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We clarify the difference between the asynchronous pricing
algorithms analyzed by Asker, Fershtman and Pakes (2021)
and those considered in the previous literature. The differ-
ence lies in the way the algorithms explore: randomly or me-
chanically. We reaffirm that with random exploration, asyn-
chronous pricing algorithms learn genuinely collusive strate-
gies.
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1. INTRODUCTION

In an important contribution to the literature on pricing algorithms and collusion, Asker,

Fershtman and Pakes (2021) (henceforth AFP) have introduced the distinction between

synchronous and asynchronous learning. Asynchronous learning is when the algorithm,

after taking a certain action in a certain state and obtaining the associated payoff, updates

its assessment of the value of that action in that state only, leaving its assessment of all

other states and actions unchanged. Synchronous learning, on the other hand, is when

the algorithm updates its assessment of a number of actions or states at a time, using

some prior knowledge of the economic environment in which it operates. Synchronous

algorithms have therefore the potential to learn faster and, if fed with accurate prior

information, more effectively than the asynchronous ones.

To highlight the difference between synchronous and asynchronous algorithms, AFP (2021)

present a figure, re-produced here as Figure 1, which depicts the evolution of prices when
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Figure 1: Price paths with synchronous and asynchronous algorithms (reproduced from Asker,

Fershtman and Pakes (2021)). Firms repeatedly play a static Bertrand game and cannot con-

dition current price on past prices. Market demand is 1 if price is less than 10, zero otherwise.

Marginal cost is 2. There are 100, equally spaced feasible prices.

two competing algorithms play a sequence of independent games, where they cannot con-

dition current on past prices. In this setting, the only equilibrium is to charge, period

after period, the static Bertrand price (i.e., with homogeneous products, the unit cost).

AFP’s synchronous algorithms learn to play this equilibrium quite rapidly, whereas their

asynchronous algorithms converge to prices substantially higher than the cost.

Economists generally agree that collusion is not synonymous with high prices but exists

only when the high prices are sustained by a reward-punishment scheme that makes them

an equilibrium outcome. Collusion is therefore impossible by design if players cannot con-

dition their choices on the past history of the game. Thus, the supracompetitive prices

which AFP’s asynchronous algorithms converge to cannot reflect genuine collusion. Since

most of the existing literature on algorithmic collusion, including our own previous work

(Calvano, Calzolari, Denicolò and Pastorello, 2020; henceforth CCDP),1 focuses on asyn-

1Other notable contributions include Klein (forthcoming), Johnson, Rhodes and Wildenbeest (2020)
and Abada Lambin (2020).
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chronous algorithms, one may wonder that the collusion documented in this literature is

spurious. This note explains why it is not.

2. RANDOM V. AUTOMATIC EXPLORATION

A key difference between AFP’s asynchronous algorithms and those of CCDP (2020) and

others pertains to the mode of exploration. Generally speaking, reinforcement-learning

algorithms must gather new information by experimenting. Following a common approach

in computer science, CCDP (2020) focus on random experimentation: in order to acquire

more information, with a certain probability the algorithm selects actions that may appear

sub-optimal in the light of the knowledge it already possesses. By design, the probability

of making such random choices is initially high but decreases as the learning proceeds.2

AFP (2021), on the other hand, adopt a different mode of experimentation. At each

iteration, their asynchronous algorithms adopt the action that is currently perceived as

optimal. However, they initialize the algorithm in such a way that it attributes very high

values to all actions in all states. As the algorithm does take a certain action in a certain

state and learns that the associated payoff is lower than it thought, it is automatically led

to try different actions in the future. The process continues until the estimated values get

in line with the payoffs actually experienced. This pattern of exploration, which is also

popular in computer science, is often referred to as optimistic initialization.

Both modes of exploration can produce optimal choices in decision-theoretic settings,

but less is known on how they perform in games of strategy. Given the paucity of theo-

retical results, only practice can tell which mode of exploration works better in specific

multi-agent settings. In the case of competing pricing algorithms, it appears that opti-

mistic initialization may, in some cases, mislead the algorithms into evidently suboptimal

behaviors. This seems to be true to a much lesser extent for random exploration.

This point is illustrated in Figure 2. The economic environment is similar to that of

Figure 1: that is, two pricing algorithms repeatedly interact in a market for a homogeneous

product without conditioning their current choices on the past history of the game.3 Under

optimistic initialization, the asynchronous algorithms’ behavior is, qualitatively, the same

2Random experimentation comes in two main variants, ε-greedy and Boltzman. In the ε-greedy model,
when the algorithm is in exploration mode, all actions that are currently perceived as sub-optimal are
tried with the same probability. In the Boltzman model, on the other hand, the probability with which
an action is tried is a decreasing function of its perceived quality. Here we focus on the ε-greedy model.
However, CCDP (2020) show that results are similar under Boltzman exploration.

