
EUROPEAN UNIVERSITY INSTITUTE

DEPARTMENT OF ECONOMICS

EUI Working Paper ECO No. 98/38

Heterogeneity and Stability:

Variations on Scarf's Processes

¶Etienne Billette de Villemeur

BADIA FIESOLANA, SAN DOMENICO (FI)



All rights reserved.

No part of this paper may be reproduced in any form

without permission of the author.

c°1998 ¶Etienne Billette de Villemeur

Printed in Italy in December 1998

European University Institute

Badia Fiesolana

I-50016 San Domenico (FI)

Italy



Heterogeneity and Stability:

Variations on Scarf's Processes

Etienne Billette de Villemeur

European University Institute¤

September 1998

Abstract

There are still problems in handling diversity in economics.

The general equilibrium model itself lacks determinacy for a generic

population of economic agents. In an outstanding contribution,

Jean-Michel Grandmont (1992) argues that increasing behavioural

heterogeneity makes aggregate expenditures more independent of

prices. He conjectures that, in the aggregate, weak axiom of re-

vealed preference, gross substitutability, uniqueness and stability

of the Walrassian exchange equilibrium would prevail under \°at

enough" distributions of characteristics. This note emphasises

the speci¯c nature of the distributions involved in Grandmont's

framework and enhances that the strong macroeconomic regular-

ities that he evidences cannot be considered as a general property

of exchange markets.

J.E.L. Classi¯cation Numbers: D11, D41, D50, E1.

Keywords: Heterogeneity, Aggregation, Micro-foundations of

Macro-economics.

¤Corresponding Address: Etienne de Villemeur, THEMA, Universit¶e de Cergy-

Pontoise, 33 bd. du port, 95011 Cergy Pontoise Cedex, France. Tel: (++33)-1-

34.25.62.52. Fax: (++33)-1-34.25.60.52. E-mail: villemeu@u-cergy.fr



1. Introduction1

1.1. The di±culties arising from heterogeneity

Surprisingly enough, economic theory is still not able to deal correctly

with heterogeneity. Handling diversity is nevertheless a central problem

of economics, as it is presumably in all other social sciences. If people are

indeed di®erent, they are likely to be a®ected di®erently by their envi-

ronment and to react di®erently facing an identical situation. Two main

questions are thus raised. First, what are the criteria to be used in order

to take a decision that concerns various people? This is the normative

problem. Second, how does an economy that is compounded of di®erent

people work? This is the positive problem. Naturally, such a distinction

is usually not possible as both issues are intrinsically connected.

A good example of the problems at hand and a clear outline of the

limits of economic theory in handling diversity is given by the representa-

tive agent approach. Despite its widespread use, the model is, in general,

both unjusti¯ed and misleading. (See A. P. Kirman - 1992). It is un-

justi¯ed because (i) individual optimization does not engender collective

rationality and conversely (ii) the fact that the community exhibits a

certain rationality does not imply that individuals ¯nd themselves in an

1This paper is a part of my Ph.D. Thesis. It develops a suggestion by Alan Kirman.

I would like to thank Jean-Michel Grandmont for his detailed comments on a ¯rst draft

of this paper and for his kind encouragements. I met Reinhard John at a conference

and he gave me an interesting reference for the interpretation of my results. I was then

invited by Werner Hildenbrand in Bonn where I enjoyed an outstanding environment

for research. No need to say that his deep understanding of the aggregation problem

played a leading role for the present work. Special thanks to Kurt Hildenbrand for an

illuminating example presented in this paper. Herbert Scarf and Rodolphe Dos Santos

Ferreira provided interesting remarks at my thesis defence. I am indebted to David

Cass, Benedetto Gui and Bruno Versaevel for both helpful discussions and editing

help. This work was presented at the \Second International Workshop on Economics

with Heterogeneous and Interacting Agents" at Ancona (It.), the 97' Econometric

Society European Meeting in Toulouse (Fr.), at the \7µeme journ¶ees du SESAME"

-S¶eminaires d'Etudes et de Statistiques Appliqu¶ees µa laMod¶elisation en Economie"

in Lyon (Fr.) and at the departemental seminar of the THEMA (Fr.). All remaining

errors are mine.
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optimal situation from their own point of view. It is misleading because

the reaction of the representative agent to some change may not be the

same as the aggregate reaction of the individuals he is supposed to rep-

resent. Thus the description of the economy is not accurate. Moreover,

even if the choices of the representative agent coincide with aggregate

choices, the representative agent might \prefer" one of two situations

where individuals would prefer the other (See S. C. Dow and S. Werlang

- 1988). In other words the valuation of the various situations can di®er

and normative judgement is not possible. Some results derived by M.

Jerison (1993) show that the use of such a representative agent is legit-

imate for welfare interpretations under very narrow conditions that are

not veri¯ed for generic cases.

1.2. Problems in the understanding of competitive markets

As a decentralised process, the free market is argued to overcome the

di±culties that one faces in taking a uniform and centralised decision

regarding a heterogeneous population. In some sense, it escapes the

problems raised by the theory of social choice by leaving each economic

agent to make the necessary decisions. However the properties of the

competitive market as a coordination device are somewhat unclear. De-

spite its early introduction in the literature, the simple existence of an

equilibrium, i.e. the possibility of consistent decisions across several indi-

viduals, was only proved in full generality by K. J. Arrow and G. Debreu

in the 50's. But there are no results with respect to the uniqueness and

stability of this equilibrium. Thus the general equilibrium model, often

considered as the benchmark of neoclassical economics, does not allow of

de¯nite conclusions because of its lack of determinacy.

1.3. The ¯asco of the micro-foundations project

While a normative approach to the problem of heterogeneity does not

conceal its intrinsic di±culties \from the beginning", the idea that ex-

planations of social phenomena must be based on individuals has enjoyed

a long life. It is already to be found in W. S. Jevons (1871) who a±rmed
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that \the general forms of the laws of economics are the same in the case

of individuals and the nations." 2. J. S. Mill (1874) made the following

observation:

Human beings in society have no properties but those which

are derived from, and may be resolved into, the laws of nature

in the individual man. In social phenomena the Composition

of Causes is the universal law.3

More recently, J. R. Hicks (1939) even asserted that \the behaviour

of a group of individuals or a group of ¯rms obeys the same laws as the

behaviour of a single unit." 4

However the problem is not that simple. On the contrary, in the

words of K. J. Arrow (1968), \a limit is set to the tendency implicit in

price theory, particularly in its mathematical versions, to deduce all prop-

erties of aggregate behaviour from assumptions about individual economic

agents." 5

Since the \negative" results of H. Sonnenschein (1972, 1973), R.

Mantel (1974, 1976, 1977) and G. Debreu (1974), it has been well known

that no satisfactory theory links the characteristics of economic agents

identi¯ed by microeconomic theory and the properties of aggregated sys-

tems used in macroeconomic theory : Even with \strong individualistic

assumptions",6 the only restrictions imposed on aggregate demand func-

tions are the continuity for all strictly positive prices, the homogeneity of

2W.S. Jevons, (1871), \The Theory of Political Economy", A.M. Kelley, New York,

(1965), p.16. Reference from Rizvi (1994).
3Mill, J. S. (1875), \A system of logic", in Robson, J. M., (1974), \Collected works

of John Stuart Mill", Toronto, p.879. Reference from Rizvi (1994).
4Hicks, J.R. (1939), \Value and Capital: an Inquiry into some Fundamental Prin-

ciples of Economic Theory", Clarendon Press, Oxford, p.245. Reference from Rizvi

(1994).
5Arrow, K. J., (1968), \Economic Equilibrium", in \International Encyclopedia

of the Social Sciences", vol 4, pp.376-89, Mac Milan, London. Reference from Rizvi

(1994).
6i.e. preferences are assumed to be continuous, convex and to give rise to a mono-

tone preorder.
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degree 0 in prices and the fact that Walras' law is veri¯ed. (For a review

of the microfoundations project, see S. Abu Turab Rizvi (1994)).

