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This thesis deals with economics growth theory. The purpose of this introduction is

to give an idea of the issues that are a subject of my thesis, avoiding technical details. A

technical summary of all chapters is provided below as abstracts of the three thesis chapters.

By growth theory I refer to that field of economic theory which studies through math-

ematical models, the mechanisms behind the growth of the main macroeconomic variables,

like capital, consumption, and output. These economic mechanisms depend crucially on the

set of hypothesis which the model is built on. Relax some of these assumptions, or change

some of them, in order to increase the explicatory power of the model is one of the main

objective of the theoretic macroeconomist.

The first two chapters of my thesis can be read exactly under this view point. More pre-

cisely, the common question behind these two papers can be summarized as follows "What

are the implications in term of economic growth when capital takes time to becomes produc-

tive?" To this purpose, it is worth noting that in almost all the economic models the factors

of production become productive istantaneously even if a large number of economists have

often underlined the importance of the time dimension of some of them, like, for example,

capital. For this reason the economic implications of the introduction of a delay in produc-

tion, or time to build, has been studied for an endogenous AK growth model in Chapter 1

and for an exogenous Benhabib Farmer model (1994) in Chapter 2.

The main results of the first model regards the dynamics of capital. Differently form

the prediction of the standard AK model, capital doesn’t jump immediately to its balanced

growth path but oscillatory converges to it. This result, exactly as others obtained by doing

different assumptions on the time dimension of capital, like for example vintage capital, are

closer to the empirical evidences underlined by Jones (1995) and McGrattan (1998).

In the second chapter of the thesis, the time to build assumption is introduced in a

Benhabib and Farmer model (1994). A first interesting question is to catch the influence of

the introduction of a delay in production on the presence of local indeterminacy. According

to our results, local indeterminacy is preserved but is conditioned to suitable choices of the

level of externalities and of the delay coefficient: a higher time to build coefficient has to be

related to a higher level of externalities in order to generate optimizing multiple equilibrium

paths. Moreover a complex structure of capital induces more complicated dynamics of the

macroeconomic variables. Economic cycle and region of local instability may rise in this

context. Finally, it is worth noting that exactly as in Chapter 1, capital, investment and

output display oscillatory convergence.

The Benhabib and Farmer model (1994) is studied in the last Chapter, too. Differently

from the previous two chapters, in Chapter 3, the model is not modified in any of its assump-
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tions but some predictions in term of welfare are highlighted. Assuming a government which

is able to pin down expectations on one of the optimizing multiple equilibrium paths, it can

be relevant to understand what of these paths is the best one from a welfare point of view.

This is exactly the purpose of the last chapter where numerous economic considerations on

the mechanism at work for different level of the externalities are also underlined.

Abstratcs of Thesis Chapters
Abstract of Chapter 1: Endogenous growth and Time-to-Build: the AK-case
In this paper, a continuous time AK model is fully analyzed under the time-to-build

assumption. Existence and uniqueness of a (real) balance growth path, as well as oscillatory

convergence are proved. Moreover, the role of transversality conditions and capital depre-

ciation are highlighted. Numerical simulations are also provided for different choices of the

time-to-build delay.

Keywords: AK Model; Time-to-Build; D-Subdivision method.

JEL Classification: E00, E3, O40.

Abstract of Chapter 2: (In)determinacy and Time-to-Build
This paper generalizes Benhabib and Farmer model (1994), by allowing for a strictly posi-

tive time-to-build of capital. The introduction of a time-to-build delay yields a system of

mixed functional differential equations. We develop an efficient strategy to fully describe the

dynamic properties of our economy; in the simpler case of no or "mild" externalities, the

dynamic behavior of the economy around the steady state is of "saddle-path" type. On the

other hand, "high" externalities leads to a more complex dynamics; according to the choice

of the delay coefficient, local indeterminacy, Hopf bifurcation and local instabiity may rise.

Keywords: Indeterminacy; Time-to-Build; Mixed Functional Differential Equations

JEL Classification: E00, E3, O40.

Abstract of Chapter 3: Welfare Ranking of Equilibrium Paths in One-Sector
Growth Models with Non-Convex Technologies

We consider a business cycle model with productive externalities and an aggregate non-

convex technology à la Benhabib and Farmer, which exhibit indeterminacy of the steady state

and multiplicity of deterministic equilibria. The aim of the paper is to rank these different

equilibria according to the initial values of consumption using both linear approximation

methods when the initial conditions lay in the region of stability (in the sense of Lyapunov)

and simulation methods for initial conditions outside this region. We finally study the

implications of such a ranking in terms of smoothness of the (second best) optimal solution

and show that maximizing welfare consumption and labor paths are all the smoother than
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the level of increasing returns is low.

Keywords: Increasing returns, Local indeterminacy, Welfare analysis

JEL classification: E32, E4, H61, O42, O47.
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CHAPTER 1

ENDOGENOUS GROWTH AND TIME-TO-BUILD: THE

AK-CASE

1.1 Introduction

Recently Boucekkine et al. [5], have studied the dynamics of an AK-type endogenous

growth model with vintage capital. They find that vintage capital leads to oscillatory dy-

namics governed by replacement echoes consistently with previous results in Benhabib and

Rustichini [5], and Boucekkine et al. [9]. In this paper, we propose an AK endogenous

growth model under the assumption that capital takes time to become productive. In the

literature, this assumption is often referred as "time-to-build".

Jevons [19], was one of the first to underline the empirical relevance of this assumption:

"A vineyard is unproductive for at least three years before it is thoroughly fit for use. In

gold mining there is often a long delay, sometimes even of five or six years, before gold is

reached"1. The time dimension of capital was further studied by Hayek [17], who identified

in the time of production one of the possible sources of aggregate fluctuations. Hayek’s

insight was formally confirmed for the first time by Kalecki [20], and afterward by Kydland

and Prescott [6], who showed that it contributes to the persistence of the business cycle.

In this paper, the time-to-build assumption is introduced by a delay differential equation

for capital. Delay differential equations, and in general, functional differential equations are

very interesting but, at the same time, quite complicated mathematical objects. Since the

first contributions of Kalecki [20], Frisch and Holme [14], and, Belz and James [7], very few

authors have used this mathematical instrument for modeling the time structure of capital.

To our knowledge, the only works in (exogenous) growth theory introducing time-to-build in

this way, are Rustichini [9], Asea and Zak [1], and Collard et al. [12]. All these papers find

that for values of the delay coefficient which are sufficiently small, time-to-build is responsible

for the oscillatory behavior of capital, output and investment.

In this paper, some theorems regarding the existence, uniqueness and shape of the general

(continuous) solution of a linear delay differential equation with forcing term are presented

in details, and a "new" method to prove stability, the D-Subdivision method, is introduced.

1Jevons [19], Chapter VII: Theory of Capital, page 225.

1
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1.2. PROBLEM SETUP 2

This method is really useful since it let us count the number of roots (eigenvalues) having

positive real part even if the dimension of the set of the roots is infinite. Taking into account

this theoretical background, the existence of a unique balance growth path and the dynamic

behaviors of the detrended variables are fully analyzed.

The paper is organized as follows. We firstly present the model setup in Section 1.2 and

we derive the first order conditions by applying a variation of the Pontrjagin’s maximum

principle. In Section 1.3, we introduce some mathematical results on the theory of functional

differential equations and the D-Subdivision method. Then the existence and uniqueness of

the balance growth path is proved and the influence of a variation of the delay coefficient

on the magnitude of the growth rate is fully analyzed. The transitional dynamics of the

economy is reported in Section 1.5. The next section makes some considerations regarding

the role of capital depreciation on the dynamic behavior of capital and the possibility of

Hopf bifurcation. A numerical example showing the dynamic behavior of the economy is

reported in Section 1.6. Finally, in Section 1.7 there are some concluding remarks.

1.2 Problem Setup

We analyze a standard one sector AK model with time-to-build. To be precise we assume

from now on that capital takes d years to become productive. Then the social planner solves

the following problem

max

∞Z
0

c(t)1−σ − 1
1− σ

e−ρtdt

subject to

k̇ (t) = Ãk (t− d)− c (t) (1.1)

given initial condition k (t) = k0 (t) for t ∈ [−d, 0] with d > 0. All the variables are per

capita. The parameter Ã = (A− δ) e−φd > 0 depends on the productivity level, A, the usual

capital depreciation rate, δ„ and the depreciation rate of capital before it becomes productive,

φ. From now on we refer to the last one as depreciation "before use". Given this capital

depreciation structure, k(t−d)e−φd is net capital at the time it becomes productive. Observe
that the lower d is, the higher is the net capital which is effectively employed in production.

Moreover let us assume φ ≤ δ, which may be justified by referring to the depreciation in use

literature (see Greenwood & al. [15], and Burnside and Eichenbaum [11]). Finally, with no

time-to-build the problem becomes a standard AK model.

Following Kolmanovskii and Myshkis [3] it is possible to extend the Pontrjagin’s principle
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1.3. SOME PRELIMINARY RESULTS 3

to this optimal control problem. Then, the Hamiltonian for this system can be constructed:

H (t) = c(t)1−σ − 1
1− σ

e−ρt + μ (t)
h
Ãk (t− d)− c (t)

i
and its optimality conditions are

c (t)−σ e−ρt = μ (t) (1.2)

μ (t+ d) Ã = −μ̇ (t) (1.3)

with the standard transversality conditions

lim
t→∞

μ (t) ≥ 0 and lim
t→∞

μ (t) k (t) = 0

From equations (1.2) and (1.3) we can get the forward looking Euler-type equation

ċ (t)

c(t)
=
1

σ

∙
Ã

µ
c(t)

c(t+ d)

¶σ

e−ρd − ρ

¸
(1.4)

Exactly as in the standard AK model, consumption growth does not depend on the stock of

capital per person. However in our context the positive constant growth rate is not explicitly

given by the Euler equation which is a nonlinear advanced differential equation in consump-

tion. This difference is due to the fact that the real interest rate r = Ã
³

c(t)
c(t+d)

´σ
e−ρd, which

the household gets investing in capital, is weighted by the marginal elasticity of substitution

between consumption at time t and consumption at time t + d. Before proceeding with

the analysis of the BGP of our economy, we present in the next section some theoretical

results from functional differential analysis which will be used to prove the main results and

characteristics of the economy under study.

1.3 Some Preliminary Results

Consider the general linear delay differential equation with forcing term f(t) :

a0u̇(t) + b0u(t) + b1u(t− d) = f(t) (1.5)

subject to the initial or boundary condition

u(t) = ξ(t) with t ∈ [−d, 0] . (1.6)

Theorem 1.1 (Existence and Uniqueness) Suppose that f is of class C1 on [0,∞) and
that ξ is of class C0 on [−d, 0]. Then there exists one and only one continuous function u(t)
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1.3. SOME PRELIMINARY RESULTS 4

which satisfies (1.6), and (1.5) for t ≥ 0. Moreover, this function u is of class C1 on (d,∞)
and of class C2 on (2d,∞). If ξ is of class C1 on [−d, 0], u̇ is continuous at τ if and only if

a0ξ̇(d) + b0ξ(d) + b1ξ(0) = f(d) (1.7)

If ξ is of class C2 on [−d, 0], ü is continuous at 2d if either (1.7) holds or else b1 = 0, and
only in these cases.

Proof. See Bellman and Cooke [8], , Theorem 3.1, page 50-51.

The function u singled out in this theorem is called the continuous solution of (1.5) and

(1.6). Then in order to see the shape of this continuous solution the following theorem is

useful:

Theorem 1.2 Let u(t) be the continuous solution of (1.5) which satisfies the boundary con-
dition (1.6). If ξ is C0 on [−d, 0] and f is C0 on [0,∞) , then for t > 0,

u(t) =
X
r

pre
zrt +

tZ
0

f(s)
X
r

ezr(t−s)

h0 (zr)
ds (1.8)

where {zr}r and {pr}r are respectively the roots and the residue coming from the characteristic
equation, h(z), of the homogeneous delay differential equation

a0u̇(t) + b0u(t) + b1u(t− d) = 0 (1.9)

Note: pr =
p(zr)
h0(zr)

where

p(zr) = a0ξ(0) + (a0zr + b0)

0Z
−d

ξ(s)e−zrsds

Proof. See Appendix A.1.

Since in our context it shall be fundamental to have real continuous general solution, we

present here the following theoretical results.

Theorem 1.3 The unique general continuous solution of problem (1.5) with boundary con-

dition ξ : I ⊂ R+ → R+ and forcing term f : I → R+, is a real function.
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1.3. SOME PRELIMINARY RESULTS 5

Proof. See Appendix A.2.

Some considerations on these theorems are needed. We start with the last result. The

important message of Theorem 1.3 is the following: if we assume a boundary condition and a

forcing term which are real functions then also the general continuous solution must be real.

Other considerations regard the proofs of Theorem 1.1 and 1.2: both of them are strictly

related to the fact that all the roots of h(z) lie in the complex z-plane to the left of some

vertical line. That is, there is a real constant c such that all roots z have real part less then

c. This consideration is in general no longer true for advanced differential equations which

are characterized by CE with zeros of arbitrarily large real part. However as explained by

Bellman and Cooke [8],2 it is possible to write the solution of any advanced differential equa-

tion as a sum of exponentials using the finite Laplace transformation technique. Moreover

observe that the characteristic equation of (1.5),

h(z) ≡ z + a+ be−zd = 0 (1.10)

with a = b0
a0
and b = b1

a0
, is a transcendental function with an infinite number of finite

roots. Sometimes h(z) is also called the characteristic quasi-polynomial. Asymptotic stability

requires that all of these roots have negative real part. In order to help in the stability analysis

we introduce two important mathematical results: the Hayes theorem and the D-Subdivision

method or D-Partitions method. Hayes Theorem [2] in its more general formulation states

the following:

Theorem 1.4 The roots of equation pez + q − zez = 0 where p, q ∈ R lie to the left of

Re (z) = k if and only if

(a) p− k < 1

(b) (p− k) ek < −q < ek
q
a21 + (p− k)2

where a1 is the root of a = p tan a such that a ∈ (0, π). If p = 0, we take a1 = π
2
.

One root lies on Re (z) = k and all the other roots on the left if and only if p − k < 1

and (p− k) ek = −q.
Two roots lies on Re (z) = k and all the other roots on the left if and only if −q =

ek
q
a21 + (p− k)2

Proof. See Hayes [2], page 230-231.

However this Theorem doesn’t say anything about the sign of the real part of the roots

of the transcendental function when the conditions (a) and (b) are not respected. For

2Look at Chapter 6 page 197-205.
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1.3. SOME PRELIMINARY RESULTS 6

this reason the D-Subdivision method is now introduced (for more details on this method,

El’sgol’ts and Norkin [13], or Kolmanovskii and Nosov [7]). Given a transcendental function

like, for example, (1.10), this method is able to determine the number of roots having positive

real part (for now on p-zeros) in accordance with the value of its coefficients (a and b in our

specific case). This is possible since the zeros of a transcendental function are continuous

functions of those same coefficients.

Definition 1.5 Given the characteristic equation of a functional differential equation with
constant coefficients, a D-Subdivision is a partition of the space of coefficients into regions by

hypersurfaces, the points of which correspond to quasi-polynomials having at least one zero

on the imaginary axis (the case z = 0 is not excluded).

For continuous variation of the transcendental function coefficients the number of p-zeros

may change only by passage of some zeros through an imaginary axis, that is, if the point in

the coefficient space passes across the boundary of a region of the D-Subdivision. Thus, to

every region Γk of the D-Subdivision, it is possible to assign a number k which is the number

of p-zeros of the transcendental function. Among the regions of this partition are also found

regions Γ0 (if they exist) which are regions of asymptotic stability of solutions. Finally in

order to clarify how the number of roots with positive real parts changes as some boundary

of the D-Subdivision is crossed, the differential of the real part of the root is computed, and

the decrease or increase of the number of p-zeros is determined from its algebraic sign. Since

it becomes very useful later, we study, with the D-Subdivision method, the transcendental

function (1.10).

