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Abstract
We study a model of local evolution. Agents are located on a network and 
interact strategically with their neighbours. Strategies are chosen with the 
help of learning rules that are based on the success of strategies observed 
in the neighbourhood.

The standard literature on local evolution assumes learning rules to 
be exogenous and fixed. In this paper we consider a specific evolutionary 
dynamics that determines learning rules endogenously.

We find with the help of simulations that in the long run learning rules 
behave rather deterministically but are asymmetric in the sense that while 
learning they put more weight on the learning players’ experience than 
on the observed players’ one. Nevertheless stage game behaviour under 
these learning rules is similar to behaviour with symmetric learning rules.

Keywords: Evolutionary Game Theory, Learning, Local Interaction, Net­
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1 Introduction

In this paper we want to study how strategies evolve simultaneously with 
learning1 rules in a local environment. We regard this paper as a modifica­
tion of models of local evolution where only strategies may evolve, but learn­
ing rules are kept fix. The latter kind of models has been studied by Axelrod 
(1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), 
Nowak, Bonhoeffer and May (1993), Eshel, Samuelson and Shaked (1996), 
and Kirchkamp (1995). In these models players play games against neigh­
bours, using a strategy that they may change from time to time. When changing 
this strategy they use a fixed rule; normally they either imitate the strategy of 
the most successful neighbour or the strategy with the highest average success 
in their neighbourhood respectively. Both rules seem to be rather plausible, 
and both rules lead to a nice explanation for the survival of cooperation in pris­
oners’ dilemmas: A cluster of mutually cooperating players may seem to be 
more successful than a (neighbouring) cluster of mutually defecting players. 
Given myopic imitation the idea of cooperation spreads through a network.

However, this property depends on the assumed learning rule. Other learn­
ing rules, e.g. players that imitate with probabilities that are strictly propor­
tional to the success of the observed strategies, do not give this explanation for 
the survival of cooperation. Such proportional imitation rules may actually be 
viewed as particularly plausible since proportional rules turn out to be optimal 
at least in a global setting where all members of a population are equally likely 
to interact with each other (see Borgers and Sarin (1995), Schlag (1993,1994)).

Notice that local evolution is, thus, much more sensitive to seemingly in­
nocuous changes of the learning rule than global evolution. This sensitivity 
makes the local setup particularly attractive to study selection of learning mles.

1 Given that there are lots of definitions for ‘ieaming’ let us start with a clarifying remark: When 
we talk about learning in the following we have in mind a descriptive definition of learning in the 
sense of a relative permanent change of behavioural potentiality (see G. Kimble (Hilgard, Marquis, 
and Kimble 1961)). We restrict our attention to very simple learning rules. In particular we do not 
aim to provide a model of learning as a cognitive process.
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To perform this task we have to decide whether we want to extend Borgers and 
Sarin or Schlag and search learning rules that are optimal in a local environ­
ment or whether we want to extend local evolution of strategies to include also 
learning rules. In this paper we take the second approach and study a model 
with evolution both on the level of strategies and on the level of learning rules.

Within the (wide) range of models of local evolution some (Sakoda 1971, 
Schelling 1971) assume players’ states to be fixed and concentrate on the 
movements of players. Others (Axelrod 1984, May and Nowak 1992, May 
and Nowak 1993, Bonhoeffer, May, and Nowak 1993, Ellison 1993, Eshel, 
Samuelson, and Shaked 1996, Lindgreen and Nordahl 1994, Kirchkamp 1995) 
take players’ positions as fixed but allow players to change their states. Fur­
thermore there are models where players are allowed to move and to change 
their state (Hegselmann 1994, Ely 1995). Another distinction is that some 
authors (like Sakoda, Schelling and Ellison) assume myopically optimising 
players while others (Axelrod; Nowak, Bonhoeffer, May; Eshel, Samuelson, 
Shaked; Kirchkamp; Lindgren, Nordahl) assume that players learn through 
imitation.

In the following we restrict ourselves to players who have fixed positions 
and who change their strategy using a rule that is based on imitation. Thus, our 
model has more elements in common with Axelrod; Nowak, Bonhoeffer, May; 
Eshel, Samuelson, Shaked; Kirchkamp; and Lindgren and Nordahl. This liter­
ature assumes all players to use a fixed learning rule that either copies from the 
current neighbourhood the strategy of the neighbour that is most successful2 or 
the strategy that is on average (over all neighbours who use it) most successful. 
In contrast we want to allow players to change their own learning rule using a 
process that is based on imitation.

Such a dynamics yields a set of learning rules that we can compare with the 
exogenously given learning rules from the literature. Further we can compare

2We understand here ‘success’ as 'average payoff per interaction’.
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the stage game behaviour of a population using endogenous learning rules with 
the stage game behaviour of a population with fixed learning rules.

Regarding the literature on local evolution we want to ask two questions: 
First we want to know whether the learning rules discussed in the above liter­
ature are likely to be selected by evolution. Second we want to know whether 
the behaviour of a society with endogenous learning rules is different from the 
behaviour of one with a fixed learning rule. In this paper we present simulation 
results to give an answer to these questions.

