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Abstract

The main item of agreement between the ‘new’ and ‘old’ economic
geography is the role of increasing returns in regional economic
development. This provides a focal point for the model of this paper,
which aims to highlight the existence of a ‘third way’ somewhere
between the analysis provided by these two competing modes of
explanation. Increasing returns are represented by the Verdoorn Law
linking manufacturing output and productivity growth, which is
augmented to include endogenous technical progress involving diffusion,
spillover effects and putative human capital effects. The model is
estimated using data for regions of the EU, thus emphasizing the need to
confront theory with data. The approach of the paper thus avoids ‘the lost
scientific cause’ of much of contemporary ‘economic geography proper’
and the constraints posed by the theory of ‘new economic geography’.
The implications of the model are explored and assumptions are imposed
leading to a ‘stochastic steady state’ as an approximation to real world
turbulence, and as an aternative to the Markov chain stochastic
equilibrium suggested by Quah(1993). The paper shows that the
implications of interregional spillovers are faster productivity growth and
higher productivity levels, a trend that is accelerated with endogenously
determined spillover. Without catch up, regional productivity levels
diverge with no stable steady state and one region becomes increasingly
dominant, but catch up ensures that cross-regional productivity growth
rates tend to equality.



1. Introduction

Recently we have seen the advent of ‘new economic geography’ as a
way of looking afresh at the causes of urban or regional concentration,
problems that have traditionally been a concern of ‘old economic
geography. The introduction to the book ‘The Spatial Economy’ by
Fujita, Krugman and Venables, 1999, published on Krugman's website,
the review by Ottaviano and Puga (1998), and the paper by Martin(1999),
provide contrasting perspectives on these differing approaches. While the
two approaches are evidently poles apart, it is interesting that both claim
a particular branch of non-mainstream economics as more or less
compatible with their contrasting viewpoints. Thus the literature on
imperfect competition, increasing returns and cumulative causation
processes, stemming back at least to Kaldor(1957) and Myrdal(1957) is,
according to Martin(1999), consistent with some of the contemporary
issues that are the concern of economic geographers.  Similarly,
Krugman(1991) acknowledges that Kaldor's vision of cumulative
processes inspired subsequent work in new economic geography.

The aim of this paper is to take this point of contact between ‘old’ and
‘new’ economic geography as the basis of a modeling approach which
avoids perceived limitations of both. Hence the paper develops and
estimates a spatial econometric model which has at its core the Verdoorn
Law (Verdoorn, 1949) linking manufacturing productivity growth to
output growth which was also used by Kaldor (see also Fingleton and
McCombie, 1998). This is relevant to contemporary modes of
explanation, since the Verdoorn Law may be viewed as a forerunner of
new growth theory, embodying increasing returns and endogenous
technical progress. The model provides estimates of the significance of
knowledge spillovers, first described by Marshall(1920) as one of a trio
of reasons for spatial economic concentration. This has been
‘downplayed’ in new economic geography because ‘it is hard to model’.
Quite naturally much of the deductive mathematical theory underlying
new economic geography has not been confronted by data since it was
not designed principally with data analysis in mind. In contrast,
combining economic geography with spatial econometrics emphasizes
induction rather than deduction, the empirical testability of constructs at a
fairly early stage prior to using them to infer trends. Such an approach is
also at variance with ‘the large-scale movement away from logical-
positivism' (Martin 1999) that has influenced much of recent ‘economic

geography proper’.



While the present model seems to work quite well from an empirical
point of view, the paper also highlights estimation problems that bring to
the fore the question of whether or not a stable steady state exists. The
paper emphasizes the unreality of a smooth progression to a deterministic
steady state when compared to the observed turbulence of actual
economies. This was also appreciated by Quah(1993) who suggested the
‘stochastic equilibrium’ of the Markov chain model as an alternative.
While agreeing with the principle behind the choice of a Markov
approach, the paper argues that it has limitations and uses instead the
model developed in the paper to provide turbulent outcomes.

The final part of the paper explores further the dynamic implications of
the model. In particular, the effects of interregional spillovers on
productivity growth and levels are investigated in a ‘laboratory’ setting
which facilitates endogenously determined interregional interaction.
Thus the paper ends by moving a small way towards the abstraction
which characterizes new economic geography, but from the opposite
direction.

2. A model of regional economic growth

The dynamic Verdoorn Law propounds a linear relationship between the
exponential growth rates of labour productivity (p) and output (q), so that

P =mp+ myq+ X (1)
X ~N(0, s?)

In equation (1) the coefficient mg is the autonomous rate of productivity
growth and m, is usually called the Verdoorn coefficient, the estimated
value of which is quite consistently about 0.5 when the model is fitted to
various data on manufacturing productivity growth and output growth.
This indicates that a percentage point increase in output growth induces
an increase in employment growth of about one-half of one percentage
point and an equivalent increase in the growth of productivity. The error
term x collects the other effects on p which in this initial specification are
assumed to behave as random shocks. Hence, in its primitive form, the
Verdoorn law is treated as a single equation and estimation is via OLS".
A number of issues are raised by this simple specification, since it
excludes a number of ancillary variables suggested both by theory and by
the applied literature. There is also the question of whether we need to
account for endogeneity either in model structure or in estimation. The
endogeneity of p can be justified by observing that sincep=qg—-e(eis
employment growth), then E(e) = -mg + (1 - m;)g. Employment growth



IS not an autonomous determinant of output growth, but is elastic due to
commuting and labour migration. The presumed exogeneity of g has
been challenged, as in the debate involving Rowthorn(1975a,b) and
Kaldor(1975), and multi-equation systems of cumulative causation
incorporating the dynamic Verdoorn Law commonly treat both g and p as
mutually interdependent (Kaldor, 1970, Myrdal 1957, Dixon and
Thirlwall 1975a,b, McCombie and Thirlwall 1994, Targetti and Foti
1997, Fingleton 1998a,b).

The Verdoorn Law may be seen as consistent with increasing returns, a
feature emphasised in ‘new economic geography’ and long favoured by
regional and urban economists working with internal and external
(agglomeration) economies of scale. To see this, we commence with the
conventional Cobb-Douglas® production function to demonstrate how a
significant Verdoorn coefficient implies increasing returns as normally
understood from this standpoint. We then develop this approach as a
vehicle by which to introduce the additional features leading to the model
of this paper. Assume therefore that an appropriate static underlying
model is

Q = Aexp(l )K?E® (2)

in which | is the growth of total factor productivity or exogenous
technical change, Q, K and E are the levels of output, capital and
employment. Note again that there is no constraint that there are constant
returns to scale. In fact we know from Euler's theorem that the
competitive equilibrium underpinning the neoclassical model requires
that all factors are paid their marginal products and with increasing
returns not all factors can be paid their marginal products, so we are
admitting the possibility of a non-neoclassical world.

