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Abstract

Classical Gaussian maximum likelihood estimation of mixed vector autoregressive
moving-average models is plagued with various numerical problems and has been con-
sidered difficult by many applied researchers. These disadvantages could have led to
the dominant use of vector autoregressive models in macroeconomic research. Therefore,
several other, simpler estimation methods have been proposed in the literature. In this
paper these methods are compared by means of a Monte Carlo study. Different evaluation
criteria are used to judge the relative performances of the algorithms.
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1 Introduction

Although vector autoregressive moving-average (VARMA) models have theoretical and prac-

tical advantages compared to simpler vector autoregressive (VAR) models, VARMA models

are rarely used in applied macroeconomic work. One likely reason is that the estimation of

these models is considered difficult by many researchers. While Gaussian maximum likeli-

hood estimation is theoretically attractive, it is plagued with various numerical problems.

Therefore, simpler estimation algorithms have been proposed in the literature that, however,

have not been compared systematically. In this paper some prominent estimation methods for

VARMA models are compared by means of a Monte Carlo study. Different evaluation criteria

such as the accuracy of point forecasts or the accuracy of the estimated impulse responses

are used to judge the algorithms’ performance. I focus on sample lengths and processes that

could be considered typical for macroeconomic applications.

The problem of estimating VARMA models received a lot of attention for several rea-

sons. While most economic relations are intrinsically nonlinear, linear models such as VARs

or univariate autoregressive moving-average (ARMA) models have proved to be successful in

many circumstances. They are simple and analytically tractable, while capable of reproducing

complex dynamics. Linear forecasts often appear to be more robust than nonlinear alterna-

tives and their empirical usefulness has been documented in various studies (e.g. Newbold

& Granger 1974). Therefore, VARMA models are of interest as generalizations of successful

univariate ARMA models.

In the class of multivariate linear models, pure VARs are currently dominating in macroe-

conomic applications. These models have some drawbacks which could be overcome by the use

of the more general class of VARMA models. First, VAR models may require a rather large

lag length in order to describe a series “adequately”. This means a loss of precision because

many parameters have to be estimated. The problem could be avoided by using VARMA

models that may provide a more parsimonious description of the data generating process

(DGP). In contrast to the class of VARMA models, the class of VAR models is not closed

under linear transformations. For example, a subset of variables generated by a VAR process
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is typically generated by a VARMA, not by a VAR process. The VARMA class includes many

models of interest such as unobserved component models. It is well known that linearized

dynamic stochastic general equilibrium (DSGE) models imply that the variables of interest

are generated by a finite order VARMA process. Fernández-Villaverde, Rubio-Ramı́rez &

Sargent (2005) show formally how DSGE models and VARMA processes are linked. Also

Cooley & Dwyer (1998) claim that modelling macroeconomic time series systematically as

pure VARs is not justified by the underlying economic theory. In sum, there are a number of

theoretical reasons to prefer VARMA modelling to VAR modelling. However, there are also

some complications that make VARMA modelling more difficult. First, VARMA representa-

tions are not unique. That is, there are typically many parameterizations that can describe

the same DGP (see Lütkepohl 2005). Therefore, a researcher has to choose first an identi-

fied representation. In any case, an identified VARMA representation has to be specified by

more integer-valued parameters than a VAR representation that is determined just by one

parameter, the lag length. Thus, the search for an identified VARMA model is more com-

plex than the specification of a VAR model. This aspect introduces additional uncertainty in

the specification stage, although specification procedures for VARMA models do exist which

could be used in a completely automatic way (Hannan & Kavalieris 1984b, Poskitt 1992). An

identified representation, however, is needed for consistent estimation.

Apart from a more involved specification stage, the estimation stage is also affected by

the identification problem. The literature on estimation of VARMA models focussed on

maximum likelihood methods which are asymptotically efficient (e.g. Hillmer & Tiao 1979,

Mauricio 1995). However, the maximization of the Gaussian likelihood is not a trivial task.

Numerical problems arise in the presence of nearly not-identified models, multiple equilibria

and nearly non-invertible models. In high-dimensional, sparse systems maximum likelihood

estimation may become even infeasible. In the specification stage one usually has do examine

many different models which turn out not to be identified ex-post.

For these reasons several other estimation algorithms have been proposed in the litera-

ture. For example, Koreisha & Pukkila (1990) proposed a generalized least squares procedure.

Kapetanios (2003) suggested an iterative least squares algorithm that uses only ordinary least
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squares regressions at each iteration. Recently, subspace algorithms for state space systems,

an equivalent representation of a VARMA process, have become popular also among econo-

metricians. Examples are the algorithms of Van Overschee & DeMoor (1994) or Larimore

(1983).1 While there are nowadays several possible estimation methods available, it is not

clear which methods are preferable under which circumstances. In this study some of these

methods are compared by means of a Monte Carlo Study. Instead of focussing only on the ac-

curacy of the parameter estimates, I consider the use of the estimated VARMA models. After

all, a researcher might be rather interested in the accuracy of the generated forecasts or the

precision of the estimated impulse response function than in the actual parameter estimates.

I conduct Monte Carlo simulations for four different DGPs with varying sample lengths and

parameterizations. Five different simple algorithms are used and compared to maximum like-

lihood estimation and two benchmark VARs. The algorithms are a simple two-stage least

squares algorithm, the iterative least squares procedure of Kapetanios (2003), the generalized

least squares procedure of Koreisha & Pukkila (1990), a three-stage least squares procedure

based on Hannan & Kavalieris (1984a) and the CCA subspace algorithm by Larimore (1983).

The obtained results suggest that the algorithm of Hannan & Kavalieris (1984a) is the only

algorithm that reliably outperforms the other algorithms and the benchmark VARs. However,

the procedure is technically not very reliable in that the algorithm very often yields estimated

models which are not invertible. Therefore, the algorithm would have to be improved in order

to make it an alternative tool for applied researchers.

The rest of the paper is organized as follows. In section 2 stationary VARMA processes

and state space systems are introduced and some identified parameterizations are presented.

In section 3 the different estimation algorithms are described. The setup and the results of

the Monte Carlo study are presented in section 4. Section 5 concludes.
1See also the survey of Bauer (2005b).
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2 Stationary VARMA Processes

I consider linear, time-invariant, covariance - stationary processes (yt)t∈Z of dimension K that

allow for a VARMA(p, q) representation of the form

A0yt = A1yt−1 + . . . + Apyt−p + M0ut + M1ut−1 + . . . + Mqut−q (1)

for t ∈ Z, p, q ∈ N0. The matrices A0, A1, . . . , Ap and M0,M1, . . . ,Mq are of dimension

(K ×K). The term ut represents a K-dimensional white noise sequence of random variables

with mean zero and nonsingular covariance matrix Σ. In principle, equation (1) should contain

an intercept term and other deterministic terms in order to account for random series with

non-zero mean and/or seasonal patterns. This has not been done here in order to simplify the

exposition of the basic properties of VARMA models and the related estimation algorithms.

For most of the algorithms discussed later, it is assumed that the mean has been subtracted

prior to estimation. We will also abstract from issues such as seasonality. As will be seen

later, we consider models of the form (1) such that A0 = M0 and A0, M0 are non-singular.

This does not imply a loss of generality as long as no variable can be written as a linear

combination of the other variables (Lütkepohl 2005). It can be shown that any stationary

and invertible VARMA process can then be expressed in the above form.

Let L denote the lag-operator, i.e. Lyt = yt−1 for all t ∈ Z, A(L) = A0−A1L− . . .−ApL
p

and M(L) = M0 + M1L + . . . + MqL
q. We can write (1) more compactly as

A(L)yt = M(L)ut, t ∈ Z. (2)

VARMA processes are stationary and invertible if the roots of these polynomials are all outside

the unit circle. That is, if

|A(z)| 6= 0, |M(z)| 6= 0 for z ∈ C, |z| ≤ 1

is true. These restrictions are important for the estimation and for the interpretation of

VARMA models. The first condition ensures that the process is covariance-stationary and
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has an infinite moving-average or canonical moving-average representation

yt =
∞∑

i=0

Φiut−i = Φ(L)ut, (3)

where Φ(L) = A(L)−1M(L). If A0 = M0 is assumed, then Φ0 = IK where IK denotes an

identity matrix of dimensions K. The second condition ensures the invertibility of the process,

in particular the existence of an infinite autoregressive representation

yt =
∞∑

i=1

Πiyt−i + ut, (4)

where A0 = M0 is assumed and Π(L) = IK−
∑∞

i=1 ΠiL
i = M(L)−1A(L). This representation

indicates, why a pure VAR with a large lag length might approximate processes well that are

actually generated by a VARMA system.

