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Abstract+ 

In this paper a game-theoretical model with self-interest pursuing consumers is introduced in 
order to assess how to design a least-cost distribution tariff under two constraints that 
regulators typically face. The first constraint is related to difficulties regarding the 
implementation of cost-reflective tariffs. In practice, so-called cost-reflective tariffs are only a 
proxy for the actual cost driver(s) in distribution grids. The second constraint has to do with 
fairness. There is a fear that active consumers investing in distributed energy resources (DER) 
might benefit at the expense of passive consumers. We find that both constraints have a 
significant impact on the least-cost network tariff design, and the results depend on the state 
of the grid. If most of the grid investments still have to be made, passive and active consumers 
can both benefit from cost-reflective tariffs, while this is not the case for passive consumers if 
the costs are mostly sunk. 
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1. Introduction 

Technological breakthroughs on the consumer side are challenging the use of volumetric 
distribution network charges (€/kWh). Specifically, volumetric charges with net-metering, 
implying that a consumer’s network charges are proportional to its net consumption from the 
grid over a certain period (e.g. a month), are deemed inadequate given the massive deployment 
of solar Photovoltaics (PV). Consumers with solar PV pay significantly lower network charges but 
still rely on the distribution grid as much as before. This means that if cost recovery is respected, 
consumers that have not installed solar PV would have to contribute more.  

There is no easy fix for distribution network tariff design. Regulators in many European countries 
are thinking of suspending net-metering and moving more towards capacity-based (€/kW), fixed 
network tariffs (€/connection)  or a combination of both (CEER, 2017). However, many 
practitioners as well as academics, e.g. Abdelmotteleb et al. (2017), Batlle et al. (2017) , Passey et 
al. (2017), Pollitt (2018), Pérez-Arriaga et al. (2017) and Simshauser (2016), warn against possible 
issues constraining the implementation of improved or more efficient distribution tariffs. In this 
paper, we go one step further by demonstrating quantitatively how such constraints affect 
distribution network tariff design. We focus on two often-discussed constraints which are of a 
different nature: implementation issues with cost-reflective charges and fairness in the allocation 
of network costs among consumers. 

To capture the impact of these two constraints on network tariff design in this new reality with 
active consumers investing in Distributed Energy Resources (DER), it is indispensable to consider 
how consumer incentives change as a function of network tariff design. Therefore, we introduce 
a game-theoretical model which closes the loop between network tariff design, incentives for 
active, self-interest pursuing consumers, and the aggregate effect of consumer actions on the 
total network costs which need to be recovered by the network charges. Although the rise in 
active consumers is rightly welcomed, the model takes into account the fact that it can also be a 
double-edged sword.  On the one hand, the more consumers have the ability to react to price 
signals, in this case network charges, the more welfare gains can be made from efficient consumer 
behaviour as an alternative to the historical practice of ‘fit-and-forget’ (Ruester et al., 2014). On 
the other hand, the more significant negative welfare impacts can result if these price signals are 
badly designed and are ‘guiding’ consumers in the wrong direction. In that case, the network 
charges avoided by active consumers will simply be transferred to more vulnerable passive 
consumers who see their electricity bill increase. The more consumers have the possibility to react 
to price signals, the more important it becomes to get the network tariff design right.  

The mathematical structure of the presented model is a bi-level optimisation problem which is 
reformulated as a Mathematical Program with Equilibrium Constraints (MPEC). At the upper-
level, a regulator sets the distribution network tariff. Besides volumetric charges, the regulator 
has two other ‘traditional’ network tariff design options: capacity-based and fixed network 
charges, or they can opt for a combination of the three. The regulator anticipates the reaction of 
the consumers represented at the lower-level and the network tariff is determined in a way that 
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the total system costs (including network costs, energy commodity costs and DER investment 
costs by consumers) are minimised. The regulator is subject to the constraint that the total 
network charges collected need to equal the network costs.1 Modelled consumers can be passive 
or active. Passive consumers are assumed not to react to prices; active consumers pursue their 
own self-interest, i.e. their objective is to minimise their cost to satisfy their electricity demand. 
Active consumers have the option to invest in two technologies: solar PV and batteries.  

Using a numerical example, we illustrate a trade-off between cost-efficiency, for which the proxy 
is the total system costs, and fairness, for which the proxy is the increase in grid charges for 
passive consumers compared to a baseline. We find that some cost-efficiency can be sacrificed to 
limit the distributional impact resulting from network tariff redesign, and we show how this trade-
off is impacted by the implementation issues with cost-reflective network tariffs. However, our 
main finding is that if the regulatory toolbox is limited to the three ‘traditional’ tariff design 
options, it will be hard to design a distribution network tariff that is cost-reflective and future-
oriented, while at the same time also fair in the allocation of costs between active and passive 
domestic consumers. We argue that other, more creative, regulatory tricks are needed to 
combine and satisfy different policy objectives. 

The paper is structured as follows. In Section 2, we discuss the two considered constraints a 
regulator faces when designing the distribution network tariff and include relevant literature. In 
Section 3, we introduce the modelling approach. In Section 4, the setup and data for the 
numerical example are introduced. In Section 5 and 6, the two considered tariff design constraints 
are introduced, their modelling implication is described, and the results for the numerical 
example are presented to gain insights into their impact on network tariff design. In Section 7, we 
discuss the results and derive policy implications. Lastly, a conclusion is formulated and future 
work is proposed. 

2. Practical constraints when redesigning the distribution network tariff 

Pérez-Arriaga et al. (2017)2 discuss and Abdelmotteleb et al. (2017) show with simulations and 
numerical examples that in a new world with active consumers the least-cost distribution network 
tariff consists of a forward-looking-peak-coincident capacity charge plus a fixed charge. If the 
capacity-based charge is computed as the incremental cost of the network divided by expected 

 

1 We consider an institutional setting with a fully unbundled distribution system operator (DSO) that does not own 

or operate any generation assets. The consumer reacts to the aggregated electricity bill but the accounting of the 
cost components (retailer energy price and network charges but also taxes and levies) is separate. More specifically, 
consumers buy electricity, the commodity, from a retailer who bought this energy in the wholesale market and sells 
it to downstream consumers for a given exogenous price. The network charges, on the other hand, are considered 
endogenous. These are set by the regulator and the revenues are collected by the DSO equalling its network costs. 
Finally, in addition to the retailer energy price and the network charges, a consumer also pays taxes and levies; it is 
assumed that the total level of these costs is invariant and that the way these are collected does not interfere with 
the analysis. 
2 See e.g. also Box 4.6 (p. 115-116) in the Utility of the Future report by the MIT Energy Initiative (2016). 
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load growth, the tariff is cost-reflective; consumers will make optimal choices with regard to the 
trade-off between their consumption levels and grid reinforcements. A fixed network charge 
complements the capacity-based charge so as to collect the remaining residual network cost in a 
non-distorting manner.  

However, there are many difficulties which constrain the implementation of this theoretical 
optimal tariff. A first constraint relates to the implementation difficulties with cost-reflective 
tariffs. In practice, so-called cost-reflective tariffs are only a proxy for the actual cost driver(s) in 
distribution grids because it would be too complex to consider all of them or because we simply 
lack the necessary information. Gómez (2013) describes how a distribution network is more 
difficult to oversee than a transmission network as it involves a much larger number and a wider 
variety of equipment and components. Cohen et al. (2016) use actual load and load growth data 
to show that grid usage in California is very heterogeneous. They also show that the costs of 
accommodating incremental demand/injection can be very location specific. Passey et al. (2017) 
analyse a dataset of 3,876 residential consumers in the Greater Sydney Area in Australia and 
observe that demand profiles and the timing of the network peaks vary widely across networks 
and at different voltage levels, depending on the mix of consumers connected. Designing a truly 
cost-reflective capacity-based charge is a challenging task. The coincident-peak of a distribution 
system, identified as the main network cost driver, is hard to target. Targeting the wrong network 
peak implies an efficiency loss; for example, DER adoption can be under- or over-incentivised 
without resulting in much change in the total grid costs.  

Pérez-Arriaga et al. (2017) and Pollitt and Anaya (2016) agree that from an efficiency point of 
view, a network tariff with very fine temporal and locational granularity is optimal. Examples are 
critical peak-pricing (mainly temporal) or even user-by-user charges as an extreme case (temporal 
and locational). However, such dynamic charges with fine locational granularity are hard to attain 
in the current context. This is mainly true due to a lack of information about the network flows in 
real-time, requiring significant investments in IT infrastructure. Moreover, even if the distribution 
network became extremely ‘smart’, the implementation constraint could persist, as in most 
countries regulation requires that a uniform distribution tariff should be in place on a regional 
level or per area operated by a Distribution System Operator (DSO) (European Commission, 2015). 
This regulatory requirement is mainly based on arguments of simplicity and predictability for the 
consumer. Therefore, in this work, we limit ourselves to the application of the three ‘traditional’ 
tariff design options: volumetric charges (€/kWh), capacity-based (€/kW) and fixed network 
charges (€/connection). Besides simplicity and predictability, fairness is an important regulatory 
requirement (e.g. Batlle et al. (2017) and Neuteleers et al. (2017)), thereby leading us now to the 
second considered constraint in this paper. 

There is a fear that network tariff reforms, which aim to increase cost-efficiency, may result in an 
unfair allocation of the network costs, i.e. passive, often smaller or poorer, consumers would see 
their electricity bills increase. Pollitt (2018) notes that under certain conditions, it can be optimal 
from an efficiency point of view to recover a large share of the network costs through fixed 
network charges: when an over-dimensioned network in place, there is low load growth, there is 
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a limited possibility to fully disconnect from the grid and the relevant externalities are correctly 
incorporated into the other components of the electricity bill. However, in many countries, there 
is strong opposition to high fixed network charges. This concern is not unique to the electricity 
sector but is acute in all markets with large fixed costs, such as energy, water, transportation, and 
telecommunications. For example, Borenstein and Davis (2012) use relevant microdata to 
characterize the effect of a transition to marginal-cost pricing from volumetric charges which 
were on average about 30 % higher in the U.S. residential natural gas market. Marginal-cost 
pricing does not guarantee cost recovery and consequently fixed monthly fees would need to be 
raised to recuperate the residual infrastructure costs.  

It is often argued that if fixed network charges replaced the historic volumetric network charges, 
network costs would be shifted from often richer high-usage consumers to often poorer lower-
usage consumers. Kolokathis et al. (2018) analyse German electricity demand data and show that, 
by introducing a high uniform fixed network charge, low-usage consumers can pay up to two and 
a half times as much per unit of electricity compared to high-usage users. Such discrepancies in 
price per kWh could raise acceptability issues. As a consequence, increases in uniform fixed 
network charges are often rejected or capped.3 Although increased fixed network charges could 
be welcomed by DSOs, as they would allow for a better alignment of the network tariff with the 
network cost structure, DSOs can also be averse towards the risk of raising fairness concerns. 
Political actions aimed at reducing discontent could eventually put grid cost recovery in danger.  

However, if higher fixed network charges are not acceptable even when cost-efficient, other 
network tariff components (e.g. volumetric or capacity-based) will be needed to recover the 
residual grid costs. By resorting to these, the network tariff will be distorted, implying that active 
consumers could exploit opportunities that might be beneficial in terms of reduced private 
network charges but not necessarily optimal from a system point of view. Moreover, the benefits 
active consumers obtain could be at the expense of passive consumers. Brown and Sappington 
(2017a) estimate the welfare and distributional impact of a vertical utility not being allowed to 
recover its costs by raising fixed charges in addition to volumetric charges with net-metering.  
Indeed, they find that in a context where active consumers invest in solar PV, negative 
distributional and aggregate welfare effects can be more pronounced when the regulator is not 
allowed to raise fixed charges. In short, a trade-off exists between a fairness issue with increased 
fixed charges, i.e. raising the network charges for smaller households, and sustaining a distortion 
in the network tariff which could finally also lead to a fairness issue due to active consumers 
reacting to the distortive network tariff.  With the help of the game-theoretical model, introduced 
in the next section, we demonstrate this trade-off quantitatively. 

 

3
 For example, a media article published in November 2014 mentions that there were 23 ongoing ‘state fights’ 

between utilities and regulators over increased fixed charges in the US: https://www.utilitydive.com/news/the-fight-
over-solar-moves-from-net-metering-to-rate-design/327742/, accessed on 19/02/18.  

https://www.utilitydive.com/news/the-fight-over-solar-moves-from-net-metering-to-rate-design/327742/
https://www.utilitydive.com/news/the-fight-over-solar-moves-from-net-metering-to-rate-design/327742/
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3. Model formulation 

In this section, the game-theoretical model is described. In theory, a centralised planner, 
optimising social welfare by deciding unilaterally on the optimal trade-off between the utilisation 
of the network and the adoption of DER by consumers, would lead to the lowest total system 
costs. However, in reality, there is no central planner that has information about the network cost 
function nor that decides on behalf of the consumers what technology to install in order to 
minimise the total system costs. On the contrary, decision-making is decentralised and 
coordinated by price signals. In this section, the description of the implemented model is split into 
three parts: first, the upper-level problem is described; then, the lower-level problem is 
introduced; last, the applied solution technique is explained. 

3.1. The upper-level regulator 

The upper-level of the model represents the network tariff design problem of the regulator. It is 
assumed that the regulator can set the network tariff and that it aims to minimise total system 
costs (here equivalent to maximising social welfare).4 This is a simplification, as in some European 
countries the National Regulatory Authority (NRA) is responsible for network tariff design, while 
in other European countries the NRAs and DSOs share the responsibility. However, the final 
approval remains with the NRA (European Commission, 2015). The objective function of the 
regulator is shown by Eq. 1. The total system costs consist of four components: total energy costs, 
total DER investment costs, total grid costs, and other costs. Other costs represent taxes and 
levies recovered from consumers. It is assumed that the total level of taxes and levies is invariant. 
The three variable components of the objective function are displayed by Eq. 2-4. All costs are 
annualised and normalised per (average) consumer. All introduced variables are positive 
continuous variables. Variables are represented in italics and parameters in standard style. An 
overview of the nomenclature used can be found in Appendix A.1. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐬𝐞  𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 + 𝑇𝑜𝑡𝑎𝑙𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 + 𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 +  TotalOtherCosts (1) 

The total net energy costs to meet the electricity demand of all consumers are calculated by Eq. 
2. Assuming one retailer for all consumers, 𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 would be equal to the revenue of the 
retailer minus the money received by consumers for the electricity injected into the grid (so-called 
feed-in remuneration).  

𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 =  ∑ ∑ PCi ∗ (𝑞𝑤t,i ∗ EBPt − 𝑞𝑖t,i ∗ ESPt) ∗ WDT N
i=1

T
t=1  (2) 

The index i stands for a representative consumer of type i, PC𝑖  is a parameter indicating the 
proportion of a consumer type relative to the total consumers. EBPt stands for the price of buying 
a kWh of electricity from the retailer and ESPt is the price received when selling a kWh of electricity 
(excluding grid or other costs). Further, 𝑞𝑤t,i and 𝑞𝑖t,i represent respectively the quantities of 

 

4 We assume that electricity demand elasticity is zero. Instead, we allowed consumers to fulfil their electricity 

demand by other means than the grid (solar PV and/or batteries). This implies that demand response is not included. 
This assumption is further discussed in Section 7.1. 
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electricity withdrawn from and injected into the network by a consumer i for a certain timestep 
t. Please note that 𝑞𝑤t,i can only be positive if  𝑞𝑖t,i is zero and vice-versa. For a passive consumer 
𝑞𝑤t,i will always equal its demand and 𝑞𝑖t,iwill always be equal to zero. This does not hold for an 
active consumer. For example, if an active consumer installs solar PV, it could be that at a given 
timestep the PV production exceeds the consumer’s demand. For that timestep,  𝑞𝑤t,i  will be zero 
and  𝑞𝑖t,i will be positive and equal to the excess PV production over demand. If that active 
consumer also installs a battery next to solar PV, they would have the choice of injecting the 
excess electricity directly into the network (𝑞𝑖t,i) or storing it in the battery to lessen the need to 
draw from the grid (𝑞𝑤t,i) at a later moment. Finally, WDT is a factor for annualising the values and 
is a function of the length of the utilised time series (T). Please note that if the price for buying a 
kWh of electricity from the retailer (EBPt) equals the price received by an active consumer when 
injecting a kWh of electricity (ESPt) (excluding grid or other costs), Eq. 2 can be simplified. In that 
case, the total energy costs equal the aggregate net demand scaled over all consumers multiplied 
by the retailer’s energy price. 

The total investment cost in solar PV and batteries by consumers is described by Eq. 3. 𝑖𝑠i stands 
for the capacity of solar PV (in kWp) installed by consumer i and 𝑖𝑏i is the capacity of batteries (in 
kWh) installed. AICS and AICB are the annualised investment costs for respectively solar PV and 
batteries. No maintenance costs for the DER technologies are assumed.  

𝑇𝑜𝑡𝑎𝑙𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 = ∑ PC𝑖 ∗ (𝑖𝑠i ∗ AICS + 𝑖𝑏i ∗ AICB)N
i=1  (3) 

Finally, the function describing total grid costs is displayed by Eq. 4. Sunk grid costs are the costs 
of grid investments made in the past to be able to cope with electricity demand in the future. 
Sunk grid costs are represented by a parameter as these costs are unaffected by the utilisation of 
the network. Schittekatte et al. (2018) also discusses network tariff design with active consumers 
and throughout that work grid costs are all assumed to be sunk. This means the objective of a 
network tariff is mainly allocative, i.e. socialising the grid costs in a non-distortive and fair manner. 
In this work, a term for prospective grid costs (IncrGridCosts ∗ 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘) is added in Eq. 4.5 
These grid costs are variable (in the long-run) and a function of the maximum coincident network 
utilisation of all consumers (𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘). The higher the coincident peak, the higher the 
network costs to be recovered. The parameter IncrGridCosts describes the cost per kW of 
increase/decrease in the coincident peak. This parameter resembles the incremental network 
cost as in MIT Energy Initiative (2016). In case consumer reactions, in terms of consumption from 
the grid (or injection), affect the network cost and, in turn, the network charges. The network 
tariff should guide consumers to cost-efficient behaviour beyond purely allocating network costs. 

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘  (4) 

 

5 We label these grid costs ‘prospective’ as they are ideally reflected to grid users by ‘forward-looking grid charges’, 

meaning the element of network charges that looks to provide signals to users about how their consumption pattern 
can increase or reduce future network costs (Ofgem, 2017). However, in the longer-run equilibrium we are modelling, 
these costs become part of the grid costs to be recovered by the DSO. Therefore, they are included in Eq. 4. 
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Abdelmotteleb et al. (2017), Pérez-Arriaga et al. (2017) and Simshauser (2016) describe how the 
coincident peak demand (or injection if higher) is generally considered as the main cost driver of 
a distribution network. Brown and Sappington (2018) apply a similar formula by stating that the 
network costs are a function of the maximum potential demand for electricity supplied by 
centralised generation. In Brown and Sappington (2017a), a different approach is used, and it is 
assumed that the network costs are a function of the capacity of centralised generation and solar 
PV installed, with a greater weighting for solar PV.6 Alongside the coincident peak demand, other 
network cost drivers can be identified, such as thermal losses and the investment cost of replacing 
electronic components (e.g. protection) to deal with bi-directional flows due to high 
concentrations in PV adoption (see e.g. MIT Energy Initiative (2015) and Cohen et al. (2016)). 
These other network cost drivers are not included in the current analysis.  

How the coincident peak demand (or injection) is obtained is shown by Eq. 5-7. 𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 

stands for the coincident peak demand, i.e. the maximum value of the sum of the consumer 
demands (𝑞𝑤t,i) minus injections (𝑞𝑖t,i ) at a certain timestep t. Similarly, the coincident peak 
injection of the network  𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 is obtained. The 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 is determined as the 
maximum of the two. In the most likely scenario, and also in the numerical example used in this 
paper 𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 > 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛  and thus 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 ≡ 𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑. 

𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 ≡ Max {𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑, 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛} (5) 

𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 ≡ Max {∑ PCi(𝑞𝑤t,i − 𝑞𝑖t,i)
N
i=1  ∀t} (6) 

𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ≡ Max {∑ PCi(𝑞𝑖𝑡,𝑖 − 𝑞𝑤t,i)
N
i=1  ∀t}  (7) 

The relative magnitude of the three variable system cost components (retailer energy costs, DER 
investment costs and grid costs) are a function of how the electricity demand of the consumers 
is met, i.e. the mix of the energy sourced from the retailer and delivered by the grid and the 
energy delivered directly from installed DER on the part of the consumer. A regulator cannot 
directly decide on the optimal trade-off. Instead, they can only indirectly influence the consumer’s 
decisions by setting a network tariff which anticipates their reactions. Eq. 8 expresses the need 
for total grid costs to be equal to the total grid charges collected. With this formulation, the 
unbundled DSO recovers its grid costs with a combination of a static volumetric charge 𝑣𝑛𝑡 

(€/kWh), an individual capacity-based charge 𝑐𝑛𝑡 (€/kW) and a uniform fixed charge 𝑓𝑛𝑡 

(€/connection). 𝑣𝑛𝑡, 𝑐𝑛𝑡 and 𝑓𝑛𝑡 are the decision variables at the upper-level, while 𝑞𝑤t,i, 𝑞𝑖t,i and 

 

6 Brown and Sappington (2017a, 2017b, 2018) also apply a welfare analysis to gain insights into the issue of optimal 

tariffs in a setting where consumers with a certain elasticity are adopting distributed generation (DG). An important 
difference to our work is the institutional setting. Brown and Sappington focus on the design of the entire retail tariff 
and model one vertically integrated utility responsible for generation, transmission and distribution. We consider a 
setting with a fully unbundled distribution network company that does not own or operate any generation assets.  A 
second important difference is that Brown and Sappington (2017a, 2017b, 2018) do not use inter-temporal data 
series. As a consequence, batteries at consumer level cannot be modelled. 
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𝑞𝑚𝑎𝑥i are decision variables at the lower-level. 𝑞𝑚𝑎𝑥𝑖 is the maximum observed capacity (for 
withdrawal or injection) of consumer i over the time series under consideration. 

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝑐𝑜𝑠𝑡𝑠 =  𝑣𝑛𝑡 ∗ ∑ ∑ PCi ∗ (𝑞𝑤t,i − NM ∗ 𝑞𝑖t,i) ∗ WDTN
i=1

T
t=1 +  𝑐𝑛𝑡 ∗ ∑ PCi ∗ 𝑞𝑚𝑎𝑥i

N
i=1 +  𝑓𝑛𝑡  (8) 

NM is a parameter and determines the type of volumetric charge.7 If NM is set as equal to 1, 
volumetric charges with net-metering result. With NM set equal to 0, solely charging for the total 
volume of electricity withdrawn are in place, these type of volumetric charges are so-called net-
purchase volumetric charges. Please note that for the latter, a bi-directional meter, measuring 
separately electricity withdrawn from and injected into the grid, is a necessary requirement. 
Further, the capacity-based charge 𝑐𝑛𝑡 accounts for maximum observed capacity (for withdrawal 
or injection) of a consumer i (𝑞𝑚𝑎𝑥i). The fixed network charge 𝑓𝑛𝑡 is assumed to be uniform for 
all consumers. 

3.2. The lower-level consumers 

The objective of the individual consumers’ optimisation problems is to minimise the cost of 
meeting their electricity demand. Active consumers are enabled to invest in solar PV or batteries. 
They can lower their dependency from the grid if they have the financial incentive to do so. The 
objective function of a consumer i is represented by Eq. 9. The total electricity cost per consumer 
also consists of four components, similar to the upper-level, but now for an individual consumer: 
grid charges, the investment cost in DER, the energy cost and other charges, again representing 
taxes and levies. It is assumed that the amount of taxes and levies per consumer is not a function 
of its grid usage but recovered through a fixed charge per consumer. The other three components 
of the consumers’ electricity costs are variable. 

𝐌𝐢𝐧𝐢𝐦𝐢𝐬𝐞  𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠i + 𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠i + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠i + OtherCharges (9) 

Eq. 10-13 describe the different components of the total electricity costs in more detail. The grid 
charges are the sum of volumetric, capacity-based and fixed grid charges. The coefficients of the 
different grid charges are set by the upper-level regulator. The DER investment costs are the sum 
of the annualised investment cost of solar PV and batteries installed as shown in Eq. 12. Eq. 13 
calculates the retailer energy costs of a consumer minus the feed-in remuneration. 

𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠i = ∑ (𝑞𝑤t,i − 𝑞𝑖t,i ∗ NM) ∗ 𝑣𝑛𝑡 ∗ WDTT
t=1 + 𝑞𝑚𝑎𝑥i ∗ 𝑐𝑛𝑡 +  𝑓𝑛𝑡      ∀ i (10) 

with  𝑞𝑚𝑎𝑥i ≡ Max {𝑞𝑤t,i − 𝑞𝑖t,i ∀t}       ∀i (11) 

𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠i = 𝑖𝑠i ∗ AICS + 𝑖𝑏i ∗ AICB       ∀ i  (12) 

 

7 In Brown and Sappington (2017a) the optimality of net-metering is investigated. The setup in their paper is different 

but one could say that they model the term NM as a continuous variable. Namely, they investigate the optimal value 
of the compensation in kWh for DG compared to the full retail rate under different industry conditions. In this work, 
NM can only take two values, 1 and 0. This assumption is also briefly referred to in Section 7.1. 
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𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠i = ∑ (𝑞𝑤t,i ∗ EBPt − 𝑞𝑖t,i ∗ ESPt) ∗ WDTT
t=1       ∀ i (13) 

A consumer is subject to a number of constraints, which are described by Eq. 14-21. Eq. 14 shows 
the demand balance for consumer i. The demand Dt,i is determined exogenously and can be 
satisfied by the electricity withdrawn from the grid (𝑞𝑤t,i), a discharging battery (𝑞𝑏𝑜𝑢𝑡t,i) or 
electricity produced by installed solar PV (𝑖𝑠i ∗ SYt,i). Electricity can also be injected into the grid 
(𝑞𝑖t,i) or used to charge the battery (𝑞𝑏𝑖𝑛t,i). Meeting the electricity demand is a hard constraint. 
Eq.  15-17 describe the battery balance, where 𝑠𝑜𝑐t,i is the state of the battery at time step t, EFC 
the charge efficiency, EFD the discharge efficiency and LR the leakage rate of the battery. DT is 
the timestep as a fraction of 60 minutes used to convert all numbers to kWhs. Eq. 18-20 constrain 
the battery in terms of energy stored and instantaneous (dis)charging. BRD/BRC stands for the 
ratio of the maximum instantaneous battery discharge/charge over its maximal energy stored. 
Eq. 21 indicates that all consumer variables must be non-negative.8 

Dt,i = 𝑞𝑤t,i + 𝑖𝑠i ∗ SYt,i + 𝑞𝑏𝑜𝑢𝑡t,i − 𝑞𝑖t,i − 𝑞𝑏𝑖𝑛t,i    ∀ i, t (14) 

𝑠𝑜𝑐1,i = 𝑞𝑏𝑖𝑛1,i ∗ EFC ∗ DT −  (𝑞𝑏𝑜𝑢𝑡1,i EFD)⁄ ∗ DT + SOC0  ∀ i (15) 

𝑠𝑜𝑐t,i = 𝑞𝑏𝑖𝑛t,i ∗ EFC ∗ DT − (𝑞𝑏𝑜𝑢𝑡t,i EFD⁄ ) ∗ DT + 𝑠𝑜𝑐t−1,i ∗ (1 − LR ∗ DT)   ∀ i, t ≠ 1 (16) 

𝑠𝑜𝑐T,i = SOC0  ∀ i (17) 

𝑠𝑜𝑐t,i ≤ 𝑖𝑏i    ∀ i, t (18) 

𝑞𝑏𝑜𝑢𝑡t,i ≤ 𝑖𝑏i ∗ BRD  ∀ i, t  (19) 

𝑞𝑏𝑖𝑛t,i ≤ 𝑖𝑏i ∗ BRC     ∀ i, t (20) 

𝑞𝑤t,i, 𝑞𝑖t,i, 𝑠𝑜𝑐t,i, 𝑞𝑏𝑜𝑢𝑡t,i, 𝑞𝑏𝑖𝑛t,i, 𝑖𝑠i , 𝑖𝑏i ≥ 0  ∀ i, t (21) 

3.3. Solving the bi-level optimisation problem 

In order to solve the bi-level problem, it is first reformulated as a Mathematical Problem with 
Equilibrium Constraints (MPEC); for a full overview of the properties of MPECs see e.g. Gabriel et 
al. (2012). The reformulation into a single level problem is performed by including the Karush-
Kuhn-Tucker (KKT) conditions of the linear and thus convex lower-level as constraints to the 
upper-level problem. A non-linear MPEC results. The non-linearities in Eq. 8 are discretised using 
the technique described in Momber (2015, p. 102), and the complementarity constraints are 
transformed into disjunctive constraints using the technique described in Fortuny-Amat and 
McCarl (1981). Finally, a Mixed Integer Linear Program (MILP) results that can be solved by off-
the-shelf optimisation software. The reformulation of the bi-level problem can be found in 
Appendix A.3.  