Taking natural logs and differentiating with respect to time, we obtain

g=I1 +ak+be 3

or equivalently, since p = q— e, and allowing the presence of other effects

(x),
p=1/b +[(b-1)/b]g+ (a/b)k +x (4)

Equation (4) is seen to be a version of equation (1) but with the additional
variable the growth of capital (k). Hence ideally the Verdoorn Law
should contain k, but is omitted from this and many other cross-sectional
analyses because, unfortunately, data on capital stock growth per seis for



the most part unavailable at the level of regions. A standard approach in
the literature is to use is the average share of real (gross) equipment
investment in GDP as a proxy for k, but even this may be unavailable.

If however we restrict the model by assuming that capital stock growth is
equal to output growth (ie the capital — output ratio is constant), then q
includes k which is omitted as an explicit term. The empirical basis for
omitting Kk is the stylised fact that capital stock growth and output growth
are both approximately the same in most developed economies’,
Consequently equation (3) reduces to

p=1/b+(@+b-1/b)g + x (5)

Observe from equation (5) that if m;=((a + b - 1)/ b) >0, then(a + b) >
1 and we have static returns to scale under the Cobb-Douglas production
function.

Of course, as pointed out in the foregoing discussion, the Verdoorn Law
per se is too simplistic to capture the nuances of regional growth
variations and need to be somewhat enhanced by incorporating processes
believed to be important at the regional level. In this paper, this
development is achieved by endogenising technical progress (I ) by
relating it to productivity growth (p) and some intrinsic regional
characteristics, rather than treating it as an unexplained exogenous
variable®. Let us attempt to justify first the dependence of | on p. Given
that we have already made the assumption that k = g, we now use the fact
that this means that the growth of productivity (g — €) equates to the
growth of capital per worker. Following some of the literature of
endogenous growth theory (Lucas 1988, Barro & Sala-i-Martin 1995,
p152), we choose to treat technical change as a function of capital
accumulation (in the form of capital per worker). We assume that
technical change is not fully internalized and so spills over to other firms
and individuals within the region. Since at the level of EU (NUTS2)
regions, regional boundaries are somewhat transparent and physically
separated regions are often well connected, the spillover, it is
hypothesized, will also involve other regions. The result is that firms and
individuals capture externalities generated by productivity growth (qua
capital accumulation) perhaps in neighbouring regions, or in important
(high technology) regions elsewhere.

Since it is likely that a given region’s productivity growth will have
different effects on technical progress in different regions, we specify the
following function



| =1 +fp+kpo (6)

In (6), p is intra-regional productivity growth and p, denotes extra-
regional productivity growth. It becomes clearer if we use matrix
notation how p, depends on the particular set of ‘neighbours’ for each
region. The vector p, is equal to the matrix product Wp, with the cells of
matrix W defining which regions influence technical progress. Hence W
is a square matrix with n? cells defining the interaction between n regions.
In the simplest case, W contains 1s and Os linking pairs of regions, so the
1sinrow i of W identify the regions interacting with regioni. In practice,
since we are dealing here with total manufacturing industry rather than a
single chain of production, we assume that each region's influx of
spillovers comes from all other regions (to varying extents depending on
interregional distances and levels of technology). So it is by this matrix
that remoteness impacts productivity growth. Regions that are remote
have less spillover of knowledge, since transport costs reduce their
interaction with neighbours. It is convenient to standardize W thus
creating row totals equal to 1, in which case each element i of Wp is the
weighted average of the other regions with weights proportional to the
level of technology of their economies and their distance® from i. Thus
high technology regions, even if they are physically remote, will have a
large effect on region i since they will invariably contain industries
driving technical progressin regioni.

Thus far we have a region’s technical progress depending on its capital
accumulation represented by its productivity growth, and because
technical progress is not contained by regional boundaries, we have
included productivity growth in other regions. Of course, the spillover is
two way and we assume it is simultaneous. Assume also that regions
make technical progress at varying rates depending on internal conditions
controlling the adoption and impact of technology diffusing from more
advanced regions and countries. Note that this is not the same as the
spillover effect already described. The key factor now is the level of
technology of the recipient region, there is no suggestion that ‘who your
neighbours are’ is a factor in this diffusion process. Assume that at any
moment, there exists ‘available for adoption’ everywhere as it were, a
given body of technical knowledge but whether or not a region adopts
depends on the region’'s intrinsic characteristics. If it is an advanced
region, then the available technology will make little or no impact, while
a less developed region will benefit from adopting new technology.
Realistically, Governments and the EU policy instruments will also be



used to encourage the adoption of technology in less developed regions,
and as regions develop, then the attraction of innovations diminishes and
the strength of regional policy directed at innovation adoption weakens.

We attempt to capture this process by the variable G in equation (7),

| = pG+ds 7)

inwhich G; = (P-P,)/P}" is the start-of-period (and therefore exogenous)
technology gap between region i and the leading technology region (*),
proxied using the initial productivity levels P; and P, as the respective
technology levels. The assumption is that p > O, thus the larger the
technology gap the faster the growth of technology. In summary, the
mechanism is assumed to be the diffusion of innovations from high to
low technology regions, enhanced by (a variety of) regional policy
instruments becoming progressively weaker as catch-up occurs.

The second intrinsic regional characteristic is s, the stock of human
capital, which one would expect to influence innovation rates and
innovation adoption.

s=e+ql +CGu (8)

Equation (8) assumes increasing human capital with decreasing
peripherality (I), since peripheral regions are sparsely populated and
culturally distinct from more central regions, and increasing human
capital with increasing levels of urbanization (u).

Combining these, rearranging and simplifying, one obtains
p=de/(b-f)+dgl/(b-f) +dGu/(b-f) + pG/(b-f)+kpy(b-f)
+(@+b-1Lg/b-f)+x 9)
or more simply
P=rp,+ bg+ byl +bou+bsG+byg+x (10)
It is convenient to work with an equivalent matrix expression® for (10)
whichis

p=rWp+ Xb+Xx (11)
x~N(0, s%)



in which p is an n by 1 vector, r is a scalar representing the strength of
autoregressive interaction, W is the n by n matrix, X isann by p matrix
of regressors and b isap by 1 vector of coefficients. Fingleton(1998b)
refers to equation (10) as an augmented spatial lag Verdoorn law.

