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Abstract

We provide an epistemic analysis of forward induction in games
with complete and incomplete information. We suggest that for-
ward induction may be usefully interpreted as a set of assumptions
governing the players’ belief revision processes, and define a notion
of strong belief to formalize these assumptions. Building on the
notion of strong belief, we provide an epistemic characterization
of extensive-form rationalizability and the intuitive criterion, as
well as sufficient epistemic conditions for the backward induction
outcome. We also investigate the robustness of rationalizability
to slight payoff uncertainity.

KEYWORDS: Conditional Belief, Strong Belief, Forward In-
duction, Rationalizability, Intuitive Criterion.
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1 Introduction

Forward inductionl is motivated by the assumption that unanticipated
strategic events, including deviations from a putative equilibrium path,
result from purposeful choices. Thus, if a player observes an unexpected
move, she should revise her beliefs so as to reflect its likely purpose.

However, in order to divine the purpose of unexpected moves, a
player must formulate assumptions about her opponents’ rationality and
strategic reasoning. This paper focuses on these assumptions and em-
phasizes their role in guiding the players’ belief revision process (see
Stalnaker [46], [47]) and hence their behavior.

In particular, we adopt a model of interactive conditional beliefs
based on Battigalli and Siniscalchi [12] and propose a formal analysis of
forward induction reasoning whose centerpiece is the notion of “strong
belief.”

We say that a player strongly believes event E if she believes that E
is true at the beginning of the game, and continues to do so as long as E
is not falsified by the evidence.2 In other words, E serves as a “working
hypothesis.”

A player’s belief revision policy may be governed by several working
hypotheses concerning her opponents’ rationality and strategic reasoning.
For instance, she may believe that her opponents are rational until she
observes a dominated move. Additionally, she may strongly believe that
each opponent is rational and strongly believes that his own opponents
are rational. Thus, if she receives information falsifying the latter hy-
pothesis but not former, she continues to believe that her opponents are
rational. Loosely speaking, we can use strong belief to formalize the as-
sumption that a player interprets unexpected moves of her opponents in

‘A partial list of references includes Banks and Sobel [6], Ben-Porath and Dekel
[15], Cho and Kreps [20], Kohlberg and Mertens [32], McLennan [34], Van Damme
[49]. In a non-equilibium setting, see Asheim and Dufwenberg [1], Battigalli [7, 8j,
Pearce [38], Reny [40].

2In a different formal setting, Stalnaker [47] independently introduced the notion
of "“robust belief,” which captures a similar intuition.



a manner consistent with the highest possible “degree of strategic sophis-
tication.”

Our main results build on this intuition to provide epistemic char-
acterizations of extensive-form, rationalizability (Battigalli [7. 8], Pearce
[38], Shimoji and Watson [44])3 and the iterated intuitive criterion of
Cho and Kreps [20]—perhaps the best-known “forward induction” equi-
librium refinement for signalling games.

Since extensive-form rationalizability induces the backward induc-
tion outcome in generic perfect information games (Battigalli [8]; for a
related result, see Reny [40]), our analysis additionally provides sufficient
epistemic conditions for backward induction.

Finally, Dekel and Fudenberg [22] have emphasized the lack of ro-
bustness of solution procedures capturing forward induction reasoning to
“slight” payoff uncertainty. We can derive and interpret related results
in our setting, again building on the notion of strong belief.

Belief Revision and Type Spaces

Following Battigalli and Siniscalchi [12], we model beliefs as (in-
finite hierarchies of) conditional probability systems (Rényi [41]) corre-
sponding to epistemic types (cf. Mertens and Zamir [35]). A state in our
model comprises a profile of strategies and epistemic types. The former
encode each player’s dispositions to act; the latter, each player’s dispo-
sitions to hold conditional beliefs about her opponents’ own strategies
and types. Thus, assumptions about the players’ rationality and reason-
ing processes correspond to events in our state space, and the players’
epistemic attitudes towards them are formalized by means of systems of
conditional probabilities—a representation that is both consistent with
Bayesian decision making and familiar to economists.

3Bemheim’s [16] “subgame rationalizability” is a weakening of subgame perfection
and does not satisfy any forward induction criterion.



In the same spirit, we note that the notion of strong belief allows
us to formulate assumptions about a player's belief revision process in a
familiar setting.4

Unlike the usual probability-one belief operator, strong belief does
not satisfy the monotonicity and conjunction properties. As we will dis-
cuss in Section 3, this implies that, in order to carry out our analysis
of forward induction in a neutral setting, it is easiest to employ belief-
complete epistemic models. In any such model, for any player i, every con-
ditional probability system on the sets of strategies and epistemic types
of Player i's opponents correspond to (at least) one of Player i's epistemic
types (cf. Brandenburger [18]). The existence of belief-complete models
follows from Battigalli and Siniscalchi [12],

Our characterization results involve higher-order strong beliefs. How-
ever, simply iterating the strong belief operator (as may be suggested by
an analogy with the notion of “common certainty of rationality”) leads
to contradictions. This point is illustrated in Section 4 by means of an
example.

Finally, we note that we analyze a general version of extensive-
form rationalizability which allows for payoff uncertainty and exogenous
restrictions on first-order beliefs (see Battigalli [9]).

Related Literature on the Epistemic Analysis of
Dynamic Games and Forward Induction

Finite (hence incomplete) extensive form type spaces are introduced
in Ben Porath [14] to characterize common certainty of rationality at the
beginning of a perfect information game. Battigalli and Siniscalchi [12]
provide a general analysis of (finite and infinite) type spaces for extensive
form games and show the existence of a belief-complete type space, the
building block of our analysis.

4Belief revision (mostly in a single-person setting) has been studied extensively by
philosophers. See e.g. Gardenfors [28], Grove [29], Stalnaker [46], [47], and references
therein.



Stalnaker [46] puts forward a related normal form, finite epistemic
model, which can also be used to analyze extensive form reasoning. This
model is used by Stalnaker [47] to provide a brief discussion of forward
induction and by Board [17] to characterize some extensive form so-
lution concepts, including extensive form rationalizabilitv. The main
difference between our type spaces and Stalnaker’'s epistemic model is
that, for each state, our model specifies beliefs conditional on obscrv-
able events only, while Stalnaker's model specifies beliefs conditional on
every event, including unobservable events concerning the beliefs of the
players. This prevents the construction of belief-complete models by
standard methods.5 Stalnaker and Board are thus forced to qualify their
characterization results with the proviso that the incomplete model at
hand contains “enough” epistemic types to allow for forward induction
reasoning in the game under consideration.6

In the context of a partitional, normal form model, Asheim and
Dufwenberg [1] investigate the consequences of common knowledge of
cautious rationality, where the latter is not defined as a property of
strategy-type pairs, but rather as a property of types. They charac-
terize an iterated deletion procedure which captures certain aspects of
forward induction.

Aumann [2] and related papers, such as Aumann [3], Samet [43]
and Balkenborg and Winter [5] use a partitional epistemic model to pro-
vide sufficient conditions for the backward induction outcome in generic
perfect information games. In the epistemic models of these papers, a
state of the world describes the players’ strategies (dispositions to act)
and their initial epistemic state, but it does not describe how a player
would revise her beliefs, should she learn that a particular node has been
reached. On the other hand, a theory of belief revision is implicit in
Aumann’s [2] notion of “rationality.” For more on this we refer to the
discussions in Section 5 of Stalnaker [47] and Section 6 of Battigalli and
Siniscalchi [12].

5We doubt that belief-complete models a la Stalnaker exist at all.
6This is made precise by Board [17], who also builds on Battigalli [7] as well as on
Battigalli and Siniscalchi [10], the previous version of this paper.



The remainder of the paper is organized as follows. Notation is
introduced in Section 2. Section 3 motivates the notion of strong belief
by means of an example, provides the formal definition and discusses its
properties. Section 4 draws the connections between strong belief and
forward induction; a characterization of extensive-form rationalizability
for complete-information games is also included here. Section 5 deals
with games with payoff uncertainty. It contains our general characteriza-
tion result, a characterization of the intuitive criterion and the analysis
of robustness with respect to slight payoff uncertainty. All proofs are
contained in the Appendix.

2 The Model

This Section introduces most of the required game-theoretic notation,
and summarizes the features of type spaces that will be relevant to our
analysis. Further details may be found in Battigalli and Siniscalchi [12].

2.1 Notation for Extensive—orm Games with Com-
plete Information

In the first part of this paper, we focus on finite games with complete in-
formation. As was mentioned in the Introduction, we shall subsequently
enrich the formal setup to accommodate payoff uncertainty.

In order to keep notation at a minimum, our analysis shall deal
mainly with multistage games with observable actions (Fudenberg and
Tirole [27], §3.3; Osborne and Rubinstein [37], Chap. 6), although most
of our results can be extended to general games. We also note that
the majority of dynamic games of interest in economics fits within this
framework (allowing for payoff uncertainty.)

We shall be interested in the following primitive objects: a set
I = {1,..., |/I} of players, a collection H of partial histories,"' including

"Histories are sequences of consecutive action profiles.



the empty history $ a collection of terminal histories Z, and a payoff
function Ui : Z —* R for every player i £ |. As the game progresses,
each player is informed of the partial history that has just occurred. At
some stages there cam be simultaneous moves. If there is only one active
player at each stage, we say that the game has perfect information.

Moreover, we shall make use of certain derived objects. First, for
every i £ /, we shall denote by S; the set of strategies available to Player
i. In keeping with standard game-theoretic notation, we let S = [?jgi 5,
and S_i =

For any h 6 H U Z, S(h.) denotes the set of strategy profiles which
induce the partial or terminal history h\ its projections on S, and 5_,
are denoted by Si(h) and £_,(/"), respectively. The correspondence S(-)
provides a convenient strategic-form representation of the information
structure.

Using this notation, we can define a strategic-form payoff function
Ui :Si X S~i -* 1 in the usual way: forallz6 Z, Si€ S,ands_j£S
if (s,,s_i) 6 S(z), then UNs”s-i) = iii(z).

It is convenient to introduce two additional pieces of notation. For
every strategy Sj, H(si) —{h 6 H : S £ St(h)} denotes the collection
of partial histories consistent with sl. For every partial history h and
strategy sf denotes the strategy consistent with h which coincides
with S on the set of partial histories not preceding h (thus, h £ WzSi)
implies sf = Si).8

2.2 Conditional Probability Systems

As the game progresses, players update and/or revise their conjectures in
light of newly acquired information. In order to account for this process,
we represent beliefs by means of conditional probability systems (Myerson
[36], Renyi [41]).

sAssume without loss of generality that each player chooses an action immediately
after every partial history. Then s/ is defined as follows. For all h' € w, if either
(V, (aj)jer) comes before hor (h', (iq)j£/) = h, then sS”\(h") = a. Otherwise, =
si(h).



Fix a player i t /. For a given measure space (A',,.4*), consider
a non-empty, finite or countable collection Bi C A, of events such that
0 £ B,. The interpretation is that Player i is uncertain about the “true"
element X € A’,, and B, is a collection of observable events or “relevant
hypotheses” - concerning a “discrete” component of Xx.

Definition 1 A conditional probability system (or CPS) on (A',. A,, £,
is9 a mapping
M-I-) : Ai x B, - [0,1]

satisfying the following axioms:
Axiom 1 For all B € £, p(B\B) = 1
Axiom 2 For all B € Bi, p(-\B) is a probability measure on (Xt,A,).

Axiom 3 ForallA € Ai, B,C € Bi, ifA c B C C then p{A\B)p(B\C)
p(A\C).