First of all, observe that this equation has a zero root for a + b = 0. This straight line

(see Figure 1.1) is one of the lines forming the boundary of the D-Subdivision. It is also

immediately derived that the transcendental function (1.10) has purely imaginary roots if

and only if

a+ b cos dy = 0, y − b sin dy = 0 (1.11)

or

b =
y

sin dy
, a =

−y cos dy
sin dy

(1.12)

The equations in parametric form (1.11) or (1.12) identify all the other D-Subdivision

boundaries. To be precise there is one boundary for any of the following interval of y:¡
0, π

d

¢
,
¡
π
d
, 2π
d

¢
,
¡
2π
d
, 3π
d

¢
, . . .. Moreover it is possible (and useful) to find the values of b for

which the boundaries intercept the b-axis. The sequence of such b is
©
. . . ,−7π

2d
,−3π

2d
, 0, π

2d
, 5π
2d
, . . .

ª
.

Finally we show how p-zeros rises. In particular, when a crossing of Cl from Γ0 to Γ2 implies

Bambi, Mauro (2007), Some Essays in Growth Theory 
European University Institute

 
10.2870/23610



1.3. SOME PRELIMINARY RESULTS 7

the rising of two p-zeros (that is, we focus on the interval 0 < y < π
d
). From (1.10) applying

the implicit function theorem, we have that on Cl

dx = −Re da

1− bde−diy

= −Re da

1− bd (cos dy − i sin dy)

=
(1− bd cos dy) da

(1− bd cos dy)2 + b2d2 sin2 dy

We find that cos yd < 0 for bd > 1. Therefore, upon crossing the boundary Cl from region

Γ0 into Γ2, a pair of complex conjugate roots gain positive real parts. The analysis on the

other boundaries of the D-Subdivision is completely analogous. Taking into account all of

these results, we are now ready to study our model completely.

Figure 1.1: D-Subdivision for the trascendental function (1.10) assuming d = 5.
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1.4. BALANCE GROWTH PATH ANALYSIS 8

1.4 Balance Growth Path Analysis

In order to show the existence and uniqueness of the BGP, we now present some results

regarding the roots of the characteristic equation of the law of motion of capital, of its shadow

price, and of consumption. These results are presented and proved in Lemma 1.6 and Lemma

1.7, respectively. Some pictures are also provided in order to help the reader get the main

message behind the math. After that, the continuous solution of capital is rewritten as a sum

of weighted exponentials (Corollary 1.8) and then, following a very similar strategy as that

used in the standard AK model, a unique balance growth path for consumption and capital

is proved by checking the transversality conditions. Very similar to this, is the requirement

that for any exogenously given choice of the delay coefficient, the production function has

to be sufficiently productive to ensure growth in consumption, but not so productive as to

yield unbounded utility: A ∈ (Amin, Amax). On the other hand, it is possible to express
the same requirement, given a certain level of technology, in term of the delay coefficient:

d ∈ (dmin, dmax). Finally as in the standard case if σ > 1, then Amax is equal to plus infinity,

while dmin is zero.

As anticipated in Lemma 1.6 we report some information on the roots of the CE of the

law of motion of capital and its shadow price:

Lemma 1.6 For any sufficiently high rate of depreciation "before use", φ, the following
results hold:

1) z̃ is the unique root with positive real part of the CE of the law of motion of capital;

2) s̃ is the unique root with negative real part of the CE of the law of motion of shadow

price.

Proof. The characteristic equation of the law of motion of capital (1.1) is equal to the
characteristic equation of its homogeneous part3, namely

h(z) ≡ z − Ãe−zd = 0 (1.13)

It is immediate to show that this equation has a unique positive real root zṽ = z̃ which is also

the highest among its roots. In particular, through the D-Subdivision method it is possible

to prove that the transcendental equation (1.13) has an increasing number of p-zeros as d

rises. On the other hand if we assume φ = φ̂ sufficiently high,4 it happens that Ã < 3π
2d

for any choice of d and then a unique p-zero exists5. These facts can be easily observed in

3The part of equation (1.1) not considering the forcing term −bC(t).
4In the numerical simulation, reported in Section 7, we have assumed φ̂ ' 0.03.
5This is also a consequence of the fact that Ã converges to zero faster than 3π

2d as d→∞.
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1.4. BALANCE GROWTH PATH ANALYSIS 9

Figure 1.2. Finally, z̃ > Re(zv) occurs for any v 6= ṽ since all the roots of the CE of (1.1)

in the detrended variables x̂(t) = x(t)e−z̃t are negative. This is sufficient to prove result 1).

Now observe that the CE of the shadow price law of motion (1.3) is

h(s) ≡ −s− Ãesd = 0 (1.14)

then we can put in correspondence the roots of (1.13) and (1.14) through the transformation

z = −s. From this consideration follows immediately that Re(s) = −Re(z) and s̃ = −z̃
is the root with the lowest real part of the characteristic equation of the law of motion of

shadow price.
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Figure 1.2: Number of p-zeros of (1.13) according to the choice of the delay coefficient.

Lemma 1.6 tells us that if we assume a sufficiently high depreciation "before use" rate, φ̂,

then z̃ is the constant growth rate of capital and the unique p-zero of (1.13). Now it will be

useful for proving a common growth rate of consumption and capital to show the following

Lemma:

Lemma 1.7 A positive and constant growth rate of consumption, gc, always exists for A >

Amin = δ + ρe(ρ+φ̂)d.

Proof. First of all observe that since the Euler equation (1.4) is a nonlinear advanced
differential equation we cannot write directly its continuous general solution (Theorem 1.2
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1.4. BALANCE GROWTH PATH ANALYSIS 10

doesn’t apply). However it is possible to overcome this fact by observing that the general

continuous solution of consumption can be obtained indirectly by the first order condition

(1.2). Considering the general continuous solution of the shadow price of capital μ (t) =P
m

ame
−zmt, we have that

c(t) =
1µP

m

ame−σλmt

¶ 1
σ

(1.15)

where we have called

λ =
1

σ
(z − ρ) (1.16)

From equation (1.15) we can derive that the basic solutions of (1.4) have exponential form,

namely the basic solutions are
©
eλm
ª
m
; moreover taking into account (1.13) and (1.16) we

can derive indirectly the characteristic equation6 of (1.4)

h (λ) = σλ+ ρ− Ãe−(σλ+ρ)d (1.17)

Using the Hayes theorem or the D-Subdivision method, a unique positive real root, λm̃ = gc

exists for A sufficiently large, namely A > Amin = δ+ ρe(ρ+φ)d. This is exactly the condition

for endogenous growth in the standard AK model when the assumption d = 0 is relaxed.

Observe also that in this context the same requirement can be expressed in term of the delay,

d < dmax =
1

ρ+φ
log A−δ

ρ
. Exactly as before, a unique p-zero exists if Ãe−ρd < 3π

2d
. It is obvious

that, for φ = φ̂, the inequality is always respected (see Figure 1.3) since φ̂ was sufficient to

force Ã to stay below 3π
2d
, and given that (A− δ) e−φ̂de−ρd is a product of functions which

are positive and monotonic decreasing in d. Some considerations on the choice of φ lower

than φ̂ are reported in Section 1.6. Then, from now on, we focus on the case φ ≥ φ̂. Now,

endogenous growth implies that consumption and capital have to grow at a positive rate

over time. This implies that limt→∞ c (t) = +∞; then given (1.15), we have to impose that

lim
t→∞

1µ
am̃e−σgct +

P
m/∈m̃

ame−σλmt

¶ 1
σ

= +∞ (1.18)

6We have referred to equation (1.17) as the characteristic equation of the law of motion of consumption
since gives us all the basic solutions.
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1.4. BALANCE GROWTH PATH ANALYSIS 11

Using the properties of the limits7, it is possible to rewrite (1.18) as

1⎛⎜⎜⎜⎝ limt→∞
am̃e

−σgct| {z }
→0

+
P
m/∈m̃

lim
t→∞

ame
−σλmt| {z }

→∞

⎞⎟⎟⎟⎠
1
σ

= +∞

Then it results that the relation (1.18) is satisfied if and only if am = 0 for any m 6= m̃.

Taking into account this fact, the general continuous solution of consumption is

c (t) = a
− 1
σ

m̃ egct

10 20 30 40
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ÅÅÅÅÅÅÅÅÅÅ2 d

HA-dL‰-If
`
+rM d G1
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Figure 1.3: Number of p-zeros of (1.17) according to the choice of the delay coefficient.

Our objective is to prove that the growth rate of consumption and capital are the same

g = gc. However before proving it, we introduce the following Corollary of Theorem 1.2

which let us to rewrite the continuous solution of capital as a sum of weighted exponentials.

7The following properties have been used: limx→a
f(x)
g(x) =

limx→a f(x)
limx→a g(x)

, limx→a [f (x)]
n
= [limx→a f (x)]

n,
and limx→a [

P
i fi (x)] =

P
i limx→a fi (x)
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1.4. BALANCE GROWTH PATH ANALYSIS 12

Corollary 1.8 The solution of the law of motion of capital can be written as

k(t) =
X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt (1.19)

where Pm̃,v = − a
− 1
σ

m̃

(gc−zv)h0(zv) and Nm̃,v = nv − Pm̃,v.

Proof. According to Theorem 1.2 and Lemma 1.7, the continuous general solution of

consumption and capital are respectively

c(t) = a
− 1
σ

m̃ egct (1.20)

k(t) =
X

v
nve

zvt −
Z t

0

c (s)
X

v

ezv(t−s)

h0(zv)
ds (1.21)

Now the integral part of equation (1.21) is equal toZ t

0

a
− 1
σ

m̃ egcs
X

v

ezv(t−s)

h0(zv)
ds =

X
v

a
− 1
σ

m̃

(gc − zv)h0(zv)

¡
egct − ezvt

¢
and substituting in (1.21) after some algebra we get (1.19).

Some comments on equations (1.20) and (1.19) are needed. These equations are very

close to the general solution form for consumption and capital in the usual framework, with

ordinary differential equations; in particular k(t) is a weighted sum of exponentials; however,

this similarity can be found for systems of mixed functional differential equations only in the

particular case of a single equation with forced term. In the most general cases there doesn’t

exist a theorem which lets us write the solution in this way8. Moreover, the continuous

solution of the law of motion of consumption (1.20) and capital (1.19), are not the optimal

solution exactly as it happens in the ordinary case. Before getting optimality, transversality

conditions have to be checked. Using this corollary and TVC, we prove now the existence of

a unique balance growth path for consumption and capital.

Proposition 1.9 Consumption and capital have the same balanced growth path g = gc. This

growth rate is positive and yields bounded utility if A ∈ (Amin, Amax).

Proof. As shown in Lemma 1.7, the growth rate of consumption gc is a positive constant
if A > Amin. Given that, we have to distinguish two cases: z̃ ≤ gc and z̃ > gc. The first case

8Recently Asl and Ulsoy [2] have proved that a general solution form can be written for system of delay
differential equations using Lambert function.
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1.4. BALANCE GROWTH PATH ANALYSIS 13

is never possible. In fact, assume that z̃ ≤ gc then gc is also the growth rate of capital as

follows immediately by looking at equation (1.19). Then we can rewrite the characteristic

equation of capital, after the transformation k̂(t) = k(t)e−gct, as

−wew − gcde
w + Ãde−gcd = 0 (1.22)

where w = zd. Since gc is the root having greater positive real part, all the roots of (1.22)

must have negative real part which, from Hayes Theorem implies also that gc > Ãe−gcd.

However, this is never possible since it contradicts the positive sign of the consumption to

output ratio at the balanced growth path

c(t)

k(t)
= Ãe−gcd − gc > 0

which can be obtained by dividing the law of motion of capital (1.1) by k(t). Then the only

possible case is z̃ = σgc + ρ > gc. This is exactly the requirement for having no unbounded

utility: (1− σ) gc < ρ. Then, before passing to the TVC we observe that if σ > 1, the utility

is always bounded; on the other hand if 0 < σ < 1 we need a condition on A such that the

utility is bounded. Taking into account the CE (1.17) after some algebra this condition is

A < Amax = δ + ρ
1−σe

( ρ+φ(1−σ)1−σ )d which is exactly the same condition for the standard AK

model when the time-to-build parameter is equal to zero. Observe also that such a condition

can be rewritten also in terms of the delay, d > dmin =
1−σ

ρ+(1−σ)φ log
(A−δ)(1−σ)

ρ
. Now we show

that the TVC

lim
t→∞

μ (t) k(t) = 0 (1.23)

implies necessarily a unique BGP which is gc. In order to see this, we substitute the general

continuous solutions of μ(t) and k(t), into the TVC (1.23) and we get:

lim
t→∞

am̃e
−z̃t
³X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt
´
= 0 (1.24)

which is equal to

lim
t→∞

h
am̃Nm̃,ṽ +

X
v 6=ṽ

Nm̃,ṽe
(zv−z̃)t +

X
v
Pm̃,ve

(gc−z̃)t
i
= 0

now for am̃ 6= 0, the second and third term in the parenthesis converge to zero since zv−z̃ < 0
for any v and gc − z̃ < 0. Then the TVC are respected if and only if

Nm̃,ṽ ≡
a
− 1
σ

m̃

(gc − z̃)h0 (z̃)
+ nṽ = 0 (1.25)
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1.4. BALANCE GROWTH PATH ANALYSIS 14

which implies

am̃ =

µ
1

(z̃ − gc)h0 (z̃)nṽ

¶σ

(1.26)

Observe that if we assume a constant boundary condition for capital, k0, and for consump-

tion, c0, we can derive the following relation

c0 = (z̃ − gc) e
z̃dk0

which for d = 0 is exactly equal to the relation between c0 and k0 in the standard AK model

(see Barro and Sala-i-Martin [4]). Concluding TVC holds if and only if condition (1.25)

is verified. Given this condition, gc is also the growth rate of capital since the continuous

general solution of capital (1.21) can be rewritten as follows

k(t) =
X

v
Pm̃,ve

gct +
X

v 6=ṽ
Nm̃,ve

zvt (1.27)

Then the optimal solution of capital (1.27) is asymptotically driven by gc which implies a

common growth rate with consumption.

This proposition provides evidence of how a unique balance growth path for consumption

and capital can be proved to exist also in the case of time-to-build by checking to the

transversality conditions. In fact, through condition (1.25), it is possible to rule out the

eigenvalue coming from the characteristic equation of the law of motion of capital, having

positive real part greater than gc. Observe also that this fact and the assumption of the

new structure of capital depreciation make all of these results hold for any choice of the

delay in the interval (dmin, dmax) which guarantees the presence of endogenous growth and

no unbounded utility.

Once we have shown that g = gc is the unique balanced growth path of consumption and

capital, it is also interesting to see how different choices of the delay coefficient, d, and of the

level of technology A, affect it. These considerations are reported in the following corollary:

Corollary 1.10 Under A ∈ (Amin, Amax), ∂g
∂d
and ∂g

∂φ
are negative while ∂g

∂A
is positive.

Proof. Under A ∈ (Amin, Amax), we have shown that g is the unique positive balance
growth path for consumption and capital. The effect of a variation of d, φ, and A on g can be

easily computed by applying the Implicit Function Theorem on the transcendental equation
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1.5. CONSUMPTION AND CAPITAL DYNAMICS 15

(1.17) which is always satisfied for λ = g. After some algebra we obtain that

∂g

∂d
= −(A− δ) (σg + ρ+ φ) e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
< 0

∂g

∂φ
= − d (A− δ) e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
< 0

∂g

∂A
=

e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
> 0

These results are very intuitive; the negative relations between the time-to-build delay and

the growth rate and between the depreciation "before use" and the growth rate are due,

respectively, to the fact that an increase in the time-to-build delay increases the time to

produce output and by the fact that a higher depreciation "before use" reduces the net

capital. On the other hand, the positive effect of the productivity of capital is obvious and

is present in the standard AK model as well.