 

8 No binary variables are introduced to ensure that no electricity is withdrawn/injected and that the battery is not 

charged/discharged at the same timestep. Instead, it is checked ex-post whether these conditions are violated. 
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4. Numerical example: setup and data 

In this section, the setup and data of a numerical example are described. The first section briefly 
introduces the setting. Thereafter, four subsections consider four groups of input data. These 
data are used to calibrate the model.  

4.1. Setup 

Two consumer types are modelled for simplicity: passive and active consumers, as is also the case 
in Brown and Sappington (2017a, 2017b, 2018) and Schittekatte et al. (2018). The passive 
consumer does not have the option to invest in solar PV and batteries, unlike an active consumer, 
who can opt to invest in DER. Passive consumers are uninformed about the possibility to invest in 
DER. They either do not have the financial means, are strongly risk averse or simply do not have 
space. Active consumers minimise their costs to meet their electricity demand and may invest in 
DER to do so. At one extreme, all consumers can be passive, as in the recent past. At the other 
extreme, all consumers can be active, i.e. install DER when it can reduce their overall electricity 
cost. Reality presumably lies somewhere in the middle. Some consumers will remain passive for 
a number of reasons. Other consumers may be installing DER even when they do not financially 
profit from it, but for other reasons which are harder to monetise; for example, independence 
from the grid, sustainability motives etc. In the numerical example, it is assumed that 50% of all 
consumers are active and 50% are passive.9  

The different results from the model which are presented in Sections 5, 6 and 7 are compared 
relative to a baseline scenario. In the baseline scenario, it is assumed that no consumer invests in 
DERs, i.e. solar PV and battery investment are disabled for active consumers in this scenario. This 
implies that in the baseline scenario the upper-level regulator is actually indifferent in terms of 
which distribution network tariff to choose. No tariff choice would distort decisions nor lead to 
overall efficiency gains, as no consumer can invest in DER and demand elasticity is zero. The 
historically accepted practice is to have volumetric charges with net-metering. Therefore these 
charges are defined as the baseline network tariff. In the recent past, with highly inelastic 
consumers, it was less of an issue to recover grid costs through volumetric charges with net-
metering. Limited inefficiencies were introduced as consumers had few options to serve their 
electricity needs other than from the grid. Also, high-usage and thus higher network contributions 
correlated rather well with richer households, making such practice acceptable.  

In the baseline scenario, the two different types of consumers pay their baseline consumer bill as 
presented in Subsection 4.3. In this scenario, the total system costs simply equal the consumer 
bills aggregate over all consumers. In the runs of the model when active consumers are enabled 

 

9 50 % active consumers might seem quite a lot today. Today many consumers are passive because they are 

indifferent or vulnerable. A lower proportion of active consumers result in a lower impact of distortive network tariff 
design on total system costs. However, distortions result in costs shifts from active to passive consumers. In their 
turn, these costs shifts could again convert more (indifferent) passive consumers into active ones, increasing the 
impact of the distortion. Also, with dropping costs in DER, rising electricity bills, digitalisation and more climate 
awareness, a proportion of indifferent passive consumers might turn active.   
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to invest in DER, the relative proportion and absolute values of the bill components can change 
for both the active and passive consumers. The change in the consumer bills will be a function of 
the choice of the network tariff set by the upper-level regulator and the reactions from the lower-
level active consumers. In that case, the total system costs is the sum of the aggregated consumer 
bills and the investment costs of the installed solar PV and batteries by the active consumers. 

4.2. Consumer types, demand and solar yield 

The consumer demand and solar PV yield profiles are represented using a time series of 48-hours 
with hourly timesteps and are shown in Figure 1 (left). The yield per kWp of solar PV installed is 
shown in Figure 1 (right). 

 
Figure 1: Original 48-hour electricity demand profiles (left) and PV yield profile (right) 

 

Household demand for electricity shows for both modelled days a small peak in the morning and 
a stronger peak in the evening: the typical ‘humped-camel shape’ (Faruqui and Graf, 2018). For 
both consumer types the shape of the demand profile is identical; however, it is scaled differently. 
As a result, passive consumers have a slightly lower electricity demand than active consumers. 
The passive consumer has an annual consumption of 5,200 kWh with a peak demand of 3.2 kW 
and the active consumer a 7,800 kWh annual consumption with a peak demand of 4.8 kW. In 
Europe, average annual electricity consumption per household ranged from 20,000 kWh 
(Sweden) to 1,400 kWh (Romania) in 2015. In the same year, the average electricity consumption 
per household in the USA was about 10,800 kWh (EIA, 2016).  The thinking behind this difference 
in the levels of consumption is that active consumers are expected to be more affluent than 
passive consumers and that affluent consumers have higher electricity needs. This statement is a 
simplification of reality, but evidence for it is found in the literature. Borenstein (2017) analyses 
Californian data and finds that the income distribution of solar PV installations is heavily skewed 
towards the wealthy, but adds that the gap is narrowing with time. It is also found that PV 
adopters have slightly higher energy consumption levels and peak demand. Borenstein (2016) 
also confirms that wealthier households consume more electricity, but adds that although this 
claim is accurate, it is often overstated. Hledik et al. (2016) analyse data from Great Britain and 
confirm that lower-income consumers are also smaller consumers of electricity, although the 
correlation appears to be somewhat limited. 

The yield per kWp of solar PV installed, as shown in Figure 1 (right), scales up to 1,160 kWh per 
year. As a reference, this level is similar to the average yield in the territory of France (Šúri et al., 
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2007). Seasonality is introduced in the PV yield profile by having a daily average PV yield of 40% 
of either side of the annual mean. The peak demand coincides with a day of low PV yield. Letting 
the peak demand day coincide with a day of lower solar irradiation and vice-versa produces two 
effects. First, a high capacity of PV installed does not necessarily mean that the peak demand can 
be reduced. Faruqui and Graf (2018) investigate load profiles in Kansas and find that after the 
installation of PV systems, logically the net energy consumption reduces; nevertheless, the peak 
demand is left virtually unchanged. Second, if a high capacity of PV is installed, the injection peak 
of active consumers can become significant. Additional sensitivity analysis regarding the length 
of the time series, the profiles of consumer demand and the profiles of solar PV yield is conducted 
in Appendix B. 

4.3. Baseline consumer bills 

In Table 1 the baseline consumer electricity bill (paid by the consumers when no consumer installs 
any DER technology) is shown. However, if active consumers decide to invest in DER, the relative 
proportion and absolute values of the bill components can change for both the active and passive 
consumers. The annual electricity cost for the active and passive consumer equals respectively 
1,340 €/year (0.172 €/kWh delivered) and 971 €/year (0.187 €/kWh delivered). This total cost is 
near to the average electricity cost for EU households in 2015, which was estimated at around 
0.21€/kWh (Eurostat, 2016). In the USA, the average electricity cost in 2015 was around 
0.125€/kWh (EIA, 2016). The consumer bill is based on information from the Market Monitoring 
report by ACER and CEER (2016), where the breakdown of the different components of the 
electricity bill for an average consumer in the EU for the year 2015 is presented. The energy 
component in the EU in 2015 is estimated at 37%. In absolute terms, this is a cost of 0.077 €/kWh. 
Further, 26% of the bill consisted of network charges, and 13% are RES and other charges. Finally, 
an important chunk of the bill (25%) consists of taxes. A value-added tax (VAT), averaging 15%, 
must be paid and additional (ecological) taxes, averaging 10%, are raised in some countries. In 
this work, the VAT is integrated into the three components of the bill. Please note that a typical 
consumer bill varies from one country to another (e.g.  ACER and CEER (2016) for the EU).  

Table 1: Consumer bill in the baseline scenario (no investment in DER by active consumers) 

 
Recovery 

Cost per year 
Bill component Active Passive 

Energy costs  0.08 €/kWh 624 €/year (46 %) 416 €/year (43 %) 

Network charges  
Default: 0.062 €/kWh 

In the analysis: least-cost network tariffs 
485 €/year (36 %) 324 €/year (33 %) 

Other charges  Fixed fee (no interference with the analysis) 231 €/year (17-24 %) 

Total electricity 
cost  

 1340 €/year 
 (0.172 €/kWh) 

971 €/year  
(0.187 €/kWh) 

The retailer energy price is set at 0.08 €/kWh.10 Other charges are recovered through a fixed fee 
and as such do not interfere with the analysis. However, this is not always the case. How to collect 

 

10 The retailer energy price is considered flat and modelled exogenously; this assumption is also discussed in Section 

7.1. Time-of-use retailer energy prices are introduced in the sensitivity analysis in Appendix B. 
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such charges, or whether they belong in the electricity bill at all, is beyond the scope of this work; 
see e.g. the paper of Bohringer et al. (2017) in which the German case is discussed.  

The network charges are in the baseline case recovered through (net-metered) volumetric 
charges equal to 0.062 €/kWh. How to adapt network tariff design when dealing with active 
consumers is the main contribution of this paper and is discussed in Sections 5, 6 and 7. 

4.4. DER investment cost and technical parameters 

Two DER technologies are assumed to be at the disposition of active consumers: solar PV and 
batteries. A scenario with low PV but also battery investment costs can be expected to materialise 
soon, as pointed out by many studies (Lazard, 2016a, 2016b; MIT Energy Initiative, 2016; RMI, 
2015).11 Regarding solar PV, in the Utility of the Future Study by the MIT Energy Initiative (2016) 
it is quoted that PV developers and industry analysts expect the installed cost of utility-scale PV 
to fall below $1000 per kW before the end of this decade, and that one major US car manufacturer 
projects that lithium-ion battery cell costs will drop below $100 per kWh by 2022—an order of 
magnitude less costly than in 2010. The levelized cost of energy (LCOE) of solar PV is 0.083 
€/kWh12, slightly higher than the retailer energy price. An important assumption is that no 
investment subsidy for PV is introduced in this work and no reduced social losses from 
environmental externalities due to the installation of solar PV are accounted for.13 Batteries are 
assumed to cost 200 €/kWh with a C-rate of 1, i.e. the battery can fully (dis)charge in one hour. 
The other DER parameters are shown in Table 2. Technical DER data is in line with Schittekatte et 
al. (2016).  

Table 2: Financial and technical DER data 

Parameters PV related Value Parameters battery related Value 

Investment cost 
Lifetime PV 

1300 €/kWp 
20 years 

Investment cost (C-factor=1) 
Lifetime battery 

200 €/kWh 
10 years 

Discount factor PV  5 % Discount factor battery 5 % 
Maximum solar capacity installed 5 kWp Maximum battery capacity installed No limit 
Price received for electricity injected (% of 
wholesale energy price) 

90 % Efficiency charging & discharging 
Leakage rate 

90 % 
2 % 

4.5. Grid cost structure 

Determining the grid cost structure is no easy task.  Pollitt (2018) states that if we attribute energy 
losses to retailers, perhaps 80% or more of distribution network costs are fixed in the medium-
term for a given set of connections and probably cannot be reduced significantly within a five to 
ten-year period. Based on Crawford (2014) and Hanser (2013), Simshauser (2016) assumes that 

 

11 For example, Maloney (2018) notes that 20% of Sunrun's customers have chosen to install solar plus storage 

systems in California in early 2018. 
12 In the model applied, the LCOE of solar PV is a function of the investment cost of the PV panel, lifetime, discount 

factor, the PV system performance ratio, and, importantly, the solar PV yield profile, which is location dependent. 
13 Also this assumption is further discussed in Section 7.1. 
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the distribution network has a cost structure which comprises approximately 20% fixed operating 
costs, 60% sunk capital costs, and 20% variable operating costs. Jenkins and Pérez-Arriaga (2017) 
provide a more detailed discussion of the different network costs components.  

When presenting the results using the numerical example, three different grid cost structures are 
considered. First, grid costs are assumed to be 100% sunk, a short-term vision, i.e. the grid is over-
dimensioned, and the electricity usage of consumers has no effect on the total grid costs. In some 
countries, policy costs are also recovered through the network charges, which from a cost 
allocation point of view is no different than recovering sunk network costs. Second, half of the 
grid costs are considered sunk and the other half prospective, i.e. driven by the coincident 
consumer peak demand. Last, the grid costs are assumed to be driven completely by the 
coincident consumer peak demand. In the very long run grid costs are also variable. The network 
capacity will adjust to the coincident peak demand need from the consumers. If the coincident 
peak demand augments, the increase in grid costs could be seen as the cost of reinforcements or 
additional capacity. If the coincident peak demand is reduced, the decrease in grid costs could be 
seen as the avoided cost for replacing existing capacity or maintenance. In all cases, short-run 
marginal costs, e.g. energy losses, are not considered as they typically only contribute to a small 
proportion of the total cost of a network operator. Different network cost functions could be 
introduced in future work. 

The values for the parameters of the grid cost function (Eq. 4), SunkGridCosts and IncrGridCosts, are 

derived from the ‘baseline network costs’ of the modelled consumers (shown in Table 1) and are 
a function of the proportion of active and passive consumers.  With 50 % active and 50 % passive 
consumers, the (scaled) coincident consumer peak demand equals 4 kW in the baseline scenario, 
and the average grid costs equal 404 €/consumer.14 In the first case, grid costs are assumed to be 
100% sunk, the parameters SunkGridCosts and IncrGridCosts in Eq. 2 are set as equal to € 404 and 0 
€/kW, respectively. In the second case, 50% of the costs are assumed sunk and 50% perspective, 
SunkGridCosts equals € 202 and IncrGridCosts is set to 50.5 €/kW.15 In the third case, SunkGridCosts is 
zero and IncrGridCosts are set to 101 €/kW. As a reference, Brown et al. (2015) assume the 
(annualised) cost to be 75 $ for a kW of incremental household demand. Please note that another 
implementation constraint, besides not having a perfect proxy of the network cost driver, could 
be a correct estimation of the incremental network cost, or the network cost function in general. 

