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Abstract

This thesis contributes to the understanding of peer effects, both methodologically and

empirically.

The endogeneity of network formation has been a major obstacle to the study of peer

influence. The first and the second chapters of the thesis propose a causal identification

solution in the potential outcome framework. Combining results from multiple causal infer-

ence and statistical network analysis, I show that confounding can be addressed by inferring

propensity scores of network link formation from the adjacency matrix. This identification

strategy imposes minimum restrictions on the data-generating process and, unlike existing

econometric solutions, does not rely on any parametric modelling. As an application, I esti-

mate the effect of high school friendships on bachelor’s degree attainment. While previous

literature finds that exposure to more high-achieving boys makes girls less likely to obtain

a bachelor’s degree, I show that if the girls consider the boys as friends, their interactions

induce a positive impact instead. Since friendship endogeneity has been addressed, the

estimated effect is causal.

The third chapter looks at the peer effects generated by group competition. It focuses

on the gender differences in preference for competition in a setting where the competition

does not involve face-to-face confrontation, and effort is the only determinant of the final

ranking. I first develop a model of group competition with heterogeneous preference for

ranking. With empirical implications generated from the theoretical model, I then test

the gender difference in the preference parameter using web-scraped data from Duolingo,

a free online foreign-language learning platform with over 300 million users. Every week,

language learners on Duolingo are randomly allocated to groups of 30 people to compete on

the number of language lessons completed during that week. The empirical results suggest
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in this setting, females have a stronger preference for ranking than males.
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Chapter 1

The linking effect: causal

identification and estimation of the

effect of peer relationship

1.1 Introduction

Interest in understanding the impact of peer influence within economic and social networks

has been growing rapidly in the economics literature, with an increasing emphasis on estab-

lishing causality. Knowing how connected agents are affected by each other is important,

as welfare can be improved through cultivating certain relationships while discouraging oth-

ers. However, due to the difficulties in addressing network endogeneity, the causal impact

of many important types of relationships, such as friendships, buyer-supplier networks and

banking networks, remain understudied.

The difficulty in establishing causal identification partly comes from the lack of a causal

framework where treatments and potential outcomes are explicitly defined. In this paper,

I propose to treat each potential relationship as a unique treatment. In other words, the

existence of each network link is the subject of manipulation or intervention in a hypotheti-

cal experiment where we could assign network links at will.1 This view of what constitutes

1In a network with N nodes, each node will have N − 1 potential network links to form. In other words,
the number of potential treatments is N − 1 for each node.
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a treatment contrasts with the existing literature on peer effects, where the treatment is

implicitly assumed to be some summary statistics of the entire network, such as the share of

one’s connected network nodes with certain characteristics.2 I call the effect of relationships

the linking effect, emphasising the fact that the treatment is the assignment of links. Ex-

plicitly viewing every pairwise relationship as a treatment opens the door to building upon

existing causal inference tools for the study of the linking effect. In particular, due to the

multiplicity of possible relationships for any network node, we are able to embed the analysis

of the network linking effect in the multiple causal inference framework.

This newly discovered connection between these two previously disassociated literature

turns out to be highly consequential for the causal identification of the linking effect in en-

dogenous networks. By combining a recent finding in the multiple causal inference literature

(Wang and Blei, 2019) and theoretical results in the statistical network analysis literature,

I prove that the linking effects are identified under a set of general assumptions. The first

assumption is the “doubly individualistic assignment mechanism” assumption, which states

that there exist some random variables such that after conditioning on these random vari-

ables, the distribution of network links is conditionally independent.3 This assumption rules

out the case where a link directly affects the formation of another link, such as in a mar-

riage network where being married to one person rules out marriage links to all the other

people. The second assumption is the “no single-link confounder” assumption. It requires

that any variable that affects the outcome variable must affect the formation of more than

one link. This assumption is likely to hold in networks of non-trivial size because as the

number of possible links to form increases, it becomes more and more difficult to conceive

an individual-level confounding variable that affects the formation of only one of these links

but not any other. The final assumption is the positivity assumption, which requires that for

every pair of nodes on the network, the probability of establishing a link is strictly between

0 and 1, a standard assumption in causal inference.

A direct consequence of the first two assumptions is that the propensity scores of pairwise

linking can be identified from the distribution of network links. This is because an unob-

2In Manski (1993), this treatment is associated with the contextual peer effect.
3These random variables are the ones forming graphons, the canonical form of vertex exchangeable graphs.

9



served sufficient confounder, defined as a random variable that captures all the confounding

factors, can be identified up to a measure-preserving transformation. In particular, the first

assumption rules out the existence of any multi-link confounders other than the sufficient

confounder, and the existence of single-link confounders is assumed away by the second

assumption (Wang and Blei, 2019). Even though this sufficient confounder is not directly

observed in the data, it is nonetheless identified up to a measure-preserving transformation

from the distribution of network links as the number of nodes goes to infinity (Diaconis and

Janson, 2007). This identification result means that the propensity scores of pairwise linking

can be inferred from the adjacency matrix (Zhang et al., 2017; Auerbach, 2022), allowing

the use of propensity score-based estimators to address confounding.

Unlike traditional propensity score estimation procedures where the probability of treat-

ment is regressed on a set of observed pre-treatment variables, here the propensity scores are

estimated using only the observed network links, that is, the treatments themselves. One

way to operationalize the estimation is to use probabilistic factor models to capture the joint

distribution of the links (Wang and Blei, 2019). This involves specifying the distributions

of the sufficient confounder and the distributions of the network links conditional on the

sufficient confounder. It is, however, not important which specific distributions one chooses

to use, as long as the overall joint distribution of the network links is well captured. An

alternative is to estimate the propensity scores with procedures developed in the network

link prediction literature (e.g. Zhang et al., 2017; Olhede and Wolfe, 2014). With the esti-

mated propensity scores, we can then use inverse probability weighting, subclassification, or

propensity score matching to estimate the desired causal effect.

Thanks to these identification and estimation results, this paper will conduct one of

the first empirical analyses aiming to understand the causal effect of one of the most well-

known endogenous networks, friendships. Despite being the main focus of the social network

literature, the impact of friendship networks has not been well-understood empirically due

to the endogeneity problem. The only few existing papers that attempted to address the

endogeneity issue did so by both restricting the way friendships are formed and the variables

that affect this formation, subjecting the estimated results to bias when the true network

formation process has a different form (e.g. Goldsmith-Pinkham and Imbens, 2013; Gagete-
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Miranda, 2020).

Most papers in the empirical peer effect literature circumvent the endogeneity issue by

looking at other social networks which are quasi-randomly formed. For example, Cools et

al. (2022) investigates how the presence of more high-achieving male and female students in

high school affects boys’ and girls’ bachelor’s degree attainment differently. They do so by

exploiting the random variations in cohort composition, a strategy commonly employed in

the peer effect literature (e.g. Hoxby, 2000; Olivetti et al., 2020, etc.). Cools et al. (2022)

finds that being exposed to more male high achievers decreases girls’ likelihood of obtaining a

bachelor’s degree, in part by decreasing their confidence and aspiration. While these studies

offer exciting findings on the effect of cohort composition, a common drawback is that the

impact of social interactions cannot be separated from the influence of other factors that also

vary across cohorts, such as differences in teachers’ attitudes. Moreover, some of the most

meaningful social interactions with long-term consequences only exist among close friends

and not those who simply attend the same school during the same year. As a consequence,

the patterns of peer influence among friends have largely remained unknown.

Using high school friendship data from AddHealth,4 the same dataset used by Cools et

al. (2022) and many other studies on social networks (e.g. Goldsmith-Pinkham and Imbens,

2013; Bifulco et al., 2014; Badev, 2021; Olivetti et al., 2020), I test whether the negative

impact of high-achieving male students on female students persists when these boys are

considered friends by the girls. Interestingly, I find that an additional male high-achieving

friend causally increases the probability that a female student obtains a bachelor’s degree

by 3 p.p. Further analysis suggests that this positive influence results from an increase in

their confidence and not in their academic ability measured by GPA. Indeed, having one

more male high-achieving friend means the female student becomes 3.75 p.p more likely to

self-report being more intelligent than their same-age peers, but no effect is found for their

grades in any of the main subjects.5 Taking these results together with the findings of Cools

et al. (2022), it seems that girls are intimidated by high-achieving boys whom they do not

4AddHealth, or the National Longitudinal Study of Adolescent to Adult Health, is a dataset of represen-
tative US high schools.

5Both the self-reported intelligence and the grades are measured one year after the friendship data was
collected. The main subjects are math, science, English, and history.
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have close relationships with, but are encouraged by those whom they see as friends. This

suggests that a possible way to boost the confidence of female students and increase their

chances of graduating from college is by fostering friendships with high-achieving boys in

their high school.

This paper is closely related to the literature on peer effect, especially the contextual

peer effect defined in Manski (1993). Roughly speaking, contextual peer effect refers to the

effect of peer characteristics on own outcome and is usually expressed as a parameter in

a regression model. In order to give a causal interpretation to the estimated parameter,

empirical researchers have taken advantage of settings with either random treatments or

random peers. The former is where peer relationships are fixed and characteristics of the

network nodes are randomized, while the latter is where nodal characteristics are fixed

but peer relationships are randomized. In other words, the former is related to treatment

spillover, while the latter is about the linking effect. Because these two cases correspond to

two completely different hypothetical interventions, using one parameter to represent their

effects can sometimes lead to misleading interpretations of the estimates.6 My paper avoids

the issue of misinterpretation by developing a causal framework tailored for the study of

linking effects where random peers are a special case.7 Since in the linking effect framework

the only type of treatment is the existence of the links, the interpretation of the estimates

is clear.

To the best of my knowledge, Li et al. (2019) and Basse et al. (2019) are the only papers

to have made the distinction between randomized treatments and randomized peers using

a formalized causal framework. However, the focus of their papers is on inference issues

rather than identification, as they only consider cases where agents are assigned to groups

randomly. They also focus their analysis on peer networks with a non-overlapping group

structure, such as roommate networks. My framework, in contrast, allows the networks to

have arbitrary structures and is suitable for analyzing both experimental and observational

data.