Another useful benchmark is the literature that studies properties of optimal 
learning rules in a global environment, i.e. an environment where all players 
may interact with each other and learn from each other. This kind of problem is 
studied by Binmore and Samuelson (1994), Borgers and Sarin (1995), Schlag 
(1993, 1994). Binmore and Samuelson already require symmetry and study 
an aspiration level that is subject to a noisy evolutionary process. Borgers and 
Sarin as well as Schlag look for an optimal learning rule and find that such a 
learning rule (in a global context) turns out to be symmetric, in the sense that 
learning players put equal weight on their own as well as on other players’ 
experience. Further, global learning rules that are optimal or that survive in the 
long run turn out to be linear in the sense that optimal learning rules require 
learning players to switch to an observed strategy with a probability that is a 
linear function of the player’s own and the observed payoff.

In the next section we describe a model of local endogenous evolution of learn­
ing rules. In section 3 we discuss properties of these learning rules. Section 3.4 
analyses the dependence of our results on parameters of the model. In section
3.5 we then study the implication of endogenous learning on the stage game 
behaviour. Section 4 concludes.
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2 The Model

2.1 Overview

In the following we study a population of players each occupying one cell of 
a torus of size n  x n  where n  is between 5 and 200. Players play games 
with their neighbours on this network, learn repeated game strategies from 
their neighbours and update their learning rule using information from their 
neighbours. In the remainder of this section we describe the kind of games 
players play, and strategies and learning rules they use.

2.2 Stage Games

Players play games within a neighbourhood. In the simulations that we discuss 
in the following such a neighbourhood has one of the following shapes:

(1)

r  =  1 r  =  2

A player (marked as a black circle) may only interact with those neighbours 
(gray) which live no more than r, cells horizontally or vertically apart. In 
each period a random draw decides for each neighbour independently whether 
an interaction takes place. Thus, in a given period a player may sometimes 
interact with all neighbours, sometimes with only some, sometimes even with 
no neighbour at all. Each possible interaction with a given neighbour takes 
place in each period independently from all other interactions with probability 
Pi .  A typical value for pz is 1/2. This probability is low enough to avoid 
synchronisation among neighbours, it is still high enough to make simulations

. . . .  1© o o © ©
i :  : a m oo 5 o ©

|0 » |0 | o o • op
O O P o o o © oi 1 1 r o o o oo

o © o o o © o
o © © o © o o
o o G © o o o
o o o • o o o
o o o o o o o
o o o o o o o
© o o 0 o o o
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sufficiently fast. We consider values for pr ranging from 1/100 to 1 to test the 
influence of this parameter.

We assume that games which are played among neighbours change every 
t g periods. We change games to create the necessity to adapt to a changing 
environment and, thus, induce evolutionary pressure on learning rules. In the 
following we present results of simulations where tg ranges from 200 to 20 000 

periods. Once a new game is selected, all neighbours in our population play 
the same symmetric 2 x 2 game of the following form:

Player

I

Player I I

D C

D 9 - 1

9 h

C
h 0

- 1 0

(2)

When a new game is selected the parameters g and h in the above game are 
chosen randomly following an equal distribution over the intervals — 1 <  g <  1 

and —2 < h < 2 .  We can visualise the space of games in a two-dimensional 
graph (see figure 1 on the following page).

The range of games described by —1 < g < 1 and - 2  < h < 2 includes 
both prisoners’ dilemmas and coordination games. All games with g € (—1,0) 
and h € (0, 1 ) are prisoners’ dilemmas (D D p o  in figure 1 ), all games with 
g > — 1 and h < 0 are coordination games. In figure 1 equilibrium strategies 
are denoted with C C , C D , D C  and D D  respectively. The symbol '> denotes 
risk dominance for games that have several equilibria.

We already know from the literature on local evolution3 that with the leam-

3See Axelrod (1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), 
Nowak, Bonhoeffer and May (1993), Eshel, Samuelson and Shaked (1996), Kirchkamp (1995).
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ing rule ‘copy best player’ players cooperate at least in some prisoners’ dilem­
mas. Kirchkamp (1995) points further out that when playing coordination 
games using this learning rule players do not always coordinate on the risk 
dominant equilibrium but follow a criterion which puts also some weight on 
Pareto dominance. We will see in the remainder of this paper that this be­
haviour persists at least to some degree also with endogenous learning rules.

2.3 Repeated Game Strategies

We assume that each player uses a single repeated game strategy against all 
neighbours. Repeated game strategies are represented as (Moore) automata 
with a maximal number of states of one, two, three, or four4. For many simu­
lations we limit the number of states to less than three.

4Each ‘state’ of a Moore automaton is described by a stage-game strategy and a transition 
function to either the same or any other of the automaton’s states. This transition depends on the 
opponent’s stage-game strategy. Each automaton has one ‘initial state’ that the automaton enters 
when it is used for the first time.

There are 2 automata with only one state (one of them plays initially C  and remains in this state 
whatever the opponent does, the other plays always D.
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2.4 Learning Rules

From time to time a player has the opportunity to revise his or her repeated 
game strategy. We assume that this opportunity is a random event that occurs 
for each player independently at the end of each period with a certain probabil­
ity. Probabilities to learn will be denoted 1/t; and range from 1/6 to 1/120. <; 
denotes then the average time between two learning events of a player. Learn­
ing is a relatively rare event, as compared to interaction. Still, learning occurs 
more frequently than changes of the stage game and updates of the learning 
rule itself (see below).

If a player updates the repeated game strategy the player samples randomly 
one member of the neighbourhood and then applies the individual learning rule.

Notice, that this learning rule uses information on a single sampled player. 
The learning rules discussed in the literature5 use information on all neighbours 
from the learning neighbourhood simultaneously.