5. Incorporating an implementation constraint: revisiting the model, results and discussion 

In this section, the model described in Section 3 is used to provide insights into the impact of the 
implementation constraint, i.e. not having a perfect proxy of the network cost driver. The section 
consists of two parts. First, the modelling implication is pointed out. Second, the obtained results, 
using the numerical example as introduced in the previous section, are shown and discussed.  

 

14 4kW = 0.5*4.8 kW + 0.5*3.2 kW and 404 € = 0.5*485 € + 0.5*324 € 
15 50.5 €/kW = 0.5*404 €/4kW 
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5.1. Revisiting the model 

A simple, yet effective change has been made to Eq. 4 to incorporate an imperfect proxy for the 
network cost driver in the model. This change gives the result that a reduction of the individual 
peak demand of a consumer of 1 kW leads to a reduction in its contribution to the coincident 
peak demand by less than 1 kW. In other words, this constraint implies that the regulator is unable 
to implement a network charge that sends a price signal that perfectly aligns the reduction of the 
individual peak demand of each consumer with the reduction of the overall coincident peak 
demand, which drives the network costs. A perfectly implemented network charge would imply 
a network charge with a very fine temporal and spatial granularity, i.e. almost a consumer-to-
consumer tailored charge. 

Eq. 22 shows the updated version of Eq. 4. DPeak is a parameter and stands for the baseline 
coincident peak demand, i.e. the coincident peak demand in the case that no consumer installs 
DER, and 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 is a variable and stands for the optimised coincident peak demand, i.e. 
the coincident peak demand after active consumers installed DER when profitable. The parameter 
WF  represents a weighting factor.  

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ (DPeak − WF ∗ (DPeak − 𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘)) (22) 

The weighting factor can be interpreted as how imperfect the proxy of the network cost driver is. 
If WF has a low value, the more imperfect the proxy. This would mean that even though some 
active consumers adapt their individual peak demand, total grid costs are not significantly 
affected. This effect would be witnessed if consumers were being incentivised to lower their 
demand at a certain time that does not coincide with the time of the system peak. In an extreme 
case, the actions of the consumers have no effect on the total grid costs (WF equals zero). Such a 
situation resembles the scenario with 100% sunk costs from a cost allocation point of view, 
although the nature of the grid costs (hard-to-target prospective grid costs versus sunk grid costs) 
is different.  Alternatively, if the proxy for the network cost driver is very accurate, the actions of 
active consumers will have a stronger effect on the total grid costs and in an extreme case we end 
up with a fully cost-reflective tariff as implied by Eq. 2 in Section 3 (WF equals 1). 

Also, the introduction of the implementation constraint can be seen as a way to address the 
assumption of identically shaped demand profiles; the implementation constraint leads to a 
reduction of the impact of the optimised coincident peak demand on total grid costs is reduced. 
A similar effect could be witnessed with heterogeneous demand profiles optimising their 
individual peak demand under an (individual) capacity-based charge. More specifically, even 
though the upper-level regulator has perfect insight in the reaction of the lower-level consumers 
due to the modelling set up, the regulator has only ‘traditional’ network tariff design options at 
her disposal. In order to induce the consumers to adapt their demand in such a way that their 
individual demand reductions would lead to a proportional reduction in the overall coincident 
peak demand, the regulator would have to set peak-coincident capacity-based charges (or 
strongly time-varying volumetric charges) which we assume is an option that is not available to 
the regulator. As an example, Passey et al. (2017) find low correlation coefficients in the range of 
0.48 to 0.62 between consumer payments under a monthly individual capacity-based charge and 
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the responsibility for the network peak. The correlation increases to 0.92 with peak-coincident 
capacity-based charges.  

Lastly, please note that the implication of Eq. 22 could also be interpreted from a reliability point 
of view. It is difficult to assume that DER at a consumer’s premise can be a perfect substitute for 
the grid as it can happen that technology fails, leaving the electricity need of consumers unmet. 
A reliability margin might be built into the grid to accommodate such extreme or unlikely 
conditions. Pollitt (2018) argues that the impact of DERs on network costs can be overestimated 
(and over-rewarded) for any network cost reductions. He bases this opinion on the fact that 
conventional networks may have 99.99% (one hour per year of lost load) or more availability, 
whereas individual asset availability may struggle to reach 98%. From a modelling point of view 
this means that even though the optimised peak demand might drive the network investment, 
the DSO will still make sure that there is spare network capacity available, thus dampening the 
impact of consumer actions on grid investment. 

5.2. Results and discussion 

First, a run is done in which we assume that we have a perfect proxy for the network cost drivers 
(WF equals 1). The results for the least-cost network tariff design are shown in Figure 2 and Table 
3. In Table 3, two metrics are calculated for the different grid cost structures. First, there is the 
change in total system costs compared to the baseline scenario in which investments in batteries 
and solar PV are disabled. This metric is a proxy for cost-efficiency. Second, the change in network 
charges paid by the passive consumers is shown, with as reference the amount of volumetric 
network charges paid by the passive consumer in the baseline scenario (as shown in Table 1). This 
metric is a proxy for fairness. The higher the increase in network charges for the passive consumer 
compared to the past, the more unfair a network tariff is perceived to be. 

Table 3: Total system costs and increase network charges per 
passive consumer compared to the baseline scenario. Perfect proxy 
for the network cost drivers is assumed. 

 

 

 

 

50 % active consumers –  

Results compared to the baseline scenario 

 (=no DER & volumetric network charges)  

Perfect 
implementation 
cost-reflective 

charges 

Total system costs  

100 % Sunk grid costs 0.0 % 

50 % Sunk & 50 % Prospective -1.4 % 

100 % Prospective grid costs -6.8 % 

Network charges 
passive consumer  

100 % Sunk grid costs 25.0 % 

50 % Sunk & 50 % Prospective 12.6 % 

100 % Prospective grid costs 0.0 % Figure 2: Network tariff components and grid costs 
compared to the baseline scenario for the three 
different grid cost structures. Perfect proxy for the 
network cost drivers is assumed. 
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In Figure 2, the least-cost network tariff consists of a capacity-based charge equal to the 
incremental grid cost parameter (IncrGridCosts in Eq. 4) and of a fixed charge equal to the sunk grid 
costs per consumer (SunkGridCosts in Eq. 4).16 This corresponds to the theoretical optimal network 
tariff structure as described by Abdelmotteleb et al. (2017) and the MIT Energy Initiative (2016).  

When grid costs are 100% sunk, the least-cost network tariff design consists solely of a non-
distortive uniform fixed charge (Figure 2), and there is no impact on the total system cost (Table 
3). Active consumers are indeed not incentivised to install DER: batteries would not reduce the 
total grid costs, and the LCOE of PV is slightly higher than the retailer energy price. However, due 
to the high uniform fixed network charge smaller, passive consumers see their network charges 
significantly increase since some of the network costs, previously allocated to larger consumers 
through volumetric charges, are shifted to them.  

With 100% prospective grid costs, it is efficient to ‘steer’ consumer behaviour with higher cost-
reflective capacity-based charges, and each self-interest pursuing active consumer installs a 
battery of 3.7 kWh. Again, no solar PV is installed as the LCOE of PV is slightly higher than the 
retailer energy price and solar PV can only weakly help to reduce the network charges. From an 
active consumer’s point of view, installing more or less DER would result in a higher (individual) 
total electricity cost. A total system cost reduction of almost 7% results, as shown in Table 3. In 
this case, the active consumers reduce their grid charges proportionally to the reduction in total 
system costs and the passive consumers do not see any change in the grid charges paid.  

 

16 There can exist an interval around the value of the coefficients of the least-cost network tariff for which the total 

system costs are the same. In modelling terms this means that there is more than one equilibrium with the same 
value for the upper-level objective but with not exactly the same network tariff designs and thus different values for 
the lower-level objectives. In this case, one of these equilibria is the theoretical least-cost network tariff, while the 
other equilibria have a network tariff structure which is very similar, but the coefficients of the different charges 
(€/kWh, €/kW and/or €/connection) are slightly higher or lower. The reasoning behind this is that if a capacity-
based/volumetric charge is set slightly higher or lower, it might not impact on consumer decisions and thus the total 
system costs. The richer the data (e.g. number of consumer types or the length of the time series), the more sensitive 
the lower-level response function is to changes and thus the more sensitive the total system costs are to a minor 
change in the network tariff. When we introduce the fairness constraint and this constraint is binding (see Section 
6), the interval around the value of the coefficients of the least-cost network tariff becomes small and generally there 
will be only one equilibrium. 
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Table 4: Total system costs and increase network charges per passive 
consumer compared to the baseline scenario with an imperfect proxy 
for the network cost driver assumed (WF=0.75). 

 

 

Figure 3 shows the network least-cost network tariff structure when introducing an imperfect 
proxy for the network cost driver, i.e. the parameter WF in Eq. 22 is lowered from 1 to 0.75. This 
means that a reduction of the individual peak demand of a consumer of 1 kW results in a 
reduction of its contribution to the system peak demand (which drives the prospective grid costs) 
with 0.75 kW instead of 1 kW. Two observations can be made when comparing the results with 
(Table 4) and without (Table 3) an implementation constraint. 

First, the results do not change for the case with 100% sunk network costs. There is indeed no 
value in information about the grid cost driver as the grid costs are assumed to be independent 
of grid use. Second, when a proportion of the grid costs are prospective, the non-distortive fixed 
charges are increased at the expense of the ‘steering’ capacity-based charge. This leads to an 
overall slightly lower system cost reduction and a higher increase of the passive consumers’ 
network charges when compared to the case without implementation constraint.  

The intuition behind these results with the implementation constraint is the following: if the 
capacity-based charge is set as equal to the incremental grid costs as in the case with a perfect 
implementation of capacity-based charges, batteries are over-incentivised. An individual 
consumer installs batteries as they are profitable from their individual perspective. However, the 
grid costs decrease less as the cost-reflective charge is imperfectly implemented, i.e. 1 kW of 
individual peak reduction results in a reduction of 0.75 kW, instead of 1 kW, of the coincident 
peak.17 In other words, individual peak reduction, enabled through batteries, is not as effective 
due to the implementation issue with cost-reflective charges. In order to come to the lowest 
possible total system costs under the given implementation constraint, there is a different trade-

 

17 Another issue is that the grid costs reduce less than the reduction in grid charges paid by active consumers. 

Similarly as volumetric charges with net-metering results in an over-incentive in PV adoption, this distortion induces 
non-cooperative active consumers to compete with each other to escape from high grid costs by installing more and 
more batteries. We come back to this point in Section 6.2. 

50 % active consumers –  

Results compared to the baseline scenario 

 (=no DER & volumetric network charges)  

Imperfect proxy 
for the network 

cost driver 
(WF=0.75) 

Total system costs  

100 % Sunk grid costs 0.0 % 

50 % Sunk & 50 % Prospective -0.3 % 

100 % Prospective grid costs -4.0 % 

Network charges 
passive consumer  

100 % Sunk grid costs 25.0 % 

50 % Sunk & 50 % Prospective 15.6 % 

100 % Prospective grid costs 7.0 % 
Figure 3: Network tariff components and total grid 
costs compared to the baseline for the three grid 
cost structures. Imperfect proxy for the network 
cost driver assumed (WF=0.75). 
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off between batteries adoption and grid cost reduction when compared to the case with no 
implementation constraint. This translates in a least-cost network tariff with a lower capacity-
based charge to reduce the over-incentive in battery adoption. Further, the grid costs, which did 
not decrease significantly due to the less investment in batteries and less effectiveness of these 
batteries, need to be recovered. Therefore, the fixed network charge increases. As a 
consequence, the grid charges for smaller passive consumers increase which can lead to fairness 
issues, as discussed in more depth in the next section. 

6. Adding a fairness constraint: revisiting the model, results and discussion 

The previous section has shown that pursuing a least-cost network tariff design can lead to 
significant distributional effects. In this section, a fairness constraint, in the form of a cap on the 
increase of grid charges for the smaller passive consumers, is added to the model described in 
Section 3 and amended in Section 5. The section consists of three parts. First, the modelling 
implication is pointed out. Second, the results obtained with a fairness constraint, using the same 
numerical example as introduced in Section 4 and 5, are shown and discussed. Third, the results 
are discussed when jointly applying the fairness and implementation constraint.  

6.1. Revisiting the model 

In order to assess the least-cost tariff design with a cap on the increase of network charges paid 
by passive consumers, Eq. 23 is added to the upper-level problem. The index ‘i2’ stands for the 
passive consumer type and  BGC′i2′ are the network charges paid by the passive consumer in the 
baseline scenario. With the parameter Cap′𝑖2′ it can be decided how high the increase in network 
charges paid by the passive consumer is allowed to be when compared to the network charges 
paid in the baseline scenario (Table 1). If the cap is set very high, the fairness constraint will not 
be binding and thus will not influence the least-cost network tariff design. If the cap is set very 
low, the model can become unfeasible, i.e. there is no network tariff that can lead to cost-
recovery for the DSO while taking into account the reactions of the active consumers to the 
network tariff, and at the same time respecting the fairness constraint.  

𝑣𝑛𝑡 ∗ ∑ (𝑞𝑤t,′i2′ − NM ∗ 𝑞𝑖t,′i2′) ∗ WDTT
t=1 + 𝑐𝑛𝑡 ∗ 𝑞𝑚𝑎𝑥′i2′ + 𝑓𝑛𝑡 ≤  BGC′i2′ ∗ (1 + Cap′i2′) (23) 

6.2. Results and discussion with a fairness constraint 

In this section, the results for the numerical example are discussed. Figure 4 illustrates that the 
state of the grid determines to what extent the incentives given to active customers via 
distribution network tariffs result in system benefits and/or whether these benefits are shared 
with passive consumers. The results are completely different for the three illustrated grid states. 
Additionally, the resulting least-cost network tariff designs at a 10% fairness cap (Cap′i2′ = 0.10) 
are shown for the case in which the grid costs are assumed to be 100 % sunk and the case in which 
the grid costs are assumed to be 50% sunk and 50% prospective costs. In the case grid costs are 
assumed to be 100 % prospective, the fairness cap is not binding; thus, the results are not 
affected. 
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Figure 4: Total system cost increase trade-off with the increase of grid charges of passive consumers for different grid cost 

structures. Perfect proxy for the grid cost drivers assumed. 

