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Abstract

This paper investigates imitation and selective matching in reputational
games with an outside option. We identify two classes of such games, which
are ultimatum and trust games. By selective matching we mean that short-run
players have the possibility of selecting the long-run player they play against.
We find that selective matching (unlike random matching) favors the equilibrium
associated to reputation in the ultimatum game but not in the trust game.
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1 Introduction

Reputation effects are crucial elements in many interesting economic relationships.

For instance, reputation may support foreign investments in developing countries,

contribute to maintain quality in ’experience good’ markets, or deter potential

competitors in monopolistic local markets. However, it has proven difficult to

model such phenomena in finite and infinite horizon.1 In infinitely repeated games,

an implication of the Folk theorem is that there exist multiple rational equilibria

supporting almost all types of behavior, cooperation as well as defection, toughness

and fairness. As a result, the predictive power of the theory may be sharply reduced.

In particular, we cannot identify situations in which reputation represents a significant

factor in determining the outcome of the game.

This paper investigates the role of imitation and selective matching in supporting

the reputation-building dynamics in infinitely repeated games with an outside option

(GOO). In these games, which are traditional models of reputation, a sequence of

short-run players (buyers or investors) first select whether to play a game with a long-

run player (a firm or a country) or not. An exit option is therefore available to short-

run players. Due to this outside option, competition between long-run players seems

a natural setting for most of GOO: consumers can use their outside option to freely

switch firms, or countries may compete for attracting investors. However, most studies

on reputation formation have considered GOO in isolation, building models where a

single long-run player faces a sequence of short-run players.2 This occults two of the

main ingredients of the whole story: (1) social learning, that is the opportunity to learn

from others (especially for long-run players), and (2) selective matching, that is short-

run players’ possibility to select the long-run player they play against, when several

1See Selten (1978), Kreps and Wilson (1982), Milgrom and Roberts (1982), Fudenberg and
Levine (1989, 1992).

2 Notable exceptions are Jackson and Kalai (1999) and Hörner (2002).
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long-run players are simultaneously considered.

In this paper, I use an evolutionary game model integrating both social learning

(by way of imitation) and selective matching. Here, a finite population of long-run

players repeatedly face a population of short-run players. Both types of players are

boundedly rational agents who learn by imitating successful others. This follows a

growing and recent literature on evolutionary games, in which players are assumed to

imitate successful behaviors.3 Some empirical studies have showed that imitation is

a good approximation of economic behaviors in a variety of contexts.4 Alternatively,

some papers such as Kandori and Rob (1995) have assumed best response dynamics.

Imitation dynamics requires less information on the structure of the game, and thus

is more appropriate in a very complex environment where agents seek to minimize

decision costs. The matching process between short-run and long-run players is

specified following two polar scenarios: the random matching scenario, where short-

run and long-run players are randomly matched, and the selective matching scenario,

where a short-run player selects the long-run player he plays against. I use the random

(pairwise) matching scenario as a benchmark as it is one of the two usual matching

processes in evolutionary models.5 The selective matching scenario gives short-run

players some control over who they play against. This selection is endogenously

incorporated in the model by assuming that short-run players strategy consists of

choosing an action (enter the subgame or not) and of selecting a long-run player.

1.1 Motivations

Evolutionary game theory is an appropriate tool for capturing social learning and

selective matching. First, evolutionary models consider populations of boundedly

3See Robson and Vega-Redondo (1996), Vega-Redondo (1997), Tanaka (1999) or Alós-Ferrer (2004)
for instance.

4See Offerman and Sonnemans (1998) and Pingle and Day (1996).
5The other matching process is the so-called playing-the-field. See for instance Vega-Redondo (1997)

for a description of the differences between both matching processes.
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rational agents who are repeatedly matched in pairs to play a defined stage game.

Thus, there are several repeated games played simultaneously which allows players to

learn not only from their own experience but also from the experience of the others’

choices. As in Jackson and Kalai (1999), we examine reputational games when such

games are not played in isolation, but instead a player may learn from the other players

by observing how they are playing the game.

Evolutionary game theory is also an ideal setup for analyzing matching processes.

Due to the simultaneity of games, evolutionary models have to make some assumptions

as to how players meet in each stage game. Literature offers various specifications

regarding the matching mechanism and, as Oechssler (1997) and Robson and Vega-

Redondo (1996) showed, evolutionary models are quite sensitive to the specification

of the matching process. In a general way, one may define two models of matching:

the fully global selection model and the group selection model. In the former,

interaction takes place within the entire population, where individuals are randomly

matched to play a bilateral game6. In contrast, the second model of matching assumes

that interaction takes place within relatively small subpopulations, where there is

infrequent migration between subpopulations7 . Both models share the assumption

that the matching mechanism relies on a perfectly random process, removing selective

considerations like group or partner choice. Recently however, some evolutionary

models have included the possibility of selective considerations in the matching

process. For instance, Oechssler (1997) studies the coordination problem in a

population partitioned into groups, where players can not only choose which action to

take in the game, but also which group they want to join. Similarly, Bergstrom (2003)

explores the possibility of partner choice in a multiplayer prisoners’ dilemma game

with voluntary matching. Larson (2004) also integrates selective matching in an

6For more details on this class of matching mechanisms, see Fudenberg and Levine (1998).
7 Biologists call this class of models Haystack models. See Bergstrom (2002).
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evolutionary model, giving agents some control over who they play against. Our paper

follows this line of research.