The set of probability measures on (A*,-4,) will be denoted by
A(A]); we shall endow it with the topology of weak convergence of mea-
sures. The set of conditional probability systems on (A,, Az B,) can be
regarded as a subset of [A(A;)]Bi, endowed with the product topology.

Throughout this paper, we shall be interested solely in “relevant
hypotheses” corresponding to the event that a certain partial history
has occurred. Thus,Player i’s first-order beliefs about her opponents’
behavior may be represented by taking A, = S_jand Bt= {B c S_* :
B = S-i(h) for some h € H). We denote the collection of CPSs on
(S-i,Bi) thus defined by A S i n ¢ e S_iand H are finite, AH{S-I)
is easily seen to be a closed subset of the Euclidean \H\ m|S_i]-space.

To represent Player i’s higher-order beliefs, we will consider a (finite
or infinite) set of “possible worlds” fi = flit where C St x Yt and

®The tuple (A, A, B,p.) is called conditional probability space by Renyi [41]. When
X is finite, A = 2X, B = 2X\{0}, we obtain Myerson’s [36] conditional probability
systems.



proj5ift, = Si. Elements of the sets Yj will be interpreted as epistcmie
types. As will be clear momentarily, it is convenient to assume that each
Yi is a Polish (i.e. separable and completely metrizable) space.

To represent Player i’s hierarchical beliefs about her opponents, we
use the following structure: let X, = ft_,, let A, be the Borel sigma
algebra on ft_* and

B, —{B 6 A%: B = {(s_,,j/X €ft_i :s_, g S_i(/i)} for some hc H).

The set of CPSs on (ft_,, Bi) will be denoted by Aw(ft_t). Similarly, to
represent Player i’s hierarchical beliefs about the prevailing state of the
world (including her own strategy and beliefs, as well as her opponents’),
let Xi = 3, let A be the Borel sigma algebra on 0 and

B={B cA: B={(s,y) Gft:sc S(h)} for some hc H}.

The set of CPSs on (S1,B) is denoted A w(ft).

Note that f2_, and Q are Polish spaces in the respective product
topologies: also, the finite collections Bt and B consist of sets that are
both open and closed in the respective topologies. Battigalli and Sinis-
calchi [12] show that, under these conditions, AW(S2_i) and AWS7) are
closed subsets of the Polish spaces [A($2_i)]B< and, respectively, [A (fl)]B.
Hence, they are Polish spaces in the relative topology.

2.3 Epistemic Models

We next introduce our basic representation of hierarchical conditional
beliefs.

Definition 2 (cf. Ben Porath [IJtJ) A type space on (H, S(-), 1) is a
tuple T = (H,S(-),1,(Qi, T), ) such that, foe every %f /, 7) is a
Polish space and

i. ft, is a closed subset of Si x Tt such that projs ft, = Si;

ii. gi : Ti —=Aw(ft_i) is a continuous mapping.



For any i G |. the. elements of the set T, are referred to as Player
i 's epistemic types. A type space is compact if all the sets Tt. i G /, art
compact topological spaces.

Thus, at any "“possible world” u = (s,.fi),s; € fi. we specify each
player i's dispositions to act (her strategy s,) and dispositions to believe
(her system of conditional probabilities gi(U) = (gi.h(U)h<=H)» These
dispositions also include what a player would do and think at histories
that are inconsistent with w.10

As is traditional in the epistemic analysis of games, we complete a
player’s system of conditional beliefs by assuming that she is certain of
her strategy and epistemic type. More specifically, we assume that for
every state of the world ((Si,ti),a>-i) and every history h, Player i would
be certain of t, given h and would also be certain of s, given h provided
that Si is consistent with h, i.e. st G Si(h). We also assume that if
Si ~ Sfh) Player i would still be certain that her continuation strategy
agrees with Si. (The latter assumption is immaterial for our analysis, but
we include it for completeness).

Formally, Player i’'s conditional beliefs on (Q, B) are given by a
continuous mapping

9x = (9th)hen m —* Aw(ft)

derived from g, by the following formula: for all {suti) G H,, h G H,
E e A.

91.h(si,ti) (E) = 9ih 1((s'L €£}) 1)

Type spaces encode a collection of infinite hierarchies of CPSs for
each player. It is natural to ask whether there exists a type space which
encodes all “conceivable” hierarchical beliefs. Mertens and Zamir [35]
and Brandenburger and Dekel [19] answered this question in the affirma-
tive when beliefs are represented by probability measures on a compact

10History h is inconsistent with (or counterfactual at) u; = (s, t) if h  S(h).



Hausdorff or Polish space; Battigalli and Siniscalchi [12] provide a coun-
terpart of these results in the present “dynamic” setting where beliefs
are represented by CPSs.

Consider the following definition.

Definition 3 A belief-complete type space on (H. S(-), |) is a type spore
T = (H, S(-), 7/, (ffy such that, for every i € /, Q, = 5, x T,
andpi : T, — Sj x Tj) isonto.11

It is shown in [12] that a belief-complete type space may always
be constructed (at least for finite games) by taking the sets of epistcmic
types to be the collection of all possible hierarchies of conditional prob-
ability systems that satisfy certain intuitive coherency conditions. Also,
every type space may be viewed as a belief-closed subspace of the space
of infinite hierarchies of conditional beliefs.122 Finally, since we assume
that the set of external states 5 is finite and hence compact, the belief-
complete type space thus constructed is also compact.

3 Forward Induction and Strong Belief

With the basic framework notation in place, we now turn to the main
focus of this paper, forward induction reasoning. We begin by specifying
the notion of rationality we adopt.

3.1 Sequential Rationality

We take the view that a strategy s* e S, for Player i should be optimal,
given Player i's beliefs, conditional upon any history consistent with s\

11We use “"complete” in the same sense as Brandenburger [18], who shows (in a
different framework) that a (belief-) complete, filter-theoretic type space does not
exists. Ofcourse, this notion of completeness is not to be confused with the topological

one.
12[12] uses a slightly different definition of type space. But all the arguments in [12]

can be easily adapted to the present framework.

10



we do not impose restrictions on the action specified at histories that
cannot obtain if Player i follows the strategy s*. This is a sequential best
response property which applies to plans of actions13 as well as strategies
(see, for example. [42] and [40]).

Definition 4 Fix a CPS p, € An(S-t). 4 strategy Si g S, is a se-
quential best reply to p, if and only if, for every ft g 7(s2 and every
[ 6 5, (ft),

2 [cds, s-i) - Li(s',s_i)pi({s_i}]S_i(ft.)) > 0

s_,eS_i

For any CPS p, g Aw(5_j), let rj(p.,) denote the set of sequential best
replies to p,.

It can be shown by standard arguments that r, is a nonempty-
valued and upper-hemicontinuous correspondence. It is convenient to
introduce the following additional notation. Fix a type space (7f, S(-), 7,
{Qi,Ti,gi)iel). For every playeri g I, let /, = (fi.h)h6n mT, — [A(S_,)]W
denote her first-order belief mapping, that is. for all ft € T, and ft € ftf,

= niargs_,51h(ti)

(recall that projs_fl_, = 5_t). It is easy to see that /,(t,) g AH(S_;) for
every U g T,; also, /, is continuous.

Finally, we can introduce our key behavioral axiom. We say that
Player i is rational at a state >= (s.t) in T if and only if s; g r*/~t,)).
Then the event

R, —{>—(s.,t) g fi : Sig fi(Zi(<i))}

corresponds to the statement, “Player i is rational.” (Note that R, is
closed because the correspondence rto /, is upper hemicontinuous.) We

‘Intuitively, a plan of action for player i is silent about which actions would be
taken by i if i did not follow that plan. Formally, a plan of action is a class of
realization-equivalent strategies. In generic extensive games, a plan of action is a
strategy of the reduced normal form.



shall also refer to the events R = Dig/ fy (“every player is rational”) anil
R_, = pl . Rj (“every opponent of Player i is rational”).

A word of caution. Events are defined with reference to a specific
type space. In the following, we shall ensure that the type space we refer
to is clear from the context and notation.

3.2 Conditional Belief Operators

The next building block is the epistemic notion of (conditional) proba-
bility one belief, or (conditional) certainty. Recall that an epistemic type
encodes the beliefs a player would hold, should any one of the possi-
ble non-terminal histories occur. This allows us to formalize statements
such as, “Player i would be certain that Player j is rational, were she to
observe history h."

Given a type space T = (TL, S(-), /, (ft*, Ti,gi)i£i), for every i € |
and h e H, define the eventi4

Ba(£) = fei)efi : &(*,*)(£) =1}
which corresponds to the statement “Player i would be certain of E,
were she to observe history h." Observe that this definition incorporates
the natural requirement that a player only be certain of events which
are consistent with her own (continuation) strategy' and epistemic type
(recall how g’ was derived from ¢f).

For each player i and history h £ H, the definition identify a set-
to-set operator B, : A — A which satisfies the usual properties of
falsifiable beliefs (see, for example, Chapter 3 of Fagin et al [24]); in
particular, it satisfies

e Conjunction: For all events E,F 6 A, B/, (EnF) = BY, (E) n
B, (F);

« Monotonicity: For all events E, F e A: E C F implies B;/ (E) C
B,,h (F).
14For any measurable subset E C 0. Bi,h(E) is closed, hence measurable; this

follows from the continuity of glh, via an application of the portmanteau theorem.

12



3.3 Strong Belief and Forward Induction

The conditional belief operator B, is the natural extension to the
present dynamic setting of the belief operator used in the analysis of
normal- form games. It features prominently in the analysis of several
problems in the theory of extensive games (see Battigalli and Siniscalchi
[12] and references therein). However, we shall presently argue that the
logic of forward induction suggests an alternative notion of belief. The
game depicted in Figure 1 illustrates this point.

Figure 1 The Battle of the Sexes with an Outside Option

The usual “forward induction analysis” of this game runs as follows.
Observe first that the profile (OutB, R) (where “OutB” stands for “Play
Out at the empty history, and B if the simultaneous-moves subgame
is ever reached”) is a subgame-perfect equilibrium. It is sustained by
Player 2’'s implicit threat to play R in the simultaneous-moves subgame,
were Player 1 to deviate and choose In at the initial history. The threat
is credible in the (weak) sense that (B,R) constitutes a Nash equilibrium
of the subgame. However, Player 2's threat is not entirely convincing,
according to forward induction reasoning: after all, InB is strictly domi-
nated for Player 1, so if in the subgame Player 2 believes that Player 1 is
rational, he should not expect her to follow In with R. The conclusion is
that (OutB, R) is not stable with respect to forward induction reasoning.
On the other hand, the subgame-perfect equilibrium (InT, L) passes the

13



forward-induction test.

The key step in this argument is the italicized statement about
Player 2's beliefs. In order to makefense of it, we introduce a “sufficiently

rich” type space. Note that here | = {1.2}. Si = {OutT.OutB.InT,
InB.B} and S2 = {L.R}; “(In)” denotes the partial history in which
Player 1 chooses In at the beginning of the game — in other words, (In)

is the root of the simultaneous-moves subgame, so H = {0. (In)}: also.
S(In) = {InT, InB} x {L, R}.

Table 1 describes a type space for the game under consideration:
we shall denote it by T.

til wi Ts(™) Pi.(n)(f1)
1 (nB.t\) 01,0 010 n2 <2(n)(h)
2 (nT,t}) 01,0 010 1 (L.t\) 01,000 0,1,0.0.0
3 (OutB.t{) 0.0 010 2 (R, t\) 00,100 100.0,0
4 (OutT, <)) 01,0 010 3 (L, t\) 00001 0000,1
5 (InT, <?) 001 0,0,1

Table 1: The Type Space T

The table specifies the sets T) = {t\,tf} and T2 = {t2,t2,73} of
epistemic types, the sets fix, ih and fl = fli x SI2, and the maps g, :
Ti — Aw(fi_t), as required by our definitions. Note that projsfl =
S. It will be notationally convenient to denote pairs u, = (s,,t,) by
u>i(rii), where nt is the corresponding line number in the relevant table:
thus, ~i(5) = ( InT, ti). Similarly, we will use the notation w(ni,n2) =

(wi(n1),a)2(n2).