1.5 Consumption and Capital Dynamics

In the previous section, we have proved the existence and uniqueness of the balance

growth path. We have also shown the influence of the delay coefficient on the growth rate

for a given level of technology. In this section, we focus on the dynamic behavior of the

optimal detrended consumption and capital which let us to derive indirectly the behavior of

detrended income and detrended investment.

Proposition 1.11 Optimal detrended consumption is constant over time while optimal de-
trended capital path is unique and oscillatory converges to a constant.

Proof. The optimal detrended solution of capital and consumption can be obtained by
multiplying both sides of equations (1.27) and (1.20) by e−gct

ĉ(t) = a
− 1
σ

m̃ (1.28)

k̂(t) =
X

v
Pm̃,v +

X
v 6=ṽ

Nm̃,ve
(zv−gc)t (1.29)

After calling z = x+ iy and n = α+ iβ, and taking into account Theorem 1.3, the detrended

solution for capital can be rewritten, as shown in Appendix A.3, in the following way

k̂(t) = αṽ + 2
X

v 6=ṽ
Ψ0,v + 2

X
v 6=ṽ
[(αv −Ψ0,v) cos yt− (βv +Ψ1,v) sin yt] e

(xv−gc)t (1.30)

where Ψ0,v,Ψ1,v ∈ R for any v. Finally, the asymptotic behavior of capital is equal to

lim
t→∞

k̂(t) = αṽ + 2
X

v
Ψ0,v (1.31)
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1.6. CONSIDERATIONS ON THE DEPRECIATION "BEFORE USE" HYPOTHESIS16

Expressions (1.30) and (1.31) tell us that the transition to the BGP is oscillatory due to the

presence of the cosine and sine term, and that the convergence is guarantee by the fact that

xv = Re (zv) < gc for any v 6= ṽ. Finally, the uniqueness of the path is due to the fact that

the residue {nv}v are fixed by the boundary condition of capital while the residue am̃ is fixed
by the transversality condition through the expression (1.26).

Moreover, taking into account the technology and the resources constraint of our econ-

omy, it follows immediately that output and investment have an oscillatory behavior. In

the following section, we discuss the opportunity of introducing the depreciation "before

use" hypothesis and the role which a choice of a φ ≥ φ̂ has in extending our results for

all the feasible values of the delay. On the other hand, as it will appear clear soon, all the

results obtained until now remain valid even for the extreme case φ = 0 when an appropriate

sub-interval of d is appropriately chosen.

1.6 Considerations on the Depreciation "Before Use" Hypothesis

It is quite easily observable that all the results obtained until now remain valid in the

specific case of φ = 0 for a restricted interval of the time-to-build coefficient. As we have

seen, the introduction of depreciation "before use", depending inversely on the time to build

parameter, is able to extend the previous analytical results to the whole, feasible, interval

of the delay. On the other hand, when φ = 0, several technical problems may arise for a

sufficiently high choice of the delay. In particular, a general continuous solution as a sum

of exponentials as in (1.19) can no longer be written. This implies that the validity of

transversality conditions becomes extremely difficult to assess. Another relevant difference

is that Hopf bifurcation may rise in the interval d ∈
³
0, d̃2

i
with d̃2 the value of the delay

under which the curve (A − δ)e−ρd intersects 3π
2d
in Figure 1.3. In order to show why Hopf

bifurcation may rise, we write again the detrended solution for capital (1.29) in the following

way:

k̂(t) =
X

v
Pm̃,v +

X
v 6=ṽ

Nm̃,ve
wvt

where wv = zv − gc. Then according to Kolmanovskii and Myshkis ([3], Chapter 3, page

183) the following proposition holds

Proposition 1.12 Hopf bifurcation rises if it exists a d∗ ∈
h
dmin, d̃2

i
such that

1) for d < d∗ all the roots have (after transversality conditions) negative real part;

2) wv(d) = ±iy0 with y0 > 0 and v = 1, 2;

3) ∂Rew1,2(d)

∂d

¯̄̄
d=d∗

> 0 and Rewv (d)|d=d∗ < 0 for v > 2
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1.7. NUMERICAL EXERCISE 17

However studying the presence of such w1 and w2 is not analytically but only numerically

tractable9 since w1 and w2 can be computed only estimating the roots of the characteristic

equation of capital having the second highest real part. In the next section we present a

numerical example in order to help the reader to get the main messages behind all these

results.

1.7 Numerical Exercise

In this section we report only the results of our simulations while a detailed explanation

of the computational methods is reported in Appendix A.4. Moreover all the Figures are

reported at the end of the Chapter, before the Bibliography.

The following parametrization of our economy has been chosen:

σ ρ δ φ d A dmin dmax

0.8 0.02 0.05 0.03 20 0.3 7 50.51

Remember that if we have chosen σ > 1 the dmin should be equal to 0; in our case with

σ = 0.8 a value of d less than dmin implies unbounded utility. On the other hand a value of

the delay greater than dmax implies no endogenous growth10. Moreover, observe that given

this parametrization, the D-Subdivision method tells us that: in the case of no depreciation

"before use" (φ = 0), in the interval d =
h
d̃min, 18.85

´
we have only one root with positive

real part; in the interval d = [18.85, 43.98), three roots with positive real part, and finally

in the interval d = [43.98, d̃max], five roots with positive real part. This fact is reported

in Figure 1.4, where a subset of the infinite roots of the homogeneous part of (1.1) are

numerically computed through the Lambert function. Figure 1.4 and Figure 1.5 shows the

real parts of the roots in the x-axis and the imaginary parts in the y-axis.The first graph of

the spectrum is interesting, since it shows how an increase in the value of the time-to-build

coefficients reduces the magnitude of the real part of the highest eigenvalue. Taking into

account relation (1.16), this numerical result confirms Corollary 1.10. Now we show the

effect of the introduction of a minimum degree of depreciation "before use" on the capital

dynamics. In particular, through Figure 1.5, it is possible to observe how a choice of φ = 0.03

forces the spectrum of roots of the law of motion of capital to have only one eigenvalue with

positive real part even in the extreme case of a delay coefficient equal to dmax = 50.As we

can expect, the presence of a positive depreciation "before use" rate reduces the growth

9Following Bellman and Cooke , it is possible to (...)
10In fact the highest root of the homogeneous part of (1.1) is close to 0.02 and taking into account our

parametrization and relation (1.16), we have, that at the right of this value the growth rate of consumption
is no longer positive.
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1.8. CONCLUSION 18

rate of capital, and indirectly, through relation (1.16), of consumption. This effect is due to

the fact that net capital is reduced and, indirectly, output, consumption, and investment.

The next two figures show the dynamic behavior of detrended capital (equation (1.30)) over

time. In the first case, Figure 1.6, we have studied the detrended capital dynamics given a

constant initial value (boundary condition) of capital, k0.As it appears clear, the presence

of time-to-build is able to generate oscillatory behavior of capital for a long interval of time.

Taking into account the technology and the resources constraint of our economy both output

and investment will have a similar dynamic behavior as capital. Observe that the oscillatory

dynamic behavior of these variables is enhanced by a consumption smoothing effect. In fact

from Proposition 1.11, we know that the social planner optimally chooses to have a constant

detrended consumption while detrended capital bears most of the adjustment to the BGP.

Finally we have reported in the Figure 1.7 the capital dynamic behavior for different choices

of the delay.It is interesting to notice that the higher the choice of the delay, the more

relevant is the oscillatory structure of capital dynamics. This fact has been reported in

Figure 1.7, in the case of σ = 8 starting with values of the delay sufficiently close to zero

and given a same boundary condition for capital k0. Remember that variation in the choice

of the delay have an influence on the value of the balance growth path. In particular, for

Corollary 1.10, the higher is the delay, the lower is the balance growth path. This fact

appears also in Figure 1.7, where with ki,ss and i = 1, ..., 4, we have indicated the different

balance growth paths. The dynamic behavior of capital appears more and more smooth as

d is close to zero: this dynamic behavior is consistent with what we aspect in the extreme

case d = 0. Finally we study numerically the same economy when the depreciation "before

use", φ, is assumed to be zero. In this case, we have dmin = 9.16 while dmax = 126.311.

As explained in the previous section, the dynamic of the economy is fully described by the

sign behavior of Re(wv) = zv − gc with v = 1, 2. Then we have reported in Figure 1.8 the

transitional dynamics of the economy according to the choice of d and the value of Re(wv):As

it appears clear the economy is locally determinate in the interval of the delay d ∈ (dmin, d∗)
while locally unstable in (d∗, dmax). Moreover d∗ induces an Hopf bifurcation since all the

requirement in Proposition 1.12 are satisfied.

1.8 Conclusion

This paper has fully analyzed an AK endogenous growth model when the time-to-build

assumption is introduced through a delay differential equation for capital. It has been proved

11Referring to Figure 3, we have that for A = 0.3 the curve (A− δ)e−ρd is always under the curve 3π
2d and

then d̃2 tends to infinity. However this is not in general true.
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1.8. CONCLUSION 19

the existence and uniqueness of the BGP and also that a unique optimal path of the detrended

capital is oscillatory convergent to its steady state value while detrended consumption jumps

directly on it as the usual case without delay. These results have been obtained through a

careful analysis of the role of transversality conditions and the introduction of a new structure

of capital depreciation, which takes into account the depreciation of capital before it becomes

productive. This last assumption appears to be crucial in avoiding implausible economic

predictions (like local instability of the equilibrium) which may appear in this type of model

for choices of the time-to-build coefficient sufficiently high. Finally the analysis of the model

let us confirm that time-to-build can be considered a source of aggregate fluctuation for

capital and output exactly as the vintage capital assumption.
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1.9 Appendix A: Some Proofs

Proof of Theorem 1.2. The proof of this theorem is mainly based on Bellman and

Cooke [8] (Section 3.9, page 73-75). The only relevant difference is that we assume a bound-

ary condition defined in the interval [−d, 0], and not in [0, d]. Given this difference we need
an "auxiliary" function x(t) having the following properties:

(a) x(t) = 0 t < −d;
(b) x(−d) = a−10 e−sd;

(c) x(t) is of class C0 on [0,∞) ;
(d) x(t) satisfies the equation

a0ẋ(t) + b0x (t) + b1x (t− d) = 0 for t > −d (1.32)

Before showing that the Laplace transform of x(t) is h−1(z), it is important to notice that it

is possible to prove (see Bellman and Cooke [8]) the existence and uniqueness of x(t) even

if equation (1.32) doesn’t respect theorem 1.1 since the boundary condition doesn’t define

a continuous function over [−2d, d]. We multiply each term of equation (1.32) by e−zt and

integrate with respect to t from −d and ∞, we get

a0

∞Z
−d

ẋ (t) e−ztdt+ b0

∞Z
−d

x (t) e−ztdt+ b1

∞Z
−d

x (t− d) e−ztdt = 0 (1.33)

and integrating by part the first term and making the change of variables t1 = t− d in the

last term, relation (1.33) can be rewritten

−1 + a0z

∞Z
−d

x (t) e−ztdt+ b0

∞Z
−d

x (t) e−ztdt+ b1e
−zd

∞Z
−d

x (t1) e
−zt1dt1 = 0

from which follows immediately that the Laplace transform of x(t) is
∞Z
−d

x (t) e−ztdt = h−1(z) (1.34)

Now, using the Laplace transform formula we get

x (t) =

Z
(c)

ezt

h (z)
dz for t > −d (1.35)

For the residue theorem equation (1.35) is equivalent to

x (t) =
X
r

RES

½
ezt

h (z)
, zr

¾
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and taking into account the formula RES
h
ψ(a)
φ(a)

, ã
i
= ψ(ã)

φ0(ã) when ψ (ã) 6= 0

x (t) =
X
r

ezrt

h0 (zr)
for t > −d (1.36)

Now for Theorem 3.7 of Bellman and Cooke [8], the general continuous solution, u(t), of the

delay differential equation with forcing term

a0u̇(t) + b0u(t) + b1u(t− d) = f(t) (1.37)

which satisfies the initial or boundary condition u(t) = ξ(t) with t ∈ [−d, 0] , is

u (t) = a0ξ (0)x (t) + (a0zr + b0)

0Z
−d

ξ(s)x (t− s) ds+

tZ
0

f(s)x(t− s)ds (1.38)

and taking into account relation (1.36) we can rewrite (1.38) as

u(t) =
X
r

a0ξ(0) + (a0zr + b0)

Z 0

−d
ξ(s)e−zrsds

h0 (zr)
ezrt +

tZ
0

f(s)
P
r

ezr(t−s)

h0 (zr)
ds

which ie exactly equal to relation (1.8).

Proof of Theorem 1.3. The proof is organized in two parts. In the first part, we show
that the unique general solution of (1.5) with boundary condition (1.6)

u(t) =
P
r

pre
zrt +

tZ
0

f(s)
P
r

pre
zr(t−s)ds (1.39)

where the roots {zr} and the residues {vr} come respectively from the characteristic equation
of the homogeneous part of (1.5)

h (z) = a0z + b0 + b1e
−zd (1.40)

and from the relation

pr =
p (zr)

h0 (zr)
=

a0ξ(0) + (a0zr + b0)

0Z
−d

ξ(s)e−zrsds

a0 − b1de−zrd
(1.41)
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can be rewritten as

u (t) =
kP

r=0

ςre
xrt +

∞P
r=k

¡
are

zrt + āre
z̄rt
¢
+ (1.42)

+

tZ
0

f(s)

∙
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

µ
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

¶¸
ds

where {xr} are real roots, {zr} are complex conjugate roots12, {ςr} are real constants, and
{ar} are complex conjugate constants. In fact, from the D-Subdivisions method we know

that (1.40) has at most two real roots and an infinite number of complex conjugate roots.

From (1.41), it appears also clear that the residues related to real roots are real while those

related to complex roots are complex. Taking into account these results it is possible to split

(1.39) as follows

u (t) =
kP

r=0

ςre
xrt +

∞P
r=k

¡
are

zrt + cre
z̄rt
¢
+

tZ
0

f(s)

∙
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

µ
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

¶¸
ds

where z = x + iy and z̄ = x− iy. We now show that cr = ār is always the case. This fact

can be proved by taking into account the following properties of complex numbers

i) let z = u
v
with u and v two complex numbers..Then z̄ = ū

v̄
;

ii) let z = uv with u and v two complex numbers.Then z̄ = ūv̄;

iii) let z be a complex number. Then
−−
ez = ez̄;

and observing that p̄ (z) = p (z̄) , and h̄0 (z) = h0 (z̄).

The second part of the proof consists in showing that (1.42) is a real function. We start

by considering the first term

kP
r=0

ςre
xrt +

∞P
r=k

¡
are

zrt + āre
z̄rt
¢

(1.43)

Calling a = ς + iω we have that

aezt + āez̄t = (ς + iω) exteiyt + (ς − iω) exte−iyt

= ext [(ς + iω) (cos yt+ i sin yt) + (ς − iω) (cos yt− i sin yt)]

= 2ext (ς cos yt− ω sin yt)

and then (1.43) becomes

kP
r=0

ςre
xrt + 2

∞P
r=k

ext (ς cos yt− ω sin yt)

12We have indicated the conjugate of a complex number a with ā.
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which is a real function of t. Now we study the term

∞P
r=k

µ
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

¶
After some boring algebra this can be rewritten as

∞P
r=k

2
©
a0 cos [yr (t− s)]− b1de

−xrd cos [yr (t− s+ d)]
ª

a20 − 2a0b1de−xrd cos yrd+ b21d
2e−2xrd

exr(t−s)

which is a real function. Then it follows immediately that the general continuous solution

(1.42) can be rewritten as

u (t) =
kP

r=0

ςre
xrt + 2

∞P
r=k

ext (ς cos yt− ω sin yt) + (1.44)

+

tZ
0

f(s)

"
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

2
©
a0 cos [yr (t− s)]− b1de

−xrd cos [yr (t− s+ d)]
ª

a20 − 2a0b1de−xrd cos yrd+ b21d
2e−2xrd

exr(t−s)

#
ds

which is clearly a real function.u : I → R.

