 -4.02 -4.19 -4.29 -4.34
I -1.77' -2.73  -3.28 -3.62 -3.83 -3.97 -4.07 -4.15
C-Y LT -1.95" -2.74 -3.28 -3.62 -3.84 -3.98 -4.10 -4.19
1.S -1.34" 291 -3.54 -3.92 -4.16 -431 -4.42 -4.49
I.T.S -1.92° -2.91 -3.54 -3.92 -4.16 -431 -4.41 -4.48
_ Non-rejections values for the null hypothesis (15) at 95% significance level; — No intercept, no
time trend and no seasonal dummies; "I: Intercept; 1, T: Intercept and time trend; 1,S: Intercept and

seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 5

R in (17) with p(L;0) = (I-L)dH+ei (I+L)dez and white noise u, (U.K. data)

No intercept and no trend Intercept Intercept and a time trend

d, a2 ct y. c.-y, c, yt c.-y, c, ye« c.-y,
0.50 0.50 8129 8038  16.06 26.81 10113  10.85 11.79 2548  14.58
050 0.75 91.34 90.37 1637 36.50 11560 10.93 1141 3407 14.88
0.50  1.00 99.46 9847  15.89 4724 12802 10.49 1060 4185  14.42
050 125 106.20 10524  15.08 59.01 139.06  10.00 9.86  49.40 13.68
050 150 111.95 11101 1415 7159 149.02  9.68 940 5685 12.84
0.75 050 2529 2499  19.09 1845 473 1805 1845 534 1837
075 075 3242 3203 2013 1845 854 1912 18.89 8.81 19.50
075 1.00 3866 3821 20.12 1744 119 1918 1842 1125 1961
075 125 4423 4376  19.63 1605 1571 1878 1762 1357 19.26
075 150 49.27 4881  18.88 1448 20.06 1817 1665 1615  18.68
100 050 7.24 7.25  20.56 21.21 640  19.78 21.08 6.44  19.80
100 0.75 1061 1054 2231 2244 950  21.59 22.28 9.60  21.61
100 100 1363 1350 22.84 2256 1058  22.20 2237 1070 2222
100 125 1643 1626  22.80 2232 1084 2227 2213 1098 2230
100 150 19.09 1890 22.46 2190 1088 22.08 2171 1103 2211
125 050 6.36 6.50  20.82 21.75 843  20.02 21.94 8.80  20.02
125 0.75 821 830 2313 2341 1262 2236 2362 13.09 22.36
125 1.00 9.65 9.70  24.05 2377 1425 2332 2399 1476 23.32
125 125 10.86  10.87  24.35 2376 1459 2367 2401 1512  23.67
125 150 1197 1194 2433 2362 1439 2373 2388 1492 2373
150 0.50 8.26 843 2047 2194 954 1968 22.14 9.82 19.69
150 0.75 1002 23.22 2401 1473 2245 2423 1511 2246
150 1.00 1093  11.06 2443 2453 1712 2370 2477 1755  23.72
150 125 1167 1177  24.95 2464 1794 2424 2489 1840 24.26
150 150 1221 1228 25.13 2462 1804 24.45 24.88 1851  24.47

Non-rejection values for the null hypothesis ( 15) at 95% significance level.

TABLE 6

f in (17) with p(L;0) = (I-L)dte and white noise:u, (U.K. data)

Series z\d 05 0.75 1.00 125 1.50 175 2.00 2.25
»” 9.89 391 -0.30°  -2.55 w73 443 487 518
I 1577 -449 -476 501 -523 542 559 574
c, 1T -3.32 431 -4.74 502 -525 544 561 -5.76
.S 191 -091" -337 -4.28 -483 -518 542 561
LTS -1.13°  -334 434  -487 521 -545  -5.64
” 9.83 387 -0.31" -255 -373 442 486 517
| 8.65 -3.00 431 -4.95 537 565 -585 -6.00
Y, 1T 113 -269 -427 -499 -5.41 -5.67  -5.87 -6.02
1,S 11.76  -0.86° -349  -460 524 561 -5.85  -6.02
1TSS 476 0777 -344  -466 -528 -564 -587 -6.04

