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Abstract

Asymmetric kernels are quite useful for the estimation of den-
sity functions which have bounded support. Gamma kernels are
designed to handle density functions whose supports are bounded
from one end only, whereas beta kernels are particularly conve-
nient for the estimation of density functions with compact sup-
port. These asymmetric kernels are non-negative and free of
boundary bias. Moreover, their shape varies according to the loca-
tion of the data point, thus also changing the amount of smooth-
ing. This paper extends the central limit theorem for degenerate
U-statistics in order to compute the limiting distribution of cer-
tain asymmetric kernel functionals.
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1 Introduction

Fixed kernels are not appropriate to estimate density functions whose
supports are bounded in view that they engender boundary bias due to
the allocation of weight outside the support in the event that smoothing
is applied near the boundary. A proper asymmetric kernel never assigns
weight outside the density support and therefore should produce better
estimates of the density near the boundary. Indeed, Chen (1999a,b)
showed that replacing fixed kernels with asymmetric kernels increases
substantially the precision of density estimation close to the boundary. In
particular, beta kernels are particularly appropriate to estimate densities
with compact support, whereas gamma kernels are more convenient to
handle density functions whose supports are bounded from one end only.
These asymmetric kernels are non-negative and free of boundary bias.
Moreover, their shape varies according to the location of the data point,
thus also changing the amount of smoothing.

The aim of this paper is to build on Hall’'s (1984) central limit
theorem for degenerate U-statistics in order to derive asymptotics for
asymmetric kernel functionals. The motivation is simple. It is often the
case that one must derive the limiting distribution of density functionals
such as

(1)

where the support A is bounded. Examples abound in econometrics and
statistics. Indeed, a central limit theorem for the density functional (1) is
useful to study the order of closeness between the integrated square error
and the mean integrated squared error in the ambit of non-parametric
kernel density estimation. Although there are sharp results for non-
parametric density estimation based on fixed kernels (Bickel and Rosen-
blatt, 1973; Hall, 1984), no results are available for asymmetric kernel
density estimation.

Furthermore, goodness-of-fit test statistics are usually driven by
second-order asymptotics (e.g. Ait-Sahalia, 1996 and Ai't-Sahalia, Bickel



and Stoker, 1998), so that density functionals such as (1) arise very
naturally in that context. Consider, for instance, one of the goodness-of-
fit tests advanced by Fernandes and Grammig (1999) for duration models
gauges how large is

A, 0 = r wX)[Te(x) - rf(x)ff(x)dx, (2)
Jo

where W(X) is a trimming function and T/(m) and r fi(-) denote the non-

and paxametric hazard rate functions, respectively. It follows from the

functional delta method that the asymptotic behaviour of (2) is driven

by the leading term of the second functional derivative, namely

Jo P(z)[/(20-/(z)]2dx = 2~ WA r-F(x) ~ 1(x)]2dx.

Note that duration data are non-negative by definition, hence it is con-
venient to utilise gamma kernels to avoid boundary bias in the density
estimation.

The remainder of this paper is organised as follows. In section 2,
| review the properties of beta and gamma kernels. In sections 3 and
4,1 apply Hall's (1984) central limit theorem for degenerate U-statistics
to derive the limiting distribution of gamma and beta kernel functionals,
respectively.

2 Asymmetric kernels

Let Xi,..., Xt be arandom sample from an unknown probability density
function / defined on a bounded support A. In what follows, | consider
that A is either bounded from one end or compact. Without loss of
generality, | assume that A = [0, 00) in the first case, whereas A = [0,1]
in the second context. Finally, assume that the density function / and
its second order derivative are bounded and uniformly continuous on the
real line.



Instead of the usual non-parametric kernel density estimator
f(x) =

where K is a fixed kernel function and h is a smoothing bandwidth,
consider the asymmetric kernel estimator

f(x) = K A(X1), (©)

where KA(-) corresponds either to the gamma kernel

T. , X uxtbexp(-u/b) Tf
kxim Au) ~ Y {x/b+\)if/b1"U6 1,00:i} @

or to the beta kernel

uxib(\ —
K x/b+i,(1-*)/t+i(u) = € [0,1]} (5)

according to the support under consideration.