Using the bounded rationality set-up offered by evolutionary game theory, we

follow the Selten (1978) intuition which underlies the necessity of a limited rationality

approach in order to capture reputation effects. Furthermore, as noted by Abreu and

Sethi (2003), traditional literature on reputation in games considers the possibility of

one or more boundedly rational players leaving unexplained the particular form of

irrationality assumed. Modelling reputation formation with evolutionary game theory

may provide the theory with formal descriptions of boundedly rational behaviors.

1.2 Results and Predictions

Selective matching and imitation may play a key role in the analysis of reputation in

GOO. We find that they support the equilibrium associated to reputation as the long-

run equilibrium in the ultimatum game. However, in the trust game, the long-run

outcome remains the subgame perfect equilibrium, under both random and selective

matchings. This is because the selective short-run players reaction is too low in

punishing defectors and then, as players are concerned about relative payoffs in

imitation dynamics, players continue imitating those who reject cooperation. Even

if our model cannot produce a clear-cut selection between equilibria based on the

sole matching and learning considerations, it shows that, unlike the random matching

benchmark, selective matching does not always favor subgame perfection.

Our result are very closed of that obtained by Gale, Binmore and Samuel-

son (1995), who are motivated by similar concerns. They study a simple learning

model (coming from the replicator dynamics) to which is added a source of noise:

players may "mistakenly learn to play a strategy that is adapted to the wrong game".

Under some asymmetric conditions, the model also shows that, applied to the ultima-

tum game, such a learning process leads to outcomes that are Nash equilibria but not
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subgame-perfect.

1.3 Possible applications

The model developed in this paper is applicable in several economic situations, as

many GOO implicitly contain the idea of selective matching. For instance, the quality

game represents a situation in which the short-run player begins by choosing whether

or not to purchase a good from the long-run player, who in turn can produce high

quality or low (see Klein and Leffler (1981), Shapiro (1983), Holmstrom (1999)).8

Considering a competitive setting, that is several long-run players, provides short-

run players with the possibility of selective matching. Another interesting economic

situation is the sovereign problem of foreign direct investment in less developed

countries (see Eaton and Gersovitz (1983), Raff (1992)). Such investments are prone

to the sovereign risk because they are sunk and then the host country may expropriate

the owner without compensation or unilaterally change its tax policy. This situation

may be described by the investment or trust game which is a reputational game with an

outside option. Here, the outside option (to invest abroad) gives rise to the possibility

of selective matching. Finally, even the chain-store game may be considered with

selective matching: as incumbent firms are viewed as local monopolists, potential

competitors may choose the local market into which they will move.

1.4 Organisation of the paper

The rest of the paper is organized as follows: Section 2 presents the model. Section

3 derives results under random and selective matching. Section 4 discusses the results

and suggests some extensions. Section 5 concludes.

8 The same game is used in price dispersion models. See Salop and Stiglitz (1977).
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2 The model

We consider two large but finite sets of long-run and short-run players9, respectively

denoted L = {1, ..., I, ...,N} and S = {1, ..., i, ...,n}. Let N = n.10 Players I and i are

repeatedly matched to play a stage game and adjust their behavior over time. The

model consists of four elements: (1) an underlying game that describes the basic

strategic environment; (2) a matching process specifying how players are paired to

play the underlying game; (3) a learning mechanism that describes how agents learn

about different strategies and sometimes switch to them; (4) a mutation mechanism

that integrates some perturbations in the learning mechanism. These elements are

described in turn in this section.

2.1 The underlying game

We focus on two-player games with an outside option. These games describe situa-

tions which may be summarized as follows

(a,A)

(b,B)

(c,C)

Player i

Player I

O

E
Co

R

where (a, b, c) and (A, B, C) respectively denote players i and I payoffs. Player i may

either choose to enter the subgame (E) or take his outside option (O). If player i decides

to enter, the long-run player has the option to cooperate (Co) or to reject cooperation

(R). For our purposes, there are two types of generic games with an outside option. I

9 We keep here the denomination "short-run" and "long-run" players only for convenience as all
players repeatedly play the game.

10 As it will be easy to see, allowing population sizes to be different do not alter the results of the
model, but highly complexifies their exposition.
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will first consider pure strategy equilibria.

(i) The trust game11, in which b > a > c and C > B > A. This game has the same

strategic structure as the quality (or price dispersion) game and the investment game.

In the trust game, (O,R) constitutes the only Nash equilibrium of the game in pure

strategy, which is also a subgame perfect equilibrium. Notice that outcome (E,Co),

which is not a Nash equilibrium, Pareto-dominates (O,R), meaning that self-interested

behavior makes everyone worse off. In a context of perfect rationality, when the game

is repeated, the expected outcome to be sustained by reputation effects is (E,Co).

(ii) The ultimatum (mini)game, with b > a > c and A > B >C. In that game we can see

player i as making either a high offer, O, or a low offer, E . The high offer is assumed

to be always accepted (as A > B > C). After E , player I can either cooperate (Co)

or reject the offer (R). This game is also similar to the chain-store game. It has two

Nash equilibria (O,R) and (E,Co), with the latter subgame perfect. Thus, unlike the

trust game, (E,Co) is a Nash equilibrium but here (O,R) is the expected outcome with

reputation effects when the game is repeated. It turns out that this outcome is also a

focal point in laboratory experiments.12

When mixed strategies are added to the analysis, both game types have a

component of Nash equilibria. Let Ωi and ΩI stand for strategy spaces. Denote by

Σi = Δ(Ωi) and ΣI = Δ(ΩI) the spaces of mixed strategy of each type of player, with

generic elements σi ∈ Σi and σI ∈ ΣI . Without loss of generality, let c = 0. Both

type games have a continuum of Nash equilibria, which containing equilibrium (O,R),

11See Kreps (1990).
12See Binmore et al. (1995).
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given by

Θ = {(σi,σI) ∈ Σi ×ΣI : σi
E = 0,σI

Co ≤
a
b
}

where player i takes its outside option, and player I chooses strategy Co with

probability at most a/b.

2.2 The matching process

Time is measured discretely and indexed by t = 1,2,3.... At period t, player i ∈ S is

paired with player I ∈ L to play the generic game described above. I consider two

polar scenarios describing the matching process between players i and I:

• The random matching scenario, in which each player i is randomly matched with

exactly one player I to play the generic game once in each period. As N = n, each

player I play also the game once in each period.

• The selective matching scenario, where player i selects the long-run player I he

plays against. The way player i operates the selection is described in the next section

(it is part of the learning mechanism). Due to the selection component here player I

may be confronted with several players i∈ S (all having chosen I), meaning that player

I may here play the game several times in one period. All players i play once in each

period.

The random matching scenario provides the analysis with a benchmark case, as

random matching is the usual assumption in evolutionary models. Notice that, in

the selective matching, long-run players act as in the random matching scenario.

From their point of view, the matching only follows a random process even if

short-run players are selective. The main reason supporting this assumption is that
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long-run players have no outside option in GOO, meaning that they don’t play an

active role in the matching process. Note also that both scenarios suppose different

degrees of sophistication for short-run players, since selective matching requires more

information about long-run players. We will discuss this in Section 5.

2.3 The learning mechanism

The learning mechanism specifies how players choose their strategies. Following

Vega-Redondo (1997), I will consider an imitation dynamics in which players simply

mimic the strategy of the most successful players.13 Thus, they are assumed to be

myopic14 and adaptive. Agents do not form expectations about the future course

of play and take into account the decisions made in the past to determine their

strategies. This means that changing from one strategy to another is dictated by such

considerations as: How well do I perform compared to the other players? What is the

strategy used by the most successful players?

We are interested in the description of the behavior adopted by the players in the

long-run. Let zt = (zs
t ,z

l
t) ∈ Z ≡ {z = (zs,zl) : 0 ≤ zs ≤ n, 0 ≤ zl ≤ N} be the state at

t of the evolutionary dynamics, where zs
t and zl

t represent respectively the number of

players using O in population S and using R in population L. For convenience, states

z1 = (n,N), z2 = (0,0), z3 = (0,N) and z4 = (n,0) will be directly written z1 = (O,R),

z2 = (E,Co), z3 = (E,R) and z4 = (O,Co).

Let Xt = (X1t , ...,XIt , ...,XNt) represent the strategy-profile of long-run players at

period t, with XIt ∈ {Co,R}. In the same way, define xt = (x1t , ...,xit , ...,xnt) as the

strategy-profile of short-run players at t, where xit ∈ {O,E} in the random matching

scenario and xit = (ait , I) with ait ∈{O,E} and I ∈L in the selective matching scenario.

This is because xit consists of choosing an action ait ∈ {O,E} and of selecting a

13 Alternatively, evolutionary games consider best response dynamics which, relative to imitation
dynamics, required much more information (as players need to know the whole structure of the game).

14On the justification of the myopic assumption, see Section 5.
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long-run player I ∈ L when the matching is selective.15 Consequently, player i’s

strategy is a couple xit = (ait , I) in the selective matching scenario. Define also the

payoff-profiles associated respectively to xt and Xt as πt = (π1t , ...,πit , ...,πnt) and

Πt = (Π1t , ...,ΠIt , ...,ΠNt).

At the beginning of each period, all players i and I choose a pure strategy and

sticks to it for the duration of the period. In the random matching model, players play

exactly once in each period so that both πit and ΠIt depend on the strategies of the two

randomly matched partners.