The first state of the grid is 100% sunk costs. In this case, the least-cost network tariff is a fixed 
charge, which significantly increases the costs for small passive consumers (25% increase in grid 
charges). However, we can ‘sacrifice’ some cost-efficiency to lower fairness concerns. Looking at 
Figure 4, this means moving to the left on the ‘’100 % sunk grid cost line’’. Two opposing forces 
are working in this case. On the one hand, by lowering the fixed network charges, the fairness 
issue decreases. But by resorting to other network tariff components which are needed to ensure 
full grid cost recovery (volumetric charges and/or capacity-based charges, as can be seen in the 
same figure), the network tariff will be distortionary.18 This implies that active consumers can 
exploit opportunities that might be beneficial to themselves but which are not necessarily optimal 
from a system point of view.19 The private benefits active consumers obtain in this way come at 
the expense of passive consumers, thus aggravating the fairness issue once again. These two 
forces can be played out against each other until the moment the model becomes unfeasible, i.e. 
there is no way anymore to recover all grid costs while limiting the fairness concern. For this 
example, this occurs at the point when the increase of grid charges for the passive consumers is 
capped at a level lower than 8%. Note that the significant improvement in fairness comes with a 
relatively small increase in total system cost.  

 

18 Volumetric charges with net-purchase, i.e. only charging for the electricity withdrawn from the network, are opted 

for by the regulator. Volumetric charges with net-metering lead to a higher system cost and create a fairness issue 
as they strongly over-incentivise PV adoption.  
19 This happens at the point when the increase of grid charges for passive is capped at a level lower than 14 %. Beyond 

that point, when further reducing the grid charges for passive consumers, the increase in volumetric and capacity-
based charges in the network tariff, which are needed to respect cost-recovery, are large enough to impact on the 
investment decisions of the active consumers. Consequently, the increase in total system costs rises above 0 %. 
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The second state of the grid is 100% prospective costs. In this case, a cost-reflective tariff can 
achieve significant cost savings thanks to the incentives given to active consumers. These system 
benefits also lead to a price reduction for passive consumers. It is possible to push the model 
towards a network tariff structure that sacrifices some of the system benefits for an outcome that 
is even better for passive consumers, but it is unlikely that this would occur in practice as there is 
no perceived unfairness in this case.  

The third state of the grid is 50-50 sunk and prospective grid costs. In our numerical example, the 
negative effects we see in the first state of the grid for passive consumers dominate the positive 
effects we see in the second state of the grid. Even though the system is better off, the passive 
consumers pay more. This means that the active consumers are winning twice: they are getting 
all the system benefits and they are pushing some of the costs towards passive consumers. It is 
possible to engineer a network tariff that somewhat softens the unfairness towards passive 
consumers, but they are always worse off in this case.  

6.3. Results and discussion with a fairness and implementation constraint 

Figure 5 is even more sobering for passive consumers than the results in the previous section. If 
we cannot get the cost driver right, we risk passive consumers being worse off in all cases. The 
results for 100% sunk costs do not change, of course. If all costs are sunk, there is no cost driver, 
so the inaccuracy of the cost driver does not apply to that case. In the other two cases, the 
implementation issues with cost-reflective network charges make the system, and also the 
passive consumers, relatively worse off. In the case of 100% prospective costs, the impact is most 
significant for passive consumers as they end up mostly losing instead of sharing the benefits with 
active consumers. In other words, the two issues that we discussed separately in this paper 
strongly interact with each other. 

 

Figure 5: Total system cost increase trade-off with the increase of grid charges of passive consumers for different grid cost 
structures. Results with and without implementation issues with cost-reflective network tariffs are shown. 
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7. Discussion results and policy implications 

This section consists out of two parts. Firstly, an overview of the results is shown, important 
assumptions are discussed, and the main findings of the sensitivity analysis are described. The 
sensitivity analysis can be found in Appendix B. Secondly, the main policy implications are derived. 

7.1. Overview of results, discussion assumptions and finding of the sensitivity analysis 

Figure 6 shows an overview of the results for the case in which 50 % sunk and 50 % prospective 
grid costs are assumed. From that figure, it can be seen how the results are gradually affected by 
the two considered constraints in terms of the least-cost network tariff design, the total system 
costs (and its components), and the network charges increase for passive consumers. We do four 
observations in Figure 6. 

 
Figure 6: Summary of all the results for the case with 50 % sunk and 50 % prospective grid costs assumed. 

Firstly, it can be seen that there is a clear case for redesigning the historical in-place baseline 
network tariff, volumetric charges with net-metering, as also argued in the introduction to the 
paper. Active consumers are strongly incentivised to invest in solar PV (5 kWp per active 
consumer) as by doing so they can avoid paying for energy and grid charges. The overall 
expenditure on energy costs does indeed reduce strongly (-41.6%), but grid costs remain more or 
less stable (-1.4 %). Overall, there is a 3.4 % increase in system costs compared to the baseline 
results; the total costs of PV investment by active consumers is higher than the sum of system 
benefits in terms of energy and the grid. Also, active consumers significantly lower their grid 
charges but the grid costs do not reduce proportionally. Instead, these costs are shifted to the 
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passive consumers (+78 % in grid charges compared to the baseline) and a significant fairness 
issue results. 

Secondly, Figure 6 shows that the least-cost network tariff consists of a fixed charge to recuperate 
the sunk grid costs and a capacity-based charge to align grid benefits with consumer benefits. It 
can be seen that when having a perfect proxy for the network cost driver, a system cost reduction 
can be achieved (-1.4 % compared to the baseline) while the network charges for the passive 
consumers increase (+12.6 %).20  

Thirdly, in case of not having a perfect proxy, the cost-efficiency decreases and the fairness issue 
is aggravated.  

Fourthly, when capping the increase in network charges for the passive consumers a three-part 
network tariff results. By introducing a volumetric network charge with net-purchase at the 
expense of the unpopular high network fixed charge, some cost-efficiency can be sacrificed for 
fairness. 

When making the above four observations, it is important to keep in mind the three main 
assumptions we work with. They are highlighted in what follows with reference to the sensitivity 
analysis that can be found in Appendix B.  

First, no positive externalities from solar PV adoption are assumed. If decentralised solar PV 
adoption (partly) replaced polluting central generation plants, and a carbon mark-up in the energy 
price and subsidies were not politically feasible, it might be socially beneficial to stimulate PV 
adoption by allowing for a larger proportion of volumetric network charges (possibly with net-
metering). This is also argued for in the work by Brown and Sappington (2017a).21 However, the 
fairness issue with overly volumetric network charges combined with active consumers installing 
solar PV would remain pertinent. A relevant empirical work in this regard is the paper by 
Borenstein and Bushnell (2018). These authors investigate how some electricity prices in the US 
might to be too low– such as unpriced pollution externalities– while others cause prices to be too 
high– such as recovery of fixed costs through volumetric charges.  

Second, we assumed perfectly price-inelastic demand. Instead, we allowed active consumers to 
fulfil their electricity demand by other means than the grid (solar PV and batteries). Demand 
response (DR) could give consumers the ability to shift their demand in time, just as batteries can. 
For example, Koliou et al. (2015) analyse a tariff-based DR programme and find that it can result 
in reduced overall costs both for the DSO and consumers. It is hard to put a price tag on DR actions, 

 

20 Active consumers install a battery (2.7 kWh per active consumer) to lower their grid charges and by doing so they 

also lower the overall grid costs (-14.6 %). A small increase in energy costs (+1.7 %) results due to energy losses from 
the battery. The increase in grid charges for the passive consumers compared to the baseline results from the 
introduction of the uniform fixed network charge in a setting with lower-usage passive consumers. 
21 In that regard, making the parameter NM, which is set to account for net-metering or net-purchase volumetric 

charges, endogenous, and allowing it to be a continuous number, might bring new insights. 
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but one can imagine that some demand shifting can be done fairly cheaply through 
automatisation. This would mean that by including DR, the attractiveness to invest in batteries 
might reduce. Also, the negative impact on system cost of a network tariff that overly relies on 
imperfectly implemented capacity-base charges could be lower. However, this could also mean 
that the fairness issue would be more significant as it is easier for active consumers with 
automated appliances to ‘shift’ network charges to passive consumers who do not own such 
appliances.  

Third, a limitation of the modelling approach is that the retailer energy price a consumer pays is 
not considered endogenous.22 One could argue that if consumers install solar PV, this will 
propagate to the wholesale market and finally energy prices could go down (see e.g. Darghouth 
et al. (2016)). This is true in the short run, but in the long run the effect is more ambiguous. For 
example, Green and Vasilakos (2011) use a long-run market equilibrium model and find that in 
the long-run equilibrium the average price level does not change much with a significant increase 
in wind power. However, the volatility of the price would increase. To get an idea of the effect of 
more volatile energy prices, we added runs with time-of-use (TOU) energy retailer prices in 
Appendix B. It is found that with TOU energy prices instead of flat energy prices, the decrease in 
system costs (compared to the baseline) is more evident than in the presented numerical example 
the system costs. With TOU energy prices, batteries cannot only be used by active consumers to 
lower the peak demand but also to arbitrage energy prices. With TOU energy prices in place, in 
most scenarios, the proportion of capacity-based network charges in the least-cost network tariff 
decreases slightly. This occurs because battery investment is additionally incentivised by TOU 
energy prices. It is also shown that TOU energy prices affect not only the adoption of batteries 
but also that of solar PV. 

Note that Appendix B also illustrates that results are sensitive to how financially attractive solar 
PV investment is. If we assume that the retailer energy price is higher than the cost of generating 
electricity from solar PV on rooftops, logically, the total system costs reduce alongside solar PV 
adoption by active consumers.23 However, we find that at the same time the fairness concern 
becomes more severe. Making the least-cost tariff fairer by increasing volumetric network 
charges to partially replace unpopular fixed network charges does not work anymore when solar 
PV is cheaper. This is true because the investment distortion in solar PV investment becomes 
more sensitive to these increased volumetric charges. Indeed, if solar PV is relatively expensive, 
fairness is less of a concern as the share of (net-purchase) volumetric network charges in the final 
network tariff can be quite high before these charges induce distortions. 

 

22 Also, the impact of DER adoption on transmission costs are abstracted from the analysis, see e.g. Denholm et al. 

(2014) for a complete overview of the system benefits of DER adoption. 
23 In the sensitivity analysis we do this by inserting higher solar PV yield profiles than in the numerical example and 

keeping the investment cost of solar PV and the retailer energy price constant. Similar results would be obtained by 
lowering the investment cost of solar PV or increasing the retailer energy price.  
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7.2. Policy implication: overcoming the limitations of traditional network tariff design options 

Our work confirms the challenges faced by regulators today, e.g. in Europe (CEER, 2017) and the 
US (Trabish, 2018). Before, distribution network tariffs were mainly a technical discussion 
between the DSO and the regulator. Today and in the future, there are a many more stakeholders. 
These stakeholders require an impact analysis where the response of consumers to network tariff 
design and distributional impacts are shown to justify choices.  

We found that if the regulator only has the three options available that we consider in this paper, 
it will be difficult to implement a fair network tariff design. However, in practice, our results 
regarding fairness might be overestimated as such issues can be improved through solutions 
other than standard network tariff design. Negative distributional effects could be remedied 
through specific low-income programmes as described by Wood et al. (2016). Another solution 
would be not to implement a uniform fixed network charge as in our analysis, but to differentiate 
the fixed network charges per consumer or consumer groups without distorting the use of 
electricity, e.g. by income, property value, property size, kW connection capacity (Abdelmotteleb 
et al., 2017; MIT Energy Initiative, 2016; Pollitt, 2018). It might also be possible to improve fairness 
by introducing some form of taxation on active consumers. However, taxation is also difficult to 
implement and could conflict with other public policy goals. In the case of high sunk grid costs, 
under-recovery of the grid costs could be an option as full cost recovery leads to inefficiencies. 
Unrecovered sunk network costs could be recuperated through other means than the electricity 
bill; an option also discussed in the report by the MIT Energy Initiative (2016). An alternative could 
be to let taxpayers pay for these costs, as is done for roads in some countries. 

On the other hand, our results could underestimate the difficulties with a least-cost and fair 
distribution network tariff in practice. We did assume that policy costs do not interfere with the 
analysis, but the share of these costs in the electricity bill is increasing year by year in most 
countries, and the way these costs are recuperated from consumers, mostly volumetrically, can 
seriously distort network tariff design and aggravate efficiency and fairness issues. 

An additional takeaway is that we show that it can be reasonable to spread distribution network 
costs over the different traditional network charge options (volumetric, capacity-based and fixed) 
if these are the only options available. As such, the identified issues with each option are 
dampened, i.e. distortions in solar PV adoption with too high volumetric network charges, 
distortions in battery adoption with too high capacity-based network charges and fairness issues 
with too high fixed network charges. Three smaller distortions are more desirable than one more 
significant distortion. Overall, more impact analysis is needed.  

8. Conclusion and future work 

In this paper, we have applied a game-theoretical model to analyse the impact of an 
implementation and fairness constraint on least-cost distribution network tariff design. The 
game-theoretical model takes into account decentralised decisions of self-interest pursuing active 
consumers enabled to invest in solar PV and batteries. 
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First, we find that both constraints have a significant impact on the least-cost network tariff 
design. In theory, the least-cost distribution network tariff design has a fixed component that is 
proportional to the sunk costs, and a capacity component to reflect the costs of grid investments 
that still have to be made and that can be partly avoided if it is cheaper for active customers to 
invest in DER. In practice, departing from volumetric charges towards higher fixed charges is often 
perceived as unfair as their introduction would mean that low-usage passive consumers, who are 
often also less wealthy consumers, would pay similar charges to high-usage active consumers, 
who are often richer. Also, in practice, the individual capacity or individual peak is often a 
relatively weak approximation of the actual cost driver(s) of the network. As a result, a three-part 
tariff combining fixed, capacity, and volumetric charges may be more suitable, even though, in 
theory, volumetric is not to be considered for a least-cost distribution network tariff design. 