Chen (1999a,b) showed that both estimators are boundary bias free
in view that the bias is of order O(b) both near the boundaries and in the
interior of the support. The absence of boundary bias is due to the fact
that asymmetric kernels have the same support of the underlying density,
and hence no weight is assigned outside the density support. The trick is
that asymmetric kernel functions are flexible enough to vary their shape
(and thus the amount of smoothing) according to the location of X within
the support.

On the other hand, the asymptotic variance of asymmetric kernels is
of higher order O (T~Ib~1) near the boundaries than in the interior, which
is of order O (T~Ib~1/27y. Nonetheless, this has negligible impact on the
integrated variance, thus it does affect the mean integrated square error.
Furthermore, it is possible to show that the optimal bandwidth b, =
@) = O (hi), where h. is the optimal bandwidth for fixed kernel



estimators. Accordingly, both beta and gamma kernel density estimators
achieve the optimal rate of convergence for the mean integrated squared
error of non-negative kernels.l Lastly, a unique feature for the gamma
kernel estimator is that its variance decreases as X increases, though at
the expense of an upping in the bias.

3 Gamma kernel functionals

The asymptotic behaviour of gamma kernel functionals of the form (1)
is derived using U-statistic theory. For this reason, I utilise a decompo-
sition which forces a degenerate U-statistic to emerge. Let rr(x, X) =
tpl "2(x) KxlbH<b(X1), rT(x,X) = rT(x,X) - ExX[rT(x,X)] and fu denote
the integral over the support of u. Then,

2
= dx
= T(x,A,)dx
1 s, t Jx
= N+ I1l+13+h,
where
Ji = I rT(X, XH)rT(x,X,)dx
1 3<tlx
h = fiY ,JxrUx,Xt)dx
h = \ &XM *,*)]d *
u = XOEX[rT{x

The first term stands for a degenerate U-statistic and will contribute
with the variance in the limiting distribution. The second term will
1 Non-negative kernels define the dass of second order kernel functions. Higher

order kernels may bring about some bias reduction at the expense of assuming negative
values (see Muller, 1984, for a list).



contribute with the asymptotic mean, hence it may be interpreted as
some sort of asymptotic bias of the functional estimator depending on
the context. The third and the fourth terms are, in turn, negligible under
a proper choice of the bandwidth b. Suppose the bandwidth b is such that
Th9< shrinks to zero as sample size T grows. This assumption implies
some degree of undersmoothing in view that Chen (1999b) has shown
that the optimal bandwidth for gamma kernels is of order O (r~2/b™.

| start by deriving the first two moments of rr(x,X). Note that
EX (IT(x,X)) = vI'2(x) jx Kx/b+HIp(X)f(X)dX = d/2(x)E([f(fl],

where ( ~ Q(x/b4-1,b). The mean and variance of a G(n, V) are simply
fiv and jiv2, respectively. Therefore, applying a Taylor expansion yields

E([fO\

f(Ec) + M"(X)V( + o(b)

f(x + b) + A" (X)(x + b)b + o(b)

f(x) + b /'(x) + i/"(x)]+ 0 (6).

It is noteworthy that the last expression demonstrates that the gamma
kernel estimation of the density function has a uniform bias of order 0(b).
Put differently, the order of magnitude of the bias does not depend on
the position of X, that is, whether it is close to the origin or in the interior
of the support. To sum up, Ex[rT(x,X)} = ipx/2(x)}(x) + 0(b), which
implies that rT(x,X) = 0(b).

The second moment of rr(x,X) is computed in similar way. It
follows from Chen’s (1999b) derivation of the variance of the gamma
kernel estimator that

Ex [t2€x, X)]

<p(x)Ix K 1/b+Ib(X )F(X ) dX
"P(2)Bb(x)E[f(T])],

where

T(2x/b + \)/b

BbO)  pusowir2ie + 1)



and 7~ Q(2x/b + 1,b). Hence applying a Taylor expansion yields

En[f(v)} f{E,) + \n*)V n+ o(b)

= f(2x + b) + M (X)(2x + b)b + o(b)
= f(x) + F{Ox + b (x) + £ (x)x] + o(b)
= f(x) + f"(x)x + 0(b).