3The figure depicts the average prices across 1,000 numerical simulations.
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Figure 2: Average price path with different exploration mechanisms. As in Figure 1, algorithms

repeatedly play a static Bertrand game and cannot condition their current price on past prices.

Market demand is 1 if price is less than 2, zero otherwise. Marginal cost is 1. There are 15,

equally spaced feasible prices. The right panel represents the case of mechanical exploration, as

in AFP (2021); the left panel that of random exploration, as in CCDP (2020).

as in AFP, in spite of small differences with their set-up.4 Under random exploration, on

the other hand, the asynchronous algorithms learn to play competitively. Prices converge,

in almost all of the cases, to the lowest feasible price that is higher than the unit cost

(≈ 1.07), and never exceed that price by more than one step.5

The role of random exploration in facilitating learning is confirmed by AFP’s own analysis.

4These differences arise because we use the same analytical setting (and the same codes for the nu-
merical simulations) as in CCDP (2020). Therefore, we generate the case of homogenous products with
rectangular demand by taking the limit of our logit model as the degree of production differentiation
goes to zero and the outside option has zero value. In the resulting set-up, the unit cost is 1 and the
reservation price is 2; this is also the monopoly price. For the case of random experimentation, we set the
learning and exploration parameters α and β of CCDP (2020) at α = 0.3 and β = 4× 10−4, respectively.
For the case of optimistic initialization, the Q-matrix is initialized at very high values generated by a
uniform distribution whose support lies above the equilibrium values. The codes used for the numerical
simulations are publicly available at https://www.aeaweb.org/articles?id=10.1257/aer.20190623.

5As in CCDP (2020), we use a grid of 15 prices, of which the two lowest ones are lower than the unit
cost. With discrete price levels, pricing one step above the unit cost weakly dominates pricing at or below
cost. With a finer price grid (i.e., 100 prices rather than 15) the unit cost can be better approximated,
and the algorithms indeed converge to prices closer to the unit cost.

https://www.aeaweb.org/articles?id=10.1257/aer.20190623


ALGORITHMIC COLLUSION, GENUINE AND SPURIOUS 5

Figure 3: Average long-run prices with different exploration mechanisms for different values of

the discount factor δ. The economic environment is as in Figure 2, but we now consider the

possibility that algorithms may condition current price on past period’s prices (we refer to this

case as memory one, and to the case where no such conditioning is possible as memory zero).

In an extension, they combine optimistic initialization with random exploration and show

that this brings the asynchronous algorithms closer to equilibrium play – the more so,

the more extensive the random exploration (see Table 2 in AFP, 2021). However, the

optimistic initialization they continue to use still affects the outcomes. Our simulations

with random exploration use a neutral initialization that does not entail any systematic

exploration.

Figure 3 compares the two modes of exploration when the algorithms can condition their

current price on the previous period’s prices. This in principle allows for collusive strate-

gies. As is well known, however, such strategies can represent an equilibrium of the re-

peated game only if the discount factor δ is sufficiently high. Under random exploration,

the asynchronous algorithms continue to price competitively when δ is low, and start

converging to higher prices only when δ gets larger. Under optimistic initialization, on

the other hand, prices are high even if δ is close to zero. In this case, the algorithms

are so impatient that the high prices cannot be sustained in equilibrium by any dynamic
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reward-punishment scheme. The algorithms’ failure to optimize is therefore apparent.6

Figures 2 and 3 show that the “anomalous” behavior of AFP’s asynchronous algorithms is

not due to asynchronicity in itself, but to the way they explore. Asynchronous algorithms

can produce genuinely collusive outcomes with random experimentation.

3. CONCLUSION

As AFP (2021) emphasize, collusion is not synonymous with supracompetitive prices

but arises when the high prices are sustained by a dynamic reward-punishment scheme.

This note has reaffirmed that with random experimentation, asynchronous algorithms

learn genuinely collusive strategies when they are forward looking. When the algorithms

are myopic, on the other hand, they learn to price competitively. AFP’s finding that even

myopic asynchronous algorithms converge to supracompetitive prices is due to the specific

mode of exploration they adopt.

The fact that asynchronous algorithms can collude genuinely does not mean that syn-

chronous algorithms are not worth studying. To the extent that programmers possess

reliable information on the structure of the market, they will try to use that information

to improve the performance of the algorithms. Understanding how this impacts on the

algorithms’ behavior is clearly an important task for research.
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