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conditional duration models

Marcelo Fernandes Joachim Gramrnig
European University Institute University of Frankfurt

February 2000

Abstract

This paper deals with the estimation and testing of conditional 
duration models by looking at the density and baseline hazard 
rate functions. More precisely, we focus on the distance between 
the parametric density (or hazard rate) function implied by the 
duration process and its non-parametric estimate. Asymptotic 
justification is derived using the functional delta method for fixed 
and gamma kernels, whereas finite sample properties are inves
tigated through Monte Carlo simulations. Finally, we show the 
practical usefulness o f such testing procedures by carrying out an 
empirical assessment of whether autoregressive conditional dura
tion models are appropriate tools for modelling price durations of 
stocks traded at the New York Stock Exchange.
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1 Introduction

The availability of financial transactions data hoisted the interest in ap
plied microstructure research. Thinning raw data enables analysts to 
define the events of interest, e.g. quote updates and limit-order execu
tion, and then compute the corresponding waiting times. Typically, the 
resulting duration processes are influenced by public and private informa
tion, what motivates the use of conditional duration models. Therefore, 
it is not surprising that microstructure studies employing conditional du
ration models abound in the literature (e.g. Engle and Lange, 1997; Lo, 
MacKinlay and Zhang, 1997; Lunde, 1999). In particular, price dura
tions are closely linked to the instantaneous volatility of the mid-quote 
price process (Engle and Russell, 1997). Besides, price durations play an 
interesting role in option pricing as well (Pringent, Renault and Scaillet, 
1999). Trade and volume durations mirror in turn features such as mar
ket liquidity and the information arrival rate (Gourieroux, Jasiak and 
Le Fol, 1996).

The autoregressive conditional duration (ACD) model of Engle and 
Russell (1998) is the starting point of such analyses, though there are sev
eral extensions. Engle (1996) and Ghysels and Jasiak (1998a) combine 
conditional duration models with GARCH-type effects, whereas Ghysels, 
Gourieroux and Jasiak (1997) introduce a stochastic volatility duration 
model to cope with higher order dynamics in the duration process. Ghy
sels and Jasiak (1998b) investigate the persistence of intra-trade dura
tions using a fractionally integrated ACD model, whilst Zhang, Russell 
and Tsay (1999) advocate for a non-linear version of the ACD model 
rooted in a self exciting threshold autoregressive framework. Bauwens 
and Veredas (1999), Grammig and Maurer (1999), Lunde (1999b), and 
Hamilton and Jorda (1999) argue for conditional duration models that 
accommodate more flexible hazard rate functions. Bauwens and Giot’s 
(1997) logarithmic ACD model provides a more suitable framework for 
testing market microstructure hypotheses as it avoids some of the pa
rameter restrictions implied by the original ACD specification. Bauwens 
and Giot (1998) and Russell and Engle (1998) propose extensions to
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deal with competing risks, whereas Russell. (1998) and Engle and Lunde 
(1998) consider bivariate models for trade and quote processes.

Despite the recent boom of empirical applications, the literature 
has devoted so far little attention to testing the specification of condi
tional duration models. The practice is to perform simple diagnostic tests 
to check whether the standardised residuals are independent and identi
cally distributed (iid). If, on the one hand, all papers use the Ljung-Box 
statistic to test for serial correlation; on the other hand, only a few tests 
whether the distribution of the error term is correctly specified. Engle 
and Russell (1998) and Grammig, Hujer, Kokot and Maurer (1998) check 
the first and second moments of the residuals with particular attention 
to measuring excess dispersion, whilst others use QQ-plots (Bauwens 
and Veredas, 1999) and Bartlett identity tests (Pringent et al., 1999). 
Grammig and Wellner (1999) take a different approach by estimating 
and testing conditional duration models using a GMM framework. More 
recently, Bauwens, Giot, Grammig and Veredas (2000) employ the tech
niques developed by Diebold, Gunther and Tay (1998) to evaluate density 
forecasts.

Misspecification of the distribution of the error process may seem 
unimportant given that quasi maximum likelihood (QML) methods pro
vide consistent estimates (Engle, 1996). However, QML estimation of 
conditional duration models may perform quite poorly in finite samples. 
Consider, for instance, a model in which standardised durations have a 
distribution that engenders a non-monotonic baseline hazard rate func
tion. Quasi maximum likelihood methods rooted in distributions with 
monotonic hazard rates will then fail to produce sound estimates even in 
quite large samples such as 15000 observations (Grammig and Maurer, 
1999). The poor performance of QML estimation has quite serious im
plications for models that attempt to uncover the link between duration 
and volatility, e.g. Ghysels and Jasiak’s (1998) ACD-GARCH process. 
Indeed, shoddy estimates of the expected duration may produce rather 
misleading results for the volatility process.

This paper develops tools to test the distribution of the error term in 
a conditional duration model. We propose testing procedures that gauge
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the closeness between non- and parametric estimates of the density and 
baseline hazard rate functions of the standardised durations. There is 
no novelty in the idea of comparing a consistent estimator under cor
rect parameterisation to another which is consistent even if the model is 
misspecified. It constitutes, for instance, the hinge of Hausman’s (1978) 
specification tests and A'it-Sahalia’s (1996) density matching approach 
to estimate and test diffusion processes.

Our tests carry some interesting properties. In contrast to Bartlett 
identity tests (Chesher, Dhaene, Gourieroux and Scaillet, 1999), it ex
amines the whole distribution of the standardised residuals instead of 
a small number of moment restrictions. In addition, our tests are nui
sance parameter free in that there is no asymptotic cost in replacing 
errors with estimated residuals. Further, as all results are derived under 
mixing conditions, there is no need to carry out a previous test for se
rial independence of the standardised errors. This is quite convenient in 
view that a joint test such as the GMM overidentification test does not 
pinpoint the cause of rejection. Lastly, Monte Carlo simulations indi
cate that some versions of our tests are quite promising in terms of finite 
sample size and power.

The remainder of this paper is organised as follows. Section 2 de
scribes the family of conditional duration models we have in mind. Sec
tion 3 discusses the design of the testing procedures. Section 4 deals with 
the limiting behaviour of such tests. First, we show asymptotic normality 
under the null hypothesis that the conditional duration model is properly 
specified. Second, we compute the asymptotic local power by considering 
a sequence of local alternatives. Third, we derive the conditions in which 
our tests are nuisance parameter free. Section 5 investigates finite sam
ple properties through Monte Carlo simulations. Section 6 tests whether 
ACD models are suitable to model price durations o f frequently traded 
stocks at the New York Stock Exchange (NYSE). In section 7, we sum
marise the results and offer concluding remarks. For ease of exposition, 
an appendix collects all proofs and technical lemmas.
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2 Conditional duration models

Let Xi =  ipj€i, where the duration xt =  t{ — U-\ denotes the time elapsed 
between events occurring at time U and ij_i, the conditional duration 
process tp, oc. E(xi | / j - i )  is independent of and 7;_i is the set including 
all information available at time <j_i. To nest the existing ACD mod
els, we consider the following general specification for the conditional 
expectation

fpi = ( 1 )

where u; |/i_i ~  iV(0, cr2) and 0 is a vector of parameters. If the interest 
rests on modelling microstructure, one may incorporate additional pre
determined variables as well (Bauwens and Giot, 1997 and 1998; Engle 
and Russell, 1998).

Further, suppose that is iid with Burr density

I d (ft, 0D )  = «  Zb cf~1
(1 +  cr2 ££ ejt),+1/ff2 ’ (2)

with k > a2 > 0 and mean

r(l + 1/k) T(l/a2 -  1/k)
ct2(> +i/«) r ( l  +  1 /cr2)

It is readily seen that the conditional density of Xi is also Burr with 
parameter vector a2) ■ Accordingly, the conditional hazard
rate function reads

Tfl (xi | /,_ i ; Ob) = «  a  * r '  
i + ^ e s ^ r * ? ’

(3)

which is non-monotonic with respect to the standardised duration if k > 
1 .

When a2 shrinks to zero, (2) reduces to a Weibull distribution, viz.

fw (ti,O w) =  K &  e? " 1 exp ( - f t ,  e*),

4
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where £w =  T(1 +  1 / « ) .  Accordingly, the conditional distribution of 
the duration process is also Weibull and the conditional hazard rate 
function reads I V  (*» 6w) =  . In contrast to the
Burr case, the conditional hazard rate implied by the Weibull distri
bution is monotonic. It decreases with the standardised duration for 
0 <  k < 1, increases for k > 1 and remains constant for n =  1 . In the 
latter case, the Weibull coincide with the exponential distribution and 
the conditional hazard rate function of the duration process is simply 

(x{ | Ij_i; Oe) =  V’,-1 - Albeit Engle and Russell (1998) suggest the use 
of exponential and Weibull distributions, the Burr ACD model seems to 
deliver better results for price durations (Bauwens et al., 2000).