In the case of selective matching, as indicated above, player I may be confronted

with several players i, having chosen I ∈ L in their strategy. Thus, ΠIt depends not

only on XIt and xit with xit = (E, I), but also on the number of players i having chosen

I. Let SI,t ≡ {i ∈ S : xit = (E, I)} ⊆ S be the subset of players i having chosen I at t,

we can define player I’s payoff as follows

ΠIt(XIt ,SI,t) =

⎧⎨
⎩

0 if SI,t = /0 ∀XIt ,
|SI,t | B if XIt = Co and SI,t �= /0,
|SI,t | C if XIt = R and SI,t �= /0.

in which A is normalized to zero. This allows us to eliminate the payoff increase

resulting from attracting more competitors in the ultimatum game, which is not

appropriate in that case. Fixing A = 0 eliminates this effect.

At period t +1, player i ∈ S observes (xt ,πt), that is all previous payoffs in S with

the corresponding strategies. Similarly, player I ∈ L observes (Xt ,Πt). Player i ∈ S

(respectively player I ∈ L) is assumed to find the maximal payoff in πt (respectively

Πt) and then imitate the corresponding strategy. Formally, player i ∈ S chooses xkt ∈ xt

such that

k ∈ argmax j∈S {π jt}. (1)

15 Following Oechssler (1997), E and O are called actions since in our model of selective matching
short-run players strategy indicates both a long-run player and an action choice.
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In the same way, player I ∈ L chooses XKt ∈ Xt such that

K ∈ argmaxJ∈L {ΠJt}. (2)

Let BS(t−1) = {xkt−1 ∈ xt : πkt−1 ≥ π jt−1,∀ j∈ S} be the set of strategies achieving

the highest payoff in S at the previous period. When BS(t − 1) is not a singleton,

that is when several strategies give the maximal payoff, one of them is chosen at

random according to a probability distribution with full support on BS(t − 1). The

same assumption applies to population L.

Games with an outside option have a particular strategic structure in which a long-

run player facing no effective entry (i.e., only facing O-users) does not reveal his

strategy. This is the case in most extensive-form games where some of the information

sets may not have been reached. In such a situation, the very last behavior of a long-

run player can not be observed by other long-run players and thus can not generate

imitation.16 For the sake of simplicity here, I assume that when the strategy of a long-

run player is not revealed at a given period, it is considered as unmodified relative to

the last time it could be observed. Formally,

Assumption 1 When XIt−1 ∈ Xt−1 cannot be observed at the beginning of t, then

XIt−1 = XIτ with τ < t the last period in which player I ∈ L faced an E-user.

Thus, in such a case, player J looking at the performance of player I at the beginning

of t considers the couple (XIτ,Πt−1), that is the last observable strategy with the payoff

just realized. When τ does not exist (for instance at the very beginning of the game),

one may assume that players select their strategies at random in order to first obtain

information about them and then follow the imitation dynamics.

16 Most evolutionary game models postulate that agents simply look at the immediate past and use
it as a one-point predictor of what will happen next. This is called static expectations. Young (1993)
was the first to introduce a process of expectation formation into stochastic evolutionary models. As
extensive-form games may present unreached information sets, evolutionary models investigating these
games have proposed an extension of the static-expectations approach. See for instance Nöldeke and
Samuelson (1993) who developed the analysis of evolutionary stability in extensive form games.
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Inertia is an important aspect of evolutionary models. They consider that not

all agents react instantaneously to their environment but rather gradually adjust their

strategy following the learning mechanism. Formally, each player independently with

some fixed probability φ ∈ (0,1] receives the opportunity to update his strategy in each

given period. As we will see in Section 5, assuming different levels of inertia in S and

L may have an incidence on the results of the evolutionary dynamics.

2.4 Mutations

Besides the learning mechanism, mutation is the other force acting on agents’

strategies. It refers to a situation where an individual randomly switches to a new

strategy. After the completion of the learning adjustment, each agent independently

changes his strategy with a small probability ε. The learning process is then

perturbed17. In economic contexts, the mutation phenomenon may be interpreted as

experimentation of non-optimal strategies, in the sense of (1)-(2), or the entry of a new

player who knows nothing about the game.18

Learning dynamics (1)-(2) combined with the mutation mechanism generate a

Markov chain over the finite state space Z. The existence of a small probability ε > 0

ensures that the process has a unique stationary distribution summarizing the long-

run behavior of the system, regardless of initial conditions.19 The latter characteristic

of the model is particularly interesting when the learning mechanism presents several

stationary states (which is the case here as we will see in the next section), since it

may permit a selection to be made between them. Our goal is to find the stochastically

stable state or the long-run equilibrium (LRE) of the game assuming that ε → 0. We

have to compute the number of mutations required in the transitions between absorbing

states of the learning mechanism. The LRE is simply the one requiring the fewest

17As mentioned by Samuelson (1997), mutation is a residual capturing whatever has been excluded
when modelling selection.