It is well known that the representation in (1) is generally not identified unless special

restrictions are imposed on the coefficient matrices (Lütkepohl 2005). Precisely, all pairs

of polynomials A(L) and M(L) which lead to the same canonical moving-average operator

Φ(L) = A(L)−1M(L) are equivalent. However, uniqueness of the pair (A(L), M(L)) is

required for consistent estimation. The first possible source of non-uniqueness is that there are

common factors in the polynomials that can be canceled out. For example, in a VARMA(1, 1)

system such as

(IK −A1L)yt = (IK + M1L)ut

the autoregressive and the moving-average polynomial cancel out against each other if A1 =

−M1. In order to ensure a unique representation we have to require that there are no common

factors in both polynomials, that is A(L) and M(L) have to be left-coprime. This property

may be defined by introducing the matrix operator [A(L),M(L)] and calling it left-coprime

if the existence of operators D(L), Ā(L) and M̄(L) satisfying

D(L)[Ā(L), M̄(L)] = [A(L),M(L)] (5)
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implies that D(L) is unimodular.2 A polynomial matrix D(L) is called unimodular if its

determinant, |D(L)|, is a nonzero constant that does not depend on L. Then D(L) can only

be of finite order having a finite order inverse. This condition ensures just that a representation

is chosen for which further cancelation is not possible.

Still, the existence of many unimodular operators satisfying equation (5) cannot generally

be ruled out. To obtain uniqueness of the autoregressive and moving-average polynomials

we have to impose further restrictions ensuring that the only feasible operator satisfying

the above equation is D(L) = IK . Therefore, different representations have been proposed

in the literature (Hannan & Deistler 1988, Lütkepohl 2005). These representations impose

particular restrictions on the coefficient matrices that make sure that for a given process

there is exactly one representation in the set of considered representations. We present two

identified representations which are used later.

A VARMA(p, q) is in final equations form if it can be written as

α(L)yt = (I + M1 + . . . + MqL
q)ut,

where α(L) := 1 − α1L − . . . − αpL
p is a scalar operator with αp 6= 0. The moving-average

polynomial is unrestricted apart from M0 = IK . It can be shown that this representation

is uniquely identified provided that p is minimal (Lütkepohl 2005). A disadvantage of the

final equations form is that it requires usually more parameters than other representations

in order to represent the same stochastic process and thus might not be the most efficient

representation.

The Echelon representation is based on the Kronecker index theory introduced by Akaike

(1974). A VARMA representation for a K-dimensional series yt is completely described by

K Kronecker indices or row degrees, (p1, . . . , pK). Denote the elements of A(L) and M(L)

as A(L) = [αki(L)]ki and M(L) = [mki(L)]ki. The Echelon form imposes zero-restrictions
2[A, B] denotes a matrix composed horizontally of two matrices A and B.
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according to

αkk(L) = 1−
pk∑

j=1

αkk,jL
j ,

αki(L) = −
pk∑

j=pk−pki+1

αki,jL
j , for k 6= j,

mki(L) =
pk∑

j=0

mki,jL
j with M0 = A0 ,

for k, i = 1, . . . , K. The numbers pki are given by

pki =





min{pk + 1, pi}, if k ≥ i

min{pk, pi}, if k < i
k, i = 1, . . . , K,

and denote the number of free parameters in the polynomials, αki(L), k 6= i. Again, it can

be shown that this representation leads to identified parameters (Hannan & Deistler 1988).

In this setting, a measure of the overall complexity of the multiple series can be given by the

McMillian degree
∑k

j=1 pj which is also the dimension of the corresponding state vector in

a state space representation. Note that the Echelon Form with equal Kronecker indices, i.e.

p1 = p2 = . . . = pK , corresponds to a standard unrestricted VARMA representation. This

is one of the most promising representations, from a theoretical point of view, since it often

leads to more parsimonious models than other representations.

There is also another representation of the same process which is algebraically equivalent.

Every process that satisfies (1) can also be written as a state space model of the form

xt+1 = Axt + But, (6)

yt = Cxt + ut,

where the vector xt is the so-called state vector of dimension (n×1) and A (n×n), B (n×K),

C (K × n) are fixed coefficient matrices. Generally, the state xt is not observed. Processes

that satisfy (6) can be shown to have a VARMA representation (see, e.g., Aoki 1989, Hannan

& Deistler 1988). In the appendix it is illustrated how a VARMA model can be written in
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state space form and how a state space model can define a VARMA model.

Also the state space representation is not identified unless restrictions on the parameter

matrices are imposed. Analogously to the VARMA case, we first have to rule out over-

parametrization by requiring that the order of the state vector, n, is minimal. Still, this does

not determine a unique set (A, B,C) for a given process. To see this, consider multiplying

the state vector by a nonsingular matrix T and define a new state vector st := Txt. The

redefinition of the state leads to another state space representation given by

st+1 = TAT−1st + TBut,

yt = CT−1st + ut.

Thus, the problem is to pin down a basis for the state xt. There are various canonical

parameterizations, among them parameterizations based on Echelon canonical forms. We

briefly discuss here balanced canonical forms, in particular stochastic balancing, because it is

used later in one of the estimation algorithms.

The discussion on stochastic balancing is based on Desai, Pal & Kirkpatrick (1985) and the

introduction in Bauer (2005a). Define the observability matrix O := [C ′, A′C ′, (A2)′C ′, . . .]′

and the matrix K := [B, (A−BC)B, (A−BC)2B, . . .]. The unique parametrization is defined

in terms of these matrices. Define as well an infinite vector of future observations as Y +
t :=

(y′t, y′t+1, . . .)
′ and an infinite vector of past observations as Y −

t := (y′t−1, y
′
t−2, . . .)

′. Define

analogously the vector of future residuals, U+
t . Note that from (6) we can represent the state

as a function of all past observations as

xt = KY −
t ,

provided that the eigenvalues of (A − BC) are less than one in modulus. The covariance

matrix of the state vector is therefore given by E[xtx
′
t] = KE[Y −

t (Y −
t )′]K′ = KΓ−∞K′, where

Γ−∞ := E[Y −
t (Y −

t )′]. Given a state space system as in (6), there is also another representation
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which is called backward innovation model

zt = A′zt+1 + Nft,

yt = M ′zt+1 + ft,

where time “runs backwards” and A is as in (6) and N (n ×K), M (n ×K) are functions

of (A,B, C), in particular M = E[xty
′
t−1]. The error ft can be interpreted as the one-step

ahead forecast error from predicting yt given future observations. One can show that the

variance of the backward state is given by E[ztz
′
t] = O′(E[Y +

t (Y +
t )′])−1O = O′(Γ+∞)−1O,

where Γ+∞ := E[Y +
t (Y +

t )′].

Equipped with these definitions, we say that (A,B, C) and Σ is a stochastically balanced

system if E[xtx
′
t] = E[ztz

′
t] = diag(σ1, . . . , σn), with 1 > σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Also

stochastically balanced systems are not unique. Uniqueness can however be obtained by

determining the matrices O and K by means of the identification restrictions implicit in the

singular value decomposition (SVD) for a given covariance sequence.

For doing so, introduce the Hankel matrix of autocovariances of yt

H := E[Y +
t (Y −

t )′] =




γ(1) γ(2) γ(3) . . .

γ(2) γ(3)

γ(3)
...




,

where γ(j) := E[yty
′
t−j ], j = 1, 2, . . . are the covariance matrices of the process yt. Using the

relation H = OKΓ−∞, a stochastically balanced representation can be obtained by using the

SVD of

(Γ+
∞)−1/2H

[
(Γ−∞)−1/2

]′
= UnSnV ′

n.

Setting O = (Γ+∞)1/2UnS
1/2
n and K = S

1/2
n V ′

n(Γ−∞)−1/2, the associated system is in balanced
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form with E[xtx
′
t] = E[ztz

′
t] = Sn.3 From the definition of the parametrization one can see

that it is not easy to incorporate prior knowledge of parameter restrictions.

While the VARMA and the state space representation are equivalent in an algebraic

sense, they lead to other estimation techniques and therefore differ in a statistical sense.

These models have become popular because of their conceptional simplicity and because they

allow for estimation algorithms, namely so-called subspace methods, that possess very good

numerical properties. See also Deistler, Peternell & Scherrer (1995) and Bauer (2005b) for

some of the properties of subspace algorithms. It is claimed that these methods are very

successful in estimating multivariate linear systems. Therefore, subspace methods are also

considered as potential competitors to estimation techniques which rely on the more standard

VARMA representation.

3 Description of Estimation Methods

In the following, a short description of the examined algorithms is given. Obviously, one

cannot consider each and every existing algorithm but only a few popular algorithms. The

hope is that the performance of these algorithms indicate how their variants would work.

Throughout it is assumed that the data has been mean-adjusted prior to estimation. In the

following, I do not distinguish between raw data and mean-adjusted data for notational ease.

