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Abstract

Likelihood ratio tests for restrictions on cointegrating vectors are
asymptotically x2 distributed. For some values of the parameters this
asymptotic distribution does not give a good approximation to the finite
sample distribution. In this paper we derive the Bartlett correction fac-
tor for the likelihood ratio test and show by some simulation experiments
that it can be a useful tool for making inference.
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1 Introduction

In this paper we derive a Bartlett correction for the test on the cointegrating
relations in the vector autoregressive model for the n—dimensional process Xt
given by

*1
AXt = a(0'Xt-1 + p'Dt) + 'y ' TjAXt-i + +et, t=1,.., T (@
i=i
where et are i.i.d. Nn(0, fi), the initial values are fixed and dt (nd x 1) and Dt
(no x 1) are deterministic terms, like constant, linear term etc. The matrices
a and 0 are (n x r) and the matrices Tx,... ,T_l,are (n x n, $ (n x nd) and
p(riD x 1). For the analysis of this paper we assume that Xt is /(1). A typical
example of the deterministic terms is to let dt — 1, and Dt = t, corresponding
to having a linear trend in the process and trend stationary combinations 0'Xt.
The formulation below also allows, with minor modifications, the possibility
that no and nd are zero.

The likelihood ratio test for hypotheses on 0 has been treated in Johansen
and Juselius (1990) and Ahn and Reinsel (1990), and it is known that it is
asymptotically \ 2 distributed, despite the fact that the asymptotic distribution
of the estimator is mixed Gaussian. The finite sample distribution, however, is
not always well approximated by the asymptotic distribution, see for instance
Fachin (1997), Jacobsen and Gredenhoff (1998), and Jacobson, Vredin, and
Warne (1998), Haug (1998), to mention a few of the many studies of the finite
sample properties of the test of restrictions on 0.

We derive here a correction term to the likelihood ratio test statistic for
hypotheses on 0 with the purpose of improving the approximation to the asymp-
totic x2 distribution. The correction is the so-called Bartlett correction, see
Bartlett (1937). For a recent survey of the theory of this type of correction see
Cribaro-Neto and Cordeiro (1996). Briefly the method consists of calculating
the expectation of the likelihood ratio (LR) statistic in the form —LogLR for
a given parameter point 6 under the null hypothesis. Usually it is not possible
to do this explicitly and one can instead find an approximation of the form

E[—2logLR] ~ A1 + -jr-),

where A is equal to the degrees of freedom for the test and B(6), shows how the
remaining parameters under the null hypothesis distorts the mean and hence



the distribution of the test statistic. The idea is that the quantity
—2LogLR

1+ A

has a distribution that is closer to the limit distribution, see Lawley (1956) for a
proof of this statement under classical i.i.d. assumptions, that are not satisfied
in the 7(1) model.

The model (1) is characterized by dimension (n), cointegrating rank (r),
lag length (k), the number of deterministic terms restricted to the cointegrating
space (no), the number of unrestricted terms (nd) and finally of course the value
of all the parameters and the sample size (T).

The main result presented in Section 4 is that the Bartlett correction is
a function of the parameters through only two functions, and various combina-
tions of the above characteristic numbers. We find for instance for the test that
0 = Hip, (H(n xs)) that A=r(n—s),and form=n+s— + 1+ 2no

B(0) = f’z‘m +nd+ kn}+ -r[(2(n - r) + m)v(a) +2(c(a) + cd(a))].

The coefficients v(a),c(ct), and cd(a) are given in Theorem 5 below. This
result implies that one can see for which combinations of the parameters the
usual x2 approximation breaks down, and more constructively when it is use-
ful. In between there is an area where the Bartlett correction can serve as an
improvement to the usual asymptotic results.

The plan of the paper is first to establish in Section 2, that a number
of hypotheses can be given a general formulation as tests in a reduced rank
regression model. In Section an expansion is given of the estimators of this
reduced rank regression, and then an expansion is given of the log likelihood
ratio test statistic. In Section 4 the main result on the Bartlett corrections are
given and the results specialized to the models discussed in Section 2, and finally
in Section 5 some simulation experiments are conducted which show that the
Bartlett correction is a useful addition to the usual asymptotic analysis. The
very long and tedious proofs are given in an Appendix.

2 The models and the hypotheses

We define in this section three models by restrictions on the cointegrating re-
lations. All models can be analysed by reduced rank regression, see Johansen



(1996) for a detailed analysis of the models. The models allow deterministic
terms of a suitably simple type, that covers many of the usual situations. We
show how the correction term for the test of each of the models can be cal-
culated simply if we have the correction term for a simple hypothesis, and we
show for each of the models how to formulate the test of a simple hypothesis
as a test in a reduced rank regression, such that all the tests can be given the
same uniform formulation.

Mo Unrestricted cointegrating space

The model is given by the equation (1) with unrestricted parameters.

* Mi Same restriction on all cointegrating relations

The model is defined as a submodel of Mo by the same restrictions on all
cointegrating relations which can be expressed as

0 = Hip,

where H is (n x s) of rank s and known, r <s <n, and ipis (s x r) and
unknown. The likelihood ratio test of Adi in Mo, satisfied

—2\0gLR(MW\Mo)  X2{rin ~ «))e

The restrictions on 0 can also be expressed as restrictions on (0, p) in the
form

0,*
\A

with ip(s + riD,r). One could also define a model by restricting simulta-
neously both 0 and p but the present choice seems more relevant for the
applications.

« M2 Some cointegrating relations known

The model is defined by the restrictions

where the matrices R® (n x rg) of rank  and p\ (no xq) are known
and the matrices Vi (0 x iq), tp2(n x r2), and p2(no x r2) are unknown
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(r = ri +T2), corresponding to prespecified coefficients 3° and p° in sonic
of the cointegrating relations. The likelihood ratio test of Ad? in Ado.
satisfied

-21logLR(M2\M g  x2(r\{n + nD- r)).

It would also be relevant to formulate here the restriction that only 0 was
partly known. This model, however, can not be estimated by reduced
rank regression and the analysis given below would have to be modified.

In the following sections we derive a correction factor for test of a simple
hypothesis on 0 and p in each of tjie models Ado, Adi and Ad2, and apply these
to derive a correction factor for the test of Adi in Ado and M2 in Ado using the
following trick:

To test Adi in Ado, say, we take a parameters 0° = Hip0 and p° corre-
sponding to a parameter point in Adi- We define the concentrated likelihood
function L(0,p), and find the likelihood ratio test

maxp=H"p L{0, P)

LR(MW\M q) max.L(0.p)
max.0=0gp=ffl L{0,p) max”o p=fl L(0, p)
max,” L{0, p) maxg=H",PHP, P)
LR(0 =0°,p = p°\M0)/LR(0 = (f,p = p°|Adi),
such that

—2log LR (M 13Ad0)

= -2 logLR{0 = 0°,p= p°|Ad0) + 2logLR(0 = 0°,p = p°|Adi).
Hence we see that the correction for the test we are really interested in, namely
Adi in Ado, can be found as the difference of the corrections to two tests of
simple hypotheses on 0 and p in Ado and M2. Thus, if we can find a general
result which allows us to derive a correction for a simple hypothesis on 0 and p
in these various models, then we can derive the corrections by subtraction.

2.1 The deterministic terms

The correction will depend on the deterministic terms and in order to get rea-
sonably simple expressions we assume that they satisfy the relation

dt+h=Mhduh = ... ,-1,0,1,... )



for some matrix M with the property that
\eig{M)\ = 1 (€))
Further we assume that
AA = K'dt. 4

for some (nd x no) matrix K. Finally we assume that (Dt,dt)J=l are linearly
independent. Thus we allow for instance dt = (1,t,t2) and Dt = t3, in which
case

100\ < 1
M = 110 = -3
121y v 3

and M has eigenvalues equal to 1 If Si,s2 and s3 are quarterly dummies we
can consider combinations like dt = (1, t, Si(t), S2U), s3(t)). In this case we have
Si(<+ 1) = Si(t) = 1-Si(t)-s2{t)-s3(t), s3{t+1) = Si(), and s3(<+ 1) = s2{t)
such that

(10 0 0

11 0 0 8
10 -1 -1 -1
00 1 0 O
o 0 0 1 gy

which has eigenvalues +1, £i. Note that intervention dummies are not covered
by this formulation and will give rise to more complicated formulae.

Lemma 1 If Xt is 1(1) and given by equation (1) and if (2), (3), and (4) hold,
then E(P'Xt"i + p'Dt) and E (A Xt) are linear functions of dt.

Proof. From Granger’s representation theorem, see Johansen (1996), we
find that the process can be represented by

1
Xt = C~ ](cj + 'rdj) + C(L)(et4- atp'Dt + 'Fd;) + A
=i
where C(z) — Czl. and A depends on initial conditions, 0'A =0, and

C = 0£(a%+T0x)-1a't.



It follows that

E(AXt) = C$dE+ C(L)(ap'K' + $A )dt
= [C* + (ESoCiiap’K'M-* + $(M - - M_’_1)]d( = KAdt.

say. Taking expectations in (1) we find
*i
KAdt = aEtfXt-i + p'A) + J2 riK "M -'dt + *d,,
which shows the result for E{0'Xt- 1+ p'D,). Note that the result that Mh
grows at most as a polynomial in h, see Lemma 10, shows that the sums are
convergent, since C, axe exponentially decreasing. m

We next show how the simple hypotheses on 0 and p in Mo, Mi, and
M 2, give rise to regression equations which can be given the same formulation.
This allows us to derive all the results from one general reduced rank regression
equation.