18 On this point, see Canning (1989).
19See Kandori, Mailath and Rob (1993) and Young (1993).
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mutations.20

Notice that mutation effects may be limited in extensive-form games. As

mentioned in Section 2.3, in such games information sets may not have been reached.

Consequently, if a mutation changes an agent’s strategy at a decision node that is not

currently reached, then this has no effect on the agent’s payoff and is not observed by

others (and thus cannot generate imitation). This has some consequences on the result

of the model.

3 Analysis

In this section, we characterize the long-run behavior of the evolutionary dynamics

considering both random and selective matching processes. We find that selective

matching has important implications on the LRE of the dynamics.

In the framework of the imitation rule considered here, extinct strategies are

required to remain extinct without mutations.21 This means that in monomorphic

states, i.e., states in which all players use the same strategy, the learning mechanism

cannot bring (alone) new strategies in the population. In such states players cannot

observe the gain of an unplayed strategy so that they cannot imitate it.

Let T0(z,z′) be the transition matrix of dynamics (1)-(2) between states z,z′ ∈ Z;

the corresponding m-step transition matrix is denoted by T m
0 (z,z′). As customary, we

define a limit set A ⊂ Z of the imitation dynamics, that is a set containing absorbing

states, as a closed set under finite chains of positive-probability transitions. Formally,

a set A ⊂ Z is a limit set if

(1) ∀z ∈ A,∀z′ /∈ A,T0(z,z′) = 0,

20For more details on this result, see Kandori, Mailath and Rob (1993) or Samuelson (1997) or Vega-
Redondo (1996).

21 This follows the Robson and Vega-Redondo (1996) model as well as the biologists formulation
of evolutionary dynamics. However, it constitutes a point of departure with Kandori, Mailath and
Rob (1993). On this point, see Robson and Vega-Redondo (1996).
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(2) ∀z,z′ ∈ A,∃m ∈ N such that T m
0 (z,z′) > 0.

Denote by A the collection of limit sets of the imitation dynamics. When A is a sin-

gleton, for instance A = {z∗}, learning mechanism (1)-(2) cannot escape from {z∗}

without experimentation or mutation, so it remains in {z∗} forever. We can state the

following result.

Proposition 1 Under random matching, A = {{zq} : q = 1,2,3,4} in any type of

games with an outside option. Under selective matching, we find that A = {{zq} :

q = 1,2,3,4} in the ultimatum game, and A = {{zq} : q = 1,2,3,4, Z′ ≡ {(z′s,z′l) :

z′s = 0, 0 < z′l < N}} in the trust game, for all |SI| = (0,1, ...,n) and I ∈ L.

Proof. Observe first that z1, z2, z3 and z4 are the all monomorphic states of dynamics

(1)-(2). By A3, no shift in strategy can take place from these states, as players cannot

imitate unplayed strategies. Thus, z1, z2, z3 and z4 are all absorbing states under both

random and selective matching.

On the other hand, a polymorphic state cannot be absorbing under random

matching. Let z′ ∈ Z be a polymorphic state. z′ is a candidate to stationarity only

if players of the same population earn identical payoff in using different strategies.

Suppose that this is the case. As, by assumption, there is always positive probability

that all players I ∈ L (respectively i ∈ S) choose the same strategy in BL(t − 1)

(BS(t − 1)), forcing the imitation dynamics to come back towards a monomorphic

state.

Consider now states z′ ∈ Z′ ≡ {(z′s,z′l) : z′s = 0, 0 < z′l < N}. As 0 < z′lt < N,

player i’s strategy is xit = (E,J) with the restriction J ∈LCo,t ≡{I ∈ L : XIt =Co} � L.

This means that all R-users denoted K /∈ LCo,t are avoided by selective short-run

players at t. In the trust game, we then have ΠJt = |SJ,t |B > ΠKt = 0 as |SJ,t | > 0.

Following imitation rule, players K /∈ LCo,t should imitate strategy Co in subsequent
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periods τ > t. However, by construction, all players i ∈ S will continue to imitate

xit = (E,J) with J ∈ LCo,t ≡ {I ∈ L : XIt = Co}, so that imitation of Co by K /∈ LCo,t

cannot be revealed. Then, by A2, XKτ = XKt = R for some τ > t, so that zτ = z′t ,

meaning that states z′t ∈ Z′ are absorbing in the trust game.

In the ultimatum game, on the contrary, one observes ΠJt = |SJ,t |B < ΠKt = 0 as

B < 0 in states z′ ∈ Z′. Then, players J ∈ LCo,t shift to R during periods τ > t and this

is revealed here since these players were selected at t by short-run players (and they

continue to imitate this strategy). Thus, states z′ ∈ Z′ are not absorbing states in the

ultimatum game. �

The previous result indicates that, under random matching, an absorbing state of

the dynamics has to be monomorphic, and that all monomorphic states are absorbing

states. This comes from the specification of the imitation dynamics, in particular

Assumption 3. No mutation is needed to move from any polymorphic state to an

absorbing state, so that a LRE must be monomorphic when players meet at random.