3 Specification tests

As conditional duration models are usually estimated by QML meth
ods, likelihood ratio tests are available to compare nested distributions 
in conditional duration models. However, due to the presence of inequal
ity constraints in the parameter space, the limiting distribution of the 
test statistic is a mixing of x 2—distributions with probability weights 
depending on the variance of the parameter estimates (Wolak, 1991). 
Accordingly, it is extremely difficult to obtain empirically implementable 
asymptotically exact critical values. As an alternative, Wolak (1991) sug
gests applying asymptotic bounds tests, but bounds are in most instances 
quite slack, yielding inconclusive results more likely.

In the following, we design a simple testing strategy which checks 
specification by matching density functionals. More precisely, we test the 
null

H0 : 360 € 0  such that f(-,60) =  /(■) (4)

against the alternative hypothesis that there is no such 90 e  0 . The 
true density /(•) of the standardised durations is of course unknown, 
otherwise we could merely check whether it belongs to the proposed 
parametric family of distributions. Accordingly, we estimate the density

5
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function using non-parametric kernel methods, which produce consistent 
estimates irrespective of the parametric specification. The parametric 
density estimator is in turn consistent only under the null. It is therefore 
natural to carry a test by gauging the closeness between these two density 
estimates.

For that purpose, we consider the distance

=  Jo l ( i e 5 ) [ / ( i , 8 ) - / ( i ) f / ( i )  dr (o)

to build a first testing procedure, which we label the D-test. We introduce 
the compact subset S to avoid regions in which density estimation is 
unstable. The sample analog reads

'*'/ =  6 S) [f(xi,0) -  , (6)
n i=l

where 6 and /(•) denote consistent estimates of the true parameter 90 
and density /(•), respectively. The null hypothesis is then rejected if the 
D-test statistic is large enough.

By virtue of the one-to-one mapping linking hazard rate and density 
functions, the null hypothesis (4) implies that there exists do € 0  such 
that the hazard rate function implied by the parametric model Fg0(-) 
equals the true hazard function T;{■). Accordingly, we consider a second 
test based on the statistic

\i = 1- ± i ( x i € S ) [ r §(xi) - r f (xi)}2, (7)
Tl i=L

which we refer as the H-test. To provide a minimum-distance flavour to 
both D- and H-tests, one may estimate the parametric model by min
imising (6) and (7), respectively. Though we derive in the next section 
the limiting behaviour of the resulting M-estimators 9° =  argminflge'Fy 
and 9" =  argminfl£0Ay, we rather avoid tackling identification issues to 
keep focus on testing.
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4 Asymptotic justification

In what follows, we derive asymptotic results for the test statistics and 
their implied M-estimators using A'it-Sahalia’s (1994) functional delta 
method. In fact, the limiting behaviour of the D-test was originally de
veloped by Bickel and Rosenblatt (1973), who assume random sampling. 
Ai't-Sahalia (1996) extends Bickel and Rosenblatt’s results to mixing pro
cesses to build a specification test for diffusion processes, and shows the 
asymptotic normality of the implied M-estimator. Accordingly, the set of 
assumptions we impose is quite similar and the asymptotics are the same 
up to a weighting scheme. Before moving to the details of the asymp
totic theory, it is noteworthy that the M-estimators implied by the D- 
and H-tests hinge on a two-step procedure in which the first step involves 
a kernel estimation and the second step solves a minimisation problem. 
As such, these estimators belong to the class of M-estimators discussed 
in Newey (1994).

4.1 Assumptions

Consider a real-valued random variable x, with discretely sampled obser
vations x i , . . . ,  x„. We consider the following set of regularity conditions.

A1 The sequence {x j}  is strictly stationary and ,0-mixing with — 
0 ( j - s), where <5 > 1. Further, |xj| |* <  oc for some constant 
k >  2<5/(<5 — 1).

A2 The density function f x — / ( x )  of x* is continuously differentiable up 
to order s + 1  and its derivatives are bounded and square-integrable. 
Further, f x is bounded away from zero on the compact interval <S, 
i.e. inf5 f x > 0.

A3 The fixed kernel K  is of order s (even integer) and is continuously 
differentiable up to order s on M with derivatives in L2(IR). Let 
e* =  In K 2{u)Au and vK =  JV[JU K(u)K{u +  v)du]2 dv.

7
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A4 As the sample size n grows, the bandwidths for the fixed and gamma 
kernels are such that hn = o (n~2/ (4j+1*) and bn =  o^n-4/9), re
spectively.

A5 The parameter space 0  C Mk is compact. Let ((- ,0 ) denote the 
density function f(-,9 )  for the D-test and the baseline hazard rate 
function T(-,0) for the H-test. In a neighbourhood of the true pa
rameter do, C M )  is twice continuously differentiable in 6, the ma
trix E [|jC('> ^)] has full rank, and 00̂ 00X (-, 0) is bounded
in absolute value for every i, j  and 9 6 0 .

A 6 Consider / ,  and / + in a neighbourhood Nf of the true density f x. 
Then, the leading term df that drives the asymptotic distribution 
of the implied M-estimators is such that

(i) E |$/|3+r < oc, for r > (3 +  rj)(3 +  77/2)/ 77, V77 > 0
(ii) E sup |dj, |2 < oc

f.ZN,

(in) E | -  9f+\2 < c\\f. -  /+||t(oo,m)!

where c is a constant, || • ||r,(oo,m) denotes the Sobolev norm of order 
(00, m) and m is an integer such that 0 < m < s/ 2 + 1 /4 .

Assumption A l restricts the amount of dependence allowed in the ob
served data sequence in order to ensure that the central limit theorem 
holds. As usual, there is a trade-off between the number of existing mo
ments and the admissible level of dependence. Carrasco and Chen (1999) 
offer more details concerning the /3-mixing properties of ACD models. 
Assumption A2 requires that the density function is smooth enough to 
admit a functional Taylor expansion. Though assumption A3 provides 
enough room for higher order kernels, in what follows, we implicit assume 
that the kernel is of second order (i.e. s =  2). Assumption A4 induces 
some degree o f undersmoothing to force the asymptotic biases of the test 
statistics to vanish. Further, it implies that the gamma kernel band
width bn is of the same order of E2n for second order kernels (see Chen, 
2000). Assumptions A5 ensures that the M-estimators 9® and 9f are
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well defined. Finally, A6 guarantees that one can estimate consistently 
the asymptotic variance of the M-estimators using a non-parametric cor
rection a la Newey and West (1987).

4.2 Matching the density function

The D-test gauges the discrepancy between the parametric and non- 
parametric estimates of the stationary density. The functional of interest 
is

= 1 1(* € S) [f(x, Of) -  f(x)f  f(x)dx, (8)

where !(•) is the indicator function and 9j is the functional implied by 
the estimator of 6. Assume further that it admits the following functional 
expansion

=  * /  +  D 'M M  +  *9f (hx, hx) +  O (||/»,||3) , (9)

where hx =  } x — f x and || • || denotes the L2 norm. By the Riesz represen
tation theorem, the functional derivative D T f(-) has a dual representa
tion of the form D T f(hx) — Jx ipf(x)hx dx. It follows from Ait-Sahalia’s 
(1994) functional delta method that ipf stands for the leading term that 
drives the asymptotic distribution of If the first functional derivative 
is degenerate, then the asymptotic distribution is driven by the second 
order term of the expansion.

Let f x and f xj  denote the true and parametric density functions, 
respectively. The first functional derivative of 4*/ reads

D */(ht ) = [ i f ,
Js

+ 2

x.O

L

-  f x)2hx dx

( f x ,0 /x)/x4 x,

where DOf(-) denotes the first derivative of the functional 9f implied by 
the estimator under consideration. As D 4'/(hx) is singular under the

9
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null, the limiting distribution of 'Fy depends on the second functional 
derivative, namely

D 2* ,(h x,hx)
9 f  df (x,6f) d f ( x j f )

Js 39 39'
[D9f (hx)]'2f x dx

, f  d f(x ,9 f )
Js 39

D9f(hx) f xhx d x +  2 [  f xh'x dx. (10) 
Js

However, the first and second terms of the right-hand side do not play a 
role in the asymptotic distribution of the test statistic. The functional 
delta method shows indeed that the asymptotics is driven by the un- 
smoothest term of the first non-degenerate derivative for it converges at 
a slower rate. The third term contains a Dirac mass in its inner product 
representation, and thus will lead the asymptotics.