In economics, there is no hope of ever explaining social objects by realistic

assumptions on individuals exclusively.

As a consequence, almost any macroeconomic feature can be ex-

plained by the general equilibrium model. The latter provides no indi-

cations as to the nature of market outcomes7. In particular, as already

mentioned, the assumption of uniqueness and stability of the equilib-

rium has no theoretical justi¯cation. Accordingly, to refer generically to

a \natural" state of the economy is meaningless. (See A. P. Kirman -

1989).

1.4. The necessity of macroeconomic assumptions

As a result, the competitive market representation must turn to addi-

tional assumptions8 in order to ensure the drawing of unambiguous ¯g-

ures. In strict microfoundations, macroeconomic regularities are sought

in the individual behaviour of agents, not in the social structure in which

they ¯nd themselves. (See E. J. Nell- 1984). The failure of the microfoun-

dations project has shown macroeconomics to be somewhat irreducible.

But uniqueness and stability of the equilibrium are required for the de-

terminacy of the analysis.

This is the origin of the gross-substitutability assumption, ¯rst introduced

by A. Wald in 1936. The latter has the merit of both strong technical

implications and clear economic interpretation. This enables the infer-

ence to be challenged and avoids purely ad hoc assumptions hidden under

technical arguments. While microeconomics happens to be insu±cient

to explain all macroeconomic properties, macroeconomic assumptions

are expected to be at least plausible and should always be submitted

to some consistency examination including compatibility with microeco-

nomic choice theory.

7
Except the \Welfare theorems"

8By additional assumptions, it is meant that assumptions cannot bear on individ-

ual behaviour only but should go beyond strict micro theory.
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1.5. Gross substitutability

What does \gross substitutability" mean? It means that when the price

of one good rises, the excess demand of all other goods increases. It is

nice because it is simple. Furthermore it is su±cient to make general

equilibrium models follow the rules of partial equilibrium models.

The idea that gross substitutability might be assumed is intuitive when

consumption is considered: if two goods are substitutes, then increasing

the price of one would lead to an increase in the demand for the other

one, hence in excess demand. The idea that gross substitutability may

not hold is intuitive when production is considered: if two commodities

are joint-products (complements), then increasing the price of the ¯rst

would lead producers to increase the production of both, which would

tend to decrease the excess demand for the second. Note that, even in a

pure exchange economy, gross substitutability is not granted. As a result,

the assumption that gross substitutability prevails as the combined re-

sponse of choices by consumers and producers is far from being obvious.

The su±cient conditions imposed on the nature of economic agents'

preferences that would guarantee gross-substitutability are not known.9

However, gross-substitutability, together with the weak axiom of revealed

preference, is a su±cient condition for gross stability (and uniqueness of

the equilibrium). This amply justi¯es the interest in this assumption and

the conditions that allow such a property to hold.10

9As already mentioned, some work by H. Sonnenschein, R. Mantel and G. Debreu

in the 70's has shown instead that the only properties of the excess demand function

which can be deduced by requiring the economic agents to be well behaved (i.e. pref-

erences are continuous, convex and give rise to a monotone preorder) are Walras'Law,

homogeneity, and continuity (or di®erentiability).

R. Mantel (1976) has shown the result to hold for the (even stronger) assumption of

homothetic preferences.
10Note however that gross-substitutability is not necessary to get the stability of

the general equilibrium.
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1.6. Assumptions on distribution

An innovative approach in trying to ¯ll the gap between micro and macro

was introduced by J.-M. Grandmont (1987) following W. Hildenbrand

(1983) and others. The idea is that instead of introducing some restric-

tions on the form of individual demand (or any micro-variable) or making

unwarranted macro assumptions, \nice" macro-features may result from

aggregation by the means of assumptions made on the distribution of

characteristics among individuals. This conjecture, already formulated

by many like A. Wald, J. R. Hicks, K. J. Arrow and F. H. Hahn, seems

to ¯nd con¯rmation in an article by J.-M. Grandmont (1992). He estab-

lishes under quite mild conditions that \pathological" market features

are unlikely to arise at the aggregate level when there is \enough be-

havioural heterogeneity".

We shall attempt to show that it is too early to draw some de¯nite

conclusions. The assumptions of Grandmont's model are shown to be

more restrictive than they might appear at ¯rst glance. They are nev-

ertheless necessary. An example is provided in which one (questionable)

assumption is relaxed. In this exchange economy, no distribution of char-

acteristics over the space of vector parameters precludes the aggregate

excess demand function from violating the gross substitutability condi-

tion. The result established by Grandmont is far from being a general

property of exchange markets. We will show that, in the limit and unless

\pathological cases", his parametrization lead in fact the economy to be

exclusively made of \Cobb-Douglas agents".

1.7. Structure of the paper

The paper is organized as follows. In section two, Grandmont's model

is sketched and some comments on the hypothesis are made. In par-

ticular it is emphasised that the aggregation process is likely to be ill-

designed because some \behavioural types" might be over represented.

First the equivalence classes generated by the transformation introduced

by Grandmont do not always have the same dimension. This intro-

duces some biases in the whole distribution of demand functions. Sec-
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ond, this a±ne transformation on the commodity space does not always

generate an in¯nite number of distinguishable equivalence classes. How-

ever, Grandmont introduces a continuous parametrization of the space

of equivalent classes11 that leads necessarily to an over-representation of

some types of consumers in those cases. Thus the smoothing process in

the aggregation can be double: within and in addition over the equiv-

alence classes. As a consequence, while heterogeneity increases within

each equivalence class when the dispersion of parameters increases, it is

not clear that heterogeneity also increases in the overall economy.

The assumption that guarantees aggregate budget shares to be uniformly

bounded away from zero is shown to be quite restrictive. It is not veri¯ed

for very common demand functions, like those generated by CES-utility

functions. In fact this assumption requires all the commodities to be

\essential" for the economy because it should hold for all set of prices.

Moreover it appears to bear upon the (partial) result of the aggregation

itself.

In section three, the assumption that guarantees aggregate budget

shares to be uniformly bounded away from zero is removed in order to

study its importance for Grandmont's theorem. A set of \behavioural

types" and a (discrete) distribution over it is provided. For any symmet-

ric distribution of parameters over the transformation space, the latter

generates an aggregate excess demand function that violates the gross-

substitutability assumption in this exchange economy. It shows that the

\°atness" of the distribution is not su±cient for guarantee \nice" prop-

erties at the aggregate level.

As one might suspect that this result to come from the fact the we shift

from a continuous and in¯nite set of types to a discrete and ¯nite set12, a

continuous distribution of types is presented that exhibits the same out-

11
Each equivalent class is supposed to represent a \behavioural type".

12See the results of Kirman and Koch (1986) as opposed those of Hildenbrand

(1983). The ¯rst shows that, in a ¯nite economy, Sonnenschein-Debreu-Mantel's re-

sult is valid for essentially any distribution of income in which individuals have iden-

tical preferences; While the second, in an atomless economy, obtains a monotonicity

property for the market demand by restricting the shape of the income distribution

in the consumption sector.
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comes. Finally, the number of equivalence classes present in the economy

is shown to have no clear impact on the aggregate demand function.

