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ABSTRACT 

Using the results of risk-adjusted linear-quadratic-Gaussian optimal control with perfect and 

imperfect observation of the economy, we obtain prudent Taylor rules for monetary policies 

and also allow for imperfect information and cautious Kalman filters. A prudent central bank 

adjusts the nominal interest rate more aggressively to changes in the inflation gap, especially 

if the volatility of cost-push shocks is large. If the interest rate impacts the output gap after a 

lag, the interest also responds to the output gap, especially with strong persistence in 

aggregate demand. Prudence pushes up this reaction coefficient as well. If data are poor and 

appear with a lag, a prudent central bank responds less strongly to new measurements of the 

output gap. However, prudence attenuates this policy reaction and biases the prediction of the 

output gap upwards, particularly if output targeting is important. Finally, prudence requires an 

extra upward (downward) bias in its estimate of the output gap before it feeds into the policy 

rule if inflation is above (below) target. This reinforces nominal interest rate reactions. A 

general lesson is that prudent predictions are neither efficient nor unbiased. 
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1. INTRODUCTION 

One of the most precious commodities of a modern capitalist economy is a stable price level 

or at least a low inflation rate. Central banks also attempt to avoid unemployment and steer 

towards near-zero output gaps. This form of flexible inflation targeting gives rise to Taylor 

(1993) rules, which indicate how much the nominal interest rate should react to the inflation 

gap and the output gap. One of the main features of a central bank is that it operates 

cautiously and prudently: 

“A prudent man (or perhaps, I should say a prudent Bayesian) carries an umbrella 

even when the forecast says there is only a small chance of rain. If there is no rain, 

he suffers the small inconvenience of carrying the umbrella. But if he does not bring 

the umbrella and it does rain, he may suffer the much larger inconvenience of being 

caught in a downpour. The prudent central bank should behave similarly, accepting 

a high probability of a small adverse outcome in order to avoid the small risk of a 

very serious bad outcome” (Feldstein, 2003). 

Feldstein argues that Greenspan’s policy of lowering the federal interest rate from 1.75 per 

cent to 1.25 per cent last year was prudent, because of the asymmetric nature of the risk faced 

at that time. The potential upturn could loose steam and there was a risk of deflation, while an 

unnecessarily strong stimulus could do little harm at the time. A large body of research on 

optimal monetary policy is based on the certainty equivalence principle, which says that 

uncertainty can be ignored. In calculating optimal interest rate rules future disturbances are 

set to their expected values. This approach is only valid under very special conditions (i.e., 

linear models, quadratic preferences, normally distributed errors). It abstracts from prudence 

and thus bears little relation to the practice of central banking. 

It is surprising that there is so little research on the behaviour of prudent central banks. 

One of the reasons is that this requires departure from the certainty-equivalent linear-

quadratic-Gaussian framework that is usually adopted in the macroeconomic literature (e.g., 

Svensson, 1997; Rudebusch and Svensson, 1999; Judd and Rotemberg, 1998; Rotemberg and 

Woodford, 1997, 1999; Woodford, 2001). One popular approach is to explicitly recognise 

that statistical properties and order of the processes driving the modelling disturbances are not 

known and to derive robust (min-max) rules that perform well under different views of the 

world (e.g., Onatski and Stock, 2000; Giannoni and Woodford, 2002; Onatski and Williams, 

2003). Another approach is to employ model averaging in a Bayesian context (Brock, Durlauf 

and West, 2003). Yet another approach advocates room for judgement of central bankers in 

the derivation of optimal monetary policy rules (Svensson, 2002). 
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 Our approach is complementary to these three approaches. We allow for 

precautionary behaviour of central banks and derive closed-loop monetary policy rules 

analytically. We allow for temporal risk aversion by assuming that the central bank mnimises 

the expected value of an exponential transformation of the quadratic welfare loss criterion in 

terms of output and inflation. The coefficient of the exponential transformation corresponds to 

an Arrow-Pratt measure of absolute risk aversion, but it also allows for prudence in the 

optimal policy rules. One of the advantages of our approach is that it leads to linear policy 

rules with reaction coefficients that depend on the covariance matrices of the stochastic 

process driving the modelling disturbances (Jacobson, 1973; Speyer, Deyst and Jacobson, 

1974; Whittle, 1981). Effectively, a prudent policy maker downplays the power of its 

instruments if the volatility of shocks hitting the economy is large. 

 The derivation of monetary policy rules must recognise that national accounts consist 

of poor quality data. They contain many measurement errors and observation lags. This 

problem is particularly severe for output data. Typically, various ‘flash’ estimates of GDP 

appear fairly quickly and are then subsequently substantially revised. Measurement errors 

show up, because the raw data do not satisfy the national accounting identities. Various 

studies have used subjective estimates of the reliability of data to adjust the data under the 

restriction that all the accounting identities must be satisfied (e.g., van der Ploeg, 1982; 

Barker, van der Ploeg and Weale, 1984). The subjective variances of the raw data are 

provided by the national accountants and subsequently reduced by imposing the accounting 

restrictions. Unfortunately, they are seldom used in econometric analysis or in the derivation 

of optimal economic policy rules. Here we allow for measurement errors and lags in the 

observation of output data (cf., Orphanides, 2000). If the central bank adjusts its interest rate 

in reaction to changes in output gaps, it presumably does this less intensively if substantial 

measurement errors and lags in output data cause a deterioration of the signal-to-noise ratio 

(cf., Rudebusch, 2001). Taylor rules also allow for reactions to changes in inflation. However, 

inflation data are more readily and accurately available than output data. 

We investigate how measurement errors and lags in output data affect the Taylor rule 

for the nominal interest rate. Pearlman (1986, 1992) demonstrated the usefulness of the 

Kalman filter for predicting the states of the economy in monetary models with forward-

looking expectations. In backward-looking models and forward-looking models where policy 

makers and private agents have access to the same partial information sets, the Kalman filter 

calculations can be performed independently of deriving the optimal monetary policy rule. 

The separation of control and prediction is more tricky in forward-looking monetary models 

with commitment and asymmetric information (cf., Svensson and Woodford, 2003). 
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In general, optimal predictions of the output gap make use of wage and price data. 

We analyse how a prudent central banker takes account of incoming unreliable output data 

and uses this in the Taylor rule. A modified separation principle holds (Whittle, 1981). The 

prudent Kalman filter depends on welfare preferences and yields biased predictions. In 

particular, a prudent policy maker gives less weight to new observations with large standard 

errors and that are less relevant for welfare. Conversely, to avoid costly mistakes prudence 

requires more weight to faulty data that are relevant for welfare. In the umbrella example a 

prudent person assigns a larger subjective probability of rain than the objective probability of 

rain, especially if he or she dislikes rain a lot. 