3.3.1 Step 1: Initial Common Certainty of Rationality

Consider state u;(3,2), where the unstable subgame-perfect equilibrium
profile (OutB.R) is played.15 Note first that both players are certain at

15More precisely, at u)(3,2) Player 1 chooses Out, but the Nash equilibrium (B.R)
would be played if the subgame was reached.

14



that the prewiling state is indeed u,'(3.2): that is. 0,(3.2) 6 BjiG({u,(3.2)})
for i = 1.2. Also, 0,(3,2) € R; hence, by monotonicity.

0,(3,2) e B,.(/?_)), -(3.2) € B,.c{B_,0(i?,)), ... fori= 1.2.

In words, at 0,(3.2) there is initial common certainty of the opponent's
rationality.

We have thus exhibited a type space, T, and a state, ~(3, 2), where
the unstable profile (OutB.R) is played, and yet players are rational, they
initially recognize this, and indeed they are initially quite “sophisticated"
(they recognize that they recognize each other’s rationality, and so on).

3.3.2 Step 2: Forward Induction and Belief Revision

A closer look at Table 1 shows why initial common certainty of the op-
ponent’s rationality may fail to yield the forward induction outcome. In
state u>(3,2) Player 2 would be certain at (In) that o,i = o0,i(l). However,
at 0>i(l)16 Player 1 is not rational, because InB is strictly dominated.
Thus, u;(3,2) £ B 2(In)(/?i).

On the other hand, forward induction reasoning suggests that Player
2’'s conditional beliefs following the unexpected move In should still be
consistent with Player |'s rationality. Note that this is a restriction on
how Player 2 should revise his beliefs upon observing that his initial con-
jecture was incorrect. As we have just shown, this restriction is violated
at a,(3,2).

But note that type t2of Player 2 holds beliefs consistent with initial
common certainty of the opponent’s rationality; moreover, at (In), this
type assigns probability one to 0/(5), which is consistent with both Player
|'s rationality and the observed history of play. Thus, there are states in
T where the above restriction is satisfied.

16By this we mean “at any state ui = (011,0,2) such that o,j = o'i(l).”
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3.3.3 Step 3: Strong Belief

The preceding discussion suggests that forward induction is related to
the idea that players may formulate working hypotheses at the beginning
of the game (e.g. “My opponent is rational.” ) and subsequently maintain
them insofar as they are not explicitly contradicted -even as they revise
their beliefs. We presently propose a notion of “belief” which formalizes
this idea.17

We shall say that Player i strongly believes that an event E |
is true (i.e. adopts E as a “working hypothesis”) if and only if she is
certain of E at all histories consistent with E. Formally, for any type
space T = (7i, S(-), /, (fi*, Tt,gi)ifj), define the operator SB, : A —A
by SBj(0) = 0 and

SB,(E) = pl BIA(E)
hEH En(S(/i)XT)*0

for all events E € _4\{0). Note that SB,(E) C B~(E) for all E € A:

that is, strong belief implies initial certainty.

Reverting to our example, we have SB2(/?i) = {u>(ni,3) : nx=
1... 5}. Note that S0

Ri n fi2HSB2AR!) = Mm, 3) : ni = 3,4,5}

If we now add the further assumption that Player 1 is certain, at the
beginning of the game, that Player 2 is rational and strongly believes
that Player 1 is rational, we obtain

R\ r;/2n SB2(f?i) n Bi 0(/22n SB2(/?X)) = {w(5, 3)}

i.e. we identify the forward induction solution.

17An analogous notion (called “robust belief’) was independently put forth by
Stalnaker [47].
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3.4 Monotonicity, Conjunction, and the Pitfalls of
Incomplete Type Spaces

Consider any two events E. F defined in an arbitrary type space T. Fix
a player i € |. suppose that E ¢ F, and consider a state -z = (s.t) €
SB,(£).

By definition. g*h(Si, U)(E) = 1 for all histories h consistent with
E. This clearly implies that, at these histories, g’ h(st.ti)(F) = 1, how-
ever, since F Z E, there may be a history h' consistent with F but not
consistent with E. Thus, Player i may or may not assign probability one
to F conditional upon reaching h' in state W, without prejudice to the
assumption that uyj 6 SB,(£).

In general, strong belief is not a monotonic operator. An entirely
similar reasoning shows that it need not satisfy conjunction. As we shall
demonstrate in the next Section, this is relevant to our analysis.

Here we wish to point out another important consequence of the
failure of these properties: analyzing an extensive-form game in the
framework of an incomplete type space introduces extraneous and poten-
tially undesirable restrictions on forward induction reasoning.

Consider for instance the game in Figure 1, together with the type
space T' described in Table 2.

nl ~ 9l.(In)(tl)

1 (InB, t\) 0.1 01 n2 U2 yz.iitf)  <2(n)(<)
2 (InT, t{) 01 01 1 (L, t\) 01,00 01,00
3  (OutB, t}) 01 01 2 (R, t\ 0010 1,000
4 (OutT,t\ 01 0.1

Table 2: The Type Space T'

T' is a belief-closed subspace of T. Indeed !> ¢ d and every state
u € Cd' corresponds to the same profile of strategies and hierarchies of
CPSs in T and T'. To emphasize that events and belief operators are
defined within the latter type space we write R't, SB'(-) and so forth.
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The type space T' incorporates the assumption that Player 1 if
rational, never chooses In, and that Player 2 strongly believes this.18
Intuitively, these assumptions break the forward induction argument: if
Player 2 observes that the simultaneous-moves game is reached, he must
conclude that Player 1is irrational, and hence may be planning to choose
B. But then Player 2 may rationally respond with R.

Formally, observe first that R\ = {u>(ni,n2) : tii = 3,4. n2 =
1,2}. Next, note that SB/Ri) - {a;(ni,2) : N\ = 1...4}: since there
is no state in the type space T' consistent both with Player |’'s rationality
and with the event that the subgame is reached, there is no constraint
on Player 2's beliefs after In. On the other hand, Player 2 must initially
believe that Player 1is rational, which singles out type t2 It is then easy
to see that

R[ n,R2n SB'(fli) OB, * (Rl nSB2RD) = {u>(3,2).u;(4,2)},

where both 0»(3,2) and cu(4,2) yield the “unstable” equilibrium outcome
Out: by restricting the type space, we make Out consistent with forward
induction!

To relate this to the properties of strong belief, note that R\ =
Ri n O, therefore

SB2(R}) SBa”“nn') = {(m,2) : n, = 1— 5} +

SB2(Ri)nSB2(ft") = 0.

I+

and
R[N SB"R'i) = (Rino)nSB ™ no) cfi,n SBj)/?!).

In general, our epistemic assumptions reflecting forward induction rea-
soning interact with the restrictions on beliefs implicit in the belief-
incomplete type space T '. The violations of conjunction and monotonic-
ity exhibited here mirror this interaction.

18fi' incorporates other restrictions as well: for instance, at any state u/ € O' there

is common certainty conditional on both $>and (In) that either Player 1 is rational
or she chooses In.
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The type space T' is not "rich enough” to capture the intuitive
forward induction argument in this example. In general, we need to
ensure that our epistemie analysis of forward induction is not biased
by extraneous (and perhaps non-transparent) restrictions on the players’
hierarchical beliefs. Since any belief-incomplete type space incorporates
such restrictions, adopting a belief-complete type space is the simplest way
to avoid potential biases.19

4 Belief Revision, Strong Belief and Ratio-
nalizability

We argued in the preceding section that the notion of strong belief plays
a central réle in forward induction reasoning. In accordance with stan-
dard practice in the literature on the epistemie foundations of solution
concepts, we now investigate the implications of iterated (strong) beliefs
about the players’ rationality.

4.1 Preliminaries

In light of the remarks at the end of Section 3, we state our assumptions
and results in the “epistemologically neutral” setting provided by belief-
complete type spaces.

Our objective is to identify the behavioral implications of assump-
tions pertaining to the players’ rationality and conditional beliefs. Our
characterization results are thus statements concerning the projection of

~Alternatively, one may carry out the analysis in the context of a belief-incomplete,
but “sufficiently rich” type space—i.e. one that contains “enough” epistemie types
to formalize the variant of forward induction reasoning one is interested in: see e.g.
Board [17]. However, this notion of “richness” depends crucially on the payoffs of the
game, as well as on the specific solution concept one wishes to characterize. Finally,
characterizing the notion of richness in any given context is somewhat cumbersome.
Adopting belief-complete type spaces makes it possible to avoid these complications
altogether.
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the corresponding events onto the set 5 of strategy profiles. More ex-
plicitly, let E be the set of states of the world (in a belief-complete type
space) satisfying a given collection of assumptions .4°. .41, .... and let 5*
be the set of strategy profiles selected by a given solution concept. Then

5* = profyF’

means that (s,)ig/ € S' if and only if there is a profile of conceivable
epistemic types such that the assumptions .4°, .41, ... are satisfied
at the state of the world ui = (s,,

The epistemic assumptions we consider only restrict a player’'s be-
liefs about her opponents’ behavior and their beliefs. That is, for in-
stance, we do not explicitly require that a player be certain, or strongly
believe, that she is rational.20 This approach emphasizes those aspects
of strategic reasoning that are most familiar to economists and game
theorists; it is also the most natural approach given the structure of our

epistemic model.

We introduce the following auxiliary operators to simplify notation:
for any event E ¢ A and for any history h € H let

BHE) = x projn_.£) and SB(E) = P|SBi(fii x projn_t£").
iei o/

For example, if | —{1.2} and E = R, then SB(R) = SBj(f?2)nSB2(/?i).

We also introduce a uniform notation for the n-fold composition of
operators. Formally, fix a map O : A —* -4; then, for any event E £ A,
let 0°(E) = E and, forn > 1, let On(E) = 0{0 n~I(E)).

20However, in our epistemic model, a player is certain of her own actual (continua-
tion) strategy and beliefs at each state. This guarantees that, if she is rational, then
she is certain of this at each history consistent with her strategy; indeed, the converse
is also true. This feature is shared by most models in the literature on epistemic
foundations of normal and extensive-form solution concepts.
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4.2 The Benchmark: Common Certainty of Ratio-
nality

The notion of common certainty of (the opponents') rationality is central
in the analysis of normal-form games. A straightforward extension to
dynamic games is also possible (see Ben-Porath [14] and Battigalli and
Siniscalchi [12]).

Definition 5 Fix a history h Ehi.

(Step 0) For everyi E I, letIT,°ch= Si(h). Also, let W°ih = fl'o/

adwh= n,e/rwv

(Step n> 0) For everyi E I, andfor every s, E S,(h), let Si E Wfh if
and only if there exists a CPS p E Aw(S_i) such that

i. S Er%p);
ii. p(W~A\S-i(h)) =1

Also let W\h= n~, WTh and Wh = n,6/

Finally, let Wff = f\>0 h'". For h = f5 the strategy profiles in
Wff are said to be weakly rationalizable.2L

Building on Ben Porath [14], Battigalli and Siniscalchi [12] show
that the If'(f solution is characterized by common certainty of rationality
conditional on h; we state their result below to facilitate comparisons
with the assumptions and solution concepts we consider in this paper.