Most of the algorithms are discussed based on the general representation (1) and throughout it

is assumed that restrictions are imposed on the parameter vector of the VARMA model. That

is, the coefficient matrices are assumed to be restricted according to the final equations form

or the Echelon form. I adopt the following notation. The observed sample is y1, y2, . . . , yT . I

denote the vector of total parameters by β (K2(p+q)×1) and the vector of free parameters by

γ. Let the dimension of γ be given by nγ . Let A := [A1, . . . , Ap] and M := [M1, . . . , Mq] be

matrices collecting the autoregressive and moving-average coefficient matrices, respectively.

Define

β := vec[IK −A0,A,M],

3The square root of a matrix X, Y = X1/2 is defined such that Y Y ′ = X.
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where vec denotes the operator that transforms a matrix to a column vector by stacking the

columns of the matrix below each other. This particular order of the free parameters allows to

formulate many of the following estimation methods as standard linear regression problems.

A0 is assumed to be either the identity matrix or to satisfy the restrictions imposed by the

Echelon representation. To consider zero and equality restrictions on the parameters, define

a ((K2(p + q))× nγ) matrix R such that

β = Rγ. (7)

This notation is equivalent to the explicit formulation of restrictions on β such as Cβ = c for

suitable matrices C and c. The above notation, however, is advantageous for the representa-

tion of the estimation algorithms.

Two-Stage Least Squares (2SLS) This is the simplest method. The idea is to use the

infinite VAR representation in (4) in order to estimate the residuals ut in a first step. In finite

samples, a good approximation is a finite order VAR, provided that the process is of low order

and the roots of the moving-average polynomial are not too close to unity in modulus. The

first step of the algorithm consists of a preliminary long autoregression of the type

yt =
nT∑

i=1

Πiyt−i + ut, (8)

where nT is the lag length that is required to increase with the sample size, T . In the second

stage, the residuals from (8), û
(0)
t , are plugged in (1). After rearranging (1), one gets

yt = (IK −A0)[yt − û
(0)
t ] + A1yt−1 + . . . + Apyt−p

+M1û
(0)
t−1 + . . . + Mqû

(0)
t−q + ut, (9)

where A0 = M0 has been used. Write the above equation compactly as

yt = [IK −A0,A,M]Y (0)
t−1 + ut,
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where

Y
(0)
t−1 :=




(yt − û
(0)
t )

yt−1

...

yt−p

û
(0)
t−1

...

û
(0)
t−q




.

Collecting all observations we get

Y = [IK −A0,A,M]X(0) + U, (10)

where Y := [ynT +m+1, . . . , yT ], U := [unT +m+1, . . . , uT ] is the matrix of regression errors,

X(0) := [Y (0)
nT +m , . . . , Y

(0)
T−1] and m := max{p, q}. Thus, the regression is started at nT +m+1.

One could also start simply at m + 1, setting the initial errors to zero but we have decided

not to do so. Vectorizing equation (10) yields

vec(Y ) = (X(0)′ ⊗ IK)Rγ + vec(U),

and the 2SLS estimator is defined as

γ̃ = [R′(X(0)X(0)′ ⊗ Σ̃−1)R]−1R′(X(0) ⊗ Σ̃−1)vec(Y ). (11)

where Σ̃ is the covariance matrix estimator based on the residuals û
(0)
t . The corresponding

estimated matrices are denoted by Ã0, Ã1, . . . , Ãp and M̃1, M̃2 . . . , M̃q, respectively. Alter-

natively, one may also plug in the estimated current innovation û
(0)
t in (9), define a new

regression error, say ξt, and regress yt − û
(0)
t on Y

(0)
t−1. Existing Monte Carlo studies though

indicate that the difference between both variants is of minor importance (Koreisha & Pukkila

1989).
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For univariate and multivariate models different selection rules for the lag length of the

initial autoregression have been proposed. For example, Hannan & Kavalieris (1984a) propose

to select nT by AIC or BIC, while Koreisha & Pukkila (1990) propose choosing nT =
√

T

or nT = 0.5
√

T . In general, choosing a higher value for nT increases the risk of obtaining

non-invertible or non-stationary estimated models (Koreisha & Pukkila 1990). Lütkepohl &

Poskitt (1996) propose for multivariate, non-seasonal data a value between log T and
√

T .

Throughout the whole paper we employ nT = 0.5
√

T .4

Hannan-Kavalieris-Procedure (3SLS) This method adds a third stage to the procedure

just described. It goes originally back to Durbin (1960) and has been introduced by Hannan

& Kavalieris (1984a) for multivariate processes.5 It is a Gauss-Newton procedure to maximize

the likelihood function conditional on yt = 0, ut = 0 for t ≤ 0 but its first iteration has been

sometimes interpreted as a three-stage least squares procedure (Dufour & Pelletier (2004)).

The method is computationally very easy to implement because of its recursive nature. Cor-

responding to the estimates of the 2SLS algorithm, new residuals, εt (K × 1), are formed.

One step of the Gauss-Newton iteration is performed starting from these estimates. For this

reason, matrices, ξt (K × 1), ηt (K × 1) and X̂t (K × nγ) are calculated according to

εt = Ã0
−1


Ã0yt −

p∑

j=1

Ãjyt−j −
q∑

j=1

M̃jεt−j


 ,

ξt = Ã0
−1


−

q∑

j=1

M̃jξt−j + εt


 ,

ηt = Ã0
−1


−

q∑

j=1

M̃jηt−j + yt


 ,

X̂t = Ã0
−1


−

q∑

j=1

M̃jX̂t−j + (Ỹ ′
t ⊗ IK)R


 ,

4Since this algorithm provides also starting values for other algorithms, it is quite important that the
resulting estimated VARMA model is invertible. In case the initial estimate does not imply an invertible
VARMA model, different lag lengths are tried in order to obtain an invertible model. If this procedure fails,
the estimated moving-average polynomial, say M̂(L), is replace by M̂λ(L) = M̂0 + λ(M̂(L)− M̂0), λ ∈ (0, 1).
The latter case occurs in less than 0.1 % of the cases.

5See also Hannan & Deistler (1988), sections 6.5, 6.7, for an extensive discussion.
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for t = 1, 2, . . . , T and yt = εt = ξt = ηt = 0K×1 and X̂t = 0K×nγ for t ≤ 0 and Ỹt is structured

as Y
(0)
t with εt in place of û

(0)
t . Given these quantities, we compute the 3SLS estimate as

γ̂ =

(
T∑

m+1

X̂ ′
t−1Σ̂

−1
t X̂t−1

)−1 (
T∑

m+1

X̂t−1Σ̂−1(εt + ηt − ξt)

)
,

where Σ̂ := T−1
∑

εtε
′
t, m := max{p, q} as before and the estimated coefficient matrices are

denoted by Â0, Â1, . . . , Âp and M̂1, M̂2, . . . , M̂q, respectively. While the 2SLS estimator is

not asymptotically efficient, the 3SLS is, because it performs one iteration of a conditional

maximum likelihood procedure starting from the estimates of the 2SLS procedure.

Hannan & Kavalieris (1984b) showed consistency and asymptotic normality of these esti-

mators. Dufour & Pelletier (2004) extend these results to even more general conditions. The

Monte Carlo evidence presented by Dufour & Pelletier (2004) indicates that this estimator

represents a good alternative to maximum likelihood in finite samples. It is possible to use

this procedure iteratively, starting the above recursions in the second iteration with the newly

obtained parameter estimates in γ̂ from the 3SLS procedure, and so on until convergence.

Generalized Least Squares (GLS) Also this procedure has three stages. Koreisha &

Pukkila (1990a) proposed this procedure for univariate ARMA models and Kavalieris, Han-

nan & Salau (2003) proved efficiency of the GLS estimates in this case. See also Flores de

Frutos & Serrano (2002). The motivation is the same as for the 2SLS estimator. Given

consistent estimates of the residuals, we can estimate the parameters of the VARMA repre-

sentation by least squares. However, Koreisha & Pukkila (1990a) note that in finite samples

the residuals are estimated with error. This implies that the actual regression error is serially

correlated in a particular way due to the structure of the underlying VARMA process. The

GLS procedure tries to take this into account. I consider a multivariate generalization of the

same procedure. In the first stage, preliminary estimates of the innovations are obtained by a

long autoregression as in (8). Koreisha & Pukkila (1990a) assume that the residuals obtained

from (8) estimate the true residuals up to an uncorrelated error term, ut = û
(0)
t + εt. If this
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expression is inserted in (1), one obtains

A0yt =
p∑

j=1

Ajyt−j + A0(û
(0)
t + εt) +

q∑

j=1

Mj(û
(0)
t−j + εt−j),

yt = (IK −A0)(yt − û
(0)
t ) +

p∑

j=1

Ajyt−j + û
(0)
t

+
q∑

j=1

Mj û
(0)
t−j + A0εt +

q∑

j=1

Mjεt−j ,

yt − û
(0)
t = (I −A0)(yt − û

(0)
t ) +

p∑

j=1

Ajyt−j

+
q∑

j=1

Mj û
(0)
t−j + ζt. (12)

As can be seen from these equations, the error term, ζt, in a regression of yt on its lagged

values and estimated residuals û
(0)
t is not uncorrelated but is a moving-average process of

order q, ζt = A0εt +
∑q

j=1 Mjεt−j = ε̃t +
∑q

j=1 MjA
−1
0 ε̃t−j , where ε̃t := A0εt. Thus, a least

squares regression in (12) is not efficient. Koreisha & Pukkila (1990a) propose the following

three-stage algorithm to take the correlation structure of ζt into account. In the first stage

the residuals are estimated using a long autoregression. In the second stage one estimates the

coefficients in (12) by ordinary least squares: Let zt := yt − û
(0)
t and Z := [znT +m+1, . . . , zT ].