3. Estimation : methods

In this section, four alternative estimation methods are discussed, namely
OLS, Maximum Likelihood (ML), Instrumental Variables or Two Stage
Least Squares (IV or 2SLS), and Bootstrap estimation. In fact, estimation
of spatial autoregressive models such as equation (10) has most
frequently been via ML since, in the spatial case, the spatially lagged
variable correlates with the error term (Ord 1975, Anselin 1988). The
consequence is that OLS is biased and inconsistent because a necessary
asymptotic condition is violated. With the spatial lag represented by the
matrix product Wp and the independent identically distributed error term
by x, plim n™{((Wp)¢x) = plimn ™ xeV( - rW) x * Owhenr 0,
hence inconsistency results from the presence of the quadratic form. In
contrast, in the time series case, with W structured as for time series (see
note 6) and serially uncorrelated errors, plim n™*((Wp)¢x) = 0. So, while
the small sample properties of the estimator are influenced by the
presence of the lagged variable (the estimator is biased), it is consistent
and valid for asymptotic inference (Anselin, 1988).

The likelihood for the spatial autoregressive model is
L = 1 Qi (s"(2p)"?) exp(-x/2s?) (12)
in which the term Q = (I - r W) comes from the transformation from the

vector of standard normal independent error terms to the vector p given
by the Jacobian J, where

J=qdx/dpe=1Qi (13)
X =(Qp— Xb) (14)

It follows that
LnL =constant - n/2Ins? - x&/2s? + IniQi  (15)

in which xd is the sum of squares of errors.



Since s? = {p&l -rW®R( - rW)p}/n and R = | — X(X&X)X¢ by a
process of substitution (see Upton and Fingleton 1985), we obtain the
following expression in terms of r

M =In(ns? - (2/n) Ini Qi (16)

Therefore the ML estimate of r is the value that minimizes the negative
log profile likelihood M.

There is however an important disadvantage associated with ML, namely
the restricted parameter framework. Since it involves the error sum of
squares, the concentrated likelihood has similarities to OLS, but the
additional (‘ penalty function’) term equal to the log of the determinant of
the Jacobian separates the two estimators. Since the log determinant tends
to infinity as r approaches the singularities at 1/i where i denotes
eigenvalues of the matrix W’, it only makes sense to omit the singular
points of (I - r W) for certainreal valuesof r, suchasat r = Uipa and r
= 1/ imin Where the log determinant is infinite. In practice, the model
parameter estimates are obtained by searching® within the stable range
defined by 1lipax and 1/ imin, Where i is the largest eigenvalue or
characteristic root and i, is the smallest (ie the largest negative
eigenvalue). In the stable range the parameter space is compact, but
outside singular points interrupt the continuum of feasible parameter
values. Standardizing W so that the rows sum to 1 is not essential,
although doing this means that inox = 1 and the upper bound of the stable
range is equal to one (see Upton and Fingleton 1985, Haining 1990,
Anselin 1988, Kelgiian and Robinson,1995). Figure 1, the negative log
profile likelihood, illustrates this. The corresponding parameter estimates
are given in Table 2.

The outcome is that convergence is automatically imposed by ML
estimation, rather than being an open question, because under ML there
will always be a stable solution. However, it is precisely the possibility of
non-convergence which is of interest here, and attention focusesonr =1,
a singularity at which the convergence process (ie the model (10)) is not
defined.

IV estimation avoids the limitation of a restricted parameter framework,
but introduces other problems. In fact, before the advent of modern
software (ie SPACESTAT), it was easier to implement since it does not
involve nonlinear optimization. None the less, its application to spatial
models has been limited (Haining 1978, Bivand 1984, Anselin 1984).



As explained by Anselin(1988), a major problem for |V estimation is
finding the proper set of instruments’. Let us commence by separating out
the endogenous spatial lag Wp and denote the endogenous and exogenous
variables of X as X, and X, respectively, so that the set of regressors is
the n by p +1 matrix Y = (X;, X,Wp). Clearly, we require for IV
estimation the n by q matrix of instruments Z comprising Xy plus some
additional instruments to be described below. Define P, = Z(Z@)'Z¢as
the symmetric and idempotent projection matrix. Hence Y, = P,Y and the
IV estimate of b,y =(r,b)is

Estbiv = (YER,Y) (Y®;p) = (Y&Y,) (YEp) (17)

The matrix Y¢P,Y is nonsingular and can be inverted, despite the fact
that P, is singular, assuming that Y and Z are full column rank with q 3
p +1, and we assume also that the matrices (1/n)Z& and (1/n) ZdY tend in
probability to matrices of finite constants with full column rank (see
Bowden and Turkington 1984, Kelgian and Prucha,1998). Since the
vector (1/n) Z& converges in probability to zero, then

Est by —b = [Y&/n (Z&/n)*Zey/n]* YZ/In(Z&/n)* Za/in  (18)

tends to zero in probability. In summary, standard theory shows that,
given that the instruments are assumed to be asymptotically correlated
with the regressors and asymptotically uncorrelated with the errors, by is
a consistent estimator of b.

We obtain the instruments for the data matrix Y using an estimate of the
matrix of expected values E(Y) = (Xx, E(X|),WE(p)) given by Y, =
(Xx:Xip:Wpp) in which Wp, = PWp and X, = P,X,. However, it turns out
that the more closely we try to approximate to WE(p), the more difficult it
becomes to retain the full column rank of Z as required by the foregoing
theory. This problem was first highlighted by Kelgjian and Robinson
(1993) and Kelgjian and Prucha(1998) who observe that since

E(p) = (I - r W)™Xb, and assuming ¢r ¢<1,

E(p) = [&r 'W]Xb (19)

where the summation is fromi = 0 to ¥ and W° = I. This implies that
WE(p) is a linear combination of the columns of the matrices
OGWXWAXWEX L), If an attempt is made to approximate WE(p)
closely by including high order spatial lags in Z then the danger is the



existence of linear dependence among the columns of Z. This can be
easily shown empirically by generating independent random vectors for X
and progressively adding WX, WX,W?X,W*X etc to Z. The inevitable
result is that ultimately the columns become linearly dependent.