Second, we find that there is a strong interaction between the two constraints we analysed. If 
regulators do not anticipate that their implementation of cost-reflective tariffs will be imperfect, 
the system costs will increase, and the fairness issues will also be aggravated. It is therefore 
important to have realistic estimations of what we know and do not know about the cost drivers 
of distribution networks. Limited information is available, suggesting that we need to be careful 
in setting strong incentives. This is especially true with high numbers of active consumers. 

Third, the results depend on the state of the grid. If most of the grid investments still have to be 
made, passive and active consumers can both be made to benefit from cost-reflective tariffs, 
while this is not the case for passive consumers if the costs are mostly sunk. The standard network 
tariff design options, i.e. volumetric, capacity, and fixed charges, do not suffice to transfer part of 
the welfare gains of the active consumers to compensate the passive consumers. Other solutions 
than standard tariff design would have to be introduced to reach a fairer outcome; examples are 
specific low-income programmes, differentiated instead of uniform fixed charges, the 
recuperation of sunk network costs through other means than the electricity bill or the taxation 
of active customers, which has its own issues. 

Regarding future work, it would be interesting to include electric vehicles and heat pumps in the 
analysis. Accounting for these (mainly) electricity-consuming technologies could present new 
insights. More granular network tariffs could become increasingly important to limit the efficiency 
loss. Overall, the interaction between network tariff design, retail energy pricing, public policies 
(e.g. energy efficiency and DER subsidies) and taxation deserves further analysis. Also, due to the 
structure of the model, it is assumed that the regulator has perfect insight into the consumer’s 
reaction to the network tariff design. This is a simplification. In reality, future demand is not 
known ex-ante and has to be estimated. This anticipation issue could be accounted for by 
including stochasticity in the consumer reaction. An example is the paper by Weijde and Hobbs 
(2012) in which a stochastic two-stage optimisation model that captures the multistage nature of 
the planning of a transmission network under uncertainty is presented. Actually, this planning 
uncertainty is another implementation issue with improved network tariffs. Adding multiple 
stages and stochasticity would require an extension to the presented model. 
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Appendices 

A. The mathematical model 

A.1. Overview of the used sets, parameters and variables 

Sets 

i : 1,..,N: Consumers types 
t: 1,..,T: Time steps with a certain granularity 

Parameters  
Upper-level 
SunkGridCosts: Sunk annualised grid costs, scaled per average consumer [€] 
IncrGridCosts: Incremental annualised grid cost per kW increase/decrease of the coincident peak 
demand/injection, scaled per average consumer [€/kW] 
DPeak: (Default) coincident peak demand before investment in DER by active consumers, scaled 
per average consumer [kW] 
WF: Weighting factor, indicating the inaccuracy in the network cost driver [-] 
NM: Factor indicating whether net-metering (1) or no net-metering (0) or bi-directional volumetric 
charges (-1) are in place [-] 
PC𝑖 : Proportion of consumer type i 
TotalOtherCosts: all other costs paid through the electricity bill, e.g. policy costs, annualised and 
scaled per consumer [€] 
BGC𝑖 : Baseline volumetric grid charges paid before investment in DER for consumer type i [€] 
Cap𝑖: Cap on the increase of grid charges paid for consumer type i [%] 
Lower level 
WDT: Scaling factor to annualise, dependent on length of the used time series and time step [-] 
DT: time step, as a fraction of 60 minutes [-] 
D𝑡,𝑖: Original demand at time step t of agent i [kW] 
MS𝑖 : Maximum solar capacity that can be installed by agent i [kW] 
MB𝑖 : Maximum battery capacity that can be installed by agent i [kWh] 
SY𝑡,𝑖: Yield of the PV panel at time step t of agent i [kWh/kWpeak] 
EBP𝑡: Energy price to be paid by agent for buying from the grid [€/kWh] 
ESP𝑡: Energy price received by agent for buying from the grid (feed-in tariff) [€/kWh] 
AICS: Annualised investment cost solar PV [€/kWpeak] 
AICB: Annualised investment cost battery [€/kWh] 
BDR: Ratio of max power output of the battery over the installed energy capacity [-]  
BCR: Ratio of max power input of the battery over the installed energy capacity [-]  
EFD: Efficiency of discharging the battery [%] 
EFC: Efficiency of charging the battery [%] 
LR: Leakage rate of the battery [%]  
SOC0: Original (and final) state of charge of the battery [kWh] 
OtherCosts: other costs paid through the electricity bill, e.g. policy costs [€] 
 



32 

 

Variables 
UL decision variable 
𝑣𝑛𝑡 : Volumetric network tariff [€/kWh] 
𝑐𝑛𝑡: Capacity network charge [€/kWpeak] 
𝑓𝑛𝑡: Fixed network charge [€/connection] 
𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘: The coincident (aggregated) peak demand after optimisation (highest absolute of 
value of the positive/negative coincident peak), scaled per average consumer [kW] 
𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑: Positive coincident peak demand after optimisation, scaled per average consumer 
[kW] 
𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛: Negative coincident peak demand after optimisation, scaled per average 
consumer [kW] 
𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡: Total annualised grid cost, scaled per average consumer [€] 
𝑇𝑜𝑡𝑎𝑙𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠: Total annualised investment cost in DER, scaled per average consumer [€] 
𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠: Total annualised energy cost, scaled per average consumer [€] 
LL decision variable 
𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖:  Annualised grid charges for agent i [€] 
𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖:  Annualised investment cost in DER for agent i [€] 
𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖: Annualised energy cost for agent i [€] 
𝑞𝑤𝑡,𝑖: Energy bought at time step t by agent i [kW] 
𝑞𝑖𝑡,𝑖: Energy sold at time step t by agent i [kW] 
𝑞𝑚𝑎𝑥𝑖: Peak demand of agent i over the length of the considered time series [kW] 
𝑠𝑜𝑐𝑡,𝑖: State of charge of the battery of agent i at step t [kWh] 
𝑞𝑏𝑜𝑢𝑡𝑡,𝑖: Discharge of the battery of agent i at step t [kW] 
𝑞𝑏𝑖𝑛𝑡,𝑖: Power input into the battery of agent i at step t [kW] 
𝑖𝑠𝑖: Installed capacity of solar by agent i [kW] 
𝑖𝑏𝑖: Installed capacity of the battery by agent i [kWh] 

A.2. Original optimisation problems 

The upper-level problem for a total system cost minimising regulator 

Objective function, the minimisation of total system costs: 

Minimise  𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 + 𝑇𝑜𝑡𝑎𝑙𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 + 𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 + TotalOtherCosts (A.1) 

With its components being: 

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡𝑠 = SunkGridCosts + IncrGridCosts ∗ (DPeak − WF ∗ (DPeak − 𝑂𝑃𝑒𝑎𝑘))  (A.2) 

𝑇𝑜𝑡𝑎𝑙𝐷𝐸𝑅𝑐𝑜𝑠𝑡𝑠 = ∑ PC𝑖 ∗ (𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB)N
𝑖=1  (A.3) 

𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠 =  ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDT N
𝑖=1

T
𝑡=1  (A.4) 

Finding the aggregated peak demand in absolute value: 

𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑃𝑒𝑎𝑘 ≡ 𝑀𝑎𝑥 {𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑, 𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛} (A.5) 

𝐶𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 ≡ 𝑀𝑎𝑥 {∑ 𝑃𝐶𝑖(𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖)𝑁
𝑖=1 ∀𝑡} (A.6) 

𝐶𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ≡ 𝑀𝑎𝑥 {∑ 𝑃𝐶𝑖(𝑞𝑖𝑡,𝑖 − 𝑞𝑤𝑡,𝑖)𝑁
𝑖=1 ∀𝑡} (A.7) 

Cost recovery Eq. of the upper-level with a cap on the increase of grid charges of the passive 
consumer (i2): 
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𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝑐𝑜𝑠𝑡𝑠 =  𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN
𝑖=1

T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 + 𝑓𝑛𝑡  (A.8) 

𝑣𝑛𝑡 ∗ ∑ (𝑞𝑤𝑡,′𝑖2′ − NM ∗ 𝑞𝑖𝑡,′𝑖2′) ∗ WDT𝑇
𝑡=1 + 𝑐𝑛𝑡 ∗ 𝑞𝑚𝑎𝑥′𝑖2′ + 𝑓𝑛𝑡  ≤  BGC′i2′ ∗ (1 + Cap′i2′) (A.9) 

The lower level problem for an electricity cost minimising consumer 
Objective function per consumer type i, the minimisation of individual electricity cost: 

Minimise  𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 + 𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 + 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 + OtherCharges  (A.10) 

With:  

𝐺𝑟𝑖𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 ∗ NM) ∗ 𝑣𝑛𝑡 ∗ WDTT
𝑡=1 + 𝑞𝑚𝑎𝑥𝑖 ∗ 𝑐𝑛𝑡 +  𝑓𝑛𝑡   ∀i (A.11) 

𝐷𝐸𝑅𝐶𝑜𝑠𝑡𝑠𝑖 =  𝑖𝑠𝑖 ∗ AICS + 𝑖𝑏𝑖 ∗ AICB   ∀i (A.12)  

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠𝑖 = ∑ (𝑞𝑤𝑡,𝑖 ∗ EBPt − 𝑞𝑖𝑡,𝑖 ∗ ESPt) ∗ WDTT
𝑡=1    ∀i (A.13) 

Constraints (including duals): 

𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 + 𝑖𝑠𝑖 ∗ SYt,i + 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖  −  Dt,i = 0    ∀ 𝑖, 𝑡    (𝜇𝑡,𝑖
𝑎 )   (A.14) 

𝑠𝑜𝑐1,𝑖 − 𝑞𝑏𝑖𝑛1,𝑖 ∗ EFC ∗ DT + (𝑞𝑏𝑜𝑢𝑡1,𝑖 EFD)⁄ ∗ DT − SOC0 = 0    ∀ 𝑖 (𝜇1,𝑖
𝑏 )   (A.15) 

𝑠𝑜𝑐𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 ∗ EFC ∗ DT + (𝑞𝑏𝑜𝑢𝑡t,𝑖 EFD⁄ ) ∗ DT − 𝑠𝑜𝑐𝑡−1,𝑖 ∗ (1 − LR ∗ DT) = 0   ∀ 𝑖, 𝑡 ≠ 1 (𝜇𝑡≠1,𝑖
𝑏 )   (A.16) 

𝑠𝑜𝑐𝑇,𝑖 − SOC0     = 0  ∀ 𝑖 (𝜇𝑖
𝑐)   (A.17) 

−𝑞𝑚𝑎𝑥𝑖 + 𝑞𝑤𝑡,𝑖+𝑞𝑖𝑡,𝑖  ≤ 0                    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑎 )   (A.18) 

𝑠𝑜𝑐𝑡,𝑖−𝑖𝑏𝑖   ≤   0       ∀ 𝑡, 𝑖  (𝜆𝑡,𝑖
𝑏 )   (A.19) 

𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑖𝑏𝑖 ∗ BDR ≤ 0   ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑐 )   (A.20) 

𝑞𝑏𝑖𝑛𝑡,𝑖 − 𝑖𝑏𝑖 ∗ BCR ≤  0  ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑑 )   (A.21) 

−𝑞𝑤𝑡,𝑖 ≤ 0  ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑒 )   (A.22) 

− 𝑞𝑖𝑡,𝑖  ≤ 0    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑓

)   (A.23) 

−𝑠𝑜𝑐𝑡,𝑖 ≤ 0    ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑔

)   (A.24) 

−𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 ≤ 0 ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
ℎ )   (A.25) 

−𝑞𝑏𝑖𝑛𝑡,𝑖 ≤ 0 ∀ 𝑡, 𝑖 (𝜆𝑡,𝑖
𝑖 )   (A.26) 

𝑖𝑠𝑖 − MS𝑖  ≤ 0    ∀ 𝑖 (𝜆𝑖
𝑗
)   (A.27) 

𝑖𝑏𝑖 − MB𝑖  ≤ 0   ∀ 𝑖 (𝜆𝑖
𝑘)   (A.28) 

− 𝑖𝑠𝑖  ≤ 0  ∀ 𝑖 (𝜆𝑖
𝑙)   (A.29) 

− 𝑖𝑏𝑖  ≤ 0 ∀ 𝑖 (𝜆𝑖
𝑚)   (A.30) 

− 𝑞𝑚𝑎𝑥𝑖  ≤ 0 ∀ 𝑖 (𝜆𝑖
𝑛)   (A.31) 

𝜆𝑡,𝑖
𝑎 , 𝜆𝑡,𝑖

𝑏 , 𝜆𝑡,𝑖
𝑐 , 𝜆𝑡,𝑖

𝑑 , 𝜆𝑡,𝑖
𝑒 , 𝜆𝑡,𝑖

𝑓
, 𝜆𝑡,𝑖

𝑔
, 𝜆𝑡,𝑖

ℎ , 𝜆𝑡,𝑖
𝑖  ≥ 0 ∀ 𝑡, 𝑖 (A.32) 

𝜆𝑖
𝑗
, 𝜆𝑖

𝑘 , 𝜆𝑖
𝑙 , 𝜆𝑖

𝑚, 𝜆𝑖
𝑛, ≥ 0 ∀ 𝑖 (A.33) 

Eq. (A.31) is noted down for completeness, the constraint is implied by Eq. A.18, A.22 and A.23. 