In the last section before conclusion, a come back is made to Grand-

mont's [1992] paper in order to re-interpret the results. It is argued that

the conjunction of the parametrization and the assumption about bud-

get shares imply indirectly very speci¯c distributions of demand func-

tions. With the degree of \heterogeneity", this is in fact the number of

\Cobb-Douglas like" demand functions that increases in the economy.

Thus Grandmont's results might be read as follows: If there is a \su±-

cient number" of \Cobb-Douglas like" demands in the whole population,

then gross-substitutability is guaranteed. In this perspective however,

the aggregation process presented appears to be rather a \Law of large

numbers" that conserve some micro-properties common to \the most"

(demand functions). It is not the heterogeneity of the demand functions

that generates13 some structure at the macro-level and provides the re-

sults.

Finally, a brief conclusion is drawn that questions the directions to

explore for further research. The investigation of how micro-properties of

the demand functions combine in the process of aggregation is certainly a

fascinating program. However, if generic assumptions with respect to the

shape of the distribution of characteristics alone might not be su±cient

to derive general results, there is a question about the adequacy of such

an approach when those characteristics cannot be observed.

13by counterbalancing some agents' reactions to price changes by the opposite re-

action of others.
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2. The Grandmont's model:

For the analysis to be self-contained, the main hypotheses and results by

J.-M. Grandmont (1992) are reported in the following.

2.1. Outline of the main results

Consider a pure exchange economy with l ¸ 2 commodities. The charac-

teristics of an individual agent are assumed to be described by a demand

function » (p; w) and an income level w.

There is a ¯rst set A of \types" of agents that is taken to be a separable

metric space, to simplify matters. A distribution over types is then de-

scribed by a probability measure ¹ on A: To each type a corresponds a

demand function »a (p; w) and an income level wa > 0:

For any vector ® 2 <l de¯ne the `®-transform' of a demand function

» (p; w):

» (®; p; w) = e®  » (e®  p; w)

where  indicates the normal tensorial product: ab = (a1b1; :::; albl) : A

conditional distribution f (® j a) on the space <l of indexing parameters

® is speci¯ed. It describes the distribution of agents over the equivalence

class of type a generated by the ®-transforms.

The overall distribution of characteristics in the economy is thus de-

scribed by the marginal probability measure ¹ on A and the conditional

densities f (® j a) on <l: The assumptions of the model are as follows:

Assumption 1. The income level wa > 0 depends continuously on the

type a: Per capita income is ¯nite i.e.,

¹w =
Z
A

wa¹ (da) < +1

then total market demand given by

X (p) =
Z
A

X (a; p; wa)¹ (da)

9



where X (a; p; wa) =
R
<l »a (®; p; w) f (® j a) d®; is well de¯ned, non neg-

ative, continuous in p and satis¯es p:X (p) ´ ¹w:

Assumption 2.

(1) The demand function »a (p; w) is continuous in (a; p; w) :

(2) The conditional density f (® j a) is continuous in (®; a) : It has partial

derivatives (@f=@®k) (® j a) ; and they are continuous in (®; a) :Moreover,

for each type a; partial derivatives are uniformly integrable, i.e., for every

k = 1; :::; l

mk (a) =
Z
<l

¯̄
¯̄
¯
@f

@®k
(® j a)

¯̄
¯̄
¯ d® < +1:

Assumption 3. For every commodity k; mk (a) is bounded above by

mk for ¹-almost every type a:

Assumption 4. For ¹-almost every a; the conditional density f (® j a)
is independent of a:

Assumption 5. For every commodity h; there exists "h > 0; with
P

h "h ·
1; such that for all vectors of positive prices p

ph

Z
A

»ah (p; wa)¹ (da) ¸ "h ¹w:

With these assumptions, Grandmont (1992) proves the following

theorem:

Theorem 2.1. Assume (A1) ; (A2) ; (A3) ; (A4) ; (A5) : Then phXh (p) ¸
"h ¹w for every h and for every p: The price elasticity of aggregate demand

satis¯es ¯
¯
¯
¯
¯

@ lnXh

@ ln pk
(p) + ±hk

¯
¯
¯
¯
¯
· mk="h

This implies in particular

1. Total market demand for commodity h is a decreasing function of

its own price, i:e:; (@Xh=@ph) (p) < 0; if mh < "h:

10



2. Assume mh < "h for every commodity h and let DD (m; ") be the

set of prices p in Int<l
+ such that

P
k (mk=pk) < "h=ph for every

h = 1; :::::; l: Then the Jacobian matrix of total market demand is

such that

@Xh

@ph
(p) < 0;

¯̄
¯̄
¯
@Xh

@ph
(p)

¯̄
¯̄
¯ >

X

k 6=h

¯̄
¯̄
¯
@Xh

@pk
(p)

¯̄
¯̄
¯

for every p in DD (m; ") and has therefore a dominant diagonal on

that set.

3. Assume mk l < "h for all commodities h; k: Then total demand has

a negative quasi-de¯nite Jacobian Matrix , i.e.,
P

h;k vh (@Xh=@pk) vk
< 0 for every v = (v1; :::; vl) 6= 0 and every price system p in Int<l

+;

and is thus strictly monotone, i.e., (p¡ q) : ([X (p)¡X (q)]) < 0

whenever p 6= q: In particular, the weak axiom of revealed prefer-

ence is satis¯ed in the aggregate, i.e., p:X (q) · ¹w; X (q) 6= X (p)

implies q:X (p) > ¹w

It is demonstrated further on that, in an exchange economy and

under the given assumptions, both the weak axiom of revealed prefer-

ence and the gross-substitutability assumption hold. As a consequence,

the general equilibrium model would exhibit a unique and stable equi-

librium. Therefore, the consequence of Grandmont's result is that, if

there is \enough behavioural heterogeneity", (i) the competitive market

appears to be an e±cient coordination device, even for an heterogeneous

population and (ii) the general equilibrium model appears to be a sound

tool for policy analysis. By showing the limits of Grandmont's result, it

is also the universality of such a view that is questioned.
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2.2. Some remarks on the model

2.2.1. What is to be called a type?

A strong point of Grandmont's article is the fact that his result extends

to a wide range of populations and is not con¯ned, say, to populations

for which agents' characteristics are derived from the ®-transforms of a

common (unique) demand function. Such a generality is obtained by

the introduction of the set A of agents' types. At this point, a natural

question arises as to the nature of a type in this model. In what do types

di®er? What is the economic meaning of an equivalence class?

To begin with the analysis, it is worth drawing attention to a rather

technical element. The equivalence class of all ®-transforms of a given

demand function is claimed to be isomorphic to <l by the author. This

is generally true, but not always. If the demand function is proportional

to income and more generally if it has special features with respect to

the ®-transforms, the dimension of the equivalence class is less than l.14

This apparently innocuous point has strong consequences in terms of the

overall distribution of demand functions in the economy, as will be shown

in what follows.

There is nothing remarkable in the assertion that without any speci¯ca-

tion on the set A; i.e. on the nature of the demand functions, the notion

of type might lack signi¯cance. Depending on A; the number of equiv-

alence classes may vary from in¯nity to one. Obviously, if the partition

in equivalence classes is reduced to one element,15 the introduction of a

continuous density over A is not an adequate representation and leads to

a double smoothing process in the aggregation process. An illustration

of these points can be found in the following examples.

14
See W. Trockel.

15
This is the case when all the demand functions of the set A can be obtained as

the ®-transform of one another: all demand functions are part of the same (unique)

equivalent class.
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Example 2.1. Let A =
n
a 2 [0; 1]l =

P
ai = 1

o
and »a (p; w) be the

demand function derived from the maximization of the Cobb-Douglas

utility function Ua =
Q

i x
ai

i :

»a (p; w) is invariant to any ®-transform. Thus the market share of every

commodity is a constant in all equivalence classes. Note however that

the latter are all reduced to a single point.