T ;
C -y 1T -350 -423 461 -487 507 -524 539 554
1S -1.09° -367 442 48 513 534 551 565
I TS -1.95" -363 -442 -48 513 -534 -550 -5.65
Non-rejection values for the null hypothesis ( 15) at 95% significance level; — No intercept,no time trend and no

seasonal dummies; I: Intercept; I, T: Intercept and time trend; 1,S: Intercept and seasonal dummies; 1,T,S: Intercept,
time trend and seasonal dummies.



30

TABLE 7
?in (17) with p(L;9) = (1-LV*9 (Japanese data)

0) W ith white noise u,
Series z,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

2.61 0.77" -1.02* -2.36 -3.22 -3.76 -4.12 -4.37
I 4.36 2.64 3.05 1.36” -0.89" -2.54 -3.50 -4.04

e, 1T 9.12 7.28 3.83 0.00" -2.72 -3.76 -4.01 -4.17
1,S 4.41 2.80 4.39 2.95 0.34” -1.78" -3.06 -3.76
1.T.S 10.02 8.34 5.14 1.04> -2.11 -3.51  -3.99 -4.24

2.54 0.72* -1.05" -2.38 -3.23 -3.77 -4.13 -4.38
4.70 3.34 221 -0.08” -2.10 -3.37 -4.06 -4.44

|
A I,T 7.80 6.04 2.54 -0.91° -3.11 -3.76 -3.77 -3.86
1,S 4.95 4.12 4.78 2.33 -0.57" -2.63 -3.72 -4.25
1,T,S 10.28  8.48 5.10 0.84° -2.30 -3.69 -4.19 -4.44
1.53” -0.08" -1.77" -2.93 -3.63 -4.05 -4.33 -4.52
1 2.41 0.46° -1.54" -2.84 -3.60 -4.05 -4.34 -4.54
e, -y, 1T 2.34 0.45" -1.54° -2.86 -3.58 -3.82 -3.89 -4.02
1,S 3.42 0.35" -1.79" -3.06 -3.76 -4.15 -4.39 -4.55
1,T,S 3.31 0.34> -1.79° -3.06 -3.76 -4.15 -4.39 -4.55

(iiy With AR(1) u.
Series z,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25
-3.13 -3.50 -3.83 -4.13 -4.38 -4.57 -4.71 -4.83
I -1.59” -0.67" -0.51" -1.79° -2.78 -3.50 -3.99 -4.30
c, LT 2.57 1.01° -0.65" -2.01 -3.19 -3.82 -4.09 -4.27
1,8 -2.87 -3.21 -3.31 -3.51 -3.73 -4.05 -4.35 -4.56
1,T,S -1.05" -2.67 -3.30 -3.63 -4.12 -4.48 -4.64 -4.74
-3.01 -3.47 -3.82 -4.12 -437 -457 -471 -4.83
I -0.03° 0.87° 0.23" -1.38" -2.67 -3.52 -4.03 -4.34
A I, T 3.09 2.07 0.24" -1.64" -3.09 -3.67 -3.80 -3.96
1,S -2.51 -2.37 -1.71° -1.88" -2.50 -3.34 -3.99 -4.36
1,T,S 0.29’ -1.41° -1.61" -198 -3.08 -3.91 -4.28 -4.49
0.87° -0.84" -2.29 -3.21 -3.77 -4.13 -4.37 -4.54
| 1.94° -0.0r -1.78" -2.91 -3.59 -4.01 -4.28 -4.48
e, -y, 1T 1.89° -0.02° -1.78° -2.93 -3.58 -3.86 -4.00 -4.16
1,S 1.34> -1.29° -2.66 -3.46 -3.95 -4.25 -4.44 -4.58
1,T,S 1.29" -1.29" -2.66 -3.46 -3.95 -4.25 -4.45 -4.58
(Hi) With AR(2) u,

