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ABSTRACT

The seasonal structure of quarterly U.K. and Japanese consumption and 
income is examined by means of fractionally-based tests proposed by Robinson 
(1994). These series were analyzed from an autoregressive unit root viewpoint 
by Hylleberg, Engle, Granger and Yoo (HEGY, 1990) and Hylleberg, Engle, 
Granger and Lee (HEGL, 1993). We find that seasonal fractional integration, 
with amplitudes possibly varying across frequencies is an alternative plausible 
way of modelling these series.
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1. Introduction and summary

Many economic time series contain important seasonal components. A 
simple model for a time series y, is a regression on dummy variables Slt,

S ~ \

y, = m„ + £  misu + €, ~ iid’ 0)
i=l

where s is the number of time periods in a year and the m, are unknown 
coefficients. Stochastic processes have also been widely used in modelling 
seasonality, for example the stationary seasonal ARMA

W ) y ,  = e,(L*) e() €( -  iid, (2)

where <I>p(Ls) and ©q(Ls) are polynomials in Ls (the seasonal lag operator) of 
orders p and q respectively, with the zeros of <J>p(Ls) outside the unit circle and 
the zeros of 0 q(Ls) outside or on the unit circle. If moreover the zeros of ©q(Ls) 
are strictly outside the unit circle, (2) can be written as an infinite autoregression

P(ir)y, = e(, £, - iid, (3)
with all roots of p(Ls) = 0 outside the unit circle, some of them in complex pairs 
with seasonal periodicities. As an alternative to (1) and (2), it may be 
appropriate to allow for stochastic seasonal nonstationarity, as is implicit in the 
practice of seasonal differencing (see eg. Box and Jenkins (1970)) whereby the 
operator 1-LS produces a stationary weakly dependent sequence. For example, 
for quarterly data p(Ls) = 1-L4 can be factored as (1-L)(1+L)(1+L2), containing 
four zeros of modulus unity: one at zero frequency; one at two cycles per year, 
corresponding to frequency 7t; and two complex pairs at one cycle per year, 
corresponding to frequencies 7t/2 and 37t/2 (of a cycle 2k).

A good deal of empirical work has followed this approach: Hylleberg, 
Engle, Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal 
unit roots in quarterly U.K. nondurable consumption and disposable income, 
using a procedure that allows tests for unit roots at some seasonal frequencies 
without maintaining their presence at all such frequencies. This procedure allows 
inclusion of a constant, seasonal dummies and/or a time trend. Beaulieu and 
Miron (1993) extended the HEGY procedure to monthly data and examined 
twelve U.S. macroeconomic series in monthly and quarterly data. By contrast 
with previous studies, they concluded that evidence in favour of a seasonal unit 
root was weak. These findings have been seriously questioned by Hylleberg, 
Jorgensen and Sorensen (1993), who concluded that seasonality is in many cases 
variable, not fixed. Hylleberg, Engle, Granger and Lee (1993) (henceforth 
HEGL) performed the HEGY test on quarterly series of Japanese real
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consumption and real disposable income, suggesting that income is integrated 
of order 1 (1(1)) at 0 and all seasonal frequencies, Jt/2, n and 3n/2, and 
consumption is 1(1) at frequencies 0 and n, while some difficulty was found in 
separating unit roots at frequency n/2 (and 37t/2) from a deterministic seasonal 
pattern. Osborn (1993) suggested that a nonstationary periodic AR(1) or a 
periodically integrated 1(1) processes could better be more useful.

Seasonal unit roots can be viewed not only in an autoregressive 
framework but also as a particular case of seasonal fractionally integrated 
processes. Consider the process

(i - L*)d yt = « , (4)
where d > 0 and u, is an 1(0) series, which is defined as a covariance stationary 
process with spectral density bounded and bounded away from zero at all 
frequencies. Clearly, y, has s roots of modulus unity, all with the same 
integration order d. (4) can be extended to present different integration orders 
for each seasonal frequency, whereas y, is stationary if all orders are smaller 
than 1/2. We say that y, has seasonal long memory at a given frequency if the 
integration order at that frequency is greater than zero. A seasonal series might 
also display only a single root at a particular frequency. For example, an 
integrated process with a single root at two cycles per year is:

(1 + L)d yt = ut, (5)

and at one cycle per year:

(1+ L 2)d yt = ur (6)

Thus, if ut is 1(0) and 0 < d < 1/2, yt will in both cases be covariance stationary 
with spectral density unbounded at frequency n in (5), and at frequencies n/2 
and 3k/2 (of a cycle 2n) in (6).

Few empirical studies have been carried out in relation to seasonal 
fractional models. The notion of fractional Gaussian noise with seasonality was 
suggested by Jonas (1981) and extended in a Bayesian framework by Carlin, 
Dempster and Jonas (1985) and Carlin and Dempster (1989). Porter-Fludak 
(1990) applied a seasonal fractionally integrated model to quarterly U.S. 
monetary aggregate with the conclusion that a fractional ARMA model could 
be more appropriate than standard ARIMAs. Advantages of seasonal 
fractionally differencing models for forecasting monthly data are illustrated in 
Sutcliffe (1994), and another empirical application is found in Ray (1993).
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In the following section we briefly describe some common tests for 
seasonal integration, and compare them with Robinson’s (1994) tests for 
nonstationary hypotheses which permit testing of seasonal fractional integration 
of any stationary or nonstationary degree. Section 3 describes models to be 
tested, using Robinson’s (1994) approach, to macroeconomic data of United 
Kingdom (Section 4) and Japan (Section 5) analyzed in HEGY (1990) and 
HEGL (1993) respectively. Section 6 contains some concluding remarks.

2. Tests for seasonal integration

We first consider the Dickey, Hasza and Fuller (DHF) (1984) test of ps
= 1 in

(1 -  psL s)yt = e(, e, ~ iid (0,o2). (7)

The test is based on the auxiliary regression

( 1 - L 0 y r = Kyt_s + e(> (8)

the test statistic being the t-ratio corresponding to 7t in (8). Due to the 
nonstandard asymptotic distributional properties of the t-ratios under the null 
hypothesis, DHF (1984) provide the simulated critical values for testing against 
the alternative it < 0. In order to whiten the errors in (8), the auxiliary 
regression may be augmented by lagged (1-Ls)yt, and with deterministic 
components, but unfortunately this changes the distribution of the test statistic. 
A limitation of DHF (1984) is that it jointly tests for roots at zero and seasonal 
frequencies, and therefore does not allow for unit roots at some but not all 
seasonal frequencies.

This defect is overcome by HEGY (1990) for the quarterly case. Their 
test is based on the auxiliary regression

(1 -L 4)y, = + n 3y3,_2 + *4y3M + e,, (9)

where y,t = (1+L+L2+L3)y, removes the seasonal unit roots but leaves in the zero 
frequency unit root, y2t = -(1-L+L2-L3)yt leaves the root at k and y3t = -(1-L2)y, 
leaves the roots at 7t/2 and 37t/2. The existence of unit roots at 0, 7t, n/2 (and 
3;t/2) implies that 7t, = 0 ,7t2 = 0, and tc3 = jc4 = 0 respectively. The t-ratio for 7C, 
and 7t2 is shown by HEGY to have the familiar Dickey-Fuller distribution (see 
Fuller (1976)) under the null of 7t, = 0 and 7t2 = 0 respectively, while the t-ratio 
for 7t3, conditioned on 7t4 = 0 has the distribution described by DHF (1984) for
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s = 2. Also a joint test of 7t3 = 7t4 = 0 is proposed based on the F-ratio, and the 
critical values of the distribution tabulated. A crucial fact in these tests is that 
the same limiting distributions are obtained when it is not known a priori that 
some of the n ’s are zero: if the n’s other than the one to be tested are truly 
nonzero, then the process does not have unit roots at these frequencies and the 
corresponding y’s are stationary. The regression is therefore equivalent to a 
standard augmented unit-root test. If however some of the other 7t’s are zero, 
there are other unit roots in the regression, but the corresponding y’s are now 
asymptotically uncorrelated and the null distribution of the test statistic will not 
be affected by the inclusion of a variable with a zero coefficient which is 
orthogonal to the included variables. As in DHF (1984), the auxiliary regression 
has to be augmented by lagged dependent variables in order to whiten the errors, 
and deterministic components can be introduced in the auxiliary regression (9), 
though again the distribution changes. An extension of this procedure to allow 
joint HEGY-type tests for the presence of unit roots at zero and all seasonal 
frequencies, and only for the seasonal frequencies, is given in Ghysels et al.
(1994) . It is shown that the test statistics will have the same limiting 
distribution as the sum of the corresponding squared t-ratios for 7t, (i= 1,2,3,4) 
in the former, and it; (i = 2,3,4) in the latter test.

All these procedures test for a unit root in the seasonal AR operator and 
have stochastic nonstationarity as the null hypothesis. Canova and Hansen
(1995) seasonally extend the test of Kwiatkowski et al. (1992), and propose a 
Lagrange multiplier test (the CH test) based on the residuals from a regression 
extracting the seasonal and other deterministic components, for testing the null 
of stationarity about a deterministic seasonal pattern. Hylleberg (1995) compares 
small sample properties of the HEGY and CH tests for seasonal unit roots in 
quarterly series, concluding that both tests complement each other. More 
recently, Tam and Reinsel (1996) propose a test for a unit root in the seasonal 
MA operator, testing a deterministic seasonal null against a stochastic 
nonstationary alternative. They consider the (integrated) SMA(l) model,

y, = P, + e,, t = l - s , . . .0 ,  (10)

(1 - L * ) y t = ( l - a l O e ,  t = 1,2,..., (11)

where p, is a deterministic seasonal mean, so that p, - p,.s = 0, and e, is, initially, 
a white noise process. Thus, a test of a  = 1 in (11) can be interpreted as a test 
of deterministic seasonality against the alternative a  < 1 of stochastic integrated 
seasonality. The test can be extended to allow et to be a stationary and 
invertible ARMA, and also to allow for a deterministic linear trend in y,, leading 
to a different nonstandard null limit distribution.
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5

The tests described above consider the possibility of only a single form 
of seasonal stochastic nonstationarity, in particular, unit roots. We now describe 
the tests of Robinson (1994), which can test any integer or fractional root of any 
order on the unit circle in the complex plane.

We observe {(y,,zt), t=l,2,.. .,n} where

y, = P;z, + *r, t = 1,2,..., (12)

p(L;0)x, = ut, t = 1,2,..., (13)

x = 0, t < 0, (14)

where (3 is a (kxl) vector of unknown parameters and z, is a (kxl) vector of 
deterministic variables that might include an intercept, a time trend and/or 
seasonal dummies; p(L;0), a prescribed function of L and the unknown (pxl) 
parameter vector 0, will depend on the model tested; u, is an 1(0) process with 
parametric spectral density 

2
A = •^ -£ (A .;t ), - n  < \  <. n,

2n
where the positive scalar o 2 and the (qxl) vector x are unknown, but g is of 
known form.

In general we wish to test the null hypothesis

H0: 0 = 0. (15)

Under (15), the residuals are

«, = p(i)y , -  P; w,, t = 1,2,...,

where

p(L) = p(Z.;0), P = w,w, £  W, p(L)yt, wt = p(L)zr
(t»i / <'i

Unless g is completely known function (eg. g = 1, as when ut is white noise) we 
have to estimate the nuisance parameter vector x, for example by

t  = argmm  o2(t), (16)

where T is a suitable subset of Rq and
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7 n~l

a2(t) = — Y , g (K ;* Y 'i( \) ,
n M

where

I(X) = |(27i n)^ l/2Y  u ,e“k \2,
f=l

The test statistic, derived from the Lagrange multiplier (LM) principle is

R = — a ' A ' 1 d = f 'r ,  (17)
a4

where
_ 1/2 _ *

f  = — A ' a, a2 = o 2( t ) ,  a = ---------£  <KA>)g(A;; f ) 1/(A.y),
a2 n y

/■

E i » (V 'K V / “ E
j

w p w p '  E  E

= •& ?|^) logp(«?'A7;0)j, e ( l  ) = log g ( ly;t)

and is a sum over ^ such that-71 < < 71. A.j £ (pi-^.pi+A,,), 1= l,2,...,s,

such that p, 1 = l,2,...,s < °° are the distinct poles of p(L). Note that R is a 
function of the hypothesized differenced series which has short memory under 
(15) and thus, we must specify the frequencies and integration orders of any 
seasonal roots.

Robinson (1994) established under regularity conditions that

R -*d X2P as n -  ~ (18)

and also the Pitman efficiency property of LM in standard problems. If p = 1, 
an approximate one-sided 100a% level test of (15) against alternatives

H,: 9 > 0 (19)

rejects H0 if r > ztt, where the probability that a standard normal variate exceeds 
za is a, and conversely, a test of (15) against alternatives
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7

H,: 0 < 0 (20)

rejects H0 if r < -za. A test against the two-sided alternative 0 * 0 ,  for any p, 
rejects if R exceeds the upper critical value of the xp2 distribution.

We can compare Robinson’s (1994) tests with those in HEGY (1990). 
Extending (9) to allow augmentations of the dependent variable to render the 
errors white noise, and deterministic paths, the auxiliary regression in HEGY 
(1990) is

<t>(L)(l- L4)yt = + 7r2y2l., + n 3y3(_2 + it4y3r_, + q, + e,, (21)

where (|)(L) is a stationary lag polynomial and r)t is a deterministic process that 
might include an intercept, a time trend and/or seasonal dummies. If we cannot 
reject the null hypothesis 7t, = 0 against the alternative it, < 0 in (21), the 
process will have a unit root at zero frequency whether or not other (seasonal) 
roots are present in the model. In Robinson’s (1994) tests, taking (13) with

p(L;0) = (1 - L)d' 9 (22)

with d = 1, (15) implies a single unit root at zero frequency. However, we 
could have instead

p(L;6) = (1 - L2)d' 6, (23)

or alternatively

p(L;0) = (1 -  L + L2 -  Z.3)d+ e, (24)

or

p(L;0) = (1 -  L*f*  e. (25)

If again d = 1, under (15), x, displays unit roots at frequencies zero and 7t in
(23) ; zero and two complex ones corresponding to frequencies tt/2 and 3nl2 in
(24) , or all of them in (25). Using HEGY’s (1990) tests, the non-rejection of the 
null tc2 = 0 in (21) will imply a unit root at frequency it independently of other 
possible roots, and this can be consistent with (12)-( 14) jointly with (23) or (25) 
among other possibilities covered by Robinson’s (1994) tests. Furthermore, 
testing sequentially, (or jointly as in Ghysels et al. (1994)), the different null 
hypotheses in (21), if we cannot reject that 7t, = 0 for i=  1,2,3 and 4, the overall 
null hypothesized model in HEGY (1990) becomes:
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(J>(L)(1- L4)yt = r,, + e(, t = 1,2,..., (26)

and we can compare it with the set-up in Robinson (1994), using (12)-( 14) and
(25) with

<t>(L)«t = e(, t = 1,2,..., (27)

which, with d = 1, under the null (15), becomes

<t>(L)(l -  L*)y, = W P ' ( 1 -  t 4)z, * ef  *= 1 ,2 ,.... (28)

Clearly, if we do not include explanatory variables in (12) and (21), (i.e. rjt = 
z, s  0), (28) becomes (26), and including regressors, the difference between the 
two models will be due purely to deterministic components. Similarly, if we 
cannot reject jt, = 7t2 = 0 but reject 7t, = rt4 = 0 in (21), a plausible model in 
HEGY (1990) would" be

4>(£)(1 -  L2)yt = T!( + e(, t = 1,2,..., (29)

and the corresponding setting in Robinson’s (1994) tests would be (12)-( 14) and 
(27) with

p(L;0) = (1 - L2)1* 6.

Robinson’s (1994) tests allow testing different integration orders for each of the 
seasonal frequencies. Thus, instead of (25) we could consider for instance,

p(L;0) = (1 -  L)d' * fl‘(l + L ) ^  ®2(1 + L 2)d}* 83 (30)

and test the null 0 = (0 ,,02,03)’ = 0 for different values of d„ d2 and d3. This 
possibility is also ruled out in HEGY (1990) and the other tests presented above, 
which just concentrate on the unit root situations.

We can also compare the tests of Robinson (1994) with those in Tam and 
Reinsel (1996), who considered

y, = H, + t = 1 -s,...0, (31)

( l - L !)y, = ( l - a i > (, t = 1,2,..., (32)

where p, is as in (10), (i.e., p, - pKS = 0), and u, is a stationary and invertible
ARMA process. They tested
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H„: a  = 1 (33)

in (32) against the alternative a  < 1. The non-rejection of (33) in (31) and (32) 
would imply that y, follows a deterministic seasonal pattern plus a stationary 
stochastic process, (i.e., like (31) with t = 1,2,..), while its rejection would be 
evidence of seasonal integration. We can take fractional operators instead of the 
AR and MA ones in (32):

(1 ~ L s)d yt = (1 - L y u t, t = 1,2..., (34)

with d > 0, and given the common factors appearing in both sides in (34), 
calling 8 = y - d, the model can be rewritten as (31) with

( l - L O S ,  = t = 1,2,.., (35)

and we can test

H„: 8 = 0, (36)

against the alternative 8 > 0. Thus (32) and (35) are identical under the null. 
The null and alternative versions of (35) are covered by Robinson’s (1994) 
setting, with (3’zt in (12) replaced by p,, and s = 4, d = 0 and 0 = 8 in (25).

The null %2 limit distribution of Robinson’s (1994) tests is constant across 
specifications of p(L;0) and z, and thus does not require case by case evaluation 
of a nonstandard distribution, unlike of the other tests described. Ooms (1997) 
proposes Wald tests based on Robinson’s (1994) model in (12)-(14), which have 
the same limit behaviour as LM tests of Robinson (1994), but require efficient 
estimates of the fractional differencing parameters. He suggests a modified 
periodogram regression estimation procedure of Hassler (1994), whose 
distribution is evaluated under simulation. Robinson’s (1994) tests are applied 
to non-seasonal data by Gil-Alana and Robinson (1997), and given the vast 
amount of empirical work based on AR structures, an empirical study of 
fractional based tests for seasonal data seems overdue.

3. Empirical applications

The relationship between consumption and income is arguably one of the 
most important in macroeconomics. The most influential and perhaps most 
widely tested view of this relationship is the permanent income hypothesis (see 
Hall (1989)). We concentrate on the univariate treatment of these two variables,
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and apply different versions of Robinson’s (1994) tests to some seasonally 
unadjusted, quarterly data for United Kingdom and Japan, using the same 
datasets as in HEGY (1990) and HEGL (1993) respectively.

For both countries we follow the same procedure. We test (15) in a 
version of (12),

y, = P, + P2f + M n  + PAr + P553, + *n 1 = 1A - . (37>
with (13) and (14), where Sk, S2, and S3I are seasonal dummies. We test in a 
sequential fashion. Since the data are quarterly, we start by assuming that x, in 
(37) has four roots and take p(L;0) as in (25). Given that 6 is scalar, we test H0 
(15) against the one-sided alternatives (19) and (20). In order to allow different 
integration orders at different frequencies we also consider

p(L;0) = (1 - L 2f te' (1+ L 2) ^ \  (38)

and more generally, (30). Therefore, 0 = (0,,02)’ under (38) and (0,,02,03)’ 
under (30) and we test here (15) against the two-sided alternative 0 * 0. 
Clearly, when departures are actually of the specialized form (25), a test of (15) 
directed against (25) will have greater power than ones directed against (38) or 
(30), but the tests have power against a wider range of alternatives.

Following this sequential way of testing we next assume xt displays only 
three roots: two of them complex, corresponding to frequencies 7t/2 and 3tt/2, 
and one real that might be either at zero or at frequency n. Thus, we perform 
the tests in case of (24) and

p(L;0) = (1 + L + l 2 + L3)d+0, (39)

and extending now the tests to allow different integration orders at the complex 
and at the real roots, we also consider two-sided tests where

p(L;0) = (1 -  i f 1 *6‘ (1 + L2) ^ 1 (40)

and

p(L;0) = (1 + L)d'*°l (1 + L 2) ^ 2. (41)

In a further group of tests, we assume the hypothesized model contains 
only two roots, one at zero frequency and the other at n. Again we look first 
at one-sided tests against (23) and then at two-sided tests against
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p(L;6) = (1 - i f 1 '6| ( l+ L )^ 6’. (42)

Finally we consider the possibility of a single root (or perhaps two 
complex ones), and therefore look at (22) as well as

p(L;0) = (1 -  L)d*e, (43)

and finally,

p(L;0) = (1 + L2)d*°. (44)

The form of A for these various choices of p is derived in the appendix. 
It is found that A, interestingly, does not vary with the null hypothesized 
integration order d or integration orders di; clearly facilitating the computations. 
In all these cases the tests will be performed for different model specifications 
in (37). First we assume that (ij = 0 a priori; next [5, = 0, i > 2, (including an 
intercept); next P; = 0, i > 3, (a time trend); next p, = 0, (an intercept and 
dummy variables); finally that all P, are unknown. In all cases we consider a 
wide range of null hypothesized d (and d,’s when p > 1), from 0.50 through 2.25 
with 0.25 increments, and white noise u„ though in some cases of interest we 
extend to 1(0) parametric autocorrelation in ut, allowing seasonal or non-seasonal 
AR structure. Clearly, non-rejections of (15) when d (and the d^s) equal 1 
imply unit roots, and non-rejections with d = 0 will suggest deterministic models 
of form advocated by Tam and Reinsel (1996).

4. The U.K. case

We analyze the quarterly United Kingdom dataset used in HEGY (1990). 
c, is log consumption expenditure on non-durables and y, is log personal 
disposable income, from 1955.1 through 1984.4. The conclusions of HEGY 
(1990) were that ct could be 1(1) at each of the frequencies 0 ,7t/2 (and 3n/2) and 
7t; yt may contain only two roots, at zero and n; ct-y, can have four unit roots 
if dummies are not introduced, but two unit roots of the same form as in ct if 
they are.

Table 1 reports results for the one-sided statistic r, when p(L;0) in (13) 
is (25). First, in Table l(i), we take u, as a white noise process, and we observe 
that for the two individual series (c, and yt), the null is never rejected when d 
= 0.75 and d = 1, and also that d = 1.25 is not rejected when we include as 
regressors an intercept and dummies. For the differenced series (ct-y,), the
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values of d where H0 is not rejected are slightly smaller (d = 0.50 and d = 0.75), 
and we see that the unit root null is clearly rejected in all cases, in favour of 
less nonstationary alternatives, suggesting that if the two individual series were 
in fact 1(1), a degree of fractional cointegration may exist for a given 
cointegration vector (1,-1), using a simplistic version of the permanent income 
hypothesis theory as discussed by Davidson et al. (1978) for instance. The fact 
that the unit root null is never rejected for c, is consistent with HEGY (1990), 
but this hypothesis is not rejected for y, while HEGY (1990) found evidence of 
only two unit roots (at frequencies 0 and 7t) in this series. Various tests of this 
hypothesis will be performed later in a further group of tests. Also, HEGL 
(1990) allowed augmentations incorporating significant lagged values of the 
series. Thus, we also performed the tests with AR u,. In Tables 1 (ii) and (iii)

(Table 1 about here)

we give results for AR(1) and AR(2) u, respectively. Tests allowing higher 
order AR u, were also performed obtaining similar results. When allowing 
seasonal AR structures of form <l>(Ls)ut = e„ or mixed seasonal/non-seasonal 
ARs we observed a lack of monotonic decrease in r with respect to d in many 
cases. Such monotonicity is to be expected given correct specification and 
adequate sample size. In Tables l(ii) and (iii) monotonicity is achieved in 
nearly all cases and the unit root null is always rejected. The non-rejection 
values are d = 0.50 and d = 0.75, and in those cases where the former is 
rejected, always it is in favour of stationary alternatives. The lower integration 
orders observed in these two tables compared with Table l(i) can in large part 
be due to the fact that the AR estimates are Yule-Walker ones, entailing roots 
that cannot exceed one in absolute value but can be arbitrarily close to it, so 
they pick up part of the nonstationary component.

Table 2 reports results of the two-sided tests R in (17) when 0 is (2x1). 
p(L;0) is now given in (38) and therefore we allow different integration orders 
for the real and complex roots. We concentrate on the cases of no regressors, 
an intercept and a time trend. If there are no regressors, H0 is rejected in all 
cases for the individual series and the lowest test statistics are achieved when 
d, = 1 and d2 = 0.5, indicating perhaps the importance of real roots over 
complex ones. For ct-y„ all non-rejections correspond to values of d2 (i.e. the 
integration order of the complex roots) smaller than d, (i.e. the integration order 
for the two real roots), and the lowest value is now at d, = 0.75 and d2 = 0.50. 
Including a constant or a time trend, results are similar in both cases: for ct, all 
non-rejections occur when d, = 1.00, 1.25 or 1.50 and when d2 = 0.50 and 0.75, 
with the lowest statistic at d, = 1 and d2 = 0.5. For yt, we observe only three
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non-rejection cases corresponding to d, = 1.00, 1.25 and 1.50, with d2 = 0.50, 
which might indicate that complex roots are not required when modelling this 
series, as pointed out in HEGY (1990). For c,-y„ there are some more non
rejections, with the lowest value at d, = 0.75 and d2 = 0.5. Thus, we observe 
in all these tables a greater degree of integration for real roots than complex 
ones, and also smaller integration orders for c,-yt than for ct and yt.

(Tables 2 and 3 about here)

In Table 3 we extend these tests to allow different integration orders at 
zero and n and thus p(L;0) is in (30). The results are consistent with the 
previous ones: in fact, when there are no regressors, the null hypothesis is 
always rejected for c, and y, while for c,-yt there are some non-rejections, with 
the lowest value achieved at d, = 1 and d2 = d3 = 0.50 (i.e. the same alternative 
as in Table 2). Including a constant or time trend, the lowest value of the 
statistics occurs when d, = 1 and d2 = d3 = 0.50 for c, and ct-y„ and when d, = 
1.50, d2 = 1.00 and d3 = 0.50 for y,. All these results seem to emphasize the 
importance of the root at zero frequency over the others, given its greater 
integration order.

Following this sequential way of testing we next assume x, can be 
modelled with three roots and thus, remove from (25) the root, at zero frequency 
(in which case p(L;0) adopts the forms (39) or (41)), or at 7t (i.e., p(L;0) as in 
(24) or (40)). Though we do not present the results, they show that H0 is 
rejected in all series and across all cases, indicating the importance of these two 
roots, as was suggested in HEGY (1990).

In the next group of tables we suppose x, has only two roots, at zero and 
7t. First we take p(L;0) as in (23), so the same integration order is assumed at 
both frequencies. This way of specifying the model is interesting in view of 
results in HEGY (1990), who suggested that only two unit roots at these 
frequencies were present in yt, and in some cases for c,-yt. Results for white 
noise u, are given in Table 4(i). Monotonicity is now always achieved and the 
non-rejection values occur when d = 0.75 and 1 for c, and yt, and when d = 0.50 
for c,-y„ suggesting again the possibility of a fractional cointegration relationship 
at these two frequencies for the cointegrating vector (1,-1). The hypothesis of 
two unit roots (d=l) is always rejected for ct if we include regressors. These 
rejections are in line with HEGY (1990),

(Table 4 about here)
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who indicated that complex unit roots should be included. For y, we observe 
that d=l is not rejected in 3 of the 5 possible specifications in (37), which is 
also consistent with HEGY (1990). If ut follows a seasonal AR (Tables 4(ii) 
and (iii)), the non-rejections occur for d between 0.50 and 1 for the individual 
series, but only when d = 0.50 there are non-rejections for c,-y,. We observe in 
these tables more non-rejection cases for y, than for the other two series when 
testing the unit root null, as is once more consistent with HEGY (1990).

In Table 5 we allow integration orders to differ between zero and n 
frequencies and thus, p(L;0) is as in (42). If there are no regressors, H0 is 
always rejected and the lowest statistics are obtained at d, = 1.25 and d2 = 0.50 
for ct and y„ and at d, = 0.50 and d2 = 1.50 for c,-y,, so if there are no 
regressors but xt displays two real roots, the root at zero appears more important 
than the seasonal one for the individual series but the one at n is most important 
when modelling ct-yt. Including a constant or a time trend, the results are 
consistent with those in Table 4(i), where the only non-rejection case with an 
intercept or a time trend was d = 0.75 for yt. In Table 5 this alternative is 
narrowly rejected but not d, = 0.75 and d2 = 0.50, and in all the other situations, 
H0 is rejected as in Table 4(i).

(Tables 5 and 6 about here)

Finally we assume x, has only two complex roots, at n il and 3ji/2, or a 
single one either at 7t or zero. Thus p(L;0) takes the form given in (44), (43) 
and (22) respectively. As expected, H0 is always rejected in the first two cases, 
given the importance of the root at zero frequency to describe trending 
behaviour. Table 6 gives results of r for white noise ut and p(L;0) as in (22), 
and we observe here that if there are no regressors, the 1(1) null is not rejected 
for c, and y„ but is strongly rejected for ct-yt with stationary alternatives (d < 
0.5) being more plausible. There are few non-rejections in this table and they 
correspond to values of d ranging between 0.50 and 1 for the individual series. 
For ct-y„ the only two non-rejection cases occur at d = 0.50 if dummies are 
included, but for the remaining specifications, this null is strongly rejected in 
favour of stationary alternatives. The fact that the unit root is rejected in this 
table for all series when some regressors are included in (37) is consistent with 
HEGY (1990), who suggest the need of at least one seasonal unit root.

Summarizing now the main results obtained in the U.K. case, we can say 
that if xt in (37) is 1(d) with four roots of the same order and ut is white noise, 
the values of d where the null is not rejected range between 0.75 and 1 for the 
individual series and are slightly smaller for the difference c,-y,. If u, is AR, d
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ranges between 0.50 and 0.75 for the three series considered. Allowing different 
integration orders at each frequency, we observe that the root at zero frequency 
seems more important than the seasonal ones, and the seasonal root at n  appears 
also more important than the two complex ones at n/2 and 3n/2. Modelling x, 
as an integrated process with three roots, the null is strongly rejected when the 
excluded root is at zero. If the excluded root is the real seasonal 7t, the null is 
also rejected in practically all cases, suggesting the importance of these two 
roots. If we take x, as 1(d) with two real roots, the model seems more 
appropriate for y, than for ct or c,-yt, which is in line with results in HEGY 
(1990). Finally, modelling x, as fractionally integrated with a single root at zero 
frequency, the range of d where H0 is not rejected goes from 0.50 to 1 for the 
individual series but close to stationarity for c,-yt, but using a single seasonal 
root at frequency 7t or a pair of complex ones at frequencies n/2 and 3n/2 seems 
inappropriate in view of the great proportion of rejections.

5. The Japanese case

We analyze here the log of total real consumption (ct), the log of real 
disposable income (yt), and the difference between them (c,-yt) in Japan from 
1961.1 to 1987.4 in 1980 prices. These series have been analyzed in HEGL 
(1993) to test the presence of seasonal integration and cointegration. In this 
work (and in an earlier version (HEGL (1991)), they apply the HEGY (1990) 
tests to these data and their conclusions can be summarized as follows: for c„ 
integration is obtained at all frequencies 0, n/2, 3n/2 and n if there are no 
regressors in the model or if only a time trend is included; however, if 
dummies are also included, only two unit roots are observed, one at zero 
frequency and one at frequency n. For yt, unit roots are not rejected at any 
frequency when there are no regressors or when a time trend and/or dummies 
are introduced, but if only an intercept is included the unit root at zero 
frequency is rejected. Finally, for c,-yt, unit root nulls are not rejected at any 
frequency, independently of the regressors used.

Table 7 is analogous to Table 1, showing the one-sided test statistic r 
when p(L;0) in (13) takes the form (25). Table 7(i) reports results for white 
noise u„ and the first thing that we observe is that if (3, = 0 in (37), we cannot 
reject (15) for d = 0.75 and d = 1 in either c, or yt, while in ct-y„ these two 
cases are also not rejected, along with d = 0.50. When regressors such as an 
intercept, a trend or seasonal dummies are included, the unit root hypothesis is 
rejected in both series in favour of more nonstationary alternatives (d > 1), but 
in some cases we observe a lack of monotonicity with respect to d, in particular
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when we include an intercept, and an intercept and dummies for ct, and an 
intercept and dummies for yt. Looking at ct-yt, monotonicity is now always 
achieved and the nulls of d = 0.75 and d = 1 are never rejected. We could 
conclude from this table that if p(L;0) = 1-L4, and ut is in fact white noise, the 
two individual series are clearly nonstationary with d greater than 1 in most 
cases; however their difference seems less nonstationary (with d < 1), suggesting 
that some fractional cointegration could exist between both series, for the 
cointegrating vector (1,-1). The fact that d = 1 is not rejected for c, and y, when 
there are no regressors, and for c,-yt independently of the regressors used in (37), 
is consistent with the results in HEGL (1993) though they allow AR structure 
in the differenced series. Therefore in Tables 7(ii) and (iii) we suppose that u, 
in (13) is an AR(q) with q = 1 and 2. Monotonicity is now observed in many 
cases, especially for c,-y,. The range of non-rejection values of d goes from 
0.50 through 1 for ct and c,-yt, and from 0.50 through 1.25 for yt. When d > 
1.25, H0 is rejected in all cases where monotonicity is achieved. As we 
explained before for the U.K. case, this smaller degree in the integration order

(Table 7 about here)

of the series (compared with Table 7(i)), could be in large part due to 
competition between integration order and AR parameters in describing the 
nonstationary component. If we concentrate on the AR(1), we see that the unit 
root is not rejected for yt but is for ct when dummy variables are included in the 
model, again in line with HEGL (1993).

So far we have assumed that the four roots in x, must have the same 
integration order. In the following tables we allow integration orders to differ 
between complex roots and real ones. Table 8 corresponds to two-sided tests 
when p(L;0) in (13) takes the form given in (38) and we present results for pj 
= 0, Pi = 0, i > 2, and finally P, = 0, i > 3. When there are no regressors, the 
null is rejected in all cases for both c, and y, with the lowest value of the 
statistics achieved when d, = 1 and d2 = 0.50, suggesting that perhaps the 
complex roots are not required and only two roots (at frequencies zero and Jt) 
are needed. Looking at c,-yt, we observe some non-rejection cases: if d, = d2, 
the null is not rejected when the integration order is 0.50, 0.75 and 1. These 
three possibilities were not rejected in Table 7(i) when we considered the one
sided tests, but the lowest test statistics are now achieved when d, = 0.75 and 
d2 = 0.50. Including an intercept or a time trend, we observe now some non
rejections for c, and yt. Starting with c„ H0 is not rejected when d, = 1.25 or 
1.50 and d2 = 0.50, 0.75 or 1, observing therefore a greater degree of integration 
at zero and iz frequencies than at tc/2 and 3n/2. Similarly, for y,, all non-
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rejections occur when d, is slightly greater than d2, and for c,-yt, the lowest test 
statistics are obtained at d, = d2 = 0.75. The null hypothesis of a unit root at all 
frequencies (d, = d2 = 1) is not rejected in this series which is again consistent 
with Table 7(i) and with results given in HEGL (1993).

(Tables 8 and 9 about here)

In Table 9 we are slightly more general in the specification of p(L;0) in 
(13), and a different integration order is allowed at each frequency. Therefore 
p(L;0) takes the form (30) and again in this table, we present results for cases 
of no regressors, an intercept, and a time trend, with white noise ut. Similarly 
to Table 8, when there are no regressors the null is always rejected for the 
individual series with the lowest value obtained at d, = 1.50 and d2 = d3 = 0.50, 
indicating therefore the importance of the root at zero frequency. For c,-y, there 
are non-rejections at some alternatives with the lowest value obtained at d, = 
1.50, d2 = 0.50 and d3 = 1, but the case of d, = d2 = d3 = 1 is rejected. Finally, 
including an intercept or a time trend, the results are similar in both cases. For 
ct, the lowest test statistic is obtained when d, = 1.50, d2 = 1.00 and d3 = 0.50; 
for y,, when d, = 1.50, and d2 = d3 = 1.00, and for ct-y„ when d, = 1.00, d2 = 
0.50 and d3 = 1.00. All these results corroborate the importance of the root at 
zero frequency over the others for the three series.

Performing the tests under the assumption that p(L;0) is of forms (24) or 
(39)-(41), we always rejected. Thus, following this sequential way of 
performing the tests, we next assume that x, has only two roots, one at zero 
frequency and the other at n. First we take p(L;0) as in (23), so 0 consists of 
a single parameter. Tables 10(i)-(iii) give results for one-sided tests with white 
noise and seasonal AR ur In Table 10(i) we observe that monotonicity is 
always achieved, though the results are quite variable across the different 
specifications of (37). Starting with ct, if there are no regressors, the non
rejection values of d range between 0.75 and 1.25; when a time trend is 
considered, the only non-rejection case occurs at d = 0.50, and including 
dummies the values of d where the null is not rejected are 1 and 1.25. For yt, 
if there are no regressors, the null is not rejected when d = 0.75 and 1; including 
an intercept, the only non-rejection value occurs at d = 0.5, and with seasonal 
dummies, the only non-rejection value of d is 0.75. For ct-y„ the null is rejected 
in favour of stationary alternatives for the first three cases, however, including 
dummies, it is not rejected when d = 0.50. For the unit root null, our results are 
consistent with those of HEGF (1993). In fact,

(Table 10 about here)
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the unit root null is not rejected for c, when dummies are included, but is nearly 
always rejected for y, and c,-yt, due perhaps to exclusion of unit roots at 
frequencies Jt/2 and 3tx/2, as was suggested by these authors. Modelling ut with 
seasonal AR, in Tables 10(ii) and (iii), we observe that for ct, the values of d 
range between 0.5 and 1.25, and the unit root null is now never rejected. 
However, looking at yt, the unit root null is rejected in favour of less 
nonstationary alternatives in all cases except when there are no regressors where 
the unit root is not rejected. Since this null hypothesis is not rejected for c„ but 
it is for yt and ct-yt, again results in this case with seasonal AR u, support the 
evidence found in HEGL (1993) that only two unit roots (at frequencies zero 
and Jt) were present in ct. For ct-yt, only when there are no regressors and d = 
0.50 is the null not rejected, and in all other cases, stationary alternatives seem 
more plausible, so again here, a certain degree of fractional cointegration seems 
to exist at these two frequencies, according to the permanent income hypothesis.

Table 11 reports results extending the tests to allow different integration 
orders at the same two frequencies. We observe across this table just a single 
case where the null is not rejected and it corresponds to c, when there are no 
regressors and d, = 1.25 and d2 = 0.50. Results here are consistent with those 
given in Table 10(i) when we tested a scalar 0, especially for cases of an 
intercept and a time trend: with an intercept, we saw in Table 10(i) that the only 
non-rejection case was for y, with d = 0.50. In Table 11 this hypothesis is 
rejected but it corresponds to the lowest value of the test statistics obtained 
across the table. Similarly for the case of a time trend, the only non-rejection in 
Table 10(i) corresponded to c, with d = 0.50 and again this hypothesis produces 
the lowest statistic in Table 11.

(Tables 11 and 12 about here)

Finally, we examine the case of x, containing a single root, and 
concentrate on the case when this root is at zero, i.e. (22). Table 12 shows 
results merely for white noise u,, and we observe that the unit root null is not 
rejected for c, and yt when there are no regressors, but strongly rejected for c,-y,, 
in favour of stationary alternatives (with d < 0.5). There are few non-rejections 
in this table (only 5 of the 120 cases presented), and apart from the two cases 
of a unit root, the other three non-rejection cases correspond to d = 0.5 with a 
time trend for c„ and d = 0.75 with seasonal dummies for yt. In case of ct-y„ 
the null is rejected in favour of stationary alternatives for the whole variety of 
specifications in (37), suggesting that at this zero frequency, a certain degree of 
fractional cointegration might also occur and referring again to the permanent 
income hypothesis. We also performed the tests allowing AR ut, but we

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



19

observed here very few cases where monotonicity was achieved across the 
different values of d. This can be explained because seasonality is not captured 
now by first differences, and the deterministic components do not seem 
sufficient to pick up this effect. As a complement to this, on including a 
seasonal AR, monotonicity was achieved in practically all cases, with results 
very similar to those for white noise ut in Table 12. Modelling xt with a single 
root at frequency 7t (i.e., (43)) or as an 1(d) process with two complex roots 
corresponding to frequencies 7t/2 and 3tt/2 (i.e., (44)), produced rejections for 
all cases and across all series.

As a conclusion we can summarize the main results obtained for the 
Japanese case by saying that if x, is 1(d) with four seasonal roots of the same 
order d, and u, is white noise, the values of d where the null is not rejected are 
at least one for c, and y„ and less than or equal to one for c,-yt. If u, is AR, d 
ranges in most cases from 0.50 to 1 for the three series, and allowing different 
integration orders for the different frequencies, the most noticeable fact is the 
relative importance of the root at zero frequency over the others. Excluding one 
of the real roots (either at zero or at frequency 7t), H0 is rejected in practically 
all situations, indicating the importance of these roots. Taking x, as 1(d) with 
two roots, at zero and at frequency 7t. if u, is white noise, the null is not rejected 
for c, when d ranges between 0.75 and 1.25 while for yt and ct-y, the non
rejection cases correspond to d < 1. Modelling here u, as seasonal AR, the unit 
root null is not rejected for c, but is for the other two series, and if we permit 
different integration orders at these two frequencies, the only non-rejection case 
occurs for c,, with the integration order at zero frequency slightly greater than 
at 7i. Finally, if we assume that x, has a single root at zero or at frequency Jt (or 
two complex ones corresponding to frequencies nil and 37t/2), the unit root 
hypothesis will be rejected in practically all cases in favour of less nonstationary 
alternatives.

6. Concluding remarks

We have presented a variety of model specifications for quarterly 
consumption and income data in Japan and U.K.. Given the number of 
possibilities covered by Robinson’s (1994) tests, one cannot expect to draw 
unambiguous conclusions about the very best way of modelling these series. In 
fact, using these tests, the null hypothesized model will permit different 
deterministic paths; different lagged structures allowing roots at some or all 
seasonal frequencies (as well as at zero frequency), each of them with a possibly 
different integration order; and different ways of modelling the 1(0) disturbances
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ut. Looking at the results presented above as a whole, some common features 
are observed for all series in both countries, however, and they can be 
summarized as follows:

First, modelling x, as a quarterly 1(d) process (so p(L) = 1-L4) seems to 
be appropriate when ut is white noise or a non-seasonal AR, but not if u, is a 
seasonal AR. This can be explained because seasonality can be captured in this 
case either by quarterly integration or by seasonal dummies in (37). We also 
observe that integration orders seem slightly smaller if u, is AR rather than white 
noise, due perhaps to the AR picking up part of the nonstationary component. 
The results emphasize the importance of real roots over complex ones, given the 
greater integration order observed for the former, and this is even clearer when 
we allow different integration orders for each frequency. Excluding one real 
root results in rejecting the null in practically all situations. If p(L;0) is given 
by (23), we observe some non-rejections if u, is white noise, and allowing 1(0) 
parametric autocorrelation, the results are now better for the case of seasonal AR 
than for non-seasonal AR processes. This can be explained because the lagged 
function p(L) does not now seem to capture seasonality at all and therefore the 
seasonal AR component may play an important role in this situation. Separating 
here the roots at zero and at 7t, the results emphasize the importance of the root 
at zero, but modelling the series as a simple 1(d) process with a single root does 
not seem appropriate in most of the cases.

Another common feature observed across all these tables is the fact that 
integration orders for the individual series seem to range between 0.50 (or 0.75) 
and 1.25, independently of the lagged function used when modelling x, in (13) 
and the inclusion or not of deterministic parts in (37), indicating clearly the 
nonstationary nature of these series. (In fact, though it was not shown in the 
tables, the null was practically always rejected when d ranged between 0 and 
0.50 and therefore, we found conclusive evidence against deterministic patterns 
of the form proposed in Tam and Reinsel (1996)); however, c,-yt seems less 
integrated in practically all situations. Therefore, if we consider that the series 
are well modelled by a given function p(L), a certain degree of fractional 
cointegration would exist between consumption and income for a given 
cointegration vector (1,-1), using a very simplistic version of the permanent 
income hypothesis.

We can finally compare these results with those obtained in HEGL (1993) 
and HEGY (1990) for unit root situations. Results in HEGL (1993) for Japanese 
data indicated the presence of unit roots at all frequencies for y, and ct-yt, and 
the same conclusions hold for c, if dummies were not included in the model but
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only the two real unit roots would be present if these dummy variables were 
included. If we look now at our tables we observe that the unit root null is not 
rejected for yt in any specification in (37) when p(L;0) adopts the form in (25) 
with AR ut. Similarly for ct-yt, we cannot reject the unit root null for the same 
p(L;0) and white noise ut. For ct, the null of four unit roots is not rejected when 
there are no dummies, but if they are included non-rejections will occur when 
p(L;0) takes the form of (23) with white noise or seasonal AR ut. For the U.K. 
case, results in HEGY (1990) suggested that four unit roots could be present for 
c,, and for c,-y, if dummies were not included, and two real unit roots for y,, and 
for c,-y, if they were included. Our results again show a certain consistency 
with theirs, given that the unit root null is not rejected for consumption if p(L;0) 
is (25) with white noise ut, and for income this hypothesis is not rejected if 
p(L;0) takes the form of (23) and u, is white noise or a seasonal AR.
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APPENDIX

In this appendix we analyze the matrix A in R in (17) when p(L;9) in (13) 
adopts the form in (30), and u, is white noise so that

ii = -  £  * ( « * ( * / ,n j

where V|/(A) = (V|/,(A.), \|/2(X,), t|/3(A))’ for I AI < 7t, with

i)fi(A) = & [lo g (l - e a )] = log 2 sin— = 
2

= ReUogd  + e iX)) = log
(2c“ i )  "

i|f3(A) = Re[log(l + e 2ik)] = log 12 cos A | =

Then Â can be approximated in large samples by

£ COSTÀ

r

- £ ( - 1)' 
r= 1

cosr A.
>r

cos2r \  
r

TC

Â = — f  ty(X)'l'(X)/dX =
TC J

(Ày).

where
-71

À i Â22 II u> II E ' - 2r=l
-  —  = 1.644, 

6

À  3 À i À  3 À 2
L r=l

Â 12 À i = Ê(-ir
r-1

r ' 2 - -0.822.

A in (17) approximates n times the expected value of the second derivative 
matrix of the log-likelihood with respect to the (pxl) parameter vector 0. (See 
Robinson (1994), page 1433). Thus, given the non-diagonality of A, we rule out 
the possibility of testing, as in HEGY (1990), for the presence of roots 
independently of the existence of other roots at any other frequencies in the 
process.

For the remaining specifications of p(L;0), A can be easily obtained from
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the above expressions. Thus, if p(L;0) is given by (25), \|/(X.) = 
v|/l(A.)+vjr2(X)+y3(^) and A = 1.64; under (38), V|/(X) = [\i/1(A,)+\|/2(A.),\|/3(?e)]’ and 
the (2x2) matrix A = [(1.64,-0.82)’; (-0.82, 1.64)’]; under (24), \\i(X) = 
V|/,(A.)-H|/3(X) and A = 2.46; under (39), t|/(A.) = V|/2(A.)+V|/3( .̂) and A = 2.46; 
under (40), V|/(?i) = [\(f,(X.),\|f3(X.)]’ and A = [(1.64,-0.41)’; (-0.41, 1.64)’]; under 
(41), t)i(^) = [\|/2(A.),y3(A.)]’ and A = [(1.64,-0.41)’; (-0.41, 1.64)’]; under (23), 
V|/(A.) = t|/,(A.)+\]r2(A.) and A =1.64; under (42), \]/(?e) = [\|/,(A.),V|/2(A.)]’ and A = 
[(1.64,-0.82)’; (-0.82, 1.64)’]; under (22), (43) or (44), \|/(A.) = t|/,(X), \\i2(X) or 
v|r3(A,) respectively, with A = 1.64 in each case.

Allowing AR (q) u„ g(^;T) below (14) takes the form

ii  r 2

and A will be given by the expression below (17), with the 1th element of £(X) 
given by

= 2(cosIk  -  i ;cos(/-y))g(A.;t).

A diskette with the FORTRAN code for the tests is available from the authors 
on request.
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II TABLE 1

1 r  in  (1 7 ) w ith  p (L ;9 ) =  ( 1 - L4) d,e (U .K . d a ta )

(i) W i ih w h ite  n o ise  u,
Series z, \  d 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

4 3.31 1 .0 2 ’ - 1 .0 0 ’ - 2 .43 - 3 .32 - 3 .88 - 4 .25 - 4.51
i 5 .09 1 .3 1 ’ - 1 . 11 ’ - 2 .00 - 2 .79 - 3 .42 - 3 .86 - 4 .18

c, I,T 2 .65 0 .4 1 ’ - 1 . 2 6 ’ - 2 .33 - 3 .02 - 3 .46 - 3 .75 - 3 .99
is 5 .17 1 .3 2 ’ - 1 .0 9 ’ - 1 . 8 7 ’ - 2 .62 - 3 .24 - 3 .7 0 - 4 .0 4
I T ,S 2 .7 0 0 . 3 1 ’ - 1 . 2 5 ’ - 2 .23 - 2 .87 - 3 .34 - 3 .72 - 4 .0 4

3 .29 1.0 1 ’ - 1 .0 0 ’ - 2 .42 - 3.31 - 3.87 - 4 .2 4 - 4 .5 0
I 5 .16 1 .2 5 ’ - 0 .9 6 ’ - 1 . 8 1 ’ - 2.61 - 3.25 - 3 .72 - 4 .0 8

y, I T 2 .5 0 0 .4 5 ’ - 1.0 6 ’ - 2.11 - 2 .84 - 3 .37 - 3 .76 - 4 .07
IS 5 .16 1 . 2 1 ’ - 0 . 9 7 ’ - 1 .7 6 ’ - 2 .53 - 3 .16 - 3 .64 - 4 .0 0
I,T ,S 2.41 0 . 3 9 ’ - 1.0 6 ’ - 2 .06 - 2 .76 - 3 .28 - 3 .69 - 4 .0 2

ft - 0 . 6 6 ' - 1 .4 8 ’ - 2.21 - 2 .84 - 3 .32 - 3 .69 - 3 .99 - 4 .2 4
i 1.0 9 ’ - 1 . 3 7 ’ - 2 .39 - 3 .05 - 3.53 - 3 .88 - 4 .15 - 4 .3 7

e, - y, i,r - 0 . 2 0 ' - 1 .4 4 ’ - 2 .39 - 3 .06 - 3 .53 - 3 .86 - 4.11 - 4 .3 2
I.S 1. 3 4 ’ - 1 . 19 ’ - 2.21 - 2 .89 - 3.41 - 3 .79 - 4 .08 - 4 .3 2
I,T S - 0 .0  r - 1 . 2 6 ’ - 2.21 - 2 .92 - 3 .43 - 3 .82 - 4.11 - 4 .35

(ii) W ith  A R (1 ) u,
Series z, \  l\ 0.5 0 .75 1.00 1.25 1.50 1.75 2 .0 0 2 .25

\ - 3 .26 - 3 .62 - 3 .96 - 4 .2 7 - 4 .5 2 - 4 .7 2 - 4 .8 7 - 4 .98
I - 0 . 8 4 ’ - 0 . 7 8 ’ - 2 .10 - 3 .13 - 3 .76 - 4 .17 - 4 .4 4 - 4 .63

c, I,T 1 .0 7 ’ - 0 . 8 2 ’ - 2 .32 - 3 .25 - 3.81 - 4 .1 6 - 4 .3 9 - 4 .55
I,S - 2 .27 - 2 .65 - 3 .34 - 3 .75 - 4 .05 - 4 .2 9 - 4 .4 9 - 4 .65
I,T ,S - 1 .0 8 ’ - 2 .64 - 3 .38 - 3.81 - 4 .1 0 - 4 .32 - 4 .5 0 - 4 .65

- 3 .26 - 3 .62 - 3 .96 - 4 .2 7 - 4 .5 2 - 4.71 -4 .8 6 - 4 .98
I - 1 . 8 1 ’ - 1 .7 7 ’ - 2 .59 - 3 .3 2 - 3 .85 - 4 .23 - 4 .4 9 - 4 .6 9

y, I,T - 0 . 2 4 ’ - 1 .6 9 ’ - 2 .69 - 3 .40 - 3 .90 - 4 .25 - 4 .5 0 - 4 .68
I.S - 2 .43 - 2 .52 - 3.01 - 3 .47 - 3 .87 - 4 .18 - 4 .4 3 - 4 .6 2
I,T ,S - 1 . 2 3 ’ - 2 .32 - 2 .99 - 3.51 - 3 .90 - 4.21 - 4 .44 - 4 .63

- 0 . 8 6 ’ - 1 . 8 5 ’ - 2 .6 0 - 3 .17 - 3 .59 - 3.91 - 4 .17 - 4 .38
I - 0 . 3 0 ’ - 1 .7 9 ’ - 2 .66 - 3 .25 - 3 .69 - 4.01 - 4 .25 - 4 .45

c t - y, I,T - 0 .6 2 ’ - 1 . 8 0 ’ - 2 .66 - 3 .26 - 3 .69 - 3 .99 - 4 .2 2 - 4.41
I,S  / - 0 . 2 9 ’ - 1 .6 7 ’ - 2 .52 - 3 .13 - 3 .58 - 3.93 - 4 .2 0 - 4.41
I,T ,S  f - 0 . 5 7 ’ - 1 .6 9 ’ - 2 .52 - 3 .14 - 3 .60 - 3 .94 - 4.21 - 4 .43

(iii) W ith  A K (2 ) u.
S eries z, \ 0.5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

- 3 .30 - 3 .62 - 3.91 - 4.21 - 4 .48 - 4 .6 9 - 4 .85 - 4 .98
1 - 1. 11 ’ - 1. 10 ’ - 2 .25 - 3 .18 - 3.77 - 4 .1 6 - 4 .4 2 - 4.61

c, A T 0 .4 5 ’ - 1 . 17 ’ - 2 .47 - 3 .32 - 3 .85 - 4 .18 - 4 .3 9 - 4 .5 4
I,S - 2 .35 - 2 .80 - 3 .49 - 3 .88 - 4 .15 - 4 .3 6 - 4 .5 4 - 4 .68
I,T ,S - 1. 2 9 ’ - 2.81 - 3 .53 - 3 .93 - 4 .2 0 - 4 .3 9 - 4 .55 - 4 .68

. . - 3 .29 - 3.61 - 3.91 - 4.21 - 4 .47 - 4 .68 - 4 .85 -4 .9 8
I - 2 .13 - 2 .27 - 2 .89 - 3 .47 - 3 .92 - 4 .26 - 4.51 - 4 .6 9

y, I,T - 1 . 10 ’ - 2 .19 - 2 .96 - 3 .54 - 3 .97 - 4 .2 9 - 4.51 - 4 .6 9
I,S - 2 .62 - 2.81 - 3 .2 0 - 3 .59 - 3 .92 - 4 .2 0 - 4 .43 - 4.61
I,T ,S - 1 .7 9 ’ - 2 .64 - 3 .18 - 3 .6 ! - 3 .95 -4 .2 3 - 4 .45 - 4 .6 2

. . - 0 .9 0 ’ - 2 .02 - 2 .7 9 - 3.31 - 3 .69 - 3 .97 - 4 .2 0 - 4 .4 0
I - 0 .6 8 ’ - 1.99 - 2.83 - 3 .39 - 3 .78 - 4 .07 - 4 .2 9 - 4 .4 7

c. ■ y. I,T - 0 . 7 1 ’ - 1.96 - 2 .82 - 3 .39 - 3 .78 - 4 .0 6 - 4 .27 - 4 .4 4
i  J t I,S - 0 .6 9 ’ - 1 .9 0 ’ - 2 .7 2 - 3 .29 - 3 .70 - 4 .0 2 - 4 .2 6 - 4 .4 6

I,T ,S - 0 .6 7 ’ - 1 . 8 8 ’ - 2.71 - 3 .29 - 3.71 ^ t.03 - 4 .2 8 - 4 .47

Non-rejection values for the null hypothesis (15) at 95% significance level; —: No intercept, no
time trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and
seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 2: R in (17) with p(L;0) = (l-L 2)d,+0, (1+L2)d2*02 and white noise u, (U.K. data)

No intercept and no trend Intercept Intercept and time trend
d, d2 c, y. c.-yt c, y, c«-y. c, y, c,-y,

0.50 0.50 52.45 52.15 3.42’ 79.34 83.17 11.36 33.55 40.66 3.65’
0.50 0.75 60.69 60.37 9.92 88.99 91.84 22.06 46.54 48.22 10.31
0.50 1.00 67.35 66.99 14.87 96.04 99.10 31.11 54.20 53.60 15.80
0.50 1.25 72.87 2.47 18.35 102.02 105.50 38.64 59.62 57.75 19.94
0.50 1.50 77.53 77.09 20.95 107.41 111.28 45.04 63.87 61.09 23.15

0.75 0.50 19.80 19.76 1.05’ 12.96 18.85 0.86’ 7.51 14.80 0.86’
0.75 0.75 25.89 25.85 5.65’ 23.48 26.73 4.90’ 16.69 21.37 4.82’
0.75 1.00 31.25 31.19 10.25 31.01 33.24 9.40 23.30 26.30 9.24
0.75 1.25 36.06 35.98 13.73 36.87 38.92 13.17 28.11 30.26 12.80
0.75 1.50 40.45 40.34 16.43 41.85 44.05 16.36 31.94 33.59 15.69

1.00 0.50 8.31 8.29 2.03’ 0.86’ 5.43’ 2.76’ 1.03’ 5.61’ 2.75’
1.00 0.75 11.56 11.57 4.20’ 6.07 10.23 4.48’ 6.47 10.40 4.46’
1.00 1.00 14.42 14.44 7.73 11.13 14.03 7.61 11.48 14.06 7.59
1.00 1.25 17.08 17.10 10.62 14.86 17.17 10.23 15.03 17.03 10.22
1 00 1.50 19.61 19.62 12.90 17.78 19.92 12.30 17.74 19.60 12.30

1.25 0.50 8.60 8.55 4.99’ 0.98’ 3.89’ 5.88’ 1.36’ 4.47’ 5.91’
1.25 0.75 10.58 10.56 5.34’ 4.14’ 7.44 6.20 4.78’ 7.98 6.26
1.2.1 1.00 12.05 12.04 7.84 8.23 10.23 8.52 8.93 10.61 8.58
1.25 1.25 13.24 13.24 10.04 11.18 12.46 10.57 11.71 12.59 10.63
1.25 1.50 14.30 14.31 11.73 13.34 14.42 12.07 13.60 14.27 12.13

1.50 0.50 11.09 11.01 8.22 2.96’ 5.40’ 8.93 3.22’ 6.04 8.89
1.50 0.75 12.97 12.92 7.49 5.14’ 8.19 8.41 5.57’ 8.93 8.37
1.50 1.00 14.16 14.12 9.30 8.68 10.28 10.22 9.35 11.04 10.20
1.50 1.25 14.90 14.87 11.08 11.10 11.67 12.03 11.89 12.38 12.04
1.50 1.50 15.39 15.36 12.34 12.54 12.76 13.28 13.35 13.35 13.31

TABLE 3: R in (17) with p(L;0) = (1-L)duei (1+L)d2+02 (1+L2)"**3 and white noise u, (U.K. data)

No intercept and no trend _____ Intercept_____  Intercept and time trend
d, d2 dj c, y. ct-y, c, y, c.-y« c, y. c,-y,

0.50 0.50 0.50 127.05 126.62 10.53 164.90 171.34 28.14 76.44 95.29 11.08
0.50 0.50 1.00 152.82 152.31 26.92 193.94 198.38 59.74 112.61 117.81 28.76
0.50 0.50 1.50 169.81 169.18 35.71 212.63 218.33 81.57 127.96 130.52 39.38

0.50 1.00 0.50 142.22 141.65 26.75 184.11 191.31 59.23 104.44 118.39 29.54
0.50 1.00 1.00 165.31 164.67 53.77 209.65 215.12 105.01 142.48 139.65 59.23
0.50 1.00 1.50 180.43 179.68 67.65 226.66 232.99 133.04 158.39 151.31 75.56

0.50 1.50 0.50 150.03 149.37 37.56 196.00 203.51 80.41 117.98 128.19 42.68
0.50 1.50 1.00 170.47 169.75 65.60 218.48 224.71 126.01 150.78 146.37 73.77
0.50 1.50 1.50 184.05 183.24 78.90 234.23 241.05 151.84 164.90 156.38 89.06

1.00 0.50 0.50 21.14 21.23 2.00’ 2.11’ 7.68’ 3.10’ 2.15’ 7.91 3.05’
1.00 0.50 1.00 32.90 33.08 11.08 13.72 18.10 12.88 13.78 18.22 12.76
1.00 0.50 1.50 42.95 43.14 17.44 21.12 25.66 19.76 20.99 25.47 19.62

1.00 1.00 0.50 34.51 34.56 4.70’ 11.11 23.34 4.20’ 11.61 24.20 4.21’
1.00 1.00 1.00 50.50 50.61 14.55 35.02 42.05 11.58 35.77 42.70 11.60
1.00 1.00 1.50 63.55 63.64 23.00 49.17 55.45 18.64 49.29 55.41 18.68

1.00 1.50 0.50 43.38 43.39 9.64 19.96 35.22 8.32 20.30 35.77 8.33
1.00 1.50 1.00 59.88 59.92 27.72 49.19 56.68 23.42 49.65 56.71 23.42
1.00 1.50 1.50 72.94 72.96 41.97 64.53 70.88 37.01 64.43 70.11 36.92

1.50 0.50 0.50 11.07 10.99 9.41 8.22 12.24 10.38 8.67 12.65 10.37
1.50 0.50 1.00 14.13 14.11 26.61 28.72 28.64 27.95 29.62 29.17 27.95
1.50 0.50 1.50 15.38 15.37 38.31 41.79 42.13 39.74 42.71 42.74 39.74

1.50 1.00 0.50 15.57 15.54 6.04’ 2.54’ 6.03’ 6.53’ 2.62’ 6.32' 6.50’
1.50 1.00 1.00 21.47 21.53 9.41 8.79 11.69 10.53 8.87 11.84 10.52
1.50 1.00 1.50 25.43 25.52 13.63 13.54 15.15 15.15 13.47 14.94 15.17

1.50 1.50 0.50 20.77 20.74 8.93 6.09’ 12.07 9.28 6.03’ 12.23 9.24
1.50 1.50 1.00 29.37 29.42 11.63 19.63 23.26 11.43 19.50 23.13 11.42
1.50 1.50 1.50 35.65 35.72 16.43 29.30 31.77 15.58 28.84 31.08 15.60

*: Non-rejection values for the null hypothesis (15) at 95% significance level.
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TABLE 4
r in (17) with p(L;0) = (1-L2)d*e (U.K. data)

Series

c, - y,

Series

c, - y,

S eries

c, - y,

z, \  d 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

5 .23 2 .04 -0 .4 7 ’ -2 .0 0 -2 .87 -3 .38 -3 .7 2 -3 .95
I 2 .06 -4 .26 -4 .7 4 -4 .8 6 -4 .95 -5.01 -5 .04 -5 .06
I,T -3.21 -4 .3 0 -4.71 -4 .89 -4 .98 -5 .03 -5 .06 -5 .09
I,S 7 .14 0 .1 7 ' -2 .4 9 -3 .4 0 -3 .98 -4 .33 -4 .53 -4 .66
I,T ,S 2 .60 -0 .6 6 ’ -2 .5 0 -3 .48 -4 .03 -4 .3 4 -4 .54 -4 .6 6

5 .18 2 .00 -0.51 ’ -2 .03 -2 .8 9 -3 .4 0 -3 .74 -3 .97
I 6 .47 -0 .6 9 ’ -2.81 -3 .6 4 -4 .1 6 -4 .47 -4 .65 -4 .76
I,T 1.99 -1 .0 5 ’ -2 .8 0 -3 .7 2 -4 .23 -4 .49 -4 .65 -4 .76
I.S 7 .52 1 .52 ’ 1 .16’ -2 .38 -3 .2 3 -3 .75 -4 .07 -4 .28
I,T ,S 4 .0 9 0 .9 6 ’ -1 .1 8 ’ -2 .5 0 -3 .2 9 -3 .78 -4 .08 -4 .28

-3 .97 -4 .47 -4 .7 7 -4 .93 -5.01 -5 .05 -5 .07 -5 .08
1 -3.11 -4 .35 -4 .7 0 -4 .8 6 -4 .94 -4 .98 -5.01 -5 .03
I.T -3 .76 -4 .40 -4 .7 0 -4 .86 -4 .94 -4 .9 9 -5 .0 2 -5 .04
I,S -0 .5 4 ’ -3 .03 -3 .8 4 -4 .27 -4.51 -4 .6 6 -4 .75 -4 .8 2
I,T ,S -1 .6 4 ’ -3 .06 -3 .85 -4 .27 -4.51 -4 .6 6 -4 .75 -4.81

W ith  sea so n a l A R (1 ) u,
z, \  d 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .0 0 2 .25

1 .93’ 1 .17’ -0 .4 9 ’ -2 .0 9 -3 .1 0 -3 .6 6 -3 .9 9 -4 .19
I 0 .6 2 ’ -1 .4 0 ’ -2 .2 7 -2 .6 6 -2 .9 2 -3 .1 2 -3 .27 -3 .40

I.T -0 .7 7 ’ -1 .6 8 ’ -2 .2 8 -2 .67 -2 .9 4 -3 .15 -3 .34 -3.51
I,S 1 .87’ -0 .5 4 ’ -2 .4 0 -3 .13 -3 .5 9 -3 .87 -4 .05 -4 .17
I.T .S 0 .8 0 ’ -1 .1 2 ’ -2.41 -3 .17 -3 .6 0 -3 .88 -4 .05 -4 .18

1 .91’ 1 .13’ -0 .5 4 ’ -2 .1 2 -3 .1 2 -3 .69 -4.01 -4 .2 0
I 1 .65 ’ -1 .06' -2 .45 -3 .0 9 -3 .5 0 -3 .7 6 -3 .9 2 -4 .03
I,T 0 .5 6 ’ -1 .2 6 ’ -2 .4 4 -3 .13 -3 .53 -3 .7 7 -3 .9 4 -4 .0 6
I.S 2 .05 0 .5 5 ’ -1 .4 6 ’ -2 .59 -3 .3 9 -3 .88 -4 .1 6 -4 .33
I,T ,S 1 .95 ’ 0 .1 7 ’ -1 .4 9 ’ -2 .69 -3 .4 5 -3 .90 -4 .17 -4 .34

„ -2 .1 4 -2 .7 6 -3 .25 -3 .58 -3 .8 0 -3 .93 -4 .0 2 -4 .08
I -2 .0 6 -2 .80 -3 .1 9 -3 .42 -3 .5 8 -3 .7 0 -3 .7 9 -3 .88
I,T -2 .1 9 -2.81 -3 .1 9 -3 .4 2 -3 .5 8 -3.71 -3.81 -3.91
I,S -1 .3 5 ’ -2 .92 -3 .5 4 -3.91 -4 .1 4 -4 .29 -4 .4 0 -4 .48
I,T ,S -1 .8 6 ’ -2 .92 -3 .5 4 -3.91 -4 .14 -4 .29 -4 .40 -4 .4 9

W ith  sea so n a l A R (2 ) u
z, \  d * 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .0 0 2 .25

1 .94 ’ 1 .08’ -0 .4 9 ’ -2.11 -3 .1 4 -3.71 -4 .03 -4 .2 2
I 1 .27’ -0 .8 5 ’ -2 .0 0 -2 .65 -3.11 -3 .4 2 -3 .64 -3 .8 0
I,T -0 .1 9 ’ -1 .1 5 ’ -2 .0 0 -2 .6 6 -3 .13 -3 .4 6 -3.71 -3 .92
I.S 2 .08 -0 .4 5 ’ -2 .1 4 -2 .90 -3 .47 -3 .85 -4 .0 9 -4 .26
I.T .S 0 .7 4 ’ -0 .9 9 ’ -2 .15 -2 .93 -3 .47 -3 .8 4 -4 .0 9 -4 .26

1 .92’ 1 .05’ -0 .5 4 ’ -2 .15 -3 .1 7 -3 .73 -4 .04 -4 .23
I 1 .94’ -0 .7 0 ’ -1 .9 5 ’ -2 .69 -3 .2 6 -3 .67 -3 .94 -4.11
I.T 0 .5 4 ’ -0 .9 1 ’ -1 .9 5 ’ -2 .72 -3 .28 -3 .67 -3 .93 -4 .1 2
I.S 2 .24 0 .5 4 ’ -1 .5 0 ’ -2 .5 9 -3 .3 8 -3 .87 -4 .1 6 -4 .3 4
I.T .S 1 .86 ’ 0 .1 0 ’ -1 .5 3 ’ -2 .7 0 -3 .4 3 -3 .89 -4 .17 -4 .35

.. -1 .9 1 ’ -2 .65 -3 .3 0 -3 .75 -4 .0 2 -4 .19 -4 .2 9 -4 .3 4
I -1 .7 7 ’ -2 .73 -3 .28 -3 .6 2 -3 .8 3 -3 .97 -4 .07 -4 .15
I.T -1 .9 5 ’ -2 .7 4 -3 .2 8 -3 .6 2 -3 .8 4 -3 .98 -4 .1 0 -4 .1 9
I.S -1 .3 4 ’ -2.91 -3 .5 4 -3 .9 2 -4 .1 6 -4.31 -4 .4 2 -4 .4 9
I.T .S -1 .9 2 ’ -2.91 -3 .5 4 -3 .9 2 -4 .1 6 -4.31 -4.41 -4 .4 8

Non-rejections values for the null hypothesis (15) at 95% significance level; —: No intercept, no
time trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and
seasonal dummies; I,T,S: Intercept, time trend and seasonal dummies.
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TABLE 5
R in (17) with p(L;0) = (l-L )dl+ei (l+L )d2+ez and white noise u, (U.K. data)

No intercept and no trend _____Intercept_______  Intercept and a time trend

d , d 2 ct y . c , -y , c , y t c , -y , c, y « c , -y ,

0.50 0.50 81.29 80.38 16.06 26.81 101.13 10.85 11.79 25.48 14.58
0.50 0.75 91.34 90.37 16.37 36.50 115.60 10.93 11.41 34.07 14.88
0.50 1.00 99.46 98.47 15.89 47.24 128.02 10.49 10.60 41.85 14.42
0.50 1.25 106.20 105.24 15.08 59.01 139.06 10.00 9.86 49.40 13.68
0.50 1.50 111.95 111.01 14.15 71.59 149.02 9.68 9.40 56.85 12.84

0.75 0.50 25.29 24.99 19.09 18.45 4 .73’ 18.05 18.45 5 .34’ 18.37
0.75 0.75 32.42 32.03 20.13 18.45 8.54 19.12 18.89 8.81 19.50
0.75 1.00 38.66 38.21 20.12 17.44 11.96 19.18 18.42 11.25 19.61
0.75 1.25 44.23 43.76 19.63 16.05 15.71 18.78 17.62 13.57 19.26
0.75 1.50 49.27 48.81 18.88 14.48 20.06 18.17 16.65 16.15 18.68

1.00 0.50 7.24 7.25 20.56 21.21 6.40 19.78 21.08 6.44 19.80
1.00 0.75 10.61 10.54 22.31 22.44 9.50 21.59 22.28 9.60 21.61
1.00 1.00 13.63 13.50 22.84 22.56 10.58 22.20 22.37 10.70 22.22
1.00 1.25 16.43 16.26 22.80 22.32 10.84 22.27 22.13 10.98 22.30
1.00 1.50 19.09 18.90 22.46 21.90 10.88 22.08 21.71 11.03 22.11

1.25 0.50 6.36 6.50 20.82 21.75 8.43 20.02 21.94 8.80 20.02
1.25 0.75 8.21 8.30 23.13 23.41 12.62 22.36 23.62 13.09 22.36
1.25 1.00 9.65 9.70 24.05 23.77 14.25 23.32 23.99 14.76 23.32
1.25 1.25 10.86 10.87 24.35 23.76 14.59 23.67 24.01 15.12 23.67
1.25 1.50 11.97 11.94 24.33 23.62 14.39 23.73 23.88 14.92 23.73

1.50 0.50 8.26 8.43 20.47 21.94 9.54 19.68 22.14 9.82 19.69
1.50 0.75 9.86 10.02 23.22 24.01 14.73 22.45 24.23 15.11 22.46
1.50 1.00 10.93 11.06 24.43 24.53 17.12 23.70 24.77 17.55 23.72
1.50 1.25 11.67 11.77 24.95 24.64 17.94 24.24 24.89 18.40 24.26
1.50 1.50 12.21 12.28 25.13 24.62 18.04 

Non-rejection values for the null hypothesis ( 15) at 95% significance level.

24.45 24.88 18.51 24.47

Series

f

z, \  d

in (17) with p(L;0)

0.5

TABLE 6

= (l-L)d+e and white noise

0.75 1.00 1.25

: U,

1.50

(U.K. data)

1.75 2.00 2.25
„ 9.89 3.91 -0.30’ -2.55 ■3.73 -4.43 -4.87 -5.18
I 1.57’ -4.49 -4.76 -5.01 -5.23 -5.42 -5.59 -5.74

c, I,T -3.32 -4.31 -4.74 -5.02 -5.25 -5.44 -5.61 -5.76
I,S 11.91 -0.91’ -3.37 -4.28 -4.83 -5.18 -5.42 -5.61
I.T.S 3.84 -1.13’ -3.34 -4.34 -4.87 -5.21 -5.45 -5.64
„ 9.83 3.87 -0.31’ -2.55 -3.73 -4.42 -4.86 -5.17
I 8.65 -3.00 -4.31 -4.95 -5.37 -5.65 -5.85 -6.00

y, I,T 1.13’ -2.69 -4.27 -4.99 -5.41 -5.67 -5.87 -6.02
I,S 11.76 -0.86’ -3.49 -4.60 -5.24 -5.61 -5.85 -6.02
I,T,S 4.76 -0.77’ -3.44 -4.66 -5.28 -5.64 -5.87 -6.04
__ -3.66 -4.26 -4.63 -4.87 -5.06 -5.22 -5.38 -5.52
I -3.00 -4.20 -4.61 -4.87 -5.07 -5.24 -5.40 -5.54

c, -  y . I,T -3.50 -4.23 -4.61 -4.87 -5.07 -5.24 -5.39 -5.54
I,S -1.09’ -3.67 -4.42 -4.85 -5.13 -5.34 -5.51 -5.65
I,T,S -1.95’ -3.63 -4.42 -4.85 -5.13 -5.34 -5.50 -5.65

Non-rejection values for the null hypothesis ( 15)  at 95% significance level; —: No intercept,no time trend and no 
seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal dummies; I,T,S: Intercept, 
time trend and seasonal dummies.
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TABLE 7
? in (17) with p(L;9) = (1-LV*9 (Japanese data)

0 ) W ith  w h ite  n o ise  u,
S eries z, \  d 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .00 2.25

2.61 0 .7 7 ’ -1 .0 2 ’ -2 .3 6 -3 .2 2 -3 .76 -4 .12 -4 .37
I 4 .3 6 2 .64 3 .05 1 .36 ’ -0 .8 9 ’ -2 .54 -3 .5 0 -4 .04

e, I,T 9 .1 2 7 .28 3 .83 0 .0 0 ’ -2 .7 2 -3 .76 -4.01 -4 .17
I,S 4.41 2 .80 4 .3 9 2 .95 0 .3 4 ’ -1 .7 8 ’ -3 .06 -3 .7 6
I.T .S 10.02 8 .34 5 .14 1 .04 ’ -2.11 -3.51 -3 .9 9 -4 .24

2 .54 0 .7 2 ’ -1 .0 5 ’ -2 .38 -3 .23 -3 .77 -4 .13 -4 .38
I 4 .7 0 3 .34 2.21 -0 .0 8 ’ -2 .1 0 -3 .37 -4 .06 -4 .44

y, I,T 7 .80 6 .04 2 .54 -0.91 ’ -3.11 -3 .76 -3 .77 -3 .86
I,S 4 .95 4 .1 2 4 .78 2 .33 -0 .5 7 ’ -2 .63 -3 .72 -4 .25
I,T ,S 10.28 8 .48 5 .10 0 .8 4 ’ -2 .3 0 -3 .6 9 -4 .19 -4 .44

1 .53’ -0 .0 8 ’ -1 .7 7 ’ -2 .93 -3 .6 3 -4 .05 -4 .33 -4 .52
1 2.41 0 .4 6 ’ -1 .5 4 ’ -2 .84 -3 .6 0 -4 .05 -4 .34 -4 .54

e, - y, I,T 2 .34 0 .4 5 ' -1 .5 4 ’ -2 .8 6 -3 .5 8 -3 .82 -3 .89 -4 .02
I,S 3 .42 0 .3 5 ' -1 .7 9 ’ -3 .06 -3 .7 6 -4 .15 -4 .39 -4 .55
I,T ,S 3.31 0 .3 4 ’ -1 .7 9 ’ -3 .0 6 -3 .7 6 -4 .15 -4 .39 -4 .55

(ii) W ith  A R (1 ) u.
S eries z, \  d 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

-3 .13 -3 .5 0 -3 .83 -4 .13 -4 .38 -4 .57 -4.71 -4 .83
I -1 .5 9 ’ -0 .6 7 ’ -0.51 ’ -1 .7 9 ’ -2 .78 -3 .5 0 -3 .9 9 -4 .30

c, l.T 2 .57 1 .01 ’ -0 .6 5 ’ -2.01 -3 .1 9 -3 .82 -4 .0 9 -4 .27
1,S -2 .8 7 -3.21 -3.31 -3.51 -3 .73 -4 .05 -4 .35 -4 .56
I,T ,S -1 .0 5 ’ -2 .67 -3 .3 0 -3 .63 -4 .1 2 -4 .48 -4 .6 4 -4 .74

-3.01 -3 .47 -3 .8 2 -4 .12 -4 .3 7 -4 .57 -4.71 -4 .83
I -0 .0 3 ’ 0 .8 7 ’ 0 .2 3 ’ -1 .3 8 ’ -2 .6 7 -3 .5 2 -4 .03 -4 .34

y, I,T 3 .09 2 .07 0 .2 4 ' -1 .6 4 ’ -3 .0 9 -3 .67 -3 .8 0 -3 .96
I,S -2.51 -2 .37 -1 .7 1 ’ -1 .8 8 ’ -2 .5 0 -3 .34 -3 .99 -4 .36
I,T ,S 0 .2 9 ’ -1 .4 1 ’ -1 .6 1 ’ -1 98 -3 .0 8 -3.91 -4 .28 -4 .49

0 .8 7 ’ -0 .84 ' -2 .2 9 -3.21 -3 .7 7 -4 .13 -4 .37 -4 .54
I 1 .94 ’ -o.or -1 .7 8 ’ -2.91 -3 .5 9 -4.01 -4 .28 -4 .48

e, - y, I,T 1 .89 ’ -0 .0 2 ’ -1 .7 8 ’ -2 .93 -3 .5 8 -3 .8 6 -4 .0 0 -4 .16
I,S 1.34’ -1 .2 9 ’ -2 .6 6 -3 .4 6 -3 .9 5 -4 .25 -4 .44 -4 .58
I,T ,S 1 .29’ -1 .2 9 ’ -2 .6 6 -3 .4 6 -3 .9 5 -4 .25 -4 .45 -4 .58

(Hi) W ith  A R (2 ) u,
S eries z, \  d 0.5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

_ -3 .1 9 -3 .53 -3.81 -4 .0 9 -4 .3 4 -4 .54 -4 .7 0 -4 .82
I -1 .5 3 ’ -0 .5 1 ’ -0 .8 5 ’ -2 .1 4 -2 .9 6 -3 .56 -4.01 -4 .3 6

c, I,T 1 .77 ’ 0 .1 6 ’ -1 .3 5 ’ -2 .37 -3 .3 0 -3 .88 -4 .15 -4 .34
I,S -2 .9 0 -3 .2 6 -3 .56 -3 .8 2 -3 .9 9 -4 .24 -4 .48 -4 .6 6
I,T ,S -1 .2 3 ’ -2 .84 -3 .6 0 -3 .92 -4 .2 9 -4 .60 -4 .74 -4 .83

_ -3 .08 -3 .5 0 -3 .8 0 -4 .0 9 -4 .3 4 -4 .54 -4 .7 0 -4 .82
I -0 .2 9 ’ 0 .7 5 ’ 0 .2 0 ’ -1 .3 1 ’ -2 .5 4 -3.41 -3 .9 6 -4 .30

y, I,T 2 .69 1 .61 ’ 0 .0 4 ’ -1 .5 5 ’ -3 .0 4 -3 .6 6 -3 .77 -3 .93
I,S -2 .54 -2 .57 -2 .53 -2 .78 -3 .0 5 -3 .57 -4 .07 -4 .39
I.T .S o.ir -1 .9 9 -2 .5 9 -2 .7 2 -3 .3 3 -3 .97 -4.31 -4.51

_ 0 .8 0 ’ -0 .88 ' -2 .27 -3 .18 -3 .7 5 -4.11 -4 .36 -4 .53
1 1 .85 ’ 0 .0 3 ’ -1 .7 2 ’ -2 .8 9 -3 .6 0 -4 .02 -4 .30 -4 .49

c, - y, I.T 1 .81 ’ -o.or -1 .7 2 ’ -2.91 -3 .5 9 -3 .85 -3 .97 -4 .12
I.S 0 .4 5 ’ -1 .6 7 ’ -2 .77 -3 .47 -3 .9 4 -4 .24 -4 .44 -4 .58
I.T .S 0 .4 0 ’ -1 .6 8 ’ -2 .77 -3 .47 -3 .9 4 -4 .2 4 -4 .44 -4 .58

N on-rejection  va lu es for  the null h yp oth esis  (1 5 ) at 95%  sign ifican ce  leve l; N o  intercept, no
tim e  trend and no seasonal dum m ies; I: Intercept; I,T: Intercept and tim e trend; I,S : Intercept and
season al du m m ies; I,T ,S: Intercept, tim e trend and season al d u m m ies.
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TABLE 8: R in (17) with p(L;0) = (l-L2)dl+ei (l+L2)d2+e2 and white noise u, (Japanese data)

Intercept Intercept and time trend
d . d . ct y , c . -y . c, y , c , -y , c, y , c r y ,

0 .5 0 0 .5 0 4 1 .0 3 3 9 .7 6 5 .2 5 ’ 6 4 .7 9 63 .91 6 .8 3 16 7 .8 5 10 7 .6 9 6 .4 9
0 .5 0 0 .7 5 4 7 .9 2 4 6 .5 8 12 .86 72.81 7 5 .6 0 15 .02 192 .19 15 0 .1 7 14.47
0  50 1.00 5 3 .3 5 5 1 .9 7 19.48 7 9 .2 4 8 3 .1 9 2 3 .7 6 2 0 1 .7 4 168.45 2 3 .0 3
0 .5 0 1.25 5 7 .7 2 5 6 .3 2 2 4 .3 2 8 4 .9 2 89.31 3 0 .3 2 2 0 7 .1 2 178 .07 29.41
0 .5 0 1.50 6 1 .2 8 5 9 .8 8 2 8 .0 5 90 .11 9 4 .6 7 3 5 .2 2 2 1 0 .6 5 1 8 3 .9 0 3 4 .1 4

0 7 5 0 .5 0 17.12 1 6 .7 2 0 .4 2 ’ 22 .81 13.95 4 .3 0 ’ 7 7 .4 9 29.81 4 .2 3 ’
0  75 0 .7 5 2 2 .4 2 22 .01 2 .9 5 ’ 3 4 .4 6 3 0 .3 8 0 .5 0 ’ 117 .38 6 8 .9 7 0 .5 2 ’
0 .7 5 1.00 2 7 .0 6 26 .61 8 .9 7 4 2 .2 8 4 3 .8 9 5 .0 8 ’ 13 7 .5 0 100 .85 5 . 16 ’
0 .7 5 1.25 3 1 .1 9 3 0 .7 2 14.18 4 8 .5 5 5 3 .7 8 11 .17 150 .13 12 3 .0 2 11.27
0 .7 5 1.50 3 4 .9 4 3 4 .4 5 18 .52 5 4 .0 7 6 1 .5 6 16 .86 159 .27 138 .97 16.96

1.00 0 .5 0 7 .7 6 7 .6 4 3 .5 8 ’ 8 .7 4 8.21 10 .28 11 .04 8 .5 6 10 .27
1.00 0 .7 5 10.73 1 0 .6 2 1 .4 5 ’ 2 2 .4 3 5 .7 6 ’ 2 .6 6 ’ 2 9 .8 9 6 .9 0 2 .6 7 ’
1.00 1.00 13.33 13 .22 4 .7 1 ’ 35 .5 5 14.50 2 .3 9 ’ 4 8 .0 0 18.11 2 .4 1 ’
1.00 1.25 15.72 15 .59 7 .9 8 45 .9 1 2 6 .8 6 4 .8 6 ’ 6 2 .3 7 33.81 4 .8 9 ’
1.00 1.50 17.98 17.84 10.53 5 4 .3 4 3 8 .6 9 7 .3 3 7 4 .0 8 49 .0 1 7 .3 5

1.25 0 .5 0 8 .0 7 7 .9 8 8 .3 2 1.8 2 ’ 11.98 15 .19 1.9 6 ’ 14.05 15.31
1.25 0 .7 5 9 .9 3 9.91 4 .6 1 ’ 3 .8 5 ’ 2 .9 5 ’ 7 .9 2 0 .3 6 ’ 5 .2 2 ’ 8 .0 4
1.25 1.00 11 .30 11 .30 6 .6 4 11 .73 0 .3 0 ’ 6.31 5 .0 1 ’ 0 .4 3 ’ 6.41
1.25 1.25 12 .40 12 .40 9 .3 0 2 0 .0 3 4 .2 9 ’ 8 .0 9 10.88 2 .4 7 ’ 8 .2 0
1.25 1.50 13.37 13 .37 11.08 2 7 .5 6 9.91 9 .7 7 16 .30 6 .1 8 9 .8 8

1.50 0 .5 0 10.37 10.25 12 .16 3 .3 7 ’ 16 .22 18.62 6.01 19 .15 19.08
1.50 0 .7 5 12.16 12.13 7 .7 2 0 .3 7 ’ 9 .1 8 11.92 3 .7 8 ’ 14 .25 12 .22
1.50 1.00 13 .30 13.31 8 .8 5 2 .3 7 ’ 3 .3 2 ’ 9.31 5 . 14 ’ 7 .6 5 9 .2 9
1.50 1.25 13.99 14 .02 11.58 6 .0 4 3 .8 1 ’ 11.01 7 .9 6 8 .0 0 10.92
1.50 1.50 14.45 14.48 13.53 9 .4 4 5 .5 6 ’ 1 3 .0 0 9 .9 4 9.71 12.92

TABLE 9: R in (17) with p(L;0) = (l-L )"'**' (1+L)',2*“  ( i + r .2)d.ue3 an{j whjte noise Uj (Japanese data)

No intercept and no trend Intercept Intercept and time trend
d, d, d, c, y , c , -y , c, y . c , -y , c, y t c ,-y .

0 .5 0 0 .5 0  0 .5 0 10 3 .6 6 10 1 .2 7 2 1 .2 8 141.71 13 6 .0 0 18 .03 2 8 1 .3 8 18 1 .0 8 17 .54
0 .5 0 0 .5 0  1.00 125 .45 12 2 .9 9 4 9 .4 4 166.31 169 .76 4 9 .6 2 3 3 4 .0 6 2 7 6 .4 0 48 .41
0 .5 0 0 .5 0  1.50 138.97 13 6 .5 3 6 3 .6 0 18 3 .9 2 188 .44 6 6 .7 3 3 4 6 .4 7 2 9 8 .2 5 6 4 .8 8

0 .5 0 1.00  0 .5 0 11 7 .2 7 1 1 4 .9 9 43 .61 15 4 .9 9 157 .32 4 4 .8 5 3 2 0 .9 9 2 5 9 .7 6 4 3 .8 2
0 .5 0 1.00  1.00 136 .62 1 3 4 .4 0 9 4 .7 4 177 .59 188.17 12 9 .4 3 3 6 6 .4 4 3 7 0 .8 8 12 7 .3 2
0 .5 0 1.00  1.50 148 .39 1 4 6 .2 9 12 0 .9 2 194.11 2 0 5 .8 7 17 6 .6 7 3 7 7 .2 8 3 9 5 .9 7 173 .92

0 .5 0 1.50  0 .5 0 1 2 3 .5 0 12 1 .3 3 5 7 .7 2 164 .44 169 .23 6 3 .6 2 3 3 5 .7 4 2 9 2 .3 5 6 2 .2 4
0 .5 0 1.50  1.00 140.31 13 8 .2 4 10 7 .6 6 185 .10 196 .22 15 2 .3 8 371 .11 3 8 3 .1 9 150 .03
0 .5 0 1.50  1.50 15 0 .6 4 148.71 131.71 2 0 0 .6 0 2 1 2 .5 7 19 6 .0 8 3 7 9 .8 9 4 0 3 .2 8 19 3 .2 4

1.00 0 .5 0  0 .5 0 18 .90 18 .5 0 2 .0 3 ’ 9 .8 7 3 .7 3 ’ 4 .0 1 ’ 10 .73 3 .6 6 ’ 4 .0 1 ’
1.00 0 .5 0  1.00 2 9 .4 7 28 .91 2 .0 4 ’ 3 2 .1 0 4 .7 4 ’ 0 .5 3 ’ 3 6 .4 2 4 .9 4 ’ 0 .5 4 ’
1.00 0 .5 0  1.50 3 8 .3 9 3 7 .6 0 3 .0 3 ’ 4 5 .2 6 8.71 1 .0 4 ’ 5 0 .9 8 8 .8 5 1 .0 4 ’

1.00 1.00  0 .5 0 3 1 .3 4 3 0 .8 9 6 .5 0 ’ 2 4 .9 8 12.03 11.13 2 8 .2 7 12 .33 11 .12
1.00 1.00  1.00 4 5 .8 8 4 5 .4 5 16 .3 0 8 1 .4 7 3 9 .0 2 7 .8 6 100 .22 4 4 .0 8 7 .8 7
1.00 1.00  1.50 5 7 .6 2 5 7 .1 4 2 9 .1 2 113.61 7 9 .3 9 17 .82 14 2 .0 3 9 2 .8 0 17.82

1.00 1 .5 0  0 .5 0 3 9 .6 6 3 9 .2 0 8.21 40 .6 1 16 .16 11.31 4 7 .6 6 17 .03 11 .30
1.00 1.50  1.00 5 4 .6 5 5 4 .2 4 2 6 .2 3 106.91 65 .41 15.61 135.75 7 7 .0 2 15.62
1.00 1.50  1.50 6 6 .4 0 6 5 .9 7 4 3 .0 2 13 8 .7 9 115.71 3 2 .5 8 179 .06 142 .1 4 3 2 .6 0

1.50 0 .5 0  0 .5 0 10.33 10.11 2 .9 4 ’ 9 .5 7 3 .8 9 ’ 3 .9 4 ’ 11.15 4 .3 3 ’ 3 .9 9 ’
1.50 0 .5 0  1.00 13.25 13 .06 1.7 8 ’ 31 .8 8 3 .9 5 ’ 1 . 19 ’ 3 5 .8 6 4 .4 0 ’ 1 .2 0 ’
1.50 0 .5 0  1.50 14.41 14 .16 2 .0 0 ’ 4 4 .1 0 5 .6 5 ’ 1 .3 4 ’ 4 8 .5 2 6 .0 2 ’ 1 .3 5 ’

1.50 1 .0 0  0 .5 0 14.23 14.01 11 .25 3 .2 4 ’ 14 .26 16 .43 4 .7 9 ’ 16 .2 2 16 .73
1.50 1.00  1.00 19.69 19 .5 6 7 .8 4 3 .6 2 ’ 1 .5 8 ’ 7 . 17 ’ 3 .5 7 ’ 3 .7 2 ’ 7 . 13 '
1.50 1.00  1.50 2 3 .2 8 23 .1 1 11 .94 11 .54 5 .7 7 ’ 10 .30 9 .1 8 8 .3 6 10 .26

1.50 1 .5 0  0 .5 0 19.04 18.81 12 .7 9 5 .2 0 ’ 16 .52 18 .79 6 .4 9 ’ 19 .23 19 .22
1.50 1.50  1.00 2 7 .0 5 2 6 .9 5 12 .38 14.48 6 .8 4 ’ 10 .62 9 .7 5 8 .6 5 10 .47
1.50 1 .5 0  1.50 3 2 .8 3 3 2 .7 2 2 0 .2 9 3 0 .4 5 13 .79 16 .0 0 18.91 12 .28 15.69

: Non-rejection values for the null hypothesis (15) at 95% significance level.
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TABLE 10
r in (17) with p(L;0) = (1-L2)d’° (Japanese data)

(i) W ith  w h ite  n o ise  u,
S eries z, \  d 0.5 0 .75 1.00 1.25 1.50 1.75 2 .0 0 2 .25

4 .4 2 1 .78 ’ -0 .4 7 ’ -1 .9 1 ’ -2 .75 -3 .25 -3 .5 8 -3 .8 0
I 2 .75 -4 .0 4 -4.61 -4 .75 -4 .84 -4 .88 -4.91 -4 .92

c, I,T -0 .9 6 ’ -3.71 -4 .58 -4 .82 -4 .89 -4 .9 2 -4 .94 -4 .95
I.S 6 .87 3 .85 1 .94 ’ -0 .84 ' -2 .8 0 -3 .73 -4 .14 -4 .34
I,T ,S 12.14 7 .99 2 .04 -1 .9 3 ’ -3 .4 9 -3 .9 9 -4.21 -4 .35

4 .13 1 .55 ’ -0 .6 6 ’ -2 .06 -2 .87 -3 .35 -3 .67 -3 .89
I -1 .2 3 ’ -4 .7 2 -4 .83 -4 .87 -4 .9 0 -4 .92 -4 .93 -4 .94

y> I.T -3 .38 -4.51 -4.81 -4 .8 9 -4 .92 -4 .94 -4 .95 -4 ,96
I,S 6 .57 0 .4 4 ’ -2 .8 4 -4 .05 -4 .55 -4 .73 -4 .7 9 -4.81
I,T ,S 7 .78 1 .2 5 ’ -2 .8 6 -4 .28 -4 .66 -4 .7 2 -4 .7 2 -4 .74

-4 .25 -4 .63 -4 .8 0 -4 .87 -4.91 -4 .93 -4 .9 4 -4 .95
I -4 .55 -4.81 -4 .87 -4 .8 9 -4.91 -4 .92 -4 .9 2 -4 .93

c, - y. I.T -4.51 -4 .7 9 -4 .8 6 -4 .8 9 -4.91 -4 .9 2 -4 .93 -4 .94
I.S -1 .1 1 ’ -3 .4 0 -4 .2 0 -4 .5 0 -4 .63 -4 .6 9 -4 .73 -4 .76
I,T ,S -1 .1 4 ’ -3 .3 9 -4 .2 0 -4 .5 0 -4 .6 2 -4 .6 6 -4 .67 -4 .69

(ii) W ith  sea so n a l A R (1 ) u,
2 .00 2.25S eries z, \  d 0.5 0 .75 1.00 1.25 1.50 1.75

.. 1 ,67 ’ 0 .9 6 ’ -0 .5 2 ’ -2 .0 0 -2 .95 -3 .5 0 -3.81 -4.01
I 0 .5 0 ’ -1 .2 5 ’ -1 .7 4 ’ -2 .1 0 -2 .42 -2 .67 -2 .8 9 -3 .09

c, I.T 0 .9 5 ' -0 .8 4 ’ -1 .7 3 ’ -2 .1 8 -2 .5 0 -2 .7 6 -3 .0 0 -3.21
I.S 1 .91 ’ 1 .42’ -0 .3 1 ’ -1 .6 8 ’ -2 .85 -3 .4 8 -3 .78 -3 .95
I.T .S 3 .15 1 .32 ’ -0 .2 9 ’ -2 .23 -3 .24 -3.61 -3 .7 9 -3 .93

_ 1 .41 ’ 0 .6 3 ’ -0 .8 5 ’ -2.21 -3 .05 -3 .5 2 -3 .8 0 -3 .98
I -0 .18 ' -2 .44 -2 .4 6 -2 .58 -2 .7 6 -2 .94 -3.11 -3 .2 6

y, I.T -0 .9 1 ’ -2 .0 0 -2 .3 9 -2 .6 2 -2 .83 -3 .03 -3 .22 -3.41
I.S 1 .53 ’ -1 .5 6 ’ -3 .1 9 -3 .6 6 -3 .94 -4.11 -4 .22 -4 .30
I.T .S 0 .0 9 ’ -2.01 -3 .2 0 -3 .7 6 -4 .0 0 -4 .1 0 -4 .13 -4 .14

_ -1 .8 6 ’ -2 .34 -2 .6 9 -2 .9 4 -3 .13 -3 .2 9 -3 .42 -3 .53
I -2 .56 -2 .7 9 -2 .9 0 -3.01 -3 .13 -3 .25 -3 .37 -3 .48

c, -  y, I.T -2 .4 2 -2 .72 -2 .88 -3 .0 2 -3 .1 6 -3 .2 9 -3.41 -3 .55
I.S -2 .28 -3 .2 6 -3 .7 0 -3 .9 4 -4 .1 0 -4 .2 0 -4 .28 -4 .34
I.T .S -2 .28 -3 .25 -3 .7 0 -3 .9 4 -4 .1 0 -4 .18 -4 .22 -4 .23

(iii) W ith  sea so n a l A R (2 ) u
S eries z, \  d ‘ 0 .5 0 .75 1.00 1.25 1.50 1.75 2 .00 2 .25

_ 1 .69’ 0 .8 8 ’ -0 .5 3 ’ -2 .0 2 -2 .9 9 -3 .53 -3 .84 -4 .03
I 1 .23’ -0 .6 4 ’ -1 .6 5 ’ -2 .1 4 -2 .57 -2 .9 0 -3 .1 6 -3 .38

c, I.T 1 .84’ -0 .3 8 ’ -1 .6 2 ’ -2 .2 7 -2 .7 0 -3.01 -3 .28 -3.51
I.S 2.11 1 .31 ’ -0 .5 2 ’ -1 .7 9 ’ -2 .85 -3 .47 -3.81 -4 .02
I.T .S 3 .64 1 .45 ’ -0 .5 1 ’ -2 .2 6 -3 .1 9 -3 .58 -3.81 -3 .98

_ 1 .49 ’ 0 .5 8 ’ -0 .8 7 ’ -2.21 -3 .05 -3 .5 2 -3.81 -4.01
I 0 .8 0 ' -2 .5 7 -2 .65 -2 .7 9 -3 .02 -3 .22 -3.41 -3 .58

y, I.T -0 .6 5 ’ -2 .0 6 -2 .56 -2 .85 -3 .1 0 -3.31 -3.51 -3.71
I.S 1 .78 ’ -1 .5 3 ’ -3 .3 7 -3 .85 -4 .13 -4 .2 9 -4 .4 0 -4 .46
I.T .S 0 .3 3 ’ -2.11 -3 .3 9 -3 .94 -4 .18 -4 .27 -4 .29 -4 .3 0

_ -1 .7 1 ’ -2 .3 9 -2 .8 9 -3 .23 -3 .45 -3.61 -3 .74 -3 .85
I -2 .68 -3.01 -3 .1 6 -3.31 -3 .45 -3 .58 -3.71 -3 .8 2

c, -  y, I.T -2.51 -2 .9 3 -3 .15 -3 .3 2 -3 .48 -3.61 -3 .74 -3 .89
I.S -2 .33 -3 .3 3 -3.81 -4 .0 6 -4 .2 2 -4 .33 -4 .4 0 -4 .45
I.T .S -2 .33 -3 .33 -3.81 -4 .0 6 -4 .2 2 -4 .3 0 -4 .33 -4 .34

Non-rejection values for the null hypothesis (15) at 95% significance level; No intercept, no
trend and no seasonal dummies; I: Intercept; I,T: Intercept and trend; I,D: Intercept and
seasonal dummies; I,T,D: Intercept, trend and seasonal dummies.
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TABLE 11

R in (17) with p(L;0) = 

No intercept and no time trend

(l-L)'"**1(l+L)d2+e2 with white

Intercept

noise ut (Japanese data)

Intercept and time trend

d, d2 c, y, Cry, c, y, c,-y, c, y, c,-y,
0.50 0.50 63.67 58.38 18.26 34.93 7.74 20.83 7.15 12.41 20.43
0.50 0.75 72.47 67.13 17.99 44.65 9.18 20.85 8.78 11.44 20.46
0.50 1.00 79.47 74.24 17.20 54.82 11.70 20.29 11.30 10.22 19.93
0.50 1.25 85.18 80.15 16.25 65.42 15.58 19.54 15.21 9.05 19.23
0.50 1.50 89.94 85.14 15.22 76.26 20.99 18.66 20.81 8.10 18.40

0.75 0.50 21.45 19.22 21.17 17.19 22.08 22.54 14.80 20.34 22.36
0.75 0.75 27.81 25.23 21.55 16.67 22.32 23.18 14.41 20.46 22.98
0.75 1.00 33.37 30.59 21.26 15.33 21.87 23.15 13.36 20.00 22.94
0.75 1.25 38.30 35.44 20.80 13.70 21.14 23.00 12.12 19.35 22.78
0.75 1.50 42.74 39.86 20.26 11.99 20.19 22.77 10.85 18.57 22.56

1.00 0.50 6.44 6.18 22.31 20.65 22.58 22.75 20.50 22.47 22.73
1.00 0.75 9.51 8.92 23.11 21.44 23.32 23.62 21.24 23.17 23.60
1.00 1.00 12.28 11.41 23.09 21.33 23.38 23.72 21.09 23.20 23.70
1.00 1.25 14.85 13.76 22.92 20.94 23.29 23.71 20.67 23.08 23.68
1.00 1.50 17.28 16.02 22.70 20.41 23.14 23.67 20.12 22.91 23.64

1.25 0.50 5.75’ 6.22 22.60 21.39 22.70 22.72 21.80 22.84 22.73
1.25 0.75 7.42 7.73 23.69 22.60 23.65 23.79 23.08 23.81 23.81
1.25 1.00 8.73 8.86 23.82 22.76 23.79 23.95 23.31 23.98 23.97
1.25 1.25 9.84 9.80 23.77 22.65 23.77 23.96 23.28 23.99 23.99
1.25 1.50 10.86 10.64 23.68 22.45 23.72 23.95 23.16 23.96 23.98

1.50 0.50 7.58 8.19 22.55 21.63 22.67 22.56 21.92 22.80 22.58
1.50 0.75 9.01 9.59 23.91 23.20 23.84 23.86 23.55 24.00 23.89
1.50 1.00 9.97 10.48 24.13 23.53 24.06 24.08 23.93 24.24 24.11
1.50 1.25 10.63 11.03 24.15 23.55 24.08 24.11 24.00 24.29 24.16
1.50 1.50 11.11 11.39 24.11 23.49 24.05 

Non-rejection values for the null hypothesis (15) at 95% significance level.

24.11 23.99 24.28 24.16

Series

f  in

z, \  d

(17) with p(L;9) =

0.5

(l-L)d+e

0.75

TABLE 12

and white noise

1.00 1.25

u, (Japanese data)

1.50 1.75 2.00 2.25
.. 8.47 3.43 -0.37’ -2.49 -3.61 -4.27 -4.70 -4.99
I 3.17 -4.31 -4.61 -4.83 -5.02 -5.18 -5.33 -5.46

c, I,T -1.51’ -3.93 -4.59 -4.85 -5.04 -5.19 -5.33 -5.46
I,S 12.74 3.01 -2.47 -4.54 -5.37 -5.68 -5.83 -5.93
I.T.S 16.98 5.30 -2.52 -4.86 -5.47 -5.69 -5.82 -5.91

7.35 2.47 -1.07’ -2.98 -3.98 -4.57 -4.95 -5.21
I -2.71 -4.98 -5.11 -5.27 -5.42 -5.55 -5.67 -5.78

y, I,T -4.03 -4.82 -5.10 -5.28 -5.43 -5.56 -5.68 -5.78
I,S 11.76 -0.13’ -3.38 -4.26 -4.62 -4.81 -4.96 -5.08
I,T,S 10.31 0.31’ -3.42 -4.35 -4.64 -4.79 -4.90 -5.00
„ -4.74 -5.09 -5.31 -5.47 -5.60 -5.72 -5.82 -5.91
I -4.95 -5.16 -5.32 -5.47 -5.60 -5.71 -5.82 -5.91

c, - y, I,T -4.89 -5.14 -5.32 -5.47 -5.60 -5.72 -5.83 -5.91
I,S -2.88 -4.56 -5.10 -5.35 -5.51 -5.63 -5.74 -5.82
I,T,S -2.91 -4.56 -5.10 -5.35 -5.50 -5.60 -5.67 -5.73

Non-reiection values for the null hypothesis (15) at 95% significance level; No intercept, no trend and no 
seasonal dummies; I: Intercept; I,T: Intercept and trend; I,S: Intercept and seasonal dummies; I,T,S: Intercept, 
trend and seasonal dummies.
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