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Abstract: A novel approach to solve optimal control problems dealing simultaneously with fractional
differential equations and time delay is proposed in this work. More precisely, a set of global
radial basis functions are firstly used to approximate the states and control variables in the problem.
Then, a collocation method is applied to convert the time-delay fractional optimal control problem to
a nonlinear programming one. By solving the resulting challenge, the unknown coefficients of the
original one will be finally obtained. In this way, the proposed strategy introduces a very tunable
framework for direct trajectory optimization, according to the discretization procedure and the range
of arbitrary nodes. The algorithm’s performance has been analyzed for several non-trivial examples,
and the obtained results have shown that this scheme is more accurate, robust, and efficient than
most previous methods.

Keywords: fractional optimal control problem; delay system; radial basis function; direct optimization;
collocation points; nonlinear programming problem

1. Introduction

In the last years, the use of fractional calculus has increased significantly due to its attractive
applications in physical and engineering systems [1–3], materials [4], biology [5], finance [6], and so
on. Moreover, fractional differential equations (FDEs) have also recently gained considerable
importance in pure and applied mathematics [7], engineering [8], physics [9], and bio-systems [10].
Nonetheless, despite this growing variety of applications, it is often difficult to find numerical methods
with low computing cost and enough accuracy for resolving these kinds of equations and analytically
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handling solutions in many problems. Thus, numerous methods to deal with that purpose have
been proposed in the last decade, including spectral tau method [11], fractional power series [12],
and fractional-order Legendre wavelet Tau method [13].

Combining an optimal control problem and fractional calculus, which is well-known as a
fractional optimal control problem (FOCP), is one of the latest exciting challenges among mathematical
researchers. Indeed, a FOCP is an optimal control problem where the dynamical system is governed
by FDEs. To address this challenge, recent studies suggest the use of radial basis functions [14] and the
spectral tau algorithm [15]. More details about practical approximation techniques for solving FDEs
and FOCPs can be found in the fresh review articles in [16,17], respectively.

After physical realization of FOCPs in very diverse scenarios, many researchers have lately been
fascinated by time delay fractional dynamics in fields such as electronic, biological, and transport
systems. Because FDEs with time delay are difficult form of differential equations, potent, and novel
numerical methods for their resolution are necessary. Despite its complexity, the analysis of delay
differential equations is one of the most exciting topics that have been taken widespread attention
among researchers and have been incorporated in models with infinite dimensions in multiple areas.
However, there are still few works devoted to obtain numerical solutions for delay differential
equations of fractional order. Among these works, we can mention those proposing the use of radial
basis functions [18], Müntz–Legendre wavelet transform [19], Picard iteration [20], and piecewise
fractional-order Taylor functions [21]. A time delay FOCP (DFOCP) is defined when the dynamic
system is governed by previous information at the specified time. In other words, time delay systems
result when traditional point-wise modeling assumptions are replaced by realistic distributed ones.
The basic fact reflected by the specific mathematical model with time delay is that the change of
trajectory about time t not only depends on the t moment itself, but it is also affected by some certain
conditions before, even the reflection of some certain factors before, that moment. This kind of
circumstance is abundant in the objective world. For example, knowing previous information about
predators and even prey, instead of considering the current level of the predator model, can directly
affect on the birth rate. The fractional derivatives capture the history of the variable, i.e., have memory,
contrary to integer-order derivatives, which are local operators. This characteristic makes them an
important tool in the modeling of memory-intense and delay systems. Therefore, DFOCPs are used
to model phenomena which have memory, as well as realistic distribution hypotheses. One of the
well-known models that can be applied in the classical and quantum mechanics is the harmonic
oscillator, which is described as an DFOCP [22–24].