Section 2 states the general mathematical problem of risk-adjusted LQG control and 

prediction. Prudence implies that the policy maker plays a min-max game against nature. The 

policy maker hedges against undesirable outcomes by postulating that shocks damage its 

objectives even though, from a purely statistical point of view, they do not hurt on average. It 

still leads to linear feedback policy rules and a recursive scheme for the prediction of state 

variables. The Appendix gives explicit solutions. The main differences are that policy rules 

depend on the covariance matrices of state disturbances and the recursive prediction scheme 

depends on the penalty matrices of the welfare loss criterion. This scheme yields inefficient 

and biased predictions of the state variables. The reader not interested in the mathematical 

details can quickly skip through section 2. Section 3 shows how prudence affects the optimal 

inflation-output trade-off, given that the central bank faces an expectations-augmented 

accelerationist Phillips curve and no measurement errors and lags. We show that the optimal 

nominal interest rate of a prudent central bank reacts more aggressively to the inflation gap, 

especially if cost-push disturbances are volatile. Section 4 derives a prudent Taylor rule if the 

real interest rate impacts aggregate demand after one period. We demonstrate that the optimal 

interest rate again responds more aggressively to the output gap if prudence and volatility of 

cost-push shocks are large and if there is substantial persistence in aggregate demand. We 

also show that more weight to output targeting weakens policy responses of the central bank, 

particularly if triggered by changes in the inflation gap. Section 5 allows for measurement 

errors and lags in observing output data. We show that the reactions of the nominal interest 

rate to the measured output gap are less strong, especially if incoming data are relatively 

unreliable. We also show that a prudent central bank attenuates these policy reactions and 

furthermore biases its estimate of the output gap upwards. This makes the reactions of the 

central bank to the output gap more aggressive, particularly if cost-push shocks are volatile 

and output targeting is important. Finally, we show that a prudent central bank introduces an 

extra upward (downward) bias in its estimate of the output gap to be fed into the policy rule if 
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inflation is above (below) target. The nominal interest rate reactions become more aggressive. 

Section 6 concludes and suggests area for further research. 

 

2. RISK-ADJUSTED LQG-CONTROL AND PREDICTION 

Jacobson (1973), Speyer, Deyst and Jacobson (1974), and Whittle (1981) extend the standard 

theory of optimal linear-quadratic-Gaussian (LQG) control, discussed by Chow (1975) and 

others, for risk-sensitivity. Van der Ploeg (1984) discusses risk-sensitive LQG control with 

perfect observation of the states of the economy. Hansen and Sargent (1995) extend the 

analysis to allow for discounting. Van der Ploeg (1993) applied these ideas to the analysis of 

precautionary saving - see also Hansen, Sargent and Tallarani (1999). There is a brief mention 

of risk-sensitive control in the textbook of Ljungqvist and Sargent (2000). 

We allow for imperfect observation of states of the economy and base our 

presentation on Whittle (1981). Consider the quadratic welfare loss criterion: 

 

(1) Γ  ≡    γ
T

t 0=
Σ t    with    γt ≡ (xt – x*)′ Q (xt – x*) + (ut – u*)′ S (ut – u*),  0≤t<T 

and    γT  ≡  (xT – xT*)′ QT (xT – xT*), 

 

where the vectors xt and x* contain the actual and desired (or bliss) values for the state 

variables, the vectors ut and u* contain the actual and desired values for the policy 

instruments, and Q and S denote symmetric and positive-definite penalty matrices. It is easy 

to allow for cross products of xt and ut in the welfare loss function. The state variables follow 

from the state-space model: 

 

(2) xt  =  A xt-1  +  B ut-1  + at +  εt,    εt ∼ IN(0, Σ),   x0 ∼ N(xP0, V0), 

 

where A denotes the state-transition matrix, B stands for the matrix of policy impact 

multipliers and at is the vector of deterministic forcing terms. The error terms εt do not 

become known to the policy maker until period t, so he can only react to past realisations of 

state variables. Higher-order lag structures in state variables and in policy instruments and/or 

more general ARIMA-error structures can be dealt with by suitably augmenting the vector xt. 

The initial states may not be known perfectly. 

 Let θ be the Arrow-Pratt measure of constant absolute risk aversion with respect to 

welfare -½Γ. The policy maker thus minimises the following criterion: 
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(3) Φ(θ)   ≡   (2/θ) log E[exp(½ θ Γ)]    with    θ>0. 

 

The risk-neutral case corresponds to Φ(θ)→E[Γ] as θ→0. The policy maker minimises the 

expected risk-adjusted welfare loss to go. A prudent policy maker also penalises variability in 

welfare. For small θvar(Γ) the decision maker approximately minimises E(Γ)+¼θvar(Γ). Two 

policy makers may share the same welfare loss criterion under certainty, even though their 

aversion to risk may differ. The coefficient θ captures this specific risk aversion. It makes the 

policy maker particularly sensitive to occasional large deviations of Γ from E(Γ). Such a 

policy maker is called pessimistic, cautious or prudent. 

 With no observation lags and no measurement errors, the policy instruments ut can be 

conditioned on xt. Often not all the state variables are observable and other variables are 

measured imperfectly after a lag. We thus assume that the measured variables at time t are: 

 

(4) zt  =  C xt-1  +  ωt,    ωt ∼ IN(0,Ω), 

 

where ωt is the vector of serially uncorrelated, normally distributed measurement errors. We 

assume that modelling errors εt and measurement errors ωt are uncorrelated. The policies at 

time t react to measurements at time t, zt, of the imperfectly measured past states of the 

economy, xt-1. To allow for longer observation lags, suitably augment the vector of states. 

 It is useful to define the residual sum of squares (the quadratic function in the 

exponent of the joint density of state and measured variables) as: 

 

(5) Δ ≡ (x0 – xP 0 ) ′ V0
-1 (x0 – xP 0 )  +   ( δ

1

0

−

=
Σ

T

t
xt + δzt ) 

with   δxt ≡ (xt+1 – A xt – B ut – at+1)′ Σ-1 (xt+1 – A xt – B ut – at+1) 

and    δzt ≡ (zt+1 – C xt)′ Ω-1 (zt+1 – C xt). 

 

We say that ‘stress’ occurs if states and policy instruments deviate from their desired values 

as measured by Γ. Total stress is then defined as: 

 

(6) Ψ  ≡  Γ  -  Δ/θ. 
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With no uncertainty, total stress equals the quadratic welfare loss. With uncertainty in the 

state dynamics or in the measurement of the states, Δ>0 and total stress is reduced, 

particularly if the degree of prudence θ is small. 

 

Theorem 1 (Saddlepoint solution and stress):  

Suppose total stress (6), given (1) and (5), is freely minimised with respect to the instruments 

ut, ..,uT-1  and freely maximised with respect to the state variables x0, ..,xT and the measured 

variables zt+1, ..,zT conditional on all information available at time t, say It. The order in which 

these operations are carried out is irrelevant. The value of ut thus obtained is the optimal value 

of the vector of policy instruments at time t. The calculations only have meaning if θ is not 

too large, that is if total stress (6) is negative definite in the maximising variables. 

Proof: Whittle (1981, Chapter 19, Theorem 3.1). 

 

Standard certainty equivalence and separation hold for the risk-neutral case. The optimal 

instruments at time t, ut, can then be obtained by minimising the welfare cost to go Γ from 

time t onwards, where the unknown disturbances from time t+1 onwards are set to their 

expected values conditional on information available at time t, It. These expected values 

minimise the residual sum of squares Δ given It and yield BLUE-predictions of future states. 

With risk aversion the expected objective values for the disturbances at time t are 

replaced by prudent subjective values that maximise total stress Ψ given It. These prudent 

values are estimates of current observable variables that maximise stress. The values of 

ut+1,..,uT-1 in Theorem 1 are chosen to minimise stress; they are current estimates of optimal 

future decisions. The policy maker effectively plays a min-max non-cooperative game against 

nature. He treats nature as a belligerent player producing damaging shocks and designs a min-

max strategy for the ‘worst possible state of the world’. He hedges against unanticipated 

increases in the welfare loss caused by unfavourable shocks, particularly if prudence is large. 