For any history h € H, let [4] = {(s,t) Efi : s E S(h)}. Also
recall that B°(f?) = R.

21lWeak rationalizability is a well-known solution procedure for extensive games
(see e.g. Ben Porath (1997), Dekel and Gul (1997) and references therein). In generic
perfect information games it first eliminates the weakly dominated strategies and then
iteratively deletes strictly dominated strategies, a procedure first analyzed by Dekel
and Fudenberg (1990).
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Proposition 1 Fix ahistory h £ H. Then, for any belief-complete type
space,

(i) for alln > 0, U?+l = projs (fX =0Bh(R) n [/~).

(ii) If the type space is also compact, then \V~ = proj5 (P|r>1 BE(R)

In particular, is the set of strategy profiles consistent with
common certainty of rationality. As was noted in Section 3, initial com-
mon certainty of rationality is consistent with the profile (OutB. R) in
the Battle of the Sexes with an outside option. Also, in that game,
W'X = {(InT,L)} /7 0O; by Proposition 1, this implies that, in any com-
plete model, there are states in which Player 1 chooses In at the begin-
ning of the game, and there is common certainty of rationality in the
subgame. Thus, common certainty of rationality is possible conditional
on every history.

This is not the case for the game in Figure 2, which we shall refer
to throughout this section.

4,0

30 12 21 0,3

Figure 2: A perfect information game (Reny [40Q])

The backward induction solution is of course (DxD2,dxd2), so the
only history consistent with backward induction is g). It is easy to check
that = 0: indeed, in this example there cannot be common cer-
tainty of rationality conditional on any history off the backward induction
path (cf. Reny [39] and Ben Porath [14]).

22
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4.3 A Caveat: Iterated Strong Beliefs and Failures
of Conjunction

Motivated by the observations in Section 3. we now turn to the central
notion of iterated strong beliefs.

A formal analogy with Proposition 1 might suggest considering as-
sumptions of the form nm=o0SBm(fi!). However, consider the event
2

fj SB»(*) = RNnSB{R)NnSB(SB{R)) =
771=0

The key observation is that, although SB(fi!) ~ 0 and SB(SB(fi!)) ™ 0in
any complete model, it may still be the case that SB(fil)nSB(SB(fi!)) = 0,
even if R n SB(R) ~ 0.2 Thus, one may have fjiL=o0 SBm(/f) = 0.

The game in Figure 2 offers an example. It can be checkedZ3
that prOj5.fit = (Si \{AiD2}) x (S2\{aia2) and proj5fi n SB(fi) =
{DiD2,DiA2} x {aid2}. Although history (Ai) is consistent with fi] and
with the assumption SBi(/?2) (which implies no behavioral restriction),
it is clearly inconsistent with R\ fl SBi(i?2); thus, Player 2 cannot assign
probability one to both Ri and SBi(fi2) conditional upon observing Ai,
which implies that SB(R) n SB(SB(fi!)) = 0.

4.4 Strong Beliefand the Best Rationalization Prin-
ciple

The notion of strong belief allows us to provide a rigorous formulation of
the best rationalization principle (Battigalli [7]) and emphasize its impli-

22This is consistent with the general observation that the strong belief operator
need not satisfy the conjunction property (see Section 3).

23Formally, both equalities follow from Proposition 3. The intuition is that AiD2
is strictly dominated for Player 1, and aia2 is not sequentially rational; the further
assumption that players strongly believe that these strategies will not be chosen elim-
inates AjAo, djd2 and dia2.
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cations as a theory of belief revision in extensive games.

The best rationalization principle requires that players’ beliefs con-
ditional upon observing a history h € H be consistent with the highest
degree of “strategic sophistication” of their opponents.

Formally, define the auxiliary “correct strong belief” operator CSB :
A —A by
CSB(E) = EnSB{E)

for any E € A. Also let CSB” (£) = Dn>0CSBnN(£).

For every n > 0, we associate the event CSBn(f?) with n-th order
strategic sophistication. Unraveling the above definition allows us to be
precise as to the formal content of the best rationalization principle.

A minimally sophisticated player is simply rational: CSB°(f?) = R.

A first-order strategically sophisticated player is rational, and also
maintains the hypothesis that her opponents are rational: CSB1(/?) =
RCSB(R).

More interestingly, a second-order strategically sophisticated player
is rational, and maintains the hypothesis that her opponents are first-
order strategically sophisticated until the latter is contradicted by the
evidence. However, when this happens, she switches to the assumption
that her opponents are simply rational, and maintains this hypothesis
until it, too, is contradicted.

Formally, this corresponds to the event CSB2(i?) = Rn SB(R) fl
SB(CSB1(ii)). Note that, since CSBI(R) C CSB°(fl) = R, the difficul-
ties described in Subsection 4.3 do not arise.

In the game of Figure 2, at any state yj 6 CSB2(fl) Player 2 believes
at the initial node that Player 1is rational and that Player 1 strongly be-
lieves that her opponent is rational. However, as soon as Player 2 observes
ai, he abandons the assumption SBi (/?2) but retains the assumption R\.

More generally, for every n > O,

n-1
CSB"(fi) =Rn Pi SB(CSBm(#)), CSB°°(fl) = Rn Q SB(CSBn{R))
m=0 n>0
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which may now be seen to capture the intuition behind the best ratio-
nalization principle.24

We are now ready to state our main characterization result. The
following procedure is a straightforward adaptation of extensive form
rationalizability (see Pearce [38] and Battigalli [8]).

Definition 6 Consider the following procedure.

(Step 0) For everyi G I, let S? = St. Also, let 2, = 5f tmd
5° = n 6/s?-

(Step n > 0) Foreveryi GI, andfor every G St, let S ¢ S" if and
only if Si G5”_1 and there exists a CPS p c AWMS_,) such that

i. S Gr,(p);
ii. forallhen, ifSPflnS_ (/i) + 0, then p(Sf;I\S~™h)) = 1

Also let Sli = EU 5T and Sn= n,&/57 5

Finally, let S°° = rifc>o Sn- The strategy profiles in 5°° are said to
be extensive-form rationalizable.

As a preliminary result, we investigate the connection between
extensive-form rationalizability, the procedure of Definition 5, and com-
mon certainty of rationality.

Proposition 2 Foralh GH andn > 1, Snfl S(h) C H™. Therefore,
if history h is consistent with extensive form rationalizability, it is also

24The nested collection of events {CSB"(/1)}£L0 is analogous to a (sub)system of
spheres in the sense of Grove [29]. Systems of spheres can be used to formalize the
notion of epistemic entrenchment (see Gardenfors [28], Chapter 4).

25t can be shown that the computational complexity of the procedure can be
reduced by checking the restrictions on believes only at histories consistent with the
given strategy (cf. Battigalli [8]). Computationally less demanding characterizations
of extensive form rationalizability are analyzed in Shimoji and Watson [44].
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consistent with common certainty of rationality; that is, Sx n S(th) 0
implies fl,,>o0 BS(fi) /7 0-5

The main result of this section states that rationality and the best
rationalization principle completely characterize extensive-form rational-
izability.

Proposition 3 For any belief-complete type space,
(i) for any n > 0, S+l = projsCSB"(/f),-
(ii) if the type space is also compact, then 5°° = projsCSBoc(/f).

One can verify that in the Battle of the Sexes with an outside
option Sx = S3= {(InT, L)}, while in the game of Figure 2, S°° = S2=
{D1D2, D1A2} x {a ™ }.

Proposition 3 is a corollary of a more general result proved in the
Appendix. Here we outline the main argument.

Sketch of Proof: observe first that, for any player i € |, given any
CPS 6 € AH(S_t), we can construct a CPS pi € A X T.,) by as-
sociating a type tj(Sj) E Tj to each Sj £ Sj for every j ~ i and letting
Pi({(sj,tji(s))jNiNNS-,(h) x T_i) = <5i({(sj)*i}| 5-i(fi)); Lemma 10 provides
the details. Then, since gi is onto, we can find a type ti £ T, such that
9i(U) = pi and hence /,(£<) = S..

Step O of Part (i) follows. To establish the inductive step, use the rep-
resentation CSBN(f?) = R fl Pim=o0 SB(CSBmM(/?)). Lemma 11 yields a related
representation of Sn. Fix a player i £ | and a strategy s, € 5n+1, and let 6, be
the first-order CPS justifying s,. If projSjCsSBm(7?) = SJ+1 form = 0...n- 1
andj / i, then we can associate each Sj £ Sj, j ~ i, with a type tj(sj) £ Tj so
as to ensure that (Sj,tj(sj))j™i £ projn jCSBm(f?) whenever (sj)j& £ S™+1,

26Note that the Proposition only provides a sufficient condition. Reny [39j pro-
vides an example where a non-extensive-form-rationalizable history is consistent with

common certainity of rationality (his discussion does not employ a formal epistemie
model and the example illustrates a slightly different point).
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for = 0... 2—1 Using this construction. 6 can then be extended to a
CPS 4, on ff_, such that /7.dprojfl_]CSBmM(i?)|5_i(h) x T_,) = 1 whenever
[S-i(h) x r_ij n projn_iCSBm(i?) 0. It follows that any type t, such tliat
gi(ti) = p, satisfies (Si.ti) € projn.CSB"(i?). The other direction is a matter
of checking the definitions.

Finally, Part (ii) follows from compactness.

4.5 Strong Beliefs and Backward Induction

Battigalli [8] shows that, in generic perfect information games, extensive-
form rationalizability is outcome-equivalent to backward induction (for
a related result, see Reny [40]). Note that, since S is finite and S"+1 C
Sn, there is some N > 0 such that Sx = SN. Hence, Proposition 3
also provides a set of sufficient epistemic conditions for the backward
inductlbn outcome:

Proposition 4 Suppose the game under consideration has perfect infor-
mation and no player is indifferent among payoffs at different terminal
nodes. Then there exists an integer N > 0 such that for any belief-
complete type space, any strategy profile s G pro]sCSBN(R) induces the
unique backward induction outcome.

We emphasize that our results provide an explicit set of conditions
on the players’ beliefs revision processes leading to backward induction
play.

It should also be noted that our assumptions do not imply that
a player at a non-rationalizable history/node would play and/or expect
the backward induction continuation. Indeed, in certain games this is
actually inconsistent with the forward-induction logic of the best ratio-
nalization principle (cf. Reny [40]). For example, in the game of Figure 2,
backward induction reasoning implies that Player 2, upon being reached,
should expect Player 1to choose D2at her next node; as we noted above,
our assumptions imply that Player 2 rules out D2, because AiD2is strictly
dominated by DiD2for Player 1, whereas AiA2 may at least be justified
by the “unsophisticated” belief that Player 2 will irrationally play aia2.
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5 Interactive Epistemology in Dynamic Games

with Payoff Uncertainty

We now extend our analysis to multistage games with observable actions
in which at least one player does not know some payoff-relevant aspect
of the game, such as an opponent’s preferences over (lotteries on) Z. or
the mapping between Z and the relevant space of consequences.

We address three issues related to payoff uncertainty and forward
induction. First, we characterize a variant of extensive-form rationaliz-
ability which accounts for payoff uncertainty and, possibly, exogenous
restrictions on first-order beliefs. Second, we provide an epistemic char-
acterization of the intuitive criterion of Cho and Kreps [20], perhaps the
best-known equilibrium refinement for signalling games. Finally, we pro-
vide a rigorous epistemic analysis of the robustness of forward induction
reasoning to “slight” payoff uncertainty.