We assume here that only a single player is sampled to simplify our learning 
rule in the sense that only a single alternative to the player’s current repeated 
game strategy is considered. It is hard to specify a space of learning rules that 
learn from several neighbours but can still be described with a small number of 
parameters.

We briefly analyse two alternative setups in order to test sensitivity with respect 
to the type of the learning rule.

First, and in order to be comparable with the above mentioned literature, we 
study in section 3.5 a fixed learning rule that samples a single player and that 
aims to be similar to the fixed multi-player rules in the literature. With the help

There are 26 automata with one or two states. E.g. ‘grim’ is a two-state automaton. The initial 
state plays C. The automaton stays there unless the opponent plays D. Then the automaton 
switches to the second state that plays D  and stays there forever. Other popular two-state automata 
include ‘tit-for-tat\ ltat-for-tit\ etc.

The set of automata with less than four states contains 1752 different repeated game strategies. 
The set of automata with less than five states has already size 190646.

5See Axelrod (1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), 
Nowak, Bonnhoeffer and May (1993), Eshel, Samuelson and Shaked (1996), Kirchkamp (1995).
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of simulations we show that stage game behaviour under the fixed single-player 
rule turns out to be very similar to fixed multi-player rules. E.g. cooperation in 
prisoners’ dilemmas occurs with the learning rule ‘copy best player’ for almost 
the same range of games, regardless whether only one or all neighbours are 
sampled.

Second, and in order to show that choosing the single-player setup is not 
crucial for the properties of the learning rules that we derive, we compare in 
section 3.4.1 the single-player rule with the following multi-player rule: All 
neighbours are sampled, the most successful neighbour is determined, and then 
imitated with a probability that is again a linear function of the most successful 
neighbour’s and the learning player’s success. It turns out that the learning 
rules that evolve under this regime are very similar to those that emerge under 
the single-player regime that we describe in the next paragraph.

Learning, as well as interaction, occurs in neighbourhoods of similar shape 
(see graph 1 on page 4). We denote the size of the neighbourhood for learning 
with the symbol r ; .

Learning rules use the following information:

1. The learning player’s repeated game strategy.

2. The payoff uOWn of the player’s repeated game strategy, i.e. the average 
payoff per interaction that the player received while using this repeated 
game strategy.

3. A sampled player’s repeated game strategy.

4. The sampled player’s repeated game strategy payoff usamp, i.e. the av­
erage payoff per interaction that the player received while using this re­
peated game strategy.

Learning rules are characterised by a vector of three parameters (do, d i , 02) £ 
R3. Given a learning rule (0,0, 0 1 , 62) a learning player samples one neigh-
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hours’ strategy and payoff and then switches to the sampled strategy with prob­
ability

P ( u o w n  i tig a m p ) — (o o  ^  O i ̂ o w n  +  G 2 t i s a m p ) (3)

where

u0wn and usarnp denote the player’s and the neighbour’s payoff respectively.

1 if x  >  1

0 if x  < 0 (4)
X otherwise

Thus, the two parameters di and a2 reflect sensitivities of the switching 
probability to changes in the player’s and the neighbour’s payoff. The parame­
ter do reflects a general readiness to change to new strategies, which can be in­
terpreted as a higher or lower inclination to make an experiment or to try some­
thing new. Choosing (do, d i , d2) a player determines a range of payoffs where 
to react probabilistically (i.e. p(u0wn, tt5amp) € (0, 1 )), a second range of pay­
offs where switching will never occur (i.e. p(uov,n, usamp) =  0) and finally a 
third range of payoffs where imitation always occurs (i.e. p{uov,n, ttsamp) =  1).

Note that one or even two of these ranges can vanish, i.e. we can specify 
stochastic as well as deterministic rules. An example for a deterministic rule 
(‘switch if better’) is (a0, 0 1 , 02) :=  (0, — a,a) with a —> oo. An example 
for a rule that implies always stochastic behaviour for the game given in 2 is
(d0, d i , a 2) :=  (1/2, - a ,  a) with l /(4 a )  >  maoc(|p|, \h\, 1).

Notice also that our parameter do is similar to the aspiration level A from 
the global model studied in Binmore and Samuelson (1994). However, the 
learning rules studied in Binmore and Samuelson are not special cases of our 
learning rules, since their decisions are perturbed by exogenous noise. For 
cases where this noise term becomes small our rule approximates Binmore and 
Samuelson (1994) with (d0, 0 1 , 02) :=  (A, —a, a) and a —► 00.
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Normalisation We map parameters (60, 0 1 , 02) € R3 into (00, 0 1 , 02) € 
[0, l ]3 using the following rule:

- 4  - 3  - 2  - 1  0 1 2 3 4

We let evolution operate on the normalised values (ao, o i, 02) € [0, l ]3 for the 
following reason: The learning rules from the literature are often deterministic, 
thus, they can be represented as rules whose parameter values al are infinitely 
large or small respectively. We do not want to exclude these rules a priori. 
However, it might be a problem for a dynamics that selects learning rules to 
converge within the limits of a finite simulation to infinite values of the param­
eters. We therefore map the unbounded space of parameters of our learning 
rules into a bounded space using the transformation given by equation 5.

Mutations When a player learns a repeated game strategy, sometimes learn­
ing fails and a random strategy is learned instead. In this case, any repeated 
game strategy, as described in section 2.3, is selected with equal probability. 
These ‘mutations’ occur with a fixed probability mj. We consider mutation 
rates between 0 and 0.7.