It follows that Z should be a subset of linearly independent columns of,
for example, (X, WX,W?X), or with a large number of regressors, of
(X,WX), in order to ensure full column rank and avoid problems
associated with overidentification. We therefore endeavour to make Wp,
an approximation to WE(p) and X, an approximation to E(X;) by forming
Z as the set of exogenous variables and their low order spatial lags, plus
any additional instruments correlating with X,. Kelgjian and Prucha(1998)
developed this approach in the wider context of a spatial autoregressive
model which also has an autoregressive error process, and provide
mathematical detail and proofs relating to an estimation procedure for this
more complex model.

The fourth estimation method, Bootstrap estimation, provides a more
robust approach avoiding strong error assumptions. Using IV to obtain
the initial residual vector, k=1,...,999 vectors of pseudo errors are
obtained by random resampling (with replacement) from the residual
vector and for vector k a vector of pseudo observations are obtained from
P = (I-r W) (Xb + &) using the initial 1V estimatesof band r. Thek’th
(V) estimates of b and r are based on the spatial lag Wpy. This approach
Is similar to that Bootstrap method for simultaneous equation systems,
and is preferable to sampling from the joint density (p,Wp, X) since in
the latter the data are spatially dependent rather than equiprobable cases
as desired, and resampling would not preserve the spatial structure of the
data, as explained by Anselin(1988).

4. Estimation : results

The data, covering 178 NUTS 2 regions (13 countries) of the EU,
are taken from Cambridge Econometrics European Regional Databank
which is itself based on the (nominal prices, local currency) EUROSTAT
series. Cambridge Econometrics fill gaps by interpolation, establish
consistency with national series, and deflate using, in the absence of
regional deflators, national deflators. The outcome is Gross Value Added
measured presently in constant (1985) ecus™. Productivity growth (p) is
represented by the average annual (exponential) growth of manufacturing
(and energy) gross value added per worker over the period 1975-1995.
Similarly, output growth (q) is the average annual growth of
manufacturing gross value added over the period. While the data



processing described above may create some measurement errors, this
database is probably the most consistent and accurate available for the
EU as awhole.

Table 1 OLS estimates of Spatial lag model

variable parameter estimate t-value Standard
error

Wp r 0.7420 5.5789 0.1330
constant bo -0.0219 -4.4242 0.0050
I by -0.0148 -5.4212 0.0027
u b, 0.0084 2.7087 0.0031
G bs 0.0642 7.4848 0.0086
q by 0.4867 7.8374 0.0621

R? (corrected)  0.431

R?(squared 0.532

correlation)

s’ 0.0001679

Table 2 ML estimates of Spatial lag model

variable parameter estimate  t-value Standard error
Wp r 0.6422 7.1909 0.0893
constant by -0.0193 -4.8496  0.0040
I by -0.0149 -5.4659  0.0026
u b, 0.0083 2.7470 0.0030
G bs 0.0642 7.5990 0.0084
q b, 0.4960 8.2388 0.0602

R 0.5266

R?(squared 0.5460

correlation)

s’ 0.000163

The inconsistent OLS estimates of equation (10) are given in Table 1.
Table 2 contains a summary of the ML estimation of the model, assuming
g is exogenous. Note that the Verdoorn coefficient is very close to the
value of 0.5 that is commonly associated with the basic Verdoorn Law
(equation (1)) even though in this instance we are estimating the
augmented spatial lag version. The inference (see below) is that we have



increasing returns to scale, with faster output growth inducing faster
productivity growth. The parameter estimate of each of the variables is
significantly different from zero and correctly signed, hence productivity
growth increases with urbanization and with the start-of-period
technology gap, and diminishes with increasing peripherality. In addition
there is a highly significant spatial externality with each region's
productivity growth interacting simultaneously and positively with
productivity growth in the connected regions.

Thus far g has been exogenous, despite the earlier suggestions to the
contrary. Previous work admitting endogenous q (see Fingleton and
McCombie 1998) found that in practice instrumenting g (using lagged g
or the rank of g) made little difference to the interpretation. There is some
evidence from Hausman's test of the joint endogeneity of Wp and q,
though the level of significance is marginal (the F ratio of has a p-value
of 0.04 in the F4 165 distribution) and may be attributable to Wp.

Assume q is endogenous and use instrumental variables for both g and
Wp. Given the earlier problems of linear dependence, we follow standard
practice and use only first spatial lags as Wp instruments. Since in
equation (9) G, | and u are taken as exogenous, the matrix Z comprises
(G,,uWG, WI \Wu, gr). A check (using the LINDEPENDENCE macro
of GENSTAT) confirms the linear independence of the columns of Z and
the solution to equation (17) provides the estimates. Of course an
identical set of 1V estimates of by is provided by two stage least squares
(2SLS) in which the endogenous variables (Wp,q) are first regressed on
all the instruments (gr, G,I,u,WG, WI and Wu) and the fitted values from
these plus the exogenous variables G,l,u are the regressors and p is the
regressand in the second stage.

The additional instrument gr introduced for endogenous g is an
adaptation of a method suggested in the context of the errors in variables
problem by Durbin (1954), which uses as an instrumental variable rank
orders (1,2,3 etc....denoting the highest, second, third etc value) in place
of an endogenous variable. Evidently this approach produces consistent
estimates under fairly general conditions (see Johnston 1984) although
Bowden and Turkington (1984) and Maddala(1988) warn that if the
errors are large, the ranks will be correlated with the errors and the
estimators inconsistent.



Table 3 1V estimates of Spatial lag model (endogenous q)

variable parameter estimate  t-value Standard error
Wp r 0.9707 5.0226 0.1933
constant by -0.0270 -45864  0.0059
I by -0.0164 -5.7116  0.0029
u b, 0.0071 2.2441 0.0032
G bs 0.0656 7.5792 0.0087
q b, 0.4027 5.7198 0.0704

R 0.5567

R*(squared 0.5368

correlation)

s’ 0.000166

Table 4 Bootstrap estimates of Spatial lag model (999 replications)

variable  parameter estimate t-value Standard error
Wp r 0.8716 5.5371 0.1574
constant by -0.0303 -1.8610 0.0163
I by -0.0158 -5.8293 0.0027
u b, 0.0076 2.3802 0.0032
G bs 0.0661 7.6519 0.0086
q b, 0.4100 6.1189 0.0670

R 0.7443

R*(squared 0.4630

correlation)

s’ 0.000113

The results of the IV estimation are summarized in Table 3. The overall
fit of the model is reasonably good (R?=0.56, squared correlation between
observed and fitted values of the dependent variable = 0.54) with
significant and correctly signed parameter estimates. However, the most
striking feature of the estimates is the proximity of the endogenous spatial
lag coefficient to the singularity at r =1 (using the region from plus to
minus two standard errors from the estimated r to define proximate).
Note that we cannot be entirely sure that the estimated r is actually
consistent with atruer =1 since, in order to test Hy : r =1, we require the
sampling distribution of estimated r and t when Hy is true, which for a
gpatial unit root is currently unknown. The development of a



methodology comparable to that for time series has only recently begun
(Fingleton, 1999a) and the multilateral dependence inherent in spatial
processes can introduce complications. The hypothesis that r =1 is
therefore without rigorous foundation, but seems a distinct possibility.
Thus, with an unrestrained parameter space, avoiding linear dependencies
and allowing for the endogeneity of g, the indication is that the model (9)
IS indeterminate.

