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Abstract

The epistemic analysis of solution concepts for dynamic games 
involves statements about the players’ beliefs conditional upon dif
ferent histories of play, their conditional beliefs about each other’s 
conditional beliefs, etc. We construct a space of infinite (coher
ent) hierarchies of conditional probability systems, defined with 
respect to a fixed collection of relevant hypotheses concerning an 
external state (e.g. the strategy profile being played). Any (co
herent) statement concerning the players’ dispositions to hold in
teractive beliefs has a representation in our “universal” space. As 
an application, we derive results about common certainty of the 
opponent’s rationality conditonal on an arbitrary collection of his
tories in multistage games with observed actions and (possibly) 
incomplete information.

"This paper expands on previous work independently conducted by Pierpaolo 
Battigalli and Marciano Siniscalchi. We thank the Associate Editor and two 
anonymous referees for helpful comments. The usual disclaimer applies. Email: 
battigalffldatacomm. iu e . i t ,  marcianoAprineeton.edu.
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1 Introduction

It is by now customary, in game theory as well as in applications, to 
explicitly describe the beliefs held by the players at any point in an 
extensive-form game. Indeed, a player’s strategy is commonly viewed as 
a complete description of her dispositions to act at different information 
sets; thus, in order to ascertain its “legitimacy” (or “rationality” ), one is 
naturally led to consider an equally complete description of that player’s 
dispositions to believe.

We take the view that preserving this symmetry is just as natural 
and desirable in any treatment of the epistemic foundations of solution 
concepts for extensive games.

Higher-order beliefs, i.e. beliefs about beliefs..., are key to the latter 
line of research. Thus, two questions arise naturally. First, is it possible 
to model players’ dispositions to hold hierarchical beliefs in a complete 
and consistent way? And, if so, can we make progress towards under
standing some of the so-called “paradoxes” of extensive-form analysis 
by exploiting the expressive power of such a model?

Our first contribution answers the former question in the affirma
tive. In the standard, normal-form setting, it is well-known (see e.g. 
Mertens and Zamir [19], Brandenburger and Dekel [10]) that, under 
fairly general conditions, there exists a “universal” space of epistemic 
types. Its elements are sequences of probability measures, corresponding 
to progressively higher-order beliefs. Thus, essentially any (coherent) 
statement about players’ reciprocal beliefs has a representation in the 
universal space.

In this paper, we extend this type of construction by considering a 
space whose elements axe sequences of collections of (conditional) prob
abilities. In particular, we consider collections which satisfy Bayes’ rule 
whenever possible, so that our representation of agents’ dispositions to 
believe coincides with the notion of a conditional probability system (or 
CPS), due to Alfred Renyi [26],1 and the elements of the “universal”

'Myerson [20] pioneered the use of CPSs in game theory.
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space we construct are actually infinite hierarchies of CPSs.

We point out that, as in [19] and [10], our framework applies to 
more general situations where a natural “basic” (or external) domain 
of uncertainty exists, and agents hold interacting beliefs conditional on 
a fixed collection of (relevant) hypotheses about the prevailing external 
state.

As in the normal-form case, a single (coherent) hierarchical se
quence of CPSs may be regarded as an epistemic type — that is, a 
complete and explicit description of an agent’s conditional beliefs of ar
bitrary order. However, in the spirit of Harsanyi [15], one may also list 
a set of epistemic types for each agent, and associate with each type a 
CPS over the Cartesian product of the set of external states and the 
collection of types listed for the other agents. Each type thus defined 
generates an infinite hierarchy of CPSs; indeed, extending analogous re
sults due to Mertens and Zamir [19], we show that every such implicit 
description of a type space corresponds to a (beliefs-closed) subset of 
the space of (coherent) hierarchies of CPSs, which can thus be rightfully 
deemed universal. This is the second contribution of this paper.

We would like to suggest that the model we propose may be use
fully employed to further our understanding of some of the puzzles and 
paradoxes of extensive-form analysis. To support this claim, we pro
vide a collection of results related to the notion of (conditional) common 
certainty of rationality in two-player multistage games with observed 
actions and (possibly) incomplete information.

Common knowledge or certainty of rationality are central ideas in 
the literature on the epistemic foundations of normal-form solution con
cepts (e.g. Tan and Werlang [30]); they have also been employed in 
connection with extensive games (e.g. Ben-Porath [7]), albeit often en
gendering much controversy (see, for example, Aumann [1 , 2], Binmore
[9] and Reny [24] on backward induction).

In an effort to at least partially clarify some of the controversial 
issues involved, we propose a notion of common certainty of the oppo
nent’s rationality (CCOR) given an arbitrary collection of histories. Our

2
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definition formalizes the following sequence of assumptions: for i =  1,2 
and j  ^  i, (O.i) player i is rational, (l.i) player i is disposed to believe, 
after each history h in an arbitrarily specified collection T , that (O.j) is 
true, (2.1) player i is disposed to believe, after each history h £ T , that 
(1 .j) is true, etc.

We show that, for any fixed collection of histories, these assump
tions characterize, for each a corresponding iterative elimination pro
cedure which is reminiscent of rationalizability (Bernheim [8], Pearce 
[22]), but incorporates stronger, extensive-form-motivated restrictions. 
More specifically:

•  In normal-form games, our procedure coincides with rationalizabil
ity; hence, our results formally extend those of Tan and Werlang 
[30].

• In extensive-form games, if one takes the collection of relevant con
ditioning events to be the (singleton) initial history, one obtains a 
characterization of initial CCOR, as defined and analyzed by Ben- 
Porath [7] in the more restricted class of generic perfect information 
games.

• However, we can also characterize CCOR at any subsequent his
tory. This allows us to provide a simple and transparent answer 
to questions such as whether or not there can be CCOR in the 
“Centipede” game if Player 1 does not choose “down” at the initial 
history.

• Finally, in our opinion, the most interesting and novel applica
tions of our result involves a non-singleton collection of condition
ing events. For instance:

— one may verify whether there can be CCOR conditional on 
the set of histories comprising a given path of play;

— imposing CCOR given a collection of histories comprising a 
path of play as well as select off-path histories may capture 
elements of forward induction (see Example 1 in Section 5);

3
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-  using results due to Reny [24], we can show that, in generic 
perfect information games, CCOR is possible given the collec
tion TZ of all histories that are (i) consistent with the rational
ity of both players, and (ii) such that the player moving at an 
history h 6 TZ does not have a dominant action, if and only if 
every h 6 TZ is on the backward induction path.

We have already mentioned and briefly discussed the literature 
more immediately related to the present paper. Other relevant contri
butions on the foundations of (extensive form) game theory include Au- 
mann [1, 2], Balkenborg and Winter [3], Dekel and Gul [11], Samet [27] 
and Stalnaker [28, 29]. A more detailed discussion of some of these papers 
will be deferred to the concluding section.

The paper is organized as follows. Section 2 contains the construc
tion of the (universal) space of infinite hierarchies of CPSs. Section 3 
discusses implicit (and typically finite) representations of type spaces 
and relates the latter to the universal space constructed in Section 2. 
Belief operators are the subject of Section 4. All game-theoretic results, 
as well as illustrative examples, appear in Section 5. Finally, Section 
6 concludes. Some of the less instructive proofs are collected in an ap
pendix. Omitted proofs and examples of peripheral facts mentioned in 
the paper are available upon request.2

2 Infinite H ierarchies of C onditional B e
liefs

2.1 C onditional Probability System s and Higher Or
der Beliefs

For a given Polish (separable, and completely metrizable) space X , let 
A  be the Borel sigma-algebra on X  and S e t a  non-empty, finite or

2They axe also available in electronic format at
h ttp :/ / wot. princeton. edu/~mar ciano.
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countable collection such that 0 ^ B and each B  6 B is both closed and 
open. The interpretation is that a certain individual i is uncertain about 
the “true” element x  e X ,  and B represents a collection of observable 
events, or “relevant hypotheses.” In particular, we will mostly be inter
ested in the following situation: there is a set E of basic “external” states, 
and a set Z  consisting of (some representation) of another individual’s 
beliefs about E; then each point (state) in the set X  = E x Z  provides a 
description of “external” as well as “epistemic” features of the situation 
at hand. In a game, this could comprise a description of the strategy 
profile being played, and a representation of the beliefs held by individ
ual i's opponent. The set B could consist of hypotheses concerning the 
“external” state only, i.e. sets of the form B  x Z  for B  C E; as long as 
the latter is finite, the elements of B will be guaranteed to be both closed 
and open.3 4

For a different example, X  may be the set of sample paths in a 
repeated experiment with finitely many outcomes, or the set of complete 
histories in a supergame with a finite stage game, while elements of B may 
be equivalence classes of histories sharing a common initial subhistory. 
In this case, too, the conditioning events may be shown to be both closed 
and open.

A conditional probability system (or CPS) on (X , A, B) is a mapping

M-IO : ^ x  [0, 1]

satisfying the following axioms:

A xiom  1 For all B 6 B, p(B\B) = 1.

A xiom  2 For all B e B, p(-\B) is a probability measure on (A, A).

Axiom  3 For all A e A , B ,C  S B, if A C B C C then p(A\B)p(B\C) = 
f (A\C).*

3This fact is used in the proof of Lemma 2.1.
4The tuple (2f, A , B, p) is called conditional probability space by Renyi [26]. When 

X  is finite, A =  2X , B =  2* \{0 } , we obtain Myerson’s [20] conditional probability 
systems.
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The set of probability measures on (X, A) is denoted by A (A'); the 
set of conditional probability systems on (X , A, B) can be regarded as a 
subset of [A(X)]B (the set of mappings from B to A( A)) and it is denoted 
by AS(X). Accordingly, we often write p =  (p(-|B ))Bsb £ A B(X). 
The topology on X  and A  (the smallest sigma-algebra containing this 
topology) are always understood and need not be explicit in our notation. 
Thus we simply say “conditional probability system (or CPS) on (X, B)."

We regard A B(X )  as the space of possible conditional beliefs of 
an individual, say j ,  and we wish to define the higher order beliefs of 
another individual i about the beliefs of j .  We argue below that it is 
conceptually appropriate to define such higher order beliefs over the Borel 
sigma-algebra generated by the product topology of weak convergence of 
measures.

Fix a Borel set A, a relevant hypothesis B  and a real number p € 
[0,1]. The informal statement, “conditional on B, individual j  would 
assign probability at least p to A” corresponds to the set PPB{A) =  {p 6 
A b{X) : p(A\B) > p) C Ab(A).

In order to formalize more complex statements such as, “conditional 
on C 6 B, i would assign a subjective conditional probability to the 
event ‘j  would assign probability at least p to A conditional on B' ” , we 
must endow A B(X ) with a sigma-algebra including all sets flpB(A), for all 
Borel-measurable A C X , B  £ B and p 6 [0,1]. It is then natural to 
consider the sigma-algebra generated by such sets, which we denote by 
A +1 (cf. Heifetz and Samet [16]).

It turns out that, since X  is assumed to be a Polish space, the rather 
intuitive measure-theoretic structure just described is entirely consistent 
with a particularly convenient topological structure on the set of condi
tional probability systems.

More specifically, endow A(X) with the topology of weak conver
gence of measures, and [A(W)]B with the product topology. Consider the 
Borel sigma-algebra on [A(X)]B. Lemma 1 below states that A B(X) is a 
closed subset of [A(A)]B. Thus the collection of Borel subsets of A B(X) 
is the Borel sigma-algebra of A B(X) viewed as a topological subspace

6
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of [A(X)]S. This Borel (sub-) sigma-algebra is precisely the “natural” 
sigma-algebra _4+1 defined above.5

Lem m a 1 The set A B(X ) of conditional probability systems on (X, B ) is 
a closed subset of [A(X)\ . Therefore AB(X ) (endowed with the relative 
topology inherited from [A(A)] ) and X  x A B(X ) (endowed with the 
product topology) are Polish spaces.6

Proof. See the Appendix. ■

Let X +1 = X  x A B(X ) and let C : A  — 2X+' be defined by 
C(A) — A x  A b (X ). Thus C{B) = {C C X  : 3B e B ,C  — B x A B{X)} 
is a set of “cylinders” generated by B and represents a copy of B in X +l. 
Then we can define the set of “second order” CPSs AĈ ( X +1). Since 
X +1 is a Polish space, it follows from Lemma 1 that also AĈB̂ (A+1) 
(endowed with the appropriate topology as above) is a Polish space. 
Each element pt+1 6 AC(B)(A) is a countable collection of individual 
i's conditional joint beliefs about the true value of x  g X  and p} € 
A b(X ) — individual j 's  conditional beliefs about x  € X , — whereby the 
conditioning events, or hypotheses, are essentially the same as in B.