To gain more insight, define past stress at time t as 

 

(7) ΨPt(xt, It)  =   - θ-1 (x0 – xP 0 ) ′ V0
-1 (x0 – xP 0)  +  [ γ

1

0

−

=
Σ
t

s
s  - θ-1 (δxs + δzs) ] 

 

and future stress at time t as 
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(8) ΨFt(xt)  =      [ γ
1 1 1

Min Max Max
,.., ,.., ,..,t T t T tu u x x z z− + + T

T

1−

=
Σ

T

ts
s - θ-1  (δxs + δzs) ]  +  γT 

=       ( γ
1 1

Min Max
,.., ,..,t T tu u x x− +

1−

=
Σ

T

ts
s - θ-1 δxs )  +  γT . 

 

Expression (7) and (8) obey, respectively, a forward and a backward recursion: 

 

(7′) ΨPt+1(xt+1, It+1)    =      
Max

tx
  [ ΨPt(xt, It)  +  γt  -  θ-1 (δxt + δzt) ] 

with   ΨP0(x0, I0)  =  - θ-1  (x0 – xP 0 ) ′ V0
-1 (x0 – xP 0 ) 

 

(8′) ΨFt(xt)  =       [γ
1

Min Max

t tu x +
t - θ-1 δxt +  ΨFt+1(xt+1) ]  

with   ΨT(xT) =  γT = (xT – xT*)′ QT (xT – xT*). 

 

The forward recursion (7′) corresponds to a risk-adjusted Kalman filter. In contrast to the 

standard risk-neutral case, (7′) depends on preferences and gives prudent estimates of states of 

the economy as new information comes in. The backward recursion (8′) corresponds to the 

risk-adjusted Bellman equation and revises the current policy rule as the horizon recedes by a 

single period. In contrast to the risk-neutral case, the optimal policy rules depend on the 

covariance matrices of the modelling disturbances. Hence, uncertainty independence 

(certainty equivalence) of the optimal policy rules and preference indifference of the optimal 

state predictions no longer holds. Theorem 1 can be rephrased to show that a modified 

separation principle holds for risk-adjusted LQG control and prediction. 

 

Theorem 2 (Min-max solution and separation of control and prediction):  

Let u(xt, t) be the minimising value of ut in equation (8′) and let xMt be the value of xt that 

maximises ΨPt(xt, It)+ΨFt(xt), a function of It. Then the optimal value of ut is u(xMt, t), a 

function of It. 

 

With imperfect observation of states, the optimal instruments at time t depend on the 

maximum-stress estimate xMt. If states are perfectly observed, the optimal control rule is 

simply ut = u(xt, t). For many problems in economics it is more convenient to exploit the 
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explicit model structure and apply Theorem 2 directly. The Appendix gives the recursive 

solutions to the general problem of risk-adjusted LQG control and prediction. 

 

3. PRUDENCE AND THE OPTIMAL INFLATION-OUTPUT TRADE-OFF 

It is easy to apply the mathematics of risk-sensitive prediction and control exposited in 

section 2 to the derivation of optimal monetary policy. To illustrate prudence in the optimal 

inflation-output trade-off, consider the accelerationist Phillips-curve (e.g., Phelps, 1967): 

 

(9) πt+1  =  πt  +  α yt  +  επ t+1    with    α > 0,   επ t  ∼ IN(0,σπ
2), 

 

where πt and yt denote the inflation rate and the output gap at time t, respectively, and επ t is a 

serially uncorrelated, normally distributed cost-push disturbance with zero mean and variance 

σπ
2. The long-run Phillips curve is vertical, so that systematic deviations from the natural rate 

of unemployment lead to an ever-ending spiral of inflation or deflation. 

The intra-temporal welfare loss function allows for flexible inflation targeting. It is 

given by γt = (πt-π*)2 + κ yt
2, where π* indicates desired inflation (say, 2% per year) and κ>0 

is the weight given to full employment (output) targeting. Strict inflation targeting 

corresponds to κ=0. The equilibrium level of employment and output is efficient, so the 

desired output gap is zero. We thus abstract from extra inflation bias induced by time 

inconsistency problems as in Kydland and Prescott (1977) and Barro and Gordon (1983) and 

the consequent need for an ultraconservative central banker as in Rogoff (1985). The 

government can by appropriate use of fiscal and monetary policy immediately control the 

output gap, so yt is the intermediate policy instrument to attain price stability and full 

employment. Later we allow the nominal interest rate to be the monetary policy instrument. 

 Although the infinite-horizon limits of the prudent policy rules may be derived from 

Theorem A.2, it is instructive to apply Theorem 2 directly. The postulated cost-push 

disturbance and the optimal output gap at time t follow from the min-max problem: 

 

(10) ΨF t(πt)   =      [(π
1

MaxMin

tty πε +
t - π*)2 + κ yt

2 + ΨF t+1(πt + α yt + επ t+1) - (επ t+1
2/θ σπ

2)]. 

 

If we postulate ΨFt(πt)=R(πt-π*)2, the postulated ‘worst case’ inflation shock is given by: 

  

(11) εM π t+1  =  θ σπ
2 RA  (πt  +  α yt - π*)    with    RA ≡ R/(1 - θ σπ

2 R) ≥ R > 0, 
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where θσπ
2R<1 must hold for (11) to be a maximum. R and RA indicate the infinite-horizon 

limits of Rt and RAt. A prudent central bank assumes the ‘worst’ by postulating that cost-push 

disturbances hit the economy adversely even though expected values of these shocks are zero. 

When the objective expectation of future inflation, πt+1⏐t ≡ E(πt+1 given It), is above (below) 

target, the central bank biases its subjective estimate of future inflation, (πt+1⏐t+εMπ t+1), 

upwards (downwards), particularly so if prudence is important and the volatility of cost-push 

shocks is large. The optimal value of the output gap is: 

 

(12) yt  =  - η (πt -π*)    with    η ≡ α R/[κ + (α2 - θ σπ
2 κ)  R] > 0, 

 

so that the central bank depresses aggregate demand if inflation is above target. Upon 

substitution of (11) and (12) into (10) and equating coefficients on πt
2, we obtain the quadratic 

(α2 - θ σπ
2 κ) (R2 - R) - κ = 0. The positive root yields the relevant value of R:1

 

(13) R  =  ½ + ½ [1 + 4 κ (α2 - θ σπ
2 κ)-1]½  ≥  1. 

 

With strict inflation targeting (κ=0), we have R=1 and η=1/α. Output is adjusted to achieve 

target inflation without any systematic error. Inflation is thus, apart from white noise, equal to 

desired inflation, πt=π*+επ t, regardless if there is prudent behaviour or not. Hence, with strict 

inflation targeting the postulated 'worst case' inflation shock is zero. 

 With flexible inflation targeting (κ>0), the postulated closed-loop dynamics for the 

inflation rate is given by: 

 

(14) πM t+1 - π* = AP (πt - π*)   with   0 < AP ≡ κ/[κ+(α2 -θσπ
2κ)R] < 1. 

 

The minimisation of criterion (3) or (6) only converges and makes sense if AP<1 and R>1, so 

θσπ
2<α2/κ. In fact, this inequality holds automatically if the second-order condition for the 

prevention of breakdown, i.e., RA > 0 and thus θσπ
2R<1 and using (13) θσπ

2<α2/(α2+κ) hold. 