The Bootstrap parameter estimates, given in Table 4, are the means of the
empirical parameter distributions, and the Bootstrap variances are the
dispersions in these empirical distributions. The estimates obtained tend
to reaffirm the results obtained by IV, athough estimated r is now
roughly one standard deviation below the singularity.

Since the model with endogenous q is (possibly) indeterminate, we
assume exogeneity. With only Wp endogenous, q and Wq now are added
to the instruments for Wp and the resulting estimate of coefficient r is
now about two standard errors below the singularity, and well within the
stable range.

Table 5 1V estimates of Spatial lag model (q exogenous)

variable Parameter Estimate t-value Standard
error

Wp r 0.7336 4.7950 0.1530
constant bo -0.0209 -4.0043 0.0052
I b, -0.0151 -5.3890 0.0028
u b, 0.0089 2.8876 0.0031
G bs 0.0626 7.2824 0.0086
q b4 0.4992 8.0449 0.0621

R? 0.5419

R?(squared 0.5468

correlation)

s? 0.0001624

This is shown by Table 5 which reaffirms the earlier finding of a very
significant simultaneous interaction across regions. According to the
underlying model, this is due to non-internalised technical change arising
from capital accumulation being captured in other regions. Also
increasing returns are inferable from the Verdoorn coefficient, assuming,
as seems reasonable, that all coefficients in equation (9) apart from e



(unknown a priori) and q are positive. The parameter estimatesin Table 5
indicate that b > f and since b, = (a + b - 1)/( b - f) then the fact that
estimated b, is significantly greater than O means that (a + b) > 1. The
Table 5 estimates also indicate a significant catch-up term and significant
urbanization and peripherality effects attributed to human capital.

5. Convergence with gpatial effects — smulation
methodol ogy

In the previous Sections it was pointed out that the model is
indeterminate, and therefore cannot converge to a steady state, at the
singular points of (I - r W). In this Section we therefore confine attention
to the feasible parameter space, primarily the stable range of the compact
region Vigax >t > U imn. We aso briefly explore the nature of
‘convergence’ outside this compact region. Even within the stable region,
there are other conditions required for smooth convergence to a steady
state. One is the existence of the catch up mechanism, without which
regions diverge. An additional condition is an absence of stochastic
disturbances. In Part 6 we then introduce disturbances and focus on
stochastic outcomes. In this set up, we cannot conceive of a role for
maximising decisions by rational individuals determining the dynamics
and a single equilibrium. It is interesting that micro-foundations also have
little to offer Fujita, Krugman and Venables (1999). It is pertinent to
guote at length from their rationalization. Thus

‘to insist that models of economic geography explicitly model firms and
households as making intertemporal decisions based on rational
expectations would greatly complicate an already difficult subject. It is
very tempting to take a shortcut: to write down static models, then impose
ad hoc dynamics on those models’

‘Ad hoc dynamics have been very much out of fashion in economics for
the past 25 years, dynamics are supposed to emerge from rational,
maximising decisions by individual agents. Y et what is one to do when a
model predicts the existence of multiple equilibria, as geography models
usually do?

‘In short, we believe that we are right to give in to the temptation to sort
out equilibria using simple, evolutionary dynamic stories, even though
the models do not ground these dynamics in any explicit decision-making
over time.’



With these limitations in mind, we show the implications in terms of
dynamics of the spatial autoregressive model by using appropriate
parameter estimates to drive the model forward to a (deterministic) steady
state. As mentioned above, under certain assumptions the deterministic
steady state exists and is very easy to obtain analytically. In practice an
equivalent iterative solution is preferred and this leads to the method for
‘stochastic equilibrium’. We commence with a re-expression of model
(10), whichis

p=rWp+Xb+x (20)
x~N(0, s4)

(I - rW)p =Xb +x

E(p) = (I - rW)"Xb (21)

Assume a steady state exists, then at steady state the proportional rate of
growth of R, R'/R, equals zero. Since R'/R = E(p —p*), then

Ee-p)=(-rW)yXb—( -rw)*X'b=0 (22)
Which can be re-expressed as
E(p—p)=(-rW)(X-X)b=0 (23)

In equation (22) and equation (23), X* has the same dimensions as X, but
each row of X* isequal to the productivity leader’s row of X. In order to
obtain an expression for G° and hence the steady state vector R®, we
remove G from X, thus creating matrix X with the corresponding vector
of (reduced) coefficients denoted by b . The (n x 1) matrix X¢ contains
G while the coefficient corresponding to G is denoted by bd; hence at
steady state

I-rWX b +(-rwWX—(1-rw)y'X'b=0 (24)

And thus



X2=G*=(X'b=X b )(?)* (25)

R°=U-(Xb=X b )(b2)* (26)

In which R® denotes the steady state vector of productivity level ratios
and U is avector of 1s.

Critically, as mentioned above, if b? = 0, there is no steady state, so the
presence of the term G is necessary for a stable solution. Also, observe
that r Wp is absent from (16) because p is constant across regions in the
steady state, so the weighted average Wp will be a constant. This means
that whether cross-region spillovers are weak or strong makes no
difference to steady state productivity gaps. However the existence of
spillovers causes faster steady state productivity growth and thus higher
productivity levels than would otherwise occur, ceteris paribus. Also, if
an autoregressive process exists but is omitted from the model, the
estimates of b are biased (Anselin 1988), hence the steady state vector R®
will be biased.