(5)

1.00 - -
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We introduce mutations in order to show that simulations are particularly 
robust. However, as we see in section 3.4, we do not need mutations for our 
results.

Mutations can also be seen as a way to compensate for the limited size of 
our population. Even if all members of one species die out the species still has 
a chance to enter the population again through a mutation.

2.5 Exogenous Dynamics that Select Learning Rules

From time to time a player has the opportunity to revise the learning rule. In our 
simulations we assume that this opportunity is a random event that occurs for 
each player independently with probability l / f u . tu, thus, denotes the average 
time between two updates of a player. We consider learning rates 1 / t u among 
1/40 000 to 1/400. If not mentioned otherwise l / t u =  1/4000. In particular 
learning rules are updated much slower than updates of strategies or changes 
of games.

We want to model a situation where updates of learning rules occur very 
rarely. We find it justified that for these rare events players make a larger 
effort to select a new learning rule. For our model this has the following two 
implications: All neighbours are sampled when updating learning rules (and 
not only a single neighbour as for update of strategies) and the sampled data is 
evaluated more efficiently, using now a quadratic approximation.

The shape of the neighbourhoods that are used to update learning rules 
is similar to those used for interaction and learning (see graph 1 on page 4). 
We denote the size of the neighbourhood for update o f learning rules with the 
symbol ru.

A player who updates the learning rule has the following information for 
all neighbours individually (including him- or herself):

1. The (normalised) parameters of the respective learning rule ao, a \ ,a 2-

2. The average payoff per interaction that the respective player received
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while this learning rule was used, u(ao, a : , 0,2)-

To evaluate this information we assume that players estimate a model that helps 
them explaining their environment, in particular their payoffs. Players then use 
this model to choose an optimal learning rule. To model this decision process 
we assume that players approximate a quadratic function of the learning pa­
rameters to explain success of a learning rule. Formally the quadratic function 
can be written as follows:

f bA
u(ag, a i , 0 2) = c + (do, a j , 02)

bo

bi +

/
+ ( a o ,  £1 1 , 0 2 )

V

V

9oo <Zoi Q02 (  ao \

9o i  Q n  Q12 a \

Q02 Q12 Q22 / \  a 2 )

(6)

Players make an OLS-estimation to derive the parameters of this model (e de­
scribes the noise). We choose a quadratic function because it is one of the 
simplest models which still has an optimum. Similarly we assume that play­
ers derive this model using an OLS-estimation because this is a simple and 
canonical way of aggregating the information players have. We do not want 
to be taken too literally: We want to model players that more or less behave 
as if  they would maximise a quadratic model which is derived using an OLS- 
estimation.

The OLS-Regression determines the parameters (c, bo, b\ , 62, <700, • • •, 922) 
of the above model. Given this model, the player determines the combination 
of ao, 01,02 that maximises u(d0, 0 1 , 02) s.t. (00, 0 1 , 02) € [0, l]3. We find 
that in 99% of all updates the Hessian of u(00, 0 1 , 02) is negative definite, 
i.e. u(a0, o i, 02) has a unique local maximum. In the remaining less than 1% 
of all updates the quadratic model might be unreliable. In this case we therefore

12

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Figure 2: An example for samples of pairs of parameters and payoffs (black) 
which are used to estimate a functional relationship (gray) between ax and u. 
Given this relationship an optimal value a* is determined.

copy the most successful neighbour.

Figure 2 shows (only for one dimension) an example for a sample of several 
pairs of a parameter a, and a payoff u (black dots) together with the respective 
estimation of the functional relationship (gray line) between a, and u.

Mutations We also introduce mutations for players’ learning rules. When 
a player updates the learning rule, with a small probability mi not the above 
described update scheme is used but the player learns a random learning rule 
that is chosen following an equal distribution (for the normalised parameters) 
over (00, 0 1 , 02) € [0, l]3, which is equivalent to a random and independent 
selection of do, d i, a,2 following each a Cauchy distribution. We consider 
mutation rates for learning m,/ between 0 and 0.7.

The reason to introduce mutations at this level is the same as given above 
for mutation of strategies: We want to show that our simulation results are 
robust. A population that due to its limited size gets stuck in some state may
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always escape through a mutation. Mutations are, thus, a way to compensate 
for the fact that our simulations are done with a relatively small population 
(only 25 to 40 000 members).

However, as we show in section 3.4, we neither need mutations on the 
level of strategies nor on the level of players’ learning rules. Results without 
mutations are very simular to the ones with a small amount of mutations.

2.6 Initial Configuration

At the beginning of each simulation each player starts with a random learning 
rule that is chosen following an equal distribution over (a0,a i ,a 2) 6 [0, l]3. 
Thus, the parameters do, d i, 02 are distributed independently following a 
Cauchy distribution. Also each player starts with a random repeated game 
strategy, again following an equal distribution over the available strategies.

3 Results with Endogenous Learning Rules

3.1 Distribution over Learning Parameters

Figure 3 displays averages over 53 simulations on a 50 x 50 grid, lasting 
400 000 periods each.