1.10 Appendix B: How to get expression (1.30) from (1.29).

First of all, observe that from Theorem 1.3 we can rewriteX
v
Pm̃,v = −a−

1
σ

m̃

∙
1

(gc − z̃)h0(z̃)
+
X

v 6=ṽ

µ
1

(gc − zv)h0(zv)
+

1

(gc − z̄v)h0(z̄v)

¶¸
= αṽ − a

− 1
σ

m̃

X
v 6=ṽ

µ
(gc − z̄v)h

0(z̄v) + (gc − zv)h
0(zv)

(gc − zv) (gc − z̄v)h0(zv)h0(z̄v)

¶
Now calling z = x+iy and n = α+iβ, and taking into account the shape of the characteristic

equation we get after some algebraX
v
Pm̃,v = αṽ + 2

X
v 6=ṽ

Ψ0,v (1.45)

where

Ψ0,v = −a
− 1
σ

m̃

gc − xv + Ãe−xvd {[(gc − xv)xv + y2v ] cos yvd+ [(gc − xv) yv + xvyv] sin yvd}
(g2c − 2gcxv + x2v + y2v)

h
1 + Ãe−2xvd (x2v + y2v) + 2Ãe

−xvd (xv cos yvd+ yv sin yvd)
i

Now we have to rewriteX
v 6=ṽ

Nm̃,ve
zvt =

X
v 6=ṽ
(nv − Pm̃,v) e

zvt

=
X

v 6=ṽ

¡
nve

zvt + n̄ve
z̄vt
¢
+ a

− 1
σ

m̃

X
v 6=ṽ

µ
ezvt

(gc − zv)h0(zv)
+

ez̄vt

(gc − z̄v)h0(z̄v)

¶
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which taking into account the results of the previous Appendix is equal to

2
X

v 6=ṽ
(αv cos yvt− βv sin yvt) e

xvt+a
− 1
σ

m̃

X
v 6=ṽ

µ
(gc − z̄v)h

0(z̄v)e
zvt + (gc − zv)h

0(zv)e
z̄vt

(gc − zv) (gc − z̄v)h0(zv)h0(z̄v)

¶
which after some algebra and taking into account some trigonometric relations can be rewrit-

ten as

2
X

v 6=ṽ
[(α−Ψ0,v) cos yt− (β +Ψ1,v) sin yt] e

xvt (1.46)

where

Ψ1,v = a
− 1
σ

m̃

yv + Ãe−xvd {[(gc − xv)xv + y2v ] sin yvd− [(gc − xv) yv + xvyv] cos yvd}
(g2c − 2gcxv + x2v + y2v)

h
1 + Ãe−2xvd (x2v + y2v) + 2Ãe

−xvd (xv cos yvd+ yv sin yvd)
i

Finally taking into account relations (1.45) and (1.46) follows immediately the shape of the

general continuous solution in (1.30).

1.11 Appendix C: Computational method

In order to obtain the spectrum of the roots from the law of motion of capital and its

solution, we have used Lambert functions as proposed recently by Asl and Ulsoy [2]. A class

of functions W (s) are called Lambert functions if they satisfy the relation

W (s)eW (s) = s (1.47)

Then considering the characteristic equation of the law of motion of capital

−ses + dÃ = 0 (1.48)

with s = zd, and taking into account the definition of the Lambert function (1.47), we have

that

W
³
dÃ
´
eW (dÃ) = dÃ (1.49)

Now comparing (1.48) and (1.49), the solutions of the equation which describe the charac-

teristic spectrum are

z =
1

d
W
³
dÃ
´

In the most general form, the Lambert function is a complex function with infinite branches.

Calculation of both the principal branch and the other branches can be presented in series

form ([2] see for more details). Taking into account these results, we have used the MatLab

programs (Lambertww.m, Spectrum.m, and Solutions.m) in order to derive the first m = 16
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branches13 and from them the corresponding roots. Then we have derived the roots of

the characteristic equation of the law of motion of consumption through relation (1.16)

and residue pm through the relation (1.41). Observe that to any branch corresponds a

particular solution for the delay differential equation. Finally, using the result in Theorem

1.3, namely the shape of the general continuous solution (1.30), it is possible to derive the

general continuous solution.

13The results obtained in our analysis are invariant to a higher choice of m.
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Figure 1.4: Spectrum of roots for the law of motion of capital (1.1).

Figure 1.5: Spectrum of roots for capital (1.1) in the case dmax = 50.
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Figure 1.6: Dynamic behavior of detrended capital.

Figure 1.7: Capital dynamic behavior for different choices of the delay.
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Figure 1.8: Transitional dynamics when φ = 0.
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CHAPTER 2

(IN)DETERMINACY AND TIME-TO-BUILD.

2.1 Introduction

This paper is an extension of Benhabib and Farmer [6] under the time-to-build assump-

tion that new capital goods become productive with some delay. The main concern is to

understand how the dynamic properties of a neoclassical growth economy with production

externalities change by the introduction of a time-to-build delay, as well as variations on its

magnitude. In particular, we are interested in capturing the influence of time-to-build on

the existence of local indeterminacy.

The implications of time-to-build has long been analyzed by economists (s.a. Bohm-

Bawerk [9]), who have conjectured that production lags may induce cycles in output (see

also Kalecki [21]) and account for the persistence of output fluctuations. In their seminal

paper, Kydland and Prescott [25] argue that time-to-build, in the sense that investment

projects need more than one period to be completed, strongly contributes to the persistence

of the business cycle. Asea and Zak [1] propose a continuum time optimal growth model

with a time-to-build delay and show that the optimal path may converge to the steady state,

eventually by oscillations, or even (Hopf) cycle around it. Consequently, they show that the

dynamics can be intrinsically oscillatory due (entirely) to the time-to-build technology.1

Local indeterminacy is a concept strictly related to the dynamics, and in particular to

the stability properties of the equilibrium in an infinite horizon economy. In a two dimension

dynamic general equilibrium model, with one control and one state, there is local indeter-

minacy when a steady state is not (locally) a saddle path, as usual, but a stable node or a

stable focus.2 In these cases, the equilibrium is said to be locally indeterminate since for any

given initial condition for the state variable there exists a continuum of initial levels of the

control (or co-state), each of which associated to a different equilibrium path. Kehoe and

Levine [22] argue that in pure exchange economies with infinitely lived consumers, equilibria

are generically determinate. However, from the beginning of the nineties, infinitely lived

1Asea and Zak [1] use delayed differential equations to rigorously analyze the implications of time-to-build
delays. See also Collard et al [12]. A rigorous proof of the existence of cycles in an optimal growth model
with time-to-build was done by Rustichini [27].

2In continuous time, the eigenvalues lie respectively, in R−/ {0} , and in the left of the imaginary axis.
In discrete time, the eigenvalues are real and inside the unit circle, and complex and inside the unit circle,
respecively.

32

Bambi, Mauro (2007), Some Essays in Growth Theory 
European University Institute

 
10.2870/23610



2.2. TIME-TO-BUILD 33

agent models with some degree of increasing returns have been shown to exhibit multiple

equilibria, indeterminacy, and the possibility of sunspots. Benhabib and Farmer [6] (here-

after BF) add increasing returns to the one sector neoclassical growth model and show that

the equilibrium may be locally indeterminate3.

In a discrete time Benhabib-Farmer framework, Hintermaier [19] analyses the existence

of indeterminacy for different time frequencies. He shows that the conditions for the existence

of indeterminacy are stronger the lower is the time frequency. At the limit, when the time

frequency goes to infinite, or the period length goes to zero, he obtains the same conditions

than in BF. As it is standard in discrete general equilibrium models, Hintermaier assumes

that capital produced at time t becomes productive at time t + 1. This is a one period

time-to-build assumption. Consequently, by reducing the frequency of the economy the

time-to-build becomes longer and longer.

The introduction of adjustment costs in the BF model, has been shown by Kim [23]

to increase the required degree of increasing returns for indeterminacy to rise; Herrendorf

and Valentinyi [18], starting with a two sector model characterized by mild sector-specific

externalities, extend this result both in the case of total and of sector’s specific capital

adjustment costs.

In this paper, we extend BF by assuming that capital produced at time t becomes

productive at time t + τ , where τ > 0 is a time-to-build delay. The analysis focuses, first,

on the effect of the time to build in a Ramsey model with endogenous labour supply and

then in a Benhabib Farmer model. It is possible to show that local indeterminacy of the

steady state depends crucially on the level of externalities but also on the choice of the delay

coefficient.

The paper is organized as follows. Section 2.2 describes the time-to-build economy. In

section 2.3 we analyze the dynamics of the model and we present the major theoretical

results; section 2.4 concludes.

2.2 Time-to-Build

Wemodel time-to-build in the simplest possible way by assuming, as suggested by Kalecki

[21], that capital goods produced at time t become operative at time t + τ , the time-to-

build delay τ being strictly positive4. This assumption is appended to the dynamic general
3The empirically plausibility of the BF model has been extensively discussed in the literature, since

an implausible high level of externalities are required to the equilibrium be indeterminate. Benhabib and
Nashimura [8] and Benhabib and Perli [7] propose more general models where the conditions for indetermi-
nacy are plausible.

4Kalecki refers to the parameter τ as "gestation period" of any investment. This period starts with the
investment orders and finished with the deliveries of finished industrial equipments.
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equilibrium model with externalities proposed by Benhabib and Farmer [6].

2.2.1 Firm’s Problem

Markets are perfectly competitive and there is a continuum of measure one of identical

firms using a Cobb-Douglas technology that transforms labor N and capital K into output

Y :

Y (t) = A(t)K(t− τ)aN(t)b.

As said before, the time-to-build assumption imposes that at time t firms use capital goods

produced at time t− τ . The state of technology is A(t) = K̄(t− τ)α−aN̄(t)β−b, where 1 >

α > a > 0, and β > b > 0. As in BF, no-tradeable externalities come from the economy-wide

capital average K̄, and the economy-wide labor average N̄ . Constant returns to scale at the

firm level requires a+ b = 1. There are, however, increasing returns to scale at the aggregate

level, since α+β > 1. The aggregate technology, after substitution of K̄ by K and N̄ by N ,

can be written as

Y (t) = K(t− τ)αN(t)β. (2.1)

Under the time-to-build assumption, the representative firm faces the following static

profit maximization problem:

max
N(t),K(t)

A(t)K(t− τ)aN(t)b − w(t)N(t)− [r(t) + δ]K(t− τ).

where w(t) is the wage rate, δ > 0 is the depreciation rate and r(t) + δ is the rental rate of

capital.

From the first order conditions, we get

bY (t) = w(t)N(t) (2.2)

aY (t) = [r(t) + δ]K(t− τ). (2.3)

Constant private returns to scale imply that factors of production receive a fixed share

of output and profits are zero, which is consistent with perfect competition.

2.2.2 Consumer’s Problem

The economy is inhabited by a continuum of measure one of infinitely lived households,

with preferences depending positively on consumption C and negatively on employment N .
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Households are assumed to own the capital stock. The representative household faces the

following infinite horizon problem:

max

∞Z
0

½
logC(t)− N(t)1−χ

1− χ

¾
e−ρtdt,

s.t. K̇(t) = r(t)K(t− τ) + w(t)N(t)− C(t), (2.4)

given initial conditions K(t) = ξ(t), for t ∈ [−τ , 0]. Parameter χ ≤ 0 while ρ > 0. This

dynamic optimization problem differs from the standard consumers problem mainly because

the budget constraint (2.4) is not an ordinary differential equation but a delayed differential

equation. From the time to build assumption, consumers rent at time t the capital stock

produced at t− τ and they build new capital which will be available at t+ τ . Consequently,

initial conditions ξ(t) need to be specified in order to identify the relevant history of the

state variable K.

Following Kolimanovskii and Myshkis [24], the Hamiltonian associated to this problem

is

H (t) =
½
logC(t)− N(t)1−χ

1− χ

¾
e−ρt + λ(t) [r(t)K(t− τ) + w(t)N(t)− C(t)] ,

and the associated optimal conditions are

1

C(t)
e−ρt = λ(t) (2.5)

1

N(t)χ
e−ρt = λ(t)w(t) (2.6)

λ(t+ τ)r(t+ τ) = −λ̇(t) (2.7)

and, as shown by Boucekkine et al [11], the standard transversality conditions

lim
t→∞

λ(t) ≥ 0 and lim
t→∞

λ(t)K(t) = 0

holds. The main difference with respect to a standard optimal control problem is in equation

(2.7). The fundamental trade off is between consuming today, whose marginal value is given

by λ(t), and consuming at t+ τ , with marginal value λ (t+ τ). From (2.5) and (2.6) we get

the standard intratemporal substitution condition between consumption and labor

C(t)

N(t)χ
= w(t). (2.8)

From (2.5) and (2.7), we get the forward-looking Euler-type condition:

Ċ(t)

C(t)
=

C(t)

C(t+ τ)
e−ρτr(t+ τ)− ρ, (2.9)
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where the real interest rate, which the household get at time t + τ by investing in capital

today, is weighted by the marginal elasticity of substitution between consumption at t and

consumption at t + τ . It reflects the fact that investment allows households to substitute

current consumption by consumption at time t+ τ .

2.3 Analysis of the Dynamics

In order to reduce the problem to a nonlinear functional differential equations (FDEs)

system,5 we proceed in the following way. Firstly, we use equations (2.2) and (2.3) to

substitute w and r into (2.4), (2.8) and (2.9). Secondly, we substitute N from (2.8). Finally,

we substitute Y from (2.1) in (2.4) and (2.9). After making a logarithmic transformation of

K and C, we get a delayed differential equation (DDE) for capital

k̇(t) = ek(t−τ)−k(t)
©
eλ0+λ1k(t−τ)+λ2c(t) − δ

ª
− ec(t)−k(t), (2.10)

and an advanced differential equation (ADE) for consumption

ċ(t) = e−ρτ+c(t)−c(t+τ)
©
a eλ0+λ1k(t)+λ2c(t+τ) − δ

ª
− ρ, (2.11)

where

λ0 = − β log b
β+χ−1 , λ1 =

(α−1)(χ−1)−β
β+χ−1 , and λ2 =

β
β+χ−1 .

Small capital letters refer to variables in logarithms. We can immediately observe the fol-

lowing:

Remark 2.1 The FDEs system (2.10)-(2.11) becomes the differential system in Benhabib

and Farmer [6]

k̇(t) = eλ0+λ1k(t)+λ2c(t) − δ − ec(t)−k(t)

ċ(t) = a eλ0+λ1k(t)+λ2c(t) − δ − ρ.

when the time-to-build assumption is ruled out, i.e. τ → 0.

Moreover, we can prove some relevant relations between the signs of λ2, λ1 + λ2, and

1 + λ1.

Lemma 2.2 The following relations holds:

sign(λ2) = sign (λ1 + λ2) = −sign(1 + λ1) (2.12)

λ1 = −αλ2 + α− 1 (2.13)

5See Hale and Lunel [16].
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Proof. See Appendix A.1.
Finally let us give the following definition of an equilibrium path in a functional differ-

ential equation context.