2.2 A simple hypothesis on /2and p in Mo

The model equation is given by (1) and we consider the hypothesis: 0 = 0Qp =
p°, such that
k-1
AXt=a(0°'Xt" + p°'Dt) + +e

1=1

which is easily estimated by regression of AXt on P°'Xt + p°'Dt, lagged differ-
ences and dt.

It is convenient for the calculations to reparametrize the model defining
new parameters and regressors which involve the true value. In the following
subsections we therefore need a notation for the true value of the parameters, as
well as for the parameters of the model. We also need a notation for the estima-
tor under the null hypothesis and one for the estimator under the alternative.
Thus for instance we let a denote the parameter, a0 the true value of the pa-
rameter, for which we calculate the expectations, d the reduced rank estimator
in the model and a the regression estimator under the null hypothesis.

We use the notation
it-i
*= (A,... r*_i), r=/n-£i\.



Note that
(In- cr)pt= (¢, - /1~ rOlr 1L NO£= 0.
such that for 0 = 0(0'/3)_1
(.- CT) = (/. - CV)(00' +0J'£) = (In- CT)00".

We therefore decompose the process into stationary and non stationary compo-
nents:

at, = (In- c°r’)0doxt+ c’r'xt
We find, using the true value of the parameters,
13%-i = 0'(In - C°T°)fONXIN + O'fft(a°Te/2°y N T A Xt-i. (5)

We choose new parameters

= = 0'(In-cr°)0° (rxr)
S[ = 000L (rx (n—r))
S2 = p'- ipp0 (r x nD)

such that the old parameters in terms of the new are given by
0' = <Bi(@°T°/?()“1a°TO+ iP'0*, p' = &+ iPplL

The hypothesis 0 = /3°, p = p° is expressed in the new parameters as
$= 0, ip = Ir. The model equation (1) with the new parameters is

AXt = ml/VFEXt-i + p°'Dt) + Q6'1(a°T°/3})_1Q°TOXt 1+ 62Dt)
+ E tilINAA) j 4 + Ef

Notice that the model is overparametrized since
ar)', ipr}-1, Sr]*1

give the same probability measure as (a, ip, 6) for any ) (r x r) of full rank. We
can achieve just identification by choosing ip = Ir, that is, by absorbing ip(r x r)
into a(n x r) and adjusting 6 accordingly. The hypothesis of interest is then
6= 0.

In the (reduced rank) regression (6) we use the result that 0°'Xt-i +
p°'Dt and AXt have a mean that is linear in dt, see Lemma 1, and that $
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enters unrestrictedly, to replace the regressors + p°'A and the lagged
differences with the stationary regressors

Wi = - -Eo(/3°%-i), @)
ZE! = (AXt_1-Eo(AX'tD),...,AXt_k#H-Eo(AX't k¥l).  (8)

We also want to replace the regressor (a®T0/3f)-1a°'rOXf_i by something
simpler without changing the statistical model and hence the test that 6 = 0.
We find by summing equation (1) that

k-1 |
a+(Xt- X0)=a+tJ2 ~*-i) + dt + *d,).
1=1 t=1
By subtracting ajTiXt on both sides and replacing t by t —1 we get
k-1 £1
= a+X0Hhax” r{(XM - Xtx- X.{)+ax"(ei +*4).
t=i *=

Because we are correcting for lagged differences in the regression (6) we can
replace (a°,r0".) _1a“T 0X(_1land Dt by the non stationary regressor given by
the common trends

Dt

where Ao depends on initial conditions.

The model equation (6) in the new variables and with suitably redefined
parameters becomes

AXt = aVt-i + ot6' At-1 +'I' Zt-1 + $ dt + £t, (10)
(«) (r) (n-r+nc) ((*—)n) (nd)  (n)
where the dimensions are indicated below each variable. The estimators for
the parameters 6, a , <3 and fl can be found by reduced rank regression of
AXton {YI-t, AJ_j) corrected for Zt-\ and dt. Under the hypothesis 6 = 0 the
parameters can be found by regression of AXt on Zt~\ and dt.

Later we shall choose At_i such that it is orthogonal to the deterministic
term dt which simplifies some notation. Note that if Dt = 0 then, of course, we
do not extend the process, and At- 1is defined entirely in terms of the random
walks, and initial values. Note also that if dt contains a constant then, when
correcting for dt, the initial values disappear.

8



2.3 A simple hypothesis on 0 and p in model M i

In model M i the cointegrating vectors O are restricted as 0 = Hip (ip(s x r))
and equation (1) is

*o

AXE= a(ip'H'Xt* + p'Dt) +J2 + <4 + et. (11)
t=1

We consider again the simple hypothesis 0 = Hip0, p = p°, corresponding
to a point in M \. We want to show that by introducing the true parameters 0°,
p°.... as before we can reformulate the equations to have the form (10). such
that a test of a simple hypothesis is a test that $= 0.

We decompose the process Xt-i using the true value of the parameters
and find

[?%-i = tP'H'(in - cf¥0)000p'xt-i + ip'HI0&(a®irc0dy ladr ox t-i.

In this case we have that 00 = Hip0Oimplies that O°L = {H+, H(H'H)~1igt)
and hence

0'0°+ = iPH00t = ipip*£(0(s_r)x(n_s),/s_r).

We introduce the new parameters

ipi = ip'H'(In- C°r°)0° (rxr)
6[ = ipipt (rx (s—r))
62 = p' - ipiP0 (r x nD)
since then
ip'H'Xt- 1+ p'Dt
= iP'i(0°'Xt-i + p°'Dt) + &(0(s_r)x(n_s), + 62Dt.

The hypothesis is formulated as 6 = 0, ipl = Ir. We let and Zt-1be
defined by (7) and (8), and replace in this case the (s —r)—dimensional non
stationary regressor

(O(s-nx(n-j), /s-r)(Qir°/3° ) _1a®'r°A'(-



with s —r linear combinations K\ of the common trends extended by D, :

‘,K0+K Njy =N +0d))

Pl 12
A -i D. (12)
for some matrices KO ((s —r) x 1) depending on initial conditions and h\ ((s —

r) x (n —)). Equation (11) then becomes

AXt=aVt-i +a6" At-i + Zt-1 + 3dt + £5 (13)
Q)] O] (s-r+nD) ((k-Nn) (<) (9
where ip[ is absorbed in a and the remaining parameters are adjusted accord-
ingly such that also Zt~\, and Vt~i have mean zero. The hypothesis of interest
is 6 = 0, which corresponds to p = p°, 0 = 0° = HipO0.
This equation has the same structure as (10) except that the dimension
of j4(_i is changed to s —r 4-nD.

2.4 A simple hypothesis on 3and p in model M 2

Again we investigate a simple hypothesis on 0 and p which can be formulated
as ip2 = 0°, P2 = P Tlle parameter a is decomposed corresponding to the
cointegrating parameter into a = (aq, a2), such that

a{&Xt_ ! + p'Dt) = + p?'A) + + p2Dt).

In this case we absorb ip\ into Qi and include the regressor 0" Xt-\ with
the lagged differences Zt_linstead of with Vt-\. We then decompose the second
component ig2X t-\ + p2Dt of the process as

ip2Xt-i + p2Dt
= (iP2(in- cOr0)EV % -i +ig0d(a*ro0ar laor ox t- 1+ p2Dt.
Now
I®2(in- cagfOwx t | + 0%Xt-i,
so that

« -1 +pjA = + Pi'Dt) + €22 Xt. 1 + p°'Dt) + S'At.

10



We have defined the parameters

(*i,0a) = ™M2A/Mm- C°r°)'f (r2xn).(r2xr2
4 = \2RX (r2X(n-~r))
S2 = pl- - 42 (r2x nD).
The hypothesis of interest in the new parameters is $= 0, =0, €= fr2m
The process At-i is defined by (9) such that the equation becomes
AXt—a2vt-\ + a26 + Zt4 + dt + St» (24)
Q)] (rz) (n-r+no) (n+(*-N") () ()
where
Vi-\ = fi'Xt.i (15)
Alo= (XTMA X ML Ax;.w ) (16)

both corrected for their mean, and where again a, and $ have been redefine
to accommodate the change in regressors. It is seen that equation (14) is of the
form (10), with a changed definition of Vt-x and Zt~\, since the assumed sta-
tionary combinations PM'Xt-1 — Xt-\) are moved to the lagged differences.
The hypothesis can be tested as $= 0, as the other restrictions are absorbed in
a and ty.

Thus in a general formulation that covers all the hypotheses we are inter-
ested in, we need to allow the dimensions of the variables entering the equation
to be different from the those given in (10). But we still need to preserve the
properties that under the null hypothesis the process {V ", Zt_x)' is a mean
zero stationary autoregressive process, and that Vt_i and 6'A,_i have the factor
a (or a2) in front. All models (10), (13), and (14) have the property that they
can be solved by reduced rank regression and that under the null hypothesis,
5= 0, the model is solved by simple regression.