Motivated by the numerous recent applications of DFOCPs, the solution of these kinds of problems
has been of considerable concern for researchers. Over the last decade, many scholars have worked
on the numerical investigation of DFOCPs, proposing algorithms such as Bernstein polynomials [25],
shifted Legendre orthonormal polynomials [26], Chelyshkov wavelets [27], Bernoulli wavelets [28],
Boubaker functions [29], measure theory approach [30,31], and Legendre wavelets [32]. Unfortunately,
these methods present a high computational cost in discretization of the fractional terms. Thus, the use
of global schemes, such as radial basis functions (RBFs) approaches, seems to be a more appropriate
alternative, as they are more helpful tools in discretizing fractional calculus. However, direct methods
are widely applied for solving fractional problems by first using approximation and afterwards
discretization to the original problem. Moreover, by means of some parameterization of the
state and/or control variables, direct optimization methods can transcribe an infinite-dimensional
continuous problem to a finite-dimensional ones. Within this context, a new direct computational
method is introduced in the present work, which uses RBFs for solving DFOCPs. Our proposed
approach employs any global RBFs (e.g., Gaussian RBFs, multiquadrics, inverse multiquadrics, etc.) to
approximate the state and control variables fo the problem. As well, arbitrary discretization nodes
(e.g., equally-spaced nodes, orthogonal nodes, etc.) are used to convert the DFOCP into a nonlinear
programming problem (NLP) with unknown coefficients. This approach with any global RBFs for
parameterization and any arbitrary points for discretization, has been able to provide a very applicable
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framework for solving DFOCPs. The practical importance of the proposed method is that a variety
of RBF functions can be applied for interpolation of states and controls, instead of being limited to
a specific type of polynomial as in polynomial-based methods. Moreover, a wide range of arbitrary
nodes can also be easily employed for discretization of the fractional terms, thus resulting in a flexible
RBF framework for solving DFOCPs.

The outline of this paper is as follows. Section 2 demonstrates the problem statement and the basic
concepts about fractional derivative. Some preliminaries of RBFs for subsequent developments are
presented in Section 3. Moreover, we present a direct RBF collocation scheme to solve DFOCPs in this
section. The numerical results obtained by the proposed approach for some non-trivial examples are
described and compared with other previous works in Section 4. Finally, the most relevant conclusions
are summarized in Section 5, along with some future perspectives.

2. Statement of the Problem

The aforementioned performance of meshless methods have encouraged some researchers to
develop new computing architectures and techniques where the primary focus was on hardware
simplicity. In order to lower the implementation cost, we want to explore an applicable numerical
scheme to find the approximate solutions of the following DFOCP,

J =
1
2

∫ t f

t0

(
r(t)x2(t) + q(t)u2(t)

)
dt, (1)

subject to dynamic constraints,

Dαx(t) = a(t)x(t) + e(t)u(t) + b(t)x(t− η) + f (t)u(t− δ) + g(t),

x(t) = ϕ1(t), t0 − η ≤ t ≤ t0,

u(t) = ϕ2(t), t0 − δ ≤ t ≤ t0,

(2)

where x(t) ∈ C1−α[t0, t f ] is the state variable in which

Cn−α[t0, t f ] = {x : [t0, t f ]→ Rn :
dn−1

dtn−1 (Dαx(t) ∈ L1[t0, t f ], n− 1 < α < n},

and u(t) ∈ U mentions the control variable, in which U ⊂ Rm represents the set of continuous
functions. Furthermore, it is assumed that J ∈ C1[t0, t f ], η > 0, δ < t f − t0, 0 < α ≤ 1. In addition,
a(t), b(t), e(t), f (t), and g(t) are continuous functions; ϕ1(t) and ϕ2(t) are known functions; and r(t)
and q(t) are two symmetric positive semidefinite and definite matrixes, respectively, which show the
time-varying coefficients of the state and control variables in the cost function with continuous
functions. Moreover, it is assumed that the dynamic system (2) is at rest from −∞ to t0 − η.
Furthermore, Dα is the fractional differentiation operator of order α that is defined as follows.

Definition 1. For a given function f (t) and α > 0, n− 1 < α ≤ n, n ∈ N, the operators

t0 Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

(t− τ)n−α−1 f (n)(τ)dτ, (3)

and

tDα
t f

f (t) =
(−1)n

Γ(n− α)

∫ t f

t
(τ − t)n−α−1 f (n)(τ)dτ, (4)

are called, respectively, the left and right Caputo fractional derivatives (CFDs) of order α > 0.
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Furthermore,
DαK = 0, (K is a constant),

Dαtβ = Γ(β+1)
Γ(β−α+1) xβ−α, β > α− 1,

Dα(λ f (t) + µg(t)) = λDα f (t) + µDαg(t).