T heorem  1. Under the null and assumptions A l to A\, the statistic

t„ -
n h ^ f - h - ^ H o

°n
N{ 0,1),

where do and d2D are consistent estimates of do =  eK E[l ( x  € S )fx] and 
a‘o — Vk E[l ( x  € S )fl], respectively.
P roof. See Ait-Sahalia (1996).

As the time elapsed between transactions is strictly positive, dura
tions have a support which is bounded from below. Further, the bulk of 
duration data is typically in the vicinity of the origin. Accordingly, 
may perform poorly due to the boundary bias that haunts non-parametric 
estimation using fixed kernels. One solution is to work with log-durations 
whose support is unbounded and density is easily derived: indeed, if 
Y =  log A , then fv {y ) =  /x [  exp(y)] exp(y). Alternatively, one may 
utilise asymmetric kernels to benefit from the fact that they never as
sign weight outside the density support (Chen, 2000). In particular, the 
gamma kernel

Kx/b„ + l,b„ (u) —
ux/bn exp(—u/bn)
r  (x/bn + 1 ) « /4-

i {u  e  [o, oo)} ( i i )

10
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with bandwidth bn is quite convenient to handle a density function whose 
support is bounded from the origin. Therefore, we consider a second 
version of the D-test in which the density estimation uses a gamma kernel.

T heorem  2, Under the null and assumptions A1 to Af, the statistic

nbl/^f  -  b~l/ %

° G
N( 0,1),

where Sq and o'q are consistent estimates of 5q =  ^ E [  l ( x  6 5 )x - '/V x ]  
and o'q = - ç̂E[TL(x 6 S)x~ll'2ff], respectively.

Consider now the following sequence of local alternatives

H?n ■ SUP d) ~ f [n](x ) ~  £ J d(x)\ =  o(e„), ( 12 )
x £ 5  1 1

where ||/Inl -  /|| =  o{n~ lh~x̂ ,  en — n~1̂2h~1̂ 4 and ^>(x) is such 
that Ip =  £ [ l ( x  € S )fp (x)] exists and E[(D(x)\ =  0. The next result 
illustrates the fact that both versions of the D-test have non-trivial power 
under local alternatives that shrink to the null at rate en.

T heorem  3. Under the sequence of local alternatives Hfn and assump
tions A l to A\, f -^4 N ^ d/ctd, l ) ,  whereas f®  -^4 N (ip/ao, l ) -

To maximise power of both versions of the D-test, one could con
sider the most favourable scenario to the parametric model by utilising 
the M-estimator 9 The corresponding implicit functional is then

Is ~  f ^ \  f ( x) dx -  °» ( 13)

which produces

df{x ,9 ) d f{x,0 ) 
d9 89’

f(x)dx f{x)h{x)dx. (14)

Accordingly, the limiting distribution is driven by

(x) =  H (x € S)
d f(x,9) d f(x, 9) 

89 89’
}{x )  dx

-1 d f(x ,e )
89 / (* )■ (15)

11
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T heorem  4. Under the null and assumptions Al to A5, n'l2(9 f — 
9a) N(0,Qd), wherein =  EitL-ooCov [ t f f ( i j ) ,8 f (x i+k)j is the long
run covariance matrix of . In addition, if assumption A 6 holds, it 
suffices to plug into i)f and truncate the infinite sum as in Newey and 
West (1987) to obtain a consistent estimator of the asymptotic variance. 
P roof. See Ai't-Sahalia (1996).

4.3 Matching the baseline hazard rate function

The H-test compares the parametric and non-parametric estimates of 
the baseline hazard rate. The motivation is simple. The usual densities 
associated with duration models, e.g. exponential, Weibull and Burr, 
may engender fairly similar shapes depending on the parameter values. 
In turn, they hatch very different hazard rate functions: it is flat for the 
exponential, monotonie for the Weibull and non-monotonic for the Burr.

The functional of interest reads

=  Js [r«(x) -  Tf{x)]2f x d i, (16)

Suppose that (16) admits a second order Taylor expansion about the true 
density, viz.

A / =  A / +  DA f (hx) +  l-D 2Af (hx, hx) +  O (||M3) , (17)

where A/ =  / 5 [r®(x) — Vf(x)]2f x dx and hx =  f x — f x as before. The 
first functional derivative is then

DA f (hx) = [r„(x) -  r f (x) fhx dx 

+ 2 /  [r,(x) -  r 7(x)]
J S

dr0(x)
89 D9f {hx) -  DTf (hx)

(18)

/xdx,

where

h(x) -  T; (x) fx l (u  <  x)h(u)du
Dl f(fix) — g (19)
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and Sx denotes the survival function 1 -  F(x). It is readily seen that, if 
the baseline hazard is properly specified, the first derivative is singular.

The asymptotic distribution of the H-test relies then on the second 
order functional derivative, which under the null reads

D2A/(A*, hx) 2 /  [ D l V ^ l V .d x
J s

arfl(x) dve{x) 
de de1

[D 9f (hx) f f x dx

D0f (hx)Dr,(hx)fxdx. (20)

It turns out that the first term leads the asymptotics as it contains the 
unsmoothest term of the expansion.

T heorem  5. Under the null and assumptions A1 to A f, the statistic

nhl/2\ j  -  hnl/2XH
<o/

N( 0,1),

where A u and <f;f estimate consistently A h =  £k E[ l ( i  € S)Tf(x)/Sx\ 
and =  Vk  E[l ( x  6 5 )r^ (x )/5 z], respectively.

In contrast to the density function, in general, there is no closed 
form solution for the hazard rate of the log-standardised duration. One 
may of course solve it by numerical integration, though at the expense of 
simplicity. Notwithstanding, it is straightforward to fashion the H-test 
to gamma kernels.

T heorem  6. Under the null and assumptions A1 to A4, the statistic

f "
nh]JA A j b :l/4 Xc

CG
iV(0, l ) ,

where Ac and are respectively consistent estimates of 

AG = ^ £ [ l ( a 6  5 )* -l% ( * ) /S , ]

4  = ^ e  [a(x e 5)x~1/2r^(x)/5I] .
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Consider next the following sequence of local alternatives

<  : sup |r("](*,0) -  r 'n!(x) -  =  o(en), (2 1)
x e s 1 1

where ||r  ̂—T/|| =  o (n~lh~iI2'), en =  n~1t2h~lU and £h(x) is such that 
=  £ '[ l(x  € 5 )f^ (x )] < oc and f?[f//(x)] =  0. It follows then that 

both versions of the H-test can distinguish alternatives that get closer to 
the null at rate en while maintaining constant power level.

T heorem  7. Under the sequence of local alternatives H(*n and assump
tions Al to A4, N (tSn/qH, l ) ,  whereas f,„ N l )-

Finally, consider the M-estimator 9j that minimises the distance 
between the non- and parametric estimates o f the baseline hazard rate 
function. The corresponding implicit functional is

is dr'do°f ~ "  r / ( x ) ]  / ( * ) d x  =  ° >

which results in the following first derivative

(22)

d  e?(h t ) =
dr(x,0) dr(x,B)

s d9 d9‘
j-A f{x )d x

L
dr0{x)

x Js ~"d9 DTf(h* )f(x ) dx-

From (19), it is readily seen that

(23)

(24)

is the leading term that drives the asymptotic distribution of the estima
tor.

T heorem  8. Under the null and assumptions Al to A5, nl 2̂(9ff — 
90) - A  N(0,Qh), where n H =  Cov [ ^ (x ; ) ,  t?^(xi+i;)] is the
long-run covariance matrix of d j. In case assumption A6 holds, one can 
employ Newey and West’s (1987) non-parametric correction to obtain a 
consistent estimate of the asymptotic variance.
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4.4 Nuisance parameter result

All results so far consider testing an observable process {x ,}  with discrete 
observations x \ ,. . . ,x n. In the context of conditional duration models, 
the interest is in testing the standardised errors e* =  x , /^ ,  i =  1 , . . . ,  n. 
However, the process {e,} is unobservable and the testing procedure must 
then proceed using standardised residuals e* =  Xi/rpi, i =  In the
sequel, we derive conditions in which the H-test is nuisance parameter 
free, and hence there is no asymptotic cost in substituting standardised 
residuals for errors. The nuisance parameter result follows in the same 
line for the D-test, and it is therefore omitted.