3 A general reduced rank equation and an ex-
pansion of the estimators and the test statis-
tic

In order to cover the different cases considered in Section 2, we discuss the

expansion and Bartlett correction of the likelihood ratio test for the hypothesis
6 = 0 in the equation

11



Model nv na nz S
MO r n—r+td (k- I)n Q
Mi r s-r+nD (k—Dn a
m2 r2 n—r+no I, +(k-Dn a2

Table 1: The choice of dimensions in the general regression model (17) which
corresponds to the hypotheses discussed in Section 1

AXt —EV(i + Zt~i+ $ dj + £,
o ) ) M

where e, are i.i.d. AA(O, fi) and the parameters (£, <5, d5 fl) vary freely.

(10

This notation covers the different situations considered for suitable choices
of the regressors Vt-i, At-\, and Zt-i, and their dimensions, see Table 1

In all cases the variables Vt-i and Zt-i axe, under the hypothesis 6 =
0, stationary with mean zero and At-\ is a linear function of  ~*=1(£, +
$°dj), with = g° or a°>- Note that the stacked (r + (k —I)n)—dimensional
process Yt = (V/, Zt)' is the same for all cases and contains (3'Xt and the lagged
differences corrected for their mean.

The very detailed calculations in this paper continues the work in Johansen
(1999) where the correction was found for the model where sp(£) is known. The
result derived there provide the main term of the Bartlett correction in the
situation where £ is unknown and we therefore briefly discuss this situation in
the next subsection. We then give an expansion of the reduced rank estimator
around the regression estimator valid under the null hypothesis and finally we
derive an expansion of a simple hypothesis for 5= 0.

3.1 The analysis for fixed £ = £°
Note that if £ = where £0 is known the model equation is
AX, =?jVt-i +ffAt-i +7Z, 1 + + et,

which implies, for (° = ~0("0°)“1, that

[°'AXt = f'Vt-i + 6'At-i. + fV/Zt-i +?2*dt +1°'et
(P[AXt = tf?Zt-i+ & *dt + &.et.

12



Hence the model for given £°'AA(and the past is

[°"AXt = uBt + JVt-! + BAL i + (f - U&VZt-1 + (f - «C?)W, +h,
(18)

for
Bt = & AXt,u = f'n£'(E'f2£)-»,
and
«=fet - wke, = (MfT 20)-1»  -17
We define the normalized error
£t = (€°'n0- 1£°)-470niC- le,,
such that for the true value of the parameters
it=(e~ern.

We define the product moment matrices M for the variables AA't. Bt. et. Ut.
and dt at time t but Vt-i, At-1, and Z(_i lagged one period. Thus for instance

t [/ AXt\/ AXt\ ' |/ Mg Mov Mot\

53 h-1 = MW M,, ME
=1V et/ V e( /\ Mo M ME/

We also use the notation for any three process X,U, and V
Muvx = Muw -

and in particular we use a notation for the moment matrices corrected for the
lagged differences Zt~i and dt. since many results look a bit simpler this way

Sw Mwzd—Mw MudMd Miv  MuzdAlzzdMzvd.

These moment matrices are natural when the likelihood function is concentrated
with respect to 'I' and The maximum likelihood estimator of 6 (for known
£ = £°) is found by regression in (18)

*K°) = M * zAdMauzbdf = S " vpSadvid®
=t+s”*"s”*n-'eie™erl

13



The test for the hypothesis $= 0, (still for known f°) is under the hypothesis.
5= 0, equal to

LR 2/T({5= O|£° known)
(19)

say, such that

-2 log LR(6 = 0JE0 known) = tr{Q} + *ptr{Q2}. (20)

We use here the notation = to indicate that we have kept terms of or-
der T~d. An approximation to the expectation of —2log LR. given by (20) was
derived in Johansen (1999) and turns out to give the main contribution to the
expectation derived in this paper.

3.2 The first order conditions for the estimation of £, 6,
and fl

In the rest of the paper we refer to the true value, the one for which we calculate
the expectation, without the superscript since that simplifies the notation. We
express the results below in the notation for the concentrated model, where the
parameters if and $ have been eliminated, that is, we use the moment matrices
S rather than M.

The maximum likelihood estimators based upon (17) will be denoted by
6, £, and Q. The first order conditions for the estimators in model (17) can be
solved for each of the variables as

£ —(Rov + Roafi)(Rw + 6 Sav + Svab + €Saa6) 1 21
O= T-1(S00- £(S,, + S'sav + Svaé + 6'SaJ)l") (22
6=s-HSaon-~'fri)-1- S,,). (23)

14



Note that the equations cannot be solved simply, since the estimators are
expressed in terms of each other.

Under the null hypothesis 6 = 0, the estimators are

k = 50,5-‘= £+ SC&6~'
a T-1(Soo - SovS"Svo) = T~1StEv.

We next need a result about regression estimators for stationary processes and
the type of deterministic terms we consider.

Lemma 2 Let St = 8,£t-, with 8i decreasing exponentially be a stationary
process, and let dt satisfy dt-H\ = Mdt, with |ei<?(M)| = 1, and let

V= M~"Md,
then

y'Muf, = MsdM *M & 6 Op(l). (24)

This result follows from Lemma 11. We next expand the estimators I, d
and 6, not around the parameter point (£, fl, 0), but around the estimator under
the null (£, Q,0).

Theorem 3 The estimators £ d, and 6 can be expanded around £ dand O
respectively:

- C=[Scdj - & saab- &Sm]SE +Op(T~2) (25)

(CI-CI)
=T-'ISealt +& Sav- &SaV'}
+T-1(Sca) - & Sav- t(-6Sa)}S"i6'Seev- Svag - S'sa*'} + Op(T~i)
= T-'CIQo + TACIQi + Op(T~n)
(26)

6=S"SA"CIl-'afCl-'k)-1+OpiT-'sJ). 27)

15



The expansions can conveniently be expressed in terms of a projection
matrix

p=p(in) =¢(I'n-B-Ln-1
since

= P (I ChSeavS» + Op(T~1S"). (28)

Proof. Proof of (25): From (21) we expand and find with £ —£ = ScvSwf

| = (SOv+ S0a-6)S-1- (5¢ + 50")5-16'5q, + Svab + 6'Saa~6)S" + Op (T~2)
= £+ [50a5 - +Svab+s'sJ)}SN + OP(T-2).

We further have

55 - £(Svab + 6Sav + 8 Saab)
= (bea+ £5va)6 - £(Svab + 6Sav + &5aaH
= Seav6 - £s Saa8 —£é Sav,

since
50,, —fSva—Sen~ (£ ~ f)Sva —5£a —SGBW Sva —S;:av. (29)

which proves the result.
Proof of (26): From (22) we find

TQ = 500 " £(SW+ 6 Sav + Sva8 + 6 Saab)E
= 500 —(Sqv + SOa6)(Sw + 6 Sav + Svab + 8 SaaB) 1{S\6 + 55a0).

We now expand the last term and keep terms of order T F Throughout
we use £ = SOVS~f. Then

(5¢ + SoaB{Sw+ 5Sav+ Svab+ 8 Saab) |(Svo 4- 8 Sav)
= (5cC + S0e6)[S-1- 5-1(6'sav+ SvaB+ S 'SAS'1
+S~1{(6,Sav + Svab + a'5aa«)5-1}2](Srt + 8'Sao)'
= 5¢57)5,0+ £S5 Sa) + S06E - £{8 Sav+ Sva8 + 8 Saa8)E
+S0a6S-y6'Sad - £(6'Sav + Sva8 + S'Saa”SffS'Soa
-ScaSStftfS,, + Sva8 + 6Saa-6)f
+£{8'sav + Svab + $SalJ)S£tfs,, + SvaB+ 6'sab)E".
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The main term combines with Sgpto give
TU = Sep—SoyS”Svo.
The term of order T° is

ci Sa+ SoaH —((& Sav+ Svab + 6 Saeb)f
- t6 (S SaE)+ (Soa- CVA)EC - 06 SaabC
= £$Sacv + 5eav* - (6 SaalC,

where we have used (29). The term of order T-1 is

[Boeb- titSav +SjS + «'SjfoS-MS'SaO - (iSav + Svab + é'SaaSK}
= [SaE- & Sav ~ & Saa”S”l6 Saev - SvabE - 6SaaH ]

Proof of (27): Prom (23) we have

6= 5-1500-1(|'n-1)-1- Sa)

Since £ —£ and d —A are both in Op{T~I) and SoaSffSao G Op(1), we find
that

6 = S*tfaoCl-'as'Cl-'O-1- Sav) +OpiT-'sJ).
The main term can be reduced as follows:

S7iSaoCl-'atn-'k)-1- Sav)

s-fdSae + SavOn-'Sik'n-'O-1- Sav)

SE£satn -W n -1It)-" + SffSavif - on-'cK'n-1?)-1
s-fSaeCi-"n-1)-1- s"SavSASv'Ci-HCt'Ci-'k)-1
s£(s,, - SavSffswe)Ci-iat,n-1)-1

This completes the proof of Theorem 3 on the expansion of the estimators.