The second stage estimate is given analogously to the 2SLS final estimate by

˜̃γ = [R′(X(0)X(0)′ ⊗ IK)R]−1R′(X(0) ⊗ IK)vec(Z),

and the residuals are computed in the usual way, that is

˜̃
ζt = zt − (Y (0)

t−1

′ ⊗ IK)R˜̃γ.

The covariance matrix of these residuals, Σζ := E[ζtζ
′
t], is estimated as Σ̃ζ = T−1

∑ ˜̃
ζt(

˜̃
ζt)′.

From the relations ζt = A0εt + M1εt−1 + . . . + Mqεt−q and Σζ = A0ΣεA
′
0 + . . . + MqΣεM

′
q one
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can retrieve

vec(Σ̃ε) =

(
q∑

i=0

( ˜̃Mi ⊗ ˜̃Mi)

)−1

vec(Σ̃ζ),

where the ˜̃Mj are formed from the corresponding elements in ˜̃γ. These estimates are then

used to build the covariance matrix of ζ = (ζ ′nT +m+1 . . . ζ ′T )′. Let Φ := E[ζζ ′] and denote its

estimate by Φ̂. In the third stage, we re-estimate (12) by GLS using Φ̂:

ˆ̃γ = [R′(X(0) ⊗ IK)Φ̂−1(X(0)′ ⊗ IK)R]−1R′(X(0) ⊗ IK)Φ̂−1vec(Z).

In comparison to the 2SLS estimator the main difference lies in the GLS weighting with Φ̂−1.

Given ˆ̃γ one could calculate new estimates of the residuals ζt and update the estimate of the

covariance matrix. Given these quantities one would obtain a new estimate of the parameter

vector and so on until convergence.6

Iterative Least Squares (IOLS) The suggestion made by Kapetanios (2003) is simply to

use the 2SLS algorithm iteratively. Denote the estimate of the 2SLS procedure by γ̃(1). We

may obtain new residuals by

vec(Û (1)) = vec(Y )− (X(0)′ ⊗ IK)Rγ̃(1).

Therefore, it is possible to set up a new matrix of regressors X(1) that is of the same structure

as X(0) but uses the newly obtained estimates of the residuals û
(1)
t in Û (1). Generalized least

squares as in (11) in

vec(Y ) = (X(1)′ ⊗ IK)Rγ + vec(U)

yields a new estimate γ̃(2). Denote the vector of estimated residuals at the ith iteration by

Û (i). Then we iterate least squares regressions until ||Û (i−1) − Û (i)|| < c according to some
6The evidence given by Koreisha & Pukkila (1990a), however, suggests that further iterations do have a

negligible effect. This is also the experience of the present author. The results presented here are therefore
given for the first iteration of the GLS procedure.
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pre-specified number c. In contrast to the above-mentioned regression-based procedures, the

IOLS procedure is iterative but the computational load is still minimal.

Maximum Likelihood Estimation (MLE) The dominant approach to the estimation

of VARMA models has been of course maximum likelihood estimation. Given a sample,

y1, ..., yT , the Gaussian likelihood conditional on initial values can be easily set up as

l(γ) =
T∑

t=1

lt(γ)

where

lt(γ) = −K

2
log 2π − 1

2
log |Σ| − 1

2
u′t(γ)Σ−1ut(γ),

ut(γ) = M−1
0

(
A0yt −A1yt−1 − . . .−Apyt−p

−M1ut−1(γ)− . . .−Mqut−q(γ)
)
.

The initial values for yt and ut are assumed to be fixed equal to zero (see Lütkepohl 2005).

These assumptions introduce a negligible bias if the orders of the VARMA model are low

and the roots of the moving-average polynomial are not close to the unit circle. In contrast,

exact maximum likelihood estimation does consider the exact, unconditional likelihood that

backcasts the initial values. The formulation of this procedure requires some considerable

investment in notation and can be found for example in Reinsel (1993). Since processes with

large moving-average eigenvalues are also investigated, exact maximum likelihood estimation

is considered. The procedure is implemented using the time series package 4.0 in GAUSS.

The algorithm is based upon the formulation of Mauricio (1995) and uses a modified Newton-

algorithm. The starting values are the true parameter values and therefore the results from

the exact maximum likelihood procedure must be regarded as a benchmark than as a realistic

estimation alternative.

Subspace Algorithms (CCA) Subspace algorithms rely on the state space representation

of a linear system. There are many ways to estimate a state space model, e.g., Kalman-
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based maximum likelihood methods and subspace identification methods such as N4SID of

Van Overschee & DeMoor (1994) or the CCA method of Larimore (1983). In addition, many

variants of the standard subspace algorithms have been proposed in the literature. I focus only

on one subspace algorithm, the CCA algorithm. The algorithm is asymptotically equivalent

to maximum likelihood and was previously found to be remarkably accurate in small samples

and is likely to be well suited for econometric applications (see Bauer 2005b). The general

motivation for the use of subspace algorithms lies in the fact that if we knew the unobserved

state, xt, we could estimate the system matrices, A, B, C, by linear regressions as can be seen

from the basic equations

xt+1 = Axt + But

yt = Cxt + ut.

Given knowledge of the state, estimates, Ĉ and ût, could be obtained by a regression of yt

on xt and Â and B̂ could be obtained by a regression of xt+1 on xt and ût. Therefore, one

obtains in a first step an estimate of the n-dimensional state, x̂t. This is analogous to the idea

of a long autoregression in VARMA models that estimates the residuals in a first step that is

followed by a least squares regression. Solving the state space equations, one can express the

state as a function of past observations of yt and an initial state for some integer p > 0 as

xt = (A−BC)pxt−p +
p−1∑

i=0

(A−BC)iByt−i−1,

= (A−BC)pxt−p +KpY
−
t,p, (13)

where Kp = [B, (A − BC)B, . . . , (A − BC)p−1B] and Y −
t,p = [y′t−1, . . . , y

′
t−p]

′. On the other

hand, one can express future observations as a function of the current state and future noise

as

yt+j = CAjxt +
j−1∑

i=0

CAiBut+j−i−1 + ut+j . (14)
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Therefore, at each t, the best predictor of yt+j is a function of the current state only, CAjxt,

and thus the state summarizes in a certain sense all available information in the past up to

time t.

Define Y +
t,f = [y′t, . . . , y′t+f−1]

′ for some integer f > 0 and formulate equation (14) for all

observations contained in Y +
t,f simultaneously. Combine these equations with (13) in order to

obtain

Y +
t,f = OfKpY

−
t,p +Of (A−BC)pxt−p + EfE+

t,f

where Of = [C ′, A′C ′, . . . , (Af−1)′C ′]′, E+
t,f = [u′t, . . . , u′t+f−1]

′ and Ef is a function of the

system matrices. The above equation is central for most subspace algorithms. Note that if

the maximum eigenvalue of (A−BC) is less than one in absolute value we have (A−BC)p ≈ 0

for large p. This condition is called the minimum phase assumption. This reasoning motivates

an approximation of the above equation given by

Y +
t,f = βY −

t,p + N+
t,f (15)

where β = OfKp and N+
t,f is defined by the equation. Most popular subspace algorithms

use this equation to obtain an estimate of β which is decomposed into Of and Kp. The

identification problem is solved implicitly during this step. Different algorithms use these

matrices differently to obtain an estimate of the state. Given an estimate of the state, the

system matrices are recovered.

For given integers n, p, f , the employed algorithm consists of the following steps :

1. Set up Y +
t,f and Y −

t,p and perform OLS in (15) using the available data to get an estimate

β̂f,p.

2. Compute the sample covariances

Γ̂+
f =

1
Tf,p

T−f+1∑

t=p+1

Y +
t,f (Y +

t,f )′ , Γ̂−p =
1

Tf,p

T−f+1∑

t=p+1

Y −
t,p(Y

−
t,p)

′,
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where Tf,p = T − f − p + 1.