A.3. MPEC reformulation as a MILP 
Newly introduced sets, parameters and variables 
Sets 
k: 1…K: Index of auxiliary binaries (𝑏𝑘

𝑎) needed to discretise the bilinear product (including 𝑣𝑛𝑡) in 
Eq. (A.8) 
l: 1…L: Index of auxiliary binaries (𝑏𝑙

𝑐) needed to discretise the bilinear product (including 𝑐𝑛𝑡) in 
Eq. (A.8) 
Parameters 
δ: Allowed band wherein the grid costs charges can differ from the grid charges collected as a 
percentage of the total grid costs [%] 
Δγ: Step of 𝑣𝑛𝑡 when discretised [-] 
Δ ∂: Step of 𝑐𝑛𝑡 when discretised [-] 
MDa: Large scalar used to discretise the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) [-] 
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MDb: Large scalar used to discretise the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) [-] 

Ma, Mb, Mc, Md, Me, Mf, Mg, Mh, Mi, Mj, Mk, Ml and Mm: Large scalars used to transform 
complementarity constraints (A.62-A.74) into disjunctive constraints [-] 
Variables 
𝑏𝑘

𝑎: Binary variables used to discretise the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) 

𝑏𝑙
𝑏: Binary variables used to discretise the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) 

𝑧𝑘
𝑎: (Pos.) continuous variables used to represent the bilinear product (including 𝑣𝑛𝑡) in Eq. (A.8) 

𝑧𝑙
𝑏: (Pos.) continuous variables used to represent the bilinear product (including 𝑐𝑛𝑡) in Eq. (A.8) 

𝑟𝑡,𝑖
𝑎 , 𝑟𝑡,𝑖

𝑏 , 𝑟𝑡,𝑖
𝑐 , 𝑟𝑡,𝑖

𝑑 , 𝑟𝑡,𝑖
𝑒 , 𝑟𝑡,𝑖

𝑓
, 𝑟𝑡,𝑖

𝑔
, 𝑟𝑡,𝑖

ℎ , 𝑟𝑡,𝑖
𝑖 , 𝑟𝑖

𝑗
, 𝑟𝑖

𝑘, 𝑟𝑖
𝑙 and 𝑟𝑖

𝑚: Binary variables used to transform 

complementarity constraints (A.62-A.74) into disjunctive constraints [-] 
 
Model transformations 
Transformation of the grid cost recovery equality of the upper-level 
For easier convergence of the model, the grid cost recovery Equality (A.8) is replaced by two 
constraints (A.34-35) making sure that the network charges collected from the consumers are 
within a band (1±δ) of the grid costs to be recovered. In the performed runs δ is set to 0.1%. 

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 − δ) − 𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN
𝑖=1

T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 + 𝑓𝑛𝑡 ≤ 0      (A.34) 

−𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 + δ) + 𝑣𝑛𝑡 ∗ ∑ ∑ PC𝑖 ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDTN
𝑖=1

T
𝑡=1 +  𝑐𝑛𝑡 ∗ ∑ PC𝑖 ∗ 𝑞𝑚𝑎𝑥𝑖

N
𝑖=1 + 𝑓𝑛𝑡 ≤ 0  (A. 35) 

Discretising the bilinear products (of two positive continuous variables) to turn the NLP in a MIP 
Formulation based on Momber (2015), page 102, Eq. 4.60-4.63. We define: 

𝑞𝑡𝑜𝑡 = ∑ ∑ PCi ∗ (𝑞𝑤𝑡,𝑖 − NM ∗ 𝑞𝑖𝑡,𝑖) ∗ WDT𝑁
𝑖=1

𝑇
𝑡=1      (A.36)        and     𝑞𝑚𝑎𝑥𝑡𝑜𝑡 = ∑ PCi ∗ 𝑞𝑚𝑎𝑥𝑖

𝑁
𝑖=1            (A.37)         

𝑣𝑛𝑡 =  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑏𝑘

𝑎                                                     (A.38)        and     𝑐𝑛𝑡 =  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑏𝑙

𝑏      (A.39)         

It follows that: 

𝑞𝑡𝑜𝑡 ∗ 𝑣𝑛𝑡 = 𝑞𝑡𝑜𝑡 ∗  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑏𝑘

𝑎  =  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑧𝑘

𝑎  (A.40) 

𝑞𝑚𝑎𝑥𝑡𝑜𝑡 ∗ 𝑐𝑛𝑡 = 𝑞𝑚𝑎𝑥𝑡𝑜𝑡 ∗  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑏𝑙

𝑏  =  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏  (A.41) 

with: 

𝑧𝑘
𝑎    ≥ 0                                            ∀ 𝑘        (𝐴. 42)            and           𝑧𝑙

𝑏    ≥ 0                                                      ∀ 𝑙 (A.43) 

𝑧𝑘
𝑎     ≤ MDa ∗ 𝑏𝑘

𝑎                            ∀ 𝑘        (𝐴. 44)            and           𝑧𝑙
𝑏      ≤ MDb ∗ 𝑏𝑙

𝑏                                     ∀ 𝑙 (A.45) 

𝑞𝑡𝑜𝑡 − 𝑧𝑘
𝑎  ≥ 0                                 ∀ 𝑘        (𝐴. 46)            and           𝑞𝑚𝑎𝑥𝑡𝑜𝑡 − 𝑧𝑙

𝑏 ≥ 0                                   ∀ 𝑙 (A.47) 

𝑞𝑡𝑜𝑡 − 𝑧𝑘
𝑎  ≤ MDa ∗ (1 − 𝑏𝑘

𝑎  )     ∀ 𝑘        (𝐴. 48)           and           𝑞𝑚𝑎𝑥𝑡𝑜𝑡 −  𝑧𝑙
𝑏  ≤ MDb ∗ (1 − 𝑏𝑙

𝑏   )    ∀ 𝑙 (A.49) 

Karush-Kuhn-Tucker conditions of the lower level 

WDT ∗ (EBP𝑡 + 𝑣𝑛𝑡) + 𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 − 𝜆𝑡,𝑖
𝑒 = 0                                              ∀ 𝑡, 𝑖 (A.50) 

−WDT ∗ (ESP𝑡 + NM ∗ 𝑣𝑛𝑡) −  𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 − 𝜆𝑡,𝑖
𝑓

= 0  ∀ 𝑡, 𝑖 (A.51) 

𝑐𝑛𝑡 − ∑ 𝜆𝑡,𝑖
𝑎

𝑡 = 0    ∀ 𝑖 (A.52) 

𝜇𝑡,𝑖
𝑏 − 𝜇𝑡+1,𝑖

𝑏 ∗ (1 − LT ∗ DT) + 𝜆𝑡,𝑖
𝑏 −  𝜆𝑡,𝑖

𝑔
  = 0   ∀ 𝑡 ≠ {T}, 𝑖 (A.53) 

𝜇𝑇,𝑖
𝑏 + 𝜇𝑖

𝑐 + 𝜆𝑇,𝑖
𝑏 − 𝜆𝑇,𝑖

𝑔
= 0                                                           ∀ 𝑡 = T, 𝑖  (A.54) 

𝜇𝑡,𝑖
𝑎 +

𝜇𝑡,𝑖
𝑏

EFD
∗ DT + 𝜆𝑡,𝑖

𝑐 − 𝜆𝑡,𝑖
ℎ  = 0      ∀ 𝑡, 𝑖 (A.55) 

−𝜇𝑡,𝑖
𝑎 − 𝜇𝑡,𝑖

𝑏 ∗ EFC ∗ DT + 𝜆𝑡,𝑖
𝑑 − 𝜆𝑡,𝑖

𝑖  = 0  ∀ 𝑡, 𝑖 (A.56) 

AICS + ∑ 𝜇𝑡,𝑖
𝑎 ∗ SYt,i 𝑡 +  𝜆𝑖

𝑗
− 𝜆𝑖

𝑙 = 0     ∀ 𝑖 (A.57) 

AICB − ∑ 𝜇𝑡,𝑖
𝑏

𝑡 − ∑ 𝜆𝑡,𝑖
𝑐 ∗ BDR𝑡  −  ∑ 𝜆𝑡,𝑖

𝑑 ∗ BCR𝑡 + 𝜆𝑖
𝑘 − 𝜆𝑖

𝑚 = 0     ∀ 𝑖 (A.58) 

𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 + 𝑖𝑠𝑖 ∗ SY𝑡,𝑖 + 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 − D𝑡,𝑖 = 0                                𝜇𝑡,𝑖
𝑎 𝑓𝑟𝑒𝑒  ∀ 𝑡, 𝑖 (A.59) 
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𝑠𝑜𝑐1,𝑖 − 𝑞𝑏𝑖𝑛1,𝑖 ∗ EFC ∗ dt + 
𝑞𝑏𝑜𝑢𝑡1,𝑖

EFD
∗ DT − SOC0 = 0                                   𝜇1,𝑖

𝑏   𝑓𝑟𝑒𝑒 ∀ 𝑖 (A.60) 

𝑠𝑜𝑐𝑡,𝑖 − 𝑞𝑏𝑖𝑛𝑡,𝑖 ∗ EFC ∗ dt +  
𝑞𝑏𝑜𝑢𝑡𝑡,𝑖

EFD
∗ DT − 𝑠𝑜𝑐𝑡−1,𝑖 ∗ (1 − LR ∗ DT) = 0     𝜇𝑡≠1,𝑖

𝑏  𝑓𝑟𝑒𝑒    ∀ 𝑡 ≠ 1, 𝑖 (A.61) 

𝑠𝑜𝑐𝑇,𝑖 − SOC0  = 0 𝜇𝑖
𝑐 𝑓𝑟𝑒𝑒 ∀ 𝑖 (A.62) 

0 ≤ 𝑞𝑚𝑎𝑥𝑖−𝑞𝑤𝑡,𝑖  −𝑞𝑖𝑡,𝑖   ⊥  𝜆𝑡,𝑖
𝑎  ≥ 0 ∀ 𝑡, 𝑖 (A.63) 

0 ≤ 𝑖𝑏i − 𝑠𝑜𝑐𝑡,𝑖      ⊥  𝜆𝑡,𝑖
𝑏  ≥ 0  ∀ 𝑡, 𝑖 (A.64) 

0 ≤ 𝑖𝑏i ∗ BDR − 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖      ⊥  𝜆𝑡,𝑖
𝑐  ≥ 0  ∀ 𝑡, 𝑖 (A.65) 

0 ≤ 𝑖𝑏i ∗ BCR − 𝑞𝑏𝑖𝑛𝑡,𝑖         ⊥  𝜆𝑡,𝑖
𝑑  ≥ 0  ∀ 𝑡, 𝑖 (A.66) 

0 ≤ 𝑞𝑤𝑡,𝑖                    ⊥  𝜆𝑡,𝑖
𝑒  ≥ 0  ∀ 𝑡, 𝑖 (A.67) 

0 ≤ 𝑞𝑖𝑡,𝑖                    ⊥  𝜆𝑡,𝑖
𝑓

 ≥ 0    ∀ 𝑡, 𝑖 (A.68) 

0 ≤ 𝑠𝑜𝑐𝑡,𝑖                   ⊥  𝜆𝑡,𝑖
𝑔

 ≥ 0  ∀ 𝑡, 𝑖 (A.69) 

0 ≤ 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖            ⊥  𝜆𝑡,𝑖
ℎ  ≥ 0    ∀ 𝑡, 𝑖 (A.70) 

0 ≤ 𝑞𝑏𝑖𝑛𝑡,𝑖               ⊥  𝜆𝑡,𝑖
𝑖  ≥ 0  ∀ 𝑡, 𝑖 (A.71) 

0 ≤ MS𝑖 − 𝑖𝑠𝑖                           ⊥  𝜆𝑖
𝑗

 ≥ 0  ∀ 𝑖 (A.72) 

0 ≤ MB𝑖 − 𝑖𝑏𝑖              ⊥  𝜆𝑖
𝑘  ≥ 0    ∀ 𝑖 (A.73) 

0 ≤ 𝑖𝑠𝑖                       ⊥  𝜆𝑖
𝑙   ≥ 0  ∀ 𝑖 (A.74) 

0 ≤ 𝑖𝑏𝑖                       ⊥  𝜆𝑖
𝑚 ≥ 0  ∀ 𝑖 (A.75) 

 
Final model formulation 
The final model formulation is composed of Eq. (A.1-7) and (A.9). Eq. (A.8) is turned into two 
constraints described by Eq. (A.34-A.35) and further transformed to (A.76- A.77) which is the final 
form of Eq. (A.8) included in the model formulation. Eq. (A.36-A.39) and Eq. (A.42-A.49) are 

included to complete the discretisation of the bilinear products. MDa and MDb are well calibrated 
and 𝛥𝛾 (0.0001) and 𝛥𝜕 (0.01) are chosen to balance precision and computational time. 

𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 − δ) −  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑧𝑘

𝑎 +  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏 + 𝑓𝑛𝑡 ≤ 0  (A.76) 

−𝑇𝑜𝑡𝑎𝑙𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡 ∗ (1 + δ) −  Δγ ∗ ∑ 2𝑘−1
𝑘 ∗ 𝑧𝑘

𝑎 +  Δ ∂ ∗ ∑ 2𝑙−1
𝑙 ∗ 𝑧𝑙

𝑏 + 𝑓𝑛𝑡 ≤ 0  (A.77) 
 

Further, the lower level problem is incorporated in the MILP by Eq. (A.50-A.62) and (A.78-A.103). 
Eq. (A.78-A.103) are disjunctive constraints replacing the complementarity constraints (A.63-
A.75) using the method described in Fortuny-Amat and McCarl (1981). Alternatively, a 
transformation using SOS1 variables as explained in Siddiqui and Gabriel (2013) or can be 
implemented as indicator constraints (GAMS, 2018). In the final formulation, we can also 

substitute 𝜆𝑡,𝑖
𝑒  , 𝜆𝑡,𝑖

𝑓
, 𝜆𝑡,𝑖

ℎ , 𝜆𝑡,𝑖
𝑖 , 𝜆𝑖

𝑙  and 𝜆𝑖
𝑚 out. 