We conclude this section by stating the theorem on the expansion of the
likelihood ratio test for 6 = 0, in (17). We find

IT2t6=0=5s =3$~8%~M = pn_ n-i(ft - 0)1
V1 1 |

17



such that

-2 logLR -Tlog\In-Q -\tl-Q )\

Ttr{U-\U - U)} + Ztr{(U~1(U - O))2}

We apply Theorem 3 and find that, see (26),
U- n =T-'UQo + T-tflQ! + Op(r-S),
such that
—2log LR = tr{QO0} + T_1(tr{Qi} + Mr{Ql)). (30)
Let further

'Emz = Var(V)|Z() =
«? Vartetl&e.) = (€,n-1f1"1-

We can then prove

Theorem 4 An expansion of the log likelihood ratio test for $= 0 based upon
(17) is given by

-2 logLR = Ttr{S"bvSau.bvS~"0\slal>v} + jftr{(SuaSffSad)2}
+2tr{SffSuav,bK(S * S \bShav}
+T~Ur{K; zKtSueS ff SabShaSffSau},
+tr {SbaS~,fSabSbvSff  SffSvb}
-tr{SuaS”Saulit SffSvbSbvSffKi }
-2 tr{ShaSffSauk( S~fSmK( S fSvb}

Note that the first two terms are the test statistic for = 0 if £ were
known, see (19) and (20), the next term is of the order Op(T~1), and the last
four terms are of the order Op{T~I). The proof of Theorem 4 based upon the
expansions in Theorem 3 is given in the Appendix.

4 The Bartlett correction factor
In this section we give the main result on the Bartlett correction. We first
discuss briefly the idea of conditioning on the common trends and then give

the calculations of some coefficients in the cointegrated VAR that are needed

18



to formulate the main result. Finally we state the main result and specialize
it to the various situations covered by the general formulation as indicated in
Section 2.

We choose to calculate the conditional expectation of the likelihood ratio
test statistic conditioning on the process ££H- The argument for that is, that
it is easier to do so since many of the expressions derived involve ratios of
quadratic forms and turn out to be possible to calculate if we first condition
on Another argument is that the asymptotic distribution of 3 is mixed
Gaussian, where the mixing variable is just the limit of JT =1 which are
fixed when we condition on £xet. The end result is that the conditional mean
does not depend on the conditioning variable such that what we find is also the
unconditional mean.

When is fixed so is the regressor At which we denote with a(_ We
further define

bt = ((tn¢xrk'+.et,

of dimension "&= n —n,,.

4.1 The conditioning variables

The fixed regressors at_i and bt are defined in terms of G31 ., and £4£t- It
is convenient to orthogonalize a(_i on the deterministic terms dt such that in
the following Mad = 0. Note that if dt contains a constant, then At-i no longer
depends on the initial values.

When we do not condition on we have the following relations

T
(1)

(32)
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33

t=1

T
0,z=0,1,... (34)

t=I

T
T-1£ btib" Kbt-i"W - fr{F}/rk (35)

t=I1
for any n&x rib matrix if. Finally we have

MbaM~*Mab A j\d W )F *(j f FF'dulj jf F(dw)’, (36)

where the Brownian motion IT(it) is defined by
[Tu]
* whu),
X1
of dimension nb= n —nv. The process F is defined as the limit of At-i. If fof
instance dt = 1 and Dt = 0 then

t-1 T t-l
At-i = aj.("Et —T~I"2 " £t) + ~ X
t—1 =1 i=|
such that in the direction (" 0), the process grows linearly and orthogonal

to that it behaves like a random walk. In this case F is of dimension nb—na =
n —r and

Fj(u) Wi(u) —Jg Wi(u)du, i=1,... ,na—1,

Fn,(u) = u1
If instead Dt =t —t and dt = 1, and
A=A - T-IErsL E%JEQ+ *(*- i) y
then a non singular linear transformation of T(_i, which leaves the statistic

invariant, removes the coefficient € such that in this case the process F is of
dimension na=n —r + 1, and given by
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Finally of At-i is given by (12) with Dt =t, both corrected for their mean, and
dt = 1, it is possible to prove that

Ft(u) = Wi(u) - £ Wi{a)ds,i= 1,... ,n- 5
FnsH=U 2

Wilien conditioning on the sequence we assume that relations (31)-
(36) hold for the sequence we are fixing. That is, we replace y~"_la(_
by X2t=i a«-i°t-i = Moa: T _1J*M=i bib't_k by Irb or 0, etc. in order to simplify
the expressions.

4.2 The autoregressive model

Before we formulate the main result we need some notation for the vector autore-
gressive process given in model (1), which is the basis for all the calculations.
Under the null hypothesis the model is estimated by ordinary least squares

of AXt on and dt, and we therefore introduce the stacked process
Yt = (Xt3 AXtL, ... ,AX't_k+2)' corrected for its mean. It is in all cases of di-
mension ny=  +nz=r+ (k—I)n and is a stationary autoregressive process

given by the equation

Yt = PYt. i + Qet,

where
t Ir+B'ct B'Tt me /m 2 B'Tk-i \ (0
Q ri ee *2 x| In
p = 0 In = 0 0 Q= 0
\V 0 <)eem/, 0o / 0/

We find the representation

Yt = AP IQEt-v = *U-v-\ + i’'ubt-v-i,
i=0 w0

where we have decomposed et into the components Ut and bt. and

0

» = TFOOtA?2!7Ni)"e-
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Note that by the definition of E

a
X > X + WAV) = Var(yt) = E. 37)
v=0
We find
a a
e=53" = = (7Tv- ")"1Q€(€,n-10 “1-
i=0 iF0 ( )" 10
Since

(7n,,-P)Y(7r,0rx(*_Dn)' = -Qa,
we find, when £ is either a or «2 = a(Orj X, 7rj)', that
(/InB-P ) (/n,,0mnX,J'=-Q *,
such that
0= -(/nv,OnvXn)'/cE = -Ic*, (38)
where

k2= Var~etl®te,) = VaratfT I*)-1* - 1*) =

4.3 The main results

We can finally state the main result about the Bartlett correction factor. The
proof is left for the Appendix and we give here some corollaries, which show
explicitly how the correction can be used for the tests mentioned in Section 2.

Theorem 5 The conditional expectation of the log likelihood ratio test for the
hypothesis 6 = 0 in (17) is given by

E[—2logLR(6 = 0)176]

= nvna+ tfA[\{nv+'na+ 1) + nd+n +nz\

+7[(n -nv+na- Du(0 + 2(c(f) + cd(f))]

where

v(() = tr{Vi},Vi =

c0 = tr{P(In, + P)-IV(} +tr{[P®(In,-P )V e][In® IN.-P® P ]-1}
cd(0 = tr{[M®(rv- PVN[7, ®7,v- M®P]-1}
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It will be seen from the proof that the correction term is the one derived
in the situation where £ were known, see Johansen (1999), apart from a term
equal to n° » TV v(®). The proof of Theorem 5 is given in the Appendix.

Note that the coefficients v, ¢, and cd depend on the choice of £. If£ = a.
then

v(a) = tr{(a'fi_1Q)_1EA4j},
with Upg = \ax{0'Xt\AXt,m . ,&Xt-k+2)- If. however, C=a2then
v(a2) =

with E322/3 =Vai((3'2Xt\0IXt,AXt,... .AXt *+2), corresponding to having
moved O[Xt-i from Vt_i to Zt-\.

The coefficient cd(£) can be calculated simply in some cases, like dt =
1, 1), since then tr{Mh} = ng = 2 for all h. This means that

a() = tr{[M®(U* —P\VcI[ly ® I/ —M ® .PJ-1}

= ® (/) - p)VHMvV® P}
v=0
a
= yV:dtr{ll\/{\H-I)®(K -mm
= Y.tr{M (VH}r{{Inv- P)VtPv}
v=0
= ndY?tr{(Ini - P)V(PV} = ndtr{V(} = ndv(£).
©>=0

If dt contains seasonal dummies then tr{M h} is a periodic function and a more
complicated expression can be found. In order to understand the parameter
function v(C) that enter the expressions, note that the long-run variance of Yt
conditional on the common trends is given by 90'. Thus the matrix \\ measures
the “ratio” between the unconditional variance of Yt and the conditional long-
run variance.

We specialize the result to the hypotheses discussed in Section 2.

Corollary 6 The Bartlett correction for the test of a simple hypothesis 0 =
0°, p= p° in model Mo, is given by
E[-2\ogLR{0 = ff, p =p°\Mo)]
=r(n —r + nD) + r~tf-DI[I(n 4. nD+ 1) + nd + kn]
(n-r+np) [(2n _ 2r + nD—I)t>(a) + 2(c(q) + cd(a))]
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where v (a), c(a), and cd(a) are given in Theorem 5.

Proof. This follows from Theorem 5 by substituting nv=r.na= n —
r+no,nz=(k—21n, £= a, see Table 1. m

Corollary 7 The Bartlett correction factor for the test of Mi :0 = Ho. with
H (n x s) is given by

E[-2\ogLR{M\\M0)]/r(n - s)
=1+ f[|(n +s- r+ 1+ 2i£) + nd+ kn]
+7:[(2n + s —3r —1+ 2nD)v(a) + 2(c(a) + cd(a))].