Since we can not display a distribution over the three-dimensional space 
(ao, 0,1 , 0-2 ) we analyse two different projections into subspaces. The left part 
of figure 3 displays the distribution over (a i, 02). the right part over (ao, a\ +  
02) respectively. Axes range from 0 to 1 for ao, a\ and a 2 and from 0 to 2 in 
the case of ai + a.2 - Labels on the axes do not represent the normalised values 
but instead do, d j, 0,2 which range from —00 to + 00.6

6The figure is derived from a table of frequencies with 30 x 30 cells. The scaling of all axes 
follows the normalisation given in equation 5 on page 10. To be precise, the value "di +  a.2" 
represents actually 2 • tan(rr • (a i +  Q2)/2 — 7r/2) and not d i +  a2 . In the current context this 
difference should be negligible.
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Figure 3: Long run distribution over parameters of the learning rule
(ao, <21, 02). Average over 53 simulations runs on a torus of size 50 x 50 with 
2-state automata. Neighbourhoods have sizes rj =  ri — 1, r u =  2. Relative 
frequencies are given as percentages. Simulations last for t s — 400000 peri­
ods, interactions take place with probability p* = 1/2, repeated game strategies 
are learned from a randomly sampled player with probability 1/t; =  1/24, 
learning rules are changed with probability l / f u =  1/4000, new games are 
introduced with probability t g — 1/2000, mutations both for repeated game 
strategies and for learning rules occur at a rate of mi = m u — 1/100.
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Both pictures are simultaneously a density plot and a table of relative fre­
quencies:

Density plot: Different densities of the distribution are represented by differ­
ent shades of gray. The highest density is represented by the darkest 
gray.7

Table of relative frequencies: The pictures in figure 3 also contains a table 
of relative frequencies. The left picture is divided into eight sectors, the 
right picture is divided into six rectangles. The percentages within each 
sector or rectangle represent the amount of players that use a learning 
rule with parameters in the respective range.

The left part of figure 3 shows two interesting properties of endogenous evolu­
tion: First, with endogenous evolution learning rules are sensitive to a player’s 
own payoff. Second, they are substantially less sensitive to observed payoffs. 
We call this latter property suspicion. Of course, our agents can only behave 
as if  they had feelings like suspicion. We still hope that the image helps the 
reader.

Sensitivity to own payoffs: Remember that the initial distribution over a i and 
<Z2 is an equal distribution. Thus, would we draw the left part of figure 
3 in period one, the result would be a smooth gray surface without any 
mountains or valleys. Starting from this initial distribution our learning 
parameters change substantially. Even if not in all cases di becomes 
—oo, the distribution over learning parameters puts most its weight on 
small values of a i.

7Densities are derived from a table of frequencies with a grid of size 30 x 30 for each picture. 
We actually map logs of densities into different shades of gray. The interval between the log of 
the highest density and the log of 1% of the highest density is split into seven ranges of even 
width. Densities with logs in the same interval have the same shade of gray. Thus, the white area 
represents densities smaller than 1% of the maximal density while areas with darker shades of 
gray represent densities larger than 1.9%, 3.7% 7.2%, 14%, 27% and 52% of the maximal density 
respectively.
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Insensitivity to sampled payoffs: In the left part of figure 3 we see that 
96.3% of all players use a learning rule with |a.21 <  |d i|, i.e. a learn­
ing rule which puts more weight on the player’s own payoff than on the 
sampled payoff.

If we restrict ourselves to ‘reasonable’ learning rules with dj <  0 and 
a2 >  0 then 97.5% of all these rules have the property that |a2 | <  |d i|.

Notice that for both cases the initial distribution over parameters of the 
learning rule implies that 50% of all rules fulfil |a21 <  |d i|.

We call this kind of behaviour ‘suspicious’ in the following sense: A 
sampling player may realise that an observed learning rule is successful 
for a neighbour. Nevertheless the player does not know whether the 
same rule is equally successful at the player’s own location. Perhaps the 
success of a neighbour’s rule depends on players which are neighbours 
of the player’s neighbour, but not of the player. Thus, a ‘suspicious’ 
player behaves like somebody who ‘fears’ that the sampled neighbour’s 
experience can not be generalised for the player’s own case.

3.2 Probabilities to switch to a sampled learning rule

The learning rule as specified in equation 3 on page 9 determines for each 
learning player a probability to switch to the observed repeated game strat- 
egy. Figure 4 on the following page shows the cumulative distribution of these 
switching probabilities.8

The horizontal axis represents do +  a\uOVJn +  «2'“samp- Following the 
learning rule 3 a player switches stochastically with probability a0 + a iu ov,n +  
d2USamp if this expression is between zero and one. Otherwise the player either 
switches with certainty or not at all.

Figure 4 shows that only in about 12% of all learning events 0 < do 4-

sThis figure is derived from a table of frequencies with 30 cells. The scaling of the horizontal 
axis follows the normalisation given in equation 5 on page 10.
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1.0

Figure 4: Cumulative distribution over switching probabilities, given the learn­
ing rules from figure 3.

ajiiowii +  fousamp <  1, i.e. in only 12% of all learning events a player’s 
decision is a stochastic one. Our endogenous rules seem to be neither fully 
stochastic9 nor fully deterministic10

3.3 Comparison with other Learning Rules

Above we mentioned two reference points for learning rules: Those learning 
rules that are assumed as exogenous and fixed  in the literature on local evolu­
tion and rules that turn out to be optimal in a global setting.

Let us start with the exogenous rules that are assumed in the literature on lo­
cal evolution: We have seen that the exogenous fixed  rules may be similar to the 
endogenous learning rules in the sense that small changes in the player's own 
payoff may lead to drastic changes in the probability to adopt a new strategy. 
Endogenous learning rules differ from those studied in parts of the literature on

9 As those from Borgers, Sarin (1995) and Schlag (1993).
l0As those from Axelrod (1984, p. 158ft), Nowak and May (1992), etc.
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local evolution in the sense that changes in an observed player’s payoff lead to 
smaller changes in the probability to adopt a new strategy.