Example 2.2. Let l = 2; A = ]0; 1[ and assume the demand to be de-

rived from a C.E.S. utility function, say u (x1; x2) =
³
ax¡½1 + (1¡ a) x¡½2

´
¡

1

½

where ½ = 1¡¾
¾

< 1:

»a1 (p; w) =
a¾p¡¾1 w

a¾p1¡¾1 + (1¡ a)¾ p1¡¾2

»a2 (p; w) =
(1¡ a)¾ p¡¾2 w

a¾p1¡¾1 + (1¡ a)¾ p1¡¾2

The ®-transform is given by the formula:

»a1 (®; p; w) =
e®1(1¡¾)a¾p¡¾1 w

e®1(1¡¾)a¾p1¡¾1 + e®2(1¡¾) (1¡ a)¾ p1¡¾2

»a2 (®; p; w) =
e®2(1¡¾) (1¡ a)¾ p¡¾1 w

e®1(1¡¾)a¾p1¡¾1 + e®2(1¡¾) (1¡ a)¾ p1¡¾2

and all the types belong to the same equivalence class.

»a (®; p; w) = »a0 (®0; p; w)

where ®0 is obtained by a simple translation in <2:

®0

1 = ®1 ¡ 1

½
ln

Ã
a0

a

!

®0

2
= ®2 ¡ 1

½
ln

Ã
1¡ a0

1¡ a

!

Now, in the words of Grandmont, \if the conditional densities f (® j a) are
\°at", they are \close" to being invariant by an arbitrary translation."

13



Thus, as the distribution of ® becomes more and more uniform, there is

almost no di®erence between the populations generated by both types.

f (® j a) »a (®; p; w)¡ f (®0 j a0) »a0 (®0; p; w) =

[f (® j a)¡ f (®0 j a0)] »a (®; p; w) ! 0

Example 2.3. Let A =
n
a 2 [0; 1]l =

P
ai = 1

o
and »a (p; w) be ob-

tained by the maximization of the utility function Ua = min faixig :
If ai > 0; for all i; then »ai (p; w) =

µ
w

ai

P
j
pj=aj

¶
: As previously, all the

types ai > 0 are part of the same equivalence class. The original type

that generates a given demand function is indistinguishable. However, if

ah = 0; for some h; then »ai6=h (p; w) =
µ

w
ai
P

j 6=h
pj=aj

¶
and the demand

for the h commodity(ies) is zero at any price. The equivalence class is

no more isomorphic to <l but to <l¡n where n is the number of com-

modities for which the demand is zero. It is obvious that those types

of consumers do have a characterisation invariant to the ®-transforms,

namely a zero-consumption of some goods.

The number of \signi¯cant" types is
P

l¡1

k=0
Ck

l
= 2l ¡ 1 which is a ¯-

nite number. As a result, the parametrization of the set of types by a

continuous parameter a is likely to over-represent some of the \signi¯-

cant" types, in particular the equivalence class in which consumers have

a strictly positive demand for all goods.

As indicated by Grandmont in a private communication, in order to

derive precise results on the distribution of the demand functions in the

\overall"16 economy it would be interesting to study the dimension of the

equivalence classes and to introduce an adequate topology over the set of

\types" A. If the equivalence class of one type is reduced to one point17,

the corresponding demand function inherits a big weight in the total

distribution of demand functions. The demand functions that belong to

an equivalence class of higher dimension are to be considered with no

16
\overall" in the sense that the distribution of demand function is considered over

both types and ®-parameters.
17This is the case when the function is a Cobb-Douglas.
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individual in°uence on the total outcome as in any atomless economy.

Furthermore, as already argued, the relative weights of some \types" in

the \overall" distribution can be biased by the parametrization of A. It

follows that the notion of \°atness" is (rather) ambiguous and is likely

to lead to very speci¯c distributional assumptions.

To sum up, the di±culty in a parametric model of demand is that

heterogeneity of the parameter distribution has no a priori relationship

with heterogeneity of demand behaviour. The class of parametrizations

has to be restricted as pointed out in Kneip (1993). The transformation

introduced by J.-M. Grandmont is clearly such that, for a given type a;

when the density function of the parameter ® becomes °atter, hetero-

geneity of the demand function increases, as shown by I. Maret (1994).

However, the space of parameters and the space of demand functions are

not always topologically equivalent as their dimension di®ers. This, to-

gether with the lack of \control" over the set of types A and the density

function ¹; explains that the latter property is not conserved by aggrega-

tion over the di®erent \types" a. The heterogeneity of demand behaviour

in the whole economy does not always increase with the °atness of the

distribution of the parameters ®.

2.2.2. Minimum budget share

There is one assumption in Grandmont's 92 paper that appears to bear

neither upon distributional aspects nor upon some fundamentals of the

model but in some sense rather on the (partial) result of aggregation.

This is Assumption 5 or \desiderability condition" that is, in my view,

rather a minimum budget share condition. In what follows it is argued

that this is a stronger assumption than it might seem to be.

From the economic point of view, Assumption 5 implies that there

is no saturation for any commodity. The fact that the budget share

is bounded away from zero for all vectors of prices means that all the

commodities in the economy are \essential". If all commodities are free

except one, whose price goes to in¯nity, the expenditures devoted to this

commodity remains bounded from below by a strictly positive quantity.

15



From a technical point of view, the assumption means that every single

price is a pole of degree one of the demand function and moreover that

the coe±cient of the pole (a function of the other prices) is to be bounded

away from zero.

The peculiarity of the functions that satisfy Assumption 5 is em-

phasized further by the extension of the demand functions that do not

verify it. One can establish that the assumption does not hold for any

demand function generated by the maximization of CES utility functions

(except the Cobb-Douglas). Neither does it hold for simple and presum-

ably \well behaved" demand functions like, say, the one generated by the

maximization of U (x1; x2) =
p
x1 + 4 + 2

p
x2: Note however that this

condition is not supposed to hold for every single function but for the

aggregate demand function.

Despite its peculiarity, Assumption 5 is necessary for Grandmont's

result to hold. This will be shown in the next section.

16



3. Variations on Scarf's process

In what follows a generalisation of H. Scarf's process (1960) is presented.

For the sake of comparability, the framework introduced by Grandmont

is used. It is shown that, for the proposed set of demand function (that

does not verify Assumption 5 about aggregate budget shares), gross-

substitutability of the excess demand is violated, whatever the \degree

of heterogeneity" in this exchange economy.

3.1. A simple example

The nowadays classic Scarf example is ¯tted into the Grandmont frame-

work. One knows the limits of such an example: sensitivity to the ini-

tial distribution of goods and violation of the desiderability assumption

(When the price for one good goes to zero, the corresponding demand

does not go toward in¯nity). Those limits can easily be removed to the

cost of more intricate constructs that we attempt to avoid here. More-

over, we consider that the example still makes the point.