The actual closed-loop dynamics for the inflation rate is then stable as well: 

 

(15) πt+1 - π* = AC πt + επ t+1   with   0 < AC ≡ 1-αη = κ(1-θ σπ
2 R)/[κ+(α2 -θσπ

2κ)R] < 1. 
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The reaction coefficient is positive and smaller than with strict inflation targeting, i.e., 

0<η<1/α, so that the central bank plays safe and offsets systematic shocks less than fully. 

Monetary policy 'leans against the wind', because the central bank responds to excess inflation 

by deflating the economy (e.g., by raising the nominal interest rate). Since both R and RA are 

increasing functions of θσπ
2, the reaction coefficient η is an increasing function of θσπ

2. 

Hence, the policy reactions are particularly severe if the central bank is very prudent and cost-

push shocks are highly unpredictable. 

Prudence raises the effective shadow penalty on inflation (RA > R). A prudent central 

bank suffers a greater loss in utility from an unexpected rise in inflation than it gains from an 

unexpected fall in inflation of equal magnitude. The central bank thus puts more effort into 

cutting inflation to counteract possible stagflationary shocks. Hence, as prudence θ increases, 

the shadow penalty on inflation RA rises and the reaction coefficient η rises. 

It can be shown that the adjustment speed for the actual closed-loop economy 

declines with the degree of prudence and the volatility of cost-push shocks (∂AC/∂θσπ
2<0). In 

contrast, the adjustment speed for the postulated closed-loop economy rises with prudence 

and volatility (∂AP/∂θσπ
2>0). A very prudent government reacts ‘nervously’ and is controlling 

the economy very precisely. We assume that the degree of prudence is not too large in order 

to avoid breakdown. This occurs as θσπ
2R→1, that is as θσπ

2→α2/(α2+κ). In that case, it can 

be shown that R→1+(κ/α2), RA→∞, η→α-1 and πt → επ t. For too high degrees of prudence 

the central bank has become too neurotic, since it is unable to offset the shocks that it fears 

and the risk-adjusted policy rule breaks down. The central bank's pessimistic assessment of 

shocks to the inflation rate so outweighs its knowledge of its statistical distribution that his 

expected cost criterion becomes infinite. Hence, optimisation becomes pointless and the 

central bank suffers a breakdown. As prudence increases and breakdown is approached, the 

central bank raises the reaction coefficient to the level that corresponds to strict inflation 

targeting (η→1/α). In this sense, prudent central bankers attach greater weight to inflation 

than to output targeting. It is a very different rationale for a conservative central bank than the 

credibility argument provided by Rogoff (1985). 

 The output rule (12) can be implemented as a monetary policy rule. Let the output 

gap depend on the current real interest rate and ignore shocks to aggregate demand: 

 

                                                                                                                                                                      
1 The economy is controllable (if β≠0) and the penalty matrix Q is positive definite (if κ≠0), so the 
Riccatti equation converges (see Appendix). A steady-state Riccatti coefficient R thus exists. 
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(16) yt  =  -  β ( it - πt+1⏐t  - r)  =  -  β ( it - πt - α yt - r)  =  - β′ ( it - πt - r) 

with  β′ ≡ β/(1-αβ) > β > 0, 

 

where it is the (short) nominal interest rate at time t and r indicates the average Wicksellian 

real interest rate. Stability of the IS-curve requires αβ<1, so β′>β>0. The one-period-ahead 

rational-expectations private-sector forecast of inflation equals πt+1⏐t  = πt + α yt, so the real 

interest rate is given by it - πt+1⏐t = it - πt - αyt. Substitution of (16) into the Phillips curve (9) 

yields πt+1 = (1+αβ′)πt - αβ′( it-r) + επ t+1, so the uncontrolled inflation dynamics is unstable. 

The output rule (12) gives the following reaction function for the nominal interest rate: 

 

(17) it  =  r + π* + [1 + (η/β′)] (πt - π*) 

 

so if inflation is above target the central bank tightens monetary policy. This interest rate rule 

can also be expressed as it = r+π*-(η-1+β′-1)yt . But then the central bank depresses the 

economy in periods of unemployment by raising the nominal interest rate. This is obviously 

unrealistic. Section 4 allows for a richer structure of the economy, so that the optimal interest 

rule corresponds to a Taylor rule that reacts to both the inflation gap and the output gap. 

We conclude that the constant in the nominal interest rate rule equals the sum of the 

average real interest rate and desired inflation and that the reaction coefficient for the inflation 

gap exceeds unity. We also observe that policy reactions are more aggressive if the central 

bank is prudent and cost-push shocks are volatile. Sargent (1999) derives a similar result in a 

different context. If the degree of prudence increases, the central bank tends towards strict 

inflation targeting and pushes up the reaction coefficient on the inflation gap towards 1/αβ>1. 

Equations (12) and (13) show that ∂η/∂κ=-(1-θσπ
2)<0 if κ=0, hence introducing output 

targeting (κ>0) raises R, but reduces η. Hence, if the central bank attaches more weight to 

output targeting (higher κ), rule (17) indicates that the interest rate responds more vigorously 

to changes in the inflation gap. 

 

Proposition 1: If inflation follows an accelerationist Phillips curve and the real interest rate 

impacts aggregate demand instantaneously, the optimal nominal interest rate is given by the 

sum of the average real interest rate and desired inflation plus a term that reacts to the 

inflation gap. The nominal interest rate reacts more strongly to the inflation gap if output 

targeting is important. A prudent central bank assigns less power to the nominal interest rate 
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and thus reacts more aggressively to the inflation gap, particularly so if the volatility of cost-

push shocks is large. More prudent behaviour leads in the limit to strict inflation targeting. 

 

4. CAUTIOUS TAYLOR RULES WITH PERFECT OBSERVATION 

Section 3 demonstrated the effects of prudence on the optimal inflation-output trade-off. To 

gain a better understanding of prudent monetary policy, we analyse how caution affects 

optimal Taylor rules (Taylor, 1993). For a discussion of the forward-looking New Keynesian 

Phillips curve based on Calvo (1983), πt = δπt+1 + αyt + επ t+1 with δ≤1, see Roberts (1995), 

Clarida, Gáli and Gertler (1999) and Woodford (2003). However, Mankiw and Reiss (2002) 

criticise this literature. Its predictions that disinflation causes a boom and that monetary 

policy quickly impacts inflation are patently unrealistic. Instead, they suggest that sluggish 

price adjustment may occur if information disseminates slowly throughout the population. 

Optimal monetary policy is then described by an elastic price standard in which there is no 

base drift in the price level and the price level deviates from target if output deviates from the 

natural rate (Ball, Mankiw and Reiss, 2003). Christiano et al. (2003) obtain inflation inertia as 

well by assuming that the aggregate price index becomes available with a lag and replacing 

the New Keynesian Phillips curve by πt -γπt-1 = δ(πt+1 - γπt)+ αyt + επ t+1 with 0≤γ≤1. Since 

these issues are still debated, we show the effects of prudence with the familiar backward-

looking Phillips curve. In fact, we use the backward-looking model of a closed economy 

developed by Svensson (1997). Rudebusch and Svensson (1999) show that this model seems 

to fit US data fairly well; see also Judd and Rudebusch (1998). 