As also mentioned above, we obtain precisely the same vector R® by
iteration, as defined by equations (27a) to (27€). In these, R for each
iteration obtained from E(p) based on a revised matrix X since G = 1-
P/P"= 1- R changes as P and P* change with E(p) and E(p*). Hence, with
v denoting column v of X,

E(p) = (I - rW)Xb (27a)
Pu1 = Peexp(E(py)) (27b)
P'u1 =P exp(E(p ) (27c)
Gt+1 =1- (Pt+1/ P*t+1) (27d)
Xir1y = Gt (27¢)

We use this iteration to illustrate the influence of r Wp on the transitional
dynamics, and the independence of the steady state under stable
conditions. The outcome, for an artificial set of 10 regions with arbitrary
X, b and W matrices, the so-called regional laboratory, is summarized by
Figures 2, 3 and 4. To produce these Figures, everything apart fromr is
held constant. Figure 2 shows the dynamics leading to steady state with r



=0, Figure 3isforr = 0.6 and Figure 4 isfor r = 0.95. The graphs plot R
against iteration number.

Assume that necessary conditions for smooth dynamics to a stable steady
state exist, thus b? * 0 and there are no stochastic disturbances. Assume
also r takes values outside the stable range defined by 1/ima and 1/ inin,
acknowledging that outside the stable range the model is ‘well defined’
(Kelgjian and Robinson 1995) so long as the singularities are avoided.
This leads us to briefly consider what kind of equilibrium, if any, existsin
this region. To take one example, with r = 1.05, which lies between the
singular point a r = 1 and the next one at r = 1.085069, we have a
characteristically explosive or non-stable process, as illustrated by the
simulation in Figure 5.

6. Convergence with spatial effects— simulation empirics

The parameter estimates indicate that, ignoring stochastic disturbances,
conditions exist for smooth convergence to a stable steady state. This is
illustrated by applying the iteration (27) to the fitted model for the EU
regional data set. We hold the variables u and | constant but allow G to
change because of the link between E(p) and G. We also hold g (hence
K) constant across regions at the EU annual average calculated over the
period 1975-1995 (0.01731). This might not be so bad an assumption
with open markets in a single European economy, if the same policy
instruments and market conditions are assumed to hold for each region,
and is preferred to retaining the disequilibrium growth rates. This seems
acceptable under advanced European economic integration which lowers
interregional barriers and enhances market penetration. High demand in
faster growing regions will be satisfied by output in other regions, so
there will be a tendency for output growth to be equilibrated across
regions.

Figure 6 gives the dynamics leading to the steady state vector'* R® based
on the Table 5 IV estimates. The inference from Figure 6 is a lower
productivity gap, with the average ratio rising from about 0.6 to 0.8 of the
leaders’ productivity level at steady state. While there is considerable
catch up, the steady states remain dispersed.



7. ‘Stochastic equilibrium’

Thus far the model copies neoclassical models in so far as, under certain
assumptions, it too predicts stable steady states. The notion of a smooth
progression to a stable equilibrium was a target of criticism by
Quah(1993), who made the point that growth trends in actual economies
do not appear to be stable and smooth. This observation is certainly true
of the EU regions. As Figure 7 shows, there is considerable R turbulence
over 1975-95 compared to the idealised paths to equilibrium (Figure 6)
under the model.

In order to eliminate any unrealistic certainty from our model predictions
and to inject realism, the assumption is that at any instant productivity
growth is disturbed by random shocks. This means that the model is open
to a stream of unknown external factors, for example policy and
institutional changes, historical events and abrupt socia and
environmental changes that are exogenous to the production system and
parodied by stochastic disturbances. Assume, for simplicity,
independence over time and space. Otherwise we might conjecture fitting
a model like that of Kelgiian and Prucha (1998) entailing both
autoregressive spatial lag and autoregressive disturbances. Of course this
assumption is already part of our model structure in the form of x in
equation (11). The impact of a single shock is illustrated by Figures 8 and
9 (which one might compare with Figure 3, which is an otherwise
identical process). At t = 10, a shock to productivity in a single region
simultaneously impact productivity growth in other regions, the extent of
impact depending on the structure of the W matrix. This affects
subsequent productivity growth but is impermanent. Assume that the
shocks are recurrent, rather than ‘one-off’, injecting turbulence along the
path to ‘equilibrium’. Iteration (28a to 28g) introduces recurrent
disturbances so that there is no possibility of the impacts dying out giving
a smooth path to steady state.

x; = N(0,s2) (28a)
po= (1 - r W) (Xib + X)) (28b)
P.1 = Pexp(py) (28¢)
Pui=Pexp(p ) (28d)

Gu1=1- (Pt+1/ P*t+1) (28f)



Xiry = G (28g)

The process is realised for the 178 regional economies using the estimates
in Table 5, including s* = 0.0001624, as summarised by Figure 10. As is
apparent, a sequence of one hundred iterations per realisation generates
more or less ‘stable’ turbulence.

In Figure 10 the paths traced by the individual economies are dependent,

aform of ‘sticky mobility’. Productivity growth never becomes equalised
as in the deterministic model, with the effect that regions perpetually
interact producing cycles of fast and slow growth as the net outcome of
shocks simultaneously transmitted across regions. In addition, when the
technology leadership changes, as a result of a faster growing region
replacing a slower one, the technology gap widens. A large downward
shock to the leader's growth reduces the technology gap. These
interactions are apparent in the topography of Figure 10.

Rerunning using different random number streams produces peaks and
valleys are in different positions. Therefore, since Figure 10 is just one of
many realisations, we need to generate a large number to have a more
accurate picture of ‘equilibrium’. As an illustration, Table 6 summarises
100 different realisations for a few NUTS 2 regions of the EU ranging
from a very high ranking region (Antwerp) to a very low ranking region
(Crete), plus afew other selected intermediate regions of interest.

This approach can be compared with the Markov chain approach
suggested by Quah(1993) to model turbulent dynamics. An attractive
feature of Markov chains is the presence of stochastic equilibrium, which
is the stable vector of probabilities of different levels of productivity. At
equilibrium, the state probabilities that are fixed, but regions can migrate
from one state to another thus reflecting some of the turbulence of the
real world.

There are a number of limitations of the Markov chain approach which
have been highlighted by Fingleton(1997, 1998b, 1999Db,c). One is that it
does not take explicit account of inherent differences between regions
affecting productivity growth and steady states. Secondly, it is not
clearly related to any one specific underlying economic theory. Thirdly, it
ignores the role of spatial interaction and consequent ‘sticky mobility’,
which has been shown to be significant in the empirical results in this
paper. Thus, while the concept of stochastic equilibrium is an attractive
one, Markov chains are not the ideal mode of analysis. For instance since
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the economic theory is obscure, it would be hard to create alternative
scenarios by manipulating driving variables.