Proof. Fyom Corollary 6 we use the result for a simple hypothesis on 0
and p in the unrestricted cointegrating model Mo- We apply Theorem 5 to a
simple hypothesis on 0 and p in M\. The dimensions are given by nv =r. na=
s—r+no, nz=(k—Dn, £= a.

E[2log LR(0 = 0?, p = p°\Mi))
=r(s —r + nD) + r(s-r+n°l +nD+ 1) + nd+ kn]
L (-rtnp)[(n+ s _ 2r - 1+ no)v{a) + 2(c(a) + cd(a))].

Note that since K-i and Zt-1have the same definitions in both cases, the
matrix E and P have not changed, and that £ = a has the same meaning in
both models. Thus the coefficients v(a), cd(a), rind cd(a) are the same as in
Corollary 6. Subtracting the expressions we find the required result. =

Corollary 8 The Bartlett correction factor for the test ofM2 :

('M (3 M le))m
where the matrix 0* (n x r) is of rank ri, and p\ is (1 x ri), is given by

*E[-210gL.R(.M2|.A/(0)]/Vi(ra- r + nD)
= 1+ 5;[8(n+ nD+ 1- r2)+ nd+ kn]
+57-[(2n -2 r + nD- I)(u(a) - v{g2)) - riv(a2) + 2(c(a) - c(a2)],

where the coefficients c(.), cd(.), and v(.) are defined in Theorem 5.
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Proof. Prom Corollary 6 we use the result for a simple hypothesis on
/? and p in the unrestricted cointegration model M g. We apply Theorem 5 to
find the result for a simple hypothesis on 0 and p in model M 2 Note that the
dimensions have changed as have the definitions of V/,_i and Z(_i and that £ =
a2-In both cases the stacked vector (Vi_i. Zf i) is the same and hence the matrix
P and the variance matrix E has the same meaning in both expressions. We
apply Theorem 5and find forn,, = r2, na= n—+no, n2= ri+(k—)n, £ = &2

E[-2\ogLR(0 =/f,p = po\M2)}
=r2(n —r + no) + (n- n+ 1+ nD)+ ri + nd+ kn]
+i-r+2pd[(2n - r2- r- 1+ nD)v(a2)+ 2(c(q2) + cd(a2))]

Subtracting we find the result. =

5 Simulation experiments

We report here some simple simulation experiments to illustrate the usefulness
of the correction. We first give the result for the model with only one lag and
one cointegrating relation, since we can get complete information on how the
correction works. Then we present a few results where the DGP has been chosen
so as to match the results obtained for real data, analysed elsewhere.

5.1 The model with 1 cointegrating vector and lag 1

We first consider the model with only one lag, one cointegration relation and
no deterministic terms, that is, the model

AXt —O00X(i + £

In this situation we have Zt = 0, and
/2% = ]T(1 +0'a)i0’et-i,
i=0
such that
0'n0

Var(/?%) = E =
ar(/2%) 1- (1+0'a)2

= (0TT'a)-
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If we want to test a simple hypothesis on 0 we find the coefficients

_ , _ 0'a(2+ 3'a)
v(a) Q a  a'SI-WQo
0'a(l + 3'a)
P ‘a, ¢ =
1+ 0a c(a) a'n-la0"'Q.3'

With this notation we find from Corollary 7

Corollary 9 In the model AW(_! = a0'Xt-\ + et with one cointegrating rela-
tion, the Bartlett correction factor for the hypothesis 0 = 3°, is

E[—2log LR(0 = OP\M0))/(n —1)
= 1+ 5T(3" + 1) - Jan"ap'MK2n ~ 3)(2 + P'a) + 4(* + a)-

In order to simplify the simulations we transform the problem linearly, by
defining i’i = 0(0'C10)~",

v2=-(frl- 0(0'n0)-10a (a'Q”a - a'0{0'n0)-10'a) “*,

and finally vectors V3,... ,vn such that

The new variables Xt = v'Xt satisfy the equations

AXu = (3'Q0)"0'a(0'n0)LiX + 6u =V~ u-i + Slt
AX2 = - - a'0(0'Q0)-Bla™ {0'SIO\t_xX + St =£XUi +S2
t — &iti A — 3, e==5TL

where St = v'et are i.i.d. An(0,/n), and

ij = (/3'fi/J)-5/?"a(/?'fi/?)5

£=- (a,n-1o - a'3{0'9.0)-0'a)™ {0'n0)i
Thus only two parameters enter the DGP and it is possible for a given n to
tabulate the effect of the Bartlett correction as a function of just two variables £

and 1), see Tables 2-4. In this formulation 0 is a unit vector and a' = (77,£, 0,0,0).
We find the coefficients

<K=
c(a)= -28% .
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Table 2: Simulation of T = 50 observations from an AR(1) process in 2 dimen-
sions with r = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%

We then find some results in Table 2 (T = 50, n = 2), Table 3 (T = 50. n = 5)
and Table 4 (T = 100, n = 5). It is seen that for n = 2 a nominal 5% test can
have an actual size up to 16 % and that in many cases (roughly p + f < —0.2)
the Bartlett correction factor gives a useful correction.

Note that for £ = 0, both coefficients have a factor p_1. such that for small
1/, the correction factor tends to infinity. The DGP where both f and 1/ are zero
corresponds to no cointegration, and the test on (3 does not have a meaning in
such a situation. The model with p = 0, and £ / 0, corresponds to a DGP
generating an 1(2) process, and the derivation of the correction factor is not
valid in this case.

For n = b5, it appears from Table 3, that the situation is worse and the
actual size can be vary large indeed. The region where the Bartlett correction is
useful is approximately given by 74£ < —0.4. Obviously the situation improves
if T is 100, see Table 4.

Usually the test for (3 is proceeded by a test for the rank, and if r; and
£ are sufficiently small the hypothesis of 1 cointegrating relation will not be
accepted, thus for small values of £ and 7the Bartlett correction is not needed.
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Table 3; Simulation of T = 50 observations from an AR(1) process in 5 dimen-
sions with r = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%

t\w 01 02 -04 -06 -08
0 14 2% s 5% )
ou I 8BS DB

60 6% 58 50 517
01 48 Fe 74 DO

2 66 56 5
02 4B 5B 2B A% ¥

5 57 54 18
04 2% 2% 22 38 3B

06 3% 8% 3% M 88

o0g 58 8% 5@ 52 504
8 78 5% 86 19 Ifiz.

Table 4: Simulation of T = 100 observations from an AR(1) process in 5 dimen-
sions with r = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%
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5.2 Some reed life examples

As a perhaps more interesting case consider the data set discussed in Johansen
(1996) of a four variable system consisting of mt (log real M2), yt(log real
income), if(bond rate), and finally if (deposit rate) observed quarterly from
1974:1 to 1987:3. We take as DGP the parameters determined by the estima-
tion, and simulate a time series with 53 observations which was the number of
observations in the example. We first give the result for a simple test on 0.

The Bartlett factor in this case is given by Corollary 7, since we have a
hypothesis only on 0, which we formulate as
0 =Ht>= 0%

with €(1,1). We findwithn =4, r—1,s= 1, no = 1, k= 0, k = 2, such the
degrees of freedom is are r(n —s) = 3, and

@ 1
E[-2logLR(0 =0P\M0)]/3 =1+ + f + 2c(a)].

We find for a test of nominal size 5% a simulated p-value of 10.3% (10000
observations) and a corrected p-value of 3.1%.

Another test of the form 0 = H(j) is given by the matrix H :

1 0>
-1 0

0 1
V 0.1/
corresponding to the test that mt and yt enter with the same coefficient with
opposite sign and that the same holds for i\ and if.
We find again from Corollary 7withn=4,r=1s=2 k —2,rip =1,
né = 0, that the Bartlett factor is

E[—2logLR(M\MO)\V2 =1 +] + ~[8v(a) + 2c(a)}.

We find that a nominal 5% test has an actual size of 9.9% whereas the
size for the corrected test is 3.1%.

As another example consider the Australian data consisting of consumer
price indices (in logarithms) for Australia pfu and US pfs and the exchange
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rate excht together with the five year treasure bond rate for both countries i“u
and The data is observed quarterly from 1972:1 to 1991:1, which gives
an effective number of observation of 75. We fitted a model with two lags
and unrestricted constant, and found two cointegrating relations. We first test
a simple hypothesis on the two cointegrating relations. In this case we have
n=5r=2-s=2 k=2 nD=0, nd= 1, such that the degrees of freedom
are r(n —s) = 6. Since dt = 1, we find that

cd(a) = ndv(a) = v(a).

The Bartlett factor can be found from Corollary 7 and is given by
B[-21ogLi?(M1]>f0)]/6 = 1+ y + 55?[7»(a) + 2c(a)].

We found that a nominal 5% test in reality corresponds to a test size of 21%:
The correction of the test gives a size of 6.3%. The result is based upon 10.003
simulations.

Next consider the test for price homogeneity given by the restriction
R= (1,1,0,0,0),

and H = R+. In this example s = 4, such that the degrees of freedom arg
r(n —s) = 2. We find the Bartlett correction from Corollary 7 as given by

£[-21ogLfIIM1M0)]/2 = 1+ £15 + ~[9v(a) + 2c(q)]

By performing 10.000 simulations we see that a nominal 5% test correspond te
a test of size 10.5%, and that the Bartlett correction gives the size as 3.37%.