We use the accelerationist Phillips curve (9) and allow for output persistence and 

stochastic shocks to aggregate demand. The nominal interest rate affects output with a lag of 

one period and inflation with a lag of two periods. Aggregate demand is thus given by: 

 

(16′) yt+1  =  λ yt  -  β ( it - πt+1⏐t  - r)  +  εy t+1  =  λ yt  -  β ( it - πt - α yt - r)  +  εy t+1

=  λ′ yt  -  β ( it - πt - r)  +  εy t+1    

with   0<λ<1,   λ′≡λ+αβ>λ,   β>0    and   εy t ∼ IN(0, σy
2), 

 

where λ indicates persistence in the output gap and εyt is a serially uncorrelated, normally 

distributed demand shock with zero mean and variance σy
2. The one-period-ahead private-

sector inflation forecast and the real interest rate are given by, respectively, πt+1⏐t  = πt + αyt 

and it - πt+1⏐t = it - πt - αyt. The state variables are πt and yt. The instrument is the (short) 
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nominal interest rate it. Each period corresponds roughly to three quarters. We postpone the 

treatment of lags and errors in measuring the output gap to section 5.  

We use Theorem 2 (or alternatively Theorem A.1) to derive prudent policy rules for 

the optimal nominal interest rate as a function of last period’s inflation gap and output gaps. 

These policy rules introduce caution into the well-known Taylor rules for monetary policy. 

Postulating that future stress is given by ΨFt(πt ,yt) = Rππ(πt-π*)2 +Ryyyt
2+2Rπy(πt-π*)yt and 

solving the min-max problem (8′) with respect to next period's disturbances and considering 

the infinite-horizon limits, we obtain εMy t+1=0 and 

 

(17) εMπ t+1  =  θ σπ
2 ξ1 [1 - θσπ

2 ξ1]-1 (πt + α yt - π*)   with   ξ1 ≡ Rππ-Rπy
2/Ryy > 0, 

 

where we require 0≤θσπ
2ξ1<1 for a meaningful solution. Since the matrix R must be positive 

definite, the coefficient ξ1 is positive. The central bank sets the value of the future aggregate 

demand disturbance equal to its expected value. In contrast, the central bank postulates that 

the value of the cost-push shock exceeds its expected value if the one-period-ahead inflation 

forecast is above target. A prudent central bank thus assumes that cost-push shocks hurt 

objectives more than their statistical expectation suggests they would.  

The min-max problem (8′) also yields the prudent Taylor rule: 

 

(18) it  = r + π* + (1 + μπ) (πt - π*) + μy yt     

with   μπ ≡ ξ2 [β(1-θσπ
2 ξ1)]-1 > 0,  μy ≡ (λ′/β)+αμπ > 0  and  ξ2 ≡ Rπy/Ryy > 0. 

 

Substitution of (17) and (18) together with (9) and (16′) into the recursion (8′) and equating 

coefficients on πt
2, yt

2 and πtyt, we obtain the algebraic equations: 

 

(19) ξ1 = Rππ - [α2 (Rππ - 1)2]/[κ + α2 (Rππ - 1)] > 0 

Rππ = 1 + ξ1 (1-θσπ
2 ξ1)-2 > 1  and   0 < ξ2 = α/[α2 + κ/(Rππ – 1)] < 1/α. 

 

The first two equations of (19) can be solved simultaneously for Rππ and ξ1 and subsequently 

the third equation of (19) gives ξ2. The reaction coefficients then follow from (18). Note that 

Rπy=α(Rππ-1)>0 and Ryy=κ+α2(Rππ-1)>0. 

The constant in the prudent Taylor rule corresponds to the sum of the average real 

interest rate and target inflation. The optimal nominal interest rate ‘leans against the wind’, 
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since the central bank deflates (reflates) the economy by raising (lowering) the nominal 

interest rate if inflation and output are above (below) target. The central bank reacts more 

vigorously to the output gap if there is a relatively large degree of persistence in aggregate 

demand. The private-sector one-period-ahead inflation forecast, πt+1⏐t = πt + αyt, is 

predetermined in period t and independent of the instrument it. Hence, we can rewrite the 

prudent Taylor rule (18) so that the nominal interest reacts to the one-period-ahead inflation 

gap forecast and the output gap:  

 

(18′) it  = r + π* + (1 + μπ) (πt+1|t - π*) + (λ/β) yt. 

 

The reaction coefficient with respect to the one-period-ahead inflation forecast also exceeds 

unity if there is prudence; cf., Woodford (2001) for the case without prudence. Clarida, Gáli 

and Gertler (2000) and Svensson and Woodford (2002) discuss the merits of the nominal 

interest rate reacting to future forecasts of inflation and the output gap if there is no prudence. 

To better understand the prudent Taylor rule (18), we consider some special cases. If 

there is no prudence or there are no cost-push disturbances (θσπ
2=0), we have: 

 

(18′) μπ = αξ1 /[β(κ+α2ξ1)] < 1/αβ   and   ξ1 = ½ + ½ (1 + 4κ/α2)½ ≥ 1. 

 

Flexible inflation targeting without prudence gives the well-known Taylor (1993) rule, which 

was estimated as it = 4%+1.5 (πt-π*)+0.5 yt. Rotemberg and Woodford (1997, 1999) provide 

other estimates of Taylor rules. Rotemberg and Woodford (1999) and Woodford (2001) argue 

that the optimal output-response coefficient is much smaller if de-trended output is used 

instead of the theoretically correct output gap measure. The special case of strict inflation 

targeting and no prudence yields ξ1=1 and the reaction coefficients μπ=1/αβ, μy=(1+λ′)/β. It 

gives the maximum reaction to the inflation and output gaps. More emphasis on output 

targeting (higher κ) reduces both reaction coefficients. 

If we allow for prudence in the face of cost-push shocks (θσπ
2>0), strict inflation 

targeting (κ=0) implies ξ1=1, ξ2=1/α, μπ=1/[αβ(1-θσπ
2)]>1/(αβ) and μy>(1+λ′)/β. In contrast 

to the case where the real interest rate affects aggregate demand instantaneously (see section 

3), prudence and volatile cost-push disturbances imply more aggressive reactions to changes 

in the inflation and output gaps with strict inflation targeting. 

A case of special interest is what happens just before the degree of prudence or 

volatility of cost-push shocks reaches breakdown-level. This occurs as θσπ
2→1 and thus as 
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ξ1→1, ξ2→1/α and μπ, μy→∞. The policy makers have become so neurotic and their policy 

reactions so aggressive that optimisation becomes pointless. In fact, the central bank’s 

subjective assessment of cost-push shocks has become so pessimistic that it outweighs its 

objective knowledge of its statistical distribution. Hence, the expected cost criterion becomes 

infinite and the central bank's policy rule breaks down. 

For the general case of flexible inflation targeting (κ>0) and prudence with stochastic 

cost-push shocks (θσπ
2>0), total differentiation of (19) shows that Rππ, ξ1 and ξ2 are 

increasing functions of θσπ
2 and thus that the reaction coefficients μπ and μy are increasing 

function of θσπ
2. Hence, the nominal interest rate reacts more aggressively to inflation and 

output gaps if the central bank is more prudent and cost-push disturbances are more volatile. 

If aggregate demand is not much affected by the real interest rate (small β), the policy 

reactions are more aggressive as well. More weight to output targeting (higher κ) raises both 

Rππ and ξ1 and, typically, reduces ξ2 . Hence, the nominal interest rate rule becomes less 

aggressive (μπ and μy fall) but less so for a prudent central bank. More weight to output 

targeting thus attenuates the central bank's policy reactions to changes in the output gap and, 

especially, the inflation gap.  