Note that AĈB̂ (A+1) can be regarded as a subset of [A(Ar+1)]e . 
Thus, we are somewhat justified in adopting the simpler notation AS(A+1) 
whenever the precise structure of the conditioning events is clear from 
the context and/or need not be specified, even though B is not a col
lection of subsets of X +1. More generally, let Y  =  X  x Z, B C 2X,

5Since X  is a Polish space every probability measure in A (A) is regular. Therefore 
the Borel sigma^algebra on the topological space A(X) coincides with the sigmas 
algrebra generated by the base of subsets (3P(A) =  {m  6 A (A) : m(A) > p}, A 
measurable, p £ (0,1] (see e.g. Kechris [18], Theorem 17.24). Since A (X ) is Polish, it 
is second countable. Therefore the product sigma-algebra on [A(X)]B coincides with 
the Borel sigma-algebra generated by the product topology (e.g. Kechris [18], p. 68.) 
This implies the result stated above. Similar arguments justify defining higher order 
beliefs on Borel sigma algebras in other papers on hierarchies of beliefs where the set 
of external states has a “nice” topological structure. (Kim Border and Aviad Heifetz 
kindly provided the relevant mathematical references.)

6If some B  £ B is either non-open or non-closed, AB(X) may fail to be closed.
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By = {C C Y  : 3 B  e  B ,C  =  B  x Z j;  then the set of CPSs on (V, B y ) 
will be equivalently denoted by ABv(y) or AB{Y).

Finally, for any probability measure v on the product space Y  = 
X  x Z  let m rgxv  € A (A) denote the marginal measure on X. In what 
follows it is useful to note that, if g = (p(-|B x Z ))bgb £ AB(T), then 
(mrgx g(-\B  x Z ))BeB 6 AB(A).

2.2 Inductive C onstruction

We are now ready for the inductive construction of the space of infinite 
hierarchies of conditional beliefs and the universal type space. For the 
sake of simplicity, we assume that there are only two individuals i and 
j  sharing a common space E of external states (about which they are 
uncertain) and a common collection of relevant hypotheses B. The indi
viduals have conditional beliefs about E and about each other for every 
hypothesis B  G B. However, we do not explicitply represent the beliefs 
of an individual about her own beliefs. The implicit assumption is that 
an individual always assigns probability one to her true beliefs. As before 
we assume that E is a Polish space and B is a finite or countable col
lection of its non-empty subsets which are both closed and open. Define 
recursively X n and Bn as follows:

AT0 =  E, B° = B\

for all n  > 0,

X n+1 =  C (Xn) := X n x A ^ p f " ) ,

Bn+1 = C(Bn) := {C  C A n+1 : 3B  € Bn, C =  B  x A ^ A " )} .

An element pn+1 6 AB"(A Tl) is an (n + l)£h-order CPS with elements 
pn+1(-|B) 6 A(A"), B  € Bn. It can be easily verified that in our notation

k—n
Ab"(A") =  Ab(A"), A n+1 =  E x f ]  As (A fc).

k—0

The set of infinite hierarchies of CPSs is H = n ^ o  &B(X n). An infinite 
hierarchy represents an epistemic type and is therefore typically denoted
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by t = (fi1, p 2, ..., pn, ...)• Lemma 1 implies that for all n > 0, X n and 
A B(X n) are Polish spaces. It follows that also H  and AB(E x H) are 
Polish spaces. Note also that for all k >  0, E x H can be decomposed as 
follows:

OO

E x H  =  X k x J ]  A B{X n).
n=k

2.3 C oherent H ierarchies

We have not yet imposed any coherency condition relating beliefs of 
different order. Of course, we want to assume that, conditional on any 
relevant hypothesis, beliefs of different order assign the same probability 
to the same event. For all integers k > 0, n > 1 and subsets A C X k let 
Cn{A) denote the subset of X k+n corresponding to A, that is,

m=k+n—l
Cn{A) =  A x AB(X m).

m=k

Note that, as the notation suggests, C(Cn~1(A )) =  Cn(A). Similarly, 
C°°(j4) is the subset of E x / /  corresponding to A (replace n and k + n — 1 
with oo in the formula above). In particular, for any B € B, Cn(B) (or 
C°°{B)) is the subset of X n (or E x H) corresponding to B. Recall that, 
for any probability measure i/o n a  product space X  x Z, m rgxv  € A (X )  
denotes the marginal measure on X .

D efinition 1 An infinite hierarchy of CPS’s t =  (/P, p2, ..., /r" ,...) is 
coherent if for all B  6 B, n = 1,2,...,

mrgxn- ^ n+1(.\Cn(B)) = p"(-| Cn~ \B )) .  (1)

The set of coherent hierarchies is denoted by Hc.

The following proposition establishes that we can equivalently de
scribe events concerning the conditional beliefs of a coherent individual 
■i as (measurable) subsets of coherent hierarchies of conditional beliefs or 
(measurable) subsets of conditional beliefs about the external state and 
the (coherent or incoherent) infinite hierarchy of individual j .
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Proposition 2 (cf. [10], Proposition 1) There exists a “canonical' home- 
omorphism f  : Hc —* AB(£ x H) such that if p =  f(p } , g.2, ..., pn, ...), 
then for all B  G B, n = 1, 2,

m r g x n - i n W m  =  /x"(-| Cn~ \B )) .  (2)

We first prove the following lemma:

Lem m a 3 Consider the following set:

D =  {(<5\<52, ...) : Vn > 1,5" € A (A "-1), mrgx ^ 6n+l =  5n} .

There is a homeomorphism h : D —> A (£ x H) such that 

Vn > 1, mrgX’'-ih (61, 62, ...) = 6n.

Proof. Let Z° =  X°  =  £ , Vn > 1, Zn =  AB(An- 1). Each Z" is a Polish 
space and

D =  { (5 \5 2,...) : Vn > 1,5" 6 A(Z° x ... x Z"-1) ,mrgXn-iSn+l =  5"} . 

The result then follows from Lemma 1 in [10]. ■

P roof of Proposition 2. For each B  g B, let 7tb : Hc —> D be
the following projection function:

ttbOA ..., /A ...) = (A(- | B ) , //•(. I ...).

7rB is clearly continuous. By Lemma 3 the mapping 

f B = hoTrB :H c —* A (£ x H)

is also continuous. Let g(- \ C°°(B)) =  f B{gi, P2, •••)• Clearly, g(C°°(B) \ 
C°°(B)) =  1 and for all n =  1,2,..., eq. (2) is satisfied. Thus the mapping

/  =  (/a)B€B : Hc -  [A(£ x H)}B

is continuous and satisfies eq. (2). The latter fact implies that /  is 1 — 1 
and the restriction of / -1 to f(H c) is continuous. We only have to show 
that f (H c) =  As (£ x H).
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(As (£  x H) C f{H c)) . Take /z € AB(£ x H) and for all B £ B. 
n > 1 define p"(-|C"(B)) using eq. (2). If t =  (/z1, / z " , ...) £ ffc, then 
/(f)  =  /z 6 f (H c). Thus it is sufficient to show that f = (/z1, ..., /zn, ...) £ 
/ / c; in order to do this we only have to verify that each /z" satisfies Axiom 
3 (coherency of t is satisfied by construction). For each n, let A" C X n be 
measurable, B ,C  £ B and suppose that An C Cn{B) C Cn(C) (thus B C 
C). Since E x H  is a (countable) product of second-countable spaces, 
the Borel sigma-algebra generated by the product topology coincides with 
the (product) sigma-algebra generated by cylinders with finitely many 
nontrivial7 factors (see Kechris [18], p. 68.), so in particular Coc(.4n) is 
measurable. Also, C°°(An) C C°°{B) C C°°(C). Thus we can use Axiom 
3 for [i and eq. (2) to show that /zn+1(An|Cn(B))/zn+1(Cn(B)|C"(C)) = 
pn+1(An|C"(C)).

( f(H c) C AB(£ x H)) . Take t = (/z1, ...,/z",...) £ Hc and let /z = 
/( t) .  We must verify that Axiom 3 holds for p. Choose B ,C  £ B 
such that B C C and n > 0. Consider a set An C X n, measurable in the 
Borel sigma-algebra generated by the product topology on X n. Applying 
Axiom 3 to /zn+1 for all n = 0,1,..., we obtain

/zn+1(An|Cn(jB))/z"+1(C"(B)|Cn(C)) =  /zn+1(A"|C"(C)).

Then eq. (2) yields

Az(C00(A")|C00(B))p(C00(B)|C00(C)) =  /z(Coc(An)|C°°(C))

This implies that /z satisfies Axiom 3 on the collection C <0° of cylinders, 
i.e. Cartesian products of measurable sets of which at most finitely many 
are nontrivial. Again, since each factor space in the Cartesian product 
E x n n>oAB(A'rl) is second-countable, C <00 generates A, the sigma- 
algebra generated by the product topology.

Now let B (B, C) C A  be the collection of measurable sets for which 
Axiom 3 holds for fixed B ,C  6 B. By sigma-additivity of /z, B(Z?, C) is 
a monotone class, and it contains the algebra C <oc. Hence the smallest 
monotone class containing C <0° is also a sigma-algebra, which cannot

7That is, strictly included in the corresponding factor space.
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be smaller than the sigma-algebra generated by C <<x=, i.e. A. Also, it 
must be contained in B (S ,C ), which completes the proof. ■

2.4 C om m on C ertainty o f Coherency

Even if i's hierarchy of CPSs is coherent, some elements of f(U) (i.e. 
some /s (ti) , B  6 B) may assign positive probability to sets of incoherent 
hierarchies of the other individual j .  We now consider the case in which 
there is common certainty of coherency conditional on every B  g B. 
Observe that B is a collection of “external” events; conditioning on any 
B  6 B does not restrict each individual’s beliefs about each other’s beliefs 
— only her beliefs about the prevailing external state. In particular, 
no event in B conveys information about an individual’s coherency. It 
follows that there cannot be any inconsistency in assuming that there is 
common certainty of coherency conditional on any B  E B: that is, we do 
not run the risk of formally requiring that an individual be (conditionally) 
certain of something that must necessarily be false, given the relevant 
conditional.

Formally, we shall say that individual i, endowed with a coherent 
hierarchy of CPSs U, is certain of some (measurable) event E C £  x H  
given B  E B if fB(U)(E) =  1. Common certainty of coherency given 
every B  E B can thus be inductively defined as follows:

Hi =  Hc,
for all k > 2,

H i =  { fe  H kc~l : VS 6 B , f B(t)( £  x H t l ) =  1},

t = a > i  H i
T  x T  is the set of pairs of hierarchies satisfying common certainty 

of coherency conditional on every relevant hypothesis.

P ro p o sitio n  4 (cf. [10], Proposition 2) The restriction of f  — ( /b)bgb 
to T  C Hc induces an homeomorphism g =  (gB)fleB : T  —» A®(£ x T) 
(defined by gB{t)(E) = /s ( t) (S )  for all B  £ B, t £ T, E  C £  x T  
measurable).
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Proof. First note that T  — {t € Hc : \/B e B ,fs { t)(B  x T) =  1}. 
In fact, let t € Hc and suppose that, for all B  6 B, f B(t)(T, x T )  =  1. 
Then t S f \> i  =  T. Conversely, for each t £ T , B  £ B and k , 
/a(f)(E  x 77*) =  1. Since the measure fs ( t)  is sigma-additive

/ B(f)(£ x T ) =  f B(t) = lim / B(f)(E x H kc ) =  1 .

