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Abstract
This paper delivers the solution to an optimal search problem 

with learning where the searcher has distinguishable search op­
portunities. The optimal sampling strategy is characterized by 
simple reservation prices that determine which of the search al­
ternatives to sample and when to stop search. The reservation 
price criterion is optimal for a large class of learning rules having 
the so-called falling reservation price property, including Bayesian, 
non-parametric and ad-hoc learning rules. The considered search 
problem contains as special cases many earlier contributions to 
the search literature and thereby unifies and generalizes two di­
rections of research: search with learning from identical search al­
ternatives and search without learning from distinguishable search 
alternatives.

JEL-Class.No.: D81, D83
Keywords : Optimal Search, Systematic Search, Learning, 

Reservation Prices, Uncertainty
T would like to thank my supervisor Ramon Marimon, Pierpaolo Battigalli, 

Matthias Briickner, my colleagues at the EUI, and seminar participants at the EEA- 
Meeting 1998 in Berlin. All errors are mine.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.

mailto:kadam@datacomm.iue.it


©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



1 Introduction

Economic problems involving search due to uncertainty about the lo­
cation of objects are copious and hence have received a considerable 
amount of attention. After the igniting article of Stigler [18] economists 
themselves have been searching, namely for sampling strategies that are 
optimal in different situations involving such uncertainty (Lippman and 
McCall [10] or McKenna [11]). This paper stands in this tradition and 
determines the optimal search strategy for a class of search problems 
that is characterized by two main features: Learning during the search 
process and distinguishable search alternatives.

To be explicit, consider the following job search example falling into 
the class of problems I consider. A job searching unemployed worker faces 
a number of job offering firms where each firm might either be willing to 
higher this worker and offer some wage or reject the worker’s application. 
The fundamental uncertainty in the worker’s search process consists of 
the fact that the worker does not know which firms are willing to hire 
at which wage and which ones would reject the application. Thus, the 
worker has to search for a good offer by filing applications to firms, ob­
serving the outcomes and deciding whether to accept an offer or whether 
to continue searching.

Learning is introduced by allowing for the natural possibility that 
the searcher is not only uncertain about which firm offers which wage 
but also uncertain about the prevailing wage offer distribution. The 
searcher, possessing priors about the offer distribution, can use a search 
outcome, i.e. a job offer of a particular firm, to learn about the wage 
offer distribution bv updating these priors.

It is equally natural to suppose that the searcher can distinguish 
firms along some dimension and has different priors about the type of 
vacancies offered by different firms. The distinction could be based upon 
firms belonging to different sectors or local markets or upon any other 
observable characteristic of firms. As a result, the searcher faces distin­
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guishable search alternatives and has to choose to which sector or which 
local market to apply.

In abstract terms, a search problem involving learning adds to the 
uncertainty about the location of objects the uncertainty about the ob­
jects’ values while the presence of distinguishable search alternatives cap- 
tures the fact that search opportunities typically differ from each other 
and that search involves a thorough choice among the available alterna­
tives.

If search is sequential with full recall of previous offers, then I find 
that the optimal search strategy for the class of search problems involv­
ing learning and distinguishable search alternatives is characterized bv 
a simple reservation price for each search alternative. The reservation 
price of an alternative is simply a real number that is assigned to the al­
ternative and the higher this number, the more attractive it is to search 
the corresponding alternative. The reservation prices for all alternatives 
together determine both, which of the search alternatives to sample, and 
when to stop search. The optimal strategy is very simple and prescribes 
to search always the search alternative with the highest reservation price 
and to stop search as soon as the best offer exceeds the reservation prices 
of all available alternatives.

The reservation prices keep changing during the search process as 
new information arrives through new search outcomes and learning takes 
place. In this way, it is optimal for the searcher to stay reactive to the 
search outcomes and, for example, direct search towards another search 
alternative, if the outcomes of the previously searched alternative have 
been disappointing.

The optimality of the search strategy holds for a large class of 
learning rules for which, roughly speaking, the reservation prices keep 
decreasing as additional search outcomes are observed. Learning rules 
with this property include Bayesian learning as well as non-parametric 
and ad-hoc learning.
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In addition to answering the question on how to search optimally 
in a situation involving learning and distinguishable search alternatives, 
the result of this paper should be of twofold interest to economists.

First, the answer to the normative question allows for positive mod­
eling of economic behavior within the neoclassical maximization para­
digm. There are many situations of economic interest that involve both 
of the above features and where the findings of this paper are applica­
ble. Besides job search these are consumers’ search for the best price or 
firms’ research for new products or technologies. Examples of the latter 
include oil companies searching for new oil fields to exploit or pharma­
ceutical companies’ research for medical drugs. The results are equally 
applicable to any kind of investment decision if investment is interpreted 
as the search for good investments projects.

Second, the result contains several earlier contributions to the search 
literature as special cases and thereby contributes to the unification 
and generalization of the search theoretical framework. Although learn­
ing and distinguishable search alternatives have already been consid­
ered in the literature only one of these features was present at a time 
(Rothschild [15], Rosenfield and Shapiro [14], Morgan [12], Talmain [19], 
Chou and Talmain [3], Bikchandani and Sharma [1] considered learning 
but assumed indistinguishable search alternatives; Salop [16], Weitzman 
[21], Vishwanath [20] studied distinguishable search alternatives but ab­
stracted from learning) and many of the search problems studied in ear­
lier contributions are contained in the class of problems considered in 
this paper.1

It is worth noticing that removing learning or distinguishable search 
alternatives both reduce the complexity and realism of search problems 
considerably. On one hand, assuming indistinguishable search alterna­
tives removes the choice decision from the search problem. All search

'Exceptions from the listed articles are Vishwanath [20] dealing with non­
sequential search, Morgan [12] dealing mainly with the existence of reservation price 
functions and Rothschild [15] not allowing for recall of previous offers.
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alternatives are (at least believed to be) the same and the search prob­
lem then reduces to the question on when to stop search optimally. On 
the other hand, abstracting from learning implies that the value of a 
search outcome (e.g. of a job offer) consists solely in its payoff (i.e. the 
wage), since search outcomes do not convey any valuable information 
(e.g. about the wage offer distribution). As a result the optimal search 
strategy has to condition only on the best of all observed offers (i.e. the 
best wage offered so far) and not on the whole sequence of observed offers.

Finally, notice that the problem considered in this paper differs 
from simple armed bandit problems but that it is related to bandit su­
perprocesses.

First, consider the difference to the simple bandit problem. In such 
a decision problem the player receives a reward every time the arm of 
a bandit is pulled and nothing otherwise. In contrast to this, in the 
considered search problem a number of arms are pulled without actually 
receiving a reward. Only when the searcher decides not to pull any 
further arms (i.e. to stop search) the best of all previously observed 
rewards is obtained.