To simplify notation, let e* =  ei(tf>o) — Xi/WiiM and e< =  e<(^) =  
Xi/yji(4>), where cp is a nd-consistent estimator of the true parameter (f>0. 
The H-test measures then the closeness between the parametric estimate 
r (̂ej) and the non-parametric estimate T ;(e,) of the baseline hazard 
rate function. By definition, a test is nuisance parameter free if the 
statistic evaluated at <p converges to the same distribution of the statistic 
evaluated at the true parameter ij>0. We must show then that, under the 
null

A fit) =  - ±  m  € 5) [r* (e.) -  r , (e,)]2 (25)
n i=i

has the same limiting distribution of its counterpart Aj(cpo) in (17).

We start by pursuing a third order Taylor expansion with Lagrange 
remainder of Aj(<p) about Aj((po), be.

A = A/(0 o) + A'j(<f>0)((j) — rf>u) +  -A"j(4>0)((j) — (j>0, <j> — <Po)

+ A'J{4>,)(<p -  00, 4> -  <t>a, <t> -  <t>o)
— A f{4>u) +  +  A 2 +  A 3,

where Ay*(</>o) denotes the i-th order differential of A j  with respect to <p 
evaluated at 4>0 and <fi, e [<pu, d>\. The first derivative reads

A',(*,) =  2 Js [r,(e) -  r /(e)][r'9(e) -  r'/(e)]/(e)de
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+  j s [ r g(e) -  r f (e)}2f'(e)de (26)

where all differentials are with respect to 0 evaluated at f o 

under the null hypothesis, A'j{<j>o) =  0 and A'j(4>o) =  Op (n~lh~') 
given that (/ —/ )2 — Op (n~lh~l) and (/ '—/ ')2 =  Op (n~lh~3). Thus, the 
hrst term A L is of order Op (n~^d+l  ̂h~1̂ . Similarly, A"-(0O) — Op (n-1/i“3)
and A 2 =  Op (n~(2d+l̂ h~sy  The last term requires more caution for it 
is not evaluated at the true parameter fo- However, it is not difficult to
show that

sup =  Op (n -l/2h -7/2) +  Op (n_ 1/i~3) , (27)
I<t>* -0ol<c

so that A 3 =  Op (n~(3d+1/,2)/j“ 7/ 2̂  +  Op (n~(3d+1)/i“ 3). The limiting dis
tribution of Aj((j)) and Af(cf>o) coincide if and only if

nh\{2{ A i +  A 2 +  A 3) =  Op (1). (28)

Under the assumption A4, the bandwidth is of order o (n~2/9) and hence

nhxJ2A , -  o (n 1-* /9) op (n - 'd+7/9>) =  op (n '/9- d) (29)

nh\l2 A 2 =  o ( n 1- ,/ 9) o p (n - (2d+1/3) ) = o p (n5/9- 2d) (30)

nh'J2A 3 =  o (n 1- 1/9) [op (n5/18~3d) +  op (n-<3d+1/ 3>)]

=  op (n21/,,8~3d) +  0p (n5/9- 3d) , (31)

which means that the H-test is nuisance parameter free provided that 
d >  7/18. For the gamma kernel version of the H-test, the same argument 
applies as bn is of the same order of /i2.

5 Numerical results

In this section, we conduct a limited Monte Carlo exercise to assess the 
performance of our tests in finite samples. The motivation rests on the
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fact that most non-parametric tests entail substantial size distortions 
in finite samples. For instance, Fan and Linton (1997) demonstrate how 
neglecting higher order terms that are close in order to the dominant term 
may provoke such distortions. Further, despite the results on asymptotic 
local power, it seems paramount to evaluate the power of our tests against 
fixed alternatives in finite sample.

The design takes after Grammig and Maurer (1999). We generate 
15000 realisations of the linear ACD model of first order, i.e.

y,’i =  u +  axi-i +  1 , (32)

by drawing e, =  X',/?/•’, from three distributions: exponential, Weibull 
with k =  0.6 and Burr with k =  2 and a2 =  1.5. We set a =  0.1 and 
B =  0.7 to match the typical estimates found in empirical applications. 
Further, we normalise the unconditional expected duration to one by 
imposing w =  1 — (c* +  /8) and then set t/>0 =  1 to initialise (32). Along 
with the full sample (n =  15000), we consider a subsample formed by the 
last 3000 realisations so as to mitigate initial effects. These are typical 
sample sizes for data on trade and price durations, respectively. All 
results are based on 1000 replications.

For each replication and data generating process, we first compute 
maximum likelihood estimates for ACD models with exponential, Weibull 
and Burr distributions. Optimisation is carried out by taking advantage 
of Han’s (1977) sequential quadratic programming algorithm, which al
lows for general inequality constraints. Next, we examine the outcomes 
of our five tests: the D- and H-tests with Gaussian and gamma kernels 
applied to the standardised residuals and the D-test with Gaussian ker
nel applied to log-standardised residuals. Bearing in mind assumption 
A4, we adjust Silverman’s (1986) rule of thumb to select the bandwidth 
hn for fixed kernel density estimation. The normal distribution serves 
as reference only for the log-standardised durations, the reference being 
the exponential otherwise. For simplicity, the gamma kernel density es
timation is carried out using bn =  h'„ as suggested by the asymptotic 
theory.
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The frequency of rejection of the null hypothesis is then computed 
in order to evaluate size and power of such tests. More precisely, size 
distortions are investigated by looking at all instances in which the es
timated model nests the true specification, e.g. the likelihood considers 
a Burr density, though the true distribution is exponential or Weibull. 
Conversely, to investigate the power of these tests, we examine situations 
in which the estimated model does not encompass the true specification, 
e.g. the estimated model specify an exponential distribution, whereas 
the true density is Weibull or Burr.

Figures 1 to 4 display the main results for n =  3000 using Davidson 
and MacKinnon’s (1998) graphical representation. Each figure consists of 
several charts, which are set up in the same way. On the horizontal axe is 
the significance level and on the vertical axe is the probability of rejection 
at that significance level. Ideally the size of a test, i.e. the probability 
of rejection under the null, coincides with the significance level, whereas 
the power, i.e. the probability of rejection under the alternative, is close 
to one. To take size distortions into consideration, we consider size- 
corrected power, i.e. the probability of rejection given simulated rather 
than asymptotic critical values.

The performance of the D-test for log-standardised durations is a 
salient feature in all figures. The results are quite encouraging in that 
such testing procedure is mildly conservative and have excellent power. 
Besides, the amount of trimming does not seem to affect these results. 
In fact, no trimming seems the best strategy, though the differences are 
not statistically significant. On the other hand, the other four tests are 
to some extent disappointing. In particular, the inferior performance of 
tests based on gamma kernels are somewhat surprising in view of the 
absence of boundary bias. Such outcome may be due to the inefficient 
criterion we have adopted to chose the bandwidth.

Figures 1 and 2 consider the case in which durations follow a Burr 
ACD process. Figure 1 shows that both D- and H-tests using a Gaussian 
kernel fail to entail good size performance. In particular, the H-test with 
Gaussian kernel rejects in every instance the specification of the model, 
though it is correct. Heavy trimming in the lower tail improves slightly
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the performance of the D-test, but the distortions are still substantial. 
Using a gamma kernel, the probability of rejection of the D-test is about 
42% irrespective of the weighting scheme and the level of significance at 
hand. A similar result is due to the H-test with gamma kernel.

Figure 2 illustrates the fact that our tests have, in general, good 
power against exponential (first column) and Weibull (second column) 
alternatives. Using a Gaussian kernel, the D-test necessitates heavy trim
ming in the lower tail, whereas the H-test requires trimming in the upper 
tail. The intuition is simple. Density estimation with fixed kernels per
forms poorly close to the origin due to the boundary bias and thus delet
ing the observations in the lower tail decreases distortions in the D-test. 
By the same token, pointwise estimates of the hazard rate function are 
quite unstable in the upper tail because the survival function approaches 
zero. Therefore, it is not surprising that a higher amount of trimming 
is necessary in the upper tail for the H-test. Accordingly, the good size- 
corrected power of both D- and H-tests with no trimming comes at the 
expense of huge size distortions (see figure 1 ).