It follows that /(T ) =  {p € AB(£ x /7 ) : VB G B, g ,{B xT \B x  H) = 1}, T  
is homeomorphic to /(T ), and each / b (T) is homeomorphic to A (B  x T). 
Given the definition of g in terms of / ,  one can check that for all t € T, 
g(t) satisfies Axioms 1, 2 and 3, and thus g is a homeomorphism between 
T  and AB(£ x T). ■

Proposition 4 shows that each element t 6 T  corresponds to an 
epistemic type in the usual sense, except that here a type is uniquely 
associated with a conditional probability system on (E x T, B) instead 
of a single probability measure on E x T . Thus an epistemic type U e T  
represents the beliefs that individual i would have about the external state 
and about individual j ‘s epistemic type conditional on every relevant 
hypothesis B  e  B.

The construction carried out above (in particular, Lemma 3) ex
ploits the topological structure of the sets X°, X 1, . . . ,  X n. . . . .  We con
jecture that an alternative “topology-free” construction à la Heifetz and 
Samet [16] is possible in the present context. The resulting set of epis
temic types T  could then be shown to be equivalent to the set of CPSs on 
E x T, up to a measurable isomorphism (as opposed to “up to a homeo
morphism.”) However, the topological structure additionally enables one 
to associate closeness of epistemic types with closeness of beliefs — and 
conclude, for instance, that an individual’s best reply correspondence is 
upper semi-continuous as a (composite) function of her type. It also 
enables one to conclude that, if a (coarse) subset of T  approximates a 
finer subset of epistemic types, the same holds true for the corresponding 
subsets of beliefs (see e.g. Mertens and Zamir [19].)
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Thus, introducing a topological structure in the analysis allows one 
to derive a richer theory. Moreover, as was argued above, it can be done 
without prejudice to the “natural” measure-theoretic structure on the 
space of beliefs.

3 T yp e Spaces

Each element t =  (p1, p2, ...)  of the set T  defined in the previous Section 
is by construction a complete list of an individual’s hierarchical beliefs. 
That is, each t € T  provides an “explicit” representation of the individ
ual’s epistemic type.

Alternatively, one may choose to start with an “implicit” repre
sentation, which closely mimics Harsanyi’s original formulation of in
complete information games (see [15] and Mertens and Zamir [19]; for 
extensive games, see also Ben-Porath [7]).

D efinition 2 A type space on (E,£?) is a tuple T  =  (E, B, Tj, Ti, gi, gi) 
such that for each i =  1,2, Tj is a Polish space and gi is a continuous 
function

9i — (5i,b)b6S : Tt —> Ab(E x Tj),
where i ^  j .

There are obvious parallels between the definition of a type space 
and Proposition 4 .8

R em ark  1 By Proposition 4, if we set T\ = = T  and <7i = p2 =  9 we
obtain a (symmetric) type space which is denoted by T u

Moreover, given a type space T  =  (Y ,,B ,T\,T2,g i,gi) on (E ,B), it 
is possible to associate to every “implicit” description t, g T, an “explicit” 
hierarchy of beliefs, i.e. a point in the set H constructed in the previous 
Section. A canonical procedure, which we presently illustrate, achieves 
this.

8Note however that the maps gi in the definition of a type space are not required 
to be homeomorphisms.
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3.1 From Im plicit to  Explicit R epresentation

The following notation is essential. For any given measurable function 
ip-i : E x Tj —> E x Tj, let <£Tt = : AB(E x Tj) -  AB(E x Tj)
be the corresponding function associating to each CPS p,- on (E x Tj, #) 
the induced CPS p' =  ipEj(pj) on (E x T ',B ). More specifically, for all 
Hi £ Ab(E x Tj), j4; C E x T' (measurable), B e  B,

=  /*( W V ) ! *  X Tj).

Our objective is to construct a pair of functions (p i , 2) associating
to each type Tj £ Tj a corresponding hierarchy of CPSs tj =  <p«(rj) £ //. 
The mappings <pj =  (<pj, <p,?, •■•) =  [(v̂ bIbgb, (<Fi,B)BeB, •••], * =  1,2 are 
obtained with a canonical inductive construction: the first order beliefs 
ifii(ri) are derived by marginalization on E; the second order beliefs sp? (Tj) 
are obtained using gj and , and so on. More precisely:

• (1) For each i =  1,2, Tj £ Tj, B  £ B,

<P,*b (t <) =  mr9T.9iATi)■
For each i , j  =  1,2, j ^  j ,  Tj £ T j, cr g  E,

= (t <p)(Tj))-

that is, V’l j  =  (/ds,<Pj) (/dx: is the identity function on E). Thus 
we have ipj : Tj —► AB(A°) and b’T  : E x Tj —> A 1 (recall that 
A 0 =  E and A n+1 =  A" x AB(A")).

• (n+1, n > l)  Let : T, —► AB(An“ 1) and V’_j : E x Tj -> A" 
( i , j  =  1,2, i 7̂  j )  be given. For each i =  1,2, Tj 6 Tj, B e  B, 
An C X n (measurable),

V?Bl (Ti)(An)= 9 i,B(Ti) { ( r - i ) - \A n) ) , 

that is, =  V-i 0 <?,• For each i, j  = 1,2, f ^  j ,  Tj £ Tj, a £ E,

V>-TV,Tj) =  (V’"j(a,Tj),<jj"+1(Tj)) ,

that is, V’” ! 1 =  (V’”j , ‘Fj+1)- Thus we have <p"+1 : Tj —* AB(An) 
and tp7* 1 : E x Tj — A n+1.
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Note that V’-^ O .T j)  =  (cr, <p)(Tj) , ..., <p”('rJ), ^"+1(r_,)) . 

This completes the inductive step.

3.2 T ype M orphism s and U niversality

The preceding construction shows that, for any type space T  =  (£, B , Ti, 
7~2, 51, 52), there exists a canonical embedding of each T, in H. This 
subsection addresses the question whether the sets 7) can actually be 
embedded in T, the collection of infinite hierarchies of beliefs satisfy
ing coherency and common certainty of coherency conditional on every 
hypothesis. If this is the case, then any type space may essentially be 
regarded as a (belief-closed) subspace of the symmetric type space T u.

In order to formalize these ideas, we need to develop an adequate 
notion of embedding for type spaces. The central ingredient is again the 
map pZi : As (£ x 7}) —♦ AB(£ x Tj) induced by a continuous function 
<p_t : £  x Tj —> £  x Tj, where Tj and Tj are sets of epistemic types.

D efinition 3 Let T  =  (£, B, Tx, T2, gu g2) and T  = (Y,,B, T j .T j ,^ ,^ )  
be two type spaces on (£,13). A type-morphism from T  to T ' is a triple 
of functions tp =  {<fio,Pi,P2) whereby ipo is the identity function on £  
and for each i = 1,2, : T< —> T[ is a continuous function such that

g'{ o ipi = tpZi o g{

(where = (po, Tj) : £  x Tj —<> £  x T-). If p  is a homeomorphism 
between £  x T) x T2 and £  x Tj x T t h e n  we say that T  and T ' are 
isomorphic.

The intuition is as follows. Fix a type t, e  7); the function p, 
maps L to some £' e Tj, and gj(£j) then retrieves a CPS p! on £  x Tj. 
Alternatively, one can use the function gt to obtain from U a CPS v on 
£  x Tj,  then pTi to map v to a CPS v' on £  x Tj. Intuitively, p! and 
v' should coincide, because both originate from the same epistemic type 
U e T . Equivalently, the embedding p t : 7) —* T[ and the (derived)
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embedding : A®(£ x 7}) —» A®(£ x T') should be consistent with 
each other. This is precisely what the above definition requires.

Type-morphisms satisfy an intuitively appealing closure property:

Remark 2 Let let p  = (<po, <pi, pf) be a type-morphism between the type 
spaces T  =  (E ,B ,T 1,T 2,gu g2) and T  =  (E, B ,T{,T2, g[, g2) on (£,£?). 
Then

V* =  1,2, Vr' € <fii(Ti),\/B G B : <?', fl(r ')(£  x Vj(Tj)) = 1

That is, £  x ipi(Ti) x ^ 2(^2) a belief-closed subset o f E x  T{ x Tj.

This property is consistent with the proposed interpretation of 
type-morphisms as a way to view one type space as a subset of another 
(up to renaming and deletion of redundant types).

Another useful (and natural) property of type-morphisms follows.

Remark 3 Suppose <p is a type-morphism, from T  = (£, B, T), T2,gi, g2) 
to T  = (E, B ,T[,T2, g[, g'2) let E  C £  x Tx x T2 and E' C £  x T[ x Tj be 
measurable subsets such that ip(E) C £’'. Then for all i € (1, 2}, t* G 7}, 
B  e B ,

9iMTi) ({(<*> Ti) '■ ( ^ ri,Tj) G E}) □

91b (t (b )) ( {(f f.r j)  : rj =  ^ ( r , ) ,  <p(<7, tv, r,-) G £ ' } ) .

We are finally able to tackle the issue of “universality” .9

The formal definition of this property should be by now entirely 
transparent:

Definition 4 A type space T ' on (E,B) is universal if for every other 
type space T  on (E,B) there is unique type-morphism from T  to T ' .

9See Mertens and Zamir [19] and Heifetz and Samet. [16, 17]. Heifetz and Samet 
show that, if we drop the topological structure, the space of hierachies of beliefs 
(satisfying coherency and common certainty of coherency) is “larger” than the set of 
hierarchies generated by some type space. The latter is a universal type space.
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R em ark  4 Any two universal type spaces are isomorphic.

We are ready to state the main result of this Section.

P ro p o sitio n  5 Let T  = (E ,B ,Ti, T2,3 i ,32) be an arbitrary type space 
on (E,B) and, for 1 =  1,2, let ^  : 7i —> 7/ be the functions defined in 
Subsection 3.1. Then, for each i =  1,2, ^(T*) c  T  and =  (/ds, Ti> T2) 
is the unique type-morphism from T  =  (E ,B ,T \, 72, 31, 32) 1° 7~u = 
(E ,S , T, T, 3 , 3). Thus T u is the unique universal type space (up to iso
morphisms).

Proof. See the Appendix.

3.3 Independence

As was suggested above, the set E represents a collection of possible 
external states which are relevant to the individuals’ decision problems. 
Apart from certain topological properties, the construction of the univer
sal type space T n and the definition of a type space do not require that 
E exhibit any particular structure. However, in game-theoretic applica
tions, E is the Cartesian product of the two players’ strategy spaces10. 
Thus, we may wish to require that an individual’s conditional beliefs 
satisfy a (weak) form of independence: informally, her beliefs about her 
own strategy should be separable from her beliefs about her opponent’s 
strategy and epistemic type.

In general, suppose that E =  Ei x E2, where each E,, i =  1,2, 
is a Polish space. Derive from B two collections B \, £>2 of marginal 
conditioning events as follows:

B1 = {B l C Ei : 3i?2 C E2, 3B e B, B = B l x R2},

10Or, for incomplete-information games, the Cartesian product of the players’ sets 
of strategy — payoff type pairs: see Section 5 for details.
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£?2 is similarly defined. Note that each £?, is a finite or countable collection 
of subsets which are both closed and open. Finally, suppose that

0 C  {B C  E : 3Bi £ B\, B2 € $2 such that B = B\ x £?2} (3)

For any i — 1,2 , the set of CPSs on E* and E, x T'i will be denoted 
by ASi(Ej) and AB,(E< x T;) respectively.

D efinition 5 Fix a type space T  — (E =  Ei x E2, B ,Ti, 7a, 51, 52) sat- 
isfying 3. Player i ’s CPS p, £ As (Ej x E2 x T2) has the independence 
property if there are two CPSs pu £ ABl (E*) and ptJ £ AB'(E j  x 7}) 
suc/i that for all B — B\X B i € B,

Pi(-\Bi x S2 x Tj) = p„(-|Bt) ® /iy(-|Sj x Tj), 

where ® denotes the product of measures.

The set of CPSs for player i with the independence property is 
denoted by /A B(Ej,E j x Tj). Similarly, the set of CPSs on E satisfying 
the independence property is denoted /A B(E;, Ej). Note that for all 
Pi £ 7AB(Ej, Ej x Tj) the CPSs pa and p,j mentioned in Definition 5 are 
uniquely determined. We call pa and Pij the marginals of Pi on E< and 
Ej x Tj respectively.