𝑞𝑚𝑎𝑥𝑖−𝑞𝑤𝑡,𝑖 − 𝑞𝑖𝑡,𝑖 ≤ Ma ∗ (1 − 𝑟𝑡,𝑖
𝑎 )        ∀ 𝑡, 𝑖   (A.78)  and   𝜆𝑡,𝑖

𝑎 ≤  Ma ∗ 𝑟𝑡,𝑖
𝑎           ∀ 𝑡, 𝑖 (A.79) 

𝑖𝑏𝑖 −  𝑠𝑜𝑐𝑡,𝑖  ≤ Mb ∗ (1 − 𝑟𝑡,𝑖
𝑏  )    ∀ 𝑡, 𝑖   (A.80)  and   𝜆𝑡,𝑖

𝑏 ≤  Mb ∗ 𝑟𝑡,𝑖
𝑏    ∀ 𝑡, 𝑖 (A.81) 

𝑖𝑏𝑖 ∗ BDR − 𝑞𝑏𝑜𝑢𝑡𝑡,𝑖  ≤ Mc ∗ (1 − 𝑟𝑡,𝑖
𝑐  )  ∀ 𝑡, 𝑖   (A.82)  and   𝜆𝑡,𝑖

𝑐 ≤  Mc ∗ 𝑟𝑡,𝑖
𝑐    ∀ 𝑡, 𝑖 (A.83) 

𝑖𝑏𝑖 ∗ BCR − 𝑞𝑏𝑖𝑛𝑡,𝑖  ≤ Md ∗ (1 − 𝑟𝑡,𝑖
𝑑 )      ∀ 𝑡, 𝑖   (A.84)  and   𝜆𝑡,𝑖

𝑑 ≤  Md ∗ 𝑟𝑡,𝑖
𝑑       ∀ 𝑡, 𝑖 (A.85) 

𝑞𝑤𝑡,𝑖  ≤ Me ∗ (1 − 𝑟𝑡,𝑖
𝑒 )     ∀ 𝑡, 𝑖   (A.86)  and   WDT ∗ (EBPt + 𝑣𝑛𝑡) +  𝜇𝑡,𝑖

𝑎 + 𝜆𝑡,𝑖
𝑎 ≤  Me ∗ 𝑟𝑡,𝑖

e    ∀ 𝑡, 𝑖 (A.87) 

𝑞𝑖𝑡,𝑖  ≤ Mf ∗ (1 − 𝑟𝑡,𝑖
𝑓

)   ∀ 𝑡, 𝑖   (A.88)  and   −WDT ∗ (ESPt + 𝑣𝑛𝑡 ∗ NM) − 𝜇𝑡,𝑖
𝑎 + 𝜆𝑡,𝑖

𝑎 ≤ Mf ∗ 𝑟𝑡,𝑖
𝑓

 ∀ 𝑡, 𝑖 (A.89) 

𝑠𝑜𝑐𝑡,𝑖  ≤ Mg ∗ (1 − 𝑟𝑡,𝑖
𝑔

)   ∀ 𝑡, 𝑖   (A.90)  and     𝜆𝑡,𝑖
𝑔

≤  Mg ∗ 𝑟𝑡,𝑖
𝑔

  ∀ 𝑡, 𝑖 (A.91) 

𝑞𝑏𝑜𝑢𝑡𝑡,𝑖  ≤ Mh ∗ (1 − 𝑟𝑡,𝑖
ℎ )  ∀ 𝑡, 𝑖   (A.92)  and    𝜇𝑡,𝑖

𝑎 +
𝜇𝑡,𝑖

𝑏

EFD
∗ DT + 𝜆𝑡,𝑖

𝑐 ≤  Mh ∗ 𝑟𝑡,𝑖
ℎ    ∀ 𝑡, 𝑖 (A.93) 

𝑞𝑏𝑖𝑛𝑡,𝑖  ≤ Mi ∗ (1 − 𝑟𝑡,𝑖
𝑖 )    ∀ 𝑡, 𝑖   (A.94)  and    −𝜇𝑡,𝑖

𝑎 − 𝜇𝑡,𝑖
𝑏 ∗ EFC ∗ DT + 𝜆𝑡,𝑖

𝑑  ≤  Mi ∗ 𝑟𝑡,𝑖
𝑖   ∀ 𝑡, 𝑖 (A.95) 

MS𝑖 −  𝑖𝑠𝑖  ≤ Mj ∗ (1 − 𝑟𝑖
𝑗
)      ∀ 𝑖      (A.96)   and     𝜆𝑖

𝑗
≤  Mj ∗ 𝑟𝑖

𝑗
  ∀ 𝑖 (A.97) 

MBi −  𝑖𝑏𝑖  ≤ Mk ∗ (1 − 𝑟𝑖
𝑘)          ∀ 𝑖      (A.98)   and     𝜆𝑖

𝑘 ≤  Mk ∗ 𝑟𝑖
𝑘   ∀ 𝑖 (A.99) 

𝑖𝑠𝑖  ≤ Ml ∗ (1 − 𝑟𝑖
𝑙)    ∀ 𝑖      (A.100)   and    AICS + ∑ 𝜇𝑡,𝑖

𝑎 ∗ SY𝑡,𝑖  𝑡 +  𝜆𝑖
𝑗

≤ Ml ∗ 𝑟𝑖
𝑙 ∀ 𝑖 (A.101) 

𝑖𝑏𝑖  ≤ Mm ∗ (1 − 𝑟𝑖
𝑚)     ∀ 𝑖      (A.102) and 

AICB − ∑ 𝜆𝑡,𝑖
𝑏

𝑡 − ∑ 𝜆𝑡,𝑖
𝑐 ∗ BDR𝑡  −  ∑ 𝜆𝑡,𝑖

𝑑 ∗ BCR𝑡 + 𝜆𝑖
𝑘 ≤ Mm ∗ 𝑟𝑖

𝑚       ∀ 𝑖     (A.103) 
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B. Additional sensitivity analysis: consumer profiles, solar yield profiles and time-varying 
energy prices 

In order to extend the numerical results presented in the body of the paper, additional results are 
presented in this appendix. Sensitivity analysis is done regarding the consumer demand profiles, 
the solar PV yield profile and the energy prices. Results are run for three consumer demand 
profiles; in Figure B.1 the average demand profiles are shown. These average demand profiles are 
scaled so that the passive consumer consumers 2/3 of the annual electricity of the active 
consumer, the same proportion as in the consumer demand series presented in Section 4.2. 

 

 
 

The different solar yield profiles are shown in Figure B.2. As in the solar PV yield profile presented 
in the body of the paper, also seasonality is included. The reference consumer demand profile 
and the reference solar yield profile have the same average annual demand, peak and 
respectively solar yield as the numerical example in the body of the paper. However, in contrast 
to the time series presented in the body of the paper, the time series in this appendix are longer, 
namely 336h instead of 48h which represent a year. This is done because the timing of 
consumption and solar PV output is critically important for the economics of solar plus storage 
(see for example Neubauer and Simpson (2015)).  

Next to consumer demand profiles and solar PV yield, additional sensitivity analysis is done for 
the (exogenous) retailer energy prices. In the body of the paper, a constant retailer energy price 
of 0.08 €/kWh is assumed. In this appendix we introduce two alternative time-of-use (TOU) 
profiles. In Figure B.3 the different options are shown. The TOU1 profile is ‘solar PV friendly’ as 
during hours that solar PV is producing an energy price is charged which is slightly higher than the 
flat energy charge. The TOU2 profile charges relatively high prices during the evening, when 
consumer demand is expected to peak and charges a relatively low price during the hours that 
solar PV is producing a lot. The TOU2 profile is less ‘solar PV friendly’ but might induce battery 

Table B.1:  Summary additional time series 

Demand 
profiles 

Average 
yearly 
consumption 
[kWh] 

Average 
peak 
demand 
[kW] 

Low 3750 2.5 

Reference 6500 4 

High 11000 5 

PV yield 
profiles 

Yearly PV yield [kWh/kWp] 

Low    960 (LCOE: 0.100 €/kWh) 

Reference 1160 (LCOE: 0.083 €/kWh) 

High 1360 (LCOE: 0.070 €/kWh) 

 

Figure B.1: Three 2-week (average) consumer profiles 

Figure B.2: Three 2-week solar PV yield profiles (including seasonality) 
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investment due to significant relative changes in the energy price during the day. These daily 
energy price patterns are deemed representative for the year. To be able to compare results 
among the three energy price profiles, the TOU1 and TOU2 profile are scaled to make sure that 
in the baseline scenario (no DER) the weighted average energy price per consumer type is equal 
over the different energy price profiles. This means that the average energy price of the TOU1 
and TOU2 profile will be slightly lower than 0.08 €/kWh. This is because consumers have a higher 
demand during the times that the energy prices are relatively higher for these profiles. 

 
Figure B.3: Three profiles for energy prices 

The results are shown in Table B.2-4. The grid cost scenario with 50 % sunk costs and 50 % 
prospective costs is assumed. Further, an imperfect proxy of the network cost driver is assumed 
(WF=0.75). The least-cost solution is computed. If multiple equilibrium network tariffs exist, the 
network tariff resulting in the lowest increase of network charges for the passive consumer is 
selected. The main findings of the sensitivity analysis are the sensitivity of results to how 
attractive solar PV investment is and that fact that TOU energy retail prices can interact with 
network tariff design. These findings are briefly discussed in Section 7.1 in the body of the paper. 

Table B.2: Results for the reference demand time series (336h). Sensitivity: solar yield and energy price profiles 

Results compared to baseline  
 (=no DER & baseline network tariff) 

Reference demand/  
low solar irradiation 
(expensive solar PV) 

Reference demand/ 
reference solar irradiation  
(medium price solar PV) 

Reference demand/  
high solar irradiation  

(cheap solar PV) 

Energy price (same baseline weighted 
average energy price per consumer) 

Flat TOU 1 TOU 2 
Flat 

(48h) 
Flat 

(336h) 
TOU 1 TOU 2 Flat TOU 1 TOU 2 

∆ total system costs - 0.4 % -0.7 % - 1.9 % -0.3 % -0.4 % -0.7 % -1.9 % - 0.5 % -1.2 % -1.9 % 
      ∆ total grid costs - 6.2 % - 6.2 % - 8.4 % - 7.5 % - 6.2 % - 6.2 % - 8.4 % - 6.3 % - 6.6 % - 8.4 % 
      ∆ total energy costs 0.2 % - 0.5 % - 4.3 % 0.7 % 0.2 % - 0.5 % - 4.3 % - 9 % - 49 % -4 % 
       PV active consumer [kWp] 0 0 0 0 0 0 0 0.9  4.7  0 
       Battery active consumer [kWh] 1.5 1.5 2.6 1.8 1.5 1.5 2.6 1.5 1.4 2.6 

∆ network charges passive consumer 3.8 % 4.4 % 2.6 % 12.2 % 11.9 % 13.2 % 6.6 % 15.2 % 15.2 % 13.1 % 

Fixed network charges 0.0 % 7.4 % 0.0 % 52.8 % 33.0 % 46.3 % 23.7 % 57.0 % 52.8 % 56.6 % 
Vol. network charges (net-purchase) 46.0 % 42.2 % 52.8 % 14.3 % 11.4 % 7.5 % 36.3 % 0.0 % 0.0 % 10.0 % 
Capacity-based network charges 54.0 % 50.4 % 47.2 % 32.9 % 55.6 % 46.2 % 40.0 % 43.0 % 47.2 % 33.4 % 
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Table B.3: Results for the low demand time series (336h). Sensitivity: solar yield and energy price profiles 

 

Table B.4: Results for the high demand time series (336h). Sensitivity: solar yield and energy price profiles 

 

Results compared to baseline  
 (=no DER & baseline network tariff) 

Low demand/  
low solar irradiation 
(expensive solar PV) 

Low demand/ 
reference solar irradiation  
(medium price solar PV) 

Low demand/  
high solar irradiation  

(cheap solar PV) 

Energy price (same baseline weighted 
average energy price per consumer) 

Flat TOU 1 TOU 2 Flat TOU 1 TOU 2 Flat TOU 1 TOU 2 

∆ total system costs -0.2 % -0.5 % -0.6 % -0.2 % -0.5 % -0.6 % -0.3 % -0.9 % -0.9 % 
      ∆ total grid costs - 5.0 % - 5.0 % - 5.0 % - 5.0 % - 5.0 % - 5.0 % - 6.1 % - 7.3 % - 7.2 % 
      ∆ total energy costs 0.3 % -0.5 % -0.6% 0.3 % -0.5 % -0.6% -10.1 % -25.1 % -13.8 % 
       PV active consumer [kWp] 0 0 0 0 0 0 0.6 1.4 0.74 
       Battery active consumer [kWh] 0.8 0.8 0.8 0.8 0.8 0.8 0.9 1.1 1.1 

∆ network charges passive consumer 4.4 % 5.0 % 4.4 % 12.0 % 13.3 % 12.8 % 15.5 % 15.6 % 15.3 % 

Fixed network charges 0.3 % 25.1 % 23.3 % 32.8 % 60.1 % 58.9 % 65.9 % 68.3 % 50.8 % 
Vol. network charges (net-purchase) 35.7 % 43.9 % 46.8 % 4.3 % 11.7 % 14.2 % 0.5 % 0.5 % 0.6 % 
Capacity-based network charges 64.0 % 31.0 % 29.9 % 62.9 % 28.2 % 26.9 % 33.6 % 31.2 % 48.6 % 

Results compared to baseline  
 (=no DER & baseline network tariff) 

High demand/  
low solar irradiation 
(expensive solar PV) 

High demand/ 
reference solar irradiation  
(medium price solar PV) 

High demand/  
high solar irradiation  

(cheap solar PV) 

Energy price (same baseline weighted 
average energy price per consumer) 

Flat TOU 1 TOU 2 Flat TOU 1 TOU 2 Flat TOU 1 TOU 2 

∆ total system costs - 0.2% -0.2 % -0.3% - 0.2% - 0.2% -0.3 % - 0.4 % -0.8 % - 0.7 % 
      ∆ total grid costs -1.6 % - 1.6 % -2.9 % -1.6 % - 1.6 % -2.9 % - 2.6 % - 3.0% - 3.8 % 
      ∆ total energy costs 0.1 % 0.0 % -0.3 % 0.1 % 0.0 % -1.4 % -10.3 % -30.3 % -17.7 % 
       PV active consumer [kWp] 0 0 0 0 0 0.2 1.7 5 2.9 
       Battery active consumer [kWh] 0.5 0.5 1.2 0.5 0.5 1.2 0.7 0.8 1.4 

∆ network charges passive consumer 5.2 % 7.6 % 6.4 % 13.1 % 15.4 % 14.9 % 14.8 % 15.4 % 15.6 % 

Fixed network charges 19.4 % 28.9 % 25.6 % 51.4 % 62.7 % 61.0 % 59.5 % 64.7 % 64.8 % 
Vol. network charges  (net-purchase) 33.3 % 30.8 % 33.9 % 2.3 % 0.5 % 2.7 % 0.0 % 0.0 % 0.2 % 
Capacity-based network charges 47.2 % 40.2 % 40.4% 46.2 % 36.8 % 36.3 % 40.5 % 35.3 % 35.1 % 