(5)

The aforementioned properties of CFDs have led us to use this definition in the following. The main
contribution of this paper is thus to suggest a direct method based on RBFs and collocation points
to obtain the optimal values of u(t) and x(t), t ∈ [t0, t f ], satisfying Equation (2) and minimizing the
quadratic performance index in Equation (1). One advantage of this method is that it does not use
the maximum principle and calculate pontryagin variations to solve the problem, so there is no need
for analytical separation of cost and constraint statements. Moreover, in general terms, the direct
methods (such as the proposed one) have a greater convergence radius than indirect methods [33,34].
Moreover, to make the problem significantly simpler, we have tried to reformulated the DFOCP
expressed in Equations (1) and (2) as an equivalent NLP by making use of the interpolate approximate
of basis functions.

3. Method of Solution

In this section, a brief description of the proposed method to directly solve the DFOCP modeled
by Equations (1) and (2) is introduced.

3.1. RBF Definition and Collocation Method

Any function Φ that satisfies Φ(x) = φ(|x|), with φ ∈ C[0, ∞), is a radial function. This function
is positive definite or m-order conditionally positive definite on Rn, when

N

∑
i=1

N

∑
j=1

aiajΦ(xj − xi) > 0,

in which all nonzero a ∈ Rn satisfying ∑N
i=1 ai p(xi) = 0, for all p ∈ Πm, and Πm is the set of

polynomials of degree m− 1 or less. The primal space related to the nodal points XN is constructed
as follows,

WN =
{ N

∑
i=1

aiΦi(x) such that
N

∑
i=1

ai p(x) = 0, ∀p ∈ Πm−1

}
+ Πm−1.

Furthermore, each u ∈WN can be shown as u(x) = ∑N
i=1 aiΦi(x) + ∑

N(m)
j=1 bj pj(x), where pj(x)’s are

monomial polynomials in Πm−1.
Commonly used types of RBFs include the following forms, in which r = ‖x− xi‖ and the shape

parameter ε controls their flatness [35].

- Piecewise Smooth:

• φ(r) = r3, Cubic RBF;

• φ(r) = r5, Quintic RBF;

• φ(r) = r2log(r), Thin Plate spline (TPS) RBF;

• φ(r) = (1− r)m + p(r), Wendland functions where p is a polynomial.
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- Infinitely Smooth:

• φ(r) =
√

1 + (εr)2, Multiquadric (MQ) RBF;

• φ(r) =
1

1 + (εr)2 , Inverse Quadratic (IQ) RBF.

• φ(r) = e−(εr)2
, Gaussian RBF.

Now, we briefly introduce the RBFs collocation method. Let Ω ⊆ Rd and consider a boundary
value problem as follows,

Lu = f in Ω, (6)

u = g on ∂Ω, (7)

where L is a linear differential operator and d is the dimension of the problem. We distinguish in
our notation center X = {x1, ..., xN} and the collocation points Ξ = {α1, ..., αN}. Then, we have the
approximate solution of Equations (6) and (7) in the form

ũ(x) =
N

∑
i=1

λiφ(‖x− xi‖), (8)

where λi, i = 1, 2, · · · , N, are unknown coefficients that determined by collocation, φ is a RBF, ‖.‖ is
the Euclidean norm and xi is the centers of the RBFs.

Now, let Ξ divided into two subsets. One subset contains NI centers, Ξ1, where Equation (6)
is enforced and the other subset contains NB centers, Ξ2, where boundary conditions are enforced.
The collocation matrix is obtained by applying the collocation points to differential equation, and its
boundary condition is as follows,

A =

[
AI

AB

]
,

in which AI = Lφ(‖α − xj‖)α=αi , αi ∈ Ξ1, xj ∈ X, and AB = Lφ(‖α − xj‖)α=αi , αi ∈ Ξ2, xj ∈ X.
By solving the linear system Aλ = F, we can obtain the unknown coefficients λi, in which F is a vector
included f (αi), αi ∈ Ξ1, and g(αi), αi ∈ Ξ2.

3.2. Application of RBF Collocation Method

For solving a DFOCP by the RBF collocation method, without loss of generality, it has to be
assumed that η ≤ δ. Then, we can rewrite the problem expressed in Equations (1) and (2) as follows,

J =
1
2

∫ t f

t0

(
r(t)x2(t) + q(t)u2(t)

)
dt, (9)

subject to

Dαx(t)− a(t)x(t)− e(t)u(t) = b(t)ϕ1(t− η) + f (t)ϕ2(t− δ) + g(t), t0 < t ≤ η

Dαx(t)− a(t)x(t)− e(t)u(t)− b(t)x(t− η) = f (t)ϕ2(t− δ) + g(t), η < t ≤ δ

Dαx(t)− a(t)x(t)− e(t)u(t)− b(t)x(t− η)− f (t)u(t− δ) = g(t), δ < t ≤ t f

x(t0) = ϕ1(t0),

u(t0) = ϕ2(t0).