3. Given the dimension of the state, n, compute the singular value decomposition

(Γ̂+
f )−1/2β̂f,p(Γ̂−p )1/2 = ÛnΣ̂nV̂ ′

n + R̂n,

where Σ̂n is a diagonal matrix that contains the n largest singular values and Ûn and

V̂n are the corresponding singular vectors. The remaining singular values are neglected

and the approximation error is R̂n. The reduced rank matrices are obtained as

Ôf = [(Γ̂+
f )1/2ÛnΣ̂1/2

n ],

K̂p = [Σ̂1/2
n V̂ ′

n(Γ̂−p )−1/2].

4. Estimate the state as x̂t = K̂pY
−
t,p and estimate the system matrices using linear regres-

sions as described above.

Although the algorithm looks quite complicated at first sight, it is actually very simple and is

regarded to lead to numerically stable and accurate estimates. There are certain parameters

which have to be determined before estimation. While the order of the system is given by the

simulated process, the integers f, p have to be chosen deterministically or data-dependent.

For example, Deistler et al. (1995) advocated choosing f = p = dpBIC for some d > 1, while

in the paper of Bauer (2005a) f = p = 2pAIC is suggested, where pBIC and pAIC are the

orders chosen by the BIC and AIC criterion for an autoregressive approximation, respectively.

Here f = p = 2pAIC is employed.

4 Monte Carlo Study

I compare the performance of the different estimation methods using a variety of measures

that could reveal possible gains of VARMA modelling. Namely, the parameter estimation

precision, the accuracy of point forecasts and the precision of the estimated impulse responses

are compared. These measures are related. For instance, one would expect that an algorithm
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that yields accurate parameter estimates performs also well in a forecasting exercise. However,

it is also known that simple univariate models such as an AR(1) can outperform much more

general models or even the correct model in terms of forecasting precision. This phenomenon

is simply due to the limited information in small samples. Analogously, algorithms that may

be asymptotically sub-optimal, may still be preferable when it comes to forecasting in small

samples. With the sample size tending to infinity, the more exact algorithms will also yield

better forecasts, but this might not be true for the small sample sizes investigated. While

it is not clear a priori whether there are important differences with respect to the different

measures used, it is worth investigating these issues separately in order to uncover potential

advantages or disadvantages of the algorithms.

Apart from the performance measures mentioned above, I am also interested in the “tech-

nical reliability” of the algorithms. This is not a trivial issue as the results will make clear.

The most relevant statistic is the number of cases when the algorithms yielded non-invertible

VARMA models. In this case the resulting residuals cannot be interpreted as prediction errors

anymore. For the IOLS algorithm another relevant statistic is the number of cases when the

iterations did not converge. These statistics are defined more precisely in section 4.3. In both

cases and for all algorithms the estimates of the 2SLS procedure are adopted as the result of

the particular algorithm for the corresponding replication of the simulation experiment.

I consider various processes and variations of them as described below. For all data

generating processes I simulate N = 1000 series of length T = 100 and T = 200. The index

n refers to a particular replication of the simulation experiment. The sample sizes represent

typical lengths of data in macroeconomic time series applications. The investigated processes

include small-dimensional and higher-dimensional systems. I consider mostly processes that

have been used in the literature to demonstrate the virtue of specific algorithms but I also

consider an example taken from estimated processes.
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4.1 Performance Measures

4.1.1 Parameter Estimates

The accuracy of the different parameter estimates are compared. The parameters may be of

independent interest to the researcher. Denote by γ̂A,n the estimate of γ obtained by some

algorithm A at the nth replication of the simulation experiment. One would like to summarize

the accuracy of an estimator by a weighted average of its squared deviations from the true

value. That is, for each algorithm the following statistic is computed

MSEA =
1
N

N∑

n=1

(γ̂A,n − γ)′Σ−1
γ (γ̂A,n − γ).

Here, Σγ denotes the large sample variance of the parameter estimates obtained by exact

maximum likelihood. In order to ease interpretation, we compute the ratio of the MSE of a

particular algorithm relative to the mean squared error of the MLE method:

MSEA
MSEMLE

.

4.1.2 Forecasting

Forecasting is one of the main objectives in time series modelling. To assess the forecasting

power of different VARMA estimation algorithms I compare forecast mean squared errors

(FMSE) of 1-step and 4-step ahead out-of-sample forecasts. I calculate the FMSE at horizon

h for the algorithm A as

FMSEA(h) =
1
N

N∑

n=1

(yT+h,n − ŷT+h|T,n)′Σ−1
h (yT+h,n − ŷT+h|T,n),

where yT+h,n is the value of yt at T + h for the nth replication and ŷT+h|T,n denotes the

corresponding h-step ahead forecast at origin T , where the dependence on A is suppressed.

The covariance matrix Σh refers to the corresponding theoretical h-step ahead forecast error

obtained by using the true model with known parameters based on the information set ΩT =
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{ys|s ≤ T}, that is, on all past data. Then the forecast MSE matrix turns out to be

Σh =
h−1∑

i=0

ΦiΣΦ′i.

For given estimated parameters and a finite sample at hand, the white noise sequence ut can

be estimated recursively, using the past data as ut = yt−A−1
0

(∑p
i=1 Ajyt−j +

∑q
j=1 Mjut−j

)
,

given some appropriate starting values, u0, u−1, . . . , u−q+1 and y0, y−1, . . . , y−p+1. These are

computed using the algorithm of Mauricio (1995). The obtained residuals, ût, are used to

compute the forecasts recursively, according to

ŷT+h|T = A−1
0




p∑

j=1

Aj ŷT+h−j|T +
q∑

j=h

Mj ûT+h−j


 ,

for h = 1, . . . , q. For h > q, the forecast is simply ŷT+h|T = A−1
0

∑p
j=1 Aj ŷT+h−j|T . The

forecast precision of an algorithm A is measured relative to the unrestricted long VAR ap-

proximation:

FMSEA(h)
FMSEVAR(h)

.

In addition, I also compute the FMSE of a standard unrestricted VAR with lag length chosen

by the AIC criterion in order to assess the potential merits of VARMA modelling compared

to standard VAR modelling.

4.1.3 Impulse Response Analysis

Researchers might also be interested in the accuracy of the estimated impulse response func-

tion as in (3),

yt =
∞∑

i=0

Φiut−i = Φ(L)ut,

since it displays the propagation of shocks to yt over time. To assess the accuracy of the esti-

mated impulse response function I compute impulse response mean squared errors (IRMSE)
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at two different horizons, h = 1 and h = 4. Let ψh = vec(Φh) denote the vector of responses

of the system to shocks h periods ago. A measure of the accuracy of the estimated impulse

responses is

IRMSE(h) =
1
N

N∑

n=1

(ψh − ψ̂h,n)′Σ−1
ψ,h(ψh − ψ̂h,n),

where ψh is the theoretical response of yt+h to shocks in ut and ψ̂h,n is the estimated response.

Σψ,h is the asymptotic variance-covariance matrix of the impulse response function estimates

obtained by maximum likelihood estimation. The precision of the estimated responses are

again measured relative to the long VAR:

IRMSEA(h)
IRMSEVAR(h)

.

Also in this case, the results for a VAR with lag length chosen by the AIC criterion are

computed.
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4.2 Generated Systems

4.2.1 Small-Dimensional Systems

DGP I: The first two-dimensional process has been taken from Kapetanios (2003). This is

a simple bivariate system in final equations form and was used in Kapetanios’s (2003) paper

to demonstrate the virtues of the IOLS procedure. Precisely, the process is given by

yt =




α1 0

0 α1


 yt−1 + ut +




m11,1 −0.20

0.15 m22,1


ut−1

and

Σ =




1

0 1


 .

This is an admittedly very simple process that is supposed to give an advantage to the IOLS

procedure and also serves as a best case scenario for the VARMA algorithms because of its

simplicity.

The autoregressive polynomial has one eigenvalue and the moving-average polynomial

has two distinct eigenvalues different from zero. Denote the eigenvalues of the autoregressive

and moving-average part by λar and λma, respectively. These eigenvalues are varied and the

remaining parameters, α1, m11,1 and m22,1 are set accordingly. For this and the following

DGPs, I consider parameterizations with medium eigenvalues (MEV ), large positive autore-

gressive eigenvalues (LPAREV ), large negative autoregressive eigenvalues (LNAREV ), large

positive moving-average eigenvalues (LPMAEV ) and large negative moving-average eigen-

values (LNMAEV ). The parameter values corresponding to the different parameterizations

can be found in table 1 for all DGPs.

For the present process the MEV parametrization corresponds to the original process

used in Kapetanios’s (2003) paper, with α1 = 0.2, m11,1 = 0.25 and m22,1 = −0.10. I fit

restricted VARMA models in final equations form to the data. This gives a slight advantage

to algorithms based on the VARMA formulation since in this case the CCA method has to
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estimated relatively more parameters. For the CCA method the dimension of the state vector

is set to the true McMillian degree which is two.