On the contrary, under selective matching some polymorphic states can be absorbing

in the trust game, as mentioned above. The intuition behind this result is that a R-user

at t −1 who tries to revise his choice at t cannot be revealed due to the structure of the

game as discussed above. This will be no longer true with perturbations introduced by

mutations. These perturbations will allow us to see the somewhat fragile stability of

polymorphic states z′ ∈ Z′ in the trust game.

Notice that, under selective matching and without mutation, it could happen that

not all long-run players are selected in absorbing states in which zs = 0, i.e, in states

where all short-run players play E .22 In such states, without mutation, players only

imitate strategies used in the past (which means here an action and a long-run player)

22 This is underlined in the statement of Proposition 1 by specifying for all possible cardinality of
subset SI and for all SI.
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without experimenting. As a result, if a long-run player is not selected in the initial

state (that is, not present in the strategy space of short-run players) it will not be in the

subsequent states. That will disappear when introducing mutation.

Consider now the possibility of mutations. According to Kandori and Rob (1995),

the LRE are those requiring the fewest mutations in the transitions between limit sets.

Here, the limit sets are singletons {z1}, {z2}, {z3}, {z4} and {z′} ∈ Z′ so that we are

interested by transitions between these absorbing states. Define first an A-tree as a

collection of directed branches (A0,A1), with A1 the successor of A0, in which

(1) except for A, each limit set has a unique successor,

(2) there are no closed loops.

Let HA be the set of A-trees. The cost of transition between two limit sets A,A′ ∈ A

is denoted by C(A,A′). This cost represents the minimum number of mutations to

achieve A′ from A over time. The LRE are the states having minimum C(A,A′), that is

they are solutions to the following program23

min
A∈A

min
h∈HA

∑
(A′,A′′)∈h

C(A′,A′′). (3)

In words, the LRE are states whose minimum-cost trees are themselves minimum

across absorbing states.

3.1 The ultimatum game

In this section, we compute the long-run equilibria in the ultimatum game under both

matching scenarios. Consider first the basic model of matching, that is the random

matching process. Then, we can state

Proposition 2 In the ultimatum game, z2 = (E,Co) is the LRE under random

23 See Kandori and Rob (1995), Proposition 4.
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matching.

Proof. We have to find the minimum-cost trees that are themselves minimum across

absorbing states. From Proposition 1, we know that A = {{zq} : q = 1,2,3,4}. It

will be shown that there exists an z2-tree hz2 such that C(hz2) = |A | = 4 whereas for

all zq �= z2 with zq ∈ A every zq-tree hzq implies C(hzq) > 4, so that z2 is the unique

solution to program (3).

Consider z3 = (E,R) and one mutation J ∈ L playing Co. Then, ΠJ = B > ΠI = C

∀I �= J, so that mutant J ∈ L is imitated and the system moves to z2 = (E,Co). In the

same way, consider z4 = (O,Co) and one mutant j ∈ S playing E . As π j = b > πi = a

∀i �= j, mutant j generates imitation of E in population S. Thus, one mutation is

sufficient to escape from both states z3 = (E,R) and z4 = (O,Co).

Assume now that the system is in z1 = (O,R). Notice that, due to the structure of

the game, one mutation J ∈ L playing Co cannot be revealed until it is matched with a

mutant j ∈ S playing E . In this event, ΠJ = B < ΠI = A ∀I �= J but π j = b > πi = a

∀i �= j. As φ ∈ (0,1], there is a positive probability that all players i ∈ S adjust

their strategy towards E during the subsequent period, inducing a transition from

z1 = (O,R).

On the other hand, two mutations are not sufficient to move from z2 = (E,Co).

Assume n ≥ 3. One mutation j ∈ S playing O cannot alone generate imitation since

π j = a < πi = b ∀i �= j; in the same way, a mutant J ∈ L playing R cannot operate a

transition as ΠJ = C < ΠI = B ∀I �= J. Further, two paired simultaneous mutations

(O in S and R in L) don’t induce a transition since mutant J ∈ L playing R cannot be

revealed by mutant j ∈ S playing O.

As a result, C(hz2) = 4 as one mutation is required in each of both states z3 and z4

plus at least two mutations in z1, whereas C(hzq) > 4 for all zq �= z2 (one mutation in

z3 and z4, plus more than two in z2), which completes the proof. �
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On the other hand, selective matching favors different behaviors in the long run,

that is

Proposition 3 In the ultimatum game, z1 = (O,R) is the LRE under selective

matching.

Proof. Unlike the random matching scenario, selective matching allows the system to

escape from z2 = (E,Co) with only one mutation, but leaves unchanged the number of

mutations required in other states. As a result, C(hz1) = 3 whereas for all zq �= z1 with

zq ∈ A every zq-tree hzq implies C(hzq) > 3.