6 Conclusion

In this paper we have derived an approximation of the log likelihood ratio
statistic for various hypotheses on the cointegrating coefficients in a VAR model.
Despite the rather tedious calculations it turns out that the final result depends
on the obvious quantities like, dimension, lag length, cointegrating rank, number
of restricted deterministic terms, and number of unrestricted terms, as well as
on the hypothesis, that we want to test. The effect of the parameters is focussed
in two or sometimes three functions, which can be easily calculated once the
parameters of the model has been estimated.
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The usefulness of the results is demonstrated by some simulation experi-
ments. Table 2 and 3 give the results for all models with one lag, one cointe-
grating vector and no deterministic terms in case n = 2, and T = 50, and Table
4 forn —5and T = 100.
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8 Appendix

8.1 Some technical results

Lemma 10 Under the assumptions (2) and (3) the powers M h grow at most
as a polynomial in h.

Proof. The Jordan form of the matrix M contains blocks of, for instance,
the form

B3X)= 1 A0
\ 0 1\)

where |A = 1 This has the property that

/ \h 0 0\
I3A) = h\h~I \h 0
V\h{h - DAR-2 [IA*-1 \h)

This is bounded by a polynomial of degree 2 in h. In a similar way one cah
prove that Mh is bounded by a polynomial of degree at most equal to the order
(minus one) of the largest Jordan block in M. m

Lemma 11 Let St = YIZo with 6, decreasing exponentially. Let
7(h) = Cau(StISt+h) = £ 0%00;+*
1=0

Let dt satisfy dM = Mdt, with \eig(M)\ = 1, then

00

tr{E(MsdM ~M ds)} - tr{M h}tr{7(h)}. (39)

Proof.

tr{E{MsdM "M ds)}

HE E.” =00iEt-AMudH -ft}
E ij,ttr{eiQg }tr{d'tM jd t-i+j }

Eij Ef=i tr{d'tMM dtM~i+}tr{rUfjOi}
* HT=-catr{Mh}tr{y(h)}-
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We next give an expansion of a projection matrix which will be used
in the detailed calculations below. Recall from Theorem 3 that P(E.ClI) =
(£ N _1-and we define P(£, ) = £i (Ex"£j.)_1Ex = ~_1~C~1P(£. d).
Note that we only expand as a function of £ but keep fi.

Lemma 12
P(ld)y= P(C,0)+p(t,rn -
+A-¥(rn-10 "1(« -0 'P(€.n)
+P(i,rn - n
-c)PE,m -
- O 'ft-W ft-1*)-1*1 - 0 'P(£€,«)
-I>(€, «)(* - OK'n-l-1€n-1] -
+0oP{T-i).
Proof. Let u = CI~?£, such that £ = CI*u, and define v = CI~i(E —£),
such that (| —£) = Then
p(".fi) = = n*pOfH ,
say, and
p(~fi) =rrl- n_1P(E,n) =n-1-n-5«(u'u)-vn-5 = n-ip0fH .
Then we find using u = u(u'u)~1, such that uu' = Pq
n-ip&n)Eii
= U+ V[u+v)u+v)]-1u+v)
= (U+V)[uu+u'v+vu+tit/]-1(u + v)
= (u+Vv)[(u'u)1l—('u)_1Ui>+ v'u +v'v){u'u)~I
+(u'u)~Lu'v + v'u)(uu)~{u'v + r>'u)u'u)_1J(u + v)' + 0(|n|3)
= Pqg+ L\ + L2+ 0(jw|3).

The first order term is given by

Li = uv'+wvu! —u(u'v + v'u)u' = uv'(ln—uu') + (In —uu")vu'
= uv'Po + POvu".

The quadratic term is

L2= —u(u'v+ —v(ulu)~l{u'v + viu)u' + v{u'u)~Iv'
—uv'w! + u(u'v + v'u)(utu)~Il(ulv + vu)u'
= Pgv(du)~Iv'Pg—uv'Pguul —PgVu'vu' —uv'uv'PO.

When substituting u and v we find the result. =
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8.2 Proof of Theorem 4

We start with (30)

-2 logLR I tr{QO0} + T~1(tr{Q1} + "r{Q 2}),

and evaluate each term starting with the easy ones.

8.2.1 Calculation of tr{Qi}
We find from Theorem 3, that

MQi} = J - kKs'Sav- $ - SWt - s'saaW}}

Because tr{Qi} is multiplied by T~I we need only retain the main term in each
of the matrices. Thus we can replace P(£, 0) by P = P(£, Q), 6 by S*S auH(, £6
by PSeaS”, SEav by Scai and finally T~ISw = T~xMw.z4 by Ew £ = Var(V{|Zt};
We find

MQi} = fr{E-22K 5uaS-1S0t(7,,-P)'-St0S-150']n-1
x[(/,, - P)SeaS*"SauKi - PSeaS"S av}}
= tr{E"Y SAS-~fi-V n - P)5£Sal50u" } (403
+fr{ RnlbRlaelSen - 1P S£5 - 15a,} '
= tr{K{E~JSf SuaS"SabShaS"Sau}

+HrVw.zSvaSaa SauSuaSaa Sar,
where we have used the properties of projections
p'frvn-P) = o pn-‘p=PTT1

(/»- P)'n_1(/» - P) n_i(/n- P) = £x( N x)_1£1
SacQ~IPSea SauSua, Saffl_1(/n- P)5E = SabSham

8.2.2 Calculation of tr{Qo} = T %r{(Q 1[iS0.,5" +£6 Sat,—£6 Saab( )2}

The factor T-1 allows us to replace each matrix with its limit. We replace £8
by PSeaS ™ and Seayv by SEa and find

Qo = n-1[58a5-1S0EP" + P5£aSaal5aE(/n -P ) ].
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Hence

\tr{QI) 5 \tr{[Sd&5 r 1SeadS" [Sa* - IPSca}S-d}
+ Itr{[SaeU-1PSE}S [Saen - 1(In-P ) S ea}S-al} (41)
= 57{(5uab ‘WSau)2} +tr{SauSuaS " S aShaS"},

using

SaeQ 1Sfa—SacQ 1PSfa+ Saffi 1(/n —P)Sfa—SauSua + SabSha, (42)

where

= (¢'n-"¢rk'n-'erbt = (€in{j.)-*rts«

8.2.3 The main term tr{Qo}

This term is of the order of T~1T, and hence we have to keep more terms in the
expansions.

Prom (28) we find that f~é| is of the order of Séell and that
= PSeavS * + + oP(T-IS;$),

for some 6\ 6 Op(Saa ), and hence

SeEv = PSfavS~aSetv + T~1"61Sae.v

We first want to show that we can replace £6 by PSfavSaa introducing
errors of at most the order oP(T~I) in the expression for Qg. We find from

UQo(W) = Seal(,' + G0'Seev - tfSaaH'
that

a4(Qo(&) - Qo(PScavs™)}
= T-I[Sea] "' + ""\saev- (BlSaaS"S avP' - PSfavS-dSaaSd’)
= T-'[(In- P)ScaM '+ ~[SacAln - P)}.

This term, however, does not give a contribution since

(r{fi-*(4 - P)SEJik'} = tr{£Q-"/n - P)Sfal 1},
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but £4 *(In —P) = 0. In the following we therefore replace by SeiSasvP'm
and we find

ClQo = Seav6(i + £6 Sacv —{6 Saaf(, 3)
= SeavS~SaevP' + Ps@s”sav- Ps@s”sEP.

Hence

tr{Q0} = tr{CI-1(I-P)SeavS~Sae.vP' + PSeavS” Sacv]}

tr{Sd.vCl-1PSeavS"},
where we use the property
P'Cl-'iln -P) =0.

We next expand around £, but keep fi. We find from Lemma ??, using P(£. ) =

HQo} =tr{S£S«.JI-1(?n-10 -iefl-1SnM}
+2tr{s"safvEAt'i.nt+)-1Z'At -
+tr{5-i50E,,(c't" 1)-iei(i - (Heft-"tr'ti - eyex(?£n(zx)~1Cj.s*a.v}

- M+(Ctfkz)-1Cj.(€- O it'n-"tr't'n-"s*«&}
-2Hs-'s™fi-wn-'0o-Hi- eyn-wn-ty-'ti -
—A\ + A2 + 43+ A\ + 4s.

In order to simplify these expressions we need the identities

St —F&ai Cro) | T

thv  “Ybv 0 (44)
= TSauvfis ™ bhpn~lo™

s,,.*z+ = saM+Mi+)K (45)

/)y'(s_ Subv) IH \\ = r-iSuuuti (46)
U/ \ wv &wJl \ [/
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nej*

. _ (47)
= Sy ot = TSjEv.