 

Proposition 2: If the nominal interest rate impacts output after one period and inflation after 

two periods, the optimal nominal interest rate also reacts to the output gap, especially if there 

is substantial persistence in aggregate demand. The central bank reacts more vigorously to 

both the inflation gap and the output gap if prudence is important and the volatility of shocks 

to the dynamics of inflation is large, even under strict inflation targeting. More weight to 

output targeting weakens policy responses of the central bank, particularly if caused by 

changes in the inflation gap. Volatility of shocks to aggregate demand does not affect the 

monetary policy rules. 

 

5.  PRUDENT TAYLOR RULES WITH MEASUREMENT LAGS AND ERRORS 

In practice central bankers conduct monetary policy in an environment in which they observe 

the inflation rate pretty well, but measure the output gap with a lag and imperfectly. We thus 

assume that the central bank observes the inflation rate instantaneously and without error 

while it observes the output gap with a lag of one period and measurement error ωy t: 

 

(20) zt  =  yt-1  +  ωy t,    ωy t  ∼ IN(0,τ 2),   y0 ∼ N(yP0, vy0), 
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where ωyt is the serially uncorrelated, normally distributed measurement error with zero mean 

and variance τ2. The optimal nominal interest rate rule thus reacts to the imperfectly measured 

output gap of the previous period and this period’s realised inflation rate. With the aid of 

Theorem 2 a prudent central bank can still separate the problems of control and prediction. 

First, it solves the min-max problem (8′) to find the nominal interest rate rule (18). Then, it 

solves for the prediction of the output gap yMt to be used in the prudent Taylor rule, 

 

(18″) it  = r + π* + (1 + μπ) (πt - π*) + μy yMt,     

 

by maximising total past and future stress ΨPt(yt,It)+ΨFt(πt,yt). Past stress depends on only one 

stochastic variable, i.e., the unknown output gap and not the perfectly and instantaneously 

observable inflation rate. We thus postulate that past stress equals ΨPt(yt,It)≡-(θvyt)-1(yt–yP t)2. 

Maximising total stress with respect to the current output gap yields: 

 

(21) yMt  = [yPt + θ vyt Rπ y (πt-π*)]/[1 - θ vyt Ryy]. 

 

A risk-neutral central bank uses the output gap predictions coming from the conventional 

Kalman filter, yPt. A prudent central bank, however, biases its measurement of the output gap 

predictions upwards (downwards) if inflation is above (below) target. To fight too high (low) 

inflation, the central bank tightens (loosens) monetary policy by raising (lowering) the 

nominal interest rate. Consequently, the bias in the output gap reinforces this nominal interest 

rate response, especially if the variance of the measurement error in the output gap is large 

and prudence is important. In fact, even if inflation is on target, the central bank amplifies the 

objective estimate of the output gap and thus effectively reacts more aggressively to 

deviations of the statistical Kalman filter estimate of the output gap from target. 

The final step is to derive the risk-adjusted updating predictions for the output gap 

and their variances, yPt and vyt, from the recursions: 

 

(22) ΨPt+1(yt+1,It+1) = 
Max

ty
{ΨPt(yt,It) + κyt

2 - (θτ2)-1(zt+1-yt) - (θσy
2)-1 [yt+1-λ′yt+β(it-πt-r)]2 

} 

with  ΨP0(y0,I0)  ≡  - (θvy0)-1  (y0–yP 0 )2. 
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Solving for the maximising value of yt, substituting back into the recursion (22), and equating 

coefficients on yt+1
2 and yt+1 yields the following risk-adjusted updating formulae for the mean 

and variance of the output gap: 

 

(23) vyt+1  =  σy
2 + λ′2 (vyt

-1 + τ-2 - θ κ)-1

 

(24) yPt+1  =  λ′ yPt - β (it - πt - r) + λ′ (vyt
-1 + τ-2 - θκ)-1 [τ-2 (zt+1 – yPt) + θ κ yPt], 

 

where prudence must be small for a meaningful solution (i.e., θ<(κvyt)-1, ∀t>0 must hold). 

The infinite-horizon limit of the variance of the output gap, vy, solves the quadratic: 

 

(23′) (τ-2 - θκ) vy
2 – [λ′2 + (τ-2 - θκ) σy

2 – 1] vy - σy
2 = 0. 

 

It follows from total differentiation of (23′) that the asymptotic variance of the output gap (vy) 

is large if the measurements of the output gap are unreliable (τ2 large), the shocks hitting 

aggregate demand are volatile (σy
2 large), and persistence in aggregate demand is substantial 

(λ′ large). In addition, as a precautionary measure, a prudent central bank pushes up its 

subjective estimate of the variance of the output gap, especially if output targeting is 

important. This helps to avoid costly mistakes. 

 If there is no prudence, (24) gives the standard Bayesian updating formula for the 

BLUE-predictions of the imperfectly measured output gaps. New measurements of the output 

gap thus induce less substantial revisions if the signal-to-noise ratio is large, that is if new 

data are unreliable relative to the precision of the current estimate of the output gap (i.e., τ2/vyt 

large). The reactions of the central bank to the measured output gap are thus weakened, 

particularly if incoming data are unreliable. A prudent central bank committed to strict 

inflation targeting (κ=0) uses these predictions of the output gap in the decoupling formulae 

(21) and subsequently in the prudent Taylor rule (18). A prudent central bank with no concern 

for output targeting thus simply biases the output gap predictions upwards (downwards) if 

inflation is above (below) target. 

If the central bank is prudent and engages in flexible inflation targeting, equation (24) 

requires two adjustments to the predictions. First, the magnitude of the revisions of the output 

gap are increased if prudence and output targeting are important (θκ large). Note that there is 

a direct effect of θκ on the term multiplying zt+1-ypt in (24) and an indirect effect through vyt. 

A prudent central bank weakens its response to changes in the output gap rather less if it 
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attaches a large weight to output targeting. Essentially, a prudent central bank makes more 

use of faulty data rather than risking the chance of big stochastic fluctuations in the output 

gap and thus adopts a more aggressive policy response. Second, a prudent central bank 

introduces as a precautionary measure an upward bias in its estimate of the output gap, 

especially if the weight given to output targeting is large. The resulting upward bias in the 

nominal interest rate depresses the economy, so that the central bank is cushioned against 

unexpected large positive output gaps. Clearly, the predictions that follow from (23) and (24) 

are neither efficient nor unbiased. 

 

Proposition 3: If inflation is observed instantaneously and without error but the output gap is 

imperfectly observed with a period of one lag, the nominal interest rate reacts less strongly to 

the imperfectly measured output gap. The reaction is particularly weakened if the variance of 

the measurement error is large relative to the variance of the current estimate of the output 

gap, where the latter increases with the variance of the shocks to and the degree of persistence 

in aggregate demand. However, if prudence is important and the welfare weight given to 

unemployment is large, the central bank employs as a precautionary measure a larger variance 

of the output gap and attenuates its reactions to changes in the output gap rather less. 

Furthermore, a prudent central bank introduces as precaution an upward bias in its estimate of 

the output gap and thus in the nominal interest rate, especially if output targeting is important. 

Finally, a prudent central bank introduces an extra upward (downward) bias in its estimate of 

the output gap before it feeds into the policy rule if inflation is above (below) target. 