Series z,\ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25
— -3.19 -3.53 -3.81 -4.09 -4.34 -4.54 -4.70 -4.82
1 -1.53’ -0.51" -0.85" -2.14 -2.96 -3.56 -4.01 -4.36
c, 1T 1.77° 0.16" -1.35" -2.37 -3.30 -3.88 -4.15 -4.34
1,S -2.90 -3.26 -3.56 -3.82 -3.99 -4.24 -4.48 -4.66
I,T,S -1.23" -2.84 -3.60 -3.92 -4.29 -4.60 -4.74 -4.83
— -3.08 -3.50 -3.80 -4.09 -4.34 -454 -470 -4.82
| -0.29° 0.75° 0.20" -1.31" -2.54 -3.41 -3.96 -4.30
Y, I.T 2.69 1.61° 0.04" -1.55" -3.04 -3.66 -3.77 -3.93
1,S -2.54 -2.57 -2.53 -2.78 -3.05 -3.57 -4.07 -4.39
1.T.S 0.lr -199 -2.59 -2.72 -3.33 -3.97 -431 -451
- 0.80° -0.88' -2.27 -3.18 -3.75 -4.11 -4.36 -4.53
1 1.85° 0.03" -1.72° -2.89 -3.60 -4.02 -4.30 -4.49
c, -y, I.T 1.817 -0.0r -1.72° -2.91 -3.59 -3.85 -3.97 -4.12
1.S 0.45° -1.67" -2.77 -3.47 -3.94 -4.24 -4.44 -4.58
1.T.S 0.40° -1.68" -2.77 -3.47 -3.94 -4.24 -4.44 -4.58
Non-rejection values for the null hypothesis (15) at 95% significance level; No intercept, no
time trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and

seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 8: R in (17) with p(L;0) = (I-L2d+ei (1+L2d*2 and white noise u, (Japanese data)

Intercept Intercept and time trend
d. 4 ct 12 cy. < 12 c-y, ¢ 2 cry,
0.50 0.50 41.03  39.76 5.25° 64.79  63.91 6.83 167.85 107.69  6.49
0.50 0.75 47.92 4658  12.86 7281  75.60  15.02 192.19  150.17  14.47
050 1.00 53.35 51.97  19.48 79.24  83.19  23.76 201.74 168.45  23.03
0.50 1.25 57.72  56.32  24.32 84.92  89.31  30.32 207.12  178.07  29.41
0.50 1.50 61.28  59.88  28.05 90.11  94.67  35.22 210.65 183.90 34.14
075 0.50 17.12  16.72 042 22.81 13.95 4.30° 77.49 2981 4.23
075 0.75 22.42 2201 2.95° 34.46  30.38 0.50° 117.38  68.97 0.52°
0.75  1.00 27.06  26.61 8.97 42.28  43.89 5.08" 137.50 100.85  5.16"
0.75 1.25 31.19  30.72 1418 48.55  53.78  11.17 150.13  123.02  11.27
0.75  1.50 34.94  34.45 1852 54.07 61.56  16.86 159.27 138.97  16.96
1.00 0.50 7.76 7.64 3.58° 8.74 8.21 10.28 11.04 8.56 10.27
1.00 0.75 1073 10.62 145" 22.43 576'  2.66° 29.89 6.90 267"
1.00  1.00 1333 13.22 4.71 35.55  14.50 2.39" 48.00  18.11 241"
1.00 125 15.72  15.59 7.98 4591  26.86 4.86° 62.37  33.81 4.89
1.00 150 17.98  17.84  10.53 54.34  38.69 7.33 74.08  49.01 7.35
1.25 0.50 8.07 7.98 8.32 1.82° 11.98  15.19 1.96°  14.05 1531
1.25 0.75 9.93 9.91 461" 3.85° 295  7.92 0.36" 5.22'  8.04
1.25  1.00 11.30  11.30 6.64 11.73 030" 631 5.01° 043"  6.41
1.25 125 12,40 12.40 9.30 20.03 429" 8.09 10.88 247" 8.20
1.25 150 13.37  13.37  11.08 27.56 9.91 9.77 16.30 6.18 9.88
1.50 0.50 10.37 1025  12.16 3.37°  16.22  18.62 6.01 19.15  19.08
1.50 0.75 12.16 1213 7.72 037" 918 11.92 3.78° 1425 1222
1.50 1.00 13.30 1331 8.85 237" 332 931 5.14"  7.65 9.29
150 1.25 13.99 14.02 11.58 6.04 381 1101 7.96 8.00 10.92
1.50 1.50 14.45 1448  13.53 9.44 5.56°  13.00 9.94 9.71 12.92