5.1 Preliminaries

In order to model payoff uncertainty, we associate with each playeri € |
a nonempty, finite set 0, of conceivable payoff-types. Each element ft 6
0, represents Player i’'s private information about the unknown payoff-
relevant aspects of the game. Correspondingly, we assume that payoffs
associated with terminal nodes depend on players’ payoff-types: formally,
for each player i <€/, the payoff function isa map u, : Yljei©j x Z — K.

Minor modifications in our notation are sufficient to allow' for payoff

uncertainty: Table 3 briefly summarizes the required changes.Z/

27The structure (7i, Z,/,(©;,Uifig/) is not a game with incomplete information
in the sense of Harsanyi [30], because it contains no description of players’' inter-
active beliefs about payoff-types. However, once we have specified a type space

(7f,£(*),.',( P i , w e can define the set of Harsanyi-types for each player
i 6 /to be O; x Ti; the belief mapping gt : © x T) —* A (J j & x Tj) may be
obtained from by marginalization. This construction yields a game with incom-

plete information, as defined by Harsanyi. Of course, Harsanyi-consistency (i.e. the
possibility to derive beliefs at each state from a common prior) is satisfied only in
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We point out that, as our definition of the map g' suggests, we
assume that each player is certain of her payoff-type as well as her (con-
tinuation) strategy and epistemic type at each state.

In the present setting, a type space on (H, E(-). ) is said to be
complete if and only if ft, = E, x T, and g, is onto for every t £ |. The
belief operators B, /4 and SB,, B/,, SB and CSB are defined as in Sections
3 and 4.

Object Notation Definition
e, = e, xs,
Payoff Type-Strategy Pairs E.E_.. E
E=n.P/sv =11,
Pairs consistent with h € H  Et(A). E_,(hj, E(h) E,(h) =©, x Si(h), etc.
Strategic-form Payoffs Ux:E, XE_, — R
where (s..a_,) € S(s)
0, C E, x Ti. etc.
Type Space on (‘H, E(-). f) (*.£(*)/.(ni.r,y, )i€/) .
@ Tj — continuous
of'h(0i.»i, tt)(E) -
Induced Beliefs on fi gi .n, — 4% (ti)
SrL o (€0) (SWei A((e,02 . 1 u -i) ¢ B)).
First-Order Beliefs 70T, — A(E_]) ~ mar8i:_19i.h(ti)

Table 3: Notation for Games with Payoff Uncertainty

We also need to modify the notion of rationality to reflect payoff
uncertainty. Fix a CPS pt £ Aw(E_j). A strategy s* £ St is a sequential
best reply to p, for payoff-type 6i if and only if, for every h £ Ff(s,) and
every s' £ S,(/i),

[U,(O,s, &) - C/i(0,s',cr_)Ip,{(7_}IE_(/i.)) >0
For any CPS p_ £ AH(S_,), let r,(p,) denote the set of type-strategy

pairs (9,. Si) £ E; such that st is a sequential best reply to pt for ft.28
The event “Player i is rational’ is

Ri = {{<mi,ti,u-i)£ft:0 £Ti(MU))}.

special cases. The existence of a common prior on 0 is an even more special case.
-sNote that r,( ) is a nonempty-valued, upper hemicontinuous correspondence.
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5.2 Forward Induction in Games with Payoff Un-
certainty

In Section 4 we provided an epistemic characterization of extensive form
rationalizability (EFR.) based on the notions of strong belief and best
rationalization. We now define and characterize a solution procedure
which extends EFR in two ways: first, we introduce payoff uncertainty:
second, we allow for restrictions on players’ first-order beliefs.

Such restrictions are commonplace in applications featuring payoff
uncertainty; for instance, one often assumes the existence of a common
prior on the set © of payoff-types. More generally, certain features of
players’ beliefs may appear to be salient in a given applied context (e g.
Cho [21], Watson [50], Battigalli and Watson [13]. Battigalli [9]). The
procedure we characterize combines these restrictions with forward in-
duction reasoning.

We begin by specifying the type of restrictions we consider. For
every player i € | and history h e H fix a nonempty closed subset
&.h C A(£_j) and let Aj = AWE_<) n A**  We call a subset of
CPSs of this form regular.

For any given collection of regular subsets A = (A,)lg/, we define
a solution procedure that iteratively eliminates (pavoff-type, strategy)
pairs for each player i\

Definition 7 Consider the following procedure.
(Step 0) For everyi G I, let E°’A = E* Also, let E°IA =
and Ea = riis/ M.a-
(Step n > 0) Foreveryi 6 1, andfor every a, G E*, let O G E"A if and
only if Ei € E”A and there exists a CPS p G A, such that
i. <IGri(p);

29A version of our result applies to general restrictions, whereby each A, is an
arbitrary subset of Aw(£_j). We restrict attention to regular subsets of CPSs for
expository reasons.
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ii. forallh 6 H. i/E"-~nE_,(/>) ~ 0, tten/i(EZIi| E-.(A)) = 1
[} — —
Also let e_f';l—l'u, /I‘M\ —NSI-
Finally, let EJ = fIn>0SA-

Denote by E(A) the event that the players’ first order beliefs satisfy
the restrictions given by A = (ADie/; that is,

Ei(A,) = {<7jti}ui-) e 0 :/,(t) 6 A,},£(A) = fl£,(A)).
it/

Proposition 5 Fix a collection A = (A;)I€/ of regular subsets of CPSs.
Then, for any belief-complete type space,

(i) for any n > 0, E”1 = projECSBN(i? n E(A));

(ii) if the type space is also compact, then EJ = projsCSBot(i? n
E(A))

Intuitively, the procedure described here is characterized by the
assumption that players apply the best rationalization principle but do
so in a manner consistent with the assumed restrictions A. Thus, Player
t's own first-order beliefs are an element of A,; she adopts the working
assumption that her opponents are rational and their beliefs are elements
of 11 J#t Aj\ and so on.

The following subsections rely on this general characterization re-
sult.

5.3 Strong Belief and the Intuitive Criterion

We now consider a (finite) signaling game, that is, a two-person game
with observable actions and uncertainty about the payoff-type of Player
1, where Player 1 (the Sender) is active at the first stage and Player 2
(the Receiver) is active at the second stage. Our definition of game with
payoff uncertainty already implies that the set of feasible messages is the
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same for each payoff-type. We also assume that the set of feasible actions
for the Receiver is independent of the signal.3 Table 4 summarizes our
notation for signalling games.

Object Notation Remarks
Payoff-Types for Player 1 fleece-.

€M = a,. (m) € 1A(M)]a Si= M. E; r© XAf
Actions, Behavioral Strategies m a »o(m) M)

. - bi(-r) e laps” A2 - Sj—Am

Histories no- o <?um
Player '2's prior about 6 o e A°(e) no(0) > 0 for all 0 = ©.
Outcome or outcome distribution ¢ € A(® x M x A)

Table 4: Notation for Signalling Games.

The actions of the Sender will be referred to as messages or signals;
those of the Receiver will also be called responses. Behavioral strategies
are defined as in Kreps and Wilson [33].

In this framework, an external state is given by atuplea = (9. m, s2) 6
© x M x Am and a state of the world is a tuple (a,ti,t2) where G and
t2 are— respectively— the epistemic types of the Sender and Receiver in
a belief-complete type space based on E = Ei x E2and H. We say
that outcome ( is 7ro-feasible if there is a behavioral profile (7t,#2) such
that (7ro,7ri,7t2) generates (. With a slight abuse of notation we de-
note the marginal and conditional probabilities derived from ( as fol-
lows: C(0). ((m), ((m,a), £m]0), C(m,a]0), C6»]m), ((aim). Note that
if ( is Mfeasible C(m]#) and ((m,a\6) are always well defined, because
((d) = 7td6) > O for all 6.

Definition 8 A nO-feasible outcome ( is a self-confirming equilibrium
outcome if there is a |0] -tuple of behavioral strategies (7r])flge (where.
h$€ [A(z4)lw” such that, for all 9€ 0, m GM, a&A,

(1) if((m\9) > 0, then m € argmaxnx]Ta ~a@'lm~u”~0, m\ a’),

(2) if((m.,a) > 0. then a G argmaxa- ((9"\m)u2(9',m,a"),

(3) if((m) > 0, then~(ajm) = C(a]m).

30Removing these assumptions is straightforward but implies a more complex
notation.
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Our definition of self-confirming equilibrium outcome agrees with
the definition of self-confirming equilibrium with unitary beliefs put for-
ward by Fudenberg and Levine [26], if each incarnation 8 of the Sender
is regarded as an individual player selected by chance with probability
M(0). Clearly, every sequential equilibrium outcome (Kreps and Wilson
[33]) is also a self-confirming equilibrium outcome. But the converse does
not hold, because in a self-confirming equilibrium outcome the (random-
ized) choices of different types may be justified by different conjectures
about Player 2, and actions following off-equilibrium messages need not
be optimal. Cho and Kreps [20] put forward the (lterated) Intuitive
Criterion as a test for sequential equilibrium outcomes, but clearly the
same criterion can be naturally be applied to self-confirming equilibrium
outcomes (cf. Kohlberg [31], p 23, footnote 17).

For any 70-feasible outcome C, we let Uj(0) = ~2ma((m,a\G)ui(0. m
denote the expected payoff for type 0. For any subset oftypesO0 /7 0 C O
and message m, m) is the set of best responses to beliefs concen-
trated on © given message m. Consider the following procedure.

Definition 9 (Modified Iterated Intuitive Criterion) Fix a self-confirming
equilibrium outcome £ and a message m € M such that £(ra) = 0. Let
IQ°(M\ C) = ©® and IA°(mM\ Q = A. For all k= 0,1,2,... define
/0*+1(m;C) = {0 6 1@ k{m\Q : u\(6) < maxo6M*(m;0Ui(0,m ,a)},
Sf?2(/©*(m;C),m), j//0*(m;£) ™0

IA k(m\ £), if IQk(m\E) = 0.

Outcome £ satisfies the Iterated Intuitive Criterion if and only if, for ev-
ery message m € M with C(m) = 0 and every payoff-type 9 € 0, there
exists an action a € IA k(m\C,) such that ui(0, m, a) < n)(0).

IAk+1(m;Q

As in the original treatment by Cho and Kreps [20], a candidate
outcome fails the modified IIC if a Sender’'s type may deviate to an off-
equilibrium message and “reasonably” expect to obtain a higher payoff
than she receives according to (. The “textbook” definition (e.g. Fuden-
berg and Tirole [27], p. 449) iteratively strikes out dominated responses
by the Receiver first and type-message pairs of the Sender next; our modi-
fication requires that these steps be carried out simultaneously. We wish
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to treat assumptions about each player’'s strategic sophistication sym-
metrically, as we have done so far.3L In any case, if the Receiver has no
dominated actions (i.e. SR2(6, m) = A for all m,) the two procedures
coincide.

Cho and Kreps [20] argue that

“the Intuitive Criterion relies heavily on the common knowl-
edge of the fixed candidate equilibrium outcome and. in par-
ticular, attaches a very specific meaning (a conscious attempt
to break that equilibrium) to defections from the supposed
equilibrium.”

Thus the equilibrium path plays a different role than the specifica-
tion of off-equilibrium-path behavior and beliefs.

Sobel et al. ([45], Proposition 2) relate the Iterated Intuitive Cri-
terion to extensive form rationalizability in an auxiliary game where the
messages on-the-equilibrium-path are coalesced into a message nfy that
yields the equilibrium payoff Wx($) to each incarnation 6 of the Sender.
Our result relies instead on the procedure in Definition 7; the exogenous
restrictions on first-order beliefs A; are chosen to reflect the assump-
tion that Player Vs prior beliefs “agree” with the outcome distribution Q
Proposition 5 can then be invoked to provide an epistemic characteriza-
tion of the Iterated Intuitive Criterion that helps clarify Cho and Kreps’
[20] informal statements.