 

6. CONCLUDING REMARKS 

We have introduced prudence into the standard LQG control and prediction framework. A 

prudent policy maker increases the shadow penalty on target variables, since he wants to 

hedge against stochastic shocks possibly hampering the achievement of desired values. This 

invalidates usual certainty equivalence, so that one cannot substitute future disturbances by 

their expected values. Instead, a prudent policy maker uses subjective, cautious estimates of 

future disturbances that depend on preferences in order to avoid costly mistakes. 

In practice a policy maker faces errors and lags in observing the state of the world. A 

risk-neutral policy maker uses the Kalman filter to revise BLUE-estimates of the mean and 

covariance matrix of the states of the world as new information comes in. These predictions 

are independent of preferences and are used in the optimal feedback policy rules. A prudent 

policy maker uses inefficient predictions of the states of the world, since he raises the 

variances of the states versus those of the incoming observations as he is afraid to incorporate 



 19

possibly faulty information that may lead to significant welfare losses. Large penalties for the 

target variables and a high degree of prudence imply large reductions in the relative precision 

of the measurements. A prudent policy maker also introduces a bias in the prediction of the 

states. Hence, the prudent Kalman filter no longer yields BLUE-predictions of the states. 

With prudence special care must be taken to couple the derivation of the optimal control rules 

and the prediction of the states. 

 Since prudence is the essence of central banking, we investigated the effects of 

prudence on optimal monetary policy rules. In line with Sargent (1999), we found that 

allowing for prudence on the optimal inflation-output trade-off yields more aggressive 

reactions of the nominal interest rates to the inflation gap, particularly if the volatility of cost-

push shocks is great. Craine (1979) and Söderström (2002) allow for parameter uncertainty in 

the dynamics of inflation and also find more vigorous policy responses. To be safe a prudent 

central bank assigns a lower effectiveness of its monetary instrument. More prudent 

behaviour is in the limit equivalent to strict inflation targeting. If the real interest rate affects 

aggregate demand with a lag, the nominal interest rate also reacts to the output gap, especially 

if there is substantial persistence in aggregate demand. Prudence and bigger volatility of cost-

push disturbances imply stronger reactions to both the inflation and output gaps, even under 

strict inflation targeting. More weight to output targeting weakens policy responses of the 

central bank, particularly if caused by changes in the inflation gap. 

Rudebush (2001) shows that data uncertainty in the model of Rudebusch and 

Svensson (1999) leads to weaker monetary policy reactions. We also find that the reactions of 

the nominal interest rate to the measured output gap are less strong, especially if the incoming 

outgap data are relatively unreliable compared with the precision of the current output gap 

estimate. However, a prudent central bank attenuates its reactions to changes in the output gap 

much less, especially if output targeting is important. A prudent central bank also introduces 

as a precautionary measure an upward bias in its estimate of the output gap and thus in the 

nominal interest rate, again especially if output targeting is important. Both these elements 

make the reactions of the central bank to the output gap more aggressive, particularly if 

shocks to inflation are volatile and output targeting is important. Finally, a prudent central 

bank introduces an extra upward (downward) bias in its estimate of the output gap before it 

feeds into the policy rule if inflation is above (below) target. This makes the nominal interest 

rate reactions more aggressive. 

 It is important to extend our methods for deriving prudent policy rules and prediction 

formulae to macroeconomic models with forward-looking expectations. This is crucial for a 

deeper understanding of monetary policy. However, the forward-looking New Keynesian 
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Phillips curve reviewed in Clarida, Gáli and Gertler (1999) seems unrealistic, since it predicts 

that disinflation causes a boom and monetary policy impacts inflation quickly. Christiano et 

al. (2001) assume that individual prices are indexed to an aggregate price index and that the 

latter becomes available for indexation only after a lag. This modification gives rise to 

inflation inertia. Ball, Mankiw and Reiss (2003) assume that information disseminates slowly 

throughout the population and obtain more realistic impulse responses as well. They find that 

an elastic price standard is optimal. It is worthwhile to investigate how Taylor rules are 

affected by prudence in these more realistic models. It also seems worthwhile to investigate 

how prudence affects optimal fiscal and monetary policy when prices are sticky and 

government debt is used to smooth tax distortions. It may thus be interesting to introduce 

prudence in the analysis of Benigno and Woodford (2003). It seems realistic to suppose 

asymmetry, i.e., that the central bank is more prudent than the fiscal authority. 

In future research, it is worthwhile to explore how other types of model uncertainty 

(e.g., multiplicative disturbances, uncertainty about model specification) affect prudent 

behaviour. For example, parameters such as the sensitivity of unanticipated inflation with 

respect to the output gap and the interest rate semi-elasticity of aggregate demand may not be 

known precisely. Brainard (1967) shows that it then pays to use more instruments than targets 

and, in particular, to use a mix of instruments in order to diversify risks and to not go the 

whole hog in reaching desired values – see also, e.g., Söderström (2002). An interesting 

question is how a prudent central banker adjusts its behaviour in response to multiplicative 

uncertainty about key parameters. 

A related issue is robustness of policy rules - e.g., Onatski and Stock (2000), 

Giannoni and Woodford (2002, 2003), and Onatski and Williams (2003). Such rules should 

be simple, easy to understand, react to measured variables, stabilise the economy, and be 

determinate in the sense of supporting a rational expectations equilibrium. Robust rules 

should do well under a wide variety of assumptions about the precise statistical distribution 

and order of the additive disturbance processes affecting the economy and the processes 

driving the measurement errors. This amounts to a different type of prudence to that discussed 

here. It requires both robust Baysesian and min-max policy rules that do well under the 'worst' 

possible predictions. Central banks do not react very strongly to something that is likely to be 

estimated with considerable error, but prudence makes the reactions to poor data more 

aggressive. Onatski and Williams (2003) also find that many of their robust policy rules are 

relatively aggressive, since central banks fear particularly very persistent increases in inflation 

arising from long-run deviations from a vertical Phillips curve. Such rules perform well at low 

frequencies, but consequently fare worse at business cycle frequencies. In general, robustness 
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requires the central bank to react to a richer lag structure of output gaps and inflation rate and, 

perhaps, even to other indicators of monetary imbalance. 

Svensson (2002) and Feldstein (2003) rightly argue that a prudent central bank will 

reserve the right to use informal judgement in addition to a formal policy rule. This allows for 

the use of other and more subjective information and for effects not captured by the formal 

model and rule. In addition, it may enhance its credibility. A prudent central bank does not 

mechanically apply a Taylor-type rule, but may use it as a rule of thumb for monetary policy. 

A useful area for further research is thus to develop a framework of prudent monetary policy 

formulation in which there is scope for judgement of central bankers. Svensson (2002) 

suggests a framework for doing just that, but the prudent Kalman filter predictions discussed 

here also provide a natural way of incorporating judgement of central bankers into more 

formal Taylor-type rules for the nominal interest rate. 

To conclude it may be useful to qualify our results in two important respects. 

Common sense of many practitioners dictates that prudence implies that the nominal interest 

rate should respond less strongly to changes in inflation and output gaps, while our analysis 

suggests more aggressive policy responses. There is no reason why prudence should imply 

passive behaviour of the policy maker. In fact, it is more likely to lead to overzealous, even 

uptight control of the economy. Just as a prudent driver may react strongly to every bend in 

the road in order to avoid driving into the curb, a prudent central bank changes the interest 

rate more frequently. Practitioners may be more concerned with nominal interest rate 

smoothing than output targeting - e.g., Lippi and Neri (2003). However, it helps to offer some 

kind of welfare-theoretic rationale and explain why interest rate volatility may damage 

welfare and financial markets - e.g., Woodford (2002). Perhaps, central bankers delay interest 

rate adjustments and prefer some unpredictability in order not to be seen to follow the 

pressure of market players and commentators. The second qualification is that neither the 

traditional nor the New Keynesian Phillips curves fully capture real world features such as 

credit constraints, equity constraints, bankruptcies and other market failures arising from 

imperfect information. Stiglitz and Greenwald (2003) point out that then the nominal interest 

rate affects aggregate demand and that monetary policy is associated with big allocative 

distortions and is as much about supervision and regulation as the interest rate. 