We then take the terms one by one

The term Ai  We apply first (44) and then (46) and find

= Ttr{SE SaubyvS~"\VSua.bv}

Now we want to modify this as follows

T tr {Saf SaukiVSWibyvSua.b,v}
= Ttr{S”bvSaubyS~~vSuabv} + Ttr{(S£ - SA)SmbiS"j,<Smj,v}.
Now

Saabyv = Saab Sav.bSwfrSvab = Saa SabS™ $™a  Sav.bSw bva.bt

such that

Sa'g;b,v = Sz (Saa ~ SabS~1Sha ~ SavbSv/~bSva.b)
-S2(SabS»ISha + Savhs ~ bSvab)S~ + Op(S"T~2),

and hence we find for Ai

Ai rtr{5 calSQ,6vSuls,,Suabt,}

= TtMi“aa.b.vSau.b”rS~hASua v}
—Ttr{Saa(SabSHilSha + SavkS » bSmj,)Sa*Sau.b,vS "t\Svahv}

= Ttr{SaabvSaubySubvSuaby} (48)
~tr{S a{SabSha 4" SavbYjv*zSvah)Sa* SaubvSuubvSuab,v}

= Ttr{S~\vSaubyS~*bvS~by} - T-HriSarS~SahSbhas"1}
-T-HriZz~"SvaS~"S~rS~Sav}.
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The term A2 To simplify the term A2we use (45) and then (46) and (47) to
find

a2 = 2
= 2Ttr{S-1Sabv(Z+CHt")i(ti nt£r Lt'tnt+)t
xStoS-1(Cn-le rl(en-leyi Sua.v,b}

— 27 tr()S'aa Sai,vS” vSin,Sw Kc }

This term is of the order of T 2, and since

T~1Shv = T-'Sy, - T-'StoSAS* =T~1Sb+ Op(T-2),
we find that we can replace T~1Skbv by T~ISu, and get

A2= 2Ttr{S"1SevStolShS;IK( Suavb} (49)

8.2.4 The term A3

We find since the term is of the order of T~1that we can replace each matrix
with its limit to simplify the expression

A3= tr{S-dSaU A"+ r~'x(k - OKA-1%)-1

= tr{SA SasS"SmkpS"1
— It{Saa SabShv Svi SvbSha}

where we have used

T-1Stav=T-ISta+ 0 P(T-1).

8.2.5 The term A4
Again we can replace each matrix with its limit to simplify the expression
M= -fr{s-1s,£un - ("-10 -1« -

-M (i-10-2Z'n-I1seav} (52)
= -triS*SaukK” Sua}
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8.2.6 The term A5

Using the same relations as before we find

Ah= -2tr{S"SacvU-1C(C'U-10 - 1(Z -
(52)
= -2<r{5a0050utES " 1Swuk( S-jSvbSba}

Inserting (40), (41), (48) - (52) into the expression for the likelihood ratio
test (30) we find

VLW % WU -~ 2 V
+2Ttr{S~a SuavpkéS~,, S\wiStoSha.v}

+T-1tr {KEE 5 “¢SabSha’5 * 1Sau},

+tr{ShaS'a SahSbvS" kES~V Svb} 63

Note that two terms from Ax, as given in (48), cancel a term in the ex-
pression for Qx (40) and QI (41).

This completes the proof of the representation of the likelihood ratio test
statistic given in Theorem 4.

8.3 Proof of Theorem 5

We use the result of (53) in the form
E[—2log LR\(ii e\ —K\ + T 1(K2 + Kg + Kx + Kb+ Kg + Ki),

and evaluate each in turn. Below we shall indicate by E +[... ] the expectation
formation, and leave out the conditioning variables £+£t- Notice that when we
condition on £+E the processes a,_j and bt are fixed. This also holds in the case
of (14) where we condition on a'2xet rather than a'zet.

8.3.1 The main terms Ki+T"1K2
We have

)2}
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This is the correction term given in (Johansen 1999. Theorem 3.3) based
upon the regression equation

I‘,E-\Xt: u Bt" + (S (E - N '1)")(V€ﬁh%5_1)' + 5‘3?'«-)i + ('4'<s)+ (g',.),
for the test that 5= 0, when £ is known.
K\ 4T 1K2 = nwn04—  [Hnv4T7,4-1) 4 (nd+ n2+ n)]
+~[(no-IM 0+2(c(0+Q (0)].
where the coefficients u(£),c(£), cd(£) are given in Theorem 5.
The rest of the proof of Theorem 5 deals with the problem of evaluating

K3+ + Kb+ K6+ K7= v(S)na(n - n,).

We first consider the terms K\, Kb, Kb. and K7. Since they are of the order
of T~I, such that we can replace each matrix by its limit.

8.3.2 The term K4 = Eix Su a Sa b Sa‘Sauj

We replace 575" 586 = MuazAM * zdMabzA by M~ANI*Mai, and find

K< = Eu MuaM *M ahMbaM ; alMau}}-

Since Mua is Gaussian NnvXna(0, Inv & Maa) given a'Let. we have

K4 =tr{k( zKF}<r{M b a M ab}. (54)
8.3.3 The term K5= TEix[tr*"S A~ S ~ S ~ 25S"S W]
We replace ShaS~aSeb by MbaM*a Mab- We next consider K(S*}Svb- We use the

identity,

{Eit l)nvxnz)My}@Myhd

Mwd M\zd Mvbd
Mzv.d Mzzd p M zbd

= Mw.zdVb.zd = SW b-
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Thus

Svb —RCMyy jMyb.d"
Hence we replace K¢S”Svb by T~IkgY.~IMyh since

Myb.d = Myb —MydM” Mdb = Myb + 0/3(1).
We have to find
Kb= T~IE” [trIMbaM-"MabMbyk'(E_1Myic}{
= T~IEit [tr{MbaM "M &E s,tJbt(UM e[ +bBM *)
XE-1" «JE-HOjU-j-1 + *£.+1)% }].
We get a non zero mean if the number of stochastic factors is even. We
find for two stochastic factors that for t = s and i =j, we get
T~IEi+tMMboM-"Mab E m,,; W t-i- % Y,~16jU3-J-\b'3}}
4 T-Hr{MbaM "M abZ tiJhbbit+j_i}Hr{0iZ-'kiK(Z~%}
tr{M6aM -IMag}tr{E, 0'E-1* ~ E '1%}
tr{M6aMa IMag}tr{ (E“ oW T)E-1*e

T-'J btht+j-il* A
t=l

if z=j and 0 otherwise, see (33) and (34). With no stochastic terms we find

T-Hr{MbaM*Ma £ Mj-ME-"E-ty~™-iia
Fort=sandi=j we find

T~Hr{MbaM~alMab'Z,t:ibot_i_ipii : - i Ki 'E-Lhabt-i-il/t}
= T-HH{MBM~AM®DE NV H E, E"I* A E"1r} (56)

Thus we find from (55) and (56)

Ks=ir{ A~ Ma}»{ E-1" }, (57)
using

®

E(W I'+«« = E.

=0
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8.3.4 The term K6 —-T Eit [tr{SuaS&olS'auK{ H

We replace Sau = Mauzd by Mau, and Sv'Swb = (/n,,0,vx,,)My*dMybd by
r _1(/,,v,0Oni,x,,JE -1M\6 and find

-T~IE@E[trIMyaM-"M*"E "M ~E " 1"}
- T-"Eix{tr{M * Yistm,r.ij “t-lUlk's E - 1{OjU.-j-i +

For four stochastic terms we get

strmij
We find for s —§ —1=t,m —i - 1= r, the sums Mab and A4, which
normalized by T_1 and M~1tend to zero.

Only fort =r, s=m, and i = j, we get something non zero

-T -1 X[tr{M-1E s,,iJat-it/(«eS-1t/s-7_16s6s_J+f/;_; 1"E-1K{Ql;_ ¥}
= Em EANT"1Esb'M ~k,}

For two stochastic factors we find

and we take againt —r, s =m, i =j and find
= -T~Hr{Mg Etat-ioi-JEj *{*«E"ViEsb b 'M '~ '~k  }
= -nanbr{k'iE_1(EELO b

which together with the previous result gives

Ke = -nanktr{K£E " zk( }. (58}
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8.3.5 The term K7= -2TEix[tr{SbaSQ S ailni SW SvuKi Sm}Svb}}

We find as before

K7= -2T~IE(x[tr{MbaMad iM

For four stochastic terms we get

2T-Eiltr{MtaMal » af 1* E - iff_J 1 E - IftE/m i_i6(It}

We notice that to get a contribution we need s, t, and m to be tied together
which always gives something of the form "2tat-ib't_k which normalized by
T~1M/)0Maal goes to zero. For two stochastic terms we find with t = s,

= 2T-EPtr{M6aM -1
= E(x[tr{MbaM~* Em"-17)}]

which tends to zero since T_1 0- Thus A7 does not give a
contribution.

Finally we consider the term K3 which apparently is of higher order of
magnitude, such that we have to take into account more terms when expanding.

8.3.6 The term K3= 2TEiJtr{SbavS ~ ~ S \b}}
We first consider

Saa — Maa.z,d = Maad ~ MazdMzzd~za.d = Maa MazMzz jM B,
since mad = 0. We replace it by maa and next expand using mad = 0

Sau.v,b — M aUyby =Mau M a fiMyfr d *b/Ud M aybd Myyfrrf M yu bdl
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Sbav —Mbayd —Vba  Mby.dMyydWya-

We insert

Sw Svb— K"Myy "Wyb.d-
and find

TSbayS”Sau,VibKi SwilSvb
TMba.yidMaa Mau.yib,dke'Myy diviyh.d
(Mba - Mby.dM-~"MyJM~
X(Mau  Afab™bb.dbud  May.b,dMyy.b,dyudd}
xSj(E - (E - T-1Myyd))-1Myhd
MbaM A~ |\/HJ‘§E1 Myb.d
T ~1MbyE “1Mya MouKjE” 1M yb
- T~IMbaM~MaMbudKiY,~ Myb
- T-IMbeM "M ayY,-IMyuKl T,-1IMyb
+ MbaM”MauicjE-1(E - T_1Myy)T,~IMyb,

such that K3 is split into 5 terms:

K3= K31 + K32 + K33 + K34 + 735-

This gives a number of contributions, which we investigate one by one.