TABLE 9: R in (17) with p(L;0) = (I-L y™* (1+L)'2= (i+r.2duwe3an{j white noise U  (japanese data)

No intercept and no trend Intercept Intercept and time trend
d d d, C, y. .-y, C y. c.-y, C, yt c,-y.
0.50 0.50 0.50 103.66 101.27  21.28 14171 136.00  18.03 281.38 181.08  17.54
0.50 0.50 1.00 125.45 122.99  49.44 166.31  169.76  49.62 334.06 276.40  48.41
0.50 0.50 1.50 138.97 136.53  63.60 183.92 188.44  66.73 346.47 298.25  64.88
0.50 1.00 0.50 117.27  114.99  43.61 154.99 157.32  44.85 320.99 259.76  43.82
0.50 1.00 1.00 136.62  134.40  94.74 177.59 188.17 129.43 366.44 370.88 127.32
0.50 1.00 1.50 148.39  146.29 120.92 194.11  205.87 176.67 377.28 395.97 173.92
0.50 1.50 0.50 123.50 121.33  57.72 164.44  169.23  63.62 335.74 292.35  62.24
0.50 1.50 1.00 140.31  138.24  107.66 185.10 196.22 152.38 371.11 383.19  150.03
0.50 1.50 1.50 150.64 148.71 131.71 200.60 212.57 196.08 379.89 403.28 193.24
1.00 0.50 0.50 18.90  18.50 2,03 9.87 373 400 10.73 3.66°  4.01°
1.00 0.50 1.00 29.47 2891 204 32.10 474 053 36.42 494> 054
1.00 0.50 1.50 38.39  37.60 3.03° 45.26 8.71 1.04° 50.98 8.85 104"
1.00 1.00 0.50 31.34  30.89 6.50° 24.98 12,03  11.13 28.27 1233 11.12
1.00 1.00 1.00 45.88  45.45  16.30 81.47  39.02 7.86 100.22  44.08 7.87
1.00 1.00 1.50 57.62  57.14  29.12 113.61  79.39  17.82 142.03 92.80  17.82
1.00 1.50 0.50 39.66  39.20 8.21 40.61 16.16  11.31 47.66  17.03  11.30
1.00 1.50 1.00 54.65 54.24  26.23 106.91  65.41 15.61 135.75  77.02 1562
1.00 150 1.50 66.40  65.97  43.02 138.79 115.71  32.58 179.06  142.14  32.60
1.50 0.50 0.50 1033 10.11 2.94° 9.57 3.89°  3.94" 11.15 433" 3.99°
1.50 0.50 1.00 13.25  13.06 178" 31.88 3.95° 1.19° 35.86 4.40° 1.20°
1.50 0.50 1.50 14.41 14.16 2.00° 44.10 565 1.34° 48.52 6.02 1.35°
1.50 1.00 0.50 1423 1401 1125 324 1426  16.43 4.79° 1622 16.73
1.50 1.00 1.00 19.69  19.56 7.84 3.62° 1.58°  7.17° 3570 372 7.13
1.50 1.00 1.50 23.28 2311 11.94 11.54 5.77°  10.30 9.18 8.36 10.26
1.50 1.50 0.50 19.04 1881  12.79 5.20° 16.52  18.79 6.49° 19.23  19.22
1.50 1.50 1.00 27.05  26.95  12.38 14.48 6.84"  10.62 9.75 8.65 10.47
1.50 1.50 1.50 32.83 3272 20.29 30.45  13.79  16.00 18.91 1228  15.69