² Let A = [¡1; 1] and »a (p; w) be de¯ned as follows:

»a1 (p; w) =
a2 (a¡ 1)2wa

4 (p1 + p2)
+

a2 (a+ 1)2wa

4 (p3 + p1)

»a2 (p; w) =
a2 (a¡ 1)2wa

4 (p1 + p2)
+

[1¡ a2 (1 + a2) =2]wa

p2 + p3

»a3 (p; w) =
a2 (a+ 1)2wa

4 (p3 + p1)
+

[1¡ a2 (1 + a2) =2]wa

p2 + p3

It can be veri¯ed that »a (p; w) is a demand function in the sense

of Grandmont:

De¯nition 3.1. A demand function » (p; w) is de¯ned for all vec-

tors of positive prices p 2 Int<l

+ and all positive income w > 0;

17



takes values in <l

+; is homogeneous of degree 0 in (p; w) and satis¯es

Walras' Law, i.e., p:» (p; w) ´ w:

Note that »
¡1 (p; w), »0 (p; w) and »1 (p; w) might be obtained by the

maximization of the respective utility function U
¡1 = min fx1; x2g ;

U0 = min fx2; x3g ; U1 = min fx3; x1g : According to Example 2.3,

these three demand functions of the set A generate three distinct

two-dimensional equivalence classes by the ®-transform. The other

types still generate distinct equivalence classes that appear instead

to be isomorphic to <3:

² The income level that corresponds to type a is given by the formula

wa = p:ra where ra =
µ

a
2(a¡1)2

4
; 1¡ a

2(1+a
2)

2
; a

2(a+1)2

4

¶
is the initial

endowment.

A distribution over types is given by the probability measure ¹ on

A. Let ¹ (¡1) = ¹ (0) = ¹ (1) = 1
3
; and ¹ (a) = 0 otherwise. Note

that we introduced a ¯nite number of (\signi¯cant"18) types in the

economy that appear to generate isomorphic equivalence classes.

² Assumption 1 is veri¯ed: The income level wa > 0 depends contin-

uously on the type a: Per capita income is ¯nite, i.e.,

¹w =
Z
A
wa¹ (da) =

X
a=f¡1;0;1g

wa¹ (a) =
w¡1 + w0 + w1

3
< +1

then total market demand, given by

X (p) =
Z
A
X (a; p; wa)¹ (da) =

X
a=f¡1;0;1g

X (a; p; wa)¹ (a)

is well de¯ned, non-negative, continuous in p and satis¯es p:X (p) ´
¹w: Indeed

X (p) =
1

3

Ã
p1

p1 + p2
+

p3
p3 + p1

;
p2

p2 + p3
+

p1
p1 + p2

;
p3

p3 + p1
+

p2
p2 + p3

!

18
By \signi¯cant" types, it is meant that the equivalent classes generated by those

types exhibit speci¯c characteristics that make possible to retrieve the original type

that generated the demand curve. Moreover, because equivalence classes are not

reduced to one point, there is a proper aggregation on a population that is not reduced

to the initial set A:

18



² Assumption 2 - (1) is satis¯ed: The demand function »a (p; w) is

continuous in (a; p; w) :

Assumption 2 - (2) is not necessary: We do not impose any as-

sumption on the continuity of the conditional density f (® j a) ; on
the existence of its partial derivative (@f=@®k) (® j a) and their con-

tinuity. Obviously, nothing prohibits this assumption from holding.

² Assumption 3 is not necessary: There is no assumption on the

\°atness" of the conditional density.

² Grandmont's Assumption 4 is imposed: the conditional density

f (® j a) is independent of a:
² Assumption 5 is not veri¯ed. However, note that

ph

Z
A

»ah (p; wa)¹ (da) > 0

for all p 2 Int<l

+
:

Proposition 3.1. For the set of types f»a (p; w) ; wag introduced, the

probability measure ¹ over A; and any unconditional density f (®) ; the

aggregate excess demand function violates the gross substitutability as-

sumption.

Proof: In Appendix.

3.2. The continuous representation

One might think that previous result is due to the shift from a contin-

uous to a discrete representation of types. This is not the case. The

distribution over A was chosen because of the previous claim that dis-

tributional aspects should be checked carefully. Indeed, the distribution

over equivalence classes would be biased if the equivalence classes were

not of the same dimension or were over-represented. But the example

can easily be extended to the continuous framework:

De¯ne the demand and the initial endowment as follows:
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»a1 (p;w) »a2 (p;w)

¡1 · a · ¡1=2 wa

p1+p2

wa

p1+p2

¡1=2 · a · ¡1=4 ¡4
¡
a+ 1

4

¢
wa

p1+p2

¡4(a+ 1

4
)wa

p1+p2
+

[1+4(a+ 1

4
)]wa

p2+p3

¡1=4 · a · 1=4 0 wa

p2+p3

1=4 · a · 1=2
4(a¡ 1

4
)wa

p3+p1

[1¡4(a¡ 1

4
)]wa

p2+p3

1=2 · a · 1 wa

p3+p1
0

»a3 (p;w) (r1; r2; r3)a

¡1 · a · ¡1=2 0 (1; 0; 0)

¡1=2 · a · ¡1=4
[1+4(a+ 1

4
)]wa

p2+p3
(¡ (1 + 4a) ; 2 + 4a; 0)

¡1=4 · a · 1=4 wa

p2+p3
(0; 1; 0)

1=4 · a · 1=2
[1¡4(a¡ 1

4)]wa
p2+p3

+
4(a¡ 1

4)wa
p3+p1

(0; 2¡ 4a; 4a¡ 1)

1=2 · a · 1 wa

p3+p1
(0; 0; 1)

Proposition 3.2. For the set of types f»a (p; w) ; wag introduced, for

any probability measure ¹ with support included in
h
¡1;¡1

2

i
[

h
¡1

4
; 1
4

i
[

h
1

2
; 1

i
½ A and such that

R
¡

1

2

¡1 ¹ (da) = 1

3
;
R 1

4

¡

1

4

¹ (da) = 1

3
;
R
1
1

2

¹ (da) = 1

3

and for any unconditional density f (®) ; the aggregate demand function

violates the gross substitutability assumption.

Proof: It follows from the fact that

X (p) =
1

3

Ã
p1

p1 + p2
+

p3
p3 + p1

;
p2

p2 + p3
+

p1
p1 + p2

;
p3

p3 + p1
+

p2
p2 + p3

!

that is identical with previous example.

The (negative) results seem to be due to the very fact that As-

sumption 5 does not hold any more. Note however that the number of

e®ective types (distinct equivalence classes) is still ¯nite.

3.3. The question of types

The impact (if there is one) of the number of types on the aggregate

demand function is not clear. Because the aggregation of a set (¯nite

or in¯nite) of demand functions derived from the maximization of Cobb-

Douglas utility functions can be obtained from the maximization of a

20



Cobb-Douglas utility function, the number of e®ective types has clearly

no importance for Grandmont's theorem. The converse, i.e. whether

a set A that generates an in¯nite number of equivalence classes might

exhibit \pathologies" when Assumption 5 is not veri¯ed is still to be

established.

It has just been proved that without Assumption 5 and with a

¯nite number of e®ective types (and whatever the number of types in

the parametrization), there might be pathological cases. The following

example shows that this extends to the case in which there is an in¯nite

number of equivalence classes. It is now based on the class of examples

given in the second part of the 1960 Scarf article. The demand is de¯ned

as follows for a ¯rst \class" of consumers19:

»
a1 (®; p; w) =

bp
¡1=(1+a)
1 w

bp
a=(1+a)
1 + p

a=(1+a)
2

»a2 (®; p; w) =
p
¡1=(1+a)
2 w

bp
a=(1+a)
1 + p

a=(1+a)
2

»a3 (®; p; w) = 0

with b > a+1
a¡1

and a > 1: Again, one can verify that this is a demand

function in the sense of Grandmont. Now, all the types generate dis-

tinct equivalence classes: »a (®; p; w) = »a0 (®0; p; w) (if ever it is possible)

would be obtained by a transformation that depends on prices.

This family of types is proved to violate gross substitutability in the

appendix.

Hence an in¯nity of e®ective types is not su±cient to restore Grand-

mont's results.