Let us next compare our endogenous rules with those rules that tum out to 
be optimal in a global setting11. We may expect that the outcome of an evolu­
tionary process that runs only for a finite time is at least close to any optimal 
rule. However, our rules differ in two respects from those that are optimal 
in a global model: First, as discussed in section 3.1, they are more sensitive 
to changes in a learning player’s own payoff than to changes in an observed 
neighbours payoff. Second, as mentioned in section 3.2, players following en­
dogenous rules quite often switch with certainty.

A higher sensitivity to a player’s own payoff as compared to an observed 
neighbours payoff can be related to the local structure. A strategy that is suc­
cessful in my neighbour’s neighbourhood may be less successful in my own 
neighbourhood. Therefore my neighbour’s payoff is a less reliable source of 
information than my own payoff.

The fact the (globally) optimal learning rules switch always stochastically 
results from the attempt to evaluate information efficiently. Even small differ­
ences in payoffs are translated into different behaviour. The price to pay for 
this efficient evaluation is time. Given that neither in Borgers and Sarin nor in 
Schlag players are impatient, they do not care whether the optimal strategy is 
reached only after infinite time.

While we do not have an explicit discount factor in our simulations dis­
counting enters implicitly through the regular update of the learning rule. A 
learning rule that is efficient, but slow, compares (within finite time) badly to 
a learning rule that is not perfect in the long run, but achieves already good 
results in the short run. Therefore evolution of learning rules at a more than 
infinitesimal speed may lead to deterministic behaviour.

"See Borgers and Sarin (1995), Schlag (1993, 1994).
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3.4 Dependence on Parameters

The discussion in the previous paragraphs was based on a particular parameter 
combination. In the following we want to show that parameter changes do not 
matter for our main results.

We will first consider in section 3.4.1 an alternative rule to sample neigh­
bours that might be copied when learning. Section 3.4.2 then studies changes 
in the other parameters.

3.4.1 The Selection Rule: Sampling Randomly or Selectively

Above we assumed that players learn repeated game strategies from a randomly 
sampled player. One might, however, object that players could be more careful 
in selecting their samples. As a benchmark case we assume in this section 
that players sample the most successful neighbour available12. We show that 
this change in the selection rule has little influence on the endogenous learning 
rules.

Figure 5 on the facing page shows a distribution over (ao, , 02), projected 
into the <21,02 and ao,Oi +  02 space, similar to figure 3 on page 15. In con­
trast to figure 3 we assume here that players, when learning, sample the player 
with the highest payoff per interaction for the current repeated game strategy, 
measured over the lifetime of the respective repeated game strategy.

While the picture is more noisy than figure 3 properties of learning rules 
are the same as already discussed in section 3.1 on page 14. Players are rather 
sensitive to changes in their own payoff and less sensitive to changes in the 
sampled neighbours payoff.

We suspect that the additional noise stems from the reduced evolutionary 
pressure on learning rules. Preselecting already ‘best’ learning rules for com­
parison makes the task of identifying good rules too easy for learning rules. 
We actually observe a cluster of learning rules with values of <22 close to + 00.

l2I.e. the neighbour whose repeated game strategy yields the highest payoff on average (per 
interaction) since the point in time where the neighbour learned the respective strategy.
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2 1 + ~l"

Figure 5: Long run distribution over parameters of the learning rule
(00, 0 1 , 02). Average over 181 simulations runs, each lasting for 400000 pe­
riods. Relative frequencies are given as percentages. Parameters are as in 
figure 3 on page 15 except that learning players sample the most successful 
neighbour.

These rules apparently follow a ‘just copy whatever you see’ strategy, which 
might be reasonable, since ‘whatever you see’ is already the best available in 
your neighbourhood under this selection rule.

3.4.2 O ther Param eter Changes

Figure 6 on page 23 shows the effect of various changes of the other parame­
ters. We always start from the same parameter combination as a reference point 
and then vary one of the parameters keeping all the others fixed. The reference 
point is a simulation on torus of size 50 x 50, where the interaction neigh­
bourhood and learning neighbourhood have both the same size r» =  rj =  1 
while the neighbourhood that is used when updating the learning rule has size 
ru =  2. To learn a new repeated game strategy players sample a neighbour 
randomly. Learning occurs on average every ti =  24 periods13. The underly­

13Remember that we assume teaming to be an independent random event that occurs for each 
player with probability 1 / t / .
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ing game is changed every t g = 2000 periods. Players update their learning 
rule on average every t u — 4000 periods14. The mutation rate for learning as 
well as for update of learning rules is m; =  m u =  1/100. Simulations last for 
t s =  40 000 periods. Thus, except for the simulation length, parameters are the 
same as those for figure 3.

Figure 6 on the facing page shows averages15 of Oi and a2 for various 
changes in the parameters. Each dot represents a parameter combination the 
we simulated. To ease the understanding of the underlying pattern, dots are 
connected through interpolated splines. The white dot in each diagram rep­
resents the average value (ai =  -1 .89 , a2 =  0.30) for the reference set of 
parameters described above. The line a2 =  —di is marked in gray.

The main result is that all parameter combinations show again relative sen­
sitivity to own payoffs, and insensitivity to observed payoffs. In particular the 
averages a2 < —d\ for all parameter combinations that we simulated.