Table 6 The distribution of stochastic equilibrium outcomes for selected
regions

Region
1 2 3 4 5

.95 71 0 0 0 0
.90 27 0 0 0 0
.85 2 1 0 0 0
.80 0 18 0 0 0
75 0 49 7 0 0
.70 0 30 39 6 0
.65 0 2 45 41 0
.60 0 0 9 43 0
55 0 0 0 10 0
50 0 0 0 0 0
45 0 0 0 0 1
40 0 0 0 0 23
.35 0 0 0 0 68
.30 0 0 0 0 8
25 0 0 0 0 0

Key :

1. Antwerpen, Belgium

2. E. Anglia, UK

3. Toscana, Italy

4. Ireland

5. Kritti, Greece

8. Endogenous spatial interaction

The focus on the conditions leading to some kind of steady state has up to
now ignored endogeneity involving the matrix W. Endogeneity is a
consequence of W being a function of the level of technology, thus

W i1 = Pya® 0 (29a)

Wij,t+1 =W ij t+1 / Sj W ij t+1 (29b)



and by the fact that P., = Pexp(p). Thus far we have simplified the
construction of W by assuming the steady state W, with p constant so that
the link between P and p is of no consequence for W since Wij 1 = Wi
Once we admit spatially varying p then this is not the case. Geography
becomes mutable. The intuitive outcome is that productivity growth
differences will strengthen interaction between fast growing regions.
However, it turns out that while out-of-equilibrium dynamics are altered,
the catch up term in the model dictates that regions still converge to the
same productivity growth rates whether or not W is endogenous. This is
illustrated for the laboratory set up by Figures 11 and 12. Figure 11 shows
the productivity growth dynamics for exogenous W and Figure 11 is the
same set up except that W is endogenous. The growth dynamics are
different and therefore the steady state levels differ with endogenous W
producing higher productivity levels at any one time. However the
inexorable tendency for productivity growth rates to become equalised in
the steady state causes the productivity level ratios (R) to be equal under
both exogenous and endogenous W.

Although catch up is an empirical readlity, it is instructive to look at what
happens in its absence. Simply assuming exogenous W results in
productivity growth rates failing to converge, but remaining constant at the
levels determined by output growth rates, interregional spillovers and
intrinsic differences between regions. This is illustrated by Figure 13,
which is deceptively simple because it implies that regional productivity
levels diverge. Note that interregional spillover is not the sole reason for
regiona divergence, but it adds to the rate of divergence by increasing the
productivity growth rates. However, it could also cause regions to diverge
in a similar fashion by causing the (higher) productivity growth rates to be
more similar. We can show experimentally that if two regions are well
connected then their (higher) productivity growth rates converge. Assume
10 regions with (implicit) productivity growth rates 0.01 to 0.1, ordered in
sequence so that region 1 has growth rate 0.01, region 2 has 0.02 and so
on. Call this the vector p. These are not the actual growth rates p since
weassumep=p + Wp or p = (I +rW)’pin other words we assume
growth is enhanced by externalities with spillover from other regions.
Assume also a very simple W matrix with just two regions interacting,
hence W is a 10 by 10 matrix of zeros except Wy, = 1 and Wy, = 1.
Assuming r = 0.5, then p; = 0.02 and p, = 0.025 but the rest remain as
before, so spatial interaction reduces the difference from Dp = 0.01 to Dp
= 0.005 and raises the growth rates, compared with what they would have
otherwise been with W = 0 throughout. In general the presence of the
externality causes growth rates to be higher and growth rate differences to
be lower than otherwise. Assume we have complete connectivity between

NN



regions so that W contains values equal to 1/9 apart from zeros on the main
diagonal. A consequence is that the implicit growth rate differences of Dp’
= 0.01 between successive regions reduce to actual differences equa to
Dp - rDp/9 = 0.009444. Increasing spatial interaction by allowing r to
approach 1 reduces differences further and increases growth rates. The rule
Dp -rDp/9 = Dp aso applies to a random vector p so positive and
negative differences are closer to zero. However thisis only a special case
when complete connectivity exists, with arbitrary W it is the more
connected regions growth rates that converge.

We have seen that different W produce different productivity growth rates
in the long run when catch up is eliminated. We now look at what happens
when W is endogenously determined and as explained above depends on
the growth of productivity. Allowing this to happen in our laboratory
produces Figure 14, which can be compared to Figure 13 which is the
same but for fixed W. Initially there is a rising trend with some regions
productivity growth rates move together, some move apart. Interaction
between regions that are growing fast is strengthened, causing them to
grow faster and converge in growth rate. Endogenously determined
interaction produces faster growth than otherwise, but why does it
automatically tend to level growth rates? The reason is that with one region
growing faster it eventually becomes very dominant with a much higher
productivity level than the other regions. Figure 15 illustrates the long term
conseguences of the growth rates of Figure 14, the productivity levels
ratios are tending to zero. Since W depends on productivity levels, this
means that the W matrix tends towards domination by a single fastest
growing region. In the limit the W cells tend to zero except for the column
for the fastest growing region, which tend to one. This means that the
productivity growth of the fastest growing region is tending to become the
only factor involved in the slower growing regions interregional
interaction. The productivity growth of the fastest growing region in turn
depends solely on the productivity growth in the second fastest region.
Thus there is also one cell in the row for the fastest growing region tending
to one. The W matrix always tends to a constant with these characteristics
when there is one region with faster productivity growth than the others.
This tendency for endogenously determined W matrices to tend to a
constant as the dominant region becomes increasingly dominant explains
why the growth rates level off, since there is no longer the reinforcing
effect which occurred before W stabilised.

Finally, let us explore the results of introducing endogenously determined

interaction into the full scale simulation portrayed by Figure 10, which
included all the variables including catch up and stochastic turbulence.
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Because of the complex of factors operating simultaneously, the theoretical
tendency to polarise is contained. In fact, since the manufacturing
productivity growth rates are small in relation to the productivity levels,
allowing them to feed back to the levels makes little difference to the W
matrix at least for up to 100 iterations, although there are perceptible
effects. The effects are illustrated by comparing two contrasting groups,
each containing six regions. The first group, comprising Greater London,
Ile de France, Bruxelles, Stuttgart, Lombardia and Dusseldorf, consists of
core regions with on the whole high levels of manufacturing technology.
One should expect these to mutually interact and for this to strengthen as a
result of this interaction. The second group consisting of Corse, Sicilia,
Highlands and Islands of Scotland, Ireland, Kritti and Extremadurra, is
scattered and of variable technology. We would not expect these to interact
much or for interaction to be reinforced over time. Figure 16 plots the
productivity levels ratios of the core regions, and Figure 17 is for the
scattered peripheral regions. It appears that the core regions are a more co-
ordinated group that is tending to move in unison compared with the
peripheral regions, as one might expect with strong and increasing regional
interaction. Of course we have built these features into our outcomes by
endogenising W, so it is no surprise that they are apparent. These are
simply illustrations of how endogenous interaction might work in practice,
and much more econometric work is needed to evauate the role and
significance of endogenous interaction in a multivariate situation.