It follows then that

E{h) = % j"Ex [i&xX)\ di
= fj x<P{x)Bb{x){f{x) + f"(x)x + 0 (6)]dx

= iix)Bb(x)f(x)dx + 0(1/T).

For b small enough, Chen (1999b) approximates Bb(x) according to
the behaviour of X/b. The motivation stems from the fact that, in the
interior of the support, x/b grows without bound as b shrinks to zero,
whereas X/b converges to some non-negative constant ¢ in the boundary.
The decomposition dictates that

( if x/b —oc
Bhb(i:) ~ <
i if x/b -* ¢,

which implies that Bb(x) is higher near the origin. Nonetheless, |1 show
that there is no impact whatsoever in E(12).2

Let 6 = 61-£, where 0 < e < 1. Then,

E{h) = ~I~(x)Bhb(x)f(x)dx + 0(\/T)

2 This result is analogous to Chen’s (1999b) result concerning the variance of
the gamma kernel estimator. In particular, the variance mounts as x approaches the
boundary, but this increase does not affect the integrated variance of the estimator.



A+ <TiGOBOOOT(x)dx + 0(1/T)

= 2~anT |l 66UV Uv(@)(x)di+ 0 (T-16¢

IXV(X)x~1/2f(x)dx + o (T -1b-1/2)

provided that t is properly chosen and E jy>(x)x*“1/2] is finite. Therefore,
it ensues that

L—1/4
Tb~E(h) =t — E [z->'V(X)] =

Notice also that

vih) = y,e J 7.(x,X)da ?3E2J 77.(1,.Y)dzj
T3 Jit (x,X)dxj - JNEr%.(x,X)dij
= 0 (T-3r 9.

Thus, V(ThMA2) = T2b1/2V(12) = O (j~fe-1Y2), which is of order o(l)
given the assumption on the bandwidth. Thus, by Chebyshev’s inequal-

ity,

T6U4/2- — =E [x-U2~(x}] = op(l).

The fact that b = 0 (t - 4/9) also ensures that the third and fourth
terms are negligible if properly normalised. Indeed, it follows from

h =2 1 £2[rr(x,X)]dx = (f2) = O (h2)

that ThI™I2= O (ThI™™, which is o(l) by assumption. Furthermore,

h =207~ )E jf?2e(x,Xt)ExrT(x, X)dx



and hence

E(I<) = 2{Tt 1} IXEX[rT(X,X)]EX[rT(x,X)}dx = 0
given that fT(Xx,X) has zero mean. Besides,

Ex {I fT(x, Xt)EX[rT(x, X)]dx}2= O (b2) ,

which implies that E (14) = O (T_1f2) and therefore
E (T6U44)2= T2bX2E (/2) = O (Th5/2) = o(l).

Afresh, it stems from Chebyshev’s inequality that TV/4/ 4= op(l).

Finally, recall that /, = E»<t~r(At,Aa), where

HT(Xt,X.) = jsf'M x,Xt)fT(x,X,)dx.

Then, | Xis a degenerate U-statistic in view that HT(Xt, X,) is symmetric;
centred, and E [HT{Xt, A3)] X3] = 0 almost surely. To see why, note that

E[HT(XtX)\X,} = 2 fxrT(x,X,)E[fT(x,Xt)\X,]dx

IXrT(x,X,)E[fT (x,X t)]dx

in view of the independence between Xt and X,. It suffices then to
observe that fr(x, Xt) has by construction zero mean. Thereby, | apply
Hall’'s (1984) central limit theorem for degenerate U-statistics, which
states that if

EXNMENMIHTIXuXJHTIiXuX™ + IExMW iXuX,)}
m (X uX,)} u

as sample size grows, then

h JL+N ~0,y EXuXl [h2(XuX2)]) .



Tedious algebra shows that (6) holds. Indeed, the two terms of the nu-
merator are of order 0(T ~12b~2) and 0 (T _9_3/2), respectively, whereas
the denominator is of order 0(T~ab~l). In what follows, | demonstrate
the last assertion as a by-product of the derivation of the asymptotic
variance above.