The first and second column of figure 3 document respectively the 
size and power of our tests when standardised durations have a Weibull 
distribution. The most striking feature in figure 3 is the complete failure 
of the D-test with gamma kernel and both H-tests in terms of size perfor
mance. In turn, the D-test using a Gaussian kernel performs reasonably 
well provided that severe trimming is applied to the lower tail; power is 
trivial otherwise. The intuition is two-fold. First, as aforementioned, this 
sort of trimming is necessary to counteract the boundary bias of fixed 
kernel density estimation. Second, the Weibull density is typically very 
steep near the origin. As durations get close to zero, the parametric es
timates of the density approaches infinity as opposed to non-parametric 
estimates which are bounded. As such, squared differences can get ex
tremely large and the remedy is to introduce more trimming.

Figure 4 reveals that size distortions are less palpable when du
rations follow an exponential ACD model. The D-test using a Gaus
sian kernel is slightly more conservative than the D-test applied to log- 
standardised residuals. Severe trimming in the upper tail is afresh es
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sential to H-tests, though size distortions remain material. Last but not 
least, our results accord with Grammig and Maurer (1999) in that there 
is no increase in size distortions if the estimated model considers a more 
general distribution than necessary. Differences are so minor that we 
have opted to display only the case in which we estimate a Burr ACD 
model, though the true distribution is exponential.

To conserve on space, we refrain from displaying similar graphs for 
the full sample (n =  15000) in view that, on balance, the results bear 
great resemblance. Nonetheless, we collect in table 1 the main statistics 
for the case in which the data follow a Burr ACD model. In particular, 
size distortions remain roughly constant, whereas power improves mildly 
in general -  major improvements take place only for the H-tests. In all, 
the D-test for log-standardised durations seem to outperform the other 
variants we have proposed. Nonetheless, as the other tests also entail 
reasonable size-corrected power, one may take advantage of resampling 
techniques to mitigate size distortions.

6 Empirical application

In this section, we use real world data to test the performance of the linear 
ACD model (32) with exponential, Weibull and Burr distributions. Data 
were kindly provided by Luc Bauwens and Pierre Giot and refer to the 
NYSE’s Trade and Quote (TAQ) data set. Bauwens and Giot (1997 and 
1998) and Giot (1999) describe more thoroughly the data.

We focus on data ranging from September to November 1996. In 
particular, we look at price duration processes of five actively traded 
stocks from the Dow Jones index: Boeing, Coca-Cola, Disney, Exxon, 
and IBM. Trading at the NYSE is organised as a combined market 
maker/order book system. A designated specialist composes the mar
ket for each stock by managing the trading and quoting processes and 
providing liquidity. Apart from an opening auction, trading is contin
uous from 9:30 to 16:00. Price durations are defined by thinning the 
quote process with respect to a minimum change in the mid-price of the
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quotes. We define price duration as the time interval needed to observe 
a cumulative change in the mid-price of at least $0,125 as in Giot (1999).

For all stocks, durations between events recorded outside the reg
ular opening hours of the NYSE as well as overnight spells are removed. 
As documented by Giot (1999), price durations feature a strong time-of- 
day effect related to predetermined market characteristics such as trade 
opening and closing times and lunch time for traders. To account for this 
anomaly, we consider seasonally adjusted price durations x, =  A_,/o (t,), 
where A', is the raw price duration in seconds and g(-) denotes a daily 
seasonal factor which is determined by averaging durations over thirty 
minutes intervals for each day of the week and fitting a cubic spline with 
nodes at each half hour. The resulting (seasonally adjusted) price dura
tions x, serve then as input in the sequel.

Table 2 reports some descriptive statistics for price durations. There 
are two common features across stocks: highly significant serial correla
tion and some degree of overdispersion. That is not surprising: Indeed, 
ACD models are precisely designed to deal with these stylised facts.

6.1 Estimation and test results

We invoke (quasi) maximum likelihood methods to estimate linear ACD 
models with exponential, Weibull and Burr distributions. We address 
both in-sample and out-of-sample performances by splitting the sample. 
More precisely, we reserve the last third for out-of-sample evaluation. Ta
ble 3 summarises the estimation results. For every stock, the Burr ACD 
model reveals a considerable better fit as indicated by log-likelihoods. 
On the contrary, the gains in using a Weibull rather than an exponential 
distribution are quite marginal in most instances. To see why, it suffices 
to notice that the Weibull estimates of k are always close to one. In fact, 
it turns out that k < 1 for every Weibull ACD model, implying that the 
hazard rate function decreases monotonically with the standardised du
ration. Conversely, n estimates are significantly greater than one for all 
Burr ACD models, what indicates non-monotonic baseline hazard rate 
functions. Accordingly, ACD specifications with exponential and Weibull
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distributions produce similar estimates for duration processes as opposed 
to Burr ACD models. For Boeing and IBM price durations, differences 
are indeed striking. All in all, parameter estimates suggest substantial 
persistence in the rate at which price changes.

Next, we evaluate the performance of the estimated ACD models 
by examining both in- and out-of-sample standardised durations, which 
we hereafter refer as residuals and forecast errors, respectively. Tables 4 
to 6 portray the results of the D- and H-tests, which are very much in line 
with Bauwens, Giot, Grammig and Veredas’s (2000) analysis rooted in 
density forecasting techniques. Table 4 reports the p-values of the D-test 
using a Gaussian kernel for log-standardised durations. As fingered by 
the Monte Carlo investigation, there is no need for trimming. Residual 
analysis favours clearly the Burr ACD model as it cannot be rejected 
at conventional levels of significance for Boeing, Coca-Cola, Disney and 
Exxon price durations. Contrariwise, the exponential and Weibull alter
natives perform quite poorly for every stock, but the Coca-Cola. The 
linear ACD model is rejected both in- and out-of-sample for IBM price 
durations irrespective of the distribution. Inspecting the other forecast 
errors, we find evidence of misspecification only for Boeing and Dis
ney price durations, what probably reflects the presence of structural 
changes.1

Table 5 displays the outcomes of the D-test with Gaussian kernel 
for raw standardised durations. We consider three weighting strategies. 
The first exerts no trimming whatsoever, what should produce an ex
tremely conservative test given the results in section 5. Indeed, apart 
from a borderline result for the Disney residuals of the Burr ACD model, 
such testing procedure always rejects the null. The second scheme trims 
realisations out of the interval (x , 1 — x), where x denote the empirical 
0.025-quantile. As expected, besides some few cases involving residuals

1 Further analysis reveal indeed that the last third of the sample yields quite 
distinct estimates for linear ACD models. Nonetheless, the p-values of the D-test for 
log-standardised durations depict a pattern similar to previous in-sample results. It 
easily rejects both exponential and Weibull specifications in every instance, whereas 
the Burr ACD model fail only for IBM price durations. These additional results are 
of course available upon request.
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of Burr ACD models, rejecting the null remains the rule. Lastly, applying 
heavy trimming in the lower tail recovers by a long chalk the figures in 
table 3. The only difference is that the Burr ACD model appear now to 
produce Boeing forecast errors and IBM residuals that satisfy the null. 
Of course, this is perchance an artifact due to the weighting procedure 
since misspecification might occur precisely in the trimmed part of the 
distribution.

Table 6 documents once more how unreliable are H-tests using a 
Gaussian kernel. Model specification is rejected in nearly all cases even 
if we introduce severe trimming in the upper tail as suggested in sec
tion 5. By the same token, tests based on gamma kernels do not seem 
very informative. Indeed, all p-values are inferior to 0.0005, mirroring 
the flimsy finite sample properties of such tests. Figures 5 illustrates the 
results by plotting the non- and parametric density estimates for Exxon 
standardised durations. If, on the one hand, non-parametric density esti
mates oscillate nicely around estimates from the Burr ACD specification; 
on the other hand, parametric estimates implied by the exponential and 
Weibull alternatives are consistently above or below their non-parametric 
counterparts in some intervals.

For completeness, we check whether standardised residuals are se
rial independent using the BDS test (Brock, Dechert, Scheinkman and 
LeBaron, 1996). In contrast to the Ljung-Box statistic, the BDS test is 
sensitive not only to serial correlation but also to other forms of serial 
dependence. Moreover, the BDS test is nuisance parameter free for addi
tive models (de Lima, 1996), what is quite convenient given that we test 
estimated residuals rather than true errors. A simple log-transformation 
renders the linear ACD model additive, hence it suffices to work with 
log-standardised durations. Table 7 reports the results. For the Boe
ing price durations, serial independence seems consistent only with the 
residuals of the Burr ACD model. For Coca-Cola, ACD models seem 
to produce serially independent residuals irrespective of the distribution, 
though out-of-sample performances are poor. In turn, all ACD models 
seem to capture well enough both in- and out-of-sample intertemporal 
dependence for Disney price durations. Evidence is somewhat inconclu
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sive for Exxon price durations by virtue of the multitude of borderline 
results. In contrast, the p-values for the IBM log-standardised durations 
provide strong evidence against the serial independence of both residuals 
and forecast errors.