As one should expect, type-morphisms preserve the independence 
property:

Lem m a 6 Suppose that E =  Ei x E2 and B satisfies 3. Fix two type 
spaces T  = (E ,£ , Ti ,T2, gi, gi) and V  = (T., B,T[,T^, g[, g'2) on (E ,B) 
and a type-morphism p  =  (<po> Pu P2) between T  and T ' . For alii =  1,2, 
ti e Tit

9i(ti) 6 /A b(E4, Ej  x Tj) =» g'iiPiiU)) £ /A®(E„ Ej x 7))

Proof: Omitted. ■
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4 C onditional B elie f O perators

Fix an arbitrary type space T  =  (E ,£ , Ti ,T2, 31, 52)- A point (<7, Ti, t2) 6 
E x 7i x T2 comprises a description of the external state <7, and (perhaps 
via the canonical maps </>* : T) —* T) a complete list of both individuals’ 
hierarchical beliefs. Thus, we refer to any such point as a state of the 
world; similarly, measurable sets E  C E x T\ x T2 will be called events.

The next order of business is to define the notions of probability p 
belief and certainty (i.e. probability one belief.)

For each 6 7), En C E x 7) denotes the set of pairs (cr, t} ) 
consistent with the event E  and the epistemic type t*,

(ETi = {(<t, t2) € E x T2 : (ct,7i , t2) € E ) ,

is similarly defined). Type t* assigns to £  a probability of at least p 
conditional on each hypothesis B  £ T  C B if MB £ T , 9i,B(ri){ETi) > p. 
Note that we are implicitly assuming that i is certain of her epistemic 
type. For every E  C E x T) x T2 and collection of relevant hypotheses 
0 ^ T  C B, the event “i would be certain of E  conditional on every 
B e F '  is

Pi,AE) ■= {(0-, 7-1,72) : V£ 6 T , gitB{ri){ETi) = 1}

(note that (3i:p (E ) is measurable for each (measurable) E). If £  is a 
singleton, we replace it with its unique element as a subscript. If we 
have to emphasize the type space T, we add T  as a subscript to the 
belief operators, that is, we write A'1̂r,r(£ ).

It is easily shown that each 0.̂  has all the standard properties of 
belief operators.11 In particular, each 0 ^  satisfies:

• Monotonicity: E  C F implies 0i:jr(E) C 0 i^(F ),

n See, for example, axioms K2-K6 in Osborne and Rubinstein [21], pp 69-70. Axiom 
K1 obviously does not hold because di.T is not a knowledge operator. K1 is replaced 
by the weaker axiom that player i does not have contradictory conditional beliefs: 

= 0-
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Conjunction: 0i,r(E  n  F) =  Pi,r{E) D Pi^(F).

In the following, we will often consider events pertaining to the 
realization of the external state and the individuals’ first-order beliefs 
about E; we presently develop the required notation and note a related 
property of type morphisms.

Let E C E x  AS(E) x AS(E) be measurable. The event corre
sponding to subset E  in type space T  =  (E, B, T}, T2, gx, g?) is denoted 
Et , i-e.

Et  := {(a,T1, r 2) : (a, {mrgTlgltB{.Ti))B&B, {mrg^g2tB(T2))BeB) € E} .

The following lemma states that if there is a type morphism <p from T  to 
T ' and at some state [a, t\, t2) of T  player i would believe Et  conditional 
on each B g f ,  then at the corresponding state (ct, ;p2(r2)) in T '
player i would believe Et - conditional on each B  € T . By induction, the 
result also holds for higher-order beliefs about Et  ■

Lem m a 7 Suppose that p is a type morphism from T  =  (E, B, T \, T2, g\, g2) 
to T ' = (E, B, T{, Tj, g[, g'2) and let E  C E x AS(E) x AB(E) be measur
able. Then

<p{Er) C Et

and for all integers n > 1, for all collections { i j , ..., «„} and {F \ , ..., T n) 
with ik € {1,2} and 0 ^  Tk C B for all k =  1, . . . ,  n,

T {{Pii,Tx,T 0 ••• 0 /3in,^-„,r)(^r)) C (Pix,?\,t  ° • •• 0 A ,T‘

Proof. Since is a type-morphism from T  to T ', m r ^ a f T ; )  = 
mr9T.g'i.Bil'Pi{Ti)) l°r all *• ri, B. This implies <p(Er) C Et ■ Thus the 
first statement is true. Remark 3 implies that the second statement is 
true for n =  1. An obvious induction argument (again using Remark 3) 
implies that the second statement is true for all n. ■
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5 Interactive E p istem ology and R ational
ity  in D ynam ic G am es

We now apply the foregoing analysis to the theory of dynamic games. For 
the sake of simplicity we only consider finite games with observed actions. 
On the other hand, we allow for incomplete information because this does 
not alter the analysis in any significant way.

5.1 G am es o f Incom plete Inform ation w ith  Observed  
A ctions

Consider a finite, two-person, multistage game with observed actions 
and incomplete information (see e.g. [13], Chapter 8, or [21], Chapter 
12) without the probabilistic structure. Let 0 , the set of payoff-relevant 
types for player i. A payoff-relevant type 0, e  0 , corresponds to i ’s 
private information about payoff-relevant aspects of the game and has 
to be distinguished from the epistemic type which specifies i ’s attitudes 
to have certain conditional beliefs given certain events. Players’ beliefs 
about the opponent’s payoff-relevant type will be specified within an 
epistemic model. We will omit the adjective “payoff-relevant” whenever 
no confusion can arise. Ti denotes the set of partial histories, which 
includes the empty history <f), and Z  denotes the set of terminal histories. 
The set of strategies for player i (functions from hi to feasible actions) is 
denoted S\. Player i preferences over lotteries are represented by a VNM 
utility function it* : Z  x ©i x 02 —» R. Static games, games of complete 
information and games of perfect information are included in this class 
of games as special cases.12

12A game is static if H =  {0}, has complete information if 0 ,  x 0 2 is a singleton, 
and has perfect information if for each h € H either player 1 or player 2 has only 
one feasible action. We are assuming that the set of feasible actions of each player 
may be history-dependent, but not type-dependent. The extension to the case of 
type-dependent feasibility constraints is conceptually straightforward, but requires a 
more complex notation.
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The basic elements of our analysis are strategy-type pairs (si, 6X) 6 
Si x 0j, i = 1,2. A generic pair for player i is denoted a, and the 
set of such feasible pairs is Si := S,- x 0 ,. The external state space 
is E := Ej x S 2 with generic element a =  (01, 02) =  (si, 81, 82, 62). 
When there is complete information each 0,- is a singleton and S simply 
represents set of strategy pairs. For each history h, Si(h) denotes the set 
of player i's strategies consistent with h, £j(/i) =  Si(h) x 0 , is the set 
of 0,- consistent with h, and £(h) =  S i(h) x £ 2(h) is the set of external 
states inducing h. 'H(Si) is the set of partial histories consistent with 
sit that is, 'H.(si) := {h & H : Si 6 S<(ft)}. For every partial history h, 
T,j(h) is a strategic form representation of i ’s information about j  at 
h. We can obtain a strategic form payoff function U, : S  —* R in the 
usual way: for all (2, 61, 62) S Z  x ©1 x 0 2 and (si, 6\, S2, 62) € £ (2), 
Ui(Si,Oi,Si,02) =  u.i(z,61,62)-

[insert Figure 1]

To illustrate our game-theoretic notation, consider the signalling 
game depicted in Figure 1. We have 0 i  =  {6( ,6'{}, ©2 =  {6*2} is a single- 
ton, thus the set of pairs of types is ©1 x ©2 =  {6', 6"). The set of partial 
histories is H  =  {4>, (R )} and the set of outcomes is {(L), (R , u), (R , d )}x  
{d',6"}. The set of external states is (Si x ©1) x (S2 x ©2), where 
Si =  {£,/?} and S2 = {u, d} (a means “choose action a if R is ob
served,” a € {u, d}). The “strategic representation” of partial history 
(R) is £(/?) =  {(R, d'i), (R, 8")} x {(u,02), (d,02)}- To draw the picture we 
rely on the fact that the set of triples (h, 6\, 82) 6 (T iJZ )  x ©i x ©2 can be 
regarded as an arborescence with initial nodes (4>, #1, #2) 6 {0 } x ©1 x ©2 
and terminal nodes (2, 8\, 62) € -Zx©ix©2.13 For each type 6{ and partial 
history h, {/(} x {^} x ©j corresponds to an information set for player 1 
in the graphical representation. For example, {(^(,^2, (S)), (8", 62, (/?))} 
corresponds to the information set for player 2 depicted in Figure 1.

13The precedence relation is: {6\ , 62,h) precedes (9[, 9'2, h') if and only if (0], 92) =  
(#(,#2 ) and h is a prefix (initial subhistory) of h!. Clearly, to obtain the standard 
graph-theoretic representation simultaneous moves have to be ordered in some arbi
trary way adding information sets appropriately.
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We are interested in players’ (mutual) conditional beliefs at each 
(commonly observable) partial history h. Thus the collection of relevant 
hypotheses in this context is B = {B : 3h 6 77, B — E(/t)}. Note that 
E e B, because E =  E (<p), where <j> is the empty history. In order to 
complete the model we have to introduce a(n) (epistemic) type-space 
T  =  (E, gi, g2). A complete type for player i is a pair (9,. rt) 6
©i x Ti corresponding to a vector (&,Si(7y)) 6 0 jX  AB(E x 7)).14 This 
description of an interactive epistemic model based on a dynamic game is 
consistent with several papers about the theory of extensive form games. 
In particular, it can be regarded as a generalization of the epistemic 
model put forward by Ben Porath [7].

Since each element of B represents the event that some history h 
occurs, we simplify our notation for CPSs on E or E x 7) (1 = 1,2) and 
replace B with 77. Indeed, we shall denote strategic form events B — 
E (h) e B by h £ H  whenever needed (and in particular, in subscripts 
denoting conditioning events.)

Note that B satisfies the product condition 3 of Section 3: since 
E (h) =  Ei (/i) x E2(/i) for all h € 77, we have

B c { f l c E : E B i e B 1, 3B2 e B 2lB = BiX B2},

where
Bi = {E<(/i) : h € 77} i =  l,2.

For notational simplicity, we shall write ABi(E,) and ABi(Et- x 7)) as 
Aw(Ej) and AW(E, x TJ) for i =  1, 2, and no confusion will arise.

Finally, we continue to identify singletons with their unique ele
ments. For example, given h £ Tt or T  C H, we write (gi,h(Ti))hen € 
AW(E x Tj) and 0 i^{E )  instead of (S i .E ^ T y ) )^ ^  € AB(E x 7)) and 
Pi,{Z(h.y.h£r}(E)-

We are formally assuming that a player has beliefs about her own 
strategy and payoff-relevant type. Considering a player’s beliefs about

14In static games 0 ,  x Ti corresponds to the set of types in the sense of Harsanyi 
[15]. In most applications of the theory of games with incomplete information 0 ; is 
assumed to coincide with Ti and the functions gi, i =  1,2, are derived from a common 
prior on 0 j  x 0 2 and a Bayesian equilibrium profile.
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her own strategy is germane to extensive from analysis, because the choice 
of player i at a given history is motivated by her beliefs about the oppo
nents’ and her own behavior later on in the game. However, it is natural 
to focus on player i's beliefs about the opponent. We assume that a 
rational player i is certain of her strategy and type and that she takes a 
best response against her beliefs about the opponent. These beliefs are 
represented by a conditional probability system py € AM(Ej x Tj) with 
corresponding first order beliefs {m rg-^^ij^hen  £ A n (T,j).

Definition 6 Let (Sj,0j) £ E<, p =  (p(-|S_7-(/i))/lG7̂  £ AH(Ej). Strategy 
Si is a best response to p for type 9i, written (s,-, 9i) £ r^p ), if  for all 
h £ 'H(si), Sj £ Si(h)

[Ui(si,9i,Oj) -  Ui(s'i ,Oi,(Tj ))p{(jj\£.j {h)) > 0.
<7j€£j(/i)

Note that this is a best response property for plans of actions,15 
as maximization is required only at histories consistent with the given 
strategy (cf. Reny [23]). A standard dynamic programmig argument 
shows for every p £ An (T,j), r<(p) ^  0.