(10)
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For simplicity and clarity, the method is only derived for Cubic RBFs and equally spaced nodes.
Therefore, we choose the same number of RBF functions and collocation points (N) for the following
approximation,

x(t) ≈
N

∑
j=1

λjφ(‖t− tj‖), and (11)

u(t) ≈
N

∑
j=1

γjφ(‖t− tj‖). (12)

Also, for the delay terms we have:

x(t− η) ≈
N

∑
j=1

λjφ(‖t− η − tj‖), and (13)

u(t− δ) ≈
N

∑
j=1

γjφ(‖t− δ− tj‖). (14)

Now, fractional derivation from the sides of Equation (11) with respect to t yields

Dαx(t) ≈
N

∑
j=1

λjDαφ(‖t− tj‖). (15)

Obtaining a closed form analytic expression for the fractional derivative of a radial function may lead
to a challenge. Accordingly, Mohammadi and Schaback [36] provided the required formulas for the
fractional derivatives of RBFs, which allow us to use high order approximation methods for solving
fractional problems. Now, we can approximate the continuous cost function described in Equation (9)
with a trapezoidal quadrature rule as follows,

J =
1
2

N

∑
i=1

wi

(
r(ti)x2(ti) + q(ti)u2(ti)

)
, (16)

where wi and ti are weight and nodes of integral quadrature rule, respectively. Now, by substituting
Equations (11)–(15) into the problem modeled in Equations (9) and (10) and evaluating the dynamic
constraints expressed in Equation (10) at the collocation nodes, we have the following NLP problem,

J =
1
2

N

∑
i=1

wi

[
r(ti)

( N

∑
j=1

λjφ(‖ti − tj‖)
)2

+ q(ti)
( N

∑
j=1

γjφ(‖ti − tj‖)
)2]

, (17)

subject to

N

∑
j=1

λj

(
Dαφ(‖ti − tj‖)− a(ti)φ(‖ti − tj‖)

)
−

N

∑
j=1

γj

(
e(ti)φ(‖ti − tj‖)

)
(18)

= b(ti)ϕ1(ti − η) + f (ti)ϕ2(ti − δ) + g(ti), t0 < ti ≤ η

N

∑
j=1

λj

(
Dαφ(‖ti − tj‖)− a(ti)φ(‖ti − tj‖)− b(ti)φ(‖ti − η − tj‖)

)
−

N

∑
j=1

γj

(
e(ti)φ(‖ti − tj‖)

)
= f (ti)ϕ2(ti − δ) + g(ti), η < ti ≤ δ
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N

∑
j=1

λj

(
Dαφ(‖ti − tj‖)− a(ti)φ(‖ti − tj‖)− b(ti)φ(‖ti − η − tj‖)

)
−

N

∑
j=1

γj

(
e(ti)φ(‖ti − tj‖)− f (ti)φ(‖ti − δ− tj‖)

)
= g(ti), δ < ti ≤ t f

N

∑
j=1

λjφ(‖t0 − tj‖) = ϕ1(t0),

N

∑
j=1

γjφ(‖t0 − tj‖) = ϕ2(t0).

The purpose is to find Λ = (λ1, λ2, · · · , λN) and Γ = (γ1, γ2, · · · , γN) from Equation (18) such
that minimize the cost function expressed in Equation (17). The described solution is called the RBF
collocation method, developed as a set of MATLAB functions to transcribe the FOCP modeled in
Equations (1) and (2) into an NLP optimization problem, and then use SNOPT [37] (i.e., a sparse NLP
solver) to find the optimal trajectory. SNOPT uses a gradient-based optimization algorithm to solve
the NLP, meaning that derivatives of cost and constraints must be provided. The proposed method
has been developed in such a way that it automatically computes those gradients using the Symbolic
Math Toolbox in MATLAB.

4. Numerical Implementation

Here, we apply the Cubic RBFs which is discussed in Section 3 for solving several DFOCPs.
We test the performance of the proposed scheme on some test problems, and also present the results
for different values of fractional order α and number of Cubic RBFs N. All numerical computations
have been coded in Matlab R2015b on a 2.30 MHz Alpha Machine with 2GB RAM. Note that, in a
minimization problem, the minimum value of the objective function is the best comparison to decide
which the most efficient method is. This comparison between the proposed method and other previous
algorithms can be found in the conclusion section. Moreover, comparison of these methods in terms of
computational time (i.e., CPU time in seconds) is also provided along this section.