Non-rejection values for the null hypothesis (15) at 95% significance level.
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TABLE 10
rin (17) with p(L;0) = (1-L2d° (Japanese data)

(iy With white noise u,
Series z,\d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25

4.42 1.78" -0.47° -1.91° -2.75 -3.25 -3.58 -3.80
2.75 -4.04 -4.61 -4.75 -4.84 -488 -4091 -4.92

1
c, 1T -0.96" -3.71 -458 -4.82 -4.89 -4.92 -4.94 -495
1.S 6.87  3.85 1.94" -0.84' -2.80 -3.73 -4.14 -4.34
1,T,S 12.14 7.99 2.04 -1.93" -3.49 -3.99 -4.21 -4.35
4.13 155" -0.66" -2.06 -2.87 -3.35 -3.67 -3.89
1 -1.23° -4.72 -4.83 -4.87 -4.90 -4.92 -493 -4.94
v 1T -3.38  -451 -4.81 -4.89 -4.92 -494 -495 -496
1,S 6.57 0.44° -2.84 -405 -455 -4.73 -4.79 -4.81
1,T.S 7.78 1.25" -2.86 -4.28 -4.66 -4.72 -4.72 -4.74
-4.25 -4.63 -4.80 -4.87 -491 -4.93 -4.94 -4.95
1 -455 -4.81 -4.87 -4.89 -491 -4.92 -4.92 -4.93
c, - y. 1T 451 -4.79 -4.86 -4.89 -491 -4.92 -493 -4.94
1.S -1.11° -3.40 -4.20 -4.50 -4.63 -4.69 -4.73 -4.76
1,T.S -1.14* -3.39 -4.20 -4.50 -4.62 -4.66 -4.67 -4.69
(i) With seasonal AR(1) u,
Series z,\ d 0.5 0.75 1.00 1.25 1.50 1.75 2.00 2.25
: 1,67° 0.96° -0.52" -2.00 -2.95 -3.50 -3.81 -4.01
1 0.50° -1.25° -1.74’ -2.10 -2.42 -2.67 -2.89 -3.09
c, 1T 0.95' -0.84" -1.73’ -2.18 -2.50 -2.76 -3.00 -3.21
1.S 1.91° 1.42° -0.31’ -1.68" -2.85 -3.48 -3.78 -3.95
1.T.S 3.15 1.32° -0.29° -2.23 -3.24 -361 -3.79 -3.93
- 1.41 0.63" -0.85" -2.21 -3.05 -3.52 -3.80 -3.98
1 -0.18' -2.44 -2.46 -2.58 -2.76 -2.94 -3.11 -3.26
y 1T -0.91° -2.00 -2.39 -2.62 -2.83 -3.03 -3.22 -3.41
1S 1.53° -1.56’ -3.19 -3.66 -3.94 -4.11 -4.22 -4.30
1.T.S 0.09° -2.01 -3.20 -3.76 -4.00 -4.10 -4.13 -4.14
— -1.86° -2.34 -2.69 -2.94 -3.13 -3.29 -3.42 -353
1 -2.56 -2.79 -2.90 -3.01 -3.13 -3.25 -3.37 -3.48
¢ -y, 1T -2.42 -2.72 -2.88 -3.02 -3.16 -3.29 -3.41 -355
1.S -2.28 -3.26 -3.70 -3.94 -4.10 -4.20 -4.28 -4.34
1.T.S -2.28 -3.25 -3.70 -3.94 -4.10 -4.18 -4.22 -4.23
(iii) With seasonal AR(2) u
Series z,\ d £ 05 0.75 1.00 1.25 150 175 2.00 225
— 1.69° 0.88" -0.53" -2.02 -2.99 -3.53 -3.84 -4.03
| 1.23° -0.64" -1.65" -2.14 -2.57 -2.90 -3.16 -3.38
c, 1T 1.84’ -0.38" -1.62" -2.27 -2.70 -3.01 -3.28 -3.51
1S 2.11 1.31" -0.52" -1.79' -2.85 -3.47 -3.81 -4.02
I.T.S 3.64 1.45° -0.51" -2.26 -3.19 -3.58 -3.81 -3.98
— 1.49" 0.58" -0.87" -2.21 -3.05 -3.52 -3.81 -4.01
1 0.80' -2.57 -2.65 -2.79 -3.02 -3.22 -3.41 -358
v, 1T -0.65" -2.06 -2.56 -2.85 -3.10 -3.31 -3.51 -3.71
.S 1.78" -1.53" -3.37 -3.85 -4.13 -4.29 -4.40 -4.46
I.T.S 0.33’ -2.11 -3.39 -3.94 -4.18 -4.27 -4.29 -4.30
— -1.71’ -2.39 -2.89 -3.23 -3.45 -3.61 -3.74 -3.85
1 -2.68 -3.01 -3.16 -3.31 -3.45 -3.58 -3.71 -3.82
¢ -y, 1T 251 -293 -3.15 -3.32 -3.48 -3.61 -3.74 -3.89
1.S -2.33  -3.33 -3.81 -4.06 -4.22 -4.33 -4.40 -4.45
I.T.S -2.33  -333 -3.81 -4.06 -4.22 -4.30 -4.33 -4.34
Non-rejection values for the null hypothesis (l;’lz) at 95% significance level; No intercept, no
trend and no seasonal dummies; I: Intercept; 1,T: Intercept and trend; 1,D: Intercept and