 

APPENDIX: RECURSIVE SOLUTIONS 

First, we present a theorem with the optimal risk-adjusted feedback policy rules for the case 

that states are perfectly observable without measurement lags and that instruments do not 
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enter the intra-temporal welfare loss function (S=0). Subsequently, we present the recursive 

solution if state variables are not or imperfectly observable with a one-period lag. 

 

Theorem A.1 (Risk-adjusted LQG control with perfect state observation):  

Minimisation of the risk-adjusted welfare loss criterion (3) subject to the welfare loss (1) with 

S=0 and the state-space model (2) yields the following optimal policy feedback rules: 

 

(A1) ut  =  Gt+1  xt  +  gt+1, 

 

where the feedback gain matrix and the vector of policy constants are given by 

 

(A2) Gt ≡ - (B′RAtB)-1 B′RAt A   and   gt ≡ - (B′RAtB)-1 B′RAt (at - rt) 

with   RAt ≡ (Rt
-1 - θ Σ)-1 

 

and the Riccatti and auxiliary equations are given by 

 

(A3) Rt = Q + (A+BGt+1)′ RA t+1 (A+BGt+1) and Rt rt = Q x* + (A+BGt+1)′ RA t+1 (rt+1 – at+1) 

starting with  RT = QT  and  rT = xT*, 

 

where Rt and RAt denote symmetric and positive-definite Riccatti matrices. The postulated 

min-max value of the vector of disturbances at time t is given by 

 

(A4) εP t   =  θ Σ RAt (A xt-1 + B ut-1 + at – rt). 

 

The matrix (I - θ Σ Rt) must be positive definite for all t. Otherwise, there will be an infinite 

expected loss of utility. The more general case of non-zero S is treated in Theorem A.2. 

Proof: Use the Bellman principle of dynamic programming – see van der Ploeg (1984). 

 

The risk-neutral case (θ=0) does not depend on the covariance matrix Σ and corresponds 

exactly to Chow (1975, Chapters 7 and 8). The principle of certainty equivalence no longer 

applies exactly if θ≠0, since the optimal policy feedback rules (A1)-(A3) can no longer be 

obtained by simply setting the disturbance terms at their expected values (i.e. εt =0). The risk-

averse policy rules depend on the covariance matrix Σ, since in each period the policy maker 

replaces the (symmetric) shadow penalty matrix Rt by the risk-adjusted shadow penalty 
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matrix RAt. A risk-averse policy maker thus increases the effective shadow penalty on 

uncertain target variables. The policy maker wants to be safe and avoid shocks frustrating the 

achievement of desired targets. The size of the increase in the risk-adjusted shadow penalty 

increases with the variance of the target variable. The prudent policy maker when deciding on 

the instruments for this period does not set next period’s disturbances to their expected value 

of zero, but instead sets them equal to (A4). 

 

Theorem A.2 (Risk-adjusted LQG control and prediction - homogenous case): 

Consider the homogenous case with at=x*=0 and u*=0. Assume that the matrix [Rs–(θΣ)-1] is  

negative definite for s>t. Future stress is quadratic in the states, i.e., ΨF t(xt) = xt′ Rt xt, where 

the symmetric and positive-definite matrix R obeys the risk-adjusted Riccatti recursion: 

 

(A5) Rt  =  Q + A′ (BS-1B′ - θ Σ + Rt+1
-1)-1 A   with   RT = QT . 

 

The optimal control is linear in xMt, the maximum-stress estimate, or xPt, the predicted states: 

 

(A6) u(xPt , t) = Gt xM t  with  xM t ≡ (I-θΣRt)-1 xP t  and  Gt ≡ - S-1B′(BS-1B′-θΣ+Rt+1
-1)-1 A 

 

Past stress equals (up to a constant) ΨPt(xt, It ) = - θ-1 (xt – xPt)′ Vt
-1 (xt – xPt) where the matrix 

Vt and the predicted states xPt satisfy the prudent Kalman filter recursions provided that the 

matrix [Vs – (θ Q)-1] is negative definite for s≤t.: 

 

(A7) Vt  =  Σ + A (Vt-1
-1 + C′Ω-1C - θ Q)-1 A′,   t≥1 

 

(A8) xPt  =  A xPt-1 + B ut-1 + 

A (Vt-1
-1 + C′Ω-1C - θ Q)-1 [C′Ω-1 (zt+1 – C xPt) + θ Q xP t],   t≥1. 

 

If there are no measurement errors or lags in observation, (A6) becomes u(xt ,t) = Gt xt. 

Proof: Application of Theorem 2; see Whittle (1981, Chapter 19). 

 

A prudent policy maker has the pessimistic view that state disturbances push the states in an 

undesired direction. Hence, the policy maker reduces the effective power of its instruments 

(BS-1B′) in (A5)-(A6) by (θΣ). The extent by which it reduces the power of its instruments is 

thus large if prudence θ is big and shocks are volatile. A prudent policy maker also has a 
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pessimistic view on the use of new information and thus reduces the observation information 

matrix (C′Ω-1C) in (A7)-(A8) by θQ. Use of new information is particularly discounted if 

prudence θ is big and the state penalties are large. In the case of no prudence, θ=0, the 

Kalman filter gives xPt as the Bayesian estimate of the states, E[xt⏐It), and Vt is its covariance 

matrix. With prudence xPt takes account of the ‘worst state of the world’ and thus maximises 

past stress. The term (θQxPt) in the prudent Kalman filter (A8) is the bias of incoming 

information due to prudence of the policy maker. Hence, the prudent Kalman filter (A7)-(A8) 

not only produces inefficient estimates, due to the reduction of the observation information 

matrix by θQ, but it also produces biased estimates. 

 The stationary infinite-horizon limit of Rt as t→∞, R, exists if, say, the matrices Q 

and (BS-1B′-θΣ) are positive definite and the system is controllable. If G denotes the limit of 

Gt as t→∞, the postulated closed-loop state-space system is: 

 

(A9) xt+1  =  (A+BG) xt  +  εP t+1  =  AP xt   with   AP  ≡  [I + (BS-1B′ - θ Σ) R ] A, 

 

where AP has all eigenvalues inside the unit circle. The actual closed-loop system satisfies: 

 

(A10) xt+1  =  AC xt + εt+1   with   AC ≡ A + B G = (I - θ Σ R) AP . 

 

Stability of  (A10) is not guaranteed if abs(θ) is too large. 

 The possibility of breakdown occurs if θ is so large that the matrix [Rs–(θΣ)-1] is  no 

longer negative definite for s>t. In that case, the policy maker is faced with an inability to 

control and becomes paralysed. The policy maker’s pessimistic assessment of disturbances so 

outweighs its knowledge of its statistical distribution that his expected cost criterion becomes 

infinite. Hence, optimisation becomes pointless and the policy maker suffers a breakdown. 
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