Example 1. Let us consider the first DFOCP as follows,

min J =
1
2

∫ 2

0

(
x2(t) + u2(t)

)
dt, (19)

subjected to the dynamical system

Dαx(t) = x(t− 1) + u(t), 0 < α ≤ 1,

x(t) = 1, −1 ≤ t ≤ 0,

where 0 ≤ t ≤ 2 and x(t) = 0 at t < −1.

This problem was introduced by Moradi and Mohammadi [38], who proposed a solution based
on discrete Chebyshev polynomials. More precisely, the authors solved this problem for different
choices of α [26,28]. Moreover, for α = 1, Tohidi et al. [39] solved the problem using Müntz–Legendre
spectral collocation method, and Ghomanjani et al. [40] used the Bezier curves for approximating the
trajectory and control functions. However, the proposed RBF collocation method was more efficient
than these and other previous algorithms, as Table 1 shows. From the perspective of cost values for
various basis functions, our suggested approach is more effective by increasing N. Figures 1 and 2
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show the graphs of x(t) and u(t), respectively, for N = 20. Moreover, these figures show that as α

approaches 1, the solution for the integer order system is recovered.
In direct methods, initial guesses must be offered only for some quantities, like the states and

possibly controls which are physically intuitive. As can be seen in Figure 1, the initial condition
x(0) = 1 is achieved with the proposed method. By contrast, that condition was not reached in
previous works [26,28,38,39], thus increasing their error.

Table 1. Values of J and CPU time obtained by several algorithms for the problem expressed in Equation (19).

Bhrawy Moradi Rahimkhani Ghomanjani Tohidi This Study

[26] [38] [28] [40] [39] N = 5 N = 15 N = 20

J 0.472746 1.647883 0.3048 1.593587 1.647453 0.206476 0.110829 0.1101739

CPU – 3.265 – – 4.358 – – 2.02481Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

x(
t)

=1
=0.99
=0.9
=0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t (s)

Figure 1. Evaluated function x(t) for the problem expressed in Equation (19).

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u(
t)

=1
=0.99
=0.9
=0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t (s)

Figure 2. Evaluated function u(t) for the problem expressed in Equation (19).
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Example 2. Here, we consider the following FOCP with delay in control,

min J =
1
2

∫ 1
4

0

(
x2(t) + u2(t)

)
dt, (20)

subjected to the dynamical system

Dαx(t) = x(t) + u(t− 0.1) + u(t), 0 < α ≤ 1,

x(0) = 1,

u(t) = 0, −0.1 ≤ t ≤ 0,

where t ∈ [0, 1
4 ]. The values of J obtained by the proposed algorithm and other previous works [27,39,40] are

presented in Table 2. As can be seen, the best performance was obtained by our approach, which also achieved good
approximation results with small values of N. Figures 3 and 4 displays the graphs of x(t) and u(t), respectively,
for N = 20. These figures corroborate the validity and efficacy of our method for this problem. Again, it can
be seen that the initial condition x(0) = 1 is achieved with the proposed method, while that condition was not
obtained in other previous reports.

Table 2. Values of J and CPU time obtained by several algorithms for the problem modeled in Equation (20).

Ghomanjani Tohidi Moradi This Study

α [40] [39] [27] N = 5 N = 15 N = 20

1 0.156586 0.154268 0.1537475 0.176496 0.170357 0.177013
0.99 – – 0.1539804 0.170073 0.165125 0.168257
0.9 – 0.159209 0.1560829 0.265759 0.244247 0.241156
0.8 – 0.163072 0.1584112 0.263194 0.251152 0.255855

CPU Time (s) – 0.486 3.187 – – 0.11579

-1

-0.5

0

0.5

1

1.5

x(
t)

=1
=0.99
=0.9
=0.8

0.05 0.1 0.15 0.20 0.25
t (s)

Figure 3. Evaluated function x(t) for the problem expressed in Equation (20).
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-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
u(

t)
=1
=0.99
=0.9
=0.8

0.05 0.1 0.15 0.20 0.25
t (s)

Figure 4. Evaluated function u(t) for the problem expressed in Equation (20).