Altogether, the figures in table 8 reinforce the evidence provided 
by the D-test in tables 3 and 4. In particular, none of the linear ACD 
models seems to fit properly IBM price durations. In turn, the Burr 
ACD model entails superior performance relative to the exponential and 
Weibull ACD models for the other four price durations.

7 Concluding remarks

This paper deals with specification tests for conditional duration models, 
though there is no impediment in using such tests in other contexts. For 
instance, one could test GARCH-type models by checking whether the 
distribution of the standardised error is correctly specified. Similarly, 
Cox’s (1955) proportional hazard model implies testable restrictions in 
the hazard rate function. The main reason to focus on conditional dura
tion models stems from the poor performance of quasi maximum likeli
hood methods in this context (Grammig and Maurer, 1999).

We propose two testing strategies, namely the D- and H-tests, 
which rely on gauging the discrepancy between non- and parametric es
timates of the density and baseline hazard rate functions of standardised 
durations, respectively. Asymptotic theory is derived for non-parametric 
density estimation using both fixed and gamma kernels. The motivation 
for the latter is to avoid the boundary bias that plagues fixed kernel esti
mation. All in all, our tests have some attractive theoretical properties. 
First, they examine the whole distribution of the standardised residuals 
instead of a limited number of moment restrictions. Second, they are 
nuisance parameter free. Third, they are suitable to weak dependent 
time series and, as such, there is no need to test previously for serial 
independence of the standardised errors.

There are two main topics for future research. First, it is still un
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clear how to select bandwidths for both fixed and gamma kernel estima
tions. A possible solution relies on cross-validation methods, which Chen 
(2000) shows to be particularly valuable to gamma kernel estimation. 
More precisely, one builds a grid of bandwidth values satisfying assump
tion A4 and then takes the bandwidth that minimises the test statistic. 
Second, resampling techniques may deliver more accurate critical values. 
Indeed, there is vast literature on bootstrapping smoothing-based tests, 
e.g. Fan (1995) and Li and Wang (1998). Under serial independence 
of the standardised residuals, the usual bootstrap algorithm presumably 
works. Suitable bootstrap schemes are also available under weak depen
dence, such as Politis and Romano’s (1994) stationary bootstrap and 
Biihlmann’s (1996) sieve bootstrap, in case one prefers to relax the serial 
independence assumption.

Appendix: Proofs

Lem m a 1. Consider the functional Iq — / 0°° ipxf l  dx, where f x =  f(x )  
is a pointwise gamma kernel estimate of f x =  f{x ).  Under assumptions 
A l, A2 and A4,

provided that the above expectations exist.
P roof. See Fernandes (1999).

Lem m a 2 . Suppose that a functional is Fréchet-differentiable relative 
to the Sobolev norm of order (2, m) at the true density function /  with 
a regular functional derivative <t>f. Then, under assumptions A l to A4, 
nl/2(* j  ~ * / )  N(0,V*), where V„ = Z ^ C o v f o / f o ) ,*/(*<+*)] is
the long run covariance matrix of cj)j.
P roo f. See Ai't-Sahalia (1994).

Lem m a 3. Consider a sequence {A , : i — l , . . . , n }  that satisfies as
sumption A l. Suppose that the U-statistic Un =  Zi<i<j<n HniXuX,)
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with symmetric variable function Hn{-, •) is centred and degenerate. If

P roo f. See Hall (1984) and Khashimov (1992).

Lem m a 4. Consider the functional I — Jx <pxf l  dx, where fx denotes the

provided that the above expectations are finite.
P roo f. The derivation uses lemma 3, i.e. Khashimov’s generalisa
tion of Hall’s central limit theorem for degenerate U-statistics to weakly 
dependent stationary processes. We start by decomposing the func
tional in order to force the emergence of a degenerate U-statistic. Let 
rn(x ,X ) =  iplJ 2Khn{x -  X )  and fn(x ,X ) =  rn{x ,X ) -  Ex [rn{x, X )], 
where Khn(u) =  h~xK(u/hn). Then,

integral over the support of x  and f x =  f (x)  is a pointwise fixed kernel 
estimate of f x =  f (x) .  Under assumptions A1 to A4,

nh\!2I  -  h-1'2 eK E [ip,] - A  N  (o, vK E [p2xf x]) ,

Jx u=i J n ij 1

or equivalently, I  =  h  +  I2 +  h  +  h , where
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We show in the sequel that the first term is a degenerate U-statistic and 
will contribute with the variance in the limiting distribution, whilst the 
second will contribute with the asymptotic mean. In addition, the third 
and fourth terms are negligible under assumption A4. The first moment 
of rn( i ,  X)  reads

Ex [rn(x,X)\ = <plJ2 jx Khn(x-X)f(X)dX

= <filx/2 [  K(u)f(x + uhn)du
Ju

= ‘Pz2JuK M  fix)  +  ^i\x)uhn + f" (x ‘ )u2hl

=  r f f l + O f t ) ,

du

where /('* denotes the i-th derivative of /  and x * € [x, x+uhn]. Applying 
similar algebra to the second moment yields

Ex [rl(x,X)\ = hnl eK<pxf x +  0 (  1).

This means that

E (h) =  l- j x Ex \ r l{x ,X )}d x = l- j x [h-l eK<pxJx +  0 {\ )]d x  

= n ~ lh ~ l eK  j  <pi/idx + 0(n"'),

whereas Var(/2) =  O (n~3h~2). It follows then from Chebyshev’s inequal
ity that nh\l'l Ii — h ~ e x E[ipx] =  op(l). In turn, we have that

u =  L  ^ [rn(x’x)] dx =  0  K ) =  0  K )  >

which, under assumption A4, implies that nh]/214 =  o (l). Further,

E (h ) =  ^ — 12 [  Ex [fn(x,X )} Ex [rn(x ,X )}d x  =  0, 
n Jx
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whilst E(I2) =  O (n~lh„). It suffices then to impose assumption A4 to 
ensure, by Chebyshev’s inequality, that n /iy2 */3 =  op(l). Finally, recall 
that / ,  =  Y,i<j Hn{Xi, Xj), where

Hn(Xi, X j) =  2n -2^ r n(a:,X ,)fn(x ,X i )dx.

As Hn(X i,X j) is symmetric, centred and such that E[Hn(Xi,Xj)\Xj] — 
0 almost surely, if is a degenerate U-statistic. Thus, it follows immedi
ately from lemma 3 that nhl/2Ii — > Ar(0, Vo), where

Vh =
n4/inEXuX2[H2( x u x 2]

= 2h n f  f  f n { x , X i ) f n( x ,  X 2) d x  f ( X u X 2) d ( X u X 2) 
J  X  i ,X^  .» i

= 2hn [  \ f  r n ( x , X ) r n ( y , X ) f ( X ) d x Y  d ( x , y )
Jx ,y  \.JX

~ 2 f  ip\ f f  I < ( u ) K ( u  +  v ) J ( x  -  u h n) d ( x , v )
Jx,v  U u

~ 2 v K  [  v l f l d x ,Jx

which completes the proof.

P r o o f  o f  (10 ). Consider the following expansion

®/,h(7) =  ^ /+ 7ft =  /  [/(*» ~ f ( x) -  t M*)]2 [ / ( i )  +  7 h{x)] dx,
J s

where 61 =  6j+lh. Differentiating with respect to 7  yields

d"f 2 Is { f { x ’ ^  ~ [ f ~ lh ]{x )} [f +  7/l](x)

- 2  j s [f{x, 07) -  f(x )  -  jhix)} [ /(x )  +  jh(x)]h(x) dx

+  [  [/(*> 07) -  f ( x) ~  7M 1 )]2 h(x) dx.Js

Under the null, the parametric specification of the density function is cor
rectly specified, i.e. f{x ,9 ) =  / (x ) ;  hence the first functional derivative
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D'P/ =  is singular. In turn, the second functional derivative
reads

d2̂ f,h{l)
dydy' =  2 Is

d2f(x ,0 7)d07 d07 . , .
7 [fix, 0-y) ~ fx -  jh x] [fx 4- 7hx] dz

+  2 

+ 2 

-  4 

+  4

s dOdO' dy dy  
df{x,617) d2e1

s d9 dydy'
[f{x, 07) -  f x -  yhx] [fx +  7hx\ dz

df(x ,07)d f(x ,0 7)d01 d07[f 
------------------------------ jl/i + 7 'iij dz5 30 dO' dy dy
df(x , 07) d07 

s dO dy 
df(x , 07) d07

[fx +  yhx} hx dz 

[f(x,07) -  f x -  yhx} hx dz,
5 dO dy

+  2 Js lfx+  7hx] h2x dz -  4 j  [f{x , 07) -  f x -  yhx] h‘2x dz,

which reduces to (10) by evaluating at y — 0 and imposing the null.