DGP II: The second DGP is based on an empirical example taken from Lütkepohl (2005).

A VARMA(2,2) model is fitted to West-German income and consumption data. The variables

were the first differences of log income, y1, and log consumption, y2. More specifically, a

VARMA (2,2) model with Kronecker indices (p1, p2) = (0, 2) was assumed such that

yt =




0 0

0 α22,1


 yt−1 +




0 0

0 α22,2


 yt−2 + ut

+




0 0

0.31 m22,1


ut−1 +




0 0

0.14 m22,2


ut−2

and

Σ =




1.44

0.57 0.82


× 10−4.

While the autoregressive part has two distinct, real roots, the moving-average polynomial

has two complex conjugate roots in the original specification. We vary again some of the

parameters in order to obtain different eigenvalues. In particular, we maintain the property

that the process has two complex moving-average eigenvalues which are less than one in

modulus.

The MEV parametrization corresponds to the estimated process with α22,1 = 0.23,

α22,2 = 0.06, m22,1 = −0.75 and m̂22,2 = 0.16. These values imply the following eigen-

values λar
1 = 0.385 λar

2 = −0.159, λma
1 = 0.375 + 0.139i, λma

2 = 0.375 − 0.139i. Restricted

VARMA models with restrictions given by the Kronecker indices were used.

4.2.2 Higher-Dimensional Systems

DGP III: I consider a three-dimensional system that was used extensively in the literature

by, e.g., Koreisha & Pukkila (1989), Flores de Frutos & Serrano (2002) and others for illus-
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trative purposes. Koreisha & Pukkila (1989) argue that the chosen model is typical for real

data applications in that the density of nonzero elements is low, the variation in magnitude

of parameter values is broad and feedback mechanisms are complex. The data is generated

according to

yt =




α11,1 0 0

0 0 0

0 0.4 0




yt−1 + ut +




0 1.1 0

0 m22,1 0

0 0 0.5




ut−1

and

Σ =




1

−0.7 1

0.4 0 1




.

The Kronecker indices are given by (p1, p2, p3) = (1, 1, 1) and corresponding VARMA models

are fit to the data. While this DGP is of higher dimension, the associated parameter matrices

are more sparse. This property is reflected in the fact that the autoregressive polynomial and

the moving-average polynomial have both only one root different from zero.

The parameters α11,1 and m22,1 are varied in order to generate particular eigenvalues

of the autoregressive and moving-average polynomials as in the foregoing examples. The

MEV specification corresponds to the process used in Koreisha & Pukkila (1989) and has

eigenvalues λar = 0.7 and λma
1 = −0.6 and λma

2 = 0.5.

DGP IV: This process has been used in the simulation studies of Koreisha & Pukkila

(1987). The process is similar to the DGP III and is thought to typify many practical real

data applications. In this study it is used in particular to investigate the performance of

the algorithms for the case of high-dimensional systems. The five variables are generated
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according to the following VARMA (1,1) structure

yt =




α11,1 0 0 0 0

0 0 0.8 0 0

0 −0.4 0 0 0

0 0 0 0 0

0.2 0 0 0 0




yt−1 + ut +




0 0 0 −1.1 0

0 0 0 0 −0.2

0 0 0 0 0

0.55 0 0 −0.8 0

0 0 0 0 m55,1




ut−1

and

Σ =




1

0.2 1

0 0 1

0 0 0.7 1

0 0 0 −0.4 1




.

The true Kronecker indices are (p1, p2, p3, p4, p5) = (1, 1, 1, 1, 1) and corresponding VARMA

models in Echelon form are fit to the data. The MEV parametrization corresponds to the one

used by Koreisha & Pukkila (1987). That is, α11,1 = 0.5 and m55,1 = −0.6 with eigenvalues

λar
1 = 0.5, λar

2 = 0± i0.57, λma
1 = −0.6 and λma

2 = −0.4± i0.67.

4.3 Results

The results are summarized in tables 2 to 5 and figures 1 to 8. The tables show the frequency

of cases when the algorithms failed for different reasons. The figures plot the various MSE

ratios discussed above. In the tables and figures, 2SLS, 3SLS and GLS are the two-stage,

three-stage and generalized least squares methods, respectively, IOLS is the iterative least

squares algorithm, CCA denotes the CCA subspace algorithm, SVAR is the VAR chosen by

AIC and MLE is the maximum likelihood algorithm.

Table 2 and table 3 display the frequency of cases when the algorithms yielded models

that were not invertible or, in the case of the CCA algorithm, violated the minimum phase

assumption for sample sizes T = 100 and T = 200, respectively. Apart from these cases,
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there are also cases when the IOLS algorithm did not converge. The IOLS algorithm is

regarded as non-convergent if it did not converge after 500 iterations. Furthermore, there

are some very rare instances when the GLS algorithm returned estimated models that were

extremely far from the true process (0.8 % in DGP III, LNMAEV, T=200). The tables

4 and 5 show the frequency of cases when the algorithms failed for one of the mentioned

reasons in order to give a comprehensive picture of the reliability of the algorithms. First, as

expected, the algorithms yield non-invertible models more frequently when the eigenvalues of

the moving-average polynomial are close to one in absolute value, in particular in the case of

large negative eigenvalues. Furthermore, as the number of estimated parameters increases,

the algorithms yield non-invertible models more often. For 200 observations all algorithms

become much more reliable in the sense that the number of estimated non-invertible models

is much reduced. The most reliable algorithms are 2SLS, GLS and CCA. In particular, GLS

and CCA yield non-invertible models for all algorithms and sample sizes in less than 1% of

the replications. The 3SLS and the IOLS algorithm are the less reliable algorithms, although

the IOLS algorithm can be quite stable. For particular DGPs, 3SLS can occasionally yield

non-invertible models in more than 10 % of the cases. For some DGPs the IOLS algorithm

does not converge relative frequently, but the problem becomes much less severe when the

number of observations is increased to T = 200 as can be seen from tables 4 and 5.

With respect to parameter estimation accuracy, the differences between the algorithms

are generally more pronounced when the moving-average polynomial has eigenvalues that

are close to one in absolute value. The differences become also more pronounced when the

number of observations increases but the ranking of the algorithms remains unchanged, in

general. The 2SLS algorithm is dominated by the other algorithms, aside from one case

(DGP III, LNMAEV). The parameter estimation accuracy of the GLS estimator is much

better but close to the accuracy of the 2SLS algorithm for higher-order processes, although

in cases with large negative moving-average eigenvalues the estimator might be relatively

accurate. The IOLS estimator is in most cases much better than 2SLS and its advantage

becomes most pronounced in the high-dimensional case IV. Compared to the GLS algorithm,

IOLS can be worse for small-dimensional systems but the ranking changes for the higher
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dimensional processes. The 3SLS estimator is always superior to any other method, apart

from MLE. In particular, the 3SLS method is much better when the number of estimated

parameters increases, that is for DGP III and IV. However, the MLE method is in this context

much more accurate and is often twice as good as the 3SLS method. Summarizing, the 3SLS

procedure is the best alternative to MLE despite the high number of cases when the algorithm

yielded non-invertible model. Nevertheless, even the best alternative can be quite imprecise

compared to MLE. This does not necessarily mean that 3SLS is not a relatively good estimator

because the MLE procedure starts with the true parameter values and therefore the procedure

represents an ideal case in this context.

The differences in terms of forecasting precision are less pronounced. Additionally, even

though some algorithms do estimate the parameters more accurately than others, they are not

necessarily superior in terms of forecasting accuracy. The ranking might change. Not surpris-

ingly, in almost all cases the VARMA algorithms do better than the benchmark long VAR. In

most cases, the VARMA algorithms also display smaller MSE ratios than a VAR chosen by

AIC. However, given that the orders of the VARMA models are fixed and correspond to the

true orders, the comparison is biased in favor of VARMA modelling. Increasing the forecast

horizon, does reduce the differences between the different algorithms. The same is true when

more observations are available. Increasing the complexity in terms of Kronecker indices does

have minor effects. The forecasts obtained by the CCA method are often comparable but often

also inferior to the forecasts obtained by other algorithms. In particular, the CCA forecasts

are often inferior for the one-step forecast horizons. The 2SLS estimator yields usually better

forecasts than the CCA forecasts and comparable but sometimes slightly worse forecast than

the other VARMA algorithms. The GLS and the IOLS procedure do quite well in forecasting

depending on the specific DGP and number of observations. The 3SLS procedure, however,

seems to be slightly preferable. The MLE method is always superior to all simple algorithms

apart from one case, DGP III, LNMAEV with T = 100, where its MSE is roughly three times

as large as the MSE of the other VARMA algorithms. In this case, the MSE ratio for the

MLE procedure is not shown on the graph since this would imply loosing important details

in other parts. In general, however, the differences are small, in particular in comparison to
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the rather large differences in terms of parameter estimation accuracy. In sum, the ranking

of the different algorithms becomes less clear when forecasting is the objective. While the

VARMA methods do generally better than the VARs and the CCA method, the differences

are often small. For the simulated processes, 3SLS is a good alternative algorithm to MLE if

forecasting is the objective.