We say that Player i’s beliefs about her opponent —i agree with
outcome £ at state (a,, fy,w_i) if fi*(U) (the initial first order beliefs of
t{) yields the same (conditional) probabilities as £. In particular, the
event “the Sender’s beliefs about the Receiver agree with £” is

[Cli - {(o-i,tiW2) €D :
Vm G M,Va € A,E(m) > 0=>/i™fy) ({s2:s2(m) = a}) = C(a]lm)}.

3lHowever, one can easily formulate a variant of Proposition 5 to accommodate the
usual definition of the procedure. We also note that Cho ~nd Kreps do not appear to
favor any specific order of elimination (cf. [20], p. 196.)
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Similarly,
[@2= {(wi,«2«2) 6 n:VOmM)€Ei./wM ({(0.m)}) =

Part (1) of the following proposition is a preliminary step of some
independent interest, similar in spirit to Theorem A in Aumann and
Brandenburger [4]. Part (2) is our characterization result.

Proposition 6 Fix a no-feasible outcome (.

(1) Ifa . 12Rin (C],n (R-in [C].XY ™ 0 in some type space, then <

is a self-confirming equilibrium outcome.2

(2) For any belief-complete and compact type space, CSB®M(R N [(Jtn [E]2) #
0 if and only if £ is a self-confirming equilibrium outcome satisfying the
Iterated Intuitive Criterion.

5.4 Robustness of Rationalizability with Respect to
Payoff Uncertainty

We conclude this section with a collection of results pertaining to the
robustness of forward induction reasoning to “slight” payoff uncertainty.
Our analysis is similar in spirit to that of Fudenberg, Kreps and Levine
[25] and, especially, Dekel and Fudenberg [22]; however, our arguments
do not involve payoff perturbations and limiting arguments. Rather, we
relate robustness (or lack thereof) to specific assumptions about belief
revision policies.

As in the first reference cited above, we embed a complete informa-
tion game within a richer one featuring payoff uncertainty. Specifically,
fix a game IG with payoff uncertainty, a profile of payoff-types 9° e 0,
and denote by Geo the complete information game corresponding to 9°.

32The hypothesis in (1) can be replaced by

fl Bi*(«n[d,nlda) # O

»=12

Also the converse of (1) is true if the Receiver has no conditionally dominated action.
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We can then apply the procedures defined in Section 4 to the latter
game. In particular, we shall focus on the sequences of sets {lI'*"}n>0
and {S n},>0 ; in order to emphasize the dependence on 9°. we shall use
the notation {W'20},,>0 and {Seo}n>o0 respectively.

Our objective is to relate weak and extensive-form rationalizability
in cgo with assumptions about rationality and belief revision in 1. As a
preliminary observation, intuition suggests that analyzing the complete
information game cgo should be equivalent to analyzing the game 16
focusing on states where (0) the profile of payoff-types is 9°, (1) every
player i 6 | would be certain of (0) conditional on every history h 6 H.
(k + 1) every player i would be certain of (k) conditional on even-
history h6 Tt ... .

The following result validates this intuition and derives its implica-
tions for weak and extensive-form rationalizability. To capture assump-
tions (0), (1), ... we consider the iterations of operator defined by

bh(e)= n b*(£)
hsH

and we denote by [0°] the set of states in which the profile of payoff types
is 6°: that is, [#°] = {(0,s,f) € SI : 9= 0°}.

Proposition 7 LetlG be agame with payoff uncertainty andfix 9° £ O.
Then, in any belief-complete type space, for all n > 0,

W Proj5(DLo n (\>0 BE([0Q)) = W”"+1;

(ii) projs (CSB"(fl) n a>0B£([0°])) = S£+1.

In the setting of Proposition 7, the assumption that the profile
of payoff-types is 9° is accorded the highest “epistemic priority:” it is
maintained throughout the game, even at histories where the event R fl
[0°] is falsified (furthermore, this is common certainty).

We now focus on games with private values: that is, we assume that,
for alli S I, Ui is independent of Our next result may be interpreted
as stating that, in such games, assigning the same epistemic priority to
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the events R and [#°] (as well as to assumptions concerning the players'
beliefs about them) is actually sufficient to obtain a characterization of
weak and extensive-form rationalizability.

Proposition 8 Let IG be a game luith private values and fix 0° € 0.
Then, in any belief-complete type space, for all n > O,

Aprojs(nLoBA(RN[MN])) = w/h+L.

(n) projs (CSBN(/JIN[0°])) = S™+L

However, the assumption that the profile of payoff-types is 9° (and
that this is common certainty) may conceivably be accorded a low epis-
temic priority. We interpret this as a form of “slight” payoff uncertainty.
It is then natural to ask whether forward induction reasoning generally
retains its bite in this setting. The main result of this subsection shows
that, if payoff uncertainty is “diffuse,” albeit slight, then the answer is
negative.

More specifically we analyze the implications of iterated correct
strong belief in rationality at states in which there is common certainty
conditional on the initial history alone that the payoff-type profile is 9°.

In order to model “diffuse” payoff uncertainty, we assume that the
game IG is rich: forallj £ 1, S 6 Sj and p £ Aw(E_j) there is
some 9j 6 ©, such that Sj is a sequential best response to p for O}.33
Embedding a complete information game within a rich game with payoff
uncertainty is similar in spirit to considering “elaborations” of a given
extensive game, as in Fudenberg, Kreps and Levine [25].34

33Note that a sufficient condition for richness is that each Qj contains an indifferent
payoff-type, i.e. some O such that uj(0j,-) is constant. Alternatively, it is sufficient
to assume that, for every player i and Sj 6 Sj, there is a type #j(Sj) such that Sj is
weakly dominant for 0j(sj).

340n the other hand, we emphasize that our assumptions require that players assign
probability zero to payoff-type profiles other than 0°, conditional on the initial history.
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Proposition 9 Let IG be a game with private values, and fix 0° € (5.
If IG is rich, then, in any belief-complete type space, for all n > 0.

projs lesb"(?)n H w ) )= ™
keo

As was noted above, this result is related to Dekel and Fudenberg’s
[22] analysis of the robustness of iterated weak dominance with respect
to “slightly incomplete information.” Indeed, the procedure they char-
acterize coincides with {WE£,}n>1 if G is a perfect information game
without ties between payoffs at terminal nodes (cf. Ben Porath [14]).

6 Conclusions

We provide some indications pertaining to extensions of our results and
directions for further research.

While we have restricted our attention to games with observable
actions, our characterization of extensive-form rationalizability immedi-
ately extends to general extensive games; we refer the interested reader
to the previous version of this paper [10]. Similar remarks apply to the
procedure of Definition 7.

According to the notion of rationalizability discussed here, a player
may have correlated beliefs about his opponents. Moreover, the best
rationalization principle, as axiomatized here, also reflects a notion of
“correlated” belief revision: for instance, if a player observes an irrational
move by one of her opponents, she is not required to maintain her belief
in the rationality of her other opponents.

This is perfectly consistent with a noncooperative approach (e.g.
Stalnaker [46] and [47]), especially outside the realm of equilibrium anal-
ysis. Also, our results imply that neither aspect is actually crucial in
order to obtain the backward induction outcome in generic perfect infor-
mation games.
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However, at the heart the best rationalization principle is the as-
sumption that players tend to attribute the highest possible degree of
strategic sophistication to their opponents. Hence, a notion of stochastic
independence and independent revision of beliefs about distinct oppo-
nents seems to be called for, perhaps even as a matter of consistency.

In order to focus on the somewhat more basic notions of strong
belief and best rationalization, we have relegated these issues to a com-
panion paper [11]. There we characterize a solution concept proposed by
Battigalli [7] and (modulo some technical differences) Renv [40], which
incorporates both forward induction ideas and independent beliefs.

In light of our analysis of the iterated Intuitive Criterion, it seems
natural to investigate other refinements for signalling games, such as
divinity (Banks and Sobel [6]), D1 (Cho and Kreps [20]) and related
notions. More broadly, one may construct a test of equilibrium outcomes
in general extensive games based on the best rationalization principle.
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7 Appendix: Proofs

7.1 Main Characterization Results

Observe that Proposition 3 follows from Proposition 5 by assuming that,
for each player i £ 1, 0, consists of a single element (so there is a one-
to-one correspondence between E, and Si, and we need not distinguish
between the two sets) and A, = AH(S_,).

Proposition 8 does not follow from Proposition 5, but the proofs are
very similar. We shall emphasize the proof of Proposition 5. and note
the modifications required to establish Proposition 8.

We begin with two preliminary results.

Lemma 10 Fix amap r_i : E_, — Th,. Also, fix a first-order CPS
bi 6 Aw(£_j). Then there exists an epistemic type t, £ T, such, that, for
each h eH, gi.h{U) has finite support and

9i.h(ti) {{(?-i, T_,(cr_v))) = il(cr_,|E_i(/)))

forall<7i6 £ ;e

Proof. Define a candidate CPS Pi on E_* x T_, by setting

p, ({(a”r., (*_<)} |E-i(A) x T_i) = 6j(ff_i]£_j(h))

for every h £ H, and extending the assignments by additivity. Axioms
1 and 2 follow immediately from the observation that the map <r,
(<7-i, T-i(0-i)) yields an embedding of supp [6i(.]E_,(/)] C E_i (a
finite set) in E_j x TLj, so that, for every h £ Tt, //i(|E_i(/i) x T_,)
is indeed a probability measure on £_, x T_,. By the same argument,
Pi must also satisfy Axiom 3, i.e. it must be a CPS; of course, each
Pi(.\Jl-i(h) x TLj) has finite support by construction. Since g, is onto,
there exists a type t, £ Tt such that

9,,h{ti) r_j))) = pi((o-i, r_i(cr_i)) | E_,(Zi)xT_i) = &(cr_i |E_i(A))
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for all (7-i GE and ft€ 'H. =

The next lemma provides an alternative characterization of {E A}j7=0-
where A = (A,),ey is any regular collection of subsets of CPSs.

Lemma 11 Suppose A is regular. For everyi GI andn > 1, a, GE"A
if and only if there exists a CPS p GA, such that a, Gr,(p) and

VM= 0....n—1, VheH: EM™AnE_(h)~ 0=p(E" A|E.i(h) = 1
(2)

Proof: The statement is obvious for n — 1 Now pick n > 2
and assume it is true for m = 0,...,n —1 If tr, Grt(p) for some p G
Ai satisfying (2), then a, GE"A' by the induction hypothesis, because
ET, AnE_i(/i) ~ 0 = /i(ETi,A|E_t(/i)) = 1for m = 0... n-2; moreover,
since also E""An E_,(/?) ~ 0= p(E"7A]E_,(h)) = 1, and a, 6 n(p), we
conclude a, GE"A.

In the other direction, suppose <j e E"A. Then also <, 6 E"A for
m=0,...,n—1, sowe can find CPSs pm€ A,,m = 0___n—1, such
that, for each such m, <A Grt(fim) and, forany h GH. E™ ADE_t(ft) ~ 0
implies jJUN(E™ a |JE <(/i)) = 1 Now construct a new CPS p as follows:
for any h GH, let m(ft) = max{m = 0,..., n—1 : E™ a fi E_i(ft) ~ 0},
and define p(-1E_,(ft)) = pn>(-]E_i(ft)). It is easy to verify that this
is a well-defined CPS, i.e. p GAM(E_j)) (for a similar construction, see
e.g. Battigalli [8]).