Definition 2.3 An equilibrium path is any trajectory ϕ(t) = {c (t) , k (t)} that solves the
two autonomous mixed differential equations (2.10)-(2.11) subject to the boundary condition

k(t) = log (ξ(t)) , for t ∈ [−τ , 0] , and the transversality conditions

lim
t→∞

e−c(t)e−ρt ≥ 0 and lim
t→∞

ek(t)−c(t) e−ρt = 0. (2.14)

2.3.1 Steady State Analysis

Under the usual assumption that at steady state k̇(t) = ċ(t) = 0, implying c(t) =

c(t+ τ) = cs and k(t) = k(t− τ) = ks, from (2.10) and (2.11), we get

ks =
1

λ1 + λ2
(log [A]− λ2 log [A− δ]− λ0) (2.15)

cs = log [A− δ] + ks, (2.16)

where A ≡ δ + ρ eρτ

a
.

Since ks and cs are natural logarithms, they may have either positive or negative sign.

Remark 2.4 Equations (2.15)-(2.16) are identical to those obtained by Benhabib and Farmer
[6], when τ = 0.

Moreover, as expected the following result holds:

Proposition 2.5 The time-to-build delay τ affects negatively both ks and cs.

Proof. See Appendix A.2.
The economy is more inefficient the larger the time-to-build delay is, implying that the

steady state values of capital and consumption are smaller.

2.3.2 Stability Analysis

Let first linearize the system (2.10)-(2.11) around its steady state and compute the Ja-

cobian. As shown in Bellman and Cooke [4] (page 337-339), the solution of the linearized
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system will have the same properties of the nonlinearized one for sufficiently small pertur-

bations. After some algebra,6, and taking into account the relation (2.13), our linearized

system around the steady state isÃ
k̇

ċ

!
=

Ã
[α(1− λ2)A− δ] e−zτ (λ2 − 1)A+ δ

a [(1− λ2)α− 1]Ae−ρτ ρ− [a(1− λ2)A− δ] ezτe−ρτ

!Ã
k(t)

c(t)

!
. (2.17)

The characteristic equation associated to (2.17) describes completely the spectrum of the

eigenvalues Z∞ = {zr}r associated to the FDEs system. Let us call Re(Z∞) the set of the
real parts of the eigenvalues; and with Zk

∞ and Zc
∞ the sets of all the eigenvalues coming,

respectively, from the characteristic equation of the linearized law of motions of capital and

consumption.

Before proceeding, let us remember that all the theoretical results on functional differen-

tial analysis are presented in Chapter 1. Now, using Theorem 1.2, we show how it is possible

to write explicitly the general continuous solution of a system of functional differential equa-

tions when the Jacobian is triangular.

Theorem 2.6 Consider the linearized system of functional differential equations

u̇(t) ' J(u∗)u(t) (2.18)

with u : R → R2 and J(u∗) an upper triangular Jacobian evaluated around the steady state

u∗ ∈ R Then the general continuous solution of this system is

u1(t) =
X
v

nve
λvt (2.19)

u2(t) =
X
r

Γre
zrt +

X
v

Υve
λvt (2.20)

where {zr}r and {λv}v are the zeros, respectively, of the characteristic equations h (z) and
h (λ) of the homogenous part of the two equations.

Proof. If the Jacobian is upper triangular then the characteristic equation associated
to it is

h =

¯̄̄̄
¯ h (λ) 0

c h(z)

¯̄̄̄
¯

then the spectrum of the roots of the system is exactly the union of the spectrum of the

roots coming from the homogenous part of the two equations. Moreover since the triangular

6See Appendix A.3 for technical details.
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assumption, it is also possible to write directly the solution of the linear functional differential

equations without forcing term

u1(t) =
X
v

nve
λvt (2.21)

Taking into account the result (1.8) in Theorem 1.2, the other solution is

u2(t) =
X
r

pre
zrt + c

tZ
0

u1(s)
X
r

ezr(t−s)

h0 (zr)
ds (2.22)

which after substituting (2.21) in (2.22), we get

u2(t) =
X
r

Ã
pr −

X
v

cnv
(λv − zr)h0 (zr)

!
ezrt +

X
v

X
r

cnv
(λv − zr)h0 (zr)

eλvt

Then if we call Γr = pr −
X
v

cnv
(λv−zr)h0(zr) and Υv =

X
r

cnv
(λv−zr)h0(zr) we obtain exactly (2.19).

Observe that the requirement of a triangular matrix is crucial in the context of functional

differential equations since it is never possible, given the presence of (infinite) complex roots

to transform (through a change of variables) a non triangular into a triangular Jacobian.

Moreover, we underline till now that the requirement of triangularity is important both in

checking transversality conditions explicitly and in writing the general continuous solution

of the main variables of our economy7 in closed form. In the following section, we study

a Ramsey model with endogenous labour supply with time to build. In order to do that,

we proceed as follows: first we study an "auxiliary" Jacobian which is the original Jacobian

when one of the coefficient out of the main diagonal has been replaced by a zero. Then we

extend the results by considering small variation of that coefficient from zero.

2.3.3 The Ramsey model with time to build and endogenous labor supply

The Ramsey model is simply a special case of the Benhabib Farmer model when there

are no externalities, namely α = a and β = b.

Proposition 2.7 If τ ∈
h
0, 3π

2[a(1−λ2)A−δ]

´
then the equilibrium of a Ramsey model with en-

dogenous labor supply exists and is unique.

7If the assumption of triangularity is ruled out is still possible to prove the existence and uniqueness of
the general continuous solution but not the explicit shape of it.
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Proof. Consider the "auxiliary" Jacobian8

J̃ =

Ã
[a(1− λ2)A− δ] e−zτ (λ2 − 1)A+ δ

0 ρ− [a(1− λ2)A− δ] ezτe−ρτ

!

whose characteristic equation is

h̃ (z) =
£
z − [a(1− λ2)A− δ] e−zτ

¤| {z }
A

·
£
z − ρ+ [a(1− λ2)A− δ] ezτe−ρτ

¤| {z }
B

The spectrum of roots of h̃ (z) is given by all the roots of A and B. Consider first A. By

applying the D-Subdivision method we find that for τ ∈
h
0, 3π

2[a(1−λ2)A−δ]

´
, the spectrum of

roots of A is characterized by all the roots with negative real part but one positive, call it

zr̃. In particular, observe that

a(1− λ2)A− δ = −λ2 (ρ+ δeρτ) + ρ+ (eρτ − 1) δ > 0

since λ2 < 0 and eρτ > 1. Now look at B. B is equal to A after the transformation

w = −z + ρ. Then, B have all the roots with positive real part but one negative, call it λṽ,

in the considered interval of τ . Moreover, taking into account Theorem 2.6, we can write

the solutions as

k(t) '
X
r

Γre
zrt +

X
v

Υve
λvt

c(t) '
X
v

nve
λvt

Now we have to check the transversality conditions (2.14), in order to get optimality. Taking

into account the previous consideration on the spectrum of roots, and assuming for now

only one positive root coming from the law of motion of capital, we have that transversality

conditions hold if and only if

nv = 0 ∀v 6= ṽ (2.23)

nṽ = [(1− λ2)A− δ] pr̃ (zr̃ − λṽ)h
0 (zr̃) (2.24)

where the last requirement, which is equivalent to Γr̃ = 0, is fundamental in order to rule

out the root with positive real part coming from the law of motion of capital. Then we can

8We consider lower triangularity otherwise the transversality condition should be verified only in the case
that all the roots coming from the law of motion of capital have negative real part.
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write the optimal general solution

k(t) =
X
r 6=r̃

pre
zrt +

X
r

[(1− λ2)A− δ]2 pr̃ (zr̃ − λṽ)h
0 (zr̃)

(zr − λṽ)h0 (zr)
eλṽt (2.25)

c(t) = [(1− λ2)A− δ] pr̃ (zr̃ − λṽ)h
0 (zr̃) e

λṽt (2.26)

and since the residues {pr} and {nv} are uniquely determined by the boundary condition of
capital and the transversality condition through (2.23), (2.24), we have that the equilibrium

is locally determinate.

How these results change for a small variation of the zero coefficient9 in J̃? In that case

the new characteristic equation is

h (z) = h̃ (z)− aε [A− a (δ + ε)] e−ρτ

Since ρ is usually assumed small, the h̃ (z) can be considered an "almost" even function and

then any small shift of the x-axis let the number of roots having positive and negative real

part invariant10 and then the dynamic behavior of the economy.

From an economic point of view is also really interesting to observe how Hopf bifurcation

may rise in this context, confirming the prediction in Asea and Zak [1] and Rustichini [27].

Remark 2.8 Hopf bifurcation rises when τ = 3π
2[a(1−λ2)A−δ] .

Proof. According to the D-Subdivision method when τ = τ ∗ = 3π
2[a(1−λ2)A−δ] two roots

which have negative real part in the interval τ ∈
³
0, 3π

2[a(1−λ2)A−δ]

´
become purely imaginary

and then positive in the interval τ ∈
³

7π
2[a(1−λ2)A−δ] ,∞

´
. Then in τ ∗ we have all the roots

with negative real part but two purely imaginary, since all the (other) roots with positive

real part are ruled out by transversality condition through (2.23) and (2.24). Then according

to Kolmanovskii and Myshkis ([24], Chapter 3, page 183) we have Hopf bifurcation since all

the following conditions are verified

a) if τ < τ ∗ all the roots have (after transversality condition) negative real part;

b) z1,2 (τ)|τ=τ∗ = ±iw0, w0 > 0;

c) Through the D-Subdivision method follows immediately that

dRe z1,2 (τ)

dτ

¯̄̄̄
τ=τ∗

> 0, Re zj (τ)|τ=τ∗ < 0 (j > 2)

9It is easy to check that a Ramsey model have a lower triangular Jacobian when a value of χ equal to
zero is assumed. That is the so-called Gary Hansen model [17].
10A similar argument is invoked by Rustichini [27].
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2.3.4 The Benhabib and Farmer model with time to build

Now we focus on the Benhabib-Farmer model. The analysis in the case of "mild" exter-

nalities, namely β ∈ (b, 1− χ), leads to results very close to those obtained in the previous

section for a continuity argument. On the other hand, we cannot use the D-Subdivision

method in order to study the dynamics in the case β ∈ [1− χ,∞) since β = 1 − χ is a

discontinuity point for the characteristic equation of system (2.17)11.

Then we proceed as follows. Given any transcendental characteristic equation ∆(z), by

expanding all exponents in Taylor series we obtain

∆̃ (z) =
∞X
j=0

ajz
j (2.27)

As observed by Kolmanovskii and Myshkis [24] (Chapter 4, page 240-241) the zeroes of ∆(z)

coincide with those of ∆̃ (z);12 hence we can deduce the stability properties of our system

(2.17) by making a n-order Taylor approximation of the exponential terms in h(z) and then

studying the sign of the roots of the polynomial h̃(z) of degree j. In the following, we propose

a numerical exercise where we study the stability properties of our system for different values

of the marginal product of labor, β, and the delay coefficient, τ , given an approximation

of order n = 8 and then a characteristic polynomial of degree j = 14.13 Moreover, we have

assumed capital’s share, a, at 0.34, labor’s share, b, at 0.66, marginal product of capital,

α, at 0.83, the discount rate at 0.02, the depreciation rate at 0.05, and the parameter χ

at −0.25. Given this parametrization, it is possible to calculate the full spectrum of the

eigenvalues which are the zeros of the j-order polynomial obtained by Taylor expanding the

exponents in h(z). Moreover since the only state variable is capital, the economy will face

local determinacy when the number of roots having negative and positive real part are equal.

On the other hand if the number of roots having negative real part or positive real part is

higher then the equilibrium will be local indeterminate or local unstable respectively. In

Appendix A4, we have reported the spectrum of roots according to different parametrization

of the marginal product of labor and the delay coefficient. In the following graph we have

summarized the dynamics properties of the equilibrium of the economy.

11Remember that the D-Subivision method requires that all the coefficients of the characteristic equation
vary continuously, otherwise it may be that a change in the sign of some roots happen without passing
through zero. This is exactly what happens in the Benhabib Farmer model as clearly shown in Figure 2 and
3 of their article [6].
12To be precise, let ∆(z) = e−zhpq∆̃ (z) where hpq = max

l,j
hlj . In the case under analysis ∆ (z) =

e−zτ ∆̃1 (z) e
zτ ∆̃2 (z) + c = ∆̃ (z), where c ∈ R.

13The critical values under which there is a change in stability have been controlled for a higher choice of
n. In particular we have tried with n = 12 and then j = 22.
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Figure 2.1: Dynamic behavior of the economy for different choice of (τ , β).

From Figure 2.1, some considerations rise. First of all, the local determinacy for the

case of "mild" externalities is confirmed for any choice of the delay coefficient between 0 and

15. Given a value for the marginal product of capital higher than 1 − χ, the presence of

local indeterminacy is confirmed even in the case of time to build but it depends crucially

on the choice of the delay coefficient. In particular, given a value of the marginal product of

capital higher than 1− χ, the equilibrium is locally indeterminate in the interval τ ∈ [0, τ̃)
with τ̃ close to τ ∗ when β is closed to 1 − χ. On the other hand, if the delay coefficient

τ ∈ (τ̃ ,∞) this is no more since a couple of conjugate complex roots, having negative real
part, becomes positive. It is also worth noting that τ = τ̃ is an Hopf bifurcation point since

all the requirements in Remark 2.8 are respected.14

Moreover, we have studied how different choice in the marginal product of capital affects

the dynamics of the economy by changing the sign (in a no-continuous manner) of some of

the roots of the spectrum reported in Appendix A4. In particular, we report in Figure 2.2,

14Observe that such requirements are not respected when we pass from the region of local determinacy to
the region of local instability since the changing in the sign of roots happens in a not continuous way.
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the roots which modify their sign when we set β in a neighbors of 1 − χ for a choice of τ

equals to 0.01.

0 1.25 3
β

       positive real part
       negative real part

zn,m  conjugate
complex roots

zi,k  conjugate
 complex roots

zi  real

zk  real

zn,m  conjugate
complex roots

Figure 2.2: Behavior of the roots changing their sign at β = 1− χ and τ < τ̃ .

Figure 2.2 shows what happens to some roots around the critical value β = 1 − χ for

a choice of τ ∈ [0, τ̃). In particular, a couple of conjugate complex roots, zi,k split in one
positive, zi, and one negative, zk, root while another couple zn,m change the sign of their

real part (from positive to negative). All the signs of the other roots remain unchanged. It

is also possible to observe that for higher choices of τ , the changing in sign of the roots zn,m
happens for choices of β to the right of 1− χ. This is the reason according to which we can

display local instability as reported in Figure 2.2.

2.4 Conclusions

We have studied a Benhabib Farmer model in order to analyze the effect of the time

to build assumption on the dynamic behavior of the economy. In a first moment, we have

focused on a simpler Ramsey model with endogenous labor supply, and we have proved
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that the dynamic behavior of the economy around the steady state remains of "saddle-path"

type. By a continuity argument, the same dynamic behavior is displayed by a Benhabib and

Farmer model when "mild" externalities are assumed. As explained previously, the same

argument cannot be adopted for "higher" externalities, and then the dynamic behavior of

the economy is studied numerically. Presence of local indeterminacy, Hopf bifurcation and

even local instability appear strictly related to the choice of the marginal product of capital

and the delay coefficient.
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2.5 Appendix A: Some proofs

Proof of Lemma 2.2. We start with the case λ2 > 0. We can observe immediately

that

λ2 > 0⇐⇒ β > 1− χ.

But then given the assumptions α ∈ (0, 1) and χ ≤ 0, follows immediately that

λ2 > 0⇐⇒ λ1 + λ2 =
(α−1)(χ−1)
β+χ−1 > 0,

λ2 > 0 =⇒ 1 + λ1 =
α(χ−1)
β+χ−1 < 0.