The precision of the estimated impulse responses varies much more between the algo-

rithms. In most cases the VARMA algorithms do comparably or better than the VAR ap-

proximations but, as mentioned above, this comparison is biased in favor of VARMA mod-

elling. When the impulse response horizon is increased, VARMA modelling becomes much

more advantageous in comparison with the VAR approximations. At short horizons the pic-

ture is rather mixed depending on the algorithms and DGPs. For example, for the rather

simple DGP I, there are little advantages of VARMA modelling apart from the LPMAEV

and LNMAEV parameterizations. For the other DGPs there are in principle considerable

advantages provided that the right algorithm is chosen and the process is correctly specified.

Furthermore, the VARMA algorithms differ much more at horizon h = 1. Increasing the

sample size has no important effect on the ranking of the algorithms. First, the CCA method

seems to be inferior to the VARMA algorithms for all DGPs and both horizons. Occasionally,

CCA is worse than the VAR chosen by AIC. The 2SLS algorithm estimates the impulse re-

sponses with comparable or slightly worse accuracy than the other VARMA algorithms. Only

for DGP II the impulse response estimates obtained by 2SLS are as precise as the estimates

obtained by other algorithms. Also the results for the impulse response estimates obtained by

GLS are mixed. In some cases, such as DGP I with large moving-average eigenvalues, GLS is

performing quite well but in most other cases GLS is inferior to IOLS or 3SLS. In fact, these

two algorithms estimate the impulse response function best in most of the cases. While the

performance of IOLS in this respect depends still on the specific DGP, 3SLS is almost always

the preferable method. Furthermore, even though IOLS is often the second-best method, the

difference to 3SLS can be considerable, in particular for higher-order processes. In sum, the

3SLS procedure is by far preferable, independent of the specific DGP at hand. Generally, the

impulse response estimates obtained by MLE are much more precise than the corresponding
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estimates obtained by the 3SLS algorithm. These results correspond to the statements made

above about the algorithms’ relation in terms of parameter estimation accuracy. Overall,

VARMA modelling turns out to be potentially quite advantageous if one is interested in the

impulse responses of the DGP. The precision obtained by MLE is, however, rarely obtained

by any of the simpler VARMA estimation algorithms.

In sum, VARMA modelling can be advantageous. While the advantages are potentially

minor with respect to forecasting precision, the results suggest that the impulse responses can

be estimated more accurately by using VARMA models, provided that the model is specified

correctly. Apart from forecasting, there are large differences between the algorithms. Overall,

the algorithm, which is closest to maximum likelihood estimation, 3SLS, seems to be superior

to any other of the simpler estimation algorithms. In particular, when the complexity of the

simulated systems increases, 3SLS is the only algorithm that almost always outperforms the

benchmark VARs in terms of accuracy of the estimated impulse responses. A concern, however

is the instability of the algorithm in the presence of large eigenvalues of the moving-average

polynomial. Even though full-information maximum likelihood would be the ideal algorithm,

3SLS is performing quite well in comparison not only to the alternative simple VARMA

algorithms but also in comparison to the benchmark VARs. However, as the algorithm is

implemented here, it is still not stable enough in order to be used in a automatic fashion

because of the non-invertibility problem. Given the simplicity of the used DGPs and that

complications such as specification, outliers etc. are neglected, these results suggest that the

3SLS algorithm would have to be improved considerably in order to create an algorithm that

returns accurate estimates in almost all cases.

5 Conclusion

Despite the theoretical advantages of VARMA models compared to simpler VAR models,

they are rarely used in applied macroeconomic work. While Gaussian maximum likelihood

estimation is theoretically attractive, it is plagued with various numerical problems. There-

fore, simpler estimation algorithms are compared in this paper by means of a Monte Carlo
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study. The evaluation criteria used are the precision of the parameter estimates, the accu-

racy of point forecasts and the accuracy of the estimated impulse responses. The VARMA

algorithms are also compared to two benchmark VARs in order to judge the potential merits

of VARMA modelling.

It has been shown in the simulations that there are situations where the investigated algo-

rithms do not perform very well. There is a rough trade-off between the technical reliability

of the algorithms and the quality of the estimates. With respect to the accuracy of the pa-

rameter estimates, the iterative least squares procedure of Kapetanios (2003) and the simple

least squares procedure of Hannan & Kavalieris (1984a) seem to perform relatively well for

smaller processes with small eigenvalues of the moving-average part. However, they can be

quite imprecise relative to exact maximum likelihood for higher dimensional processes and in

particular for processes with large eigenvalues in the moving-average part.

If the purpose of time series analysis is forecasting, the methods perform approximately

comparable though few can reach or outperform the forecasting power of exact maximum

likelihood. The gains from using VARMA models in contrast to VARs appear to be relatively

small. Also, in this case the procedure of Hannan & Kavalieris (1984a) turned out to be

preferable over the other simpler estimation algorithms.

The true impulse responses are estimated poorly by most algorithms given the benchmark

of a long VAR. Again, the procedure of Hannan & Kavalieris (1984a) is potentially quite

advantageous. Also the iterative least squares procedure of Kapetanios (2003) is performing

well in this respect. Nevertheless, the algorithms cannot reach the precision of the exact

maximum likelihood procedure.

It turns out, that the only simple procedure that reliably gave significantly better results

than the benchmark VARs in terms of the accuracy of the derived forecasts and impulse

response estimates, is the procedure which is closest to maximum likelihood, namely the

procedure of Hannan & Kavalieris (1984a). However, this procedure is also the most unreliable

procedure in technical terms, in that it often yields estimated models which are not invertible.

Given the simplicity of the simulated data generating processes, the algorithm would have to

be improved considerably in order to make it a standard tool for applied researchers.
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A reliable and accurate algorithm for the estimation of VARMA models still remains to

be developed. This study suggests that there are potentially considerable gains from VARMA

modelling. Such an algorithm would have to be able to deal with various issues which are

not considered in this study. The algorithm should work well in the case of integrated and

cointegrated multivariate series. The algorithm must give reasonable results with extremely

over-specified processes as well as in the presence of various data irregularities such as outliers,

structural breaks etc. The applicability of such an algorithm would also crucially depend on

the existence of a reliable specification procedure. These topics, however, are left for future

research.
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A Equivalence between VARMA and State Space Represen-

tations

This discussion serves as an illustration and is based on the corresponding sections in Aoki’s

(1989) book.7 It is not claimed, for example, that the following state space representation

of a VARMA model is especially meaningful. The point is simply to demonstrate that a

VARMA model can be written in state space form. Suppose that a multiple time series

yt = (y1t, . . . , yKt)′ of dimension K satisfies a VARMA(p, q) model given by

yt =
p∑

i=1

Aiyt−i + ut +
q∑

i=1

Miut−i,

where A0 = IK is assumed for simplicity. This process can be written as a state space model

by defining

A :=




A1 . . . . . . Ap M1 M2 . . . Mq

IK 0 0 0
. . . . . . 0

. . .

IK 0

0 0 0

0
. . . IK 0

. . . . . .

0 IK 0




, ((p + q)K × (p + q)K),

B′ :=
[

IK : 0 : . . . IK : . . . : 0

]
, (K(p + q)×K),

C :=
[

A1 : . . . : Ap : M1 : . . . : Mq

]
, (K ×K(p + q)).

7See also the book of Hannan & Deistler (1988) for an extensive discussion on the relation between state
space and VARMA models.
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The state space model is of the form

xt+1 = Axt + But,

yt = Cxt + ut,

with a state vector given by

xt =




yt−1

...

yt−p

ut−1

...

ut−q




, ((p + q)K × 1).

Given a state space model of order n for a K-dimensional process, let the characteristic

polynomial of the system matrix A be |A− λIn| = c0λ
n + c1λ

n−1 + c2λ
n−2 + . . . + cn, c0 = 1.