Consider that the system is in z2 = (E,Co) at t and suppose that one mutation

J ∈ L playing R occurs at the same time. In this event, one observes ΠJt = |SJ,t |C <

ΠIt = |SI,t |B ∀I �= J, as A > B > C and by A1 |SJ,t |= |SI,t |. At the next period, mutant

J ∈ L is not imitated. However, selective short-run players will avoid strategy (E,J) as

π j < πi with x jt = (E,J) ∀i �= j (i.e, they avoid mutant J ∈ L) so that, even if mutant

J ∈L changes its strategy (returns to Co) at t, this is not revealed. By A2, players I �= J

will consider that XJτ = R (the last observable strategy) with ΠJτ = A (the last realized

payoff). Then they have to compare ΠJτ = A = 0 to ΠIτ = |SJ,t |B during periods τ > t.

As B < 0 in the ultimatum game, players I �= J start to imitate strategy R, which in turn

generates imitation of O in S.

On the other hand, selective matching does not change the number of mutations

necessary to escape from z1 = (O,R). Afresh one mutant J ∈ L playing Co cannot be

revealed until it is matched with a mutant j ∈ S playing E . When this occurs, there is

a positive probability that all players i ∈ S imitate x jt = (E,J) as π j > πi ∀i �= j, which

induces a transition from z1 = (O,R) towards state z′ ∈ Z′.

Finally, observe that one mutation is sufficient to escape from both states z3 =

(E,R) and z4 = (O,Co), even under selective matching, so that C(hz1) = 3 whereas for
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all zq �= z1 with zq ∈ A every zq-tree hzq implies C(hzq) > 3. �

The stronger stability of state z1 = (O,R) under selective matching comes from

the possibility for short-run players to (1) avoid long-run players using R and (2) select

long-run players using Co. As a result, Co-users always confront entries whereas R-

users are protected by selective matching which permits them to realize the highest

gain in population L. Selective short-run players lead then the imitation dynamics to

favor strategy R at the expenses of strategy Co. Unlike random matching, selective

matching may support reputation formation in the ultimatum game by preventing the

random entries in games where long-run players reject cooperation.

3.2 The Trust game

We now turn to the trust game. Unlike the ultimatum game, the presence of selective

short-run players cannot here support reputation effects. This is stated in the following

proposition.

Proposition 4 In the trust game, z1 = (O,R) is the LRE under both random and

selective matching processes.

Proof. Notice first that one mutation is sufficient to escape from both states z3 = (E,R)

and z4 = (O,Co). In z3 = (E,R), one mutation j ∈ S playing O realizes a better payoff

as π j = a > πi = c ∀i �= j. Similarly, one mutation j ∈ S playing E from z4 = (O,Co)

earns π j = b > πi = a ∀i �= j.

From Proposition 1, we know that under selective matching we have also to

consider absorbing states z′ ∈ Z′ ≡ {(z′s,z′l) : z′s = n, 0 < z′l < N}. Here, one mutation

x jt = (E,K) in population S with K ∈ LR ≡ {I ∈ L : XI = R} is sufficient to reveal

that player K has changed his strategy and play now Co, so that the system escapes

from z′ ∈ Z′(recall that, in the trust game, Co earns a higher profit when confronted to

selective short-run players).
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Consider now state z1 = (O,R). From this state, one mutation J ∈ L playing Co

cannot be revealed until it is matched with a mutant j ∈ S playing E . In this event, one

observes ΠJ = B > ΠI = A ∀I �= J and π j = b > πi = a ∀i �= j, and the system will end

in a state near to z1 = (O,R), in which all players in S will select mutant J ∈ L. Even

if other players in L imitate strategy Co, this shift in strategy towards Co will become

effective only in presence of other mutations in S, meaning that a complete transition

from z1 = (O,R) requires even more than two paired mutations.

It remains to show that one mutation can induce a transition from z2 = (E,Co).

Consider a mutation J ∈ L playing R. As ΠJ = C > ΠI = B ∀I �= J, mutation J

generates imitation in population L during the subsequent periods. Consequently,

C(hz1) = 3+ |Z′| with |Z′|= N−2, whereas C(hzq) > N +1 for all zq �= z1 with zq ∈ A ,

and C(hz′) > N +1 for all z′ ∈ Z′, so that z1 = (O,R) is the LRE. �

The idea behind Proposition 4 is the following. Recall first that, in the trust game,

z2 = (E,Co) is Pareto-dominant but does not constitute a Nash equilibrium. As a result,

a long-run player using strategy R from state z2 = (E,Co) earns immediately a higher

payoff than Co-users. This player may then initialize imitation of R in population L.