Definition 7 Fix a type space T  = (T,,TL,T\,T2,g i,g 2). Player i is 
rational at state (sy 9it Oj, r,-, Tj) in T  if
(1) epistemic type Ti is always certain of 9i and is certain of Si whenever 
possible, that is, for all h £ H, gi,h(ri) (St x {0f} x Ej x Tj) =  1 and if 
Si e  Si(h), gi,h{ri) ({(si,0<)} x E j X  T-) = 1,
(2) gi(ji) £ 7Aw(Et-,Ej x Tj) (see Definition 5 in Section S),
(3) (Si,9i) € n  { { m r g ^ g i 'h in ) )^ ) .

Condition (1) says that a rational player knows her type and chooses 
actions according to a specific plan she intends to implement. In most 
epistemic models for games a property like (1) is assumed to hold globally,

l5Two strategies S; and s' are realization equivalent if H(s;) =  W(s') and Sj(/i) =  
sj(/i) for all h 6 H(.Si). A plan of action is a maximal set of realization equivalent 
strategies.
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while we only require that it holds at states where player i is rational. 
Condition (2) says that the beliefs of a rational player can be decom
posed into marginal beliefs about herself and about the opponent. In a 
static model (2) is implied by (1), but in a dynamic model player i might 
change her beliefs about the opponents simply because she deviated from 
her own plan. A condition similar to (2) is assumed explicitly in Reny 
[24, 25] and implicitly in Ben Porath [7].16 Note that the natural exten
sion of (2) to an n-person game would not require that player V beliefs 
be uncorrelated. In fact, the marginal x T_4) might ex
hibit correlation. Independence of beliefs about the opponents should be 
studied as a separate assumption (see [6]).

In the following, we shall discuss a number of (finite) epistemic 
models for games. Our analysis will focus on states in which Conditions 
(1) and (2) above hold and there is common certainty of this fact. This 
allows us to represent a (finite) type space in a compact tabular form. 
Consider for example the following table, which refers to the game in 
Figure 1 above; we use the notation gij,h(Ti) =  Tnrg^jXTjgi,h(Ti)-

(ch,Ti ) g n A Ti) 5l2,(R)(Tl)
( ( M 'W ) 1,0 1,0

0,1 0,1
m n - r ? ) 1,0 1,0

1,0 1,0

(<72 , T 2 ) 3 2 1 ,4 ,(7 2 ) 3 2 1 ,( R ) ( 7 '2 )

K p D P , 1 ,  0 ,  1  - p 0 , 0 ,  0 ,  1

( < W ) q , 1  -  q , 0 ,  0

Or—f
OO

Table 1
16Condition (2) is not really essential for our analysis and in the previous version of 

this paper (2) was not used. In fact, it can be shown that for every state (o, t i , t j)  in 
the universal type space where (1) and (3) are satisfied, there is a state (<x, t', t j) where 
(1), (2) and (3) are satisfied and the beliefs of t[ about j  coincide with the beliefs of U 
at each h consistent with tr*. However, assuming (2) facilitates the comparison with 
the literature.

26

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Although Table 1 does not display an exhaustive list of states and 
shows only the marginal beliefs about the opponent, it contains all the 
essential information. A type space corresponding to a table like Table 
1 can be constructed according to the following conventions:

• (i) For each player i , 7} is the set of epistemic types t* listed in the 
table. A similar convention holds for (<?< is omitted if 0 ; is a 
singleton). But not all strategies need be listed in the table (see 
Table 2 below).

• (ii) For each row k of player i in the table, the pair (sf, #*, r*) 
satisfies Conditions (1) and (2) in Definition 7. This completely 
determines the conditional beliefs 5i,/i(r*) at histories h 6 H(si). 
Otherwise, the CPS 5i(T*) is completed so as to satisfy (1) and (2).

• (iii) The set of states is completed by taking, for each i, all the 
combinations (Si,0 i ,T i) e  S ,• x 0 ( x Tt . (Note that, by convention 
(i), all the states not listed in the table violate (1).)

• (iv) Only the probabilities of (coordinates of) states listed in the 
table are shown (the /cth number is the probability of opponent’s 
row k). The probabilities of other states are always zero. Thus the 
set of states listed in the table is a belief-closed subset of E xT) XT2.

From a substantive viewpoint, the following remarks are in order:

• Player 1 ’s beliefs about her opponent are the same at the beginning 
of the game and after the history (R ). This is a consequence of the 
independence assumption, together with Bayes’ rule.

• Choosing R  is strictly dominated for Player l ’s payoff-type 6'. 
Hence, at any state ((/?, O'), <72, rf, T2), for any 02 € {u,d} and 
7*2 € {t2, t|} ,  Player 1 is not rational.

• If x > 0, type Tj (resp. r |)  of Player 2 justifies choice u (resp. 
d). Therefore, in any of the explicitly described states, Player 1 is 
certain of Player 2’s rationality.
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Further comments on this game will be provided below.

The set of states in T  where player i is rational is denoted /?l T . 
The event that every player is rational is R? = R\,t  FI R2,t - Whenever 
no confusion arises, we drop the reference to the given type space in 
our notation and simply write Ri for the event “player i is rational” and 
/3itjr(E) for the event “player i is certain of E  conditional on each h e  T."

5.2 C om m on C ertainty o f th e O pponent’s R ational
ity

We are interested in the following question (among others): “What might 
player i do if (1) she is rational and (2) for all h € T ,  she believes that 
her opponent is rational, (3) for all h € T ,  she believes that, for all 
h! S T ,  her opponent believes that she is rational, (4) ...?” In other 
words we ask for the consequences of rationality and common certainty 
of the opponent’s rationality conditional on a given collection of histories 
(cf. Reny [24]).

Formally, the statement “There is common certainty of the oppo
nent’s rationality given T  from the point of view of player i” corresponds 
to the following event:

c c O R t s  := PiARj)  n p i A h A R i ) )  n P iA P jA P iA ^ j ) ) )  n ...
=  n  * i= h ik+1 /  ik-

n>l
Hence, the statement “There is common certainty of the opponent’s ra
tionality given T ” corresponds to the event

CCORt  := CCOR\ t  n  C C O R 2,F 

Finally, let R  := R\ fl R 2.

Definition 8 We say that o is consistent with rationality and common 
certainty of the opponent’s rationality given T  if there are a type space 
T  and a pair of types (71, 12) such that

(<r, 7i, T2) 6 R n C C O R ?
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If T  is a singleton (JT =  {/i} for some h ) we obtain a notion of 
common certainty of the opponent’s rationality at a given history (cf. 
Reny [25]). In particular, we may be interested in the consequences of 
common certainty of the opponent’s rationality at the beginning of the 
game, that is, given the empty history h =  <p (cf. Ben Porath [7]).17

There is a compact and convenient way to express event ft, n 
C C O R if. Let Rl-p := ft*, i = 1,2. For all n > 1 ,i= £ j, define

f t - j ^ n f t / f f t ^ 1).

Clearly,
Ri,T =  11,0 Pi'jr(Rj).

Since satisfies conjunction, an easy induction argument shows that

Rl r  = Ri n  Pi,ARi)  n  -  n  ° ■■■ ° Pj,r){Ri), n > 2  odd,

ft"jr =  ft* fl P is(R j)  n ... n (Piir o ... o pi<F o /?iijr)(ftJ), n > 2 even. 

Therefore
C C O R s  =  f |  f l ^  .

n>l

5.2.1 Examples

We begin with an analysis of the game in Figure 1, along with the epis- 
temic model defined by the tables in Subsection 5.1. Assume that x > 0.

Consider the state ((L ,6'),d, corresponding to the second
row in the left-hand table and the second row in the right-hand table.

17In games with observed actions, a relevant hypothesis B — E(/i) represents an 
event that becomes common knowledge when history h occurs. Hence, an event such 
as CCORh fl (E(h) x T\ x T2 ) may be interpreted as saying that history h occurs, 
and as soon as this becomes common knowledge, there is common certainty of the 
opponent’s rationality.

Information sets in general extensive games do not correspond to common knowl
edge events. This is not problematic for certain applications (see e.g. Battigalli 
and Siniscalchi [5].) However, Battigalli and Bonanno [4]) show how to enrich the 
conventional formalization of general extensive games to fully describe the players’ 
information at every node.

29

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Clearly, both players choose best responses to their beliefs. In particular, 
Player 2 is certain at 0 that Player 1, regardless of her type, will choose 
L, so that the history (R ) should not occur. However, if it does, Player 2 
revises his beliefs and becomes convinced that Player l ’s payoff-relevant 
type is O', which justifies his own choice of d.

Observe that this implies that, after history (/?), type r |  of Player 
2 is no longer certain that Player 1 is rational. However, at 0 his beliefs 
are concentrated on states at which Player 1 chooses optimally, and this 
holds for the beliefs of Player 2’s type r j  as well. That is, in any explic
itly described state, Player 2 is certain of Player l ’s rationality at the 
beginning of the game.

This, in turn, implies that, in any explicitly described state, Player 
1 is certain at 0 that (Player 2 is certain at 0 that (Player 1 is rational)).

It is easy to see that, in fact, there is common certainty of the 
opponent’s rationality at 0 in state ((L, O'), d, r f , rf). Of course, in that 
state common certainty of rationality would fail after the counterfactual 
history (R ).

Consider now state ((R, 6"), u, t*, r^). It is easy to see that here, 
too, there is common certainty of the opponent’s rationality at 0. How
ever, regardless of the value of p =  g2i,<t>(rf)((L, O'), Tj)), now Player 2 
remains convinced that Player 1 is rational even after observing R (which 
is an unexpected event, if p =  0.) Thus, Player 2’s type r\ is actually 
certain of Player l ’s rationality given T  =  {0, (/?)}.

Indeed, since g n A Ti)((u  ̂T2)) =  9u A ti )((u’ tD) =  C Player 1 is 
certain at 0 (hence, by independence and Bayes’ rule, also after (R)) 
that Player 2 is certain of l ’s rationality given T . One sees easily that 
{{R,6" ),u , t*,t}) <E R n C C O R f.

Thus, insisting on common certainty of the opponent’s rationality 
at every history refines our prediction about the behavior of Player l ’s 
type 9". The underlying argument has the flavor of forward induction: 
faced with a deviation from his original prediction, Player 2 attempts to 
find an explanation for Player l ’s choice of R  which is consistent with 
the assumption that she is rational; but this implies that he has to assign

30

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



conditional probability one to Player l ’s payoff-relevant type 6" — and 
consequently best-respond with u. Of course, Player 1 anticipates this, 
which makes R  optimal at <t>.

Notice however that this kind of reasoning leads to inconsistencies 
if x < 0. Intuitively, in this case if Player 1 is rational and is certain at <j> 
that Player 2 (i) is rational and (ii) is certain at both 4> and (R ) that his 
opponent is rational, she should expect Player 2 to choose d, and should 
therefore pick L herself. But then Player 2 cannot be certain after history 
(R ) that Player 1 is able to reason along these lines, precisely because 
then she would not choose R.

This informal argument suggests that rationality and common cer
tainty of rationality given T  are impossible in this game. In the next 
subsection we will show that rationality and common certainty of ratio
nality given a family of histories T  identify a simple iterative deletion 
procedure. We shall then be able to show that the above intuition is 
correct by noting that no strategy profile survives the relevant procedure 
in the game of Figure 1.