Let V,, = ~E XuX, [HI(XItX2)}, then

V., = 2IXIX2\KFT(x,Xi)fT(x,X2)dx~ f(X 1,X 2)d(Xu X2)
= 2] X FT(x X)FT(y, X)f(X)d x]12d(x, y)

= 2] PRIPOIER { [AxBrIGAT - EK)
X [VIfcH»M0 - EK@BH]IA3LY),

where EK{tlh) = Ex [~ u/i+li6Jf)]. Then, it ensues that
vh = 2] yV{X)v(y) [fx K,M»{X)K, mIb(X)dF(X)]\ x,y) + 0(b2)

due to the fact that

EK(x,b)EK(y,b) fx Kx/b+lp(X)EKM dF(X) *
Ix EK™ b)K y/o+Ifi(X)dF (X)
[ EK(XPEK(Y,DdF(X)
0 (6).

Let g(X) = f(X)K x/b+I",,(X), then

VH= 2] <fi{x)ip(y) \}x fi(X)dtfy/k+1,6(X )]2d(X,y) + 0(b2).



Applying a Taylor expansion gives

Ix g(X)dKvibHth(X) £ c(BFLH B (A)]

, VN, 9{y)de/b+| D{X) m
= 9[E(Hs/b+|Mx )\+ +0(°)

= gy + )+ ~g™{y)(y + b)b + o{b)

= fiy)+ b g'(y) + ~g"(y)y + o(6)
= gfy) + 0(b).
This means that

Vh 2 <p{X)<p(y) [f(y)Kx/b+iib{y)]2d(x,y) + 0(62)

2] X~ x) JYP(Y)FAy)KI,+i,b(y)dys da: + = ( re2)

- 2}(\(X) [/ 7107)d"x/6+16(7)j di + 0(62),

where h(j/) = fi(y)f2(y)Kxb+iib(y). Afresh, by Taylor expanding, it
yields

Phy)dodorlily) = Exos )
h \Es(b\B)\ + 2h"(x Vb b)(y) + 0(6)
h(x + 6 + T"X)(X+ 6)6+ 0(6)
hexy + 6 (i) + MDY + o(8)
h(x) + 0 (6).
Therefore,

Vh

2 f tp(x)h(x)dx + 0 (6)
Jx

2J§(<|:2(x)f2(x)Kx/b+lb(x)dx +0(6)

2) X <i2(x ) f(x) K x/b+lib(x)dF{x) + 0(6).

10



Notice however that using the same technique it is possible to show that
fx f(X)K&/Mth(X)dX = Kxb+ilb(x)f(x) + 0(b).
Hence, it follows that

WVH 2£ip2(x)f(x)Kx/b+lib(x)dF(x) + 0(b)

2§ v2(x) [jx FOX)K I/MIb(X)dx\ dF (x) + 0(b)

2J ip2(x)Bb(x)[f(x) + 0 (61dF(x) + O (6)

2 [ 200BbO)T(x)dF (x) + 0(6).

By decomposing the integral according to $= 61-e, it yields

Vir = Jf + Jf 2ip2(x)Bh(x)f(x)dF(x) + 0(b)
0 S
h~1/2 *0
= — / ip2(x)x~Y2f(x)dF(x) + 0 (6_£)
y/n s
h-1/2

= —7n[<p2(x)x~12f(x)dF (x) + 0(b~1/2)
y/H Jx

for a properly chosen e and finite E ~ 2(x)x_17%j. Finally, this implies
that E\UX2 [H$.(Xu Xi)} = 0(T~8~1) and that

Tbra " BA E [ VW] N (0, -+=E [*2(x)x-/2(x)]) . (7

4 Beta kernel functionals

| derive the asymptotic behaviour of beta kernel functionals using the
same approach as before, that is, | consider the decomposition / =
h + h +h + h- The only difference is that rT(Xx, X) represents now
ipl/2(x)Kx/b+Ui . x)/b+I(Xt). Again, the first term stands for a degen-
erate U-statistic and contributes with the asymptotic variance, whereas

11



the second term provides the asymptotic mean. The third and the fourth
terms are, afresh, negligible under proper normalisation provided that the
bandwidth b is of order 0 (T~4/9”. Once more, this assumption implies
some degree of undersmoothing in view that Chen (1999a) has shown
that the optimal bandwidth for beta kernels is of order O (t ~2<).