P r o o f  o f  Theorem  2. Under the null, the following functional Taylor 
expansion is valid

^/+/i — f xy l ( z  € S )[tf(x ,y )  +  f x5{x)(y)]dH(x)H(y) +  O (||/t l||3) ,

where i f  is a continuous functional which includes the first and second 
terms of (10) as well as the regular part of its third term and 5(x) is a 
Dirac mass at z. Replacing hx by f x -  f x ensues that the first term

[  l (x eS )if (x ,y )d H {x )d H (y )
Jx,y

is negligible since it converges at a faster rate T to a sum of independent 
X 2 distributions (Serfling, 1980; Ait-Sahalia, 1994). In turn, applying 
lemma 1 with ^  =  l ( z  e S )fx yields that

[  l ( z  € S )fx6{x){y) dH{x)dH{y) =  [  } xh\dx
J x , y  JS

converges in distribution at rate nb[J* to a Gaussian variate with mean 
b~l/45c and variance a'f.
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P r o o f  o f  T h eorem  3. The conditions imposed are such that the func
tional Taylor expansion under consideration is valid even in case the xin, 
i =  1 , . . .  ,n, are a double array. Thus, for the D-test with fixed kernel, 
it ensues that, under Ĥ n and assumptions A1 to A4,

f a _  n h lT l  £  1{Xm 6 s )  ) _  / ( Im ) f  N (0, 1 ),
° d  n  j=1

where the superscript [n] denotes dependence on The first result
n(n)

follows then by noting that do — > Od and

^/M =  - t l ( l i „ 6 5 [ / ln|( l m , ^ w ) - / |n,(Xm)]2
n i— L

= E { l (x ln € S) [fW(xln,0fM) -  / lnl(im)]2} + Op (rT1/2)

=  el E [ l ( x ln 6 5 ) ^ ( z ln)] +  op (n_1/i~1/2)

= n - ' h ? ' H sD +  o p ( n - % ' 12) .

Applying a similar argument to the gamma kernel version of the D-test 
completes the proof (see the proof of theorem 7).

P ro o f o f  (19 ). Consider the following expansion

A/,h(7) =  A/+7/l =  [rfl7(x) -  r /+7/l(x)]2 [/(x) +  7h(x)} dx,

where 07 =  0 /+7/, to simplify notation. Differentiating with respect to 7 
entails

dAf,hh)
97 2 Is 91d9^  “  r /+Tft(^)] [/(x) +  7 h(x)\ dx

- 2  f s  [r «7(z) -  r /+7A(x)] [/(*) + i K x ) }  cia:

+  j s [r «7 (*) -  r /+7h (x)]2 h(x) dx,

which recovers (19) if evaluated at 7  =  0.
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P r o o f  o f  (20 ). Computing the second differential of the expression 
above with respect to 7 yields

dydy'
[ r . »  -  r ,„ ,( i)]  [/ + 7ft](x)di 

+  2 ! s dT'm X)Ï & Ÿ  K W - O + r t W ]  l /  +  7 * ]W «i*

Js AÛ API A™ /W  V ' ' V /J+  2

- 4 L “-W~W~ui>r1 l,(x)+7'‘(I)I dI
+ 4 J  [tv,u)-  r>.,,,<1 )] ft(i)di

dO dO1 97 dy 
drBl{x) 96>7 9 r /+7h(x) 

Js dO dy d')

-  2 Ss d ^ d y y ^  "  r ^ h^ ]  [/(aO +  TM*)]*1*

+  2 Js

s dyy1
dr / +7h d r f+lh [f(x) + yh (x )]d x

s dy dy'

~ A Is drfglh^  [r«7(x) -  r /+7/l(x)] h(x) dx,

which equals (20) for 7  =  0.

P r o o f  o f  T heorem  5. Under the null, the following functional Taylor 
expansion is valid

A/+ft =  Jxy l ( x e S )  [ f f (x ,y )  +  SI- 1(S(l)(2/)] dH(x)H(y) + O (||/i||3) ,

where ^  is a continuous functional encompassing the second and third 
terms of (20) as well as the regular part of its first term and Sx denotes 
the survival function 1 -  F(x). Replacing hx by f x -  f x ensues that the 
first term

l (x € S )^ (x ,y )d H (x )d H (y )

converges at a rate T and therefore it is negligible. In turn, applying 
lemma 4 with <px =  l (x  E S )S~ [ yields that

[  l (x  e  S)S;'S{x)(y)dH(x)dH(y) =  [  S ; lh2x dx 
Jx,y JS
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converges at rate nh\/2 to a normal distribution with mean /in1/2A# and 
variance

P ro o f o f  T heorem  6 . Consider the above functional Taylor expansion 
with hx — f z — f x. Once more, the first term converges at a rate T, 
whereas lemma 1 implies that

[  l ( x  € S)Sx l6(l)(y)dH (x)dH (i/) =  [  l ( x  6 S )fzh2z dx
Jx,y  J x

converges in distribution at rate nb'J4 to a normal variate with mean 
6“ ^4Ag and variance

P r o o f  o f  T heorem  7. Afresh, the corresponding functional Taylor 
expansion is consistent with the double array sequence £*„, i — 1 , . . . ,n. 
Thus, for the H-test with gamma kernel, we have that, under H[rn and 
assumptions A1 to A4,

r" -  £  l(X m  6 5) [r(x, O f )  -  r,(x)]2 4 $  N (0,1).
sg n i=1

The result follows then from the fact that — ► Cg and

A fin] — -  £  i(ii„ € 5 [rW(i4n,fl/W) -  r̂ n|(xm)f
n i= 1

= e  {i(x ln € s) [rW(ilB,Ojmi) -  r'nl(xln)]2} +  o P («~1/2)

=  e \ E  [b ( x , „  e  5 i^ , ( z ln)j +  op ( r r \ " ' )

- n - X W 4  +  0, ( „ - X ‘ » ) .

We omit the proof for the fixed kernel version of the H-test in view that 
it is completely analogous (see the proof o f theorem 3).

P ro o f o f  T heorem  8. The implicit functional corresponding the M- 
estimator associated with the H-test is

Is "  r 'W ]  f W dx =  °>

32

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



which results in the following expansion

r dr(x,e") 
Js 08

[r(x, e " )  -  r /+7fc(i)] [f{x) + 7/1(1)] dx =  0.

Differentiating with respect to 7  entails then

d2r(x,8")08"
Js

[r(x, e ” ) -  r /+7/l(x)] [/(x) +  7/1(1)] dx
5 0808' 0^

OTix,9” )dT[x,8” )d8"
+

Jss 08 08’ O')
or{x,e?)

s 08
or(x,8?)drf+7h(x)

s 08 O')

[ /(x )  +  7h(x)] dx

L

- I s

[r(x,S7 ) -  r /+7/l(x)] h{x) dx 

[fix) +  7 /1(1 )] dx -  0,

which recovers (23) if one imposes the correct specification of the model 
and evaluates at 7  =  0. As the first term in .the right-hand side of (19) 
converges at a slower rate than the second, (24) will drive the asymptotic 
distribution of 8^. A straightforward application of lemma 2 completes 
then the proof.
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Figure 2: Power against exponential and Weibull alternatives, Burr ACD
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Figure 3: Size and power against exponential alternative, Weibull ACD
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Figure 4: Empirical size, Exponential ACD
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Figure 5: Exxon price durations
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Table 1