Now we analyze the case λ2 < 0.We can observe immediately that

λ2 < 0⇐⇒ β < 1− χ.

But then given the assumptions α ∈ (0, 1) and χ ≤ 0, follows immediately that

λ2 < 0⇐⇒ λ1 + λ2 =
(α−1)(χ−1)
β+χ−1 < 0,

λ2 < 0 =⇒ 1 + λ1 =
α(χ−1)
β+χ−1 > 0.

and then we have proven all the relations between λ2, λ1+λ2 and 1+λ1. Moreover since

we can write λ1 as follows:

λ1 =
α(χ−1)
β+χ−1 − 1 = λ1 =

α(χ−1+β−β)
β+χ−1 − 1 = −αλ2 + α− 1,

then we’ll have that if

λ2 ∈
£
α−1
α
,+∞

¢
=⇒ λ1 ≤ 0,

λ2 ∈
¡
−∞, α−1

α

¢
=⇒ λ1 > 0,

Proof of Proposition 2.1.We need to prove that both dks
dτ
and dcs

dτ
are negative. First

of all we’ll have that:
dks
dτ

=
A0 (τ)

λ1 + λ2

½
(1− λ2)A (τ)− δ

A (τ) [A (τ)− δ]

¾
now since A (τ) > 0, A0 (τ) = ρ2

a
eρτ > 0 and A (τ) − δ

(2.16)
> 0 then sign

¡
dks
dτ

¢
depends

exclusively on λ2. If λ2 < 0 then (1− λ2)A (τ)−δ > 0 but for Lemma1, λ1+λ2 < 0 and then
dks
dτ

< 0. On the other hand if λ2 > 0, since 1−λ2 < 0, we’ll have that (1− λ2)A (τ)− δ < 0

but this time λ1 + λ2 > 0 and then dks
dτ

< 0.
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Now we’ll study the sign
¡
dcs
dτ

¢
in order to do that we put (2.15) into (2.16) and then we

take the derivative respect to τ :

dcs
dτ

=
A0 (τ)

λ1 + λ2

½
(1 + λ1)A (τ)− δ

A (τ) [A (τ)− δ]

¾

as before the sign
¡
dcs
dτ

¢
depends exclusively on λ2. In fact if λ2 > 0, since 1 + λ1

L1
< 0,

we’ll have (1 + λ1)A (τ) − δ < 0 but λ1 + λ2
L1
> 0 and then dcs

dτ
< 0. On the other hand

suppose that λ2 < 0, if we prove that (1 + λ1)A (τ)− δ > 0 since λ1 + λ2
L1
< 0 then dcs

dτ
< 0.

In order to prove that (1 + λ1)A (τ)− δ > 0 we distinguish the following two cases:

λ2 ∈
¡
−∞, α−1

α

¢ L1
=⇒ λ1 > 0 =⇒ A (1 + λ1)− δ > A− δ

(2.16)
> 0

λ2 ∈ (α−1
α
, 0)

L1
=⇒ A (1 + λ1)− δ > 0

where the last relation is obtained by studying the limit case λ2 → 0−. In fact if

λ2 → 0
L1
=⇒ 1 + λ1 → α =⇒ Π2 → αA− δ > aA− δ = ρeρτ > 0.

2.6 Appendix B: Linearization around the steady state

We show how to obtain the Jacobian starting from the DDE for capital and the ADE

for consumption. In order to simplify the algebra we rewrite the two functional differential

equations as follows:

k̇(t) = ef(k(t),k(t−τ))
©
eg(k(t−τ),c(t)) − δ

ª
− eh(k(t),c(t)),

ċ(t) = ev(c(t),c(t+τ))
©
aeg̃(k(t),c(t+τ)) − δ

ª
− ρ,

and we’ll use the following notation:

eλ0+λ1ks+λ2cs =
δ + ρeρτ

a
≡ A, (2.28)

ecs−ks =
δ + ρeρτ

a
− δ ≡ A− δ. (2.29)
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Now we calculate the following derivative15:

∂k̇(t)

∂k(t)
≡

h
∂

∂k(t)
f(k(t), k(t− τ))

i
ef(k(t),k(t−τ))

©
eg(k(t−τ),c(t)) − δ

ª
+ef(k(t),k(t−τ))

h
∂

∂k(t)
g(k(t− τ), c(t))

i
eg(k(t−τ),c(t))

−
h

∂
∂k(t)

h(k(t), c(t))
i
eh(k(t),c(t))

=
¡
e−zτ − 1

¢
ek(t−τ)−k(t)

©
eλ0+λ1k(t−τ)+λ2c(t) − δ

ª
+

ek(t−τ)−k(t)λ1e
−zτeλ0+λ1k(t−τ)+λ2c(t) + ec(t)−k(t),

and then

∂k̇(t)

∂k(t)

¯̄̄̄
¯
s.s.

=
¡
e−zτ − 1

¢ ¡
eλ0+λ1ks+λ2cs − δ

¢
+ λ1e

−zτeλ0+λ1ks+λ2cs + ecs−ks,

and taking into account the relations (2.28) and (2.29) we’ll have finally:

∂k̇(t)

∂k(t)

¯̄̄̄
¯
s.s.

= e−zτ (A− δ + λ1A) . (2.30)

Now we search for

∂k̇(t)

∂c(t)
≡ ef(k(t),k(t−τ))

h
∂

∂c(t)
g(k(t− τ), c(t))

i
eg(k(t−τ),c(t)) −

h
∂

∂c(t)
h(k(t), c(t))

i
eh(k(t),c(t))

= λ2e
λ0+λ1k(t−τ)+λ2c(t) − ec(t)−k(t),

and then in steady state we get:

∂k̇(t)

∂c(t)

¯̄̄̄
¯
s.s.

= λ2A−A+ δ. (2.31)

Now we pass to find

∂ċ(t)

∂k(t)
≡ ev(c(t),c(t+τ))

h
∂

∂k(t)
g̃(k(t), c(t+ τ))

i
aeg̃(k(t),c(t+τ))

= e−ρτ+c(t)−c(t+τ)aλ1e
λ0+λ1k(t)+λ2c(t+τ),

and then in steady state we get:

∂ċ(t)

∂k(t)

¯̄̄̄
s.s.

= e−ρτaλ1A. (2.32)

15We search for a solution of type c(t) = k(t) = ezt and then we have the following relations k(t − τ) =
ez(t−τ) and c(t+ τ) = ez(t+τ)
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At last we calculate:

∂ċ(t)

∂c(t)
≡

h
∂

∂c(t)
v(c(t), c(t+ τ))

i
ev(c(t),c(t+τ))

©
aeg̃(k(t),c(t+τ)) − δ

ª
+

ev(c(t),c(t+τ))
h

∂
∂c(t)

g̃(k(t), c(t+ τ))
i
aeg̃(k(t),c(t+τ))

= (1− ezτ) e−ρτ+c(t)−c(t+τ)
©
aeλ0+λ1k(t)+λ2c(t+τ) − δ

ª
+

e−ρτ+c(t)−c(t+τ)aλ2e
λ0+λ1k(t)+λ2c(t+τ),

and then in steady state we get

∂ċ(t)

∂c(t)

¯̄̄̄
s.s.

= −(aA− δ − aλ2A)e
−ρτezτ + (aA− δ)e−ρτ , (2.33)

and then taking into account (2.30),(3.2),(2.32), and (2.33) we can construct the Jacobian

(2.17).

The trace and the determinant of (2.17) are given by16:

Tr(J) = (A− δ + λ1A)e
−zτ − (aA− δ − aλ2A)e

−ρτezτ + (aA− δ)e−ρτ , (2.34)

Det(J) = (A− δ + λ1A)(aA− δ)e−ρτe−zτ − (A− δ)(aA− δ − aλ2A)e
−ρτ (2.35)

+λ1A(1− a)δe−ρτ .

2.7 Appendix C: Roots of ∆̃ (z)

All the numerical results are obtained using MatLab and given the parametrization re-

ported in Section 2.3.4. We report in the following only a subset of the whole numerical

simulations for space reasons. More tables available under request.

16As we expected, we can obtain the same BF results for trace and determinant just assuming the delay
equal to zero.
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Delay coefficient 0.01

1.1 1.24 1.26 1.3 1.4 1.6 3
0.90 10.23 381.15 616.28 788.31 925.61 1155.5

817.01431.78i 539.12279.12i 609.44 778.39 918.9 1041 1285.5
704.13530.18i 363.57391.83i 345.99487.98i 434.88626.89i 507.74743.46i 570.49845.37i 695.141050.9i
100.39877.98i 82.848576.65i 199.76609.69i 283.8753.53i 357.95876.85i 420.87981.47i 530.051164i
-104.551022.9i -89.60664.48i -166.74546.69i -231.69665.6i -294.87772i -352.53867.84i -471.381065.7i
-568.1466.94i -281.12375.76i -394.48563.21i -495.38723.54i -576.28854.84i -642.68963.96i -755.521151.5i
-949.33505.48i -619.93323.14i -19,56 -27,91 -0.86 -0.34 -0.030.02i

-0.017 -0.018 -0.018 -0.018 -0.019 -0.02
-238.9 -480.12 -643.09 -776.2 -1032.9
-701.18 -894.96 -1052.3 -1182.3 -1404.6

Delay coefficient 0.5

0.49 0.90 1.03 1.43 3.64 6.05 9.28
9.044.64i 6.02  3.04i 6.75 8.59 10.10 11.41 14.02

5.32  7.4846i 3.01  8.28i 4.01  5.29i 4.95  6.82i 5.79  8.06i 6.50  9.12i 7.88  11.26i
1.5188  9.57i 1.67  5.98i 2.80  8.72i 2.81  9.54i 3.14  10.51i 3.58  11.44i 4.52  13.12i
-1.63  11.20i -1.31  7.04i 0.56  5.56i 0.57  4.48i -0.61  2.34i -3.10  10.43i -3.99  12.19i
-4.01  7.55i -2.92  8.42i -2.84  8.56i -2.74  8.94i -2.8  9.65i -7.32  10.37i -8.56  12.32i

-10.48  5.42i -6.91  3.51i -4.53  6.14i -5.66  7.86i -6.58  9.23i -0.78 -0.034  0.02i
-0.016 -0.017 -0.017 -0.017 -0.018 -0.019

-7.77 -9.86 -11.56 -12.94 -15.31
-3.04 -7.61
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Delay coefficient 1

1.1 1.24 1.26 1.3 1.4 1.6 3
0.35 0.49 0.52 0.59 0.90 1.92 3.64

4.07  2.08i 2.72  1.37i 3.04 3.87 4.55 5.14 6.30
2.17  3.74i 1.47  4.19i 1.83  2.39i 2.24  3.05i 2.62  3.62i 2.94  4.09i 3.57  5.05i
0.76  4.25i 0.81  2.76i 1.42  4.30i 1.38  4.53i 1.44  4.91i 1.58  5.29i 1.94  6.01i
-0.77  5.02i -0.66  3.19i 0.22  2.75i 0.33  2.62i 0.18  1.92i -1.43  4.87i -1.73  5.60i
-1.68  3.89i -1.45  4.23i -1.43  4.26i -1.39  4.35i -1.37  4.57i -0.37  1.06i -3.88  5.53i
-4.73  2.43i -3.12  1.58i -2.06  2.76i -2.57  3.53i -2.98  4.15i -3.32  4.66i -0.042  0.008i

-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -2.76
-3.51 -4.45 -5.21 -5.83 -6.90

Delay coefficient 5

0.12 0.13 0.13 0.13 0.13 0.14 0.22
0.64  0.32i 0.42  0.21i 0.48 0.60 0.71 0.80 0.99
0.31  0.81i 0.29  0.84i 0.29  0.38i 0.36  0.47i 0.41  0.55i 0.46  0.63i 0.56  0.78i
0.17  0.63i 0.14  0.47i 0.28  0.85i 0.28  0.86i 0.27  0.88i 0.27  0.92i 0.29  1.01i
-0.13  0.77i -0.13  0.52i 0.023  0.50i 0.045  0.55i 0.06  0.55i 0.067  0.51i -0.005  0.28i
-0.29  0.83i -0.28  0.84i -0.28  0.84i -0.28  0.85i -0.28  0.86i -0.27  0.87i -0.28  0.95i
-0.75  0.38i -0.49  0.25i -0.33  0.44i -0.41  0.55i -0.48  0.65i -0.53  0.73i -0.62  0.87i

-0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
-0.56 -0.71 -0.82 -0.93 -1.09
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CHAPTER 3

WELFARE RANKING OF NON-MONOTONIC PATHS IN

ONE-SECTOR GROWTH MODELS WITH NON-CONVEX

TECHNOLOGY.

3.1 Introduction

Despite the concavity of the utility function, Christiano and Harrison [3] have estab-

lished that increasing volatility of labor may raise welfare in economies with non-convex

technology sets à la Benhabib and Farmer [1]. In absence of any productive externality,

fluctuations in consumption and labor are welfare-diminishing compared to a smooth con-

sumption/investment plan when the utility function is concave. However, in the presence

of productive externality, the welfare loss implied by fluctuations may be more than com-

pensated by the gain inherited from the increasing returns to scale: for a given capital

stock, by bunching hard work, agents are able to increase the average level of consumption

without raising the average level of labor. When dis-utility of labor does not raise dispro-

portionately compared to the additional utility procured by consumption, this “bunching"

effect dominates the first negative “concavity" effect and makes the agents better-off. Thus,

when the steady state equilibrium is locally indeterminate, that is when there is multiplic-

ity of deterministic equilibria around the steady state, stochastic sunspot equilibria may be

welfare-improving.

In the literature the possibility of stabilizing an economy characterized by local inde-

terminacy has been analyzed in such a framework by Guo and Lansing [5].1 However, no

much attention has been dedicated to the choice of the best equilibrium path on which sta-

bilize the economy. It is clear, from Christiano and Harrison’s estimates, that a stabilizing

policy can make the agents worse-off when expectations are pinned down on a suboptimal

path. From Pareto’s criterion viewpoint, any (decentralized) deterministic equilibrium path

of Benhabib and Farmer’s economy is not efficient as long as agents do not internalize the

externality of production. Nevertheless, from a welfare viewpoint, these deterministic equi-

1Economic policy constructed to stabilize the economy by minimizing the variance of output have also
been analyzed in models in which the level of externality required to get indeterminacy is less stringent than
in the current framework. See for instance Guo and Harrison [4] and Sims [2005].
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3.1. INTRODUCTION 56

libria do not display the same level of utility: the optimization programme fails to determine

which of them provides the maximum amount of welfare since they all satisfy the first order

conditions and the transversality condition. Thus, when agents jump from one path to an-

other, the stochastic equilibrium so obtained may increase their welfare provided they leave

a welfare-dominated deterministic path for a welfare-improving deterministic path.

In this paper a welfare ranking of the different deterministic equilibria in an exogenous

growth model with non-convex technology and presence of local indeterminacy is studied.

In the continuity of Christiano and Harrison [3] who determined that a stochastic equilib-

rium may be welfare-improving for agents, we look for the conditions under which a change

in the deterministic path chosen by the agents is welfare-improving. The starting value of

consumption and the speed of capital accumulation (or equivalently the monotonicity of the

consumption/investment plan) determine simultaneously the desirability of a change in the

equilibrium path. Actually, these two components allow us to establish which one of the two

effects described by Christiano and Harrison dominates according to the level of increasing

returns to scale. Since all eigenvalues have strictly negative real part, the model exhibits

local indeterminacy, that is a region of stability in which equilibrium paths converge to the

steady state. According to the Grobman-Hartman theorem, this local stability implies the

preservation of the topological properties of the system under linearization in a neighborhood

of the steady state. Moreover, for a given initial stock of capital, Russell and Zecevic [6]

determined the range of values of initial consumption lying in the region of attraction when

a Benhabib and Farmer model [1] is considered. Then, taking into account these analytical

results we have proposed two approaches. In the first one, we restrict the analysis to the

equilibria converging monotonically to the steady state when the lowest level of increasing

returns required to get indeterminacy is chosen. Then, we determine analytically the opti-

mal starting value of consumption within this set of deterministic equilibria using a linear

approximation of the dynamical system and the utility function around the steady state.