19We de¯ne by permutation two other \class" of consumers.
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4. Grandmont's Model Revisited

If heterogeneity is not su±cient a property to insure the gross-substituta-

bility in an exchange economy, the reader would certainly ask us to an-

swer two questions: What is the e®ect of heterogeneity in Grandmont's

Framework? Where does the nice result come from? Some hints are

provided in this section.

Arguably, as the distribution over ® spreads, the relative weight

in the aggregate demand of the \non-asymptotic" values must decrease.

Heuristically, if the conditional densities are \°at" enough, one can un-

derstand that the aggregate demand behaves in a similar manner to the

®-transformed functions when ® is \big" in absolute value.

Let us consider a demand function that veri¯es Assumption 5. The de-

mand curve is bounded from below by the surface ("h ¹w=ph)h=1::l : It is

bounded from above by the budget constraint
P

h ph
R
A
»ah (p; wa)¹ (da) ·

¹w, thus by ( ¹w=ph)h=1::l : The general idea is that if such inequalities hold

for all vectors of positive prices, the demand functions are \likely" to

be \similar to" Cobb-Douglas functions for \asymptotic"20 values of the

prices. With a ¯xed price, but with asymptotic values of the parameter

®; the ®-transform of the demand should behave in the same manner21;

While \heterogeneity" increases, everything should happen as if more and

more \Cobb-Douglas like" demand functions were added to the economy.

The precise meaning of these ideas is given in what follows while a

formal proof is provided in the appendix. The following example clearly

illustrates how this works.22

Consider the transformation T de¯ned as follows:

e®1 = ½ cos µ

e®2 = ½ sin µ

where (®1; ®2) 2 <2 and (½; µ) 2 <+ £ [0; ¼=2] :

20more precisely ph ! 0+ and ph ! +1:

21 lim
®!¡1

phe
®h
! 0+; lim

®!+1
phe

®h
! +1

22I'm grateful to Kurt Hildenbrand who gave me this illuminating example.
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Figure 4.1: A Transformation in the Parameter Space.

The generating demand function »a (p;w) of the equivalent class a is

represented by a circle O in both ¯gures. This is to be found for (®1; ®2)

= (0; 0) thus at the origin in Grandmont's space and for (½; µ) =¡p
2; ¼=4

¢
or at the point (1; 1) in the new space. The bold line represents

all the points such that the ratio of the stretching coe±cients k (µ) =

e®2=e®1 = tan µ is a constant.

The calculation of the demand can be obtained using following

formulae:

Xa (p) =
Z
<2

»a (®; p) f (®) d®

= 2
Z ¼=2

0

"Z +1

0

»a (½; µ; p) f (½; µ)
d½

½

#
dµ

sin µ cos µ

In what follows, we will study the pro¯le in the new parameter space of

the density function

g (½; µ) =
2

½ sin µ cos µ
f (½; µ)

in the case where heterogeneity increases in the sense of Grandmont,

namely when f (®) is more and more \°at".

De¯ne I (µ) as the weight given to the functions with a given

\stretching ratio" k (µ) = e®2=e®1 :

I (µ) =
2

sin µ cos µ

"Z +1

0

f (½; µ)
d½

½

#
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For the \standard" density function

fN (®) =
exp

³
¡®2

1
+®2

2

N2

´

2¼N2

one gets

mN (i) =
Z
<2

¯̄
¯̄
¯
@f (®)

@®i

¯̄
¯̄
¯ d® =

1p
¼N

IN (µ) =
exp

³
¡ ln2(tan µ)

2N2

´
p
2¼N sin µ cos µ

Consider now the weight W´;N given to the interval A´ =
h
´; ¼

2
¡ ´

i
:

Figure 4.2: Density I (µ)

W´;N =
Z ¼

2
¡´

´

2e¡
ln2(tan µ)

2N2

p
2¼N sin µ cos µ

dµ =
1p
¼

Z ln(tan(¼2¡´))p
2N

ln(tan ´)p
2N

e¡v
2

dv

One can verify that IN (µ) is a density function as lim´!0+ W´;N = 1; any

N: However, for any ´ > 0; limN!+1W´;N = 0: As a result, when the

density f (®) becomes more and more \°at" in the sense of Grandmont,

the economy is almost only made up of functions »a (®; p) such that µ
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is \outside" A´: This means that e®1=e®2 or e®2=e®1 is very low. This

property, that can be generalised for any density function f (®) and in

any dimension l ¸ 2 leads to the following proposition:

Proposition 4.1. For any ´ > 0; de¯ne the set of parameters A´ as

follows:

A´ = f® : j®i ¡ ®j 6=ij · ln (1=´) ; all ig :
For any smooth density f (®) over vectors ® in <l; let us de¯ne the

density f¾ (®) =
1

¾
f
³
®
¾

´
: This density is associated with the \coe±cient

of °atness" m (f¾) = supk=1::l mk (f¾) with

mk (f¾) =
Z
<l

¯̄̄
¯̄ 1
¾

@f

@®k

µ
®

¾

¶¯̄̄
¯̄ d® =

1

¾

Z
<l

¯̄̄
¯̄ @f
@®k

(®)

¯̄̄
¯̄ d® =

1

¾
mk (f) :

For any ´; " > 0 there exists a real ¾´;" such that for any ¾ > ¾´;"; the

density f¾ (®) =
1

¾
f
³
®
¾

´
gives a weight to the set A´ that is lower than

": Formally

8" > 0; 9 ¾´;" 2 <¤
+
j 8¾ > ¾´;";

Z
A´

f¾ (®) d® < ":

As a result, when the \°atness" of f (®) increases, the whole weight

is given to the functions »a (®; p) such that j®i ¡ ®j 6=ij goes to in¯n-

ity (hence with a very large or an arbitrarily small \stretching ratio"

e®j 6=i=e®i). Heuristically, when ®i goes tominus in¯nity, there is a stretch-

ing of the map »a (p; w) in the direction of pi and the behaviour of the

®-transformed function is the asymptotic behaviour of the generating

function when pi goes to zero. Conversely, when ®i goes to plus in¯nity,

the map is compressed and the behaviour of the ®-transformed function

is the asymptotic behaviour of the generating function when pi goes to

in¯nity. In what follows, we will attempt to further specify this in order

to outline the pro¯le of these demand functions.

Consider the special case where the generating demand function is

a C.E.S. The ®-transformed function is given by the following formula

»a1 (®; p) =
a¾e®1(1¡¾)p¡¾1 w

a¾e®1(1¡¾)p1¡¾1 + (1¡ a)¾ e®2(1¡¾)p1¡¾2
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Figure 4.3: Impact of ® when ®i goes to in¯nity

»a2 (®; p) =
(1¡ a)¾ e®2(1¡¾)p¡¾2 w

a¾e®1(1¡¾)p1¡¾1 + (1¡ a)¾ e®2(1¡¾)p1¡¾2

Thus when j®2 ¡ ®1j ! +1; the function »a (®; p) is, in the limit, either

(»a1; »a2) (p) =
³
w
p1
; 0
´
or (»a1; »a2) (p) =

³
0; w

p2

´
; namely two degenerated

Cobb-Douglas. Remember that it was shown by Grandmont that these

functions are the only ones that are invariant under ®-transformation.

Thus a Cobb-Douglas is like an atom in the economy generated by ®-

transformation. As the distribution of parameter ® becomes \°atter",

the number of \Cobb-Douglas like" demand functions increases and their

behaviour dominates. This explains the nice behaviour of the aggregate.

More generally, two cases may arise. The expenditure functions

wah = ph»ah (p; w) are bounded from above by w and from below by

zero. However the market shares do not always have a limit when ph
goes to in¯nity (and/or when ph goes to zero). If there is a limit, like

for the CES, the ®-transformed function is reduced, in the limit, to a

(possibly degenerated) Cobb-Douglas.

If the expenditure functions do not have a limit when the prices go to

in¯nity (and/or when ph goes to zero), then the market shares of the
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Figure 4.4: Impact of ® when ®i goes to minus in¯nity

®-transformed functions endlessly \°uctuate". Formally

9 ´ > 0 j 8®; p 2 <l; 9p0 > p 2 <l j
jwah (®; p; w)¡ wah (®; p; w)j > ´

Heuristically, these \°uctuating functions" are only likely to make a min-

imal contribution to the aggregate. Firstly, because the aggregation over

the equivalent classes is likely to cancel out these variations and pro-

duce a smoother mean. Secondly, since the Cobb-Douglas are the only

invariant of the ®-transformation, the latter are more likely to impose

their behaviour on the aggregate (provided there are some in the econ-

omy). Moreover, one might ask whether it is \reasonable" to consider a

demand function such that the expenditures \°uctuate" when the prices

go toward in¯nity (or toward zero).

As mentioned by Grandmont, assumption 5 insures a non-vanishing

aggregate demand, i.e. the presence of at least one non-degenerated

Cobb-Douglas demand function in the limit. It is not quite clear whether

this assumption could play another role in obtaining this result. One

will observe that the diagonal dominance of the jacobian matrix of the

demand can be derived from the small size of the coe±cients of the
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expenditure elasticity matrix:

@ log »h (®; p)

@ log pk
+ ±hk =

pk
»h (®; p)

@»h (®; p)

@pk
+

pk
ph

@ph
@pk

=
pk
wh

@wh (®; p)

@pk

As a result, if »a (p) veri¯es assumption 5, the very fact that @wh=@pk
is \small" su±cies in order for any single function to be able to vali-

date Grandmont's theorem. Nevertheless, it was not possible for us to

derive general properties for the functions »h (®; p): Even the additional

assumption that wh (p) has a limit is not su±cient in order to be able to

add further restrictions to the behaviour of its derivative @wh=@pk hence

for the theorem to be veri¯ed by every single function.
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5. Conclusion

The transformation introduced by Grandmont is likely to over-represent

some speci¯c demand functions in the overall distribution. Assumption 5

that guarantees aggregate budget shares to be uniformly bounded away

from zero appears to be quite restrictive. However this assumption is nec-

essary for Grandmont's theorem to hold: \Generic" heterogeneity does

not su±ce in order to guarantee nice aggregate properties. This suggests

that it is not the \°atness" assumption per se that produces Grandmont's

results but rather the conjunction of this assumption together with the

speci¯c form of the demand functions.

The economic interpretation of Assumption 5 is that all commodities in

the economy are \essential". In the present setup, its (technical) underly-

ing consequence is the fact that, when the distribution of parameter ® is

\°at enough", there is a \large" number of demand functions in the over-

all population whose behaviour is \close to" the Cobb-Douglas demand.

In the limit, and if \pathological" cases are excluded, the distribution of

demand functions in the economy is reduced to a Cobb-Douglas. It is

another matter, whether or not the underlying assumption ensuring this

result is realistic.

In order to relax Assumption 5, that bears upon the (partial) result

of aggregation, and to correct the bias induced by the parametrization, it

would be in the logic of the distributional approach to investigate whether

some properties can be derived from assumptions on both densities, over

the set A of types and over the set of parameters ®. This would require (i)

a comprehensive topology to be introduced for the space of equivalence

classes, and (ii) speci¯c properties to be established for the correspond-

ing demand functions. One should note that this is an attempt to restore

regularity on the basis of a model which takes no account of the direct

interaction between individuals. Distributional assumptions provide an

alternative route to restoring \good" aggregate behaviour. Taking ac-

count of direct interaction may provide another. The problem with the

distributional approach adopted here is that it is based on assumptions

about characteristics of agents, which unlike income for example, cannot
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be observed. Thus the heterogeneity necessary to establish such results

cannot be empirically tested. In any event, one has to re°ect on the

merits of such an approach. Clearly, one might be more confortable with

a theory which can generate empirically testable propositions.
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7. Appendix

7.1. Violation of gross substitutability

The justi¯cation for reversing the order of the sign
R

and the linear

operators
P

and @
@pi

is to be found in the dominated convergence theorem.

From Assumption 1,

X (a; p; w) =
Z
<3

»a (®; p; w) f (®) d®

Thus

zh (p) =
X

a=f¡1;0;1g

Z
<3

(»ah (®; p; p:r)¡ rah) f (®) d®

=
Z
<3

X
a=f¡1;0;1g

(»ah (®; p; p:r)¡ rah) f (®) d®

The excess demand function for commodity 1 is:

z1 (p) =
1

3

Z
<3

Ã
p1e

¡®1

p1e¡®1 + p2e¡®2
+

p3e
¡®1

p3e¡®3 + p1e¡®1
¡ 1

!
f (®) d®

=
1

3

Z
<3

Ã
p3e

¡®1

p3e¡®3 + p1e¡®1
¡ p2e

¡®2

p1e¡®1 + p2e¡®2

!
f (®) d®

Thus

@z1 (p)

@p2
=

1

3

@

@p2

Z
<3

Ã
p3e

¡®1

p3e¡®3 + p1e¡®1
¡ p2e

¡®2

p1e¡®1 + p2e¡®2

!
f (®) d®

=
1

3

Z
<3

@

@p2

Ã
p3e

¡®1

p3e¡®3 + p1e¡®1
¡ p2e

¡®2

p1e¡®1 + p2e¡®2

!
f (®) d®

=
¡1

3

Z
<3

p1e
¡®1¡®2

(p1e¡®1 + p2e¡®2)
2
f (®) d® < 0

and gross substitutability is violated, any p:
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7.2. With an in¯nity of types

The demand function for an individual belonging to the ¯rst category of

types is:

»a1 (®; p; w) =
bp
¡1=(1+a)
1 w

bp
a=(1+a)
1 + p

a=(1+a)
2

»a2 (®; p; w) =
p
¡1=(1+a)
2 w

bp
a=(1+a)
1 + p

a=(1+a)
2

»a3 (®; p; w) = 0

with b > a+1
a¡1

and a > 1: The demand for the two other categories of

types is obtained by permutating the role of the three commodities.

The ®-transform of the ¯rst category of types is given by the formula:

»a1 (p; w) =
be¡®1a=(1+a)p

¡1=(1+a)
1 w

be¡®1a=(1+a)p
a=(1+a)
1 + e¡®2a=(1+a)p

a=(1+a)
2

»a2 (p; w) =
e¡®2a=(1+a)p

¡1=(1+a)
2 w

be¡®1a=(1+a)p
a=(1+a)
1 + e¡®2a=(1+a)p

a=(1+a)
2

»a3 (p; w) = 0

The demand for the ¯rst good over the three categories of types

and given the parameter a is

x1 (a; ®; p; w) =
be
¡a®1
1+a p

a
1+a
1

be
¡a®1
1+a p

a=(1+a)
1 +e

¡a®2
1+a p

a=(1+a)
2

+
e
¡a®1
1+a p

¡1=(1+a)
1 p3

be
¡a®3
1+a p

a=(1+a)
3 +e

¡a®1
1+a p

a=(1+a)
1

The excess demand function for commodity 1 is:

z1 (p) =
Z
A

µZ
<3

(x1 (a; ®; p; w)¡ 1) f (®) d®
¶
¹ (a) da

where

@

@p2
((x1 (a; ®; p; w)¡ 1))
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=
@

@p2

0
B@ be

¡a®1
1+a p

a

1+a

1

be
¡a®1
1+a p

a

1+a

1 + e
¡a®2
1+a p

a

1+a

2

+
e
®1
1+a e¡®3p

¡1

1+a

1 p3

be
¡a®3
1+a p

a

1+a

3 + e
¡a®1
1+a p

a

1+a

1

¡ 1

1
CA

=
¡ a

1+a
be
¡a®1
1+a e

¡a®2
1+a p

a

1+a

1 p
¡1

1+a

2³
be¡a

®1
1+ap1 + e¡a

®2
1+ap2

´2

Thus

@z1 (p)

@p2
=

@

@p2

Z
A

µZ
<3

z1 (a; ®; p; w) f (®) d®
¶
¹ (a) da < 0

and gross substitutability is violated.

7.3. Density function in the transformed space

7.3.1. The example

The density function is:

fN (®) =
exp

³
¡®2

1
+®2

2

N2

´

2¼N2

=
exp

³
¡ 1
N2

³
(ln (½ cos µ))2 + (ln (½ sin µ))2

´´
2¼N2

=
exp

³
¡ 1

2N2

³
ln2 (½2 sin µ cos µ) + ln2 (tan µ)

´´
2¼N2

= fN (½; µ)

The weight given to the functions with a \stretching ratio" k (µ) is:

I (µ) =
1

sin µ cos µ
lim
A!0+
B!+1

Z
B

A

2

½
fN (½; µ) d½

=
1

2¼N2

exp
³
¡ ln2(tan µ)

2N2

´
sin µ cos µ

lim
A!0+
B!+1

Z
B

A

2

½
exp

Ã
¡ ln2 (½2 sin µ cos µ)

2N2

!
d½
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=
1p
2¼N

exp
³
¡ ln2(tan µ)

2N2

´

sin µ cos µ
lim
A!0+
B!+1

Z ln(B2 sin µ cos µ)=
p
2N

ln(A2 sin µ cos µ)=
p
2N

e¡u
2

du

=
exp

³
¡ ln2(tan µ)

2N2

´
p
2¼N sin µ cos µ

By imposing v = ln(tan µ)p
2N

; one can verify that I (µ) is a density

function on [0; ¼=2] :

Z ¼=2

0

2e¡
ln2(tan µ)

2N2

p
2¼N sin µ cos µ

dµ =
1p
¼

Z
+1

¡1

e¡v
2

dv = 1

However, the weight of the set A´ =
h
´; ¼

2
¡ ´

i
is

W´;N =
Z ¼

2
¡´

´

2e¡
ln2(tan µ)

2N2

p
2¼N sin µ cos µ

dµ =
1p
¼

Z ln(tan(¼2¡´))p
2N

ln(tan ´)p
2N

e¡v
2

dv

and

lim
N!+1

W´;N =
1p
¼

lim
N!+1

Z ln(tan(¼2¡´))p
2N

ln(tan ´)p
2N

e¡v
2

dv = 0

7.3.2. General Case

For any ´ > 0; de¯ne the set of parameters A´ as follows:

A´ = f® : j®i ¡ ®j 6=ij · ln (1=´) ; all ig

For any smooth density f (®) over vectors ® in <l; de¯ne the density

f¾ (®) =
1

¾
f
³
®

¾

´
: This density is associated with the \coe±cient of °at-

ness" m (f¾) = sup
k=1::l

mk (f¾) with

mk (f¾) =
Z
<l

¯̄
¯̄̄ 1
¾

@f

@®k

µ
®

¾

¶¯̄¯̄̄ d® =
1

¾

Z
<l

¯̄
¯̄̄ @f
@®k

(®)

¯̄
¯̄̄ d® =

1

¾
mk (f)
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In dimension one We will proof that f (x) · m=2 :

Z
<

¯̄
¯̄
¯
@f

@®
(®)

¯̄
¯̄
¯ d® < +1 ) 8" > 0;9A j

Z
+1

A

¯̄
¯̄
¯
@f

@®k

(®)

¯̄
¯̄
¯ d® < "

hence

8x; y ¸ A; jf (y)¡ f (x)j ·
Z y

x

¯̄
¯̄
¯
@f

@®k

(®)

¯̄
¯̄
¯ d® ·

Z
+1

A

¯̄
¯̄
¯
@f

@®k

(®)

¯̄
¯̄
¯ d® < ":

and f (®) has a limit in +1: Because
R
<
f (®) d® < +1; this limit is

zero. Idem in ¡1:

Finally

m =
Z
+1

¡1

¯̄
¯̄
¯
@f

@®
(®)

¯̄
¯̄
¯ d® =

Z x

¡1

¯̄
¯̄
¯
@f

@®
(®)

¯̄
¯̄
¯ d®+

Z
+1

x

¯̄
¯̄
¯
@f

@®
(®)

¯̄
¯̄
¯ d®

¸
¯̄
¯̄
¯
Z x

¡1

@f

@®
(®) d®

¯̄
¯̄
¯+

¯̄
¯̄
¯
Z
+1

x

@f

@®
(®)

¯̄
¯̄
¯ d® = 2 jf (x)j

and the integral over a compact of a function that goes uniformly to zero

goes itself to zero. Formally if A´ = f® : j®j · ln (1=´)g

8´; " > 0;9¾´;" 2 <¤
+
j 8¾ > ¾´;";

Z
A´

f¾ (®) d® · m

2¾
< "

In dimension l > 1 Without any loss of generality, assume k 6= 1:

De¯ne the transformation T k
n that substitutes µk = arctan (e®k=e®1) to

®k and let the other parameters unchanged. The Jacobi of the trans-

formation is (sin µk cos µk)
¡1. The computation of the demand is to be

obtained according to the following formula:

Xa (p) =
Z
<l
»a (®; p) f (®) d®

=
Z µk=¼=2

µk=0

"Z
®i 6=k2<

»a (®i6=k; µk; p) f (®i6=k; µk; p) d®i6=k

#
dµk

sin µk cos µk

In what follows, we will study the pro¯le of the density function

I (µk) =
1

sin µk cos µk

"Z
®i 6=k2<

f (®i6=k; µk; p) d®i6=k

#
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By assumption, Z ¼
2

0

I (µk) dµk = 1

However

f (®) = jf (®)j =
¯̄
¯̄
¯
Z

®k

0

@f

@®k

(®1; :::; ®k¡1; uk; ®k+1; ::®l) duk

¯̄
¯̄
¯

·
Z

®k

0

¯̄
¯̄
¯
@f

@®k

(®1; :::; ®k¡1; uk; ®k+1; ::®l)

¯̄
¯̄
¯ duk

Thus

Z
®i 6=k2<

f (®) d®i ·
Z
®i6=k2<

Z
®k

0

¯̄
¯̄
¯
@f

@®k

(®1; :::; ®k¡1; uk; ®k+1; ::®l)

¯̄
¯̄
¯ dukd®i

·
Z
<l

¯̄
¯̄
¯
@f

@®k

(®)

¯̄
¯̄
¯ d® = mk < +1

and ¯nally

Z
A´

f¾ (®) d® ·
Z arctan(1=´)

arctan ´

·Z
<l¡1

f¾ (®) d®
¸

dµk
sin µk cos µk

· mk

¾

Z arctan(1=´)

arctan ´

dµk
sin µk cos µk

· mk

¾
ln

³
1=´2

´

For any ´; " > 0 there exist a real ¾´;" such that for any ¾ > ¾´;"; the

density f¾ (®) =
1

¾
f
³
®
¾

´
gives a weight to the set A´ that is lower than

": Formally

8" > 0;9¾´;" 2 <¤

+ j 8¾ > ¾´;";
Z
A´

f¾ (®) d® < "
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