Finite sam ple properties o f  the testing procedures 
Data generating mechanism: Burr ACD process 
Sample size: 15000 
Number of replications: 1000

trimming actual size power: Weibull ACD
1% 5% 10% i% 5% 10%

D -test for standardised durations, Gaussian kernel
none 0.9720 0.9800 0.9870 0.0130 0.9330 1.0000
(0.025, 0.025) 0.9650 0.9750 0.9840 0.0070 0.1730 1.0000
(0.04, 0.01) 0.9630 0.9720 0.9820 0.0060 0.0530 1.0000
(0.25, 0.01) 0.6980 0.7290 0.7470 0.0020 0.9400 1.0000
(0.30, 0.01) 0.5720 0.6110 0.6500 0.0020 0.9670 1.0000
D -test for log-standardised durations, Gaussian kernel
none 0.0390 0.0880 0.1120 1.0000 1.0000 1.0000
(0.025, 0.025) 0.0450 0.0900 0.1260 1.0000 1.0000 1.0000
(0.05, 0.05) 0.0470 0.1010 0.1280 1.0000 1.0000 1.0000
D -test for standardised durations, gam m a kernel
none 0.6700 0.6960 0.7110 0.1520 0.9910 0.9910
(0.05, 0.05) 0.6150 0.6380 0.6550 0.0020 0.0110 1.0000
(0.05, 0.20) 0.5820 0.5980 0.6080 0.0020 0.0110 1.0000
(0.20, 0.20) 0.5970 0.6130 0.6260 0.0020 0.0430 0.9850
H -test for standardised durations, Gaussian kernel
none 0.9570 0.9860 0.9950 0.0090 0.0450 0.9700
(0.025, 0.025) 0.8710 0.9000 0.9110 0.0070 0.0300 0.2460
(0.04, 0.01) 0.8960 0.9310 0.9490 0.0070 0.0270 0.1440
(0.25, 0.01) 0.8930 0.9240 0.9380 0.0030 0.0150 0.6160
(0.30, 0.01) 0.8760 0.8990 0.9150 0.0030 0.0140 0.7980
H -test for standardised durations, gam m a kernel
none 0.9570 0.9860 0.9950 0.0080 0.9910 0.9910
(0.05, 0.05) 0.8000 0.8170 0.8260 0.0030 0.0140 0.9950
(0.05, 0.20) 0.5630 0.5720 0.5780 0.0030 0.0130 0.9870
(0.20, 0.20) 0.5680 0.5740 0.5790 0.0020 0.0100 0.9780
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Table 2
Descriptive statistics of price durations

stock sample size mean overdispersion Q(10)
Boeing 2620 1.001 1.338 322.3
Coca-Cola 1609 1.002 1.171 69.7
Disney 2160 1.004 1.209 137.3
Exxon 2717 1.000 1.196 68.2
IBM 6728 1.015 1.427 1932.6
Data correspond to seasonally adjusted durations between bid- 
ask quotes such that a cumulative change in the mid-price of at 
least $0,125 is observed. Overdispersion stands for the ratio be
tween standard deviation and mean. Q(10) denotes the Ljung-Box 
statistic of order 10.
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Table 3
M axim um  likelihood estim ates o f  the A C D  m odels

stock u a 0 K <72 log£

Boeing

Exponential 0.031 0.114 0.861 -1784.7

(0.023) (0.041) (0.059)
Weibull 0.034 0.121 0.851 0.895 -1764.4

(0.025) (0.042) (0.061) (0.016)

Burr 0.057 0.169 0.789 1.093 0.339 -1740.1

(0.033) (0.046) (0.067) (0.036) (0.061)

Coca-Cola

Exponential 0.159 0.109 0.727 -1016.5
(0.042) (0.026) (0.051)

Weibull 0.159 0.109 0.727 0.959 -1014.8

(0.042) (0.026) (0.051) (0.019)
Burr 0.161 0.124 0.715 1.124 0.286 -1007.1

(0.042) (0.030) (0.051) (0.050) (0.079)

Disney

Exponential 0.074 0.046 0.889 -1613.0

(0.030) (0.015) (0.033)
Weibull 0.074 0.046 0.888 0.969 -1611.8

(0.031) (0.015) (0.034) (0.018)
Burr 0.099 0.048 0.867 1.219 0.396 -1588.0

(0.044) (0.018) (0.049) (0.045) (0.067)

The column log C displays the value of the log-likelihood, whereas the 
rows with figures in parentheses report robust standard errors.
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Table 3 
(continued)

stock LJ a P K a2 log£

Exxon

Exponential 0.065 0.046 0.890 -1803.2

(0.037) (0.016) (0.048)

Weibull 0.066 0.045 0.889 0.962 -1800.8

(0.038) (0.016) (0.049) (0.016)

Burr 0.102 0.039 0.863 1.250 0.464 -1766.2

(0.055) (0.015) (0.061) (0.044) (0.068)

IBM

Exponential 0.010 0.090 0.905 -5044.3
(0.005) (0.019) (0.021)

Weibull 0.010 0.090 0.904 0.985 -5043.4

(0.005) (0.019) (0.021) (0.0 11)

Burr 0.017 0.112 0.880 1.263 0.420 -4952.0
(0.009) (0.029) (0.033) (0.025) (0.038)

The column log C displays the value of the log-likelihood, whereas the 
rows with figures in parentheses report robust standard errors.
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Table 4
D-test results for price log-durations, Gaussian kernel

stock in sample out of sample
Boeing
Exponential 0.000 0.000
Weibull 0.000 0.000
Burr 0.138 0.009
Coca-Cola
Exponential 0.029 0.821
Weibull 0.316 0.877
Burr 0.666 0.969
Disney
Exponential 0.000 0.000
Weibull 0.000 0.000
Burr 0.160 0.000
Exxon
Exponential 0.000 0.007
Weibull 0.000 0.028
Burr 0.137 0.261
IBM
Exponential 0.000 0.000
Weibull 0.000 0.000
Burr 0.003 0.000
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Table 5
D-test results for price durations, Gaussian kernel

stock in sample out of sample
(0,0) (2.5,2.5) (30,1) (0,0) (2.5,2.5) (30,1)

Boeing
Exponential 0.000 0.000 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000 0.000 0.000
Burr 0.000 0.140 0.688 0.001 0.000 0.421
Coca-Cola
Exponential 0.000 0.000 0.921 0.000 0.010 0.939
Weibull 0.000 0.000 0.949 0.000 0.070 0.901
Burr 0.001 0.032 0.985 0.041 0.337 0.709
Disney
Exponential 0.000 0.000 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000 0.000 0.000
Burr 0.075 0.291 0.388 0.000 0.000 0.000
Exxon
Exponential 0.000 0.000 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.205 0.005 0.036 0.226
IBM
Exponential 0.000 0.000 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.099 0.000 0.000 0.003
The weighting scheme (x,y)  is such that the first x  and last y percent 
of the sample are trimmed out.
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Table 6
H-test results for price durations, Gaussian kernel

stock in sample out of sample
(0,0) (5,20) (0,0) (0,20)

Boeing
Exponential 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.273 0.000
Coca-Cola
Exponential 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.000 0.000
Disney
Exponential 0.055 0.000 0.000 0.023
Weibull 0.134 0.000 0.000 0.319
Burr 0.350 0.017 0.000 0.000
Exxon
Exponential 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.000 0.000
IBM
Exponential 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000
Burr 0.000 0.000 0.000 0.000
The weighting scheme (x, y) is such that the first x 
and last y percent of the sample are trimmed out.
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Table 7
T he BD S test for serial independence, p-values

stock in sample out of sample
771 =  2 m =  3 771 =  4 m — 2 m — 3 IIfc

Boeing
Exponential 0.000 0.000 0.004 0.019 0.012 0.039
Weibull 0.000 0.001 0.006 0.019 0.012 0.042
Burr 0.002 0.002 0.014 0.152 0.161 0.247
Coca-Cola
Exponential 0.253 0.270 0.092 0.000 0.000 0.000
Weibull 0.252 0.269 0.093 0.000 0.000 0.000
Burr 0.253 0.272 0.099 0.000 0.000 0.000
Disney
Exponential 0.242 0.230 0.163 0.241 0.100 0.135
Weibull 0.248 0.233 0.167 0.249 0.101 0.134
Burr 0.260 0.230 0.154 0.240 0.102 0.132
Exxon
Exponential 0.053 0.039 0.073 0.114 0.053 0.019
Weibull 0.051 0.038 0.071 0.114 0.054 0.019
Burr 0.038 0.026 0.054 0.163 0.803 0.027
IBM
Exponential 0.000 0.000 0.000 0.001 0.001 0.001
Weibull 0.000 0.000 0.000 0.001 0.001 0.001
Burr 0.000 0.000 0.001 0.002 0.001 0.002
The BDS test was computed using embedding dimension m and tuning 
parameter e set to the standard deviation as recommended by Brock et 
al. (1996).
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