Next, consider bandit superprocesses which are a generalization of 
armed bandit processes allowing for multiple arms per bandit. Adding a 
second ’stopping arm’ to a standard bandit (as in Glazebrook [8]) allows 
for the possibility that the payoff is obtained at the end of search when 
the stopping arm is pulled. Glazebrook shows that if the value of the 
stopping option is non-decreasing in the number of searches, then the 
optimal policy is characterized by some simple selection rule between the 
arms and the indices given by Gittins and Jones [5] for simple bandits. 
However, while I allow for a finite or an infinite number of search op­
portunities, Glazebrook’s result fails to hold, if there is not an infinite 
number of search opportunities of each search alternative.2 Even if there 
are infinite numbers, the indices in Gittins and Jones are not particularly

2It is easy to see that already in the simple example given in section 3 the so­
lution given by Glazebrook [8] does not hold anymore. A finite number of search 
opportunities is like an additional constraint on the action space of the superbandit.
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explicit and the monotonicitv conditions that allow for a straightforward 
explicit calculation (e.g. as the ones in propositions 4.2 and 4.5 in Gittins 
[4]) fail to hold in our case.3 Thus, the contribution of this paper could 
also be considered in delivering an explicit expression for these indices in 
the absence of such monotonicitv.4

The next section sets up the search problem I consider and explains 
how other search problems with identical search alternatives or without, 
learning are special cases of the one considered here. Section 3 describes 
as a benchmark the optimal search strategy when the searcher knows 
the payoff distributions and is not learning. Section 4 contains the main 
part of the paper. I delineate the class of admitted learning rules and 
present the optimal search strategy for the case with learning. 1 also 
explain why the sampling rule of the benchmark problem generalizes to 
the case with learning. In Section 5 I ask whether one can also hope for 
optimality of the search rule with more general learning rules than the 
ones I considered. Unless for a very special case the answer is found to be 
negative. A conclusion summarizes the findings. The appendix contains 
the proofs.

2 The Model

A search problem is characterized by a searcher facing a (possibly infi­
nite) number of search opportunities. Each search opportunity can be 
thought of as a box that contains an uncertain reward. The searcher has 
the possibility to open any box at a cost and find out what reward is 
contained in the box. I want to allow' the boxes to differ from each other, 
not only with respect to the actual rewrard they contain but also with 
respect to the probability with which they contain (or are believed to

3Note that although we have decreasing reservation prices with our learning rules 
there is always a positive probability that the search outcome is above the reservation 
price.

4For similar exercises see Glazebrook [6] and [7].
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contain) certain rewards. One can think of this as different boxes having, 
different colors on the outside, while equal boxes are of equal color. Each 
color then represents a search alternative and the searcher, being able to 
observe these colors, has to choose among them in every search step.

More formally, let boxes be indexed by the natural numbers and 
let the set J  = {1,2,...} contain all available boxes. Each box j  6 •/ 
has some color * € { 1 ,2 ,. . . ,  /}, i.e. there are I  different colors or search 
alternatives. The color of a box is observable for the searcher at no cost. 
To simplify language a box of color i will sometimes be referred to as an 
*-box.

There are M l boxes of color i where M 1 can be finite or infinite. 
Boxes of the same color are identical and are characterized by the triple 
{ c \t \d '(  )} where cl are the costs for opening an *-box, V is the time 
span that passes from opening the box until its reward is observed and 
the function dl : R  h-► [0,1] describes the probability distribution of 
rewards from opening the box. The parameters c' and t’ are known to 
the searcher while dl{-) is unknown. The functions dl( ) can have support 
on R  and the random variables described by them are assumed to have 
finite mean if M j < oo for all j  =  1 ,2 , . . . /  and to have finite variance 
in all other cases.

For a given point in time I denote by rl the number of already 
opened ?-boxes. x \ is the outcome from opening the n-tlx box of color 
i. The vector X'r, =  (x \,x l2, . . . ,  x{,) contains the rl so far observed 
outcomes from opening i-boxes.

The searcher samples sequentially for boxes and can open a closed 
box of color i by paying the amount a’. He has to wait a time span f  and 
then receives an offer drawn from d'(-)/' Recall of previously drawn offers 
is allowed. If search stops, the searcher gets y which is the maximum of 
the so far drawn offers and some outside opportunity x° the searcher 5

5That search costs c‘ have to be payed some time t‘ before the search result is 
observed is not restrictive. Problems where e! is payed at the time when search 
results are observed fit into the problem by appropriately discounting search costs.
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possesses independently from the search outcomes:

y =  max {z°,xJ,X2 .......xj.,........x[, x'2........x'r,}

The searcher maximizes discounted expected payoffs minus costs with a 
discount rate 0 < r < oc.

Uncertainty has two sources. First, offers from boxes are drawn 
from some probability distribution. Second, there is uncertainty about 
the prevailing distribution from which offers are drawn. Uncertainty 
about dl{-) may be represented by beliefs in form of a probability dis­
tribution pl(0) over some parameter 9 that indexes the set of possible 
true probability distributions dl{- | 9) for boxes of color i, where the true 
distribution function dl(-) is equal to dl{- \ 9l) for some specific value 9l 
of the parameter. Beliefs pl(0) about boxes of color i are updated using 
the observed search outcomes X lr, from i-boxes. Updated beliefs are de­
noted by pi(9 | X*i). Given these beliefs one can calculate an expected 
true probability distribution / !(x \ X ’,) for the boxes of each color by 
integrating out for the uncertainty about the parameter 9:

r ( x  I XU) =  E [d\x  I 9) I XU\ = f A *  I W  I XU)dB

For expository reasons, /*(•)•) has been derived from a Bayesian learning 
mechanism above. Since I do not want to confine myself to rational 
learning, I equally allow /'(•!•)  to be directly specified by some non- 
rational ad-hoc learning rule.6 In both cases, rational and non-rational 
learning, the functions /*(-|-) determine a joint prior probability for any 
sequence (x \,x l2, . . .  ,x'n) of search outcomes with

Pr(z‘ ,x*, •• • ,< )  =  f ( x 1) • f ( x \ \x \)  ■... • f K  |x*,x*.......xj_,) (1)

Given the probability distribution (1) defined by the learning rule, the 
searcher maximizes the discounted expected payoff minus costs

max E \e - rT’yu - C s] (2)

6The random variables described by / ’(•)•) are assumed to have finite mean if 
M 1 < oo for all j  =  1,2, . . .  /  and to have finite variance otherwise.
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with rs being the stopping time under sampling rule 5, yT, being the 
offer that got accepted in rs and E[CS] being the expected discounted 
sampling costs under S. Clearly, if learning is non-rational, then (2) 
differs from expected utility maximization because the searcher is only 
optimal for the given learning rule he uses. If learning is Bayesian, then 
(2) is identical to expected utility maximization.

I want to make two comments with regard to the above setup. 
First, it is a quite restrictive but crucial assumption that the functions 
F1 depend only on observations of /-boxes, i.e. outcomes of boxes of color 
j  ^  i do not reveal information about the parameter 6l of /-boxes. For 
a Bayesian learner this is an implicit assumption on having prior one on 
the parameters (61, . . .  ,9 ') being chosen independently.

Second, the setup comprises as special cases models without learn­
ing and several search alternatives and models with learning but identical 
boxes. In case that there is only one box of each color, no learning will 
take place and the model reduces to the one studied by Weitzman [21] 7 
In case that all boxes have the same color, the model reduces to the search 
problems considered (amongst other problems) in Rosenfield and Shapiro 
[14], Talmain [19], Bikchandani and Sharma [1], Chou and Talmain [3].

3 Benchmark: Optimal Strategy W ithout 
Learning

This section presents the optimal sampling rule when there is only one 
box of each color and hence no learning taking place.7 8 Such a problem is 
equivalent to a search problem with full information when the searcher’s 
expected payoff distributions equal the true payoff distributions. The 
results presented here will serve as a helpful reference point for our later 
considerations and the main result is due to Weitzman [21].

7The searcher might still learn about the box of a particular color by opening it, 
yet at the time learning takes place there are no other boxes of that color left.

8Remember that we ruled out learning across boxes of different color.
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For expository reasons c onsider the following simple but instructing 
example.

Exam ple 1 Suppose that there are only 2 boxes, a red one and a green 
one. Table 1 describes the payoff distributions d'( ) of each box. For 
simplicity I  will refer to the zero outcome as a ’’failure” and to the strictly 
positive outcome as a "success”. With search costs for opening a box

Table 1:
Red payoff

with, probability
0
0.1

70
0.9

Green payoff
until probability

0
0.85

200
0.15

equal to 20, no discounting and the value of the outside option equal to 
zero, the expected payoffs from, opening a single box are shown in table 
2. Since the red box has a higher expected, value than the green one, it

Table 2:
Expected Payoff

Red 45
Green 10

might seem better to sample the red box first. If the result, of doing so is 
a failure, it is clear that. it. pays to sample the green box as well because 
it has positive expected payoff. I f  the result, of sampling the red box was a 
success, then sampling the green box yields a negative expected gain. The 
expected payoff of this sampling order is therefore readily calculated to be

-20 + 0.9 • 70 + 0.1(—20 + 0.15 • 200) =  44

Yet, sampling the green box first and then in case of a failure the red box 
is the optimal sampling order. Its expected value is

-20 + 0.15 • 200 + 0.85 (-20 + 0.9 • 70) =  46.55
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A simple intuition exists as to why the expectation criterion does 
not work in deciding upon which box to open first: It ignores the option

This option value is relatively small in the case of a failure of the red box, 
namely 0.T(-20+0.15-200) =  1 (the probability of a failure of the red box 
times the expected value of opening the green box), but relatively high in 
case of a failure of the green box, namely 0.85 • (—20 + 0.9 • 70) = 3G.55. 
Adding the first option value to the expected value of the red box gives 
44, which is the value of the non-optimal sampling order. Adding the 
second option value to the expected value of the green box gives 40.55, 
the value of the optimal sampling order. Thus, although the immediate 
payoff from sampling the green box is lower than the immediate payoff 
from sampling the red box, the higher option value of continued search 
more than compensates for this.

It turns out that it is not necessary to calculate the option values 
of continued search to determine the right sampling order. There is a 
simple way of calculating an index for every search alternative that is 
based on the payoff distribution of the respective alternative alone. This 
is important to know because the option value of continued search can 
be a fairly complicated object, especially if one has many boxes of many 
different colors and, as in the next section, learning going on during the 
search process. The index has already been suggested by Lippman and 
McCall [10]. In the following I will describe how it is calculated and give 
some intuition on why it works.

Suppose the best offer from previous searches is y, then the expected 
gain over y from opening an ?'-box and stopping search with what is best 
then can be calculated to be

value of the possibility to continue search in case of a low search outcome.

CO

y
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Define as the reservation price f t  of an /-box that value of the best 
offer y at which the searcher would be indifferent between the following 
two actions: 1.Stopping search with y. and 2.Sampling an /-box and 
stopping thereafter with what is the best offer then, i.e.

Q'(R') =  0

Notice that f t  can be calculated using the payoff distribution of /-boxes 
only, ignoring any value from continued search.

The values f t  are the indices characterizing the optimal search 
strategy. The optimal sampling rule for the search problem without 
learning (later on also referred to as the benchmark rule) based on these 
indices is as follows:

Step 1 Calculate the reservation prices for each box.
Step 2 If there is no closed box with a reservation price

higher than the current best offer y , then stop search 
and accept y, otherwise continue with step 3.

Step 3 Open the box with the highest reservation price and 
go back to step 2.

A simple check of the reservation prices of the two boxes in our 
previous example reveals that Rred = 47.8 < 66.7 =  R?Tcen? The rule 
therefore confirms the optimality of sampling the green box first.

where f t  =  e r' ‘ < 1  is the discount factor.

A simple intuition exists on why the above sampling rule should 
be the optimal one. Consider the following alternative interpretation 
of the reservation prices. It is well known that the optimal strategy 
for a search problem with an infinite number of /'-boxes (and no other 
alternatives) is a reservation price strategy. The optimal reservation price 
for such a problem is the same as the one calculated above. Moreover, the 
reservation price is the value of a secure payoff that makes the searcher 9

9In the case of example 1 the reservation price formula boils down to R‘ =  i), — p- 
where xj, is the value of the positive payoff and p‘h is the probability of obtaining it.
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indifferent between accepting a secure payoff and having the opportunity 
to sample i-boxes. Rl > RJ can then be understood as the return from 
sampling «-boxes being higher than the return from sampling boxes. 
Search opportunities with higher reservation prices should therefore be 
sampled first.

This section contains the main results of this paper. I begin by presenting 
the reservation prices and discussing their properties. Then I delineate 
the class of admitted learning rules and present the optimal sampling 
strategy for a learning searcher. Since the optimal strategy is a gener­
alization of the benchmark strategy I explain in the last subsection why 
this is the case. The section is rather technical and can be skipped by 
readers mostly interested in the results.

4.1 The Reservation Prices

As in the case of known distributions, one can define the expected gain Q’ 
of opening one more ?-box and stopping search thereafter over stopping 
immediately. With learning the expected distribution of search outcomes 
of «-boxes, F*(- | X lr>), now depends on the information contained in the 
previously observed search outcomes X lr,. Therefore, the expected gain 
Ql is now a function of the available information:

4 Optimal Strategy with Learning

y

—oo oo

yoo

= fi I ( xU+i -  y)dfH(K'+i I K*) -  C1 -  P)v -  c.
y
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Analogously to the full information case, one can define the reser­
vation price of boxes from alternative i.i0

Definition The reservation price /?!(A’t) for boxes from alternative i is
the value of y that solves Q'(X^,,y) = 0

Again, the reservation price of 7-boxes is that, value of the best offer 
y which makes the searcher indifferent between stopping and doing one 
more search step.

Notice that reservation prices FC are now also a function of the 
current information A',. Reservation prices may therefore change over 
time as new information becomes available. Yet, how they might change 
in the future does not enter into the calculation of the reservation prices. 
Therefore, for given beliefs and hence given expected distribution func­
tion F(- | A ',), the reservation prices are independent from the searcher’s 
learning rule.

The R'(A',) have again an alternative interpretation as the reser­
vation price of an optimally behaving (non-learning) searcher facing an 
infinite number of boxes with payoff distribution F'(- | A),).

where (f  =  e Tl' < 1 is the discount factor.

4.2 Learning Rules

We saw in the previous section that the reservation prices depend only on 
current beliefs and are independent from the potential future evolution 
of these beliefs, i.e. from the learning rule. If we want to characterize 
the optimal search strategy based on this momentary picture of beliefs, 
we have to restrict the admitted learning rules in a w'av that this picture 
is sufficiently informative about the future.

We can express the necessary requirements on the learning rules in 
terms of an assumption on the evolution of reservation prices as learning

l0Existence and uniqueness is guaranteed by the conditions of lemma 2 in the 
appendix.

13

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



proceeds. All learning rules with falling reservation prices are admitted. 
Formally,

Assum ption A1 Let , then

< R’i x 'r-) or R i(X'r,^) < . .

Assumption .41 requires that after observing an additional search 
outcome of an i-box, the new' reservation price /P(X ', M) is either smaller 
than the old reservation price Ri(X lrt) or smaller than new offer x*. .

This can be interpreted as follow's: Either the searcher gets a low- 
search outcome and lowers in response to that the beliefs about the at­
tractiveness of the sampled search alternative, which in turn leads to a 
lower reservation price, or the searcher gets a high outcome indicating 
that the search alternative is more attractive than thought before and 
increases the reservation price. In the latter case, it is important that, 
the increase in the reservation price is moderate enough to ensure that 
the second of the above inequalities holds.

What is ruled out are so-called strong positive learning effects. 
These are search outcomes revealing a lot of good news about the at­
tractiveness of a search alternative. In fact, so much that if the searcher 
were given the value of such a search outcome as the outside option, he 
would terminate search, but as one told him that this outside option is 
a draw from the search alternative, he would want to continue search.

In the following I give examples of learning rules that fulfill .41 
and that have been used in the search literature dealing with identical 
boxes.* 12 The optimal sampling strategy I derive holds for any of the 
following learning rules. The searcher might even apply different learning 
schemes to different search alternatives.

"Since R‘(X^,) < y implies Q ‘(X ^ ,y )  <  0, A 1 insures that the one period gains 
Q '(X 'ri. y) stay negative, once they have become negative at some point of time. 
41 therefore implies the sufficient condition used in Rosenfield and Shapiro ([14], 
Theoreml) to establish the optimality of a myopic stopping rule.

12ln many of the following references increasing reservation prices can be found be­
cause the search problem is posed in terms of search for the lowest price of some good.
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i. Let the offer distribution be; multinomial with N  possible outcomes 
,x'i, x-2 , . . . ,  i.v and the probability of observing outcome x, be equal 
to Oi. If learning is Bayesian and the searcher has Dirichlet priors 
about the vector 9, i.e.

p(9 | Qi a 2>, .. ,a N) x  f?"1-1#."*-1 • • ■ ~~1 with q,; > 0

then reservation prices are decreasing (e.g. Talmain [19]). The gen­
eralization of the multinomial Dirichlet case to an infinite number 
of possible outcomes by a Dirichlet process also implies declining 
reservation prices (see Bikchandani and Sharma [1]).

ii. A class of ad-hoc learning rules (generalizing the learning rule of 
the previous point) where the posterior distribution is a convex 
combination of the prior and the empirical distribution with the 
weight on the empirical distribution non-decreasing with additional 
observations:

Fi(x | X lri) =  (1 -  ari)F(x) + ar,H (x \ X'r.)

with ari+i > ar>, F(x) being the prior distribution before search 
started and H (■ | X ^)  being the empirical distribution based on 
the observations X'r, (Bikchandani and Sharma [1]).

iii. A non-parametric learning procedure used in Chou and Talmain 
([3]) that makes no assumptions on the underlying class of prob­
ability distributions and is constructing -F( |AT )̂ according to the

The searcher implicitely obtains some utility U from consuming the good and mini­
mizes over all search strategies a the expectation of the price payed plus search costs, 
i.e. min^ E \p„ +  c„]. Rephrasing the search problem as one of looking for rewards 
with ra =  U — pa, the above minimization problem is equivalent to max„ E [ra — Ca] 
which is the problem considered in this paper. Furthermore, if the optimal search 
strategy a* of the minimization problem is a sequence of increasing reservation prices 

such that search is continued if the best offer p > p* and search is terminated 
if p < p i , this implies a sequence of reservation rewards{r*}]_,with r* =  U — p* 
that is decreasing and where search is continued if the best offer r < r* and search is 
terminated if r >  r*.
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maximum entropy principle. Suppose the searcher knows that, out­
comes are distributed between some interval [a, 6], The conditional 
probability of some outcome x, having observed i 1 < x 2 < . . .  < xr'
(not necessarily in this order
val [a,.r1] , [x '.x2 xr' ,b

is obtained by assigning to each inter- 
probability mass uniformly dis-

tributed (and a point mass if xl =  x' *1).

iv. Let the offer distribution be exponential with unknown origin 0 :

f ( x  | 0) = aeâx e) for x  < 9

Learning is Bayesian and priors are such that the logarithm of the 
prior distribution log(p(0)) is concave (see Rosenfield and Shapiro
[14])-

4.3 Results

The following theorem states the optimal sampling strategy for the search 
problem with learning and contains the main result of this paper. Its 
proof is deferred to the appendix. The optimal rule is just the benchmark 
rule applied to repeatedly updated reservation prices.

Theorem  1 Given A1 holds, the following sampling strategy is optimal: 
Step 1 With the available observations calculate the reser­

vation prices for each alternative and go to step 2.
Step 2 It there is no closed box with a reservation price 

higher than the current best offer y, then stop 
search and accept y, otherwise continue with step 3. 

Step 3 Search the alternative (or one of them, if there are 
several) with the highest reservation price and go 
back to step 1.

The theorem tells us that the reservation prices which are based 
solely on current beliefs are sufficient to determine the optimal sampling 
strategy. The optimality of such a focus on current beliefs might be
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surprising. In fact, using the rate of return interpretation of reservation 
prices from section 3, the rule tells us to sample the alternatives with the 
currently highest returns.

In a learning context information is valuable as well, since it enables 
the searcher to make better search decisions in the future. In general, it 
might therefore be worth to give up payoffs in the short term to obtain 
information that allows to make decisions with a higher payoff in the 
long run.

In the considered search problem there is no such trade-off between 
the information gain and the payoff gain and focusing on the payoff gain 
alone is sufficient to obtain optimality. The reason for this is to be found 
in the restrictions on the learning rules I imposed. They exhibit enough 
monotonicitv to prevent the searcher from optimally going through a 
’payoff-valley’ to potentially reach a higher ’payoff-mountain’ later on.

Obviously, the possibility of strong learning could give an incentive 
to go through the ’payoff-valley’, and therefore I had to rule it out. How­
ever, it is not immediately clear why the remaining learning processes do 
not give such an incentive. To get some intuition on this point consider 
the following example.

Imagine to have two search alternatives, a blue one and an orange 
one. Suppose that at current information both have identical expected 
distribution functions and thereby equal reservation prices. In terms of 
payoffs the boxes are therefore identical. There is, however, only one 
blue box left, while there are still many orange boxes. Sampling the blue 
box therefore; reveals no information on any other search opportunity, 
while sampling an orange box reveals information about all the remaining 
orange boxes. Thus, in addition to the payoff, opening an orange box 
provides information. It therefore seems better to open an orange box 
than to open the blue box.

Surprisingly, the optimal search rule in theorem 1 states that it 
does not matter whether a blue or an orange box is opened first. The 
intuition behind this result can be obtained by considering the rate of
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return interpretation of reservation prices more carefully: Sampling the 
blue box or an orange box has equal rates of return but after sampling an 
orange box, the remaining orange boxes will have a lower rate of return 
(due to A l).13

Reinterpret this search problem as a search problem without learn­
ing (where the benchmark rule is optimal): There are in fact, two boxes 
with a high and equal rate of return, the blue box and the first sampled 
orange box, and many boxes with lower rates of return, the remaining or­
ange boxes. It is irrelevant for determining the sampling order of the first, 
two boxes to know how much lower the rate of return for the remaining 
orange boxes is: We know that it is optimal to sample the boxes with the 
highest reservation rate of return and one can do this two times without 
this knowledge. Or, equivalently, it is sufficient to know the rates of re­
turn for the remaining orange boxes after both high rate of return boxes 
have been sampled and not important to know it already after the first, 
of them has been sampled. Therefore, it does not matter whether the 
blue box or an orange box is sampled first. I will come back to the rein­
terpretation of the search problem with learning as one without learning 
in much more detail in section 4.4.

The optimal sampling procedure above has changed only slightly 
when compared to the benchmark sampling rule. An informed searcher 
had to calculate reservation prices only once, while a learning searcher 
has to permanently adapt them in the light of new information. Step 3 
of the rule therefore points back to step 1. For the rest, the rule remains 
unchanged. This slight change, however, alters optimal search behavior 
substantially, as illustrates the following example.

Example 2 Suppose that there are only two search alternatives, a red 
one and a green one, hut many boxes of each alternative. Boxes have only 
two kinds of outcomes: ’’success”, identified with a payoff etpial to 1, or 
"failure”, identified with- a payoff equal to zero. The true probabilities for

13We abstract here from the possibility that search stops to make the argument as 
simple as possible.
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success and failure for the respective alternatives are indicated in table 3 
below.

Table 3:
payoff 0 1

Red with probability 0.5 0.5
Green with probability 0.7 0.3

In addition, assume a discount factor equal to 1, sampling costs for 
both boxes equal to 0.1 and the value of the outside option equal to 0.

a.) Optim al sam pling stra tegy  under full inform ation
Consider first, the sampling strategy under fidl information. Know­

ing the true probabilities of outcomes, the reservation prices are Kred = 
0.8 and RpTeen =  0.6. Hence, an informed searcher prefers to open red 
boxes and stops with the first success. Suppose that the searcher encoun­
ters a sequence of failures. Optimally, his strategy is to continue opening 
red boxes until they have all been opened and to switch, then to the opening 
of green, boxes. Green boxes are opened until a success is encountered or 
all of them have been searched. Notice the following feature of the optimal 
strategy: Since the ranking of alternatives is constant during the search 
process, the searcher does not switch sampling from, one alternative to 
another, unless there are no boxes of that, alternative left.

b.) Optim al Sam pling S trategy w ith Learning
Now consider a searcher that is uncertain, about the true underlying 

probability distribution and is learning by talcing a convex combination be­
tween his prior distribution and the empirical distribution function (This 
is the second learning rule in section 4-2):

F*(x | X'ri) = (1 - ari)F(x) + ar,H(x | X*rl)

Let the weight on the empirical distribution be aT and the searcher’s 
priors F{x) be unbiased in the sense that they are equal to the true un­
derlying probability function as shown in table 3.
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At the beginning of search, reservation prices arc therefore equal to 
the ones of an informed searcher, but as the searcher makes additional 
observations, they are adjusted doumwards. The ranking of alternatives 
is therefore changing during the search process. The searcher might well 
search green boxes before all red boxes have been opened. Negative results 
from, searching red boxes ’bid’ down, their reservation price and make, 
the searcher believe that green boxes are more interesting. The same 
reasoning applied to green boxes might cause a switch back to sampling 
red boxes again. In further contrast to the full information case, sampling 
might even stop with a failure and not all boxes been searched because 
of beliefs having worsened so much that the outside option looks more 
profitable than continued search.

The previous effects can be seen in table 2 for the above learning ride 
and a sequence of failures. The table reads as follows. The first, column, 
indicates the search, stage, the second the number of so far made observa­
tions of red and green boxes (i.e. the number of observed failures of each), 
the following two columns show the current reservation prices. The last 
column gives the optimal search, strategy according to theorem 1. The 
searcher bids do run reservation prices and switches between sampling red 
and green boxes in response to failures until finally the reservation prices 
of both boxes are so low that the outside option appears more attractive 
than continued search.

Table 2

t jQreen J ffred ĵ green Optimal strategy
0 (0,0) 0.8 0.66 search a red box
1 (1,0) 0.6 0.66 search a green box
2 (1,1) 0.6 0.33 search a red box
3 (2,1) 0.4 0.33 search a red box
4 (3,1) 0.2 0.33 search a green, box
5 (3,2) 0.2 0.0 search a red box
6 (4,2) 0.0 0.0 stop search and take outside option
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In this section I explain why the benchmark rule generalizes to the case 
with learning. The argument is quite abstract but the general idea is as 
follows: To the original search problem with learning P  one can construct 
an equivalent search problem Pe without learning in the following sense: 
To any search rule S  of the original problem exists a corresponding search 
rule Se, such that Se yields in Pe the same payoff as S  in P. It follows 
that the optimal rule S* for the original problem P  is then just the rule 
corresponding to the optimal rule Se" in Pe (given the corresponding rule 
S* to Se' exists). It is easy to show that the optimal rule Sc' in Pe is 
the benchmark rule. One can show that the rule 5* corresponding to Sr' 
exists and is just the generalization of the benchmark rule found to be 
optimal in theorem l .14

4.4 An Equivalent Search Problem

Consider a search problem with learning P. P  is described by the 
number I  of alternatives, the numbers M* of boxes of each alternative 
i = 1 prior beliefs and the learning rule. A sampling rule S  for P 
is a mapping from the set of available information (Xr\ , X f2, . . .  X ) to 
the set of integers {0,1,... /}, where S  = 0 indicates to stop search and 
S  = i for i > 1 indicates to continue search with an i-box.

At the beginning of search the M l boxes of alternative i have an 
expected distribution function F ’(•) and an associated reservation price 
/?),. As soon as one ?-box has been opened, the expected distribution 
of outcomes for the remaining M* — 1 boxes from i becomes P(-|x5) 
and the associated reservation price F {x\). If still another box of this 
alternative is opened, then the remaining M l — 2 boxes from alternative 
i have expected distribution and associated reservation price
Ri(x \,x t2), etc.

Alternatively, one could interpret the previous observations as fol­

14What follow s is basically a sketch of an alternative proof for the optimality of the 
sampling strategy of theorem 1.
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lows: In fact, the searcher has only one box with reservation price 
(after sampling one i-box the reservation price of the remaining f-boxes 
changes), one box with reservation price R ( x \ ), another one with Rl (x\, x '.2) 
and so on.

Based on this alternative interpretation I will construct the equiv­
alent search problem Pe: There is an equal number of boxes as in P. 
namely M 1. The first M 1 boxes in Pe have reservation prices

R^,  R 1 («;}), #*(«;}, w }2) , . . . , R \ w ] , w}2.....«;](,>_,)
respectively, where the R (-)  are the reservation price functions of 1- 
boxes in P. For the moment take the values wj as given. From assump­
tion A l we know that (for any values of the w)) reservation prices of the 
boxes can be ordered as13

Rj> > R \w \)  > R \ w\ , w}2) > .. .  > R l(w\,w}i , . . . ,w \ , l_i)

Similarly, let the next M 2 boxes in Pe have reservation prices

R% > R 2(w2) > Ri (w'j, w\) > . . .  > R2(w i, w\ , . . . ,  ui\,i_,)

Continue to assign reservation prices to boxes in the above manner until 
each box in Pe got one reservation price.

For simplicity, I will refer to the first M 1 boxes in P’ also as ”1- 
boxes” (always in quotation marks), to the next M 2 boxes as ”2-boxes”, 
etc., since their reservation price functions correspond to the respective 
alternatives in P. Notice that for given values wj, P r is the benchmark 
search problem and hence the benchmark strategy is the optimal sam­
pling rule.

Consider the M l ’’alternative ? boxes” in Pe and suppose the fol­
lowing informational structure: At the beginning of search the values wj 
are unknown to the searcher. /?), is hence the only known reservation lo *

loWe ignore the potential increase in the reservation price admitted by A 1 because
it leads to termination of search.
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price of ”?'-boxes” . However, it is known to the searcher that, whatever 
the value of the w), the remaining ”?-boxes” have some lower reservation 
value ordered as listed above.

As search proceeds the searcher observes gradually the variables re’. 
The first value w\ is observed after the first ’’/-box” with reservation price 
Rl has been opened and after the second with R?{w\) has been opened, 
and so on. In short, the searcher knows only the reservation price of the 
best unopened box of each ’’alternative” . The reservation price of tl«? 
next best box of some ’’alternative” is revealed only after the previously 
best box of the same ’’alternative” has been opened. The information 
available to the searcher is sufficient to execute the benchmark rule in 
Pe, since the highest reservation price is just the reservation price of the 
best of all best ”t-boxes”.

As already mentioned for given sequences the benchmark rule is 
clearly optimal. However, I am interested in stochastic sequences, since 
the x'j in P  are stochastic as well. For stochastic w \,w \,. . .  the
optimality of the benchmark rule in Pe is in general not guaranteed. If the 
distribution of the could be influenced bv sampling decisions, then the 
searcher could change the expected reservation prices of closed boxes and 
thereby the value of search. However, as long as the stochastic nature of 
the sequences can not be influenced by the searcher’s sampling decisions, 
it is optimal to sample according to the benchmark rule because it is 
optimal to do so for all given sequences.16

To make Pr equivalent to P  it remains to specify a particular dis­
tribution for the w'y This can be done by choosing the w \,w \, . . . ,  w\,i_ j  

to have a true distribution equal to the expected distribution of the 
x \,x \ , ■ ■ . ,x \ j i_l in P , i.e. u;\ to be drawn from F ’(-), w\ from ,P(-|u;5),

l6The assumption that the distribution of the tej can not be influenced by the 
searcher will be important when considering in the next section the potential opti­
mality of the search rule with more general learning rules.
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w'3 from F(-|ti/J,w!2), and so on.17 
following sense:

P' is now equivalent to P  in the

i. There is an ’informational’ equivalence: Having sampled rl times
’’/-boxes” in Pe the searcher has observed IF , = w], iv\----
while when having sampled r ! times /-boxes in P  the searcher has 
observed X lri = x \ ,x l2, . . .  ,x lr,.

ii. Suppose that IF;, has been observed in Pe and the same sequence 
X lTi =  W ’i in P. Then the reservation price of the best ’’/-box” in 
Pe is equal to the reservation price of all /-boxes in P.

iii. Suppose that l-F, has been observed in Pe and the same sequence 
X lr, =  IF1, in P. Then opening the best ’’/-box” in Pe has (objec­
tive) expected utility equal to the (subjective) expected utility of 
opening an /-box in P.

iv. The (objective) probability to observe some particular sequence 
W*i in Pe equals the (subjective) probability to observe the same 
sequence X*, =  IF!, in P.

It is now easy to define a sampling rule Sc corresponding S. Sc 
must be the same as S  but evaluated at TFr\ , lFr22, . . . ,  IF"„ and specifying 
to sample the best ’’/-box”, whenever S  would specify to sample some 
/■-box, i.e. Sc = S(VFr\ , , . . . ,  H7r" ) with Se = 0 indicating to stop
search and Se =  i with / > 1 indicating to sample the best ’’/-box”. From 
observations (3) and (4) above should be clear that Se in Pc achieves an 
(objective) expected payoff equal to the (subjective) expected payoff of 
5  in P.

The optimal search rule Se' in Pe is the benchmark rule which 
states to sample the best of all best ’’/-boxes” . The optimal rule S* in

17Clearly, with such a specification the distribution of any w'j is independent from 
sampling decisions.
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P  must be the rule corresponding to Sr .ls From the above definition 
is easily seen that the strategy 5* corresponding to Sc' is to sample the 
search alternative with the currently highest reservation price which is 
precisely the optimal sampling rule from theorem 1.

5 Limitations and Extensions

In this section I discuss the possibility to generalize the class of admitted 
learning rules such that the search rule of theorem 1 preserves its optimal­
ity. I mainly consider a relaxation of the assumption on the independence 
of boxes from different alternatives, since it is the most restrictive and 
unrealistic one. Unfortunately, the optimality of the proposed search rule 
turns out to be relatively sensitive to it.

The following simple example shows that in general the proposed 
sampling strategy is not optimal when the reservation price of some 
search alternative is affected by the search outcomes of another alter­
native.

Exam ple 3 Suppose that there are only two alternatives, red and green, 
and only one box of each alternative.18 19 Currently, the searcher’s expected 
payoff distributions of the respective alternatives are as given in table 4 
below. Assume the current best offer to be y = 0.5. Without discounting 
and search costs equal to 0.1 for both alternatives, the reservation prices 
are R 1 =  0.7 and R2 =  0.65 for alternative 1 and 2, respectively.

Suppose that the searcher first, samples a red box, as theorem 1 sug­
gests. Furthermore, suppose that learning is such that the new reservation

18The optimality of R" in P  follows from the following considerations: The expected 
value of search in P e can take on at least all expected values of P,  since to every R 
in P  there exists a corresponding Re in P e taking on the same value. Therefore, if a 
R* corresponding to Re* exists it must be optimal in P.

19With only one box of each type learning can take place only across different types 
of boxes.
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Table 4:
Red payoff 0 0.5 1

with probability 1 1
3 1i?

Green payoff
with probability

0
i

0.6
l

_1__

0.95 

J i___

price of the green box drops below 0.5 when the outcome of the red box is 
0 or 0.5 and that it is anything smaller than 1 if the outcome of the red 
box is 1. Interpret this as low outcomes of the red box revealing that low 
outcomes of the green box are more likely to occur.

With these assumptions search optimally stops after sampling the 
red box, independently from the search result. The new reservation price 
of the green box is always below the new best offer and a sampling of 
the green box would result in an expected loss.20 The expected payoff of 
sampling the red box first, is therefore |0.5 +  | l  =  §.

Consider the alternative strategy of opening the green box first and 
stopping search thereafter. The expected payoff is |0.5 +  |0.0 + ^0.95 = 
0.683 > Clearly, opening the red box first is not optimal although its 
reservation price is higher than that of the green box.

To see why the sampling rule might be sub-optimal in this more 
general setting consider the equivalent search problem Pc to the original 
search problem P  I constructed in section 4.4. For the benchmark rule 
to be optimal in the Pe (and its corresponding rule in P), it was crucial 
that the searcher could not influence the distribution of the sequences 
w \,w \ , . . . ,w'Kli_j by his sampling decisions. In the above example this 
assumption is not fulfilled. By sampling the red box the distribution of 
the green box changes. The benchmark sampling rule is therefore not 
necessarily optimal in Pe. The same holds in turn for its corresponding 
rule in P.

20This is easily verified looking at the definition of the reservation price.
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In one special case the optimal sampling rule generalizes to depen­
dent alternatives. Recognize that theorem 1 requires only the reservation 
prices R1 of i-boxes not to depend on observations x] of j-boxes (j /  i).

This is not equivalent with the expected payoff distributions F 1 
being independent from x3. It is possible that observations of j-boxes 
affect the distribution F l without changing Ri. Clearly, as long as x3 
leaves the values of F' above the current best offer y unchanged, then 
the reservation price R of t-boxes will be unaffected, given that R' > y. 
If R  < y, then R  might change but R1 < y will hold also after the 
change.21 Since boxes with reservation prices below the current best offer 
are irrelevant for the search problem and all reservation prices above the 
best current offer are unaffected, this special case of dependent boxes is 
covered by theorem 1.

6 Conclusions

This paper constructed the optimal sampling strategy for a search prob­
lem where the searcher faces different search alternatives and is learning 
about these alternatives during the search process. I thereby unified 
and generalized two kinds of earlier contributions: search problems with 
learning but identical search opportunities and search problems with dis­
tinguishable search alternatives but without learning.

The optimal sampling rule is characterized by a simple reservation 
price criterion. The rule implies that search opportunities with higher 
reservation prices should be sampled before ones with lower reservation 
prices. In contrast to the full information case, the ordering of different 
search alternatives in terms of reservation prices keeps changing during 
the search process. Learning therefore makes a substantial difference 
for the optimal sampling order. At the same time the sampling rule 
retains its simple structure and learning can be accounted for without 
complicating the analysis.

■'To verify these claims simply check the definition of the reservation price.
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The independence of different search alternatives has been found to 
be crucial for the optimality of the sampling rule and finding conditions 
on the learning process that allow for an extension of the results to the 
case of dependent search alternatives is left for future research.
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7 Appendix

Lem ma 2 I f either /3, < 1 or Cj > 0 .  then a unique reservation price 
exists.

Proof of Lemma 2: The function •) is continuous, differ­
entiable and decreasing.

^  -  ( i -  A) (3)

=  A y ~ - i d F y p $ )  (4)

-  [(** -  y)dFi(x<|X;i)]li=v -  (1 -  ft) (5) 
= -A ( l -  (̂|/|X̂ 0) -  (1 “  A) (6)
< 0 (7)

Since

Q'(X*i, -oc) =  

Q ^ . + o c )  = f —oo if /3f <  1 1
\  -C* if A =  i  /

( 8)

(9)

a solution exists. If /?* < 1, then < 0 and the solution is also
unique. If /?. =  1, then ^ Q1 < 0 only if ,P(y|X*i) < 1. With c' > 0 
this is guaranteed at the reservation price: F,(F t(X lrI)\X lr,) = 1 implies 
q *(x *. # (* ; .) )  < 0 which contradicts the definition of the reservation 
price.■

P roof of Theorem  l :22 I begin by proving the optimality of the 
stopping rule (i.e. step 2 of the theorem). If there is some i-box with

—T he proof owes th e  construction o f the strategy S  to  W eitzm an [21]. 
A n alternative proof along the lines o f section 4.4 could be given reducing 
th e  problem  to  one w here W eitzm an’s results apply. However, since he 
did not consider the case of infinitely many search boxes, we would then  
not cover this case.
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R' > y (Ri < y), then the one period gain Q' > 0 (Q’ < 0). Therefore, 
as long as there is some closed t-box with Rl > y  stopping cannot be 
optimal, since opening an ?-box and stopping then gives already a higher 
payoff. If all closed boxes have a reservation value below ?/, then A1 
insures that reservation prices will also be below the best offer in all 
future search steps. Gains from continued search will always be negative 
and stopping is therefore optimal.

Suppose that 5  is a sampling rule where stopping is optimal as 
derived above. In addition, suppose that S  specifies at some search stage 
to sample a k-box with reservation price Rk and in case that the stopping 
rule prescribes continuation in the next search step an /-box with Rl > 
Rk. I will show that S  cannot be optimal. To do so I will construct, an 
alternative sampling rule S' and show that S' has higher expected valued 
than S. S' is like S  but interchanges the sampling order such that the 
box with the higher reservation price Rf is sampled first and the one with 
the lower reservation price Rk thereafter.23 24

Before constructing S' and proving the claim I have to introduce 
some notation. At the search stage where S  specifies to sample a k-box, 
let the previous observations of search outcomes be {X 'f} and the 
current best offer y =  max { XJ,, X*2 ■ ■ ■ X ' , }. Define

RJ = max R‘(X t.)
ilr‘<M‘ r

— max

j-boxes have currently the highest reservation price of all closed boxes 
and h-boxes are the ones that have the highest reservation price after one 
j-box has been sampled and the search outcome been observed.2,1 
h may depend on because the decrease of the reservation price of 
j-boxes depends on

23Notice that the sampling order of S  is feasible, k =  l is not possible, since 
reservation prices fc-boxes tire decreasing with additional information. Therefore, the 
box with the reservation price R1 is already available before having sampled the fc-box.

24r' < M 1 is a condition insuring that there is still an unopened i-box.
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By assumption we know that

Rk(X*k) < R,(X lT,) < R3

We should distinguish two eases: / /  j  and l = j .  The first case is the 
easier one: The highest reservation price R3 remains unaffected by the 
sampling of a k- and an /-box. The optimal stopping criterion is therefore 
the same in both search stages: Stop if the current best offer is larger 
than R3 and continue otherwise. In the second case the best reservation 
price drops to Rhl'x1̂  after sampling the /-box (/ =  j). The stopping 
criterion therefore changes when sampling the /-box. I will only consider 
this more complicated case.2’

Recall that the rule S  specifies to sample first a k-box and in case of 
continuation a j - box with the stopping decision being optimal as derived 
above. Figure la gives a graphical representation of the strategy for the 
first tw'o search steps. Depending on the search outcome several cases can 
be distinguished that are represented by branches. The values written at 
the end of these branches represent the payoffs for the respective cases. 
If search outcomes fall into the case represented by the lowest branch, 
then search continues. 4> represents the value of continued search with 
rule S  for this case.

The proposed alternative strategy S' differs from 5  for the first 
two search steps but is identical to S  for later search steps: S  speci­
fies to first sample a j-box (instead of a A;-box). If the new best offer 
max {y, .rA^} > then S' specifies to stop search. Otherwise it
prescribes to sample a k-box and to continue as prescribed by the rule S. 
Figure 2a represents the sampling rule S' graphically. Again, $  repre­
sents the value of continued search with rule S  when search is optimally 
continued. This value is the same as the value of search with rule S  
because by definition S  equals S  for all steps after the second.

The following notation will prove useful to calculate the expected 
payoffs of S  and S  :

2oThe results for the first cast: can be obtained by replacing j  by I and by
IV in the following.
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IF = Pr(x^+I > Rj ) 
n j =  Pr(xF+1 > IF)
Xk = Pr(IF > xkk^  > Rhi< ^ )) 
Xj = Pr(IF > xF+] > Rh{lJ->-')) 
fik = Pr(flM̂ +>) > xkk+, > Rk)

wk
W3
Vk

V3 

,,fc

= E  
=  E  
= E  

= E  

= E  

= E

xkk+1\xkk+1 > Rj]
4 +i l 4 +i ^  R]}
max {xJ^j.y} \R? > xj*+, > I?M* ^ ‘) 

max {x^+.,?/} |JF > xF+1 > fih(x̂ +‘) 

x*t+I|IF>x*t+1 > R h(< ^ '  

xkk+1\Rh{xĵ ^ ] > xkk+l > Rk

d

$

= E m ax{xjj+1 ,x**+1,j/j  |RP > xkk+l > Rh

Rj > zii+, >
=  E  [<F(S\ {j,fc} ,max{xÀ+1,x*t+1, 2/} ,S|7?Mt^+«) > x£k+),

Rh(< ^ ) > xi,W-I
All probabilities and expectation operators are conditional on the 

information {X^ }j . The function $ (S \ {j, A:}, max {xF+1,x*k+1,j/} , S) 
represents the value of continued search when the set of closed boxes is 
5  less one j-  and one A:-box, the best offer is max { xL+j, xkk+1,y}  and 
the sampling rule S  or S ' . Figures lb  describes the probabilities and the 
expected payoffs of strategy S  for the cases distinguished in Figures la 
using the above notation. Similar does Figure 2b for strategy S' and the 
cases of Figure 2a. Looking at these figures reveals that the expected 
payoffs of the strategies S  and S' are

S  = - c k + j3kHkwk +  Xkpk( -c j +  IP/FV +  X’f td  (10)
+(1 -  IF -  A')/Fr*) + ( 1  -  nfc -  Ak),3k(-c> + iF/FV (11) 
+Xj/ y p  + (1 -  IF -  Aj)/F<I>) (12)

S' = -c? + IF/FV + AJ/FV + (1 -  IF -  A>)/F(-c* + nfc/?M l3)
+Xkpkwk 4- (1 -  iF -  Xk)(3k$) (14)
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The payoff difference between 5  and 5 is

S' - S  = (ck -  n k,3ku-k) (1 -  (1 -  IF -  \ 3)33)
-  (c* -  rF/Fu*>) (i -  (i -  nfc)/?*) -  d
+(i -  (i -  n* -  x k)3k)xj p3 (15)

From the definition of the reservation prices we have

c3 = W 3i {w3 -  R3) -  (1 -  Pj )Rj (16)
ck = 3k(Uk(wk -  Rk) + Xk{vk -  Rk)

+tik(uk -  Rk)) -  (1 -  pk)Rk (17)

Substituting (16) and (17) into (15) gives:

s' - s = (Rj -  Rk){i -  pi{i -  iF ))(i -  ^ * ( 1  -  iF))
+(vk -  Rk)(Xkpk{l -  pj { 1 -  IF)))
+ (p  -  Rk)(x3pj {i -  pk{i -  iF)))
+(uk -  Rk)(/ikpk(l -  pj { 1 -  IF -  X3)))
+(P + vk -  Rk -  d)XkPkX3P3 (18)

=  E  

< E

max |m ax {a£,+1,y} -  R h(x̂ *
+ R h K > +P  | r j  >  x kk_ j >  R hix3r i + l\ R j  >  x F +1 >  R h{xlr U i  

max {a^+1,y} -
Rh(<uP  | Rj > xkk+l > Rh(̂ ^ ],R 3 > x3rUl > Rh(z’n+,

v3 +  v1
■k > r!

| R3 > xkk+1 > R1lhi< ^ \ R 3 > x ij+l+Rhi<’ 
vk
R h(* ^ + i)|Rj > xkk+l >  Rj > xij+1 > R ^ u P
.k Ofc< v3 +  vk -  Rk

The last inequality is due to the fact that by definition R ^  ri+̂  > Rk for 
any realization of x?rJ y  Therefore, any term in (18) is greater or equal 
zero with the first term being strictly greater than zero. This proves the 
sub-optimality of any strategy of the form S. Optimal strategies must
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sample boxes in the order of decreasing reservation prices. However, 
this does not mean that at each search stage the box with the highest 
reservation price has to be sampled as the theorem prescribes. I will turn 
attention to this point in the following.

Suppose T  is a sampling rule that stops according to the optimal 
stopping rule and samples boxes in order of decreasing reservation prices. 
However, suppose that T  specifies at some search stage not to sample 
the box with the currently highest reservation price. I will show that T 
cannot be optimal by proving that there exists a strategy T  that has a 
higher expected value.

Suppose again that available observations are {X lr i} '  t and that 
j-boxes have the highest reservation price equal to R3. T  specifies to 
sample a fc-box with Rk < R3. Thereafter (in case of continued search),
T  prescribes to sample Z,m,n,. . .-boxes with Rk > Rl > Rn‘ > R" >
__26 Since a sampling of a j -box is incompatible with the assumption
of sampling in order of decreasing reservation prices, j-boxes will never 
be sampled. The optimal stopping rule then implies that search stops 
only if y > R3. To calculate the expected value of search rule T  define 
for a  =  j, k, l, m ,..

H“ =  Pr(x?a+#Q > Rj )
wa = E  [x“«+#a\x%+1 > R3)

where # «  is the number of alternative a-boxes in the sequence k , /, rn,... a.27 
n a is the probability that search stops when sampling box a. wa is the 
expected value of xa given that search stops.28

The expected value of T  is easily calculated to be

T  =  [-c* +

26?n might depend on the outcome ^ * + 1’ sbriiltirly the types might depend
on previous observations. For notational simplicity, we will ignore this dependence.

27Remember that each alternative k, l. m , . . .  is a number from the set {1,2, . . .  /} . 
For example, if a  =  n and k, l , m,  n — 1.4,3,4 then # a  =  2, i.e. it is the second box 
of alternative 4.

■^Probabilities and expectations are again conditional on the available information

W l L r
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(19)

+3k( i -  n*) [ - ê  + p n  V ]
+/?*(i -  n k)fi(i  -  n ') [-cm + 3 mn mì um]
+/3fc(i -  n*)/ÿ(i -  n ') / r ( i  -  i r )  [~cn + , n \ - n]
+ . . .

Now consider the following alternative strategy T '. T' uses the same 
stopping rule as T : Stop if y > R3 and continue otherwise. However, 
T' samples first a j-box and then (in case of continuation) k, l, m ,n , ... 
boxes. The expected value of T  is

t ' = [-e* +  ^ n v ]  + &{! -  IF)T

Remembering from the definition of the reservation price that

c“ = ,3nn a{wa -  Rj ) + P°X°(va -  Ra) -  (1 -  /T )!?  (20)

where

AQ = P r ( t f  > a £ Tl_# 0 > f l “) 
l'a = E >  Xr“ -l-#a —

I can calculate the payoff difference between T  and T  to be

T' - T  = [—c* + ft Wui3} + [ft{1 -  IF) -  1] T (21)
= f tw ft  + (i -  ft)Rj + [ft{ i -  if ) -  i] t  
= [ft{W -  1) + 1] (R3 -  T)

The first bracket, in the last line of (21) is strictly positive.29 It remains 
to show that Rj > T. Substituting (20) into (19) and recognizing that

"From the definition of tho reservation price we have I1J > 0.
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3aXQ(ra -  Ra) > 0 we obtain

T = [/3kn kRk 4- (1 -  3k)Rk -  Pk\ k{vk -  Rk)]
+3k(l -  Uk) [3lU‘R' + (1 -  3‘)R‘ ~ 3lX!(r' -  /?')] 
+3k (i -  nfc)/?'(i -  n') [ / r r r  4- (i -  3m)Rm
—/3m\ m(vm -  Rm)}
■+■ • • •

< [3kUkRk + (1 -  pk)Rk]
+3k{i -  nfc) [3ln lRl 4- (1 -  3‘)R'}
+3k{i -  nfc)/?'(i -  n') [3mn mRm 4- (1 -  3m)Rm]
4* • • •

= [1 -  3k(i -  n k)] Rk + 3k{ 1 -  nfc) [1 -  ..̂ (1 -  n')] n ‘ 
+3k(i -  u k)3l(i -  n') [1 -  3m( 1 -  nm)] Rm

Defining
= /9“(1 -  na) > 0

we can write

T  =  [l -  sfc] Rk 4- sk [1 -  sl] Rl 4- sksl [1 -  sm] R m + ... 
=  Rk + sk[(R! -  Rk) +sl[{Rm -  Rl) 4-.sm[...

'----- -̂----- '-----v----- '
<0  <0

< Rk
< R]

Thus (21) is strictly positive and strategies of the form T  cannot be 
optimal.

The only strategy that is not of the form 5  or T  and that has not 
been proven to be suboptiinal is the sampling strategy of theorem 1. It 
uses the optimal stopping rule, samples boxes in the order of decreasing 
reservation prices and always chooses the box with the highest reservation 
price. Since an optimal strategy exists (either due to the finiteness of 
expectations in the case of a finite number of search opportunities or 
due to the assumption of finite variance in the case of infinitely many 
search opportunities, see DeGroot [2] chap. 12 and 13), this establishes 
the optimality of the proposed rule.B
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