[Insert Figure 2]

The game of complete and perfect information depicted in Figure 
2 (cf. Figure 5 in Reny [24]) further illustrates the differences between 
common certainty of the opponent’s rationality for a given history and 
for a collection of histories. Table 2 shows all the essential elements of 
a type space for this game with four epistemic types for each player. 
(Recall that we show only the states satisfying conditions (1) and (2) of 
Definition 7. We do not list all the eight strategies of Player 1 and we 
do not specify the beliefs of Player 1 when she is irrational.)
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(ci i T1) <P,(R),(L) (L,l) (R y )
Lab', Tj1 0,1,0,0 0,1,0,0 0,1,0,0
Lbb', rf
Raa', rf
Rab', Tj 0,0,0,1 0,1,0,0 0,0,0,1

(«72, 72) 4> (L),(L,l) (R ),(R y )
ll', 72 1,0,0,0 1,0,0,0 0,0,| , 3
lr', r | 1,0,0,0 1,0,0,0 0,0,0,1
rl', r | 1,0,0,0 1,0,0,0 0 0 - 1utut 4 14
rr’ , t$ 0,0,0,1 0,1,0,0 0,0,0,1

Table 2

It can be verified that common certainty of the opponent’s ratio
nality at histories/nodes (L) and (R) is possible. For example,

(Lab1 , l r ' € Rd C C O R ^ l)}, {Rab1, lr ', rx4, r | )  € RnCCOR^^R)}.

Note also that state (Lab1, lr', r f, t| )  satisfies the property the there would 
be common certainty of the opponent’s rationality if (R) occurred, even 
though state (Lab', lr1, rf , r |)  precludes history (R). Therefore,

(Lab',lr' £ R n  C C O R ^ l)} n  C C O R ^^r)}.

However, we argue that common certainty of the opponent’s rationality 
given {cf>,(L),(R)} is impossible: if player 2 is rational and believes after 
(L) that player 1 is rational, player 2 chooses l after (L). Anticipating this 
and being rational, as implied by 3  CCOi?{^(i),(R)j, player 1
chooses L. But then the occurrence of history (R) would imply that either 
player 1 is irrational or she does not believe that player 2 would believe at 
(L) that player 1 is rational. Therefore player 2 could not believe event 
R\ ^  after history (R) and this implies CCOR{jt(L),(R)} — 0- The
characterization result provided below can be used to verily our claim 
with a simple iterative deletion procedure.
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5.2.2 Characterization

We can ask the following questions about common certainty of the op
ponent’s rationality:

(i) How can we characterize the set of a consistent with rationality 
and common certainty of the opponent’s rationality given T  without any 
reference to epistemic types?

(ii) When we consider the set of a consistent with rationality and 
common certainty of the opponent’s rationality given T , can we restrict 
our attention to finite type spaces (more generally, type spaces with the 
same cardinality of E)?

(iii) Can we restrict our attention to the universal type space T n 
containing all the hierarchies of conditional systems satisfying common 
certainty of coherency?

It is known that, for static games, the answers to (ii) and (iii) are 
affirmative and that the answer to the characterization problem (i) is 
given by an inductive procedure equivalent to the iterated deletion of 
strictly dominated strategies.18 These results can now be extended to 
dynamic games. Let us start from (i). By analogy with the analysis of 
static games the answer should rely on an inductive procedure. For anv 
Kj C T  C H, let

K A * i )  == W  e A*(E;) : Vh € T , Hij(Kj\T,j(h)) =  1} .

(Note that, if T  is “large” and Kj is “small,” Ai^ (K j)  may well be 
empty.) The inductive procedure is defined as follows:

• =  i 6 {1,2},

• for n > 0, i , j  e {1,2}, i ±  j ,  E"^1 = r< [ A ^ E ^ ) ]  .

That is, E"^1 is the set of (Si,6i) such that s, is a best response for 
9i to some CPS //y satisfying /uy(E£y|Ej(ft)) =  1 for all h € T . Note that

18These results have been explicitly proved for normal-form games of complete 
information, but they can be extended to games of incomplete information.
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E1 jr is the set of at consistent with player i being rational and does not 
depend on T . The natural conjecture is that the set of a consistent with 
rationality and common certainty of the opponent’s rationality given T
is Ef^- X E“jt := Hn>l x

Define EJ- := E"jr x E J^, n =  1,2, ...,oo, and

Pr{K i x K?) := r\ [Ai^ ( / \ 2)] x r2 ^ ^ ( A a ) ]  .

Clearly p? is a monotone set to set operator,19 E^+1 = pjr(EJ) and the 
sequence {E5-}^0 is (weakly) decreasing. Since E is finite there is some 
N  such that, for all n > N , E|? =  E£. This implies that the product set 
EJ? has the familiar fixed point property: E|? =  pjr(E^). It is easy to 
prove (using monotonicity of p?) that every rectangular subset E* such 
that E* C pp{E*) is a subset of E“ . In general, E|? may well be empty 
(cf. Reny [24] and the related comments in the next section). But it can 
be shown that E®3 is nonempty.20 Given the fixed point property of E ^  it 
is easy to verify that E *  ^  0 if and only if, for all h G T , E“  fi E (h) ^  0.

The following results relate operator p? and procedure {EJ-} to 
(rationality and) common certainty of the opponent’s rationality given 
T .

Lemma 8 Let E* = E* x E£ C E, 0 ^ T  C H- If E* C Pjf(E)*), then 
there is a type space T  — (E, 74, T\,T%, <71, 52) such that
(a) Ti x T2 has the same cardinality as E,
(b) for all a G E*, there is a pair of epistemic types (t i, t2) G T) x T2 
such that

(tx, Ti , r 2) G f in  CCOR.jr.

Proof. See the Appendix. ■

19A set to set operator p is monotone if A C B  implies p(A) C p(B) ( c  denotes 
weak inclusion).

20The proof goes as follows: Take any non-empty rectangular subset E* C E. Then, 
for each player i and opponent j ,  there is a CPS Pij £ AW(Ej)  such that =
1, and for each 9i we can find a strategy Sj £ Si such that (s;,0;) € Ti(p ĵ). When 
we apply this construction to E* =  E, we obtain Ej, 5̂  0. The construction can be 
applied inductively to E* =  EJ 0, thus obtaining EJ+ 1  5̂  0.
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Proposition 9 Fix a non empty collection IF of partial histories.
(i) The set of a consistent with rationality and common certainty of the 
opponent’s rationality given T  (cf. Definition 8) is precisely E|?.
(ii) There is a finite type space T  such that, for all o 6 E, o is consistent 
with rationality and common certainty of the opponent’s rationality if and 
only if

(ct, ti , t2) e R  n ccO Rjr

for some (t\ , t2) in T  (events are defined in the finite type space T ).
(in) For all o £ E, 0 is consistent with rationality and common certainty 
of the opponent’s rationality given T  if and only if there is some pair of 
hierarchies of CPSs (fi, £2) € T  x T  such that

(o, t i , £2) £ R  n  CCORjr

(events are defined in the universal type space T u).

Proof, (i) Since E ^  =  p?(EJ?), Lemma 8 implies that every a in E^? is 
consistent with rationality and common certainty of the opponent’s ra
tionality. To prove the converse, fix a type space T  =  (E, FL, 7), T2, g\, g2) 
and, for i = 1,2, consider the sequence of events {#iV}n>i defined in T  
as indicated in the preceding subsection. We show by induction that for 
each i and n  the projection of R ^  on E* is (weakly) contained in E"^. 
This implies the assertion, because ft, fl C C O R ^ = p |n>1 Rh f - To sim
plify the notation, let Ay(r<) =  (Aij,h(ri))heH denote the system of first 
order beliefs for type concerning her opponent: that is, for all h e Ft,

Ay,fc(Tj) =  m rg^g i^T i).

Base Step. Let (o, 71, 72) 6 Ri =  R)jr. Then cq € ri(Xij(ri)), which 
implies <jj € Ej^r.

Induction Step. Suppose that for each player i and state (o', t{, rlf), 
(o' , t( , t^) e R? implieso( e E"^. Let (o, tu t2) e  R^ 1 = R^r\(fi^ ( R ’) J ) . 
Since i is rational at (o, T\, rf), ot 6 r^Ayfr,)). Furthermore, since type 
Ti is certain of R”-p at each h G IF, the induction hypothesis (projection of 
R iff on Ej contained in E"jr) implies that for all h 6 IF, Ay./l(rj)(E"Jr) = 
1. Therefore o, € E"^1.
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(ii) Since £ “  =  P.f (£ “ ), Lemma 8 and (i) imply that there is a 
type space T  with the stated property and the same cardinality as the 
finite set E.

(iii) The “if” part is true by definition. To prove the “only if” part, 
fix a and suppose that for some type space T  and some pair of types

(a, Ti,T2) £ Rt  n  C C O R rj,

where we use subscript T  to denote that events and belief operators 
appearing in the construction of (R  and) CCOR? are defined in the 
space T. By Proposition 5 there is a type morphism tp = (Idx, <pi, P2) 
from T  to the universal space T u. We prove that

(f) <Pi(r i)i <P2(r2)) e R n  CCORjr.

where the absence of the subscript T  indicates that events and belief 
operators are defined in T u. We will adhere to this convention throughout 
the proof.

The claim follows from Lemma 7. To see this, for each i = 1,2, let 
E j C S x  /  Aw(£ i,£ j))  x I  A n (T,i,Y,j) be set of (ct, Pi , p2) such that

• pi and p 2 are independent CPSs; denote by pri and py the marginal 
CPS such that pj(.|£(/i)) =  pit(.|E,(ft))(8)ptJ(.|EJ(/i)) for all h £ H\

• for Ui = (Si,6i), p«(ai|Ei(/i)) =  1 for all h £ H(si), and p,i(S’i x 
{0i}|Ei(/i)) =  1 for all h £

• <7t- £ rj(py).

(compare this with Definition 5.3.) Also define

Ut  =  { ( ^ r i . r ' )  £ E x T[ x T ' : 5t'( r ')  6 7AW(E„ x 7)')}

for any type space T ' =  (E ,'H,T[,T!i ,glx,g'2). Lemma 6 in the Appendix 
immediately implies that

1p { h ,T ) C  Jj,T“
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Also observe that =  E i j  n  U j  and /?, =  E ij*  n  U j*  • Then Lemma 
7 implies that for all i =  1,2, n > 1,

<p(Ri'T) C <p(E ij)  PI p > (h j)  C Si.r- n  /i,ru =  -Ri

and similarly

'•P {(0 ii ,r ,T  ° ••• ° /?t„,^,r)(fit„+i,r)) C (0i1̂ o —o0iTlî ) ( R in+1),  n  =  i, z*+i ^ i*.

■

5.2.3 Examples (Reprise)

We can finally go back to the examples in Figures 1 and 2 and provide 
the details of the arguments sketched in Subsection 5.2.1.

Consider first the signalling game of Figure 1. We claimed above 
that common certainty of rationality given T  =  {0, (/?)} is impossible.
To see this, note that £ j p  =  {(L ,6'), (L ,8"), (R,9")} and E i^  =  {«> d}; 
then E2p  — E}^, while E j j - =  {d}, because now Player 2 must assign 
probability 1 to Ei((/?)) f l E j ?  =  {R ,6") after observing R. But then

p  is unchanged, and finally p  =  0, because 
E i((R ))n E ?^  =  0 (which implies A2,^(Ej ^) =  0.) The characterization 
result (Proposition 9) now implies that R n  CCORp = 0 in any type 
space.21

Similarly, for the game in Figure 2 we obtain E|^ ^  =  0 and
this implies that common certainty of the opponent’s rationality given 
the collection of histories T  =  {0, (L ), (/?)} is impossible.

21 On the other hand, Player 2, upon observing R, may conclude that Player 1 is 
rational, but not not very sophisticated (i.e. she does not realize that Player 2 will 
interpret her choice of R  as a signal that her type is 8"). This reinforces his inducement 
to play d, which again leads Player 1 to choose L. Battigalli and Siniscalchi [5] develop 
these ideas and show that they lead to an epistemic characterization of extensive- 
form rationalizability (Pearce [22].) A similar set of assumptions yields the backward 
induction solution in the game of Figure 2.
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5.2.4 C C O R  in gam es w ith  perfect inform ation

In light of this conclusion, it is natural to ask whether one can find con
ditions which ensure the possibility of rationality and common certainty 
of the opponent’s rationality given a collection of “interesting” histories.

Using results from Reny [24], we are able to provide an answer to 
this question for generic games with complete and perfect information.22

First, following Reny, we deem a history h £ H relevant (i.e. “in
teresting”) if (i) h is consistent with rationality: E (/i)n£j, ^  023; and (ii) 
at least one player i has a payoff-type 6{ which does not have a dominant 
choice24.