In the other approach, we continue a local analysis but through numerical methods we are

able to enlarge the range of initial conditions and the possible values of the externalities:

these changes let us to consider also paths in the neighborhood of the steady state which

do not converge monotonically to the steady state and are able to determine more precisely

the value of the optimal starting condition of consumption and the optimal behavior of the

consumption/investment plan within the attracting set.

Finally, the aim of the paper is to rank the different deterministic equilibria in terms of

welfare according to the initial level of consumption in the neighborhood of the local indeter-

minacy steady state when a stabilization policy is introduced. In particular we will assume
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3.2. MODEL SETUP 57

that the government can pin down expectations on one of the deterministic equilibria; this

can be done by fixing the rental rate on capital or the real wage at any period (see Saïdi

[8]).Then, it will be shown that the (decentralized) optimal welfare equilibrium displays a

path all the less monotonic and an initial level of consumption all the higher since increasing

returns to scale are high. Bunching hard work in the very first periods makes capital accu-

mulation faster. In the next periods, agents can benefit from the high level of capital stock by

maintaining a high level of consumption but decreasing labor significantly. When increasing

returns are high enough, reaching the optimal capital stock requires few time, which explains

the non-monotonicity of the equilibria during the first periods. However, when increasing

returns are close to the condition of indeterminacy, bunching hard work in the first periods

is not sufficient to accumulate a sufficient amount of capital stock, which would require large

levels of labor and a loss of welfare that next periods consumption cannot offset. Thus, when

increasing returns to scale are not high enough, a (second best) optimal policy should pin

down expectations such that agents would rather smooth their consumption and labor paths

and accumulate progressively in order to maximize their welfare.

In the second section, we will present briefly the main characteristics of Benhabib and

Farmer’s model, including uniqueness of the steady state equilibrium and the condition for

indeterminacy. In section 3, we will assume this condition satisfied and specify the set of

monotonic consumption paths for any values of the parameters. These results will be helpful

in establishing the welfare ranking of section 4 when we use a linear approximation of the

utility function and will be confirmed by the more general simulation method. Section 5 will

conclude.

3.2 Model Setup

3.2.1 Agents’ behavior

In this paper we analyze the welfare properties of different equilibrium paths of Benhabib

and Farmer’s model [1]. This deterministic continuous-time model with infinitely lived agents

is characterized by increasing social returns to scale due to externality in the aggregate

production function. However, the representative firm is assumed not to take into account the

externality of production and then faces a Cobb Douglas production function with constant

returns to scale at the micro-level.

Formally:

Y (t) = A(t)K(t)aL(t)b with 0 < a < 1, and a+ b = 1, (3.1)

A(t) = K̄(t)aγaL̄(t)bγb with γa, γb > 0, (3.2)
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where K̄ and L̄ represent the average economy-wide levels of capital and labor. In equilib-

rium, K = K̄ and L = L̄ and by making the parameters substitutions α = a(1 + γa) and

β = b(1 + γb), we get the aggregate production function:

Y (t) = K(t)αL(t)β,

which obviously exhibits increasing returns to scale. In the same time, the economy is

populated by a large number of identical consumers. As usual, firms maximize profit, which

breaks down because of the constant returns, while the representative consumer, owner of

the firms, faces the following optimal control problem:

∞Z
0

µ
logC(t)− L(t)1−χ

1− χ

¶
e−ρtdt,

subject to:

K̇(t) = (r(t)− δ)K(t) + w(t)L(t)− C(t).

3.2.2 Dynamical system and Steady state equilibrium

From the first order conditions and after some algebra, Benhabib and Farmer obtain the

following two nonlinear ordinary differential equations system:

k̇ = eμ0+μ1k+μ2c − δ − ec−k (3.3)

ċ = aeμ0+μ1k+μ2c − δ − ρ (3.4)

where x = lnX, μ0 =
−β ln b
β+χ−1 , μ1 =

(χ−1)(α−1)−β
β+χ−1 and μ2 =

β
β+χ−1 . It is worth noting that the

system represents the global dynamics of the economy.

Taking into account such dynamics, we determine the steady state of the system:

Remark 3.1 The steady state values of labor and consumption are respectively:

ks =
1

μ1 + μ2

∙
log

ρ+ δ

a
− μ2 log

ρ+ δ (1− a)

a
− μ0

¸
cs = log

ρ+ δ (1− a)

a
+ ks

ls =
cs − αks − log (b)

β + χ− 1

where the last one can be obtained by the labor demand and labor supply equations.
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Benhabib and Farmer show that, under the condition β − 1 + χ > 0, that is if the ag-

gregate labor demand curve is upward sloping and steeper than the labor supply curve, the

steady state equilibrium is indeterminate. In the neighborhood of such an equilibrium, there

exists a continuum of paths converging to it and then satisfying the first order conditions of

the optimal control programme, including the transversality condition. In this framework,

perfect foresight hypothesis, which usually leads to a unique equilibrium path, cannot dis-

criminate between the different paths: agents are allowed to switch from one path to another

at any period. However, in terms of welfare, these paths are not equivalent.

3.3 Local analysis

The results of this section are closely related to the classical Grobman-Hartman theorem

that states that, around an hyperbolic equilibrium, the flow of a nonlinear differential equa-

tion is topologically conjugate via an homeomorphism to the flow of its linear approximation.

It is clear from Benhabib and Farmer [1] that no eigenvalues crosses zero as the determinant

changes sign and the steady state becomes stable2. Then, the stationary equilibrium remains

hyperbolic even for the minimum degree of externality necessary for local indeterminacy. In

this section, after having linearly approximated the dynamics for capital and consumption,

we describe qualitatively the different equilibrium paths in term of monotonicity and we

study both analytically and numerically the welfare rank of the different equilibrium paths.

Finally the (second) best equilibrium path in term of welfare is selected through a sta-

bilization policy à la Saïdi [8] which is able to coordinate over time the agents on a given

deterministic path (see Appendix for more details).

3.3.1 Linearization

We proceed to a first order approximation of equations (3.3) and (3.4) around the de-

terministic equilibrium and express the general solution in terms of deviation of the two

variables k(t) and c(t) from their steady state values ks and cs, i.e. x̃(t) = lnX(t)− lnXs.

We get: "
k̃(t)

c̃(t)

#
'
"
η1v11 η2v12

η1v21 η2v22

#"
eλ1t

eλ2t

#
(3.5)

with

V = [ξ1 : ξ2] =

"
v11 v12

v21 v22

#
=

"
(1 + μ1)Ψ− δ − λ1 (1 + μ1)Ψ− δ − λ2

(1− μ2)Ψ− δ (1− μ2)Ψ− δ

#
, (3.6)

2To be precise the change in the stability of the equilibrium is related to the presence of a discontinuity in
the value of one of the eigenvalues as a function of the externality, namely λi (γb) with λi the i-eigenvalue.
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where Ψ ≡ (ρ + δ)/a and ξ1 and ξ2 are eigenvectors associated to the eigenvalues λ1 and

λ2, which can be obtained after computing the Jacobian of the system formed by equations

(3.3) and (3.4). Moreover, given a starting point [K(0), C(0)], we apply Cramer’s rule and

deduce:

η1 =
v22k̃(0)− v12c̃(0)

v11v22 − v12v21

η2 =
v11c̃(0)− v21k̃(0)

v11v22 − v12v21
.

3.3.2 Monotonicity of the equilibrium paths

In order to understand the economic implications of the welfare ranking of the equilib-

rium paths in term of consumption smoothness over time, we study in this subsection the

conditions on c(0) under which the path is monotonic. It is worth noting that monotonicity

can only appear when eigenvalues are real. In the following, we will assume without loss of

generality that λ1 < λ2 < 0.

Under the condition β − 1 + χ > 0 the stable manifold has dimension 2. We call stable

arms the two paths such that:

c̃(t) = ηiv2ie
λit, i = {1, 2}.

As shown in the Appendix, the starting log-values of consumption on the stable arms for a

given initial stock of capital K(0) are:

c0,ξ1 = cs + k̃(0)
v21
v11

(3.7)

c0,ξ2 = cs + k̃(0)
v22
v12

. (3.8)

The following proposition holds:

Proposition 3.2 For a given initial stock of capital K(0) < Ks (resp. K(0) > Ks), there

exists a strictly positive (resp. negative) ε∗ such that for c(0) ∈ [c0,ξ2 − ε∗, c0,ξ1] (resp.

[c0,ξ1 , c0,ξ2 − ε∗]) equilibrium paths of consumption are monotonic.

Proof. Monotonicity of consumption paths occurs provided the equation dc̃(t)/dt = 0

has no solution. This means that there is no t ∈ R+ such that:

η1z1v
1
2e

z1t + η2z2v
2
2e

z2t = 0. (3.9)
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Using the fact that v21 = v22:

t =
1

λ2 − λ1
ln

Ã
v22k̃(0)− v12c̃(0)

v21k̃(0)− v11c̃(0)

λ1
λ2

!
. (3.10)

A solution exists if and only if E ≡ v22k̃(0)−v12c̃(0)
v21k̃(0)−v11c̃(0)

> 0. Assume, for instance, that c(0) =

c0,ξ2 + ε. In this case relation E becomes

E =
−v212ε

[v12v21 − v11v22]k̃(0)− v11v12ε
,

where vij < 0 for any i, j = {1, 2} (as shown in Appendix).
If ε > 0, equation (3.10) has a solution if and only if [v12v21 − v11v22]k̃(0)− v11v12ε < 0,

that is for:

ε >

∙
v21
v11
− v22

v12

¸
k̃(0)

> c0,ξ1 − c0,ξ2,

or equivalently for:

c(0) > c0,ξ1 .

If ε < 0, equation (3.10) has a solution if and only if [v12v21 − v11v22]k̃(0)− v11v12ε > 0,

that is for:

ε <

∙
v22
v12
− v21

v11

¸
k̃(0)

< c0,ξ2 − c0,ξ1,

or equivalently for:

c(0) < c0,ξ2 − ε∗,

with ε∗ ≡ c0,ξ1 − c0,ξ2, which is positive (resp. negative) according to Appendix provided

K(0) < Ks (resp. K(0) > Ks).

Thus consumption paths have a monotonic behavior if and only if c0 ∈ [c0,ξ2 − ε∗, c0,ξ1 ]

for K(0) < Ks and c0 ∈ [c0,ξ1 , c0,ξ2 − ε∗] for K(0) > Ks.

A specific case with K(0) < Ks is reported in Figure 3.1.

3.3.3 Reformulation of the optimization programme

For a given initial stock of capital K(0), the optimal paths of consumption and capital

can be computed using equations (3.3) and (3.4). Then, optimal path of labor can be

computed using the following first order condition:

(β − 1 + χ)l(t) = c(t)− ak(t)− ln b. (3.11)
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Figure 3.1: Consumption dynamic behavior around the equilibrium.

Consequently, once the initial level of consumption C(0) has been chosen, agent’s welfare

can be derived. Searching the path making the agents better off consists of determining the

initial level of consumption that maximizes welfare:

max
C0

∞Z
0

µ
logC(t)− L(t)1−χ

1− χ

¶
e−ρtdt. (3.12)

Since U(cs, ls) is a constant, it must be noticed that our optimization programme (3.12) can

be rewritten as:

max
C0

∞Z
0

Ũ(c(t), l(t))e−ρtdt, (3.13)

where:

Ũ(c(t), l(t)) = U(c(t), l(t))− U(cs, ls),

and:

U(c(t), l(t)) = c(t)− el(t)(1−χ)

1− χ
.
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3.4 Paths Ranking of deterministic paths

When the dynamics is constrained to be linear, an analytical approach can be used to

determine approximatively within the set of possible values the initial level of consumption

maximizing welfare. However, the approximation error implied by such a technique requires

us to work in a small neighborhood of the steady state

The technique used by Benhabib and Farmer and which consists in linearizing the dy-

namical system and checking whether eigenvalues have negative real parts ensures that the

stationary equilibrium is asymptotically stable, that is locally attractive.

Moreover, Russell and Zecevic [6] has shown that it is possible to evaluate the region

of attraction for the Benhabib Farmer model: given the initial level of capital, it can be

computed the largest interval of values of the initial conditions of consumption such that the

stability properties of the linearized and nonlinearized system remain invariant.

Taking into account these results, we propose an analytical and a purely numerical

approach in order to make a welfare rank. In the first case we focus on the minimum degree

of externalities and on the set of monotonic paths; then the analysis is enlarged to any value

of the externalities and on all the equilibrium paths.

3.4.1 Welfare ranking of monotonic paths

3.4.1.1 Approximation method for β − 1 + χ close to zero

Applying total differentiation around the steady state [cs, ls] to equation (3.13), we get

the difference in welfare units between a given state and the steady state:

Ũ(c(t), l(t)) = c̃(t)− els(1−χ)l̃(t) (3.14)

= φ1
¡
η1v11e

λ1t + η2v12e
λ2t
¢
+ φ2

¡
η1v21e

λ1t + η2v22e
λ2t
¢
, (3.15)

with φ1 ≡ aels(1−χ)

β−1+χ and φ2 ≡ 1− els(1−χ)

β−1+χ . If we rearrange equation (3.15) and skip all (constant)

terms in k̃(0), the optimization programme becomes:

max
C0

∞Z
0

∙
−v12

φ1v11 + φ2v21
v11v22 − v12v21

eλ1t + v11
φ1v12 + φ2v22
v11v22 − v12v21

eλ2t
¸
c̃(0)e−ρtdt (3.16)

with c0 ∈ [c0,ξ2 − ε∗, c0,ξ1 ] and k0 very close and on the left respect to ks. Let F be the term

in brackets. It is straightforward that if F > 0 (resp. F < 0) the optimal value of c(0) < cs

is c0,ξ1 (resp. c0,ξ2 − ε∗) since c0,ξ2 < c0,ξ1 < cs.

With real eigenvalues, F becomes:

F = − v12(φ1v11 + φ2v21)

(ρ− λ1)(v11v22 − v12v21)
+

v11(φ1v12 + φ2v22)

(ρ− λ2)(v11v22 − v12v21)
.
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For the lowest levels of increasing returns insuring indeterminacy, that is for β − 1 + χ

close to 0, it can be shown that F tends to F̄ (look at the Appendix) with:

F̄ = − els(1−χ)

(β − 1 + χ)(ρ− λ̄2)

µ
1− a

v12
v22

¶
. (3.17)

Then the following proposition holds:

Proposition 3.3 ForK(0) < Ks, Ũ(c(t), l(t)) is always strictly positive for monotonic paths

of consumption with absolute maximum at c0,ξ2 − ε∗ when β tends to 1−χ. For K(0) > Ks,

Ũ(c(t), l(t)) is always strictly negative for monotonic paths of consumption with absolute

maximum at c0,ξ1 when β tends to 1− χ.

Proof. Assume that k(0) < ks. According to Proposition 1 monotonic paths are such

that c(0) ∈ [c0,ξ2−ε∗, c0,ξ1 ]. Since
v12
v22
= 1+ (μ1+μ2)Ψ−λ

(1−μ2)Ψ−δ
< 1 and 1−a > 0, it is straightforward

to see that F̄ < 0. Then representative agent’s welfare can be maximized by minimizing

c̃(0), that is for C(0) = c0,ξ2 − ε∗. According to equation (3.16), since F̄ < 0 and c̃(0) < 0,

representative agent’s welfare is strictly positive.