The term K3i Let btd= 6, - MbdM~"dt, then settingt=s- r- 1, we gét

K3l 2E*tr{MbaM *M au”-IMybd}}

= 2E(1Er{MbaM” J 2 + ib.-i. 1)tHA}]

t,s,i

= 2E@Ur{MbaM -1 a«-ifit" E - "C/t6;+i+1d}]
ti

= 2tr{MbaM *  at-ibUi+i.d}*{«{S_IE,i}-
ti
In order to evaluate this we note that dt+i+ = M “+1dt such that

bt+H+.d = bt+Hi+ —MbdMAdt+i+i = &+ ~ MbdMdJM,+1dt.
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Hence
y i at~ibt+i+i.d

t
= $3a(i&++ - £ at,d'tMM M~ M ch
t t

— Mab + Op(T*),
since we have M”i —0. Thus we find the result
K3l = -2tr{K'E-1IKE}r{A/imMa IMa))},

since 6 = ~

The term K2

K2 = 2T~1Eit [tr{MbyY,~|MyaM M auk'*"E* IMyb}]
= -2T-E£{Qtr{EMrmja W iU I +

(59)

X(6iU,-i-i +tbi6s_i-1X _ IMoalor_1t/;KEE [{ekUm-k-1 +v*6m-fc-i)6"}].

We try first four stochastic factors

XL= 2T Eix[tr{52tsrmj ikbtUl_j_I6LY.~xQiUs- x\als_|

Since the factor in front is T _1 we need only terms of order 1from this expectation.
The only term where we shall get a summation of b with itself, which is of the
order of T, iswhent =m and k = j. Then we must have r = s —i —1, and we

get

321

= 2T~IEit[tr{ J2 UL j_1djY.~10UT+HM ~ar-iUrii'i ‘L~ OjUt-j-ib't}]

00
= -2T-1r{/no}tr{E-I6Ii"E-1" "6 » '}tr{Sw}

7=0

=  2nani,tr{Y,~1Kle'E~1"  Qfij}-
i=0

= 2nanttr{E~1KEKEE~1'y"d]91}.

7=0
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Next try two stochastic factors. There are three potential contributions
{K322, K323, K324) since the factor UT is always present

K32

-2T~IEu [tr{

t,s,r,mj,ik

= 2T -1£24[tr{

s,m,j,ik
= -2T-1Jtr{
X brH+b3ir'iM~ 16 Ura’,_IM "ar-iUlk'(i:~lipkom* 15T}

s,m,j,ik

= 2T 1tr{ 5]

s,m,j,ik

= 2T-Ur{M&M -IMON'E-1 E -1(~ ~ 6 m *_167)} € o(l),

m .k

see (4.3).

#323 =

ts,r,m jik

X bt6;-i_IV';S-Vi6.-i-ia',_IM -lar-it/; E - 1" f/r6;+t+1}]

t,s,r.j,ik

t,s,r.j,ik

= €o(l),

see (4.3).
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#324 = -2 T-"Etdtri

t,s,r,mfg,ik
=2T~Itr{ £  btbt_j_2ligj ' E~-diR(T~lipkbm-ic-ib'mjtr{a'r+ M~a aT-i}

tr,m jik

2T-dtr A r{iIn,}

tj.i

We make the approximation (35)

T 1 b li)iY,~I0K E4%I)jbti\ - trA'E -0 - 1})A =0

and find

#324 = -2nan@r{E“10/tjE-1
= 2naTfitr{E~1k?KjE“1EN=0"j"}>

which together with (60) gives the contribution

#32 = 2nan6<r{/tjE*“ z«j}- (61)

The terms Kass

#33 = -2T-Wf1[tr{MtaM - IMatMtu.t* E - IMy6}]
= -2tr{M iaM-QMa6T -1

Next we evaluate

T-1£ btdot+kH = T-1~  6t6tfet - £ dtb[+k+l - 0.

f t t

Thus we find
#33 = 0.
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The term K34

*34

= -2T~IEit [{tr{MbaM AM ayY.~IMylKi H~I Myb}

8,10k

X(9jUs-j-i + "jb,-j-\)U'sk' "~ (BKUT-k-i + tM*r-*-i)&r}]
For four stochastic factors we find

*341
= ~2T-IEi£[tr{MbaM * £
t,s,rij.k

since s —j —1 7™ s we must tie all indices to s and that will involve the
summation of a and b, which when normalized by A*,M" 1 is bounded, afid
hence the contribution is o(l), because of the factor T~ .

For two stochastic terms we find two potential contributions which are
small due to (4.3)

*342
= —2T~1Ei*[tr{MhaM” ]T
tk,rij.k
= -2T-T*u [tr{MfdM -1 £
s, r,ij.k
2E(+ arb'ANiPp-'Oikp-"M T-17
ijk s r

which goes to zero since T_1  br*k-\b'r —0.

*343

2T-1Jtr{M 6aMcal ~  at6j_i_T0jE_1iH6]_7-it"KjE_10ja/r_* 16}
t, s,rij.k

22T -1%fi [tr{M@&Maal ~  atbt_i_lipi'E~lipjbaj-iU'sk(T,~19KkUsbs+k+1}]

t,8,i,j.k

-2tr{M6M -153 53 a**'E -V AT -153 6.-i-i6i++1)Hr{ftjE-1tFF
tifc t S

which again tends to zero. Thus the term becomes

*34 = —2T~1Ei+ [{tr{MhaM"MayE~I Myuk""EAIMyt}} = O,

and hence does not give a contribution.

Finally we need



The term Kass
K& = 2Eu [tr{MEeM~*"Mak p - I('Z- T~IMyy)"1Myb}}
= 2T~1E(Xtr{MbaM® n oNINE "1

t,s,r,l,j,m,nk

X m-r-a—1  ~nm4Jrn AmOr-TOHY -1 )Wk

There is one term with four stochastic factors

K3g = -2T-1£{Jtr{M A /-1
X 53  at-\Utk”E~6m(UT-m-iU'T_n_1—6nmI T)OnE~I0kUi-k-\b\}]

t,s,r,Ljjm,n .k

Ift=1—k—1/r —m —1 = r —n —1 then the expectation is zero. If
t=r—m —\ =£r—n —\ = —k —1(= t + m —n) we get

A3511 = —T 1E{+[tr{MfaMaa

X 53 dt-ivlki 'E~19mUtUi+m_riOnE ~ 19kUt+m-nb't+m” n+icti}}
t, 1y, m,nk

= -T-HriMmMAM Atrid'X-'0jtrlk'*-'0} 6 o(l)

Ift=r—n—I"r —m- 1=1—k —1(= t —m +n) we find

KHL2 = ~T IE+[tr{AdeMaal
X 53 at\UtK(Y, 10mUt-m+nUONE 18kUt-m+nbt N mn+k+\J]

t.m,nk
which is again 6 o(l) by the same arguments.
With two stochastic factors we find the terms K333, K333, and K3M

K3 = ~2TAE iz [tr{Mbav~d

x 1P m (br-m-IK-n-I ~ bnrnin-T)xpnT, 16kU I-k-1}bi\-

K33 = —2T~1E [tr{ MoaM~*

X 53  at-iU'tki'E~16mUr-m-ib'r_Ji_lipnE ~ 1t/jkbi-k-ibi}].
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#354 = -2

t,r,I,m,n k
For 352 we let £= | —ft—1 and get

#352 = -2T-Lr{M6oMcalMo6}
tr{k'~-1]T ~(fcr-rn-

rmn

This is o(l) since the term with n = m is zero, and when n / m the sum is
op(T). For BB we lett=r —m —1 and get

#353 = ~2tr{MbaM”"
* Bnndfc E t 0%-IK+m-n'I'nZ~TPk(T-1£ , 6j_fc X6J) } « » - { 10m} € o(l)

For 7354 we let f = r —n —1 and find

#354 = —2£{x[tr{M(Mosl

"EE

m,nk t

= —2T~1tr{MbaV

XE EN-iBh-ME" My s"2 (1" E BB

m,nk t
which tends to zero.

Thus we find that 735 does not give a contribution, and hence the contri-
bution from K3 is found from (61) and (59)

#3 = 2(nanb- tr{MbaM "M ab})tr{K.{L~1zK) . (62)

This completes the calculations and it remains to compare (62) with (54), (57)
and (58)

#4 = tr{«4E‘tlz/cItr{MiKMaalMafc}
#5 = tr{Mha Meb}tr {/c| }
#6 = -nanbtr{n( }

which is seen to give

#3 + #4 + #5 + #6 + #7 = 7l@7I(tr(k"EVI 2K {}.
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