In the game of Figure 2, both (L) and (R ) are relevant (as is <t>.) 
Thus, in that game, rationality and common certainty of the opponent’s 
rationality given all relevant nodes is not possible. Indeed, the class 
of games for which rationality and common certainty of the opponent’s 
rationality given all relevant nodes are possible is very small. On the 
other hand, when these conditions hold, the backward induction outcome 
obtains:

P ro p o sitio n  10 (cf. Reny [24]) Consider a game with perfect and com
plete information and no ties between payoffs at terminal histories. Let 
7Z be the set of its relevant histories. Then
(a) there is a type space T  for the game such that R rC  CCORu .t  ^  0 if 
and only if every history h £ 71 is on the backward induction path;
(b) for all states (cr, Ti,T2) £ Rt  O CCORk .t , & induces the backward 
induction path.

22Reny attempts to capture the intuitive notion of rationality and common certainty 
of rationality by defining particular subsets of (Bayesian rational) strategy profiles 
satisfying a belief closure condition with respect to a collection of nodes. His results 
concern the (non)emptiness of such sets of strategy profiles.

23The formal definition is motivated by the observation that, for any collection of 
histories T  C H,  Ejr =  E .̂

24Type 6i of Player i has a dominant choice at h € H iff there exists a strategy 
Si € Si(h) such that, for all s[ £ Si(h) such that s((/i) ^  sfyh), Ui(si,8i,Sj,8j) > 
Ui(s[,8i,Sj,8j) for all (sj,8j) € Ej.
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P roof: (a) (=>) Suppo se  RrC\CCORn,T J1 0- Then, bv  P roposition  

9, £ £  *  0.

O bserve  that, for i =  1,2 and j  ^  i, for any collection T  C H  and 

for any  Kj C £ j,

Ai A K j )  = K A K j  n U  Zj(h)).
hen

T h is  follows d irectly from  the definition of A<^. Since for each i — 1,2 

and j  i, =  r, [ A j ^ E ^ ) ] , we conclude that

Eoo
i,n =  r< Ai,*(£-R n U  Sj(fc))

h€7t
But then E ^  ^  0 implies that E °^ O U/ieK Ej(ft) ^  0, for i =  1,2 and 
j  ^  i. Therefore we conclude that

0 ^ ^ R n [ J  E i(h) =  r 4 
hen

W * n U E , ( / i ) )
hew

n U E<(*0
hen

That is, letting £*K =  E?^ n  |J hgK £j(fi) for i — 1,2 and j  ^  i, each set 
E*tc satisfies

0 ^  E*r  =  r4 [At,*(£**] n | J  E{(h)
hen

so that the pair (EJ E ^ )  constitutes a nonempty jointly rational be
liefs system, for 7Z as defined in Reny [24], p. 269. Hence, by the main 
Theorem in that paper, all relevant histories are on the backward induc
tion path.

(<£=) Let sB G S  be the backward induction strategy profile. Sup
pose that relevant histories are all on the backward induction path: 
h 6 TZ => sB 6 S(h). For i = 1,2, let E* =  { s f }  and consider the CPS 
p f  6 An (Si) defined as follows: (i) if s f  € Si(h), then p f  ( { s f  }|S,(/i)) = 
1; (ii) otherwise, let [sf]h =  {s* S S4(/i) : Si(h') =  sB(h') for all
h' weakly following h}, and let fiB({Si}\Si{h)) = l / # [ s f ] h  for all s< e 
[ s f ]h. Then, for i =  1 ,2  and j  ± i, p f  €  Ai]TC(E*), and s f  6  r4(pf). 
That is, £ }  C Ti [Aji7j (E j)]  for i — 1,2. Now Lemma 8 implies that 
R r  n  CCORn.r 0 for some (finite) type space T.

We omit the proof of part (b). ■
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Several papers on the epistemic analysis of games focus on common cer
tainty of both players’ rationality at a given history, rather than common 
certainty of the opponent’s rationality conditional on a collection of his
tories (see in particular Stalnaker [28] and Ben Porath [7]). In static 
games, there is no relevant difference between these two sets of assump
tions. Since a rational player knows her strategy and beliefs, she is certain 
of her own rationality. Therefore, rationality and mutual certainty of the 
opponent’s rationality is equivalent to rationality and mutual certainty of 
both players’ rationality. But since players’ beliefs satisfy positive intro
spections, this also implies that rationality and common certainty of the 
opponent’s rationality is indeed equivalent to rationality and common 
certainty of both players’ rationality.

In dynamic games the result can be extended as follows.

Fix a type space T  and a history h. The event that there is (would 
be) common certainty of rationality at h is

C C R h =  0h(R) n 0h(Pk( R )) n ... =  p| (%(R),
n> 1

where 0h(E) = f a M  n  f t ,fc(E) and = Ph{t%{E)). Let [h] :=
£(/i) n 7\ n T2 denote the event that history h occurs.

P ro p o sitio n  11 For every type space T  and history h e  hi,

[h } n R n  CCORh = [/j] n R n  C CRh.

5 .2 .5  C o m m o n  C e r ta in ty  o f  B oth  P la y e r s ’ R a t io n a li ty

Proof. Omitted. ■

However, we may have

(i) R  n /?!)h(R2) n ih,h(Ri) ^  R n 0h(R)

and
(ii) R  n (3?(R) = 0 ^  R n ,3i, (̂/?2) n Pi ,f (R\)-
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To see (i) consider a state (cr,Ti,T2) & R 0 /3i,h(/?2) H /?2,h(^i) where 
history h is counterfactual, for example, because o\ ^ Ei (h). Suppose 
that all best responses to type t j ’s (first-order) beliefs prevent h from 
being reached. If h were reached, player 1 could not believe that she is 
rational, because she would know that she has deviated from her best 
response. To see (ii) suppose that T  contains two mutually exclusive 
histories h! and h" encoding different actions for player 1 at a common 
predecessor h. Then it may be impossible to find a single (first-order) 
belief for player 1 justifying both actions even if both h' and h" are 
consistent with player l ’s rationality.

6 C oncluding Rem arks

In this paper we provide the main tools for the epistemic analysis of 
multiagent dynamic models and we consider some applications to multi
stage games with observed actions. Taking as given a collection of con
ditioning events -  or “relevant hypotheses” -  concerning external (i.e. 
non-epistemic) states, we construct a belief-closed space T  of (coherent) 
infinite hierarchies of conditional probability systems (CPSs). An infinite 
hierarchy of CPSs encodes an individual’s dispositions to believe condi
tional on every relevant hypothesis — that is, an individual’s epistemic 
type.

The set fi =  E x T  x T  of profiles of external states and infinite 
hierarchies of CPSs can be interpreted as a universal (semantic) model 
providing truth conditions, at every state ui € fi, for subjunctive con
ditionals of the form “if B occurred, player i would believe E ,” where 
B is a relevant hypothesis, E  is an event concerning the external state 
and/or the agents’ interactive conditional beliefs, and the truth value is 
assigned even if B  is counterfactual at u (u> B). Of course, subjunc
tive conditionals are crucial for the analysis of counterfactual reasoning 
in extensive form (dynamic) games.

Other authors, including Ben Porath [7] and Stalnaker [28], put for
ward “extensive form” epistemic models, but -  to the best of our knowl
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edge -  we are the first to provide the explicit construction of a universal 
type space of this sort, thus extending classical results of Mertens and 
Zamir [19] and Brandenburger and Dekel [10] to a dynamic framework. 
In particular, to facilitate the comparison with this literature, we mimic 
as closely as possible the elegant and relatively simple construction of 
[10] -

The space of infinite hierarchies of CPSs is an important analytical 
tool because it does not exclude any “conceivable” epistemic type; thus 
, it provides an “epistemically neutral” representation of interactive con
ditional beliefs. This allows us to state characterization results in a clean 
“if-and-only-if” form (i.e. “for all a 6 E, a belongs to the solution set 
S* if and only if  there is a profile of epistemic types such that... .”)

Universal type spaces are particularly important for the epistemic 
analysis of solution concepts featuring forward induction. According to 
forward induction reasoning, a player always seeks a “rational” explana
tion of her opponent’s observed behavior. When the extensive form game 
is embellished with an epistemic model, this amounts to looking for an 
opponent’s epistemic type (equivalently, a hierarchy of conditional be
liefs) that “rationalizes” the opponents’ actions. Thus, adopting a non- 
universal model effectively restricts the alternative explanations available 
to a player. While constraining players’ inferences may be desirable in 
certain applications, the restrictions implicit in a non-universal model 
prevent a neutral analysis of forward induction reasoning. We pursue 
this topic in Battigalli and Siniscalchi [5, 6] (see also Stalnaker [29]).

On the other hand, for many purposes -  in particular, for the anal
ysis of specific examples and in the proofs of some results -  it is more 
convenient to work with “small” (e.g. finite) non-universal type spaces. 
Therefore it is important to be able to relate extensive form type spaces 
to each other and to the space of infinite hierachies of CPSs. We extend 
Mertens and Zamir’s (1985) notion of “belief-preserving” mappings be
tween type spaces (type-morphisms) and their fundamental result show
ing that every type space is equivalent to a belief-closed subset of the 
space of infinite hierarchies of beliefs.

The main result of our game theoretic analysis is the characteriza
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tion of (rationality and) common certainty of the opponent’s rationality 
given an arbitrary collection T  of histories (i.e. R D C C O R in the 
notation of Section 5.)

We build on and extend previous work by Ben Porath [7] and Reny 
[24]. Ben Porath restricts his analysis to finite type spaces for perfect 
information games and characterizes the strategies consistent with ini
tial common certainty of rationality.25 He conjectures that his charac
terization is also valid for infinite type spaces. Our results confirm his 
conjecture, show that his type spaces can be embedded into an explicitly 
constructed universal type space, and generalize his characterization.

Reny [24] studies the possibility of common certainty of the oppo
nent’s rationality conditional on certain collections of nodes in a perfect 
information game. His analysis does not employ a formal extensive-form 
epistemic model, but rather verifies whether one can find non-empty sub
sets of strategy profiles satisfying an intuitive fixed point property. Our 
results provide an “epistemic validation” of Reny’s analysis.

Our work is also related to Stalnaker’s [28, 29] analysis of coun- 
terfactual reasoning in games. Stalnaker’s approach draws on the philo
sophical work discussing the axioms that belief revision should satisfy in
dependently of any particular information structure (see e.g. Gardenfors 
[14] and references therein). A belie} revision function specifies which 
events an individual would believe if she came to be certain of any par
ticular -  epistemic and/or external -  event B. The probabilistic version 
of a belief revision function is a complete conditional probability system, 
specifying conditional beliefs for every nonempty subset of the relevant 
set of states (Myerson [20]). To use our terminology and notation, let 
<?,(Tj) € AB(£ x Tj) be the CPS corresponding to type 7*. While in our 
notion of type space B is a collection of non empty subsets of E typically 
given by some kind of information structure, in Stalnaker [28, 29] B is the 
collection of all nonempty subsets of E x Tj. Clearly, this is not a trivial 
difference. Since we are given an information structure, we are only in
terested in the beliefs an individual would have conditional on observable

25He also provides sufficient epistemic conditions for Nash equilibrium outcomes.
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events. Hence we can afford to be more parsimonius in representing epis- 
temic types and we are able to construct a universal type space. While 
Lemma 7 “justifies” using type spaces in our sense, we doubt that an 
analogous result holds for Stalnaker’s epistemic spaces. However, it is 
easily shown that every epistemic model a la Stalnaker generates a type 
space in our sense (i.e. a type space a la Ben Porath) and -more inter
estingly -  every finite type space in our sense can be “enriched” so as to 
become a type space a la Stalnaker.

Finally, we find it useful to compare our epistemic analysis with 
Aumann [1] and related papers, such as Aumann [2], Samet [27] and 
Balkenborg and Winter [3]. There are two main differences between 
Aumann’s approach and ours. First, Aumann and the other authors 
just mentioned assume that the players’ initial epistemic state can be 
described by means of knowledge partitions on the set of states of the 
world. This can be expressed within our framework as a property which 
holds “locally” (i.e. an event): players’ initial beliefs (in a finite type 
space) assign positive probability to the true state and this is (initially) 
common certainty.