Multiply the observation equation for t, . . . , t + n with the coefficients ci, i = 0, . . . , n, in the

following way

cnyt = cn(Cxt + ut),

cn−1yt+1 = cn−1(CAxt + CBut + ut+1),

...

yt+n = CAnxt + CAn−1But + . . . + CBut+n−1 + ut+n,

where the right hand side has been obtained by recursive substitution. Summing up these

equations one obtains

yt+n + c1yt+n−1 + . . . + cnyt = C(An + c1A
n−1 + . . . + cnIn)xt +

n∑

i=0

Diut+i
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where Di = cn−iIK +
∑n−i

k=1 cn−i−kCAk−1B. According to the Cayley - Hamilton theorem,

the matrix polynomial in A vanishes, An + c1A
n−1 + . . .+ cnIn = 0 (Aoki 1989). One obtains

therefore the following VARMA representation

yt+n + c1yt+n−1 + . . . + cnyt =
n∑

i=0

Diut+i.
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B Figures and Tables

Table 1: Parameter Values
DGP Parameters λar λma

DGP I MEV α1 = 0.2, m11,1 = 0.25 0.2 0.1, 0.05
m22,1 = −0.1

LPAREV α1 = 0.9, m11,1 = 0.25 0.9 0.1, 0.05
m22,1 = −0.1

LNAREV α1 = −0.9, m11,1 = 0.25 -0.9 0.1, 0.05
m22,1 = −0.1

LPMAEV α1 = 0.2, m11,1 = 0.98 0.2 0.9, 0.6
m22,1 = 0.52

LNMAEV α1 = 0.2, m11,1 = −0.52 0.2 -0.9, -0.6
m22,1 = −0.98

DGP II MEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 0.38 ± i 0.14
m22,1 = −0.75, m22,2 = 0.16

LPAREV α22,1 = 0.744, α22,2 = 0.14 0.9, -0.16 0.38 ± i 0.14
m22,1 = −0.75, m22,2 = 0.16

LNAREV α22,1 = −1.06, α22,2 = −0.14 -0.9, -0.16 0.38 ± i 0.14
m22,1 = −0.75, m22,2 = 0.16

LPMAEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 0.48 ± i 0.13
m22,1 = −0.95, m22,2 = 0.25

LNMAEV α22,1 = 0.23, α22,2 = 0.06 0.39, -0.16 -0.48 ± i 0.13
m22,1 = 0.95, m22,2 = 0.25

DGP III MEV α11,1 = 0.7, m22,1 = −0.6 0.7 -0.6, 0.5
LPAREV α11,1 = 0.9, m22,1 = −0.6 0.9 -0.6, 0.5
LNAREV α11,1 = −0.9, m22,1 = −0.6 -0.9 -0.6, 0.5
LPMAEV α11,1 = 0.7, m22,1 = 0.9 0.7 0.9, 0.5
LNMAEV α11,1 = 0.7, m22,1 = −0.9 0.7 -0.9, 0.5

DGP IV MEV α11,1 = 0.5, m55,1 = −0.6 0.5, 0 ± i 0.57 -0.6, -0.4 ± i 0.67
LPAREV α11,1 = 0.9, m55,1 = −0.6 0.9, 0 ± i 0.57 -0.6, -0.4 ± i 0.67
LNAREV α11,1 = −0.9, m55,1 = −0.6 -0.9, 0 ± i 0.57 -0.6, -0.4 ± i 0.67
LPMAEV α11,1 = 0.5, m55,1 = 0.9 0.5, 0 ± i 0.57 0.9, -0.4 ± i 0.67
LNMAEV α11,1 = 0.5, m55,1 = −0.9 0.5, 0 ± i 0.57 -0.9, -0.4 ± i 0.67

Varied parameter values and corresponding eigenvalues of the autoregressive and the moving-average parts

for the different data generating processes.
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Table 2: Non-invertible Estimated Models, T = 100
DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0

LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.1
LPMAEV 1.7 4.9 0.0 0.5 0.6
LNMAEV 0.8 8.9 0.0 0.5 0.2

DGP II MEV 0.2 3.3 0.0 0.7 0.1
LPAREV 0.2 1.1 0.0 0.4 0.1
LNAREV 0.0 1.0 0.0 0.1 0.4
LPMAEV 1.0 4.1 0.0 2.5 0.1
LNMAEV 0.7 8.9 0.0 3.5 0.0

DGP III MEV 0.2 3.9 0.3 0.3 0.0
LPAREV 0.2 3.6 0.1 0.2 0.1
LNAREV 0.2 2.5 0.2 0.1 0.0
LPMAEV 2.8 6.2 0.3 1.0 0.5
LNMAEV 1.5 11.3 0.2 0.5 0.1

DGP IV MEV 0.0 3.4 0.1 0.0 0.0
LPAREV 0.1 1.6 0.1 0.0 0.1
LNAREV 0.2 1.5 0.1 0.0 0.1
LPMAEV 1.1 9.2 0.3 0.6 0.3
LNMAEV 1.7 10.0 0.3 0.2 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models or, in case of the CCA
algorithm, yielded models that violated the minimum phase assumption.
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Table 3: Non-invertible Estimated Models, T = 200
DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0

LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.0
LPMAEV 0.8 1.6 0.0 0.2 0.0
LNMAEV 0.1 5.0 0.0 0.0 0.1

DGP II MEV 0.0 0.1 0.0 0.1 0.0
LPAREV 0.0 0.1 0.0 0.0 0.0
LNAREV 0.0 0.2 0.0 0.0 0.0
LPMAEV 0.0 0.2 0.0 0.3 0.0
LNMAEV 0.1 7.3 0.0 1.0 0.0

DGP III MEV 0.0 0.5 0.2 0.0 0.0
LPAREV 0.0 0.4 0.2 0.0 0.0
LNAREV 0.0 0.1 0.0 0.0 0.0
LPMAEV 0.7 1.8 0.4 0.5 0.0
LNMAEV 0.3 4.8 0.0 0.5 0.0

DGP IV MEV 0.0 0.1 0.1 0.0 0.0
LPAREV 0.0 0.0 0.3 0.0 0.0
LNAREV 0.0 0.5 0.0 0.0 0.0
LPMAEV 0.2 3.6 0.1 0.0 0.0
LNMAEV 0.2 3.5 0.2 0.0 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models or, in case of the CCA
algorithm, yielded models that violated the minimum phase assumption.
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Table 4: Total Estimation Failures, T = 100
DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0

LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.1
LPMAEV 1.7 4.9 0.0 5.0 0.6
LNMAEV 0.8 8.9 0.0 3.6 0.2

DGP II MEV 0.2 3.3 0.0 0.7 0.1
LPAREV 0.2 1.1 0.0 0.4 0.1
LNAREV 0.0 1.0 0.0 0.1 0.4
LPMAEV 1.0 4.1 0.0 2.5 0.1
LNMAEV 0.7 8.9 0.0 3.5 0.0

DGP III MEV 0.2 3.9 0.3 0.9 0.0
LPAREV 0.2 3.6 0.1 0.6 0.1
LNAREV 0.2 2.5 0.2 0.7 0.0
LPMAEV 2.9 6.2 0.3 3.6 0.5
LNMAEV 1.5 11.3 0.2 1.6 0.1

DGP IV MEV 0.0 3.4 0.1 2.3 0.0
LPAREV 0.1 1.6 0.1 0.7 0.1
LNAREV 0.2 1.5 0.1 0.4 0.1
LPMAEV 1.1 9.2 0.3 4.7 0.3
LNMAEV 1.7 10.0 0.3 3.3 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models, did not converge, or
returned an extreme outlier.
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Table 5: Total Estimation Failures, T = 200
DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0

LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.0
LPMAEV 0.8 1.6 0.0 1.1 0.0
LNMAEV 0.1 5.0 0.0 0.9 0.1

DGP II MEV 0.0 0.1 0.0 0.1 0.0
LPAREV 0.0 0.1 0.0 0.0 0.0
LNAREV 0.0 0.2 0.0 0.0 0.0
LPMAEV 0.0 0.2 0.0 0.3 0.0
LNMAEV 0.1 7.3 0.0 1.0 0.0

DGP III MEV 0.0 0.5 0.2 0.0 0.0
LPAREV 0.0 0.4 0.2 0.1 0.0
LNAREV 0.0 0.1 0.0 0.0 0.0
LPMAEV 0.7 1.8 0.4 0.9 0.0
LNMAEV 0.3 4.8 0.8 0.6 0.0

DGP IV MEV 0.0 0.1 0.1 0.1 0.0
LPAREV 0.0 0.0 0.3 0.0 0.0
LNAREV 0.0 0.5 0.0 0.0 0.0
LPMAEV 0.2 3.6 0.1 0.2 0.0
LNMAEV 0.2 3.5 0.2 0.1 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models, did not converge, or
returned an extreme outlier.

46



Figure 1: MSE ratios for DGP I with T = 100.
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Figure 2: MSE ratios for DGP I with T = 200.
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Figure 3: MSE ratios for DGP II with T = 100.
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Figure 4: MSE ratios for DGP II with T = 200.
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Figure 5: MSE ratios for DGP III with T = 100.
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Figure 6: MSE ratios for DGP III with T = 200.
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Figure 7: MSE ratios for DGP IV with T = 100.
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Figure 8: MSE ratios for DGP IV with T = 200.
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