The limiting distribution of beta kernel functionals is perfectly anal-
ogous to that derived for gamma kernels. The only distinction stems from
the consideration of the upper bound, which engender a correction in-
versely proportional to the square root of x(I —X) instead of X. More
precisely, | show in the sequel that

Thyal - <P(x) R(x)F(x) \ ®)

YIx(-x)_ VI@-x)\1

| start by noting that the expectation and variance of a B(fi,v)
are v/(fi + v) and I*v/[(n + v)2(fi + v 4- 1)], respectively. It is then
straightforward to derive the first two moments of rT(x,X). Indeed,

Ex [rT{x,X)\

"2(x) Ix Kx/b+UI_x)/b+I(X)f(X)d X
= 2(X)E{f(C)]

where £ ~ B(x/b +1,(1 —x)/b + 1). Therefore, the mean and variance
of £ are

1 —x)/b4-1 1—X+6
x/b+ 14-(1- x)/b4-1 14-26
(x/b + 1)[(1 - x)/b 4-1] _

= x(I —x)b 4- O (bF ,
v( (1/6 4- 2)2(1/6 4-3) x(h—=x) (03
respectively. Applying a Taylor expansion yields
£E<[/(0] = /(Ec)+ ™N/"(X)M<+ 0(6)

=/ + A (x)x(1 ~ x)b+ o(b)

12



= J(*) +I(F)-— b 2bX + “ xib+
= f(x) + I"'(x)(1l- + 0/"(x)x (1 - x)6+ 0(6
= 7+ OO0 —=2)M"(x)x(1 -x) 6+ o(6)

= f{x) + 0(b),

which implies that the beta kernel estimation of the density function has
a uniform bias of order 0(b). To sum up,

EX[rT(x,X)} = pl2(x)/(x) + 0(6),
which implies that fr(x, X) = 0(6).

Now | turn to the second moment of rr(x,X), namely
Ex [rZT(x,X)} = <pX)£ KIl/b+Itil_x]/b+i(X)f(X)dX

= <p(X)Ab(x)EnIf(ri)],

where

B[2x/6+ 1,2(1-x )/6 + 1]
B2[x/6 + 1,(1- x)/6+ 1]

and ~ B(2x/b+ 1,2(1 —x)/6 + 1). The mean and variance of » are

2(1 -x)/16+1 2(1l—x) + 6
2x/16+ 1+ 2(1 —x)/I6 + 1 2(1 + 6)
(2x/6 + 1)[2(1 —x)/6 + 1]

(216 + 2)2(2/6 + 3) Mx(t-x )6+ 0 (@)

respectively, hence applying a Taylor expansion yields

EV(i(r)} = f(EV)+ A" (X)VV+ o(6)

13



f(x) + FER(@-2%9) 221 th) + ~F"(x)x(I - x)b + o(b)

f(x)+ } fr(x)(1-2x) + ~M"(x)x(lI-x) 6+ 0(6)
f(x) + 0(h).

Then, it follows that

E(« _ f Ex [rfa, X)] dx
<pYAD(X)[f(x) + 0(6)1dx

<p(xX)yUx)/(x)]Jdx + 0(1/T).

For 6 small enough, Chen (1999a) showed that Ab(X) may be ap-
proximated according to the location of x within the support. More
precisely, x/6 and (1 —x)/6 grows without bound as 6 shrinks to zero in
the interior of the support, whereas either x/6 or (1 —x)/6 converges to
some non-negative constant ¢ in the boundaries. The approximation is
such that

which implies that Ab(X) is of larger order near the boundary. Nonethe-
less, 1 show that there is no impact whatsoever in E (12).3

Let S= 61-e, where 0 < e < 1. Then,

E (h) A Ji <p()AB(X)F(x)dx + 0(1/T)

44+ 7+ ] HEANX)T)dX + 0(L/T)

Js

3 This result is analogous to Chen’s (1999a) result concerning the variance of
the beta kernel estimator. In particular, the variance mounts as x approaches the
boundary, but this increase does not affect the integrated variance of the estimator.