The second difference is more radical and makes it difficult to com
pare this set of papers with those discussed above:26 in Aumann’s epis
temic model, a state of the world describes the players’ strategies (dispo
sitions to act) and their initial epistemic state, but it does not describe 
how a player would revise her beliefs, should she learn that a particu
lar history h has occured. However, a belief revision theory of a sort is 
implicit in his definition of “rationality” (and made explicit in Aumann
[2]): Suppose that player i is initially certain that his opponent’s strategy 
prescribes action a at history h', which (weakly) follows history h, then 
she is certain of this also at h, whatever “at h” means. Note that this 
is completely unrelated to Bayesian updating. There is no notion that, 
upon learning that h has occurred, player i discards all the states of the 
world inconsistent with h. Indeed, it may well be the case that, in a 
model a la Aumann, no state of the world is consistent with h and yet

26For more on this comparison see also Stalnaker [29].
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each player has well-defined beliefs at h .27

Also, Samet’s [27] theory of “hypothetical knowldge,” -  although 
interesting in its own right -  is unrelated to Bayesian updating. In that 
paper, a state of the world does not only describe players7 strategies and 
initial epistemic state (knowledge), but also what each player imagines 
she would know if any hypothetical event H  (possibly inconsistent with 
her initial knowledge) were the case. This is different from this player 
imagining what she would know (or believe) if she learned that H has 
occurred. In fact, Samet does not assume that player i imagines that 
if H were the case she would know it. (For example, we know that the 
Earth is not flat, but we can imagine worlds were the Earth is flat and 
we hotly debate the competing theories about its shape without really 
knowing which is true.)
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7 A pp en d ix

7.1 P roof o f Lem m a 2.1

R em ark  5 Given Axioms 1 and 2, Axiom 3 is equivalent to the follow
ing:
Axiom  3’. For all B ,C  £ B such that B  C C and all measurable 
functions f  : X  —► [0,1] such that f ( X \B )  =  {0}

J fdp(-\C) = p(B\C) I fdp(-\B).

Let {/xn}^Lj be a sequence of CPSs weakly converging to p £ 
[A(X)]B. We must show that p satisfies Axioms 1 and 3.

(Axiom  1 holds) For all B ,C  £ B, since B  is clopen (cfosed and 
open), its boundary is empty. Therefore B must be a p(-|C)-continuity 
set and limn_ copn{B\C) =  p(B\C) (see e.g. Dudley [12], Theorem 
11.1.1). In particular,

p{B\B) =  lim pn{B\C) =  1.71—>OC

(Axiom  3 holds) Fix A 6 A, B, C  £ B such that A C B C C. 
Since any finite Borel measure on X  is (closed) regular (Dudley [12], 
Theorem 7.1.3), for all e > 0, we can find a closed set A! and an open 
set A* such that A' C A C A* and

max {(p(A*|C) -  p(A'\C ) ) , (p(A '\B ) -  p(A '\B))} □ £,
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Recall that B  is (closed and) open. Therefore, the set A" := B C\ A* is 
open. Furthermore, A' C A C A" C B  and

m ax{(p(J4"|C) -  n(A '\C ) ) , (n(Aa\B) -  ^ A '\B ))}  □ e.

Since A' and X \A "  are disjoint closed subsets of the normal topological 
space X ,  by Urysohn’s lemma we can find a continuous function /  :
X  —* [0,1] such that f(A ')  = {1} and f{X \A " )  =  {0}. In particular, 
f ( X \B )  = {0}. Thus, by Remark 5, for all n

J /dp„(-|C) =  nn(B\C) j fd n n(-\B).

Since pn(-|C) and pn(-|B) weakly converge to /x(-|C) and p(-|B), B  is 
clopen, and /  is bounded and continuous, by taking limits we obtain

J fd»(-\C) = n(B\C) j fdn(-\B).

Collecting all these equalities and inequalities and taking into account 
the properties of /  we obtain

H(A\C) □ n(A'\C)+e □ fi(B\C) [  fdfj(-\B)+e □ n(B\C)(n(A\B)+e)+e

and

fi(A\C) > n (A "\C )-e  > /i(B\C) J /d p (- |B )-e  > n{B\C) (p(A \B ) -  e )-e . 

Since e is arbitrary, g,(A\C) =  n(B\C)n(A\B). ■

7.2 P roof o f P roposition  3.4

(ipi(Ti) C T) We first verify that <fii(Ti) C Hc, that is, for all tv 6 7J, n >
1, B  £ B, TnrgXr>-i^^{Ti) =  Take An_1 C X " -1 (measurable).
Then

< S1(R)(^n_1 x A«(X ""1)) = ffiiB(rv) ( ( ^ ) - 1(^B- 1 x Ab(X"-1)) = 

9iA n )  e  ^ l - 1}) =  < b (t<)(4 " -1).
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C laim . /  o iff = if_i o g{, where p - t = (Idz, pj).

P ro o f  of th e  claim . Take >1" C X n (measurable), B  G B, and let
A = C°°{An). Then

fa(<Pi(T<))(A) = =

9i,B(Ti) ( ( ^ - < ) _ 1 ( ( ^ n ) ) )  =  9i,B{ji) ( { ( ^ , T j )  : e  v4n })

9 i A Ti) {{(<7,Tj) : K ^ ( T j )) 6  A } )  =  9i'B {Ti) ((¥>-i)_1 (i4))  .

We now invoke the extension argument used in the proof of Proposition 
2. Since the equality f B(<Pi{Ti))(A) =  gi,B{ji) ((lP-i)~1(j4)) holds on the 
algebra of cylinders, it extends to the sigma-algebra generated by the 
latter, which coincides with the Borel sigma-algebra generated by the 
product topology by second-countability. Thus, the claim is proved.

Next we show by induction that for each i, pi(Ti) C T  := f)n>i ■ 
Recall that tpifc) S H ”, n >  2, if for all B £ B, /a(<y5i(T<))(Ex / /" “*) =  1 . 
We have just shown that Pi(Ti) C H} for each i (by definition, H \ — Hc). 
Now suppose that Pj(Tj) C H ”~l . Then for all r< £ 7), B £ B,

x H?-1) =  5i,fl(T<) ({(o', Tj) : ipj(Tj) £ H”- 1}) =

9 i M Ti)(s  x Ti )  =  !»

where the first equality follows from the claim above and the second from 
the induction hypothesis.

(Continuity) Continuity of pi  is also proved by induction. Since gi 

is continuous and p ls iB )  =  p\ is also continuous. Sup
pose that for i =  1,2, Ar =  l ,. .. ,n , p \ is continuous. Then Tj) =
(a, ...,<p”(Tj)) is continuous in (er, Tj). Thus, also V’”j is continu
ous. Continuity of and g,• implies that ip"+1 =  o is continuous.
Thus far we have proved that each pi  is a continuous mapping from Ti to 
T and that g o p t = pTi o g{. Therefore (/cfe, p\Ppi) is a type-morphism 
from T  to T “.

(Uniqueness) Suppose that 0 =  ( /c?e , </>i , & ) is a type-morphism 
from T  to T u. We must prove that <p = p. Since g ° 4>% = 4>-i 0 9t and g

50

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



is invertible, fa = g 1 o 0_j o g{. Thus we can write the (n + \ ) lh element 
of fa{Ti) as

where 0-i,B(ffi(Ti)) is the probability measure conditional on B x T  of 
the CPS <t>-i(gi{Ti)) € AB(E x T ). Thus it is sufficient to show that for 
all n > 0, i = 1,2, B e  B, 7y € T , m rgx ^(f>-i,B(9i(Ti)) = v " s1(r«)- The 
statement is true for n =  0: take a measurable subset A0 C E := X°, 
then

mrgxo(t>-i,B(9i(Ti ) ) ( A 0) =  0-j,B(Si(r«))('4° x T )  =

5<,b (t.) ({(ct.Tj) : (a , fa (T j) )  e  A0 x T }) =  3j,B(rj)(,40 x Tj) =  

mrgxgi,B{Ti)(A0) = <^B(rj).

Suppose that the statement is true for n =  0,..., k — 1. Then

[rnrgx <>fa^B{.9i{ji) ) ) b&b , =  ̂ (a, r,). 

Take >1* C A* (measurable) and let 4  = C°°(/lA:), then

m rgXktt>-i,B{gi{Ti)){Ak) = <t>-i,B{gi{Ti))(A) =

9i,B{Ti)({{a,Tj) : (<7, <j)j(t̂ )) e /f}) =

- ,  (m r3xk-i0_j,B(gj(T j)))^ B) € ,4*}) =

9^M'ri) ({(£r,Tj) : r p t ^ T j )  6 4*}) =

This concludes the proof. ■

7.3 P roof o f Lem ma 5.4

Proof. The statement is trivially true if E* =  0. Suppose 0 /  E* C 
p^(E"). Construct T  as follows. Let T\ x T2 =  E. Then, for each z we 
can construct a function Ay : Tj —> AW(Ej x T; ) such that for all r, € E*,

Tj 6 rj(Ajj(7j)) and Aji,/l(rj)(E*) =  1, V/i € T .
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To complete the definition, fix g,j € A n (Ej) and, for Tj ^ £ ’ , let Ay(7j) =
Pj.

Also, for any r,- =  (s,, #<) £ 7) =  £<, it is always possible to con
struct a CPS A*i(Ti) such that An )h ( T j ) ( S i  x {#<}) =  1 for all h £ H , and 
A«,/l(ri)({ri}) =  1 for all h £ 'H{si).

gt(-) is derived from Xu(-) and Ay(-) as follows. First, for i = 1,2 
and for all t* £ Tj =  £j, define a new function Ay : 7( —* [A(£; x 7})]w 
by letting

Xij,h(Ti ) ( W j ^ j } )  =  Vctj £  E j =  T,, h e n

It is easy to verify that each Ay(r<) is indeed a CPS.28 

Next, for all rt- £ Ti, let

9i{ji) = Xii(Ti) <g> Ay(rj)

Therefore, for every z and t*, <̂ (7*) € I A H(T,i,T.j x 7)). Thus we 
have a well defined type space, and in each state (i) beliefs are indepen
dent, (ii) at any history, players are certain of their payoff-type and (if 
possible) of their strategy; finally, (iii) properties (i) and (ii) are common 
certainty at any point in the game.

Moreover, for all h,

mrgZjgith{Ti) =  X yfo).
which immediately implies that, for i = 1,2, a* £ £*, (Tj € £_, and
T j € Tj,

K* > n ,  Tj) e  Ri = R]^.

28Let D j  =  { (pj , T j ) : Tj  =  (Tj e  Ej}. Every X f j h ( Tj )  is indeed a probability 
distribution over Ej x Tj (in particular, probabilities add up to one along Dj)  which 
is concentrated on Ej(h) x Tj (in particular, on the set {(<Jj,(jj) : ctj e  Ej(h)}.) As 
for Bayes’ rule, for Aj C Ej(h) x Tj C Ej(h') x Tj, we have

A ij,h’(Aj) =  Ay,v (projE.(A ,n  £>,)) =
=  Ay|h(projE. (Aj n Dj))  • Ay,;,'(projjjj ((Ej(h) x T j )  n D j ) )  =
= Xtjih(Aj)-Xtjth,(Ej(h)xTj).
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T h a t is, E* x Ej x E J  x 7} c  R} jr. Assum e  now that EJ x Ej x EJ x  7) C 
f f j y  for n  >  1 and i = 1,2. Then, since is m onotonic, and for any 

a * e  EJ, mrgzjXTjgi{aJ) =  A?j h (<7*) is concentrated on {(< r*,a *) : a’ €  

E*} at all h G T,

E *  x  E j  x  E J  x  T, C di,jr(Y.x x  E *  x T , x  E * )  c

which implies EJ x Ej x EJ x 7) C J1 • Hence, 0 ^ EJ x Ej x EJ x 7) C 
n „ > i  Z?"jr =  72< n  CCORi^  for i = 1,2, as required. ■
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Figure 1
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Figure 2
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