By construction. /Zi(-]E_i(ft)) G A./, for all ft. By definition of
regularity, Ai = Aw(E_i) n H/iew Therefore p G A,. Moreover,
clearly Oi Gr,(p). Finally, p satisfies (2), which concludes the proof. m

Note that Lemma 11 also applies to games with complete informa-
tion (take 0j to be a singleton for each player); hence, in the setting of
Section 5.4, it applies to the game Ggo and the sets SJo, n = 0,1,... .

We can finally prove our main result.
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Proof of Proposition 5: To prove (i). we proceed by induction,
assuming first that the sets appearing in the statement are nonempty.

(Step 0.) Fix (a.t) G CSB°(/? n E{A)) = Rf) £(Ah Then by
definition at G r,(/t(t,)) and /,(ti) c A! for every i G /, which implies
that a G EA.

Conversely, for each i G1 and at GE,, pick r~cr,) GT, arbitrar-
ily. Now fix a G EA, and for each player i G /, let p, G A, be such
that a, Gr~p;). Now Lemma 10 yields a type r/(cr,) G T, such that
5..ft(Merh)({(<7',ro(crd)>#t}) = pi(<71,|E_i(/i)) for every a_, GE_,, and
hence/.("(cr,)) = p,. Thus, (cq, G RnE(A).

Finally for each i G1, we complete the definition of the function
t*(-) by letting r/fa.) = r°(<7,) for tt, c E, \EjA.

(Step n >0.) Now assume that Part (i) has been shown to hold for
m= 0,...,n — 1, and that, for each such m, we have defined functions
rf+1 : Ei-"Ttsuch that (&, ' "k1(cri))ie/ G CSBm(fl N E(A)) whenever
a G EA+1. Finally let the functions rf(-) be defined as above.

Note that, for any event E G A and n > 1,

n—
CSBn(E) = ENPl f| SB-(n-* [Prejn_iCSBm(Em)])
i(=1 1.m=0
Also note that, for any i ¢ I, h ¢ H and event E such that
projn.E’ =
En(E(fc)xT)/0 [projE 4] n E_i(fi) ~ O 4

Now consider (a, t) ¢ CSBn(RCI E (A)) and fix i c |I. By Equation
3 (taking E = RnE(A)) we conclude that & r~fifa)) and fi(U) ¢ A,;
also, for any m = 0,... ,n — 1, the induction hypothesis and Equation
4 imply that, for any h ¢ H, E™A n E_j(/1) = [projS iCSBm(/i n
£(A)] DE_i(h) /7 0 if and only if [Qj x projfl_.CSBm(71 n £(A))] fl
(E(h) xT)j£]. Now Equation 3 and the definition of strong belief
implies that, for any h ¢ H satisfying the latter condition for some
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m = 0,...,n - 1 gih(t)(pTO)d CSBmM(R fl £\A))) = 1 This implies
/t(<i)(projE_.CSBmM(i? H E(A))|E_i(/i)) = L1 in turn, the induction hy-
pothesis implies fl(ti)(E™+"\T,-i(h)) — 1 Hence, Lemma 11 implies that
tr, € E&1-

For the converse implication, begin by defining

m.fcr,) = maxim =0,...,n : € E™Y

for every i € | and a, € Et; recall that E°A = E,. so m.(-) is well-
defined for every a, € Ei. Now consider a € E”~+1 and fix a player
i 6 I. Bv Lemma 11, we can find a CPS /g € Aw(E_j) satisfying
Equation 2. By Equation 4 and the induction hypothesis, for h 6
and m= 0, n—1 [f2i x projn_.CSBm(/?fl i?(A))] fl (E(/j) x T) ~ O
if and only if E™*E fl E_,(/i) / 0. But if the latter inequality holds,
PI(E™ifM| E_j(/]j)) = 1 by Equation 2.

Now define r_, : E < —*T_, by letting
MT , e E jj

Lemma 10 now yields a type i f+1(<7,) 6 T, such that

for all h 6 Ti and c 1€ E_,. Now note that, for m = 0,..., n —1,

a,6E-+1 = K, 6 projn_,CSBm(fi! n E(A))

because, for allj / i: (a) mj(cr’) > m+ 1ift7_i 6 E™~,; (b) ifmj(a’) > 1
then, by the induction hypothesis,

(tr'.T AV ")) 6 ProjnjCSBn4)_1(/?fl E(A));

and finally (c) the sets (CSBm(/?P £ (A )))m>0 are monotonically decreas-
ing. But then

gUiNrrtam x prejfl_,CSBm(i?fl E(A))) = 1
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for any m = 0... n —1and h 6 'H such that [ft, x projn_ CSBm(/?
E(A)In('E(h)xT) - 0, because by the argument above supp p(-|E_,(/!) C
N -t at any sucb history.

Moreover, since by construction Zi(r'l+1(<7i)) = we also have
xe r,(/i(rf+1((T,))) and /,(r"+1(cr))) G A,.

Repeating the argument for every i G | yields a profile of types
(rn+1((ti))>6/ which, by Equation 3. satisfies (a,, T"+l(at)) i ¢ CSB"(Hr
E(A)). To complete the induction step, for each i ¢ / wc now define the
function t"+1(-) for a, G E<\ E"~1 by letting r"+1(<7j) - r"(<r,) for any
such strategy at.

The argument just given shows that if one of the sets appearing in
the statement of (i) is nonempty, so is the other one. Hence, the proof
of (i) is complete.

For Part (ii), assume first that E® / O- Then E~ ~ Ofor all n > O;
hence CSB"(R n £:(A)) ~ 0 for n > 0 by Part (i). Then CSBX(H n
E(A)) is nonempty, because T is compact by assumption and the nested,
nonempty closed sets {CSB',(Rn£’(A))}n>0 form a family with the finite
intersection property.

Now suppose (cr,t) G CSB°°(/?n E(A)). Since, by Part (i), EM1 =
proj*CSB"(R n E(A)) for any n > 0O, we conclude that a ¢ E” for every
n> 1soaGf\>i = ££¢ Hence projj;CSBOHR n E(A)) C EJ.

Next, let N be the smallest integer such that E~ = E” (which
must exist because E is finite). Pick any a G E”Y = E”- and consider the
sequence of sets M{m,a) = CSB(;v_.1)+m(Rn E(A))n({cr} x T), m > 0
(let A/(0,cr) = {a} x T if N = 0). Each set M(m, cr) is nonempty and
closed; also, the sequence of sets M (m,a) is decreasing, and hence has
the finite intersection property. Then 0~ Dnm>oM (m>a) C CSB°°(7?n
E(A)), so EE C projECSB°°(i? DE(A)).

If EN = 0, let N be the smallest integer such that E~ = 0. Since
E~ = projECSBA_1(Rn E(A)), we conclude that CSBw~I(.RnE(A)) =
0, so CSBOO/?n£(A)) = 0, and again EE£ = projECSB,°(Rn E(A)). =
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The following observations allow one to modify the preceding argu-
ment to prove Part (ii) of Proposition s. Fix a player i £ | and a profile
of pavofF-types 0° £ ©.

First, note that, for any CPS p, € AWE_*). one can define a
“marginal” CPS nf e Aw(S_i) by letting pf({s_,}1E_..(/))) = //.((-)_, X
{s_,}1 E_,(fi)) for each h € T\ conversely, for any CPS vf £ A~(5_,),
one can define a CPS v, £ AWE _,) by letting s_)HS_d~D =
j/f({s_t}]S_,(/>)) for each h £ Tt.

With these definitions, for any strategy s< £ Si, by the private
values assumption £ ri(n,) implies s* £ rjeo(//f), and conversely
Si Grieo(i/f) implies (s*, 6°) G r,(vi), where r, g denotes Player i's best
response correspondence in the game Ggo. This allows one to adapt Step
0 in the above proof of Part (i) and show that Sg0= H'eo = projs/?n [EF)].
We leave the rest of the proof of Part (i) to the reader.

As for the proof of Part (ii), note that, since S(h) = 0 x S(h) for
all h £ H, E fl (E(/i) x T) 0 if and only if [projs_ £7]fi S-i(h.) /7 0
for any event E such that proj§E = 5,. The inductive step in the proof
of Part (i) of Proposition 5 may then be easily adapted to the present
context. Again we leave the details to the reader.

7.2 Other Proofs
Proposition 2

Proof. The equality 51fl S(h) = holds by definition. Suppose by
way of induction that 5” fl S(h) c and let s ¢ Sn+l fl S(h). Since
Sl ¢ Sn it follows that S", fl S-i(h) /7 0. By definition of Sn+1,
for each i £ | there is some p, ¢ Aw(S_t) such that st ¢ r,(/i,) and
fii(S”ilS-,(h)) = 1 By the inductive hypothesis S H S-i(h) c IT", h.
Therefore Ni(W1ih\S-i(h)) > Mi(SHj]S_i(/") = 1 Since Si £ r*p,) n
St(h) and ~(W ~h\S~(h)) = 1for all i £ |, then s G M™+1. This
conclude the proof of the first statement.

It follows that if S°° A S(th) ~ Oalso M® / 0. But W =
Prejs Hn>0 Bh{R)- Therefore 5°° n S{h) = 0 implies f\>0 Bh(R) £+ O- =
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Proposition 6

Proof, (1) Fix”~ = (ti.m,h,s2h) e n,=i0f?,n [C],n B,«, (f?_, n [<]_%-

SinceW 6 J2n[C]2nB2"(Ri fl [C]i). for each 9 6 0 and each m with
£(m]0) > O, there is some epistemic type t&m such that (O,m. tfm) is in
the support of 320("2), the Sender is rational and her beliefs agree with
£ at (6, m, tfm,s2,h)- For any such 6 and m, let 42 be the behavioral
representation of = margsSiio(<Im), that is,

VW € M,Ma e A, #2m@alm’) = ({s2:s2(m") = a}).

By agreement with £, TIHm(-\m') = marg4C(-|m") whenever £(m') > O.
Therefore, we can fix an arbitrary fh 6 A/ with £(fn) > 0, define #| =
#2m and conclude that, for all m, m' such that C(ra) > 0 and £(rn’) >
0, #2(.m") = = marg4£(.|m’). This implies that, for any
equilibrium message m, the expected payoff calculated using either %2 or
2m is Ui(0).

We claim that each message m such that £m]0) > 0 is a best
response for 6 to #2, that is, condition (1) of Definition 8 is satisfied.
Clearly, each such m is a best response to #2 for 9 because the Sender
is rational at state (6, m, tém,s2,f2- The Sender’s expected payoff fol-
lowing m is U\(9)\ but note that

vm' 6 A/, u\(9) = ~ Ui{9, fh, a)#2(alm) > ~ U\(9, m'. a)®2(a|m’)

a a
because fh is itself an equilibrium message. This proves the claim.

Repeating the process for each 9 we obtain the required tuple of
behavior strategies (#])fi Q.

Let #2be the behavioral representation of /i,”(ti). Since the Sender’s
beliefs agree with and the Sender believes that the Receiver is rational
and also has beliefs agreeing with (, it must be the case that for each m
with C(m) > 0O, #2(-]m) = marg4£(-]m) and for each a with 7T2@]m) > O,
a is a best reply to belief marge£(-|m) given m. Therefore also condition
(2) of Definition 8 is satisfied.
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(2) First notice that

CSB(Rn [C,n[C2c fl R, n[d nB,.O(fl_, n[c]_.).
i=12
Therefore, by Part (1), CSB'’0O(R n [£], n §]2) ~ O implies that Cis a self-
confirming equilibrium outcome. To complete the proof of part (2) wo
rely on a specialization of our main characterization result. Proposition
o, to the present setting. We introduce the following notation.