14



2fiirfi b 12[~ -x)] V2ip()f)dx + 0 {r b ()

k-1/2 r!
Jo <FX)[x(1- x)]~1/2f(x)dx + o (T -1b~1/2)

as long as e is properly chosen and E |<p(i)/~/i(l —i)j is finite. There-
fore, it ensues that

ft-1/»

TbI/AE(12) = ~ = E <f0<)
A\X (1~ x)
Notice also that
w*) = fsg 1N (X, X)dij A3 E2Jj$(x, X )dxj
= NENMr$(x,X)dxj JNEr$(x, X)dx]

= o (r-3).

Thus, V(TbhM12) = T2I'2V(12) = O (T ~fr¥2), which is of order o(l)
given the assumption on the bandwidth. Thus, by Chebyshev’s inequal-

ity,

<)
AJIx(1-x).

Tbl/412 - Op(I).

Applying exactly the same techniques used in the gamma context,
it is straightforward to demonstrate that the third and fourth terms are
negligible under proper normalisation. Indeed, the fact that the band-
width is such that b = o (t ~4/9"suffices to guarantee that Thl/413 = o(l)
and Tbh1/4U = op(l). Lastly, it is evident given the previous discussion
that li = X)j<t Hr(Xt, Xs), where

HT(Xt,X.) =~ JjTX,X)rT(x,Xa)dx,

15



is a degenerate U-statistic. Let VH= "-EXux, [H$(XUA'2)], then

Vh o= 2] A IfxFT (X DFT(x,X2)dx ™ f(X u X2)d (Xu X2)

2fxy [Ix Mm, X)fT(y, X)f(X)dx]2d(x,y)
- 2fxyV(X)<p(Y)EX {[tfix/ &+i,(i-X)/6+i(A-) - £/r(x6)]

X [-ft'v/6+1,(i-v)/6+ 1(A") - E£*-(,.6]}d (z,if),
where Ex(ub) = Ex [ifti/6+it(i-t0/6+i (X )]. As before, it turns out that
Vh* 2 ~Ae)NGH [£ Ki+IN H(X)Ki+IN +H (X)dF(X)] '’ d(x, Y)
due to the fact that all other terms are of order O (&).

Let g(X) = f(X)Kxb+iNi_x)/b+i(X) and write
V' ~2Ly [Ix s(X )dK i, (1-y)/6+1 (A)]2d (X,y).
It follows from a Taylor expansion that

fx 9{X) dAy/t+i,(_.)/(+! (X)

l

E B{y/b+W-v)/b+1)[g(X)]

O [Efl(y74+1,(I-1 /) 76+ )W ] + 2@ (@) N (v/fr+1,(I-»)7*+1) (-~0 + °(b)

-y + O\ P gty)y(l - y)b

b
91 1+26 ofb)
= 9(y) + 0(b),
which implies that
Vh - [/ (i7)-~x/t+i,(i-x)/6+i(y)]2d (x,j/)

-2 %09 § <pYRY)KI/b+ul-x)/6+(i/)d/d

X
-2/ <) 7 Zi(y)d LA/t /)dx,

16



where h(y) = ifi(y)f2(y)Kx/b+i**x)/b+i(y). Applying another Taylor ex-
pansion gives forth that

h (y)dKx/b+i,(i-x)/b+\ (V)
= £ b(x/<HL, (1—XHL) [MIA)]
= h prB/se+1,—x)/z6+1@n] + 2h"(X)VB(xIb+\,(\-x)Ib+\){y) + o(b)
= h ~ 202) +2"(x)z(l ~x)b+ °(b)
= h(x)+0(b).

Therefore,

Vh — 2] <p(X)h(x)dx
- 2 [ RO 2K (i_*)/6ri (i) d i
- 21 <p\X) [jx H X)KI/b+w_x)lb+1(A-)dx] dF (x)
- 2J[X F2(X)Ab(X)[f{x) + 0(b)]dF(x)

- 2 [ iR0)AB()(x)dF (x).

By decomposing the integral according to S= bl~(, it yields

Vh — J/0 + .]/S + Jf|_62ifi2(x)Ab(x)f(x)dF(x)
5-1/2 fi-6
- JL( \Y ~ X)L 12f{x)dF(x)
- RN jO - x)]“U2/(a:)dF(x)

provided that e is properly chosen and E [*2(x)[x(l - x)]~1/2] is finite.
Applying Hall’s central limit theorem for degenerate U-statistics com-
pletes then the proof.
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