Assume that k(0) < ks. According to Proposition 1 monotonic paths are such that

c(0) ∈ [c0,ξ1 , c0,ξ2 − ε∗]. It has been showed that F̄ < 0 then agent’s welfare is negative and

can be maximized by maximizing c̃(0), that is for C(0) = c0,ξ1 .

3.4.1.2 Economic arguments

A government which wants to maximize welfare and is able to pin down expectations

on a given path through a stabilization policy, has an incentive to coordinate consumers’

expectations on a c(0) as far as possible to cs given an initial capital k(0) on the left hand

side of its steady state value, and on a c(0) as close as possible to cs when k(0) is on the

right hand side of its steady state value.

For k(0) < ks and β − 1 + χ close to zero, log-deviations of consumption, capital and

labor are negative and evolve monotonically (approximately) at the same rate λ̄2:

c̃(t) ∼ c̃(0)eλ̄2t

k̃(t) ∼ a
v12
v22

c̃(0)eλ̄2t

l̃(t) ∼ 1

β − 1 + χ

µ
1− a

v12
v22

¶
c̃(0)eλ̄2t.

Log-deviation of welfare at the initial state is positive and decreases monotonically to zero as

t tends to infinity. Instantaneous utility remains higher for the lowest levels of consumption

(and labor) at any time.
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In the presence of increasing returns to scale, agents have two alternatives for their

consumption/investment plans. Either for large levels of increasing returns to scale they start

with the highest level of consumption, investment and labor, accumulate rapidly capital then

benefit from this accumulation for the rest of the time (since labor can decrease faster than

consumption). Whereas for smaller levels of increasing returns, high levels of consumption

and investment require extremely high levels of labor, which deteriorates welfare compared

to more balanced levels of consumption. This last alternative is the one computed above:

agents are better off when they choose an initial level of consumption equal to c0,ξ2 − ε∗.

It would be interesting to enlarge the set of possible initial conditions in order to check

whether or not the agents have interest to choose a non-monotonic equilibrium path, whose

starting value of consumption would be higher or lower than c0,ξ1 and c0,ξ2− ε∗, respectively.

This is the objective of the next subsection.

3.4.2 Welfare-ranking of non-monotonic equilibria

Until now our analysis has focused on the set of monotonic paths. In this section, we

relax the linear approximation of the utility function. Derivations are more complex and

require to switch to the numerical analysis. In the same time, we can consider a larger set

of initial conditions, including the trajectories that do not converge monotonically to the

steady state, and compute formally the (second best) optimal initial level of consumption

which may lay outside the range [c0,ξ2−ε∗, c0,ξ1]. Then, we draw some qualitative predictions
on the relation between the initial level of consumption and the level of increasing returns.

Especially, it will be shown that the higher the increasing returns to scale the higher the

welfare maximizing initial level of consumption. And then, according to Proposition 2, we

can conclude that the higher the level of increasing returns the less smooth the maximizing

welfare paths of consumption, labor and investment.

3.4.2.1 Simulation methods

Now we are interested in understanding the effect of a change in the initial level of

consumption on the welfare for paths which are not monotonic. In Proposition 1, we have

observed that according to the choice of C(0) consumption converges more or less monoton-

ically to its steady state value. This implies that different feasible equilibrium trajectories

present different degrees of consumption smoothness.

Our problem is to identify what is the best among the welfare optimizing equilibrium

trajectories. Moreover, we are interested in understanding if this trajectory has a high degree
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of consumption smoothness respect the others. In order to solve our problem we proceed as

follows. First, we substitute approximated log-value of consumption into the utility function:

W =
c∗

ρ
− η1v21

λ1 − ρ
− η2v22

λ2 − ρ
−

∞Z
0

L(t)1−χ

1− χ
e−ρtdt.

Then, for different initial values of consumption, we compute the level of labor L(t) at any

period using equation (3.3), (3.4) and (3.11), and compute numerically the agent’s welfare

W .We have parameterized the economy as follows: capital’s share, a, at 0.34, marginal

product of capital, α, at 0.83, the discount rate at 0.02, the depreciation rate at 0.05, and

the parameter χ at −0.25. Moreover we have studied the dynamics starting from an initial

value of capital k0 = k∗ − k∗/100 and considered initial value of consumption as percentage

variation of its steady state value. All the choices of the initial values are checked to be in

the attraction set3. In Figure 3.2, we have sketched the results for the minimum level of

productive externality γb satisfying the condition for indeterminacy, which implies β = 1.251.

It must be noticed that for readability purpose a zero value has been imposed to any negative

welfare values.

These results confirm Proposition 2 which predicts that within the set of monotonic

paths, the maximizing welfare equilibrium starts with an initial level of consumption c(0) =

c0,ξ2−ε∗. It is also interesting to notice that even if we enlarge the range of initial conditions,
the maximum welfare is reached by agents when they choose a path with the highest degree

of consumption smoothness.

However, for a choice of β = 1.66, that is when the economy faces a higher level of

externalities, the maximum welfare is reached for an initial level of consumption outside the

range [c0,ξ2 − ε∗, c0,ξ1 ], meaning that the optimal path is non-monotonic and the degree of

consumption smoothness lower. It is clear, from Figure 3.4, that the maximizing welfare

path’s degree of consumption smoothness decreases as the level of increasing returns to scale

raises.

3.4.2.2 Economic arguments

In optimal growth model à la Benhabib and Farmer with social increasing returns to scale

and productive externalities, Christiano and Harrison [3] distinguish two effects affecting the

consumption/investment plans. For a given technological coefficient (a given productive ex-

ternality), the concavity of the utility function prevents from fluctuations which deteriorate

3Taking into account table1 in Russell and Zecevic (1998) it is, for example, possible to observe that c0
may be chosen in the interval

¡
clow−34%, c

max
103%

¢
when β = 1.26.
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welfare. This "concavity effect" leads to choose monotonic equilibria and smooth consump-

tion over time so as to maximize agent’s welfare. However, when the externality varies with

the average levels of capital and labor, increasing returns to scale appear at the aggregate

level. It may be welfare improving to bunch hard work in the first periods to boost capital

accumulation in order to benefit from higher productive externalities in the future for lower

levels of labor. When this "bunching effect" dominates the "concavity effect", agents bring

forward a part of their labor supply, raising consumption at any period and decreasing labor

after a while. On Figure 3.5, we pictured the optimal paths of capital, consumption and

welfare for β = 1.99.It is worth noting that, when paths are monotonic, capital, consumption

and labor lay below their steady state value forever. Here, this is no longer true: consumption

and capital remain at any tile above their steady state values whereas labor remains below

its steady state value after a while. It can be easily seen how agents accumulate the capital

stock during the first periods, which erodes gradually afterwards. When increasing returns to

scale are not sufficient, accumulating this comfortable maximum amount of capital requires

to pay a stringent tribute in terms of dis-utility of labor that the increase in consumption

cannot compensate. When the level of increasing returns is close to the minimum value to

get indeterminacy of the steady state, there is no level of comfortable capital stock such that

the "bunching effect" dominates the "concavity effect": far from accelerating capital accu-

mulation, agents are better-off when they smooth consumption and labor over time. Finally,

as increasing returns become more and more important, the "bunching effect" increases and

offsets the "concavity effect": the welfare maximizing initial level of consumption as well as

the maximum amount of capital stock raise.

In that extend, the linear method gives results that are particular cases of what has been

found with the numerical analysis. As the productive externality increases, the maximizing

welfare initial level of consumption moves away from c0,ξ2 − ε∗, passes through c0,ξ1 then

keeps raising in the range of non-monotonic paths.4

It is also clear on the simulations above that the loss in welfare for an agent maintaining

c0,ξ2 − ε∗ as a starting level of consumption is increasing with the level of increasing returns.

As this level goes up the “bunching effect" raises and more than offsets the “concavity effect".

A higher level of increasing returns to scale makes capital accumulation larger for the same

amount of worked hours or equivalently allows the representative agent to raise consumption

without raising labor: welfare must go up (Figure 3.6, red line). Finally, the difference

of utility between the optimal path and the path starting with a level of consumption of

4It must be noticed that the values of c0,ξ2 − ε∗ and c0,ξ1 are also increasing as the level of increasing
returns gets larger.

Bambi, Mauro (2007), Some Essays in Growth Theory 
European University Institute

 
10.2870/23610



3.5. CONCLUSION 68

c0,ξ2 − ε∗ increase exponentially. Then it is clear that a benevolent planner would have to

use its stabilization policy according to the magnitude of the externality: when non-convex

technology set is assumed it may be welfare reducing to pin down expectations of the agents

on a monotonic path respect to a non-monotonic one.

3.5 Conclusion

In this paper, we have proved that in a one-sector growth model with non-convex technol-

ogy and productive externalities it is possible to rank the different equilibrium paths accord-

ing to the initial value of consumption when the steady state is indeterminate. In the con-

tinuity of Christiano and Harrison’s simulations, we have showed that welfare-improvement

of stochastic sunspot equilibria is all the more powerful in the earlier periods of time since

they condition the long run behavior of consumption and labor either by accelerating capital

accumulation when the level of increasing returns is high (for a given elasticity of labor) or

by decelerating the accumulation when it is low. Large fluctuations are then likely to be

welfare-diminishing in the last case where the "concavity effect" dominates the "bunching

effect". It can be inferred that progressive taxes able to pin down expectations as those

developed by Guo and Lansing [5] are more likely to be welfare-diminishing compared to

any stochastic equilibrium when increasing returns are large since they smooth consumption

and labor and decelerate capital accumulation, as shown previously by using a stabilization

policy à la Saïdi. Our analysis raises a question that deserve further investigations. Can

we say something about the nature of the social planer’s allocation? All the equilibria we

considered are inefficient since the agents do not internalize the externality of production. In

this case, the maximizing welfare deterministic equilibrium is more or less monotonic accord-

ing to the aggregate level of increasing returns. Christiano and Harrison present an example

of monotonic social planer’s allocation while for different values of the externalities Dupor

and Lenhert [2002] and Saïdi [8] show that this allocation is discontinuous and cycling. It

can be conjectured that there is a close relationship between the monotonicity of the first

best allocation and of the decentralized optimal solution.

Bambi, Mauro (2007), Some Essays in Growth Theory 
European University Institute

 
10.2870/23610



3.6. APPENDIX A: STABILIZATION POLICY 69

3.6 Appendix A: Stabilization policy

Assume that the stationary equilibrium is indeterminate and that the government aims

at coordinating the expectations on a deterministic indeterminate path characterized by the

initial level of consumption and labor (C̄0, L̄0). The expected rate of returns on capital is

r̄0 ≡ αKa−1
0 L̄b

0. The economic policy consists in subsidizing or taxing production such that

the rate of returns on capital equals r̄0 by fixing a tax rate τ 0 (possibly negative) at the first

period. Firms maximize their profit Π0:

Π0 = (1− τ 0)Y0 − r0K0 − w0L0,

with:

τ 0 = 1− r̄0/r0.

Since K0 and r̄0 are predetermined, the equality of the after-tax rental rate of capital to the

after-tax productivity of capital determines the quantity of labor at time 0:

L0 = (r̄0/αK
a
0 )
1/b = L̄0.

Simultaneously, the couple (K0, L0) determines the equilibrium value of the first period

after-tax real wage satisfying the second first order condition of profit maximization:

w0 = (1− τ 0)
(1− α)Y0

L0
. (3.18)

Finally, the first order condition (respect to labor) determines consumption at time 0, that

is C̄0, which in turn determines the variation of the capital stock K̇0 via the law of motion

of capital. It is straightforward to show that, by iteration, fixing the after-tax rental rate of

capital at each period allows to determine the triple (Kt, Lt, Ct) at any time t.

3.7 Appendix B: Slopes of the stable arms

The Jacobian matrix of the system formed by equation (3.3) and (3.4) is:

J =

Ã
(1 + μ1)Ψ− δ (μ2 − 1)Ψ+ δ

aμ1Ψ aμ2Ψ

!

where Ψ ≡ (ρ + δ)/a, μ0 =
−β ln b
β+χ−1 , μ1 =

(χ−1)(α−1)−β
β+χ−1 and μ2 =

β
β+χ−1 . Let ξi = (v1i, v2i)

T ,

i = {1, 2}, the eigenvectors of the system defined such that:Ã
(1 + μ1)Ψ− δ − λi (μ2 − 1)Ψ+ δ

aμ1Ψ aμ2Ψ− λi

!Ã
v1i

v2i

!
=

Ã
0

0

!
. (3.19)
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The slope of the stable arm associated to ξi at the stationary equilibrium is v2i/v1i. We

want to show that:
v21
v11

>
v22
v12

> 0,

or equivalently that the slope of the stable arm associated to ξ2 is steeper that the slope of

the stable arm associated to ξ1 at the stationary equilibrium.

According to system (3.19), notice first that:

v2i
v1i
= −(1 + μ1)Ψ− δ − λi

(μ2 − 1)Ψ+ δ
. (3.20)

Moreover, when Benhabib and Farmer’s condition for indeterminacy is satisfied, that is when

β − 1 + χ > 0, μ2 − 1 > 0 and 1 + μ1 < 0. Since the trace is equal to the sum of the two

eigenvalues, the following relation holds for any i, j = {1, 2} with i 6= j:

sign

½
dvi2
dvi1

¾
= sign {−(1 + μ1)Ψ+ δ + λi}

= sign {aμ2Ψ− Trace(J) + λi}
= sign {aμ2Ψ− λj} .

Under Benhabib and Farmer’s condition for indeterminacy, both aμ2Ψ and −λj are positive.
Finally since λ1 < λ2 it follows immediately from equation (3.20) that the slope of the

stable arm associated to ξ2, v22/v12, is steeper than the slope of the stable arm associated

to ξ1, v21/v11. If we assume to start with an initial stock of capital lower (resp. greater)

than its steady state value, k̃(0) < 0 (resp. k̃(0) > 0) and from equations (3.7) and (3.8) it

is easily deduced that c0,ξ1 > c0,ξ2 (resp. c0,ξ1 < c0,ξ2).

3.8 Appendix C: Solution of some limits

The trace and determinant of the Jacobian matrix J are the following:

Tr(J) = (ρ+ δ)
ρ+ δ(1− a)

a

(1− α)(1− χ)

β − 1 + χ

Det(J) = −(ρ+ δ)(1 + γ)
a− χ

β − 1 + χ
− δ

When the condition for indeterminacy holds, one can see immediately that Tr(J) tends

to −∞ and Det(J) tends to +∞ as β − 1 + χ tends to zero. Moreover the two limits have

the same "order" of convergence. Now consider the following limits:

lim
β→1−χ

λ1 = lim
β→1−χ

Tr(J)− |Tr(J)|
q
1− 4Det(J)

Tr(J)2

2
= lim

β→1−χ

Tr(J)− |Tr(J)|
2

= −∞ (3.21)
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Multiplying and dividing by Tr(J)− |Tr(J)|
q
1− 4Det(J)

Tr(J)2
, we get:

lim
β→1−χ

λ2 = lim
β→1−χ

Tr(J) + |Tr(J)|
q
1− 4Det(J)

Tr(J)2

2

= lim
β→1−χ

2 detJ

trJ − |trJ |
q
1− 4 det J

(trJ)2

= lim
β→1−χ

Det(J)

Tr(J)
= −(1− α)[ρ+ δ(1− α)]

α− a
.
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Figure 3.2: Welfare analysis when minimum degree of externalities for local indeterminacy
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Figure 3.3: Welfare analysis when β = 1.66
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Figure 3.4: Initial level of consumption maximizing welfare according to β.
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Figure 3.5: Consumption, capital and labor path maximizing welfare.
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Figure 3.6: Welfare gap.
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