6See Bramoullé et al. (2020) for more analysis on the problem of misinterpretation.
7If peer relationships are randomized, there will be no need to address the confounding (endogeneity)

problem. The causal framework of the linking effect can still be used; the only difference is that there will
be no need to infer the unobserved confounders and use them to correct for confounding, as randomization
guarantees no confounding exists.
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In terms of identification, several econometrics solutions have been proposed to tackle

the network endogeneity issue for Manski (1993)’s linear-in-means model. The majority do

so by jointly modeling the outcome equation and the network formation equation. From

Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016), to Arduini et al. (2015)

and Johnsson and Moon (2021), then to Auerbach (2022), assumptions used to achieve iden-

tification have been progressively relaxed. My paper takes a step further and reveals the

minimum set of assumptions needed for identification.8 Even though the assumptions of my

paper are formulated in the potential outcome framework, they can be translated into mod-

eling restrictions in the linear-in-means regression context. This translation exercise leads

to three important observations. First, all aforementioned papers impose the assumptions

that form this minimum set. Second, some assumptions made in the aforementioned papers

are unnecessary because they are implied by the minimum set of assumptions. Third, nei-

ther outcome modeling nor network formation modeling is necessary for identification. This

means we do not need to know which observed and unobserved variables enter the outcome

equation and network formation equation or how they enter the equations, be it additive,

multiplicative, or interactive. In fact, not only is it unnecessary, but it could be harmful

because incorrectly specifying these equations could lead to biased estimates.

The rest of the paper is organised as follows. Section 1.2 gives the formal definitions of

the treatment and the potential outcome, based on which several linking effect estimands

to study peer influence are proposed. Section 1.3 provides the identification conditions and

Section 1.4 discusses how existing propensity score-based estimators can be adapted for

estimation. Section 1.5 gives simulation evidence on the bias reduction performance of the

proposed identification and estimation strategy. Finally, Section 1.6 applies these estimators

to real data to study the effect of high school friendship on students’ bachelor’s degree

attainment. Section 1.7 concludes.

8More specifically, this is the minimum set of assumptions needed when identification achieved with a
single network. Jochmans (2020) proposes and identification strategy based on multiple networks.
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1.2 Treatments, potential outcomes, and estimands

Suppose we are interested in a certain peer relationship network with N nodes and directed

links among these nodes. A link from one node to another represents the existence of a

directed peer relationship. The adjacency matrix D of the network is a N by N matrix

where each entry represents the existence of a link:

D =


0 D2

1 ... DN
1

D1
2 0 ... DN

2

... ... ... ...

D1
N D2

N ... 0


,

In this paper, I will write Dj
i = 1 if there is a directed link from node j to node i. The

diagonal of the adjacency matrix is 0 because we do not allow one to be their own peer.

When a node is on the receiving end of the link, I call it the link receiver. When a node is on

the sending side of the link, I call it a link sender. A node can act as a link receiver in one

link while acting as a link sender in another and vice versa. In this paper, the outcomes of

interest are measured on the link receivers, but we could just as easily measure outcomes on

the link senders. When I write a pair of nodes (i, j), the first component is the link receiver,

and the second component is the link sender. Whenever suitable, I also use subscripts to

indicate the link receiver and superscripts as the link sender.

1.2.1 Treatments and potential outcomes

The treatment of interest is the (directed) linking status among pairs of network nodes. For

example, for a friendship network, the treatment of interest would be the directed friend-

ship from one person to another.9 With two hypothetical pairwise relationships, Figure 1.1

highlights the hypothetical intervention, aka the treatment, that is the focus of this paper.

Each relationship has three components: the receiver (R), the sender (S), and the linking

status (D). In this example, the two relationships have the same receiver and sender but have

9Friendship doesn’t need to be a reciprocal relationship, as one person consider another person as a friend
doesn’t necessarily mean the other way holds. This is evidenced by the friendship nominations of high school
students in the Add Health data.
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Figure 1.1: Hypothetical intervention: two counterfactuals

different linking statuses. On the left, the link from the sender to the receiver exists, but on

the right, the link doesn’t exist. The type of causal question this paper asks is “ What would

the receiver R1’s potential outcome be if it were “treated” with a link from sender S1 (left

panel of Figure 1.1 ), and what would the potential outcome be if it weren’t “ treated” with

this link (right panel of Figure 1.1 ), and the difference between the two potential outcomes?

”. In other words, what is the difference between Y1(D
S1
R1

= 1) and Y1(D
S1
R1

= 0)? The only

difference between the two hypothetical cases is the existence of the directed link from the

sender to the receiver. This is why we call the linking status the “treatment”.

It is important to emphasize that the hypothetical intervention this paper studies is not

the change in the sender characteristics.10 In this paper, link sender nodal characteristics

define the multiple versions of the treatment. As an example, consider color as the nodal

characteristic.11 Figure 1.2 shows two hypothetical relationships between R1 and a different

sender S2, where S2 is red while S1 is orange. This means the effect of DS1
R1

on R1 could be

different from the effect of DS2
R1

on R1, therefore a link from S2 should be viewed as a different

treatment than a link from S1. In the most general case, we could allow linking effects to

10It is, however, the focus of the treatment spillover literature.
11For instance, Li et al. (2019) and Basse et al. (2019) assume the effect of linking only depends on some

observed characteristic of the node chosen by the researcher ex-ante.
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Figure 1.2: A different link sender

differ in arbitrary observed and unobserved sender nodal characteristics. This is the stance

taken by this paper. As a result, links from senders with different identities are viewed as

different treatments. Since sender identity and the link itself has a one-to-one relationship

in this paper, I sometimes also refer the link sender as the treatment. However, it should be

clear that the hypothetical intervention is on the relationship instead of the sender.

Given that any link receiver could potentially receive a link from N − 1 different link

senders, and each of these links is considered a unique treatment with a unique effect on

the receiver, we are in the case of multiple treatments, or multi-cause, causal inference.

In other words, for any link receiver i, its treatment is a vector of N − 1 linking status

Di := (D1
i , ..., D

i−1
i , Di+1

i , ..., DN
i ).

In traditional treatment causal inference, the potential outcome of any subject, the entity

that bears the treatment and whose outcome is measured, could depend on the treatment

status of all subjects in the population if no further assumption is made. The Stable Unit

Treatment Assumption (SUTVA) restricts the potential outcome to depend only on the

subject’s own treatment status. Here I will make a similar assumption to allow potential

outcomes to only depend on the receiver’s own treatment status. As just discussed, for any

receiver i’, because her treatment is a vector of all pairwise linking status with the senders,
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this means i’s potential outcome can be a function of all pairwise linking status where i is

the receiver, but couldn’t depend on the linking status where i is not the receiver. I call

this assumption the Linking-effect Stable Unit Treatment Unit Assumption (L-SUTVA) to

differentiate it from the usual SUTVA.

Assumption 1 (L-SUTVA).

Yi(Di,D−i) = Yi(Di, D̃−i)

for any (D−i, D̃−i) and any i, where D−i = (D1, ...,Di−1,Di+1, ...,DN).

Under L-SUTVA, the potential outcome can be written as Yi(Di) or Yi(D
1
i , D

2
i , ..., D

N
i ).

In traditional causal inference, SUTVA is sometimes called the no-interference assumption.

However, this paper studies the effect of relationships, which suggests agents must interact

or interfere in some way. At first sight, the two may seem to be at odds. The reason

why L-SUTVA is perfectly compatible with the study of linking effect lies in the definition

of treatment. Recall what SUTVA says is that the treatment assignment of one subject

does not interfere with another subject’s potential outcome. In particular, it doesn’t require

the non-existence of network structure among the units. Whether SUTVA is likely to hold

depends on the definition of treatment and potential outcome. In this paper, since the

treatment is the relationship, the no-interference assumption implied by L-SUTVA means

that one’s potential outcome is only affected by one’s own relationships. L-SUTVA helps

reduce the space of possible potential outcomes and makes it easier to identify and estimate

causal estimands. In this paper, I will always assume that L-SUTVA holds.12

1.2.2 Estimands

With the perspective that relationships are multiple treatments, causal estimands could be

flexibly defined by contrasting different types of potential outcomes. In this section, I will

focus on the most straightforward set of estimands, which, loosely speaking, looks at the

12L-SUTVA might not be realistic in some situations. In the future, I will extend the analysis by relaxing
L-SUTVA to allow some interference.
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effect of an additional link. Several other possible estimands, including the commonly used

linear-in-means estimands, are outlined in Section 2.1.

As a fist step, I define the pairwise estimand τ ji as the following contrast of i’s potential

outcomes:

τ ji = Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )

where D−j
i = (D1

i , ..., D
j−1
i , Dj+1

i , ..., DN
i ), and d̄−j

i is the corresponding vector of the realised

or observed treatment assignment for i after taking out dji . τ ji contrasts link receiver i’s

potential outcome when it receives treatment (a link) from link sender j with its potential

outcome when it doesn’t receive the link from j, while keeping the linking status from other

link senders fixed at their observed value.

As in traditional causal inference where individual causal effect is not identifiable, here

the pairwise linking effect is also not identifiable due to the fact that only one potential

outcome is ever observed for a given node. However, an average causal effect is potentially

identifiable. Next, I define the average treatment effect of a link from link senders with some

attributes A = a to link receivers with certain attributes R = r.

τar := E(i,j)[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )|Aj = a,Ri = r]

where E(i,j) represents the the expectation over the distribution generated by random sam-

pling of pairs of nodes from the super-population. The interpretation of these estimands

deserves some special attention. Under L-SUTVA, these estimands are well-defined and can

be interpreted as the all-or-nothing effect in the following sense. Take τa as an example,

it can be interpreted as the expected contrast between the average potential outcome of

assigning a sender-j link to everyone in the node set and the average potential outcome of

assigning a sender-j link to no one in the node set, where this j is chosen randomly (hence

the expected contrast) with equal probability from the set of link senders with attribute

Aj = a. The interpretation of τar is similar to that of τa, except that instead of looking at

all link receivers in the node set, now we only look at link receivers with Ri = r. However,

similar estimands can also be defined without the assumption of L-SUTVA. In this case, we
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could simply modify the potential outcome function to include the entire adjacency matrix

(Dj
i ,D−(i,j)). But we can no longer interpret the estimands as the all-or-nothing effect. This

is because when we simultaneously change (Dj
1, D

j
2, ..., D

j
N) for a given sender j, D−(i,j) is no

longer at its observed value. Instead, the estimands need to be interpreted as the expected

treatment effect of j on a randomly chosen link receiver i, again keeping the other links at

their realized value. The difference is that in the second interpretation, in every hypothetical

experiment, intervention is only done on one link, and the average linking effect τ j is the

average from repeated experiments where a different link is modified each time. This is

similar to the EATE in Sävje et al. (2021) and the τ defined in Forastiere et al. (2021).

1.2.3 Relationship between the linking effect and the contextual peer effect

The linking effect is related with the contextual peer effect defined in Manski (1993). Con-

textual peer effect is the effect of peer characteristics on own outcome and is expressed as

a parameter in a regression model. However, this parameter does not have a clear causal

interpretation because it is associated with two distinct types of treatments. To see this,

note that peer characteristic is defined over two variables: the network adjacency matrix and

the vector of the characteristics of all network nodes. Intervention on the adjacency matrix

and intervention on the nodal characteristics correspond to two completely different causal

effects, namely the linking effect and the spillover effect.

The linking effect is typically related to studies where random peers are used to estab-

lish causality. For example, many empirical papers utilise the random formation of dorm

rooms, classrooms, and cohorts (e.g. Sacerdote, 2001; Carrell et al., 2013; Cools et al., 2019;

Olivetti et al., 2020, etc.). It is the effect of forming groups (network links) in a certain

way while keeping the characteristics of the people involved fixed. Such effects could inform

policymakers of the benefit and cost of forming groups in certain ways but cannot reveal the

exact mechanism behind such effects: whether it’s due to differences in gender, race, social

economic status, GPA, some unobserved characteristics, or a certain combination of all of

the above.

In contrast, the treatment spillover effect literature deals with the case where the network

structure is fixed, but some treatment, e.g. vaccine, is assigned to everyone in the network. It
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studies the effect of other nodes’ treatment status on one’s own outcome. This effect can tell

us how someone is affected by certain characteristics (vaccinated or not) of the others when

these characteristics are manipulated. But it cannot inform policymakers how outcomes will

change if they were to manipulate the network structure so that one is connected to someone

with or without those characteristics, simply because the effect was not estimated from an

experiment where the network structure is manipulated. Indeed, any network structure

manipulation would not only result in changes in a single characteristic of one’s peers but

many other, possibly unlimited number of characteristics of one’s peers. After all, the

identities of their peers have been changed. Therefore, the causal framework established by

this paper to study the linking effect complements the existing treatment spillover literature

and completes the mission of giving a clear causal interpretation to the contextual peer effect

parameter in any context.

1.3 Identification

At the center of causal identification is the treatment assignment mechanism. In experimen-

tal studies where network links are randomized, the assignment mechanism is known, such

as the cases studied in Sacerdote (2001); Carrell et al. (2013); Li et al. (2019); Basse et al.

(2019); Olivetti et al. (2020). In this case causal identification does not pose any challenge.

However, in non-experimental studies with observational data, the assignment mechanism

is unknown, and assumptions must be imposed on it to make causal discoveries. This is

the case with endogenously formed peer networks. These assumptions on the links assign-

ment mechanism are variations of the three assumptions used in traditional causal inference:

individualistic assignment mechanism, unconfoundeness, and positivity.

1.3.1 Doubly individualistic assignment mechanism

In the study of linking effects, the individualistic assignment mechanism assumption takes

the form of conditionally independent links across both the link receivers and the link senders.

In other words, conditional independence is required both across the subjects and the treat-

ments.
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Assumption 2 (Doubly individualistic assignment mechanism). There exists sequences of

random variables (vectors) {Ui}1≤i≤N and {Vi}1≤i≤N such that equation (1.1) holds.

Prd(D = d|U1, ...,UN ,V1, ...,VN) =
N∏
i=1

N∏
j ̸=i

Prd(D
j
i = dji |Ui,Vj) (1.1)

where Prd indicates the probability distribution over random treatment (link) assignment.

We can think of Ui as link receiver specific variables and Vj as link sender specific variables.

For any node i, Ui and Vi could share some common components. For example, for a

high school friendship network, the ambition of student i could affect both from whom they

receive links through Ui and to whom they send links through Vi.

To compare the linking effect doubly individualistic assignment mechanism assumption

with the individualistic assignment mechanism sssumption of traditional causal inference, it

is useful to rewrite the “Doubly” assumption as follows.

Prd(D = d|U1, ...,UN ,V1, ...,VN)

=
N∏
i=1

Prd(Di = di|Ui,V1, ...,VN)

=
N∏
i=1

Prd(D
1
i = d1i , ..., D

N
i = dNi |Ui,V1, ...,VN)

=
N∏
i=1

N∏
j ̸=i

Prd(D
j
i = dji |Ui,Vj)

Recall that the vector Di represents the treatment assignment vector of link receiver i, there-

fore the first equation, and equivalently, the second equation, is exactly the individualistic

assignment mechanism sssumption in traditional causal inference, which states that condi-

tional on some random variables, the treatment assignments across subjects, in our case, the

link receivers, are independent.13 This assumption always holds if we view the subjects as

randomly sampled from some superpopulation, as a result of the De Finetti’s theorem (Im-

bens and Rubin, 2015).14 On top of that, the linking effect doubly individualistic assignment

13V1, ...,VN can be thought of as the parameters related to each treatment.
14Superpopulation sampling is a perspective commonly adopted in traditional causal inference. See Imbens

and Rubin (2015) and Hernán and Robins (2020) for more discussions on this.
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mechanism assumption also assumes that for each link receiver i, the assignment of each in-

dividual link across all link senders are independent conditional on some link sender specific

variable: as the name “doubly” suggests. However, if the network nodes are randomly sam-

pled from a superpopulation, the linking effect doubly individualistic assignment mechanism

assumption will be satisfied as a direct result of the Aldous-Hoover Theorem (Crane, 2018),

the equivalence of the De Finetti’s Theorem for network data.15 This means with the super

population perspective, both doubly individualistic assignment mechanism assumption and

the usual individualistic assignment mechanism sssumption will automatically hold.

When the data is not sampled from a superpopulation, the assignment mechanism is

usually modeled as a stochastic process. For example, we might view the choice of a binary

treatment as the result of a random utility model. In traditional causal inference, for the

given treatment, the individualistic assignment mechanism sssumption restricts this stochas-

tic process of treatment assignment to be conditionally independent across subjects. In the

network case, the observed nodes may also be regarded as the finite population itself. But

because nodes are both link receivers and link senders, they are both subjects and treat-

ments. This is why modeling of two (or double) stochastic processes is needed. The first part

of the doubly individualistic assignment mechanism assumption requires that in the modeled

stochastic process, each link receiver is independently assigned the vector of all links, con-

ditional on their own receiver specific variables. Here, “individualistic”, or “independence”,

is with regard to the subjects, or the link receivers. The second part of the assumption

requires that in the modelled stochastic process, for each link receiver, their link assignment

from each sender is independent across all link senders, conditional on the sender specific

variables. Here “individualistic”, or “independence”, is with regard to the treatments, or the

link senders. This means with the finite population perspective, the doubly individualistic

assignment mechanism assumption requires more restrictions than the usual individualistic

assignment aechanism assumption.

The second layer of the doubly individualistic assignment mechanism assumption requires

that for any given link receiver, when they decide which links to form, the linking decisions

must be mutually independent to some extent. That means even though the decisions might

15More details of this are provided in Section 2.3.1.
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not be unconditionally mutually independent, they must be conditionally mutually indepen-

dent. This excludes some networks, such as those with a non-overlapping group structure

by construction. For example, a roommate network cannot be conditionally mutually inde-

pendent. This is because if i and j are roommates, and j and k are not roommates, that

means i and k are not roommates, no matter what variables are conditioned on. However,

the assumption does accommodate cases where networks are formed with strategic consid-

erations, as long as the equilibrium linking decisions are not direct functions of each other.

An example where the assumption could be satisfied is the case analyzed by Leung (2015).

In that paper, the network formation game is characterized by strategic interactions with

incomplete information, where utility depends on the entire network structure. The idea is

that when the agents’ objective is to maximize their expected utility, i’s linking decisions will

be a function of equilibrium beliefs about others’ linking decisions, which is a function of the

observed attributes of all agents in the network. This means for each agent i, her linking

decisions are not directly dependent of each other. If we allow independent utility shocks for

all her linking decisions, the doubly individualistic assignment mechanism assumption will

be satisfied. More details of this example are given in Section 2.3.2.

It is important to point out that Assumption 2 is different from, and in fact, less re-

strictive than the assumption underlying dyadic regressions. Dyadic regressions, such as

those analyzed in Graham (2020), usually assumes that linking decisions are independent

conditional on some observed attributes X and unobserved latent attributes ϵ satisfying

E[ϵ|X = 0]:

Prd(D = d|X1, X2, ..., XN , ϵ1, ϵ2, ..., ϵN) =
N∏
i=1

N∏
j ̸=i

Prd(D
j
i = dji |Xi, Xj, ϵi, ϵj) (1.2)

Running a dyadic regression requires one to impose a functional form for the pairwise link-

ing probability: Pr(Dj
i = 1|Xi, Xj, ϵi, ϵj) = f(Xi, Xj, ϵi, ϵj) for some known f . This func-

tional form differentiates dyadic regressions and the assumption of doubly individualistic

assignment mechanism. When the functional form restriction does not reflect the true data-

generating process, the parameters in dyadic regressions are biased for the true effect of X
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on the pairwise linking probabilities and inference is invalid.16 But why is the functional

form assumption necessary for dyadic regressions but not for this paper? This is due to

different objectives of the two cases. The goal of dyadic regressions is usually to estimate the

parameters associated with the observed covariates to understand the role of these covariates

in determining linking probabilities, such as those in estimating the gravity models studying

the association between GDP and trade flow. In contrast, this paper aims to identify and

estimate the causal parameters of the outcome equation. Assumptions on link formation,

are only used to correct for confounding. Identifying such causal effects does not require

knowing the functional form of the linking equation. Therefore, there is no need to estimate

parameters associated with the observed attributes.

1.3.2 Unconfounded Assignment Mechanism

Definition 1.3.1 (Confounder). A confounder is a pre-treatment variable that is associated

with both the treatment and the outcome.

Definition 1.3.2 (Cause). A random variable X is a cause of another random variable Y

if X is realised before Y and is associated with Y .

Assumption 3 (No single-link confounder). Any confounder must be a cause of more than

one link.

Proposition 1 (Unconfoundedness). Let Ypot
i be the vector of i’s potential oucomes. Under

Assumption 2 and Assumption 3, the following holds:

Prd(D
j
i = 1|Ui,Vj,Y

pot
i ) = Prd(D

j
i = 1|Ui,Vj)

for Ui,Vj defined in equation (1.1).

Proof. First, suppose there exists another variable U′
i that is a cause of Ypot

i and a cause of

more than one of the links that i potentially receives, say D1
i and D2

i . Then if we omit U′
i

16To see why inference is invalid, note that mis-specifying the functional form will make the linking
probabilities dependent across pairs, while pairwise independence is crucial for likelihood based inference.
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in the conditioning set of

Prd(D = d|U1, ...,UN ,V1, ...,VN)

=Prd(D1 = d1, ..., D
1
i = d1i , D

2
i = d2i , ..., D

N
i = dNi , ...,D = d|U1, ...,UN ,V1, ...,VN)

D1
i and D2

i couldn’t be conditionally independent (without conditioning on U′
i). This is

a contradiction to our starting point, which is that conditioning on U1, ...,UN ,V1, ...,VN

makes all links independent (equation (2)). In other words, the variablesU1, ...,UN ,V1, ...,VN

by definition make all links independent, and the existence of U′
i is in contradiction of that

definition.

With similar logic, suppose there exists a variable V′
j that is a cause of Ypot

i and is a

cause of more than one of the links that j potentially sends, say Dj
1 and Dj

2. Then if we omit

V′
j in the conditioning set of

Prd(D = d|U1, ...,UN ,V1, ...,VN)

=Prd(D
2
1 = d21, ..., D

j
1 = dj1, ..., D

N
1 = dN1 , ..., D

1
2 = d12, ..., D

j
2 = dj2, ..., D

N
2 = dN2 , ...,

D1
N = d1N , ..., D

j
N = d1N , ..., D

N−1
N = dN−1

N |U1, ...,UN ,V1, ...,VN)

Dj
1 and Dj

2 couldn’t be conditionally independent (without conditioning on V′
i). This again

is a contradiction to our starting point, which is that conditioning on U1, ...,UN ,V1, ...,VN

makes all links independent (equation 2).

By Assumption 3, which states confounders that only affect one link don’t exist, we have

effectively ruled out the existence of any confounders that affect the formation of any link.

This means

Prd(D
j
i = 1|U1, ...,UN ,V1, ...,VN ,Y

pot
i )

=Prd(D
j
i = 1|U1, ...,UN ,V1, ...,VN)

=Prd(D
j
i = 1|Ui,Vj)

The last equation comes from equation (2). This argument is a direct adaption of the
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identification proof in Wang and Blei (2019)

The intuition is that Ui,Vj must include all the multiple-link causes of link formation.

Otherwise, the doubly individualistic assignment mechanism assumption wouldn’t have held.

Some of these causes will confound the outcome variable; some will not. In theory, we only

need to condition on the confounders, but the insight is that since we don’t know which are

the confounders, conditioning on all of these causes will for sure address confounding. It is

for this reason that I call Ui,Vj the sufficient confounders.

Next, I prove that the unconfoundedness condition also holds conditional on the propen-

sity score based on Ui,Vj.

Definition 1.3.3 (Pairwise propensity score). A pairwise propensity score e(u, v) is defined

as

e(u, v) := E(i,j)[Prd(D
j
i = 1|Ui,Vj)|Ui = u,Vj = v]

Because E(i,j)[Prd(D
j
i = 1|Ui,Vj)|Ui = u,Vj = v] = Prd(D

j
i = 1|Ui = u,Vj = v), the

propensity score e(u, v) is equal to the link assignment probability.

Lemma 1. e(Ui,Vj) is a balancing score, that is:

Prd(D
j
i = 1|Ui,Vj, e(Ui,Vj)) = Prd(D

j
i = 1|e(Ui,Vj))

Lemma 2 (Unconfoundedness given e(Ui,Vj)).

Prd(D
j
i = 1|Y pot

i , e(Ui,Vj)) = Prd(D
j
i = 1|e(Ui,Vj))

This result is similar to the propensity score property result in the traditional causal

inference, where unconfoundedness holds given the propensity score. The proof of Lemma 2

is given in Section 2.4.2.
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1.3.3 From Unconfoundedness to the Identification of Estimands

Assumption 4 (Pairwise Positivity). The link assignment probability satisfies

0 < Prd(D
j
i = 1|Ui,Vj) < 1

for each possible Ui,Vj.

Proposition 2. Under Assumptions 2-4, the direct linking effect is identified given the

true pairwise propensity scores, in the sense that the estimand can be expressed in terms

of the observed outcome. For link receivers with characteristics r and link senders with

characteristics a, this means

τar = E
[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 1, Aj = a,Ri = r]|Aj = a,Ri = r

]
− E

[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 0, Aj = a,Ri = r]|Aj = a,Ri = r

]
This is proved in Section 2.4.3. Note that here we only need pairwise positivity because

the estimand is defined through pairwise contrasts where all non-focal pairwise links are

kept at their realised value. If we want to define an estimand where all of one’s links are

manipulated simultaneously, we will run into a problem where the positivity condition will

fail. This is discussed more in detail in Section 2.1.1. Similar discussions can be found in

Imai and Jiang (2019); Johnsson and Moon (2021); Auerbach (2022).

1.3.4 Relationship with previous literature

Assumptions 2-4 are the minimum set of assumptions for identification. Without any one

of these assumptions, the linking effect cannot be identified through the unconfoundedness

condition. To see how the identification strategy relates to the existing econometric methods,

I will first express my assumptions in terms of modeling assumptions. A general outcome

model is given by equation (1.3), and a general link formation model that satisfies Assump-

tion 2 can be expressed by equation (1.4). T is the treatment of interest. For example, Ti is

the mean characteristic of one’s peers in linear-in-means models and is Dj
i for the estimand

considered by this paper. κ, w, ϵ, and η are all unobserved variables. For simplicity, I do not
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include any observed covariates in the model, but including them doesn’t pose additional

complication.

Yi = g(Ti, κi, ϵi) (1.3)

Dj
i = 1{f(wi, wj) ≥ ηji } i ̸= j (1.4)

where Ti ⊥̸⊥ κi, Ti ⊥⊥ ϵi|κi, η
j
i ⊥⊥ wi, wj and elements of {ηji }Ni,j=1 are independently dis-

tributed. The difference in κi and ϵi in equation is that κi confounds the outcome Yi while

ϵi does not. Note that since we can always assign w = (U, V ) and find a f ′ such that

f(wi, wj) = f((Ui, Vi), (Uj, Vj)) = f ′(Ui, Vj), equation (1.4) is not restrictive. To reiterate,

the doubly individualistic assignment mechanism assumption is equivalent to ηji ⊥⊥ wi, wj

and elements of {ηji }Ni,j=1 being independently distributed. Second, the no single-link con-

founder assumption is equivalent to requiring ηji and ϵi being independent for all i, j. Recall

that the no single-link confounder assumption says that any random variable that is a cause

of only one link cannot be a cause of the outcome. Here in the link formation equation, the

only single-link cause is ηji because wi (wj) enters all link formation equitation where i (j) is

a node. Therefore, ηji not being a confounder is equivalent to ηji being independent of κi, ϵi.

Finally, positivity says that 0 < Pr(Ti = t|w) < 1 for all t ∈ T , where T is the set of all

treatment values of interest.

Comparing these assumptions with the assumptions made in previous econometric papers

(Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Arduini et al., 2015; Johnsson

and Moon, 2021; Auerbach, 2022), the first obvious difference is on the modelling of the

outcome equation. All previous papers are concerned with a linear outcome model. In

particular, they assume Yi = Tiβ + λ(wi) + ϵi. That is, wi is assumed to be the same as κi,

meaning wi are exactly the confounders, and the marginal effect of Ti is constant (β) and wi

enters the equation separately through some function λ(·). A limitation of the identification

strategies based on this model is that they cannot deal with the case where the effect of Ti

is heterogeneous in wi. In contrast, I do not make such restrictions on the outcome model.

The identification result from Wang and Blei (2019) says wi is able to capture κi, but they

don’t need to be equal. The second major difference is in the modeling of the network
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formation equation. Except for Auerbach (2022), all the other papers achieve identification

through decomposing w into observed and unobserved components and specifying how these

components enter the equation, e.g., through homophily or additive. In contrast, just like

this paper, Auerbach (2022) does not make any functional assumptions on equation (1.4).

Intuitively, both papers address confounding by using only the information provided by the

adjacency matrix.

To understand how the two papers differ in terms of identification assumptions, I list five

of Auerbach (2022)’s main assumptions and discuss how they relate to the assumptions of this

paper. Note that because Auerbach (2022) assumes Yi = Tiβ+λ(wi)+ ϵi for some unknown

λ, I will continue the discussion on the premises that it is the true outcome data-generating

process.

1. The random sequence {Ti, wi, ϵi}Ni=1 is independent and identically distributed with

entries mutually independent of {ηji }Ni,j=1. This is the assumption of no single-link

confounder.

2. {ηji }Ni,j=1 are i.i.d and ηji ⊥⊥ wi, wj . I also assume this. As discussed above, this is

related to the assumption of doubly individualistic assignment mechanism.

3. E[ϵi|Ti, wi] = 0, that is, the treatment Ti is unconfounded after conditioning on wi.

Proposition 1 of this paper proves that unconfounedness is implied, not assumed, by

the doubly individualistic assignment mechanism assumption and the no single-link

confounder assumption.

4. There is variation in Ti after conditioning on wi. This is related to the positivity

condition that 0 < Pr(Ti = x|wi) < 1 for all x ∈ X , because if there is no variation in

Ti after conditioning on wi, Pr(Ti = x|wi) must be either 0 or 1, violating the positivity

assumption.

5. The function f(wi, ·) is enough for controlling for the confounding from λ(wi). This

assumption is not needed when Ti is peer characteristics because f(wi, ·) is actually

the generalized propensity score. As all propensity scores, it has the property that
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unconfoundedness holds by either conditioning on wi or conditioning on the propensity

score of wi

1.4 Estimation

The estimation of the linking effect involves two steps. The first step is to estimate the

propensity scores. Unlike in traditional causal inference, the propensity scores estimated in

the first step are functions of unobserved latent variables. Therefore, the traditional propen-

sity score estimation methods won’t apply here. In Section 1.4.1, I show how techniques

developed in the graphon estimation literature in network analysis and the multiple treat-

ment literature in causal inference can be used for propensity score estimation. The second

step is to use the estimated propensity scores to estimate the linking effects. Here many

established methods from traditional causal inference can be used, such as inverse probabil-

ity weighting (IPW), propensity score matching, and propensity score subclassification. In

Section 1.4.2, I will illustrate how the inverse probability weighting method can be used to

estimate the linking effects. Propensity score matching and subclassification can be adapted

similarly as shown in Section 2.2.

1.4.1 1st-step estimation: propensity scores

Graphon Estimation

As discussed in Section 2.3.1, the linking probability in a graphon and the propensity score

eij are, in fact, exactly the same when nodes are randomly sampled from superpopulation.

This means we could use the many statistical methods in graphon estimation to estimate the

propensity scores. Here I briefly discuss how the neighborhood smoothing method proposed

by Zhang et al. (2017) works. Compared to other graphon estimation methods, such as

stochastic block models (Olhede and Wolfe, 2014), it has the advantage of not making

restrictive assumptions on how links are formed.

First let’s define a probability slice as e(Ui, ·) = (e(Ui,V1), e(Ui,V2), ..., e(Ui,VN)).

The main idea is that for any link receiver i, if we could find other link receivers with

similar probability slices as i, we could then use the realized treatment assignment of these
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link receivers to estimate (e(Ui,V1), e(Ui,V2), ..., e(Ui,VN)). Specifically, let Ni := {i′ :

e(Ui′ , ·) ≈ e(Ui, ·)} be the neighbourhood of link receiver i. Then an estimator for eji :=

e(Ui,Vj) would be

ẽji =

∑
i′∈Ni

Dj
i′

|Ni|

To define the neighborhood, we first need a definition of similarity, or equivalently the

distance, between probability slices. Zhang et al. (2017) uses the d2 distance:

d(i, i′) = ||e(Ui, ·)− e(Ui′ , ·)||2 =
{∫

v

|e(Ui, )− e(Ui′ , v)|2)
}1/2

Then

d(i, i′)2 =

∫
v

e(ui, v)e(ui, v) +

∫
v

e(ui′ , v)e(ui′ , v)− 2

∫
v

e(ui, v)e(ui′ , v)

=

∫
v

(e(ui, v)− e(ui′ , v))e(ui, v) +

∫
v

(e(ui′ , v)− e(ui, v))e(ui′ , v)

≤
∣∣∣∣ ∫

v

(e(ui, v)− e(ui′ , v))e(uĩ, v)

∣∣∣∣+ ∣∣∣∣ ∫
v

(e(ui, v)− e(ui′ , v))e(uĩ′ , v)

∣∣∣∣+ 2eN

≤ max
k ̸=i,i′

2

∣∣∣∣ ∫
v

(e(ui, v)− e(ui′ , v))e(uk, v)

∣∣∣∣+ 2eN

where ĩ and ĩ′ are such that |uĩ−ui| ≤ eN and |uĩ′−ui′ | ≤ eN , and eN depends on n and is the

error rate. Zhang et al. (2017) shows that such ĩ and ĩ′ can be found with high probability.

The first part of maxk ̸=i,i′ 2

∣∣∣∣ ∫v(e(ui, v)− e(ui′ , v))e(uk, v)

∣∣∣∣ can be estimated by

d̃(i, i′) = max
k ̸=i,i′

|(Di −Di′)D
′
k|

n
.

Intuitively, neighbourhood Ni should include i′ with small d̃(i, i′). Zhang et al. (2017)

defines Ni as

Ni = {i′ ̸= i : d̃(i, i′) ≤ qi(m)}
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where qi(m) is the m’th quantile of {i′ ̸= i : d̃(i, i′)}. Zhang et al. (2017) showed that with

m = C(n−1logn)1/2 for any constant C ∈ (0, 1], if the propensity score function e(·, ·) is

Piecewise-Lipschitz, then ẽji is consistent for e(Ui,Vj).
17 18

Factor models

Propensity scores e(Ui,Vj) can also be estimated with factor models. This method requires

us to specify the distribution of Ui, Vj, and Pr(Dj
i = 1|Ui,Vj) for all i, j = 1, ...N . For

exposition purposes, let Ui = (U1i, U2i) and Vj = (V1j, V2j) be vectors of length 2. A simple

factor model could be

α, U1i, U2i, V1j, V2j ∼ N (0, 1), i, j = 1, ..., N

e(Ui,Vj) = logit(α + U1iV1j + U2iV2j), i, j = 1, ..., N (1.5)

Even though estimating the propensity scores with factor models impose additional func-

tional form assumptions on the network formation, they are very flexible and versatile.

Every aspect of the model can be modified, including the length of unobserved sufficient

confounders, their distributions and how these confounders enter the probability distribu-

tion of the propensity scores, be it additive or multiplicative, be it linear or quadratic.19

To operationalize the use of factor models, I follow the deconfounding procedure proposed

by Wang and Blei (2019). The deconfounder is a procedure proposed by Wang and Blei

(2019) to address confounding in the setting of multiple treatments. It can be used in our

setting because each link can be viewed as a treatment. Applying the deconfounder to

estimate the propensity scores involves three steps. In the first step, we need to randomly

17Definition of Piecewise-Lipschitz: For any δ, L > 0, let Fδ;L denote a family of piecewise-Lipschitz
functions m: [0, 1]2 → [0, 1] such that (i) there exists an integer K ≥ 1 and a sequence 0 = x0 < · · · < xK

satisfyingmin0≤s≤K−1(xs+1−xs) ≥ δ, and (ii) both |e(u1, v)−e(u2, v)| ≤ L|u1−u2| and |e(u, v1)−e(u, v2)| ≤
L|u1 − u2| hold for all u, u1, u2 ∈ [xs, xs+1], v, v1, v2 ∈ [xt, xt+1] and 0 ≤ s, t ≤ K − 1.

18Auerbach (2022) uses a similar idea but bounds the distance d(i, i′) with a different metric.
19Not only can we choose another family of distributions, it is also possible to allow dependence among U

and V by adding another layer of factorization. For example,

wi, wj ∼ N (0, 1), i, j = 1, ..., N

U1i, U2i, V1j , V2j |wi, wj ∼ N (wi + wj , 1), i, j = 1, ..., N
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select a portion of links in the adjacency matrix and set them to 0, effectively partitioning

it into training data and validation data. In the second step, we need to pick a factor model

and fit the factor model with the training data. In the third step, validation data is used to

compute a test statistics to decide whether the factor model fits the data well enough. If the

test is passed, then we proceed to the estimation with the estimated propensity scores. If

the test fails, then another factor model could be used and step two repeated until we find

a factor model that passes the test.20

1.4.2 2nd-step estimation: treatment effect

Once the propensity scores of link formation are estimated, we could use the many propensity

score-based methods commonly used in the treatment effect estimation literature to estimate

the linking effects of interest. In this section, I will use an inverse probability weighting

estimator to illustrate how these propensity score-based methods can be adapted to the

current setting. The most basic IPW estimator is the Horvitz–Thompson estimator. The

augmented inverse probability weighting (AIPW) could be used to include covariates in the

outcome model. AIPW is commonly referred to as the doubly robust estimator because it

is consistent if either the propensity score is correctly estimated or the outcome model is

correctly specified.

The IPW estimator for the linking effect

τar := E(i,j)[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )]

is

1∑N
i=1 Ri = r

· 1∑N
j=1 A

j = a

( ∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)
−

∑
i:Ri=r

∑
j:Aj=a

(1−Dj
i ) · Y obs

i

1− e(Ui,Vj)

)
(1.6)

where e(Ui,Vj) is substituted with its estimate since the true propensity score is unknown.

Same as the conventional IPW estimator, the IPW estimator in equation 1.6 is unbiased

20The idea of using a statistical test on validation data to see if propensity scores are accurately estimated
can also be used for the neighborhood smoothing estimator, or any other graphon estimator. In fact, a
similar idea was used in Zhang et al. (2017) to compare the performance of different graphon estimators.
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for the linking effect τar . The proof is detailed in Section 2.4.4. A regression model (1.7)

can be used to incorporate additional pre-treatment control variables, where each pairwise

observation is weighted based on their propensity score. The additional control variables help

reduce finite sample biases just as in the traditional augmented inverse probability weighting

estimator.

Yi = α + βDj
i + θControls+ ϵji (1.7)

1.5 Simulation

In this section, I conduct simulation exercises with synthetic data to assess the performance

of the proposed linking effect estimators. I will generate the synthetic data according to the

data generation model (1.8); one is a version of the homophile model, and the other is a

statistical block model. Then I use a factor model to estimate the propensity scores. These

propensity scores are then used in the second stage estimation with three different estimators:

the inverse probability weighting (IPW) estimator, the nearest matching estimator, and the

subclassification estimator. Finally, I will compute the bias and the mean absolute error

(MAE) of the estimates relative to the true effect and compare them with the bias and MAE

of the naive OLS estimator that ignores confounding.
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ϵci ∼ N (0, 1)

ϵbi ∼ U [0, 1]

Xi ∼ Bernoulli(0.6)

Ci ∼ U [0, 1]

ηij ∼ U [0, 1] (1.8)

Dij = 1{g(Ci, Cj) ≥ ηij}, g = g1, g2

Y c
i = αc +Diβ

c + γcCi + δcXi + ϵci

Y b
i = 1{logit(αb +Diβ

b + γbCi + δbXi) ≥ ϵbi}

where logit(s) =
1

1 + exp(−s)

where (αc, γc, δc) = (0.5, 4, 1), (αb, γb, δb) = (−4, 4, 1). βc(b) = (β
c(b)
1 , ...β

c(b)
j , ..., β

c(b)
N ) is a

vector of parameters relating to the causal effect of a link from sender j. I set βc
j = Xj/2

for all j. βb
j = Xj/2 for all j. g1 is specified in equation (1.9) and g2 is specified in Section

2.5.1, equation (2.5).

g1 : P
j
i = 1/5

(
1 + exp(−(−6 + 2.5C1 + 1.5Cj + |Ci − Cj|))

)
(1.9)

In this simulation exercise, I consider both continuous and binary outcome variables,

which are denoted by Y c and Y b, respectively. The network links are generated through a

binomial process with success probability specified according to two different link generation

processes, g1 as in equation (1.9) and g2 as in equation (2.5). g1 incorporates both degree

heterogeneity and homophily. On the one hand, it is an increasing function in Ci and Cj. On

the other hand, the probability of linking increases as the difference in Ci and Cj becomes

smaller between the link receiver and the link sender. g2 corresponds to a stochastic block

model. The details of g2 and its corresponding simulation result is detailed in Section 2.5.1.

Both g1 and g2 generate directed networks. In our setup Ci is the confounder. It enters both

the outcome and link formation equations and is unobserved to the econometrician. Ci, Xi,
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ϵci ,ϵ
b
i and ηij are independent of each other, for all i, j = 1, ...N .

The mean degree distribution of g1 from the simulated datasets is given in Table 1.1.

As the network size increases, the degree increases. This is because the linking probability

doesn’t change as the network grows in our link generation model. This means the more

nodes there are in the network, the more link senders there are, and thus the more links a

link receiver will have.

Table 1.1: Mean degree distribution for simulated g1 networks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N=100 0 0 0 0 0 0.1 0.8 1 1.1 1.9 4.2
N=300 0 0 0.2 1 1 1.6 2 2.6 3.3 4.7 10.2
N=500 0 0.2 1 1.5 2 2.7 3.2 4.1 5.5 7.4 15.7

Note: This table reports the mean degree distribution of the simulated networks. For each size
N=100,300,500, and for each simulated network of that size, I caculate the deciles of the number of links
each link receiver receives, and average over all the 500 simulated networks of that size.

For the continuous outcome, I estimate the linking effects with the linear OLS regression

(1.10), and the binary outcome is estimated with the logistic regression (1.11). I run these

regressions separately for link senders with Xj = 0 and link senders with Xj = 1 to study the

effects of these link senders separately. For the propensity score-based methods, the regres-

sions are weighted with weights based on propensity scores that correct for confounding. For

the naive OLS, the regressions are unweighted, thus not correcting for any confounding. The

target estimand in this simulation exercise is ATT. This choice is reflected in the regression

weights.

Y c
i = µi = ρ0 + ρ1D

j
i + vi (1.10)

Pr(Y b
i = 1) =

1

1 + exp
(
− (ρ2 + ρ3D

j
i )
) (1.11)

Table 1.2 compares the bias and MAE for the three propensity score-based estimators and

the naive ols estimator. The propensity score used in this table is estimated using the
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factor model specified in equations (1.12)-(1.14). Comparing this factor model to the one in

Section 1.4.1, Zi can be seen as γiUi and Vj can be seen as βjVj where Ui for i = 1, ..., N

are vectors of length two. The number of matches for the matching estimator is 1, and the

number of subclasses for the subclassification estimator is 8. The rows under X0 are the

estimates for the linking effect of a link from a sender with Xj = 0, whose true effects are

0 on both the binary and the continuous outcomes. The rows under X1 are the estimates

for the linking effect of a link from a sender with Xj = 1, whose true effect is 0.5 on the

continuous outcome. The true effect of an additional link from a sender with Xj = 1 on the

binary outcome depends on the number of other links from senders with Xj = 1 because the

true data generation process is non-linear. It is therefore calculated from the data generation

process for each observation and then averaged over all observations.

Zi = (z1i, z2i) ∼ N (0, 1)×N (0, 1), i = 1, ..., N (1.12)

Kj = (k1j, k2j) ∼ N (0, 1)×N (0, 1), j = 1, ..., N (1.13)

Dj
i |Zi, Kj ∼ Bernoulli

(
logit(Zi +Kj)

)
, i, j = 1, ..., N (1.14)

From Table 1.2, we can see that the estimators based on the propensity scores estimated

by the factor model offer significant bias reduction compared to the naive ols estimator. The

inverse probability weighting estimator performs the best among the three propensity score-

based estimators. Compared to the naive ols estimator, the inverse probability weighting

estimator reduces 90% - 97% of the biases for the binary outcome and 51% - 83% of the biases

for the continuous outcome. As the network becomes larger, the bias reduction increases. An

interesting observation from the table is that the bias from the naive ols estimator increases

as the network becomes larger. This is because as the network becomes larger, the number

of links for link receivers increases. This will lead to increasingly larger accumulated linking

effects from all the other links being attributed to the effect of the link under consideration

as in equation (1.6). This phenomenon doesn’t happen if confounding is corrected because,

in this case, the other links are independent of the link under consideration. As we see from

the first three columns, the bias from the propensity score-based estimators continues to
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decrease as N increases despite the increasing bias from the naive ols estimator. Table (2.5)

in Section 2.5 shows similar results for the statistical block model for network formation.

In Section 2.5, I also show the biases and MAEs of propensity score-based estimators

using the factor model estimated propensity scores concerning the estimators using the true

propensity scores (Table 2.8 and Table 2.9). Finally, I show simulation results when I increase

the number of matches (from 1 to 3 to 5) and the number of subclasses (from 8 to 10 to

12) as the size of the network increases. The results from these different comparisons stay

similar to the ones shown in Table 1.2.

1.6 Empirical Application

Almost everyone would agree that friendship is one of the most important social networks in

a person’s life. After all, one does not simply spend time with their friends; they also share

information, receive their help, value their opinions, mimic their actions, and learn from their

experiences. But it would be much more difficult to get everyone to agree on the direction

and extent to which a person would be affected by their friends. The social network literature

has long been interested in understanding the pattern of peer influence among friends for

outcomes including risky behavior, smoking habits, obesity, education level, labor outcomes,

fertility, etc. However, due to the obstacle posed by endogenous friendship formation, these

questions remain largely unanswered, at least not in ways where the endogeneity issue is

adequately accounted for.

Thanks to the theoretical results developed in this paper, I am able to make one of the

first steps toward uncovering the true impacts of friendship. With the AddHealth data, I

will be investigating the patterns of peer influence among high school friends in the U.S.

Specifically, I look at how students’ probability of graduating from college is affected by

having more high-achieving friends, and whether this effect differs by both the gender of

themselves and the gender of the high-achieving friend.21 The analysis is inspired by the

recent paper by Cools et al. (2022), which also uses the AddHealth data and finds that being

exposed to more high-achieving males in one’s high school decreases the likelihood that a

21A high-achieving student is defined as a student who has at least one residential parent with a postgrad-
uate degree. This is the same definition used in Cools et al. (2022)
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Table 1.2: Simulation results for g1

IPW Matching Sub Naive ols

Yb Bias X0

N=100 0.077445 0.096851 0.093895 0.132864
N=300 0.051917 0.086736 0.091974 0.1705
N=500 0.033176 0.084199 0.087752 0.184117

X1

N=100 0.078718 0.094838 0.092844 0.132779
N=300 0.04753 0.083476 0.087602 0.166086
N=500 0.034532 0.085371 0.089037 0.185265

MAE X0

N=100 0.102707 0.137418 0.111374 0.142808
N=300 0.054298 0.087305 0.091974 0.1705
N=500 0.03435 0.084199 0.087752 0.184117

X1

N=100 0.09447 0.11907 0.103271 0.137679
N=300 0.050589 0.0838 0.087611 0.166086
N=500 0.036061 0.085371 0.089037 0.185265

Yc Bias X0

N=100 0.494439 0.591209 0.583515 0.802809
N=300 0.261106 0.483215 0.498769 0.9596
N=500 0.173155 0.512221 0.533149 1.144263

X1

N=100 0.454354 0.534451 0.539381 0.765181
N=300 0.257676 0.47056 0.493571 0.95376
N=500 0.174887 0.507023 0.533092 1.142917

MAE X0

N=100 0.518549 0.62927 0.595459 0.806389
N=300 0.26409 0.483215 0.498769 0.9596
N=500 0.176396 0.512221 0.533149 1.144263

X1

N=100 0.466298 0.558012 0.542142 0.765513
N=300 0.258652 0.47056 0.493571 0.95376
N=500 0.176375 0.507023 0.533092 1.142917

Note: This table reports for the g1 model the bias and the mean absolute error
(MAE) of the inverse probability weighting estimator, the nearest neighbour matching
estimator with replacement, the subclassification estimator and the narive ols estima-
tor, compared to the true linking effects, for link sender with Xj = 0 and Xj = 1
separately. The number of matches for the matching estimator is 1, the number of
subclasses for the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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female student obtaining a bachelor’s degree. It also finds that this negative effect could be

partly explained by a decrease in the girls’ confidence and aspirations, as well as their grades

in math and science. But do high-achieving male friends also have this negative impact on

girls? At the end of the day, interactions and social influence among close friends could be

very different from those among students who simply attend the same school and might not

have close and friendly interactions.

The results indicate that the effect of friendship could indeed be very different from the

effect of cohort peers. Noticeably, an additional male high-achieving friend increases the

probability of a female student obtaining a bachelor’s degree by 3 percentage points. Het-

erogeneity analysis reveals that this positive effect of male high flyer friendship is mainly

driven by female students with below median ability as measured by their PVT score. Evi-

dence also suggests that the effect mainly comes from a confidence boost instead of a tangible

influence on their GPA.

1.6.1 Data

The data used by this analysis is from the National Longitudinal Study of Adolescent to

Adult Health (Add Health).22 It is a longitudinal study of a nationally representative sample

of adolescents in grades 7-12 in the United States during the 1994-95 school year (Wave I).

In total, 172 schools were sampled. The Wave I data consists of an in-school questionnaire

for all students in the sampled schools, followed by an in-home interview conducted for

only a sample of these students. Out of the 172 schools, 16 are the so-called saturated

schools, where all students who answered the in-school questionnaire were selected for the

in-home interview. The sample of students who answered the Wave I in-home interview was

interviewed again during the 1995-1996 school year (Wave II), another time in 2001-2002

22This research uses data from Add Health, funded by grant P01 HD31921 (Harris) from the Eunice
Kennedy Shriver National Institute of Child Health and Human Development (NICHD), with cooperative
funding from 23 other federal agencies and foundations. Add Health is currently directed by Robert A.
Hummer and funded by the National Institute on Aging cooperative agreements U01 AG071448 (Hummer)
and U01AG071450 (Aiello and Hummer) at the University of North Carolina at Chapel Hill. Add Health
was designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill. The Add Health Parent Study/Parents (2015-2017) data collection was funded by
a grant from the National Institute on Aging (RO1AG042794) to Duke University, V. Joseph Hotz (PI) and
the Carolina Population Center at the University of North Carolina at Chapel Hill, Kathleen Mullan Harris
(PI).
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(Wave III), again in 2007-2008 (Wave IV), and most recently in 2016-2018 (Wave V).

For my empirical analysis, information on educational attainment is taken from the Wave

IV data, when respondents were between 26-32 years old. They were asked to give their

highest level of education achieved by the time of the interview. As in Cools et al. (2022),

I define a dummy variable for bachelor’s degree attainment equal to 1 if the respondent

had obtained a four-year college degree or more and 0 otherwise. Some other secondary

outcome variables are also used in this analysis. These include Wave II information on

students’ grades, willingness and confidence in going to college, and self-assessment of their

intelligence compared to their peers.

Friendship information comes from the Wave I in-home interviews. During the interview,

students were asked to nominate at most five of their female friends and five of their male

friends from their school’s and the sister school’s roaster. Students’ pre-treatment informa-

tion comes from Wave I. This includes background information on the students and their

parents. On the students’ side, I use data on their gender, age, race, whether they were born

in the US, and their PVT score.23 On the parents’ side, I use data on the residential mother

and father’s education level, whether they worked for pay for more than 10 hours per week

at the time interview was conducted, whether they were born in the U.S., and the annual

family income. The exact definitions of all variables are detailed in Table 2.12, along with

the definitions used in Cools et al. (2022). In order to compare the results with the CFP

paper, I further restrict the data following their procedure, keeping only those in grades 7-12

during Wave I, except those with less than 20 students.

1.6.2 Estimation of propensity scores and the linking effects

The first step of estimating the linking effect is to estimate the propensity scores from the

adjacency matrix. When students were interviewed for the AddHealth data, they were only

allowed to nominate their friends within the same school. This means that for each school

s, we have a network represented by an adjacency matrix Ds with Ns nodes. The Ns nodes

include every student on the school roaster. In each school, a sample of ns students who

23A Picture Vocabulary Test (PVT) was administered by the interviewer during the Wave I in-home
interview. PVT measures an individual’s verbal ability.
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were also in the school roaster was selected for the in-home interview and therefore asked to

nominate their friends from the NS students listed on the roaster. For each i of the sampled

students and each student j on the school roaster, Dj
s,i is recorded as 1 if i nominates j as

their friend and is recorded as 0 if j is nominated by i as a friend. I remove any column j of

the adjacency matrix Ds if j was not nominated by any sampled student i. For the Ns − ns

students who were not sampled for the in-home interview, their adjacency matrix entries

are missing, which prevents us from estimating their propensity scores of linking. This is

not a problem for our analysis for two reasons. First, since they were not selected for the

in-home interviews, their information on outcome variables would also be missing, meaning

they wouldn’t have been included in the analysis anyway. Second, the propensity scores of

linking of the sampled students can still be estimated through factor models, even though

they can no longer be estimated by graphon estimators. The factor model I use for this

empirical analysis is the same as the one specified in (1.5).

After the propensity scores of linking are estimated for all the sampled students in each

school, we are ready to estimate the linking effects of interest. In this empirical analysis, I

use the augmented inverse probability weighting estimator (AIPW). Specifically, I run the

propensity score re-weighted pairwise regression specified in (1.15) for the characterization

of the link receivers and the link senders of interest, for example, female link receivers and

male high-achieving senders.

Ys,i = βs,0 + βs,1D
s,j
s,i + ρsXs,i + ϵs,js,i (1.15)

where Ys,i and Xs,i are respectively the outcome and covariates of student i in school s. Dj
s,i

is a dummy variable that equals to 1 if student i nominates j as their friend where both i

and j are from school s. Each pairwise observation is weighted according to its propensity of

linking and its linking status. Here I estimate the treatment effect of treated (ATT), which

means the weights are generated according to (1.16).

ws,j
s,i =


1 if Ds,j

s,i = 1

ps,js,i

1−ps,js,i

if Ds,j
s,i = 0

(1.16)
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where ws,j
s,i is the pairwise weight and ps,js,i is the estimated propensity of linking from j to

i. Note that using the propensity score weighted regressions to estimate the linking effects

does not mean we assume the true effect is linear and additive with respect to the covariates.

Just like in traditional causal inference, regressions are only used as a way of estimation.

Finally, I get the overall linking effect across schools β1 by weighting the school linking effect

by the number of observed links in that school.24

Wang and Blei (2019) suggested using a test statistics to assess the adequacy of propensity

score estimation. This test statistics is based on the idea that well-estimated propensity

scores should have good predictive power for the validation data. Following their procedure,

our estimated propensity scores for each school network pass the test and perform well.

Traditionally, the adequacy of the estimated propensity scores is assessed by balance tests,

where the difference in pre-treatment variables between the treated group and the control

group is calculated using the propensity score-adjusted sample. This method is not directly

applicable to our context. First of all, since each link sender is associated with a unique

treatment, ideally, we would compare for each link sender the pre-treatment characteristics

of the students who were treated by this link sender and the students who were not treated

by this link sender. Because in our networks of finite size, each link sender only has a few

treated students, this comparison suffers from finite sample bias. We could, however, average

the differences in pre-treatment variables between treated and control students over all link

senders. The second issue is that our propensity scores are based on the unobserved sufficient

confounders that do not correspond directly to any observed variables. Since the propensity

scores were not estimated using any observed pre-treatment variables, there is no guarantee

that any selected pre-treatment variable will be balanced across the treated and the control

groups. Nonetheless, we could still evaluate the balance for some variables we believe are

part of the confounders.

Balance tests could be conducted by running a pairwise regression similar to (1.15),

except that the covariates will become the outcome variables. Table 1.3 shows the result of

a balance test for some pre-treatment variables. According to Currarini et al. (2009) race is

24I weight it by the number of observed links because the estimand is ATT. If we are interested in ATE,
the weight should be the number of all potential links.
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a strong predictor of friendship formation, and (Carrell et al., 2013) suggests the same for

ability. Table 1.3 shows that the balance for the ability variables (column 3 and column 4)

and the race variable of being black are improved.

Table 1.3: Balance test

Pre-treatment variable:

Male US born PVT PVT + M C+ F C + Income Age M nHH F nHH Black Hispanic

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Original 0.002 −0.002∗∗∗ 0.688∗∗∗ 0.025∗∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.037∗∗∗ −0.993∗∗∗ −0.004∗∗∗ −0.006∗∗∗ −0.014∗∗∗ −0.001
(0.002) (0.001) (0.041) (0.002) (0.001) (0.001) (0.003) (0.043) (0.001) (0.001) (0.001) (0.001)

AIPW 0.001 −0.001 0.449∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.012∗∗∗ 0.036∗∗∗ −0.637∗∗∗ −0.002∗∗ −0.006∗∗∗ −0.008∗∗∗ 0.001
(0.002) (0.001) (0.044) (0.002) (0.001) (0.002) (0.003) (0.048) (0.001) (0.001) (0.001) (0.001)

Note: This table reports the average differences between the treated and the control across all link senders. The first row
is the balance test for the origianl sample. The second row is the balance test for the sample re-weighted by the propensity
scores according to inverse probability weighting method. Standard errors are estimated with subsample bootstrapping with
900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are sampled without
replacement. The pre-treatment variables from column 1 to column 12 are: whether the ego is male, born in US, their PVT
score, whether their PVT score is above the population median, whether their mother has colllege degree or above, whether their
father has colllege degree or above, their annual family income (log), their age in months, whether their mother is not in the
household, whether their father is not in the household, whether the respondent is black, and whether the respondent is hispanic.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

1.6.3 Results

Table 1.4 reports the estimated effects of friendships from different types of link sender on

bachelor’s degree attainment (column 1) and some intermediate outcomes recorded during

Wave II interviews. Each row corresponds to a characterization of the friendship based on

the character of the receiver and the sender. The receiver characteristic is shown before the

underbar “ ”, and the sender characteristic is shown after. “F” and “M” refer to the gender

female and male, respectively. “H” and “L” refer to whether the individual is a high achiever

or non-high achiever (low achiever), respectively. For example, “F FL” means the linking

effect is estimated for female link receivers and female non-high achiever link senders.

Table 1.4 shows a nearly 3 p.p increase in female students’ likelihood of obtaining a

bachelor’s degree by having an additional male high-achieving friend. For male students, an

extra male high-achieving friend means an increase of 4.6 p.p in the probability of graduating

from college. Looking at the last three columns of the table, it appearss that the positive

effect of a male high-achieving friend on both female and male students could be attributed

to an increase in their confidence. In particular, an additional male high-achieving friend
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Table 1.4: Effect of friendship on bachelor’s degree attainment and confidence

Dependent variable:

Bachelor’s Degree (p.p) Want (p.p) Will (p.p) Intelligence (p.p)

(1) (2) (3) (4)

F FL 0.354∗ −0.171 −0.819∗∗∗ −0.389
(0.191) (0.241) (0.227) (0.242)

F ML 0.336 −0.361 −0.797∗∗ −0.602
(0.313) (0.381) (0.373) (0.439)

F FH 1.877 2.377∗ 0.737 1.364
(1.262) (1.245) (1.062) (1.345)

F MH 2.981∗∗∗ 1.602 2.370∗∗∗ 3.748∗∗∗

(0.978) (1.116) (0.858) (1.324)

M FL −0.041 0.144 −0.026 −0.623∗

(0.279) (0.269) (0.270) (0.336)

M ML −0.068 0.058 −0.553∗∗ −0.816∗∗∗

(0.227) (0.204) (0.247) (0.253)

M FH 2.801 0.930 −1.919 −1.652
(1.906) (1.818) (1.764) (1.773)

M MH 4.645∗∗∗ 1.361 0.821 4.539∗∗∗

(1.526) (1.544) (1.314) (1.153)

Note: This table reports the estimated effects of high school friendship on students’ bachelor’s degree attainment (column 1),
and their intermediate outcomes (column 2-4). The dependent variable in Column (2) is a dummy variable recording whether
the student reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go to college
(Wave II). The dependent variable in Column (3) is a dummy variable recording whether the student reported a scale 5 (1 is the
lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). The dependent variable in Column (4) is a
dummy variable recording whether the student reported a scale 5 or 6 (1 is the lowest and 6 is the highest) on their intelligence
compared to other people of their age (Wave II). The estimands are all ATT. Each row corresponds to a characterisation of
the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar ,
and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and
“L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL”
means the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported
in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.5: Heterogeneous effects of friendship on bachelor’s degree attainment and intelli-
gence

Dependent variable:

Bachelor’s degree Intelligence

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL 0.510 −0.347 −1.121∗∗∗ −0.026
(0.362) (0.424) (0.429) (0.451)

F ML 0.818 −1.038∗ −0.139 −1.823∗∗

(0.634) (0.540) (0.836) (0.903)

F FH 5.912∗∗∗ −0.782 6.552∗∗ −1.115
(2.294) (2.656) (3.054) (2.531)

F MH 3.649∗ 0.492 10.283∗∗∗ −2.967
(2.084) (1.952) (2.585) (2.620)

M FL −0.780 0.329 −1.916∗∗ 1.550∗∗∗

(0.649) (0.581) (0.802) (0.568)

M ML 0.670 −0.260 −2.051∗∗∗ 0.736
(0.451) (0.423) (0.474) (0.462)

M FH 0.305 3.377 −5.573 −0.074
(5.056) (2.160) (3.607) (2.236)

M MH 4.231 8.267∗∗∗ −2.164 11.954∗∗∗

(3.005) (2.511) (2.911) (2.225)

Note: This table reports the estimated heterogeneous effects of high school friendship on students’ bachelor’s degree attainment
and self-assessed intelligence. Column (1) and (3) reports results for ego whose PVT score is below population median PVT
score. Column (2) and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are
all ATT. Each row corresponds to a characterisation of the friendship, based on the character of the receiver and the sender.
Receiver characteristics is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to
refer to the gender female and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or
non-high flyer (low flyer) respectively. For example, “F FL” means the linking effect is estimated for female link receivers and
female non-high flyer link senders. The regressions reported in all columns include cohort dummies, whether the student was
born in the US, their PVT score, whether their PVT score is above the population median PVT score, whether their mother’s
and father’s highest degree is high school, some college, college, or post college, whether their mother’s and father’s highest
education level is missing, the student’s log family income, whether family is missing, the age of the student during Wave I,
whether the student’s mother and father were in the household, dummies for whether the student is black, hispanic, white,
asian and indian. Standard errors are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each
bootstrap, 90% of the individuals (nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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increases the probability that a female student reports having a high likelihood of going to

college and being more intelligent than their same-age peers during the Wave II interview, one

year after friendship information was recorded. As for male students, their self-assessment

of being more intelligent than their same-age peers is also increased.

Female egos are also slightly more likely to graduate from college when they have an

additional female friend who is not a high achiever. However, this effect disappears if we

separately look at the effect on low-ability and high-ability female students. As shown in

Table 1.5, estimates for both ability groups of female students are not significantly different

from 0. Moreover, the positive effect of male high achiever friends seems to only exist for low-

ability female students and high-ability male students, with an increase in the probability

of going to college by about 3.6 p.p and 8.3 p.p, respectively. These positive effects are also

found in their self-assessment of being more intelligent than their peers. However, is this

positive impact on self-assessment of intelligence due to a confidence boost or an increase in

academic performance? To answer this question, I look at the effect of friendship on egos’

grades during Wave II. Table 1.6 and Table 1.7 show that across all four academic subjects,

none of the grades of low-ability female students were increased by having an additional male

high-achieving friend. As for male high-ability students, their English grade was improved

by 0.196 points on average (lowest 1, highest 5) by having an additional male high-achieving

friend, but none of the grades of the other subjects were improved.

1.7 Conclusion

By looking at the problem of peer influence through the causality lense and thereby bridging

the multiple causal inference literature and the network analysis literature, this paper shows

that the network endogeneity problem tormenting the study of the linking effect can be solved

under a set of assumptions that are easy to satisfy for many common networks. However,

this is not to say that the solution can be used for any network. In some situations, these

assumptions could fail, and alternative solutions must be used. For example, the assumption

of doubly individualistic assignment mechanism fails in the case of the marriage network or

the roommate network, where some links are direct causes of other links. In these cases, we
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Table 1.6: Heterogeneous effects of friendship on English and Math grades

Dependent variable:

English grade Math grade

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −0.004 −0.002 0.002 −0.007
(0.007) (0.008) (0.007) (0.008)

F ML −0.035∗∗ 0.037∗∗ 0.002 −0.020
(0.016) (0.017) (0.014) (0.019)

F FH 0.050 0.014 0.232∗∗∗ 0.022
(0.045) (0.028) (0.053) (0.025)

F MH −0.025 0.050 0.039 −0.012
(0.036) (0.032) (0.037) (0.041)

M FL 0.021 −0.006 −0.044∗∗ −0.008
(0.015) (0.010) (0.019) (0.008)

M ML 0.009 0.00001 −0.025∗∗∗ 0.004
(0.008) (0.006) (0.009) (0.008)

M FH 0.159∗∗ −0.00003 0.080∗ 0.061
(0.079) (0.067) (0.043) (0.045)

M MH −0.039 0.196∗∗∗ 0.060 0.002
(0.055) (0.053) (0.075) (0.043)

Note: This table reports the estimated heterogeneous effects of high school friendship on students English and Math grades
(Wave II). Column (1) and (3) reports results for ego whose PVT score is below population median PVT score. Column (2)
and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are all ATT. Each row
corresponds to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics
is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female
and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer)
respectively. For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link
senders. The regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT
score, whether their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree
is high school, some college, college, or post college, whether their mother’s and father’s highest education level is missing, the
student’s log family income, whether family is missing, the age of the student during Wave I, whether the student’s mother
and father were in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors
are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals
(nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.7: Heterogeneous effects of friendship on History and Science grades

Dependent variable:

History grade Science grade

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −0.008 −0.013 −0.025∗∗∗ −0.011
(0.006) (0.008) (0.007) (0.013)

F ML 0.046∗∗∗ 0.014 −0.014 0.022
(0.016) (0.013) (0.017) (0.018)

F FH 0.081 −0.025 0.142∗∗ −0.030
(0.058) (0.032) (0.062) (0.026)

F MH −0.028 0.104∗∗∗ 0.007 0.010
(0.041) (0.037) (0.046) (0.026)

M FL −0.035 0.030∗∗∗ −0.042∗∗ 0.007
(0.024) (0.008) (0.016) (0.008)

M ML −0.025∗∗∗ −0.014∗ 0.010 −0.002
(0.008) (0.008) (0.013) (0.006)

M FH 0.091 −0.129∗∗ 0.086∗∗ −0.130∗∗

(0.059) (0.051) (0.042) (0.052)

M MH −0.093 0.037 0.004 −0.033
(0.061) (0.037) (0.078) (0.036)

Note: This table reports the estimated heterogeneous effects of high school friendship on students History and Science grades
(Wave II). Column (1) and (3) reports results for ego whose PVT score is below population median PVT score. Column (2)
and (4) reports results for ego whose PVT score is above population median PVT score. The estimands are all ATT. Each row
corresponds to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics
is shown before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female
and male respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer)
respectively. For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link
senders. The regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT
score, whether their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree
is high school, some college, college, or post college, whether their mother’s and father’s highest education level is missing, the
student’s log family income, whether family is missing, the age of the student during Wave I, whether the student’s mother
and father were in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors
are estimated with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals
(nodes) within each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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could resort to explicit network formation modelling.

Moreover, the definition of the linking effect makes it clear that nodal characteristics are

not the treatment but the variables that could be used to define effect heterogeneity. This

means we could adapt the machine learning techniques developed to study heterogeneous

effects to the case of linking effects. Finally, we could extend this paper by relaxing the

L-SUTVA assumption and defining more sophisticated estimands.
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Chapter 2

Extensions, theