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Abstract

We select among rules for learning which of two actions in a stationary decision prob-

lem achieves a higher expected payo¤when payo¤s realized by both actions are known

in previous instances. Only a bounded set containing all possible payo¤s is known.

Rules are evaluated using maximum risk with maximin utility, minimax regret, com-

petitive ratio and selection procedures being special cases. A randomized variant of

�ctitious play attains minimax risk for all risk functions with ex-ante expected payo¤s

increasing in the number of observations. Fictitious play itself has neither of these

two properties. Tight bounds on maximal regret and probability of selecting the best

action are included.

Keywords: �ctitious play, nonparametric, �nite sample, matched pairs, foregone

payo¤s, minimax risk, ex-ante improving, selection procedure.

JEL classi�cation numbers: D83, D81, C44.
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1 Introduction

How can we learn from a given �nite sample or learn over time from own previous

experience without relying on some prior? We investigate this issue in a stationary

decision problem with two ex-ante identical actions, each generating a random payo¤

from an unknown distribution, in which one knows what each action would have

realized in some previous instances. The objective is to choose the action that yields

the higher expected payo¤. Examples include invest or not invest, buy or not buy,

forecasting which of two states occurs next, comparing well-being before and after

a treatment, and cooperate or defect when acting as if opponents are non strategic.

We present a �universal�nonparametric distribution-free learning rule when there is

a known bounded set that contains any payo¤.

Learning is traditionally associated to the process of updating some prior when

new information arrives using Bayes�rule. Anscombe and Aumann (1963) present

axioms that imply that preferences are based on some subjective prior. This prior

is deduced from preferences but not from the primitives of the model. Di¤erent

priors can lead to di¤erent choices. The �exibility of the model results in ambiguous

predictions. One cannot speak of learning in terms of inference. Justi�cation of choice

in front of others can be problematic as the subjective prior cannot be deduced from

observables.

In this paper we would like to investigate individual learning that does not rely

on such a prior. We focus on the extreme case in which the two actions are ex-ante

identical so that there is no initial information that can be used to compare the two

actions. Three alternative decision making criteria that do not involve priors have

been axiomatized: maximin utility, minimax regret and relative minimax. The �rst

two, due to Wald (1950) and Savage (1951) respectively, have both been axiomatized

by Milnor (1954) and recently also by Stoye (2006). The Symmetry Axiom plays a

central role in ensuring that choice only depends on observables as it postulates that

choices are not allowed to depend on labels. Relative minimax has been introduced

and axiomatized by Terlizzese (2006) and also satis�es the Symmetry Axiom. An

alternative is to focus on the probability of selecting the best action as in the litera-

ture on selection procedures starting with Sobel and Huyett (1957). One may wish to

capture learning in a repeated decision making context by postulating that expected

payo¤s should be increasing between rounds conditional on the previous round (ab-



2

solute expediency, Lakshmivarahan and Thathachar, 1973) or from an ex-ante point

of view before making the �rst choice (ex-ante improving, Schlag, 2002, cf. Börgers

et al. 2004). Learning without priors is very common in machine learning, arti�cial

intelligence and computer science. Classical statistics and a large part of statistical

decision theory is based on making choices without assessing priors.

To put our work in perspective we review some concepts. Our model is distribution-

free as we make no assumptions on the underlying distributions apart from specifying

conditions on its support. For instance one can impose the minimal condition that

payo¤s belong to a given bounded interval. In this case our approach is also nonpara-

metric (Fraser, 1957) as the set of possible distributions is then in�nitely dimensional.

While social learning includes gathering information from others, we focus on indi-

vidual learning that only involves using information from own previous experience.

Following Rustichini (1999), partial information refers to learning from own previous

payo¤s while full information assumes that the payo¤ of each action is observed in

each realization (also called matched pairs or paired data in statistics). In the context

of repeated decision making, the full information setting is also called learning from

foregone payo¤s.

Only little is known about how to make choices when learning without priors,

in particular if the �how� is assessed according to some formal decision criterion.

Speci�cally we are interested in stationary decision problems: games against nature

as opposed to games against other players. One may also choose to treat games

against others as games against nature by ignoring the strategic aspect of opponent�s

play. There has been some research concerned with learning in the limit where average

payo¤s are evaluated once an in�nite amount of data has been gathered (Robbins,

1952, Rustichini, 1999), some studying rates of convergence (e.g. Lai and Robbins,

1985). It is astonishing how much attention has been given to such studies on learning

in the limit without even incorporating concern for uniform convergence in view of

the fact that typically data is either limited and the decision maker has a minimal

degree of impatience. We are interested in learning from �nite samples as well as in

learning over time from own previous experience.

Some results on learning in stationary decision problems are available for the

partial information setting. Canner (1970) shows how to choose under minimax regret

when facing a sample in which each action has been sampled equally often. Schlag

(2006a) derives a rule that attains minimax regret for a given sample size when the
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rule also speci�es which action to sample. Berry and Fristedt (1985) and Auer et

al. (2002) derive upper bounds on the minimax regret of a patient decision maker

learning over time. Schlag (2003) identi�es rules involving commitment that attain

minimax regret when the discount factor is not too large. Börgers et al. (2004) select

among the absolutely expedient learning rules that have a single round of memory.

For the full information setting, results have only been obtained for learning in the

limit. Fictitious play (Brown, 1949), that speci�es to choose an action that achieved

the highest empirical average payo¤, will almost surely select which action is best (in

terms of achieving the highest expected payo¤) in the long run. Other prominent

rules with this property are the exponential adjustment process of Rustichini (1999)

and regret matching of Hart and Mas-Colell (2000).

This is the �rst paper that investigates distribution-free learning within the full

information setting beyond the case of learning in the limit. Note that the full infor-

mation setting is more tractable than the partial information setting as there is no

trade-o¤ between exploration and exploitation. The information gathered does not

depend on previous choices.

The formal criterion for selection in this paper isminimax risk (Wald, 1950) where

the underlying loss function is assumed to be symmetric and to only depend on the

expected payo¤s. All common distribution-free decision making criteria are included:

competitive ratio (Borodin and El-Yaniv, 1998), relative minimax, minimax regret,

maximin utility as well as maximizing the minimal probability of selecting the best

action conditional on a minimal di¤erence between the two means (Sobel and Huyett,

1957). We also evaluate whether rules are ex-ante improving or absolutely expedient.

Assume �rst that payo¤s are restricted to be binary valued, e.g. an outcome

can only either be a success or a failure. Then we �nd that �ctitious play attains

minimax risk for any given number of observations and that �ctitious play is ex-ante

improving. This is the �rst formal foundation of �ctitious play for �nite samples

without using priors.1 However once payo¤s can equal one of three di¤erent values

then �ctitious play looses its nice properties due to its ignorance of small di¤erences

in payo¤s. There is a loss function, de�ned by the objective of not choosing the worse

action, such that �ctitious play does not attain minimax risk for any n 2 N. Moreover
�ctitious play is no longer ex-ante improving. In fact, for any given number m we

1The only previous result for �nite samples is due to Fudenberg and Kreps (1990) who show that

�ctitious play is a best response to a Dirichlet prior.
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present an example with support on three outcomes in which the expected weight

under �ctitious play on the better action is strictly decreasing until m choices have

been made. Of course, as mentioned above, �ctitious play almost surely chooses the

best action in the limit.

We are genuinely interested in making choices when each action can yield more

than two possible payo¤s. We assume that there is a known bounded interval that

contains all payo¤s that can be generated by either action. Knowledge on the under-

lying support can be included and our results apply when two conditions are ful�lled.

(a) The two actions are ex-ante identical. (b) For any distribution there is always

one with the same means that only has support on the extreme payo¤s in the given

bounded interval. The rule we select is a variant of �ctitious play we call binomial �c-

titious play. According to this rule, observed payo¤s are �rst randomly transformed

into a binary sequence before choosing according to �ctitious play. We show that

binomial �ctitious play attains minimax risk for any underlying loss function. More-

over, binomial �ctitious play achieves lower maximal risk than �ctitious play among

all distributions that have the same underlying means. In addition, binomial �ctitious

play is ex-ante improving and almost surely chooses the better action in the limit.

One may argue that these results justify to call binomial �ctitious play a universal

learning rule.

Mathematically our selection result combines two �ndings. Fictitious play is a best

response to any symmetric prior when payo¤s are binary valued and there are only

two actions. The randomization technique demonstrated in Schlag (2006b) that �rst

independently appeared in Cucconi (1968) in a statistical application and in Schlag

(2003) for decision making shows how to transforms exact results for the binary case

into exact results for the nonparametric setting.2

We also provide some insights into the class of rules that attain minimax risk

when only a bounded interval containing all payo¤s is known. Some decision making

criterion such as maximin utility have no prediction power. Choosing each action

equally likely and thus ignoring information given by the sample attains maximin

utility. More valuable insights are gained for loss functions that re�ect learning when

learning matters in the sense that loss is only above the minimum level if both actions

do not yield the same expected payo¤.3 The minimax regret criterion is based on a
2�Exact�is a term from statistics that refers to claims that are not based on asymptotic results.
3We do not allow for concern for lower variance provided means do not di¤er. Note that ax-
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loss function that has this property. For such loss functions we show that in order for

an alternative rule to perform similarly well as binomial �ctitious play it must behave

like (binomial) �ctitious play when facing a sample consisting only of binary valued

payo¤s in which empirical averages of the two actions do not coincide.

Performance of binomial �ctitious play is illustrated in two settings. The value

of minimax regret is presented for a given sample size and in the repeated decision

making setting, building on results in Schlag (2006a). The maximal probability of

guaranteeing selection of the best action conditional on the two means being su¢ -

ciently di¤erent is cited from Schlag (2006b). We show that the rule that turns out

to attain minimax risk in these two settings, the binomial average rule, is not surpris-

ingly dominated by binomial �ctitious play as the binomial average rule is designed

for partial information and its minimax risk property under full information is only

a side product in these two papers.

The power of our results stems from the fact that we limit attention to a very

simple decision problem. Once there are more than two actions then �ctitious play

is no longer a best response to any symmetric prior over binary valued payo¤ distri-

butions. It is only a best response when actions are known to be independent. With

the techniques used in this paper one can only prove that binomial �ctitious play

achieves minimax regret when payo¤ distributions associated to actions are known to

be independent.

The presentation proceeds as follows. In Section 2 we present the setup. In

Section 3 we present binomial �ctitious play and compare it to �ctitious play. Section

4 contains the analysis of minimax risk. In Section 5 we consider the two-armed bandit

setting and derive the value of minimax regret for two alternative speci�cations of

time preferences. In Section 6 we brie�y consider more than two actions, in Section 7

we conclude. In the appendix we describe the connection between minimax risk and

hypothesis testing.

iomatized criteria such as minimax regret and maximin utility capture any concern for minimizing

dispersion by �rst translating outcomes into utility. These utilities should then be identi�ed with

what we call payo¤s.
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2 Choice between Two Actions

Consider two actions i = 1; 2 where action i is associated to a random variable Yi and

Y = (Y1; Y2) is distributed according to the distribution P: Assume that outcomes

realized by the two random variables Y1 and Y2 are known to be contained in [�; !] � R
with � < !, but that the joint distribution P 2 � [�; !]2 is otherwise unknown. �A
denotes the set of all distributions with support in A: P s will denote the distribution

that results from permuting the labels of the actions in P , for �nite support this

means that P (y1; y2) = P s (y2; y1) for all y 2 [�; !]2 :

Consider a decision maker facing a single decision, to choose either action 1 or

action 2. Choice of action i yields a payo¤ that is drawn from Pi where Pi is the

marginal distribution of P with respect to component i; i = 1; 2: We assume that

the decision maker would like to choose the action that has the highest mean, such

an action will be called best. However this is not possible as we assume that P is

unknown. Let �i = EP (Yi) denote the mean payo¤ generated by action i under

distribution P; i = 1; 2: None of our results will be a¤ected if payo¤s are transformed

a¢ nely, hence we assume without loss of generality that payo¤s are known to be

contained in [0; 1] (transform yi into
yi��
!�� ). Let [1] denote the index of action with

higher mean when �1 6= �2 so �[1] = �i if �i > �3�i. We say that a payo¤ y is binary
valued if y 2 f0; 1g and that P is binary valued if P 2 � f0; 1g2 :
In a more formal choice setting, actions would generate random outcomes where

outcomes would belong to some given set of outcomes. Outcomes would then be

transformed into utilities and we would assume that these belong to [�; !]. Utilities

would then be identi�ed with payo¤s.

Assume that the decision maker has observed n independent realizations of Y

denoted by y1; ::; yn so yk =
�
yk1 ; y

k
2

�
2 [�; !]2 is an independent random drawn of

a pair of outcomes based on the distribution P: It is important to stress that each

data point yk consists of the payo¤ that each action achieved, in statistics one also

speaks of matched pairs or of paired data. Let y1;n = (y1; ::; yn) denote the sequence

of observations. n will be called the sample size. Rustichini (1999) calls this the

full information case. In the sequential choice setting we consider later this is called

learning from foregone payo¤s.

The decision maker can condition her choice on the observed realizations of Y:
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Her rule or strategy � is hence a function � : [0; 1]2n ! � f1; 2g where �i (y1;n) is the
probability of choosing action i after observing y1;n: A strategy is called symmetric

if its behavior does not depend on how actions are labelled. The set of all strategies

is denoted by �: Let EP�i (y1;n) denote the ex-ante expected probability of choosing

action i based on n independent observations to be gathered. Let EP� (�; y1;n) =

EP�1 (y
1;n)�1 + EP�2 (y

1;n)�2 denote the associated ex-ante expected payo¤.

3 Two Strategies

Two particular strategies will be of interest for our analysis, �ctitious play and bino-

mial �ctitious play.

The strategy �f called �ctitious play satis�es �fi (y
1;n) = 1 if 1

n

Pn
k=1 y

k
i >

1
n

Pn
k=1 y

k
3�i

and �fi (y
1;n) = 1

2
if 1
n

Pn
k=1 y

k
1 =

1
n

Pn
k=1 y

k
2 or if n = 0. In words, the decision maker

chooses the action that performed best in the past, choosing each action equally likely

in round one or when both actions achieved the same average payo¤s. Notice that we

choose a particular representative of �ctitious play. (i) There are is no initial weights

on either action and hence only observed payo¤s in�uence future behavior. (ii) The

most popular tie breaking rule is assumed, namely each action is chosen equally likely

whenever the empirical averages are equal.

The strategy � is called binomial if � (y1;n) = �
��
t
�
yk
��n
k=1

�
for some (random)

transformation t : [0; 1]2 ! � f0; 1g2 that is mean preserving in the sense that it
satis�es yi = Pr (ti (y) = 1) for i = 1; 2: The strategy �b is called binomial �ctitious

play if it is the binomial strategy that chooses each action equally likely in round

one and coincides with �ctitious play whenever only binary valued payo¤s have been

observed. Thus binomial �ctitious play is characterized by the underlying mean

preserving transformation t.

Notice that any mean preserving transformation is equal to the identity on� f0; 1g2 :
Two particular mean preserving transformations will play a role in our later analysis.

The independent transformation tI is the unique) mean preserving transformation

that transforms the outcome of each action independently, so tI (y) = tI1 (y1) � tI2 (y2).
The correlated transformation tC is characterized by being the unique mean preserv-

ing transformation that preserves the ranking within the pair of outcomes in the

sense that Pr
�
tC (y) = (1; 0)

�
= 0 if y1 � y2 and Pr

�
tC (y) = (0; 1)

�
= 0 if y1 � y2.
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Uniqueness follows as these two conditions imply

Pr
�
tC (y) = (0; 0)

�
= 1�max fy1; y2g

Pr
�
tC (y) = (1; 1)

�
= min fy1; y2g :

An alternative characterization of the correlated transformation is that it maximizes

Pr (t (y) = (1; 1)) among all mean preserving transformations. This follows from from

the next two statements.

Pr (t (y) = (1; 1)) � min fPr (t1 (y) = 1) ;Pr (t2 (y) = 1)g = min fy1; y2g

holds for all mean preserving transformations t. Moreover, it is easily veri�ed that the

correlated transformation is the unique mean preserving transformation t that satis�es

Pr (t (y) = (1; 1)) = min fy1; y2g : Similarly it is easily veri�ed that the correlated
transformation is the unique mean preserving transformation that maximizes the

covariance of t1 (y) and t2 (y) for y1; y2 2 (0; 1) :
When we wish to identify that binomial �ctitious play is based on one of the two

transformations tI or tC we will write �bI or �bC respectively.

In the following two subsections we investigate the behavior of binomial �ctitious

play and compare this to that of �ctitious play.

3.1 Conditional Choice

We illustrate how sensitive binomial �ctitious play is to empirical success measured

in terms of average payo¤s realized is incorporated. This is in the light of the fact

that �ctitious play, by de�nition, puts all weight on the empirically more successful

action.

Assume n = 1: We �nd

�b1 (y) = Pr (t (y) = (1; 0)) +
1

2
Pr (t1 (y) = t2 (y))

�b1 (y)� �b2 (y) = Pr (t (y) = (1; 0))� Pr (t (y) = (0; 1)) = y1 � y2

and hence

�b1 (y) =
1

2
+
1

2
(y1 � y2) (1)

holds independent of the speci�c mean preserving transformation. Binomial �ctitious

play �b is more likely to select the action that yielded the higher payo¤ (than the
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one that yielded the lower payo¤). The probability placed on the empirically more

successful action is increasing in the di¤erence between the success of the two actions.

So behavior under binomial �ctitious play and �ctitious play can be very di¤erent, in

particular it is easily veri�ed that supy
����b1 (y)� �f1 (y)��� = 1=2:

Consider now n = 2 with binomial �ctitious play based on the independent trans-

formation. Assume that y1;2 = ((�; 0) ; (�; 2�)) for some � 2 (0; 1=2) so y11 + y21 =
y12 + y

2
2. It is easily veri�ed that �

bI
1 (y

1;2) = 1
2
� 1

2
�2 (1� 2�) : So we �nd that while

both actions were empirically equally successful, the decision maker using �bI is more

likely to choose action 2 than action 1:

Assume instead correlated transformation. Clearly if yn1 � yn2 for n = 1; 2 then

�bC1 (y1;2) � 1
2
: Assume that y11 > y

1
2 and y

2
1 < y

2
2: Then

�bC1
�
y1;2
�
=

�
y11 � y12

��
1� 1

2

�
y22 � y21

��
+
1

2

�
1�

�
y11 � y12

�� �
1�

�
y22 � y21

��
=

1

2
+
1

2

�
y11 + y

2
1 � y12 � y22

�
:

Consequently, �bCi (y1;2) � 1
2
holds for all y1;2 such that y1i + y

2
i � y13�i + y

2
3�i. The

empirically more successful action of the �rst two rounds is chosen more likely in the

third round.

We investigate correlated transformation when n = 3: It is easily veri�ed when

y1;3 = ((�; 1) ; (�; 0) ; (1� 2�; 0)) for some � 2 (0; 1=2) that �bC1 (y1;3) = 1
2
�1
2
�2 (1� 2�)

which means that action 2 is chosen more likely despite the fact that both actions are

empirically equally successful.

We summarize.

Remark 1 Binomial �ctitious play puts more weight on the empirically more suc-

cessful action (i) under the independent transformation when n = 1 and (ii) under

the correlated transformation when n � 2. Statements (i) and (ii) are not necessarily
true for other values of n.

Finally we brie�y investigate whether one of these two rules is absolutely expedi-

ent. A rule is called absolutely expedient if expected payo¤s conditional on the mixed

action in the previous round are increasing. Assume that (1; 0) occurred in the �rst

round. Then �ctitious play and binomial �ctitious play specify to choose action 1 in

round 2: As it is possible that action 1 is the best action and the weight on the best
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action has to be weakly increasing, an absolute expedient rule will choose action 1

also in all later rounds. Thus neither �ctitious play nor binomial �ctitious play are

absolutely expedient.

3.2 Unconditional Choice

We investigate expected behavior of the two rules where expectations are calculated

ex-ante before making any observations.

Assume n = 1: It follows directly from (1) that

EP�
b
1 (y) =

1

2
(1 + �1 � �2) (2)

and hence that

EP�
�
�b; y

�
=

1

2
(1 + �1 � �2)�1 +

1

2
(1 + �2 � �1)�2

=
1

2
(�1 + �2) +

1

2
(�1 � �2)

2 :

Now consider �ctitious play facing P such that P (0; x) +P (1; x) = 1 with 1=2 <

�1 < x = �2 < 1. Then EP�
f
1 (y) = �1 which implies that more weight is put on the

worse action. As

EP�
�
�f ; y

�
=
1

2
(�1 + �2) +

�
1

2
� �1

�
(�2 � �1) (3)

we �nd that �ctitious play performs worse than the rule that prescribes to choose

each action equally likely.

Consider now n = 2: Let p10 =
R
Pr (t (y) = (1; 0)) dP (y) and

p01 =
R
Pr (t (y) = (0; 1)) dP (y). Hence p10 � p01 = �1 � �2: Then

EP�
b
1

�
y1;2
�
= p10 + (1� p10 � p01)

�
p10 +

1

2
(1� p10 � p01)

�
=

1

2
+
1

2
(p10 � p01) (2� p10 � p01)

=
1

2
+
1

2
(�1 � �2) (2� p10 � p01) (4)

=
1

2
+
1

2
(�1 � �2) (2� �1 � �2 + 2p11)

as p01 + p10 = �1 + �2 � 2p11: In particular, the correlated transformation maximizes
the probability of choosing the best action and the expected payo¤ in round 3 among

all mean preserving transformations. Note that

EP�
b
1

�
y1;2
�
= EP�

b
1 (y) + (1� p10 � p01)

1

2
(�1 � �2) (5)
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as there is only value to observing payo¤s in round 2 if either (0; 0) or (1; 1) is realized

in round 1. We obtain

EP�
�
�b; y1;2

�
=
1

2
(�1 + �2) +

1

2
(�1 � �2)

2 + (1� �1 � �2 + 2p11)
1

2
(�1 � �2)

2 :

As speci�c formulae for n � 3 are involved, we demonstrate qualitative proper-

ties in terms of how ex-ante expected payo¤s change in the number of observations

available.

Proposition 1 (ia) Fictitious play is not ex-ante improving, speci�cally for any m 2
N there exists P 2 � [0; 1]2 such that EP�

�
�f ; y1;n

�
is strictly decreasing in n for

n � m:
(ib) Binomial �ctitious play is ex-ante improving, speci�cally EP�

�
�b; y1;n+2

�
>

EP�
�
�b; y1;n

�
if �1 6= �2:

(ii) For any d > 0 both �ctitious play and binomial �ctitious play are uniformly

consistent estimators of the best action if j�1 � �2j � d; speci�cally for any " > 0

there exists n0 such that �i � �3�i + d and n � n0 implies EP�bi (y1;n) � 1� ":

Proof. Part (ia). Given the properties of a mean preserving transformation it is

su¢ cient to restrict attention to P 2 � f0; 1g2 : Fix any binary valued P and consider
a rational decision maker with prior �Q 2 �

�
� f0; 1g2

�
that puts equal weight on P

and P s: Then it is easily veri�ed using Bayes rule that �ctitious play is a best response

to �Q. As more information cannot be harmful and EQ�
�
�b; y1;n

�
= EP�

�
�b; y1;n

�
it

follows that EP�
�
�b; y1;n

�
is weakly increasing in n:

Consider n odd. If �1 6= �2 then two more observations can change action 1 from
being the unique best response to making it strictly worse than action 2 when facing
�Q: Hence, EP�

�
�b; y1;n+2

�
> EP�

�
�b; y1;n

�
if �1 6= �2:

Part (ib). For any given m 2 N choose x < 1
m
and consider P such that P (0; x)+

P (1; x) = 1 and 1=2 < �1 < x = �2: For n � m we then obtain �f1 (y
1;n) =

1� (1� �1)
n which is strictly increasing in n:

Part (ii). The law of large numbers implies that limn!1EP�
b
1 (y

1;n) =

limn!1EP�
f
1 (y

1;n) = 1 whenever �i > �3�i:

Part (ii) shows that both �ctitious play and binomial �ctitious play are uniformly

consistent estimators of the best action provided the two means di¤er by at least d:
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Parts (ia) and (ib) show that binomial �ctitious play is ex-ante improving while

�ctitious is not where a rule � is called ex-ante improving (Schlag, 2002, cf. Börgers

et al., 2004) if EP� (�; y1;n+1) � EP� (�; y1;n) holds for all n and all P .

Notice that binomial �ctitious play does not induce strictly increasing ex-ante

payo¤s when �1 6= �2 as EP�
�
�b; y1;n+1

�
= EP�

�
�b; y1;n

�
holds when n is odd and

P (f(1; 0) ; (0; 1)g) = 1: This is because any best response against �Q after an odd

number of rounds remains a best response when one more observation is added ( �Q

de�ned in the proof of Proposition 1 (ia)).

We present some di¤erences between �ctitious play and binomial �ctitious play in

terms of the probability of choosing the best action.

Corollary 1 Assume �1 6= �2:
(i) EP�b[1] (y

1;n) > 1
2
for n � 1:

(ii) For any n � 1 there exists P 2 � [0; 1]2 such that EP�f[1] (y1;n) � e�1:4

Proof. Part (i) follows directly from (2) and Proposition 1(ia).

Part (ii). In the example used to prove Proposition 1(ib) we �nd that

lim�1!x!1=m �
f
1 (y

1;m) = 1 �
�
1� 1

m

�m
> 1 � e�1 where 1 is the worse action which

proves the statement.

4 Minimax Risk

We now present a methodology for selecting a strategy. The methodology enables to

model a decision maker that knows more about the possible underlying distributions.

Let P � � [0; 1]2 be the closure of the set of all distributions that the decision

maker cannot rule out based on her a priori knowledge of the choice setting. Thus,

by de�nition P is closed. We make the following two additional assumptions on P :
(a) P is symmetric in the sense that if P 2 P then P s 2 P. (b) For every P 2 P
there exists PB 2 P \� f0; 1g2 such that �

�
PB
�
= � (P ) :

Property (a) re�ects that the two actions are ex-ante identical up to their labelling.

Even if the decision maker should perceive the two actions as di¤erent, this property

ensures that the choices do not depend on this a priori perception. There is the

following underlying principle: if the actions are really di¤erent then the data should

4e�1 � 0:368.
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re�ect this, not the structural assumptions. Property (b) holds automatically if P is
described only in terms of the underlying means.

We say that a mean preserving transformation t is P invariant if for every P 2 P
there exists PB 2 P such that PB (t (y)) = P (y) for all y 2 [0; 1]2 : Following property
(b) imposed above on P, such a P invariant transformation always exists. Note

that if P consists of all independent distributions, so P = (� f0; 1g)2 ; then only
the independent transformation tI is P invariant. On the other hand, if P consists

of all distributions, so P = � f0; 1g2 ; then any mean preserving transformation is
P invariant. In the following we restrict attention to representatives of binomial

�ctitious play that are based on some P invariant transformation.
In applications there is typically some set Y � R that contains all payo¤s that

can be generated by either action. In this paper we assume that Y is bounded.

By applying an a¢ ne transformation, we can assume without loss of generality that

inf Y = 0 and supY = 1: Then P � �Y2: If there are no further restrictions then
P = �Y2. If one additionally knows that actions are independent then P = �Y��Y.
One may know additional information about how the payo¤s generated by the two

actions depend on each other. For instance, if one only knows that one of the two

actions can yield a strictly positive payo¤ then P = fP 2 �Y2 : P1P2 = 0g which
of course satis�es conditions (a) and (b). Or one may be interested in correctly

forecasting which of two states is more likely to occur. If at most one of these two

states can occur then P = � f(0; 0) ; (0; 1) ; (1; 0)g which implies that �1 + �2 � 1:

Let g (i; P ) measure the loss of choosing action i when facing distribution P:

We assume that g satis�es the following two conditions. (i) Loss only depends on

the distribution via a symmetric continuous function of the means, so there exists

a continuous function g0 : f1; 2g � [0; 1]2 ! R such that g (i; P ) = g0 (i; � (P )) and
g0 (1; �1; �2) = g0 (2; �2; �1) for i = 1; 2: (ii) Choice of an action with higher expected

payo¤ yields lower loss, so g (i; P ) < g (j; P ) if and only if �i > �j:

Given (i) we can assume without loss of generality that g is non negative with

infP g (1; P ) = 0: We then say that a loss function g re�ects learning when learning

matters if each action yields vanishing loss whenever the two means are arbitrarily

close, formally if limk!1 P
k = P1 and �1 (P

1) = �2 (P
1) implies

limk!1max
�
g
�
1; P k

�
; g
�
2; P k

�	
= 0:

We also add a nontriviality assumption on the pair P and g by requiring that

there is some P 2 P such that g (1; P ) 6= g (2; P ) :
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Risk of choosing strategy � when facing distribution P is de�ned as the expected

loss, so g (�; P ) =
P2

i=1EP�i (y
1;n) g (i; P ) : Risk when facing prior Q 2 �P is mea-

sured in terms of expected risk, so g (�;Q) =
R
g (�; P ) dQ (P ) :

We will adapt a worst case approach which goes back toWald (1950) and search for

a strategy �� that attainsminimax risk in the sense that �� 2 argmin�2� supP2P g (�; P ).
min�2� supP2P g (�; P ) will be called the value of minimax risk. Q

� is called a least

favorable prior if inf�2� g (�;Q�) = maxQ2�P inf�2� g (�;Q) : The interpretation is

that a rational decision maker endowed with a least favorable prior is worse o¤ in

terms of risk than with any other prior.

Loss can be measured in terms of regret de�ned as g (i; P ) = max f�1; �2g � �i:
The criterion of minimax regret is due to Savage (1951). If a strategy attains minimax

risk when loss is a translation of negative payo¤s, so g (i; P ) = 1 � �i (P ), then we
say that it attains maximin utility. The maximin utility criterion was �rst de�ned

by Wald (1950). Both minimax regret and maximin utility were �rst axiomatized

by Milnor (1954) and recently also by Stoye (2006). The relative minimax criterion

axiomatized by Terlizzese (2006) is similar to the minimax regret criterion except that

loss of opportunity is now measured in relative terms. P must satisfy �1 (P ) 6= �2 (P )
for all P 2 P and loss is de�ned by

g (i; P ) = 1� �i �min f�1; �2g
max f�1; �2g �min f�1; �2g

= 1f�i<�3�ig:

Note that the three criteria have in common that they have been axiomatized and

are invariant to any positive a¢ ne transformations of the payo¤s. Neither of these

properties holds for the competitive ratio criterion (Borodin and El-Yaniv, 1998) that

is very popular in the computer science literature. It only can be used when � > 0

and is de�ned by

g (i; P ) = 1� �+ (! � �)�i
�+ (! � �)max f�1; �2g

.

Apart from the lack of a normalization competitive ratio is identical to the relative

minimax criterion. One may also choose as in the literature on selection procedures

(Sobel and Huyett, 1957), without reference to any axioms, to be only interested in

selecting the better action whenever the two means di¤er by at least d where d 2 (0; 1)
is given. Loss g is then de�ned by g (i; P ) = 1f�i��3�i�dg: A rule then attains minimax
risk if it maximizes the minimum probability of correct selection. Notice that this last

loss function can also be used to �nd a (randomized) test for the null hypothesis that
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�1 � �2+d against the alternative hypothesis that �1 � �2�d: Choosing action 1 or
action 2 is identi�ed with not rejecting or rejecting the null hypothesis respectively.

A rule that attains minimax risk under this loss function yields a test (provided a

saddle point de�ned below exists) that has equal type I and II errors such that there

is no alternative test with the same type I error (size) that has a strictly lower type

II error (see appendix).

Note that all examples presented above apart from maximin utility and relative

minimax re�ect learning when learning matters.

Following von Neumann Morgenstern (see also Savage, 1954) we derive minimax

risk by �nding a saddle point. (��; Q�) is a saddle point if

max
Q2�P

g (��; Q) = g (��; Q�) = min
�2�

g (�;Q�) :

In other words, (��; Q�) is a Nash equilibrium of a imaginary zero sum game between

the decision maker and nature in which the decision maker aims to minimize risk

while nature aims to maximize the risk of the decision maker.

If (��; Q�) is a saddle point then �� attains minimax risk and Q� is a least fa-

vorable prior. Whenever a saddle point exists then any pair consisting of a min-

imax risk strategy and a least favorable prior constitutes a saddle point. In par-

ticular, if a saddle point exists then minimax risk is consistent with rational deci-

sion making as any minimax risk strategy is a best response to a least favorable

prior. Formally, if (��; Q�) is a saddle point then �� 2 argmin�2� g (�;Q�) and hence
�� 2 argmax�2�

R
P

P2
i=1EP�i (y

1;n)�i (P ) dQ (P ) :

We now turn to our results. We compare risk of binomial �ctitious play to that of

other symmetric rules and establish the minimax risk properties of binomial �ctitious

play when comparing to any other rule.5 We also provide some necessary conditions

for performing as well as binomial �ctitious play.

To simplify presentation we say that a rule � is observationally equivalent to

�ctitious play �f when facing PB 2 � f0; 1g2 if for all y1;n that are realized with
positive probability when facing PB; �i (y1;n) > 0 implies �fi (y

1;n) > 0 which is

equivalent to requiring � (y1;n) = �f (y1;n) when
Pn

k=1 y
k
1 6=

Pn
k=1 y

k
2 :

5Note that there is always a rule that outperforms binomial �ctitious play when facing a given

distribution P; namely one of the two rules that chooses the same action regardless of the sample.
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Proposition 2 (i) For any symmetric rule �s; g
�
�b; PB

�
� g

�
�s; PB

�
for all PB 2

� f0; 1g2 with strict inequality holding if �1
�
PB
�
6= �2

�
PB
�
and �s is not observa-

tionally equivalent to �ctitious play when facing PB.

(ii) Binomial �ctitious play �b attains minimax risk for any P and there exists a

least favorable prior that has support in � f0; 1g2 :
(iii) If loss re�ects learning when learning matters and �� attains minimax risk

then �� is observationally equivalent to �ctitious play when facing any PB 2 � f0; 1g2

contained in the support of a least favorable prior.

Proof. Part (ii). We �rst show that �b attains minimax risk and do this by

�nding a saddle point.

g
�
�b; P

�
attains its maximum on P\� f0; 1g2 as g is continuous in �: Following ar-

guments in Schlag (2003) and Schlag (2006a),maxP2P g
�
�b; P

�
= maxP2P\�f0;1g2 g

�
�b; P

�
:

Notice that it is here that we use the existence of a P invariant transformation. Choose
P � 2 argmaxP2P\�f0;1g2 g

�
�b; P

�
and let Q� be the prior that puts equal weight on

P � and P �s:

We verify that
�
�b; Q�

�
is a saddle point. Since P �; P �s 2 argmaxP2P g

�
�b; P

�
we

obtain that Q� 2 argmaxQ2�P g
�
�b; Q

�
. It is easily veri�ed that �b is a best response

against Q� in the sense that �b 2 argmax�2� (EP �� (�; y1;n) + EP �s� (�; y1;n)). Hence
�b 2 argmin�2� g (�;Q�) :
Since

�
�b; Q�

�
is a saddle point, �b attains minimax risk and Q� is a least favorable

prior which by construction has support in � f0; 1g2 :
Part (i). Let P =

�
PB; PBs

	
: Then Q� puts equal weight on PB and PBs: The

inequality in part (i) then follows from the fact that g (�s; Q�) = g
�
�s; PB

�
as �s is

symmetric. If g
�
�s; PB

�
= g

�
�b; PB

�
then �s attains minimax risk and hence �s is

a best response to Q�: So if �1
�
PB
�
6= �2

�
PB
�
then �s has to be observationally

equivalent to �ctitious play when facing PB.

Part (iii). For general P, if loss re�ects learning when learning matters then
�1 (P

�) 6= �2 (P
�) if P � is in the support of a least favorable prior. Following our

proof of part (i), we obtain that �� is observationally equivalent to �ctitious play

when facing P �:

We expand minimally on Proposition 2(i) and evaluate performance when facing

general distributions.
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Corollary 2 For any symmetric rule �s and any �� 2 [0; 1]2 ; maxP :�(P )=�� g
�
�b; P

�
�

maxP :�(P )=�� g (�
s; P ) with strict inequality holding if ��1 6= ��2 and �s is not observa-

tionally equivalent to �ctitious play when facing PB.

Assume that loss re�ects learning when learning matters. Following Proposition

2(i) and Corollary 2, if a rule wants to perform as well as binomial �ctitious play then

it must be behaviorally equivalent to �ctitious play when facing any binary valued

distribution. Apart from �ctitious play, the other rules suggested in the literature

for learning under foregone payo¤s in various environments (e.g. stochastic �ctitious

play and regret matching) perform worse than binomial �ctitious play in our setting.

Only binomial �ctitious play and �ctitious play remain to be compared.

We present some risk properties of �ctitious play. Part (i) represents the �rst

foundation of �ctitious play that is not based on priors.

Corollary 3 (i) Fictitious play attains minimax risk if P � � f0; 1g2 :
(ii) Fix n 2 N. There exists �� 2 [0; 1]2 such that maxP :�(P )=�� g

�
�b; P

�
<

maxP :�(P )=�� g
�
�f ; P

�
holds for all g: There is some P such that �ctitious play does

not attain minimax risk for any loss function g.

(iii) If P = � [0; 1]2 and loss g is measured by g (i; P ) = 1f�i<�3�ig then �ctitious
play does not attain minimax risk for any n 2 N.

Proof. Part (i) follows directly from Proposition 2.

Part (ii). Consider a distribution �P that satis�es Corollary 1(ii). Facing �P the

risk of �ctitious play is strictly higher than that of the strategy to choose each action

equally likely which by Corollary 1(i) is strictly higher than the maximal risk attained

by binomial �ctitious play.

Part (iii). The distribution �P used in the proof of part (ii) shows that �ctitious

play does not attain minimax risk.

In the following we brie�y investigate minimax risk in more detail when Y = [0; 1]
under each of the three criteria that have been axiomatized (maximin utility, minimax

regret, relative minimax) and for selecting which action is best.

4.1 Maximin Utility

Consider the maximin utility criterion when P = � [0; 1]2 or when P = (� [0; 1])2.

Proposition 2(ii) does not apply as loss underlying maximin utility does not re�ect



18

learning when learning matters.

It follows easily that any strategy attains maximin utility. This is because the

distribution under which both actions always yield payo¤ 0 is a least favorable dis-

tribution for each strategy. In particular, rules that ignore all information can attain

maximin utility. Analogous results were attained for the case of a single unknown

action by Manski (2005) and for the partial information setting by Schlag (2006a).

4.2 Minimax Regret

Consider the minimax regret criterion and P = � [0; 1]2 : Schlag (2006a) shows that
the binomial average rule attains minimax regret in the setting of this paper even

though it uses less information.

The binomial average rule, denoted here by �a; is the pendent of binomial �ctitious

play for the partial information setting. For even sample sizes each action is sampled

equally often, payo¤s in (0; 1) are transformed independently in f0; 1g as in this paper
and then the empirically most successful action is chosen, mixing equally likely when

there is a tie. Thus, behavior of the binomial average rule in the partial information

setting based on 2n observations facing distribution P is identical to that of binomial

�ctitious play under the independent transformation in the full information setting

based on n observations facing the distribution P̂ that has the same marginals as P

and where actions yield independent payo¤s. To obtain the de�nition of the binomial

average rule for odd sample sizes the following adjustment is made. If the transformed

payo¤ in the last round is 0 then drop this observation and add an observation of

payo¤ 1 to the alternative action. Then proceed as in the de�nition for even sample

sizes (note that a tie is not possible when n is odd).

In the following we show that binomial �ctitious play outperforms the binomial

average rule for any loss function. Formally speaking, this shows that the binomial

average rule is not admissible for the full information setting when n � 2:6

Proposition 3 For any loss function, r
�
�b; P

�
� r (�a; P ) for all P 2 � [0; 1]2 with

strict inequality if �1 6= �2; �1+�2 6= 1 and n � 2: Moreover, the statement holds with
strict inequality when �b 2

�
�bI ; �bC

	
if and only if �1 6= �2; P =2 � f(0; 1) ; (1; 0)g

and n � 2:
6A rule is admissible if there is no other rule that always yields lower risk with strictly lower risk

in some enviornments. In game theoretic terms, a rule is admissible if it is not weakly dominated.
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Proof. Fix a representative of binomial �ctitious play. Fix any distribution

P: Then there exists PB 2 � f0; 1g2 such that � (P ) = �
�
PB
�
and r

�
�b; P

�
=

r
�
�b; PB

�
: Following Proposition 2(i), r

�
�b; PB

�
� r

�
�a; PB

�
. Since r (�a; P ) =

r
�
�a; PB

�
we obtain that r

�
�b; P

�
� r (�a; P ) :

It follows from Proposition 2(i) that r
�
�b; PB

�
< r

�
�a; PB

�
if n � 2; �1 6= �2

and PB =2 � f(0; 1) ; (1; 0)g : Note that PB =2 � f(0; 1) ; (1; 0)g holds if �1 + �2 6= 1 as
�1 + �2 < 1 implies P

B (0; 0) > 0 and �1 + �2 > 1 implies P
B (1; 1) > 0:

It is easily veri�ed that binomial �ctitious play based on either the independent

or on the correlated transformation will yield a strictly lower risk than the binomial

average rule if and only if �1 6= �2; P =2 � f(0; 1) ; (1; 0)g and n � 2:

The reason why the binomial average rule can attain minimax regret under full

information is that Schlag (2006a) shows when P = � [0; 1]2 that there is a least

favorable prior in � f(0; 1) ; (1; 0)g : If instead P \ fP : �1 + �2 = 1g = ; and n � 2
then it follows from the proposition above that the binomial average rule can no

longer attain minimax risk.

Given P = � [0; 1]2 and following Schlag (2006a), the value of minimax regret is
the same in the partial and in the full information setting. It equals 1=2 for n = 0;

1=8 for n = 1, and is approximately equal to 0:17=
p
n+ 0:8 when n > 1 and n is odd.

For n even the value of minimax regret is equal to that of the preceding round, hence

approximately equal to 0:17=
p
n� 0:2.

We expand minimally on earlier results to �nd that absolute expediency and

minimax regret are not compatible.

Corollary 4 If P = � [0; 1]2 then an absolutely expedient rule that attains minimax
regret for n = 0 does not attain minimax regret for n � 1:

Proof. As loss re�ects learning when learning matters then there is some P � 2
� f0; 1g2 such that �1 (P �) > �2 (P �) and P � is contained in the support of a least
favorable prior. Assume that �� attains minimax regret and is absolutely expedient.

Then �� is observationally equivalent to �ctitious play when facing P �: Since (1; 0)

can occur in round 1 when facing P �, as argued at the end of Section 3.1, an ab-

solutely expedient rule chooses action 1 in all rounds n � 2: In order for �� to be

observationally equivalent to �ctitious play it follows that P � (1; 0) = 1: However it is
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easily veri�ed (see also Schlag, 2006a) that P � is contained in the support of a least

favorable prior only if n = 0:

We brie�y investigate the performance of �ctitious play in small samples. Con-

sidering regret when facing the distribution P̂ 2 � f(0; x) ; (1; x)g for x < 1=n and

x < �1 = z we obtain

max
P
r
�
�f ; P

�
� sup

0<x<minfz;1=ng
(z � x) (1� z)n = nn

(n+ 1)n+1
:

It is easily veri�ed that this lower bound on the maximal regret of �ctitious play is

strictly above the value of minimax regret when n � 4: Thus �ctitious play does not
attain minimax regret when 1 � n � 4: In particular, when n = 1 then we �nd that
the maximal regret of �ctitious play is at least 1=2 where 1=2 is the value of minimax

regret without any observation. Whether or not �ctitious play attains minimax regret

for n > 5 and P = � [0; 1]2 remains an open question.

4.3 Relative Minimax

Consider relative minimax and P = � [0; 1]2 n fP : �1 = �2g. Notice that this speci-
�cation does not �t our setting as P is not closed. Notice also that relative minimax
cannot be extended to a continuous loss function on � [0; 1]2. Thus we cannot build

on our above results and instead perform some explicit calculations. We will show

that, similar to the maximin utility criterion, rules that ignore all information can

attain relative minimax for any sample size n.

Let �� be the strategy that speci�es to choose each action equally likely regardless

of which payo¤s are observed in the sample. �� is the unique symmetric rule that does

not depend on the sample. It is easily veri�ed that supP :�1 6=�2 r (��; P ) = �1=2: Now
consider a prior Q̂" that puts equal weight on P̂ and P̂ s where � (P ) = (0; ") with

" > 0 and " small. Then with high probability both actions always yield payo¤ 0 in

the sample and hence lim"!0 r
�
�; Q̂"

�
= �1=2 for any strategy �. Thus the value of

relative minimax is equal to �1=2; in particular �� attains relative minimax.

4.4 Finding the Best Action

Consider P = � [0; 1]2 and the objective of �nding the best action conditional on

the di¤erence between the two means being at least equal to some given distance

d 2 (0; 1) : So loss g is given by g (i; P ) = 1f�i��3�i�dg: Schlag (2006b) considers this
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loss function in the partial information setting and shows as in the case of minimax

regret (Schlag, 2006a) that the binomial average rule attains minimax risk and that

the value of minimax risk in the partial information setting is equal to that in the

full information setting. We cite the value of minimax risk provided in Schlag (2006a,

2006b):

min
�
max
P
r2m (�; P ) = min

�
max
P
r2m�1 (�; P ) =

�
1� d
2

�2m�1 m�1X
k=0

�
2m� 1
k

��
1 + d

1� d

�k
:

For example, consider n = 29 observations and d = 0:296. Then the value of

minimax risk is equal to 0:05: So under binomial �ctitious play the two means have

to be at least 0:296 apart in order for there to be a rule (e.g. binomial �ctitious

play) that is able to select the best action with probability at least 0:95. Moreover

the performance can only be improved in terms of minimizing maximal risk if at

least two more samples are observed. In terms of testing consider the hypothesis

�1 � �2 � d verses �1 � �2 � d for d = 0:296. Then there is no test that has type
I and type II error below 5% when the sample size n is smaller than 28 but there is

when n = 29. For more information on this test see the appendix. Other values are

easily calculated, e.g. one cannot guarantee to �nd the best action more than 70:7%

of the time if d = 0:1 and n = 29, both type I and type II error can be pushed below

5% for d = 0:1 if and only if n � 269.

5 Two-Armed Bandit

In the following we consider the two-armed bandit setting with discounting when

foregone payo¤s are observable. The decision maker has to repeatedly choose either

action 1 or action 2, always facing the same but unknown distribution P; each choice

of action i yields an independent payo¤ drawn from Pi: The strategy � of a decision

maker is now given by a function � : [1n=0 [0; 1]
2n ! � f1; 2g : Loss g is now a function

of the sequence of choices so g : f1; 2g1�P ! R. To keep the presentation simple we
assume that g is additive so g ((in)n ; P ) =

P
gn (in; P ) for some gn : f1; 2g�P ! R

where gn satis�es conditions (i) and (ii) from Section 4 for each n and where we

require that g is bounded.

As the choice of the decision maker does not in�uence the observed outcomes the

decision maker can solve each round separately. This proves the following.
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Corollary 5 Binomial �ctitious play �b attains minimax risk in the two-armed bandit

setting.

5.1 Minimax Regret

In the following we measure loss in terms of regret. Consider �rst the case where

payo¤s are discounted so there exists � 2 (0; 1) such that

g ((in)n ; P ) = max f�1; �2g � (1� �)
1X
n=1

�n�1�in :

Proposition 4 Assume P = � [0; 1]2.
(i) The value of minimax regret is equal to 1

2
(1� �) if and only if � � 1

2

�p
5� 1

�
,

for 1
2

�p
5� 1

�
< � < 1 it is equal to

(1� �) max
x2[0;1]

"
x

2
+ (1 + �)x

1X
m=1

�2m�1
m�1X
k=0

�
2m� 1
k

��
1

2
(1 + x)

�k �
1

2
(1� x)

�2m�1�k#
(6)

which is strictly larger than 1
2
(1� �).

(ii) Fictitious play fails to attain minimax regret if 1
2
< � � 1

2

�p
5� 1

�
:

Proof. Part (i). Fix x 2 (0; 1] and let Px =
�
P 2 � [0; 1]2 : j�1 � �2j = x

	
.

The arguments used in Schlag (2006a) show that the binomial average rule attains

minimax regret among all distributions in Px when foregone payo¤s are observable
with least favorable prior given by P ((1; 0)) = 1

2
(1 + x) = 1�P ((0; 1)). The analysis

in Schlag (2006a) then shows that the value of maximal regret conditional on 2m� 1
or 2m observations is equal to

m�1X
k=0

�
2m� 1
k

��
1

2
(1 + x)

�k �
1

2
(1� x)

�2m�1�k
for m 2 N: Using the fact that regret in round 1 is equal to 1

2
x it follows that the

value of maximal regret in the two armed bandit is equal to

(1� �)
"
x

2
+ � (1 + �)x

1X
m=1

�2m�1
m�1X
k=0

�
2m� 1
k

��
1

2
(1 + x)

�k �
1

2
(1� x)

�2m�1�k#
(7)

and consequently (6) speci�es the value of maximal regret when any distribution in

� [0; 1]2 is allowed.
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Derive an upper bound on the maximal regret under binomial �ctitious by adjust-

ing behavior by assuming that the decision maker chooses the action chosen in round

7 for ever. Formally this means that we discard the terms in (7) with m > 3 and add

x�7
2X
k=0

�
5

k

��
1

2
(1 + x)

�k �
1

2
(1� x)

�5�k
:

Taking the derivative with respect to x it is easily shown that regret of this rule

is maximized for x = 1 taking value 1
2
(1� �) if � � 1

2

�p
5� 1

�
. This means that

1
2
(1� �) is also an upper bound on maximal regret of �b for � � 1

2

�p
5� 1

�
: This

value is actually obtained for x = 1 so that we have proven the if statement. Concern-

ing the only if statement we derive the expression in (7) to x and enter x = 1 to obtain
1
2
(1� �)

�
1� � � �2

�
which means that x = 1 is not the maximizer if � > 1

2

�p
5� 1

�
:

Part (ii). Consider P such that P ((1; 0)) = 1 � P ((0; x)) = z for some given

x < 1 and z close to 0: Then

� � (1� �) 1
2
+(1� �) �

�
z2 + (1� z)2

�
+(1� �) �2

��
1� (1� z)2

�
z + (1� z)3

�
+�3 (1� z)

and hence

r
�
�f ; P

�
� 1� z �

 
(1� �) 1

2
+ (1� �) �

�
z2 + (1� z)2

�
+(1� �) �2

��
1� (1� z)2

�
z + (1� z)3

�
+ �3 (1� z)

!
: (8)

Notice that the right hand side equals 1
2
(1� �) if z = 0: Taking the derivative

of the right hand side with respect to z and evaluating this at z = 0 we obtain

� (1� �) (1� 2�) (1 + �) which is strictly positive if � > 1=2: Given part (i), these

two �ndings prove part (ii).
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We use (6) to plot the value of minimax regret for � > 1
2

�p
5� 1

�
� 0:618 in

Figure 1.7

0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1

Figure 1: Value of minimax regret as a function of � with
1
2
(1� �) added as dotted line.

Remark 2 Assume P = � [0; 1]2. We verify numerically that �ctitious play does not
attain minimax regret for 1

2

�p
5� 1

�
< � � 0:79935: For this we compare the lower

bound for regret of �f in (8) to the value of minimax regret found in Proposition 4.

Consider now the following alternative speci�cation of regret that is common in

the machine learning literature. Fix N and let loss be de�ned by

g ((in)n ; P ) = max f�1; �2g �
1

N

NX
n=1

�in :

Proposition 5 Assume P = � [0; 1]2. The value of minimax regret is equal to

1

N
max
x2[0;1]

0@x
2
+ x

NX
m=1

b(N+1)=2c�1X
k=0

�
2 b(N + 1) =2c � 1

k

��
1

2
(1 + x)

�k �
1

2
(1� x)

�2b(N+1)=2c�1�k1A :
7The �rst sum is evaluated for m � 35:
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Proof. The same arguments as used in the proof of Proposition 4 apply.

We plot the value of minimax regret for N � 22 and note that r � 5% if N = 30

and for 3 � N � 80 that r � 0:265p
N�1 up to the third decimal point di¤erent from 0:

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16 18 20 22 24

Figure 2: Value of average minimax regret as a function of N

with approximation 0:265=
p
N � 1 added as dotted line.

6 Choice among Three and More Actions

In the following we brie�y consider choice among I � 3 ex-ante identical actions. The
de�nition of binomial �ctitious play is easily extended, maintaining the assumption

that the decision maker chooses equally likely among the empirically most successful

actions after �rst binomially transforming the data.

Proposition 6 When actions are known to be independent then binomial �ctitious

play �bI based on the independent transformation attains minimax risk conditional

on n observations for any n and hence also attains minimax risk in the multi-armed

bandit setting for any �:

Proof. The proof is analogous to that of Proposition 2. The only adjustment is

that Q� now puts equal weight on the I! distributions that emerge from permuting
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the labels of P �: Independence of actions allows us to conclude immediately that

choosing the most successful action is a best response to Q�.

Next we show by example that �ctitious play is no longer always a best response

to symmetric priors over binary valued distributions.

Example 1 Let ei; vi 2 f0; 1gI be such that ei is the i-th unit vector and vij = 0

if and only if i = j: Let �P be such that �P (e1) = 1 � �P (v1) 2 (1=2; 1) so �1 > �i

for i � 2 and consider the symmetric prior �Q that puts weight 1=I! on each of the

distributions that emerges from �P by permuting the labels of the actions. For any n

the best response to �Q is to choose action i if and only if either ei or vi was observed

in the �rst round. In particular note that �ctitious play is not a best response to �Q

as action i is never chosen when only vi has been observed.

Note that the above example does not preclude �ctitious play from attaining

minimax risk for binary valued distributions. It only shows that the proof technique

used above for the case of two actions does not extend to the setting with three or

more actions.

7 Conclusion

We illustrate how the �ndings of this paper can be used in di¤erent disciplines. In sta-

tistical decision theory one can now derive policy recommendations based on paired

data for small sample sizes as maximal regret is below 5% when there are at least 11

observations. One can investigate the e¤ectivity of a treatment by comparing well be-

ing before and after the treatment of n subjects. From a more statistical perspective,

we have shown that binomial �ctitious play is also the selection procedure that yields

the highest minimal probability of selecting whether the mean well being was higher

before or after the treatment. One can use binomial �ctitious play to forecast which

of two states will occur next. In game theory one can investigate learning in games

when players believe that their opponents are using a stationary strategy. In eco-

nomics one can now relax the rationality of agents away from the standard subjective

expected utility model without assigning ad-hoc behavior. For instance, in industrial

organization one could now investigate a �nite number of rational �rms independently

setting stationary random prices who are repeatedly competing for consumers who

have no priors.
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The only previous justi�cation in the literature for using �ctitious play is the

fact that it is very popular, very simple to implement and has nice limit properties.

We add a formal justi�cation for choice between two actions under binary valued

payo¤ distributions based on �nite samples. Fictitious play is ex-ante improving and

attains minimax risk for any loss function that only depends on the underlying means.

However neither of these two properties carry over once payo¤s are only known to

belong to a bounded interval. Instead, its variant introduced in this paper called

binomial �ctitious play has these properties.

Choice between two actions in a stationary decision problem with full information

is an extremely simple setting. This allows us to select binomial �ctitious play for

general loss functions. Our analysis provides a possible starting point for many future

investigations. One may want to compare the di¤erent representatives of binomial

�ctitious play, as a function of the underlying mean preserving transformation. For

applications to data the correlated transformation seems most promising as it maxi-

mizes the covariance between the two transformed outcomes. Higher correlation will

tend to reduce the variance in the �nal choice as it did for the correlated binomial

average rule in the partial information setting (Eozenou et al., 2006). More general

settings need to be investigated, such as choice when di¤erent actions have di¤erent

outcomes or when there are three or more dependent actions.

We point out the advantage of choosing according to minimax risk. Most impor-

tant there are axiomatic foundations that yield the particular representatives maximin

utility, minimax regret and relative minimax (Milnor, 1954, Stoye, 2006, Terlizzese,

2006). Both the maximin utility and the relative minimax criteria are too weak to

generate nice limit properties without restricting the set of environments. The sym-

metric rule that ignores the sample attains maximin utility and relative minimax.

Thus we put additional emphasis in this paper on minimax regret. The connection

to statistics also makes the objective of selecting the best action interesting.

The concepts of ex-ante improving and absolute expediency are appealing but do

not have an axiomatic foundation. Characterizations are di¢ cult to obtain as these

concepts are de�ned by an in�nite number of constraints (cf. Schlag, 1998, 1999 and

Börgers et al., 2004). It is interesting to note that the rule we found that attains

minimax risk for all loss functions is also ex-ante improving. On the other hand we

�nd that minimax regret and absolute expediency are incompatible.
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Choice without priors means that the same selected rule is applicable to many

di¤erent problems. Thus, the decision-maker does not have to reoptimize whenever

facing a new decision problem. It is the lack of priors that seems to cause strategies

selected to also be simple (see also Schlag, 1998, 2003, 2006a).

We �nally point out some connections to the partial information setting.

Schlag (2006a, 2006b) shows when loss is either equal to regret or to the probability

of choosing the worse action that the value of minimax risk under partial information,

when a given number n of observations can be gathered by the decision maker, is the

same as it is under full information. We select a rule that outperforms the rule

selected for the partial information setting as it achieves strictly lower risk except in

very particular environments.

In the partial information setting, the results in Schlag (2006a, 2006b) are useless

for sequential decision making. The binomial average rule is designed to perform

best in round n + 1 with choices beforehand not in�uencing loss. In a sequential

decision making problem with discounting the choice in each round not only provides

information but directly enters the loss function. Exploration and exploitation have

to be traded o¤. Schlag (2003) considers the sequential decision making problem

but is only able to derive rules that attain minimax regret for small and moderate

discount factors if the decision maker is able to commit to these rules. In the full

information setting, there is no issue of time consistency or commitment. As nature

chooses the distribution before round 1 it is only justi�ed to evaluate rules according

to ex-ante payo¤s. However, whether payo¤s starting round 1 or starting round k are

considered, the same rule is selected. This is because with full information there is

no choice of how to gather information.

The role that is played by �ctitious play in our paper is played by the empirical

success rule in Schlag (2006a). In fact, these two rules are identical if n observations

of action 1 and n of action 2 are identi�ed with n observations of pairs consisting of

one observation of each action.
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A Testing Symmetric Hypotheses

In the following we brie�y show how the �ndings of this paper can be used to design

tests.

Fix some d 2 (0; 1). Assume that we wish to test the null hypothesis that �1 �
�2+d against the alternative hypothesis that �1 � �2�d where �1 and �2 are unknown
apart from that �1; �2 2 [0; 1]

2 :8 Note that hypotheses are symmetric in the sense

that the null and the alternative hypothesis are interchanged when the labels of the

two variables are interchanged.

In the following we will show how to �nd a test with the following two properties.

The test has equal type I and II errors and there is no alternative test with the same

type I error (size) that has a strictly lower type II error. Notice that the second

property is stronger than that of simply being most powerful. The test will not be

unbiased and it will be randomized in the sense that it will produce some probability

with which the null hypothesis can be rejected where this probability will typically be

in (0; 1). The binomial �ctitious play will be such a test by identifying choice of action

1 and of action 2 with not rejecting and rejecting the null hypothesis respectively.

Consider the loss function g (i; P ) = 1f�i��3�i�dg and �nd a rule �
� that attains

minimax risk, e.g. �� could be binomial �ctitious play. We prove that �� has the

two properties mentioned above. Assume that there is a test �̂ with a lower or equal

type I error, so maxP :�1��2+d g (�̂; P ) � maxP :�1��2+d g (�
�; P ) ; that has a strictly

lower type II error, so maxP :�1��2�d g (�̂; P ) < maxP :�1��2�d g (�
�; P ). Since there

is a saddle point (see proof of Proposition 2), a least favorable prior Q� will have a

distributions with �1 � �2+d as well as with �1 � �2�d in its support. Consequently,
maxP :�1��2+d g (�

�; P ) = g (��; Q�) = maxP :�1��2�d g (�̂; P ) which means that the

type I and type II errors are equal for �� and that g (�̂; Q�) < g (��; Q�) where the

latter contradicts the fact that �� attains minimax risk.
8The range where �2�d < �1 < �2+d is called the indi¤erence zone as the decision maker does

not care whether or not the null hypothesis is rejected for distributions with means that fall within

this range.
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