seasonal dummies; 1,T,D: Intercept, trend and seasonal dummies.
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R in (17) with p(L;0) = (I-L)"**1(I+L)d2e2 with white noise ut (Japanese data)

No intercept and no time trend

o
o
~

izl

0.50 050 63.67
0.50 0.75 7247
0.50 1.00 79.47
050 125 85.18
050 150 89.94
0.75 0.50 21.45
0.75 0.75 27.81
0.75 1.00 3337
075 125 38.30
0.75 150 42.74
100 0.50 6.44
100 0.75 9.51

100 100 12.28
100 125 14.85
100 150 17.28
125 0.50 5.75’
125 0.75 7.42

125 1.00 8.73

125 125 9.84

125 150 10.86
150 0.50 7.58
150 0.75 9.01

150 1.00 9.97

150 125 10.63
150 150 1111

Intercept

Y

7.74
9.18
11.70
15.58
20.99

Non-rejection values for the null hypothesis (15) at 95% significance level.

f in (17) with p(L;9) = (I-L)dte and white noise u,

Series z,\d
;
c, 1T
.S
LTS
iT
¥ IS
I.T.S
»”
T
c -y, )
Y 1S
I,T,S

0.5

8.47
3.17
-1.51°
12.74
16.98

0.75
343

TABLE 12

1.00

125

-5.35

1.50

Non-reiection values for the null hypothesis (15) at 95% significance level;

seasonal dummies; I: Intercept; I,T: Intercept and trend; 1,S: Intercept and seasonal dummies; I,T,S: Intercept,

trend and seasonal dummies.

175

Intercept and time trend

c,

7.15

(Japanese data)

2.00

Y
1241

No intercept, no trend and no
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