Notice that we do not need mutations for our results, however, the simu­
lations are robust against mutations. To show that we can dispense with both 
kinds of mutations simultaneously we ran a simulation where m; =  m u =  0 
and show the result in the graph ‘mutation of learning rules’ with a small trian­
gle. While learning on average to a smaller value of a2 we have still a2 < —a 1 . 
On the other hand we can introduce rather large probabilities of mutations (up 
to 0.7) and still have a2 <  — a \ .

In the remainder of this subsection we want to discuss the dependence on 
parameters in more detail. To do that we distinguish three dimensions how 
parameters influence learning rules: Relative speed, relative efficiency, and rel­
ative degree of locality.

If parameters of the simulation are chosen in a way that makes it slow, or 
inefficient (e.g. due to a lot of noise), the distribution over the parameters of

l4We also assume update of learning rules to be an independent random event that occurs for 
each player with probability 1 / t u .

15These averages are arithmetic averages of a i and a 2 respectively, taken over 20 different sim­
ulations runs that are initialised randomly. The average values of a i and a 2 are then transformed 
into a i  and a 2 using equation 5 on page 10.
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Figure 6: Dependence of and a 2 on the parameters of the learning rule. 
Dots represent averages over the last 20% of 20 simulation runs respectively, 
each lasting for 40000 periods. The white circle in each diagram represents 
averages of the reference parameters: 50 x 50 torus, sample a random player,
ti = 24, t u = 4000, t g =  2000, m t = m u = 1/100, t s =  40000, n  =  r, =  1, 
ru =  2, C  =  2.
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degree of locality +  - — -  + + +
relative speed - + +

relative efficiency + -  -

Table 1: Effects of simulation parameters on properties of learning rules.
+  and — denote the direction of the effect an increase of a parameter has on 
speed, efficiency or locality.

the learning rule remains close to the initial distribution (which has averages 
a'j - 0, a2 =  0).

If the parameters of a simulation describe a situation that has less aspects of 
locality (e.g. the interaction radius is large, such that almost everybody interacts 
with everybody else) ‘suspicious’ behaviour disappears, and averages for —0*1 

and —02 moves closer to symmetric values, i.e. moves closer to the gray line 
where a2 =  — a).

Table 1 summarises the effects of the parameters on these three dimensions.
Let us briefly discuss some of the dependencies on parameters:

Locality: The parameters tg, ti, m i, rj, C, and n  influence ‘locality’ in the
sense that players becomes either more similar or more diverse in the evolution­
ary process. As a consequence parameters that we attribute more ‘locality’ in 
the following also lead to more weight on a player’s own experience, i.e. more 
‘suspicion’, thus, the ratio a i / a 2 is smaller.

When games change rarely (i.e. tg is large) or when player learn frequently
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(i.e. ti is small) players have a better chance to find the ‘long-run’ strategy for 
a given game and, thus, become more similar, which reduces locality. Diver­
sity among players may also be reduced by ‘background noise’ m; since noise 
makes players more similar. Farsightedness (r;), when learning, increases the 
effects of locality since it exposes learning players to samples that are more 
likely to be in a different situation. (This shows that being able to spot locality 
is actually one of its prerequisites). Likewise, situations become more diverse 
when the interaction neighbourhood n  is small. Another source of hetero­
geneity is complexity of strategies, since this determines diversity of players’ 
capabilities. More heterogeneity can finally also be due to a larger population 
( n ) .

Speed: The parameters t„, t u, and r u influence the speed of the evolutionary
process in the sense that they affect the frequency or the size of evolutionary 
steps of the learning rules. More speed allows learning rules to move away 
from the initial distribution (which has averages of the parameters of the learn­
ing rule a'i =  0, a 2 =  0), thus, move farther to the left in the diagram.

The longer our simulations run (fa), the more time learning rules have to de­
velop and to move away from the initial distribution. Also, the more frequently 
we update learning rules (i.e. the larger tu), the faster learning rules evolve and 
move away from the initial distribution. The farther we see (ru) when updating 
a learning rule, the faster successful learning rules spread through the popula­
tion.

Noise: The parameters t;, t u, m i, m u may make the evolutionary process
more ‘noisy’ in the sense that the direction of moves of learning rules becomes 
more random. This again keeps averages of the parameters of the learning rules 
closer to the initial distribution.

The more rarely learning rules are used to select strategies (i.e. the larger 
ti), the less they gain experience, and the more they remain close to the initial 
distribution. The more rarely we update learning rules (i.e. the larger tu), the
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more data is available to evaluate a learning rule, thus, the less noisy its devel­
opment. The more strategies are perturbed when they are learned (mi), the less 
it is possible to evaluate a learning rule’s impact on success. The more learning 
rules are perturbed during the update process (m u), the more they are pushed 
back to the initial distribution.

Notice, however, that changes in a some parameter may have conflicting ef­
fects. One example is the speed to update learning rules t u: For very small 
values of t u learning rules are updated too often to accumulate a reasonable 
amount of data on the success the rule. As a consequence the evolutionary 
process it too noisy to move away from their initial distribution. For very large 
values of tu the data concerning the performance of learning rules might be 
rather reliable, however, individual learning becomes slow. This again means 
that learning rules do not manage to move away from their initial distribution.

In other words: Updating a learning rule implies taking advantage of infor­
mation that is provided by neighbours while simultaneously ceasing to provide 
the information that the respective individual has collected in the past. Of 
course in the long run also an updating player is a source of information again, 
but at least in the short run updates are bad for the neighbourhood but good for 
the individual. This effect explains the turn in the t u-curve.