9. Conclusions

The paper has proposed a model of regional economic productivity
growth for the EU regions as a ‘third way to analyze regional
development somewhere between ‘new’ and ‘old’ economic geography.
The approach adopted, labeled ‘economic geography with spatial
econometrics’, places emphasis on inductive analysis at an early stage
rather than deduction, so in a sense tackles the problem of geographical
concentration from the opposite direction to new economic geography.
The main empirical findings of the paper are that there are significant
increasing returns to scale, at least in the EU manufacturing context, and
significant externalities with technical progress assumed to depend on
spillovers from capital accumulation which cross regional boundaries.
Also, low productivity regions have, allowing for other factors, seen
faster productivity growth and technological catch up. However, intrinsic
regional differences presumed to relate to human capital stocks varying
with peripherality and urbanization also account for productivity growth
differences.



The preferred fitted model is used to illustrate long run dynamic
implications. The model converges to a stable steady state despite the
existence of increasing returns, because the catch up element in the model
causes productivity growth rates to become equalized. The stable steady
state is a dispersed equilibrium because of the intrinsic differences
between regions. Admitting exogenous shocks implies some form of
‘stochastic equilibrium’.  This is preferred to Markov chain stochastic
equilibrium because it captures the ‘sticky mobility’ of regions,
‘permanent’ interregional differences and supposes an explicit underlying
model.

The paper also examines dynamic implications of the model in the
presence of dynamic endogenously determined interregional interaction.
Eliminating catch up, static interaction plus increasing returns result in
stable productivity growth rates but the differences between regions
ensure increasing disparities between productivity levels. This tendency
IS exacerbated by endogenous interregional interaction that produces
rising rather than stable productivity growth rates. At an extreme level of
geographical concentration growth rates stabilize so we have non-
accelerating regional divergence, but only after productivity levels have
become higher and growth rates faster than under exogenous
interregional interaction.

kg 1=
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11. Notes

1. One minor problem with the specification is the spurious correlation resulting from
the fact that p = g — e, where e is the growth of employment. This is best seen in the
simple regression context E(p) = by + b; . The main consequence of this is the
inflated value for R? which results, and which is avoided by regressing e on g in
order to obtain the correct R The resulting regression coefficients are simple
functions of the original ones, since E(e) = -by + (1-b1)Q.

2. The appropriateness of a production function as an underlying static model has
been questioned. Kaldor(1957) viewed the Verdoorn Law as a linear technical
progress function, considering as arbitrary and artificial ‘any sharp or clear cut
distinction between the movement along a “production function” with a given state of
knowledge and a shift in the “production function” caused by a change in the state of
knowledge’ (see also Harris and Lau 1998, McCombie and Thirlwall 1994, Aghion
and Hewitt 1998).

3. In fact this assumption is not a bad one, corresponding to one of Kaldor’s stylized
facts discussed by Barro & Saa-i-Martin (1995).

4. An earlier related approach (eg Fingleton & McCombie 1998) assumed that
technical progressis partly induced by output growth, asin

| =1 +hq

5. Infact the cell (i,j) of the W matrix (ie prior to standardization) are given by

W jj = Qody®
inwhich Qjodenotes the level of output of economy j at time O and d;; denotes great
circle distance between the centres of regionsi and j. The coefficients a and g are set
to thevalue 2. Thisisthus a broader (steady-state) measure of interaction than level
of technology per se, but encompasses technology since Q = PE. In later simulations,
W is endogenised with respect to P.

6. There are clear analogies here with autoregressive time series processes. Assume
for example

Yt:th.1+ W, t:2,...,T

w ~N(O, s?)

Y= 0

This can also be written in matrix terms as

Y=y WY+ w
w~ N(0, s?)
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In which W here is defined asa T by T matrix of 1s and Os with

1s located on the minor diagonal in cells (2,1), (3,2), ...(T,T-1). GiventhisY; values
exactly equal to those produced by the straightforward repeated sequential calculation
of the first equation are given by

Y=(-yW)'w
W]_:O
w~ N(0, s?)

Provided the ‘ stream’ of random numbers is the same in each case.

7. Similarly the singular points are the roots of the polynomial equationil - rWi=0
and if Wis an n x n matrix, there will be there will be up to nreal distinct roots for the
polynomial equation.

8. The usual method is a bisection search as in SPACESTAT.

9. IV or 2SLS estimation has frequently been carried out in cross-sectional growth
analysis by treating lagged variables as predetermined, for example Barro and Sala-i-
Martin(1995) use the average investment ratio for 1960-64 as an instrument for the
average for 1965-75, although it is not always certain that using a lagged variable as
an instrumental variable will solve the problem by being independent of the error
term (Barro and Sala-i-Martin, 1995, argue that lag values are reasonable candidates
as instruments because the correlation of the residuals in the growth regressions
between their two periods is insubstantial).

10. Since Groningen and Flevoland have anomalous manufacturing GVA and GVA
per worker values (largely due to fluctuations in gas production in Groningen and
possibly also due to commuting), in these cases the Dutch national averages were
used. In the case of Hamburg, it is apparent that commuting may also be a distorting
influence because of the (NUTS 1) region's small spatial extent. Hence a more
appropriate definition of the city was used, the travel to work area (RORO05) which
comprises the NUTS 1 region of Hamburg and the surrounding Kreise that qualify as
part of the functional urban area. For example, in 1990, the Hamburg TTWA had a
population of 2.9m people, compared with 1.6m people for the NUTS 1 region. This
provides a more realistic per worker GVA.

11. Note that this vector is obtained by iteration rather than by calculating equation
(26). With unchanging leadership, both methods give the same results. If productivity
leadership changes, the consequence of applying equation (26) is R® > 1 for some
regions that catch-up and surpass the original leader. On the other hand calculating
P* in equation (17¢) at each iteration, as has been done in practice, makes R® > 1
impossible and this seems more realistic since regions will be tending to catch up the
current productivity leader rather than the initial one.
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