Let E; = E,=9x M, S§= S2,

Ai(C) = {(i6 A(S2 :Vm,Vfl.C(m) > 0=>p({s2:s2(m) = a}) = <(a]m)}.

Aj*(0 ={/t£ An(EI) : V(«,m),M(e,m]Si) = CP.m)}-

Ai(”") is the set of initial first order beliefs of the Sender about the
Receiver that agree with £, A£*E£) has a similar meaning. In particular,
observe that these restrictions on beliefs are regular. It is convenient to
have a special notation for the system of beliefs derived from some CPS
fji on (Ei,7t): e [A(6)]M satisfies v{O\m) = /x(0,m]Ei(m)) for all
(8,m). For every /z€ A(52), we let BRi{p. 0) denote the set messages
that maximize the expected payoff of type 6 of the Sender against /z
Similarly, for every message m and belief vme A (0), BR.2lvm, m) is the
set of Receiver’'s best responses. Then the iterative deletion procedure

corresponding to the sequence of events CSB* {R H [Cli n (C]2) is, for all
k=0.1,...

Ex+1= {(m)e E*:3n £A,(C), mB6BFIi(M), /S?) = I},

S2+1 = {s2e S2 : 3z € A?(0,Vfc 6 H, E* n Ej(/i) + 0 =
/Z(E*|Ei(/i)) = LVm 6 M.s2Zm) e BR2(i*(-|m), m)}.

The characterization result yields projECSB* (R n [£]j n [E]2) =
E{+1 x Sj+1.

Now, for every step k of the procedure and every message m. let
©*(m) and Ak(m) respectively denote the types and responses consistent
with step k given message m, that is,

0*(m) = {Oe 0 :(0,m) € E*},
Ak(m) = {a e A :3s2€ S2,s2(m) = a} .
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(2.a) We first prove the following “decomposition property": s2e
if and only if s2(m) £ Ak(m) for all m. The "only if" part is true by
definition. Now suppose that s2(m) £ Ak(m) for all m. Then we can
find strategies s2 £ Sk and CPSs pm € Aw(Ei) (in £ M) such that,
for all m, s2(m) = s™(rn) 6 f?ft2(ry"(-|m), m). =nmrgex,wC
(recall that Si = © x M), /ME*-1]E1) = 1 S,(m") = 1
whenever Ej_1 fl Ei(m') ~ 0. Construct p(-]-) as follows: //(-IE!) —
margexAfC ralEi(m)) = <#|m) for all # and m with C(m) > *h and
;i-1Ei(m)) = p"I(-]Ei(m)) for all m with £(m) = 0. It can be checked
that » £ A?(£), s2(m) £ BR2(i'ft((-\m),m) for all m, //(Ej-1|Ei) — 1and
/r(Ej_1]Ei(m)) = 1whenever Ej-1 fl Ei(m) = 0. Therefore s2€ S2.

(2.b) Next we prove a property of the Qk(m), Ak(m) sequences:
Bk(m) = O implies A*+1(m) = Ak(m). Qk(m) = O is equivalent to
Ej fl Ei(m) = 0. Suppose this condition holds. We only have to prove
that in this case .4*(m) C Ak+l(m). Let a £ Ak(m). Then there are
s2 € S2_1 and p satisfying the conditions for s2 £ Sksuch that s2(rn) = a.
In particular, a £ B/?2(i*(-] m),m). Now pick a strategy s2 and a CPS
p! satisfying the conditions for s2 € S2+1. Construct a new CPS p*
which coincides with p' for all h £ H\{m} and coincides with p for
h = m. Let s2be the strategy choosing a after m and s2(m’) for m' f- in.
Then s2 and p* satisfy the conditions for s2 £ Sk+l. (In particular, p*
is a CPS satisfying the required conditions because //*Ei|Ei) = 1 and
Ej fl Ei(m) = 0.) Therefore a 6 Ak+l(m).

(2.c) In order to prove part (2) of the proposition it is sufficient to
show that if (A) either £ is a self-confirming equilibrium outcome passing
the Iterated Intuitive Criterion (11C) or f)4Ef x S* / 0, then (B) for all
m£ M and k= 0,1,

C(m) = 0=>[/0*(m; C) = ©*(m) and IAK(M\ Q = Ak(m)}. (5)

Suppose assumption (A) holds. By definition, 5 holds for k = 0.

Assume that 5 holds for all k = 0,1, n and fix a message m with
£(m) = 0 (a message “off-the-path”).
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(0"+1(m) C 70n+1(m;£) ) If 9 £ 0"+1(m). there is a conjecture
// 6 Ai(£) such that //(SJ) = 1and m £ BRi(~.O). The behavioral
representation of fi is a 7¢ such that for all in' ¢ 1/. if C(nr’) > 0O,
n2(\m') = COK)> and if C(m’) = 0. supp ~ (¢|m) c An(m'). By the
inductive hypothesis An(m) = IA n(m; C). Therefore there is some a 6
supp?j(-lm) C IAn(m;Q such that u\(O.m.a) > u\(9). which implies
e e ie n+i(n-. c).

(706n+1(m; 0 c On+l(m) ) Claim: By assumption (A) and the
inductive hypothesis, for every payoff-type 9 there is mapping a'(-) such
that for all messages m' off-the-path a'(m') 6 An(rri) = IAn(mN\Q and
u\(8) > Ui(e,m",a'(m")).

The claim is obvious if £ satisfies the IIC. Suppose that f\£i x
Sj r O Then, in particular, S%+1 ~ 0 and it must be possible to find
Receiver’s beliefs € Aw(Ei) such that 1(s,m'|Ei) = £(6,m") for all
m! and ~(EJISi) = 1 If we had Ui(9,m',a) > Uj(6) for all m' off-
the-path and actions a £ An(m'), then /i(E5*|Ei) = 1 would imply that
fi(6, m*]Ei) = 0 < £@#, m*) for all on-the-path messages m* and no belief
rationalizing strategies in S2+1 would exist. This establishes the claim.

Now let 6 € /7©n+1(m; <j). Then there is an action a* 6 An(m) such
that ui(e,m,a*) > u\(9) > Ui(9,m"a‘'(m") for all m" with C,(m") = 0.
Define n* £ A (S2) as follows: for all s2 £ S2, p*(s2) = rim-:<(m-)>0C(s2(w*) | m*)
if s2(m) = 0* and s2(m') = a'(m') for all m! ~ m with £(m') = 0;

H*(s2) = 0 otherwise. By construction, m £ and n* £ Ai(£).
Furthermore, n*(s2) > 0 implies that s2(rn") £ An(m') for all m!. By
the “decomposition property” proved above, n*(S2) = 1 Therefore
9 £ On+(mM).

(A"+1(m) = IAn+1(m-,Q) Suppose that On(m) = /70"(m;£) = 0.
We proved in part (2.b) above that in this case .47H1(m) = An(m). By
the inductive hypothesis and the definition of IAn+I(m;Q, An+i(m) =
IAn(m-,Q = I An+I(m\Q.

Now suppose that 0"(m) = 1Qn(m-,Q ~ 0. By definition, ev-
ery a € An+l(m) is a best response to some belief v{-\rn) concentrated
on ©"(to). Thus An+l(m) C BR2(IQ n(m\Q,m) = IAn+1(m-,Q. Let
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a G IAn+1(m\Q = BR2(IQn(m;£),m). By the inductive hypothesis.
a 6 BR.2{v(-\m).m) for some belief concentrated on =
/0©"(m; £)» Using the same procedure as in part (2.b) of this proof, we can
find a strategy «2 and a CPS p* such that s$(m) = a, Vfi-(-\rr)) = i/(-]m)
and satisfying the conditions for sj € So+l. (In particular. /# is a
CPS because by agreement with C it must assign zero probability to
off-equilibrium-path message m. Thus Bayes’ rule does not restrict the
value of p*(-| Ei(m)).) Therefore a G ,4n+1(m). =

Proposition 7

Proof. Given a belief-complete type space for game |G we derive a
belief-complete type space for game Ggo as follows:

For all k= 0,1,... and i G/, let 1#,{= 7),

= jf. e T&i :Vfc 6 -H,gUti) X Sj x =1
and
r*>|:n/\7-
k=0

We take Tgo, to be Player i’s space of epistemic types in game Ggo and
define the belief mapping ggoi : Tgo, -* AH $j x so that, for
all U G Tgo™, ggoii(ti) is the CPS satisfying

Vvh G Ji,Vs_, G C Teo_t (measurable),
geo,i,h(ti) ({s_i} x K-i) = gi,h(ti) ({0°*, s_i} x AT*).

(we abuse notation in writing ordered tuples and Cartesian products:
the meaning is obvious). By construction (Tgoi, g g o defines a belief-
complete type space for game Ggo and for all i € /, (s,t) 6 S x Tgo,
hGTL E C S x Tgo (measurable),

(s,t) 6 Bgo™N(E) (e°,s,t) GBa ({00} x E)
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and

(s,f) € RO (,s.1) 6f2n[0].

where Bso,t> and i?»0 denote the (i. h)-belief operator and the rationality
event in the type space for game Ggo. By Propositions 1 and 3 these
equivalences imply the thesis. m

Proposition 9

Proof. The statement is obviously true for n = 0. Suppose it is true for
index n —1 It can be easily shown by induction that, for every event E.
CSBni?) Cp)lUowhich implies

CSB"(f)n (n B*[0Q)) c f] (B*(tH nBS([FA) = fl (B*(fl n [i)).
\k=0 / K0 k=0

Therefore, by Proposition 8, projs (CSBn(/?) n (flLo B*([#0Q]))) C

Assume that s e IVJ+1l. Fix i e /. By assumption there exists a
CPS u e An(S”i) such that s, GrgoA(v) (&, is Player Vs best response

correspondence in Gg) and v = 1 We now construct a

CPS G having v as marginal CPS on S-i.

By the induction hypothesis. proj¢_. (CSBn_1(/f) n (H*=o0 BE([#°])))

ir#% | . Hence, for any S-t G we can find G 0_, and

6 such that (0_,(s_,), S-t, G projn_ CSBn~I(R) n
(nVoB~™e()).

Since the game IG is rich, projs_ E" = S-i, where E" is the re-
sult of the procedure in Definition 7 when there are no restrictions on
first order beliefs. By Proposition 5 projJECSBn-1(iT) = E. Therefore
Pr°j5 .CSBn_1(/f) = S-i, and for every S-i 6 S-i \ _twe can find

G O_t and t-i(s-i) G T-t such that (0_j(s_i),s_,, t-i(s-i)) G
projfi_iCSBr+ 1(fl).

We have thus defined a map S-i + * (d-i(s-i), s_j, t-As-i)) which
provides an embedding of S-i into Q_,. As in the proof of Lemma 10,
we can then construct a CPS p € An(Q-I) such that, for all s_, G
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S-iand he H, Zi({0_,(s_,).s_*f i(s_I)| E_,(Zi) x T_i) = i/(s_j|S_.(/0)-
Therefore,

H ~Projn_iCSBn-1(/f) n C fj B*([0°])* |S_.(0) x T_{j

|
[E

"W *, - 1$-<(%)
and /;t(projn_.CSBn_1(f?)|E_,(/)) x T_{) = 1for all heH.

Since we are considering a belief-complete space there is an epis-
temic type U £ Tj such that g,(U) = p. By the private values assumption
(6°5,) €r,(/.(t,)-

Repeat the same construction for each player and let (s. t) be the
tuple of strategies and epistemic types thus obtained. As in the proof of
Proposition 3, it now follows that

°s.hecse®n  Nwd

This concludes the proof. =
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