Example 3. Consider a DFOCPs with two different delays in the form

min J =
1
2

∫ 1

0

(
x2(t) +

1
2

u2(t)
)

dt (21)

such that
Dαx(t) = −x(t) + x(t− 1

3
) + u(t)− 1

2
u(t− 2

3
), 0 < α ≤ 1,

x(t) = 1, −1
3
≤ t ≤ 0,

u(t) = 0, −2
3
≤ t ≤ 0,

where 0 ≤ t ≤ 1. Table 3 shows the obtained values of J for α = 1 with our scheme, Chelyshkov wavelets [27],
Bernoulli polynomials [41], fractional-order Lagrange polynomials [42], Bernoulli wavelets basis [28],
Müntz-Legendre polynomials [39], the least square method [40], and fractional-order Boubaker functions
[29]. Again, the proposed algorithm also reported a very efficient performance. In addition, Table 4 illustrates the
effect of the parameters α and N on the performance of the proposed method for this problem. In this case, we can
see that good approximation results are also achieved by the proposed method with small values of N. The graphs
of x(t) and u(t) with different values of α are shown in Figures 5 and 6. It should be noted that, as α approaches
1, the numerical results converge to that of an integer-order differential equation. Moreover, the initial conditions
x(0) = 1 and u(0) = 0 are achieved with the proposed method, while they were not reached in [28,29].

Table 3. Values of J and CPU time obtained by several algorithms for the problem modeled in Equation (21).

This Study Haddadi Moradi Ordokhani Rahimkhani Tohidi Ghomanjani Rabiei
[41] [27] [42] [28] [39] [40] [29]

J 0.061807 0.373112 0.373112 0.31851 0.1027 0.367700 0.422049 0.04553

CPU 0.09601 – 3.125 0.141 – 25.559 – –Time (s)
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Table 4. Values of J obtained by the proposed algorithm for the problem modeled in Equation (21)
when different parameters α and N are analyzed.

N α = 1 α = 0.99 α = 0.9 α = 0.8

5 0.068642 0.068672 0.067728 0.067632
10 0.062317 0.061347 0.060182 0.058799
15 0.062249 0.060186 0.056110 0.053929
20 0.061807 0.062287 0.057755 0.056017

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(
t)

=1
=0.99
=0.9
=0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t (s)

Figure 5. Evaluated function x(t) for the problem expressed in Equation (21).

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u(
t)

=1
=0.99
=0.9
=0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t (s)

Figure 6. Evaluated function u(t) for the problem expressed in Equation (21).
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Example 4. Consider the following time-varying DFOCP,

min J =
∫ 2

0

(
x2(t) + u2(t)

)
dt, (22)

subject to:
Dαx(t) = tx(t) + x(t− 1) + u(t), 0 < α ≤ 1,

x(t) = 1, −1 ≤ t ≤ 0,

where 0 ≤ t ≤ 2. This example have been solved by Rahimkhani et al. [28], Haddadi et al. [41], Ordukhani et al. [42],
Moradi et al. [27,38], and Rabiei et al. [29], but any of them reached the initial condition x(0) = 1. A comparison
of the values of J obtained by these methods and that reported by the proposed scheme is presented in Table 5.
Moreover, the effect of the parameters α and N on the proposed algorithm performance is displayed in Table 6.
Both comparisons reveal that the accuracy of our method was higher than all previously proposed ones.
Figures 7 and 8 show the approximation graphs of x(t) and u(t) for N = 20, respectively. We can see
that, as α approaches 1, the numerical results converge to those obtained for an integer-order differential equation.

Table 5. Values of J and CPU time obtained by several algorithms for the problem modeled in Equation (22).

Haddadi Rahimkhani Rabiei Ordokhani Moradi This Study

[41] [28] [29] [42] [27] N = 5 N = 15 N = 20

J 4.7407 2.0481 0.07762 2.0356 4.79679 0.194278 0.098498 0.096005

CPU – – – 0.094 3.640 – – 0.06737Time (s)

Table 6. Values of J obtained by the proposed algorithm for the problem modeled in Equation (22)
when different parameters α and N are analyzed.

N α = 0.99 α = 0.9 α = 0.8

5 0.196364 0.220733 0.258642
10 0.122282 0.145960 0.170634
15 0.101511 0.128531 0.156858
20 0.096579 0.126915 0.152311

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(
t)

=1
=0.99
=0.9
=0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t (s)

Figure 7. Evaluated function x(t) for the problem expressed in Equation (22).
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-0.4

-0.2

0

0.2

0.4

0.6
u(

t)
=1
=0.99
=0.9
=0.8

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t (s)

Figure 8. Evaluated function u(t) for problem expressed in Equation (22).