Still, the discussion of figure 6 shows that whatever parameters we choose, 
learning rules turn out to have similar properties. Further, the dependence of 
learning rules on parameters seems to be fairly intuitive.

3.5 Stage Game Behaviour

In the previous sections we were concerned with the immediate properties of 
endogenous learning rules. In the following we want to analyse the impact that 
endogenous rules have on stage game behaviour.

Figure 7 on the next page shows proportions of stage game strategies for 
various games both for endogenous and for fixed learning rules. In simulations
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Figure 7: Stage game behaviour depending on the game. (o=most players play 
C, *=most players play D). Parameters: 50 x 50 torus, n  = ri — 1, ru =  2, 
sample a random player, ti =  24, tu = 4000, tg = 2000, m; =  0.1, m u =  0.1, 
t s =  400000.
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represented in figure 7 the underlying game changes every tg =  2000 peri­
ods. We know from other simulations that during these 2000 periods strategies 
should have adapted to the new game16. Just before the game changes we de­
termine the proportion of stage game strategies C  and D. These proportions 
are represented in figure 7 as circles. The position of the circle is determined 
by the parameters of the game, g and h. The colour of the circle is white if the 
proportion of Cs is larger and black otherwise.

Figure 7 compares two cases: An exogenously given learning rule of the 
‘switch if better’ type, approximated as (ao, d i, 02) =  (0 ,-1 0 0  000,100000) 
and the case of endogenous learning rules.

In both pictures two areas can be distinguished. One area where most of 
the simulations lead to a majority of C  and another one where most simulations 
lead to a majority of D. We make two observations:

•  The fixed learning rule ‘switch if better’, which is an approximation of 
the learning rules studied in the literature on local evolution with fixed 
learning rules17, leads to results that are very similar to those observed 
in the literature.

-  There is cooperation for a substantial range of prisoners’ dilemmas. 
Actually 30.3% of the 142 prisoners’ dilemmas in this simulation 
lead to a majority of cooperating players.

-  In coordination games players do not follow the principle of risk 
dominance but another principle which is between risk dominance 
and Pareto dominance18.

•  Under endogenous learning the range of prisoners’ dilemmas where 
most players cooperate shrinks to 10.2% of the 137 prisoner’s dilem­

l6See Kjrchkamp (1995).
17See Axelrod (1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), 

Nowak, Bonhoeffer and May (1993), Eshel, Samuelson and Shaked (1996), and Kirchkamp 
(1995).

I8A very similar behaviour is found for the fixed learning rule ‘copy the best strategy found in 
the neighbourhood’ in Kirchkamp (1995).
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mas in the respective simulation. Behaviour in coordination games again 
does not follow risk dominance.

The first point is interesting to note, because it shows that the model that we 
study in this paper is comparable with the models studied in the literature on 
local evolution with fixed learning rules.

The second point shows that properties of network evolution discussed in 
the literature on local evolution with fixed learning rules persist, at least to 
some smaller degree, even with endogenous learning rules.

4 Conclusions
In this paper we studied properties of endogenously evolving learning rules and 
the stage game behaviour that is implied by these rules. We compared endoge­
nously evolving learning rules both with rules that are assumed in standard 
models on local evolution19 as well as with those that turn out to be optimal in 
a global context20.

Regarding the first comparison we find that our dynamics selects rules 
which are different from the ones commonly assumed in the literature on local 
evolution. In particular the learning rules which are selected following our dy­
namics are much less sensitive to changes in a sampled player’s payoff. This 
‘suspicion’ can be related to the fact that the sampled player’s environment is 
different from the learning player’s one.

Comparing endogenous rules from local evolution with optimal rules from 
a global model we find two differences: Endogenous rules are not symmetric 
and they often imply deterministic behaviour. The lack of symmetry in the 
learning rule is analogous to the lack of symmetry in a learning player’s and 
the respective neighbours situation. The deterministic behaviour is a result

l9See Axelrod (1984, p. 158ff), Lindgren and Nordahl (1994), Nowak and May (1992, 1993), 
Nowak, Bonhoeffer and May (1993), Eshel, Samuelson and Shaked (1996), and Kirchkamp 
(1995).

20See Borgers and Sarin (1995), Schlag (1993, 1994).
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of the lack of patience which is a consequence of the more than infinitesimal 
learning speed.

As far as the stage game behaviour is concerned we find that important 
properties of stage game behaviour, like cooperation for some prisoners’ dilem­
mas and coordination not on risk dominant equilibria, is present both with fixed 
learning rules specified in the literature and with our endogenous learning rules, 
however, with endogenous rules to a more limited degree.

Besides the selection dynamics that we present here we have also analysed 
other selection dynamics. In Kirchkamp and Schlag (1995) we study dynamics 
where players use less sophisticated update rules than the OLS-model used in 
this paper. We have analysed models where players move only in the direc­
tion of the maximum of the OLS model, but do not adopt the estimate of the 
optimal rule immediately. Further we have analysed models where players do 
not estimate any model at all but instead copy successful neighbours. Both 
alternative specifications lead to similar properties of learning rules: Switch­
ing probabilities are less sensitive to changes in payoff of the neighbour and 
more sensitive to changes in payoffs of the learning player. Also properties of 
the induced stage game behaviour are similar: Both alternative specifications 
lead to cooperation for some prisoners’ dilemmas and coordination not on risk 
dominant equilibria. Thus, we can regard the above results as fairly robust.
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