Unlike the ultimatum game, selective short-run players play no role here. As

φ ∈ (0,1], there is always a positive probability that strategy R is imitated by all long-

run players before the reaction of selective short-run players. Indeed, selective short-

run players once informed could (1) avoid R-users and (2) select Co-users as a matter

of priority indicating that strategy Co may realize the best payoff in population L. This

means that considering that selective short-run players always learn more quickly than

long-run players may have an incidence on the result in Proposition 4. However, this

requires also additional assumptions as regards the imitation rule as considering only

cases in which short-run players adjust their strategy before or infinitely faster than the

long-run players. It seems to us that such assumptions are too extreme to be considered
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as satisfactory.

4 Discussion and extensions

4.1 Random versus selective short-run players

The main result of our model suggests that long-run equilibria in GOO depend on

the matching process specifications, in particular whether it is selective or random

for short-run players. Thus, one may ask what sustains the presence of selective

short-run players in these games. More precisely, the important questions are:

which context favors the existence of selective compared to random short-run players

under evolutionary competition? Can both types of short-run players coexist in the

population? In order to answer these questions, notice that the main difference

between both types of short-run players relies on information players have to gather

in the imitative process. Both player types have to consider the payoff earned and

the associated strategy. However, as a strategy for a selective player is constituted

by two elements (an action and a long-run player) we could suppose that gathering

information for a selective player has an added cost relatively to a random type.

Models on evolutionary competition between player types (see Stahl (1993),

Barnerjee and Weibull (1995), Heller (2004)) naturally postulates that higher informed

players incur a cost in learning compared to others. This literature has shown that,

depending on the nature of the game, informed types can either come to dominate the

population, become extinct or coexist along with less-informed types. In these models,

the question is addressed in symmetric normal form games. Reputation games we

studied in this paper are asymmetric games. Thus, the analysis regarding evolutionary

competition between selective and random short-run players constitutes an interesting

extension of this paper.

22



4.2 Selective matching and the myopa assumption

Evolutionary models consider myopic and adaptive players, that is to say agents who

do not form expectations about the future course of play and simply take into account

the decisions made in the past to determine their strategies. In order to justify myopa,

evolutionary game theory assumes large population of players randomly matched. As

agents are randomly paired, the incitive to try to alter the future play of opponents is

small enough to be negligible. But at the same time, due to the random matching of

players, reputation effects are ruled out by evolutionary models. Thus, at first glance,

using evolutionary game theory to investigate reputation effects may appear as counter-

intuitive.

As we have seen in Section 1, evolutionary models have evolved to incorporate

selective consideration in matching, which in turn is part of many economic situations.

When the random matching assumption is weakened, at least in part, inertia is the other

assumption justifying myopa in evolutionary models. Evolutionary models assume

that not all agents react instantaneously to their environment but rather gradually adjust

their strategy following the selection mechanism. This is a good justification of myopic

behavior: as players know that only a small segment of agents change their actions,

strategies that prove to be effective today are likely to remain effective in the near

future.

4.3 The related literature

Our model may be related to the evolutionary literature on equilibrium selection24 and,

in particular, to Nöldeke and Samuelson (1993) and Binmore et al. (1995). They show

how evolutionary models provide support to experimental outcomes, and thus how

they can yield outcomes that significantly differ from subgame perfection.

24On the interplay between evolutionary game theory and the equilibrium selection problem, see
Samuelson (1997).
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Other evolutionary analyses have considered reputation effects. For instance,

Burke and Prasad (2002) study the emergence of institutions that facilitate lending

within the context of a reputational model of debt. In traditional models, lending

can occur in equilibrium because players value the credit relationship itself. Burke

and Prasad (2002) generalize the repeated model of sovereign debt to a population

game with several borrowers and lenders, that is a situation in which the value of a

relationship with any single partner is diminished. Another study using evolutionary

game theory in a reputational context is Abreu and Sethi (2003). They start by

observing that literature on reputation in games uses boundedly rational players,

leaving unexplained the presence of such players in the analysis as well as the

particular forms of irrationality assumed. Investigating the relative survival of various

behavioral types, they show that the presence of nonrational or behavioral types are

necessary to evolutionary stability.

Finally, the idea of selective matching in reputational games is close enough to

Hörner (2002). He considers a situation in which consumers can only assess the quality

of a seller’s product by purchasing and consuming it (i.e., experience good markets).

Unlike the traditional analysis, he investigates such a situation in a competitive

environment where many consumers and firms repeatedly trade. Consumers have an

outside option represented by the possibility to freely switch firms at any time. In this

setting, he shows how competition supports the existence of equilibria in which firms

always exert high effort.

5 Conclusion

This paper investigated reputation in population games with an outside option

considering both imitation of success and selective matching. Contrary to the random

model, we find that selective matching, by allowing short-run players to select the

long-run player they play against, sustains the equilibrium traditionally associated to
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reputation formation in the ultimatum game, but not in the trust game.

Games with an outside option are representative of many economic situations in

which reputation effects play a crucial role. In these games, selective matching is

a natural assumption since in the first stage one player selects whether to play a

game with a second player or not. A useful extension of the present paper would

be to investigate the survival of the two types of short-run players under evolutionary

competition, adding a cost to selective (and more rational) short-run players. This is

left to future work.
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