Example 5. Consider the following DFOCP,

min J =
∫ 1

0

[
XT(t)

(
1 t
t t2

)
X(t) + (t2 + 1)u2(t)

]
dt (23)

subject to:

DαX(t) =

(
t2 + 1 1

0 2

)
X(t− 1

2
) +

(
1

t + 1

)
u(t) +

(
t + 1
t2 + 1

)
u(t− 1

4
), t ∈ [0, 1]

where X(t) = [x1(t) x2(t)]T = [1, 1]T for −1
2
≤ t ≤ 0 and u(t) = 1, −1

4
≤ t ≤ 0. The exact solution of

this problem is unavailable. Table 7 displays the numerical results achieved by the proposed method for various
values of N and α = 1, as well as for other previous algorithms dealing with the same problem. As can be seen,
the obtained results corroborate the validity and efficacy of our method for this problem.

Table 7. Values of J obtained by several algorithms for the problem modeled in Equation (23).

Rahimkhani Ghomanjani Wang This Study

[28] [40] [43] N = 5 N = 15 N = 20

J 1.503157 1.536409753 1.562240664 1.509701 1.503127 1.501652
CPU – – – – – 8.156Time (s)
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5. Conclusions

This paper has introduced a new technique based on the collocation method to solve DFOCPs.
The proposed design first uses collocation approximations of RBFs for control and state variables
in the problem. In the next step, both the context of these basis functions and a joint application of
the direct method allow us to turn a DFOCP into an NLP for finally choosing the coefficients and
optimal control parameters. The numerical results obtained from several non-trivial examples, with a
small number of N and some values of α, confirm the efficiency, accuracy, and high performance
of the proposed approximation, which would remove ill-conditioning in most systems of discrete
equations. Moreover, our results have also shown that using RBFs via a collocation method bears some
advantages, such as simple evaluation of fractional derivatives and delay terms of given differential
equations, and less expensive of computational costs. Moreover, as the necessary conditions need
not be derived, the proposed direct method does not contain the difficulties of indirect approaches
for DFOCPs. Consequently, other significant merits of the proposed approach are swift calculations,
ease of implementation, and robustness. Indeed, it has provided satisfactory results when a small
number of RBFs has been used. To this respect, comparison of cost values for different number of
nodes discloses that the accuracy of the proposed RBF collocation method is higher than most previous
methods, additionally requiring less CPU time (Please see Table 8).

Table 8. Summary of the values of J obtained by several algorithms for the tested problems with α = 1.

Approximate Method Example 1 Example 2 Example 3 Example 4 Example 5

Banks and Burns (1978) [44] 1.6419 −− −− −− −−
Palanisamy and Rao (1983) [45] 1.6497 −− −− 6.0079 −−
Dadebo and Luus (1992) [46] −− −− −− 6.26775 −−
Chen et al. (2000) [47] −− −− −− 4.7976 −−
Marzban and Razzaghi (2004) [48] −− −− 0.37311241 −− −−
Basin and Gonzalez (2006) [49] −− 0.1563 −− −− −−
Wang (2007) [43] 0.8512428 −− 0.37312 −− 1.562240664
Khellat (2009) [50] −− −− −− 5.1713 −−
Haddadi et al. (2012) [41] −− −− 0.37310517 4.7407 −−
Ghomanjani et al. (2014) [40] 1.593587 0.15658669 0.4220497 −− 1.536409753
Safaie et al. (2014) [25] 0.6381 −− 0.3956 −− −−
Safaie et al. (2014) [51] 1.0447 −− −− −− −−
Bhrawy and Ezz-Eldien (2016) [26] 0.4727464 0.0143671 0.01451 −− −−
Rahimkhani et al. (2016) [28] 0.3048 −− 0.1027 2.0481 1.503157
Jajarmi et al. (2017) [52,53] 1.64886527 −− −− 4.79678 −−
Rabiei et al. (2017) [29] 0.00002674 −− 0.04553 0.07762 −−
Moradi et al. (2018) [27] 1.64787419 0.15374756 0.37311264 4.79679868 −−
Tohidi et al. (2019) [39] 1.647453 0.154268 0.367700 −− −−

Present method 0.1101739 0.177013 0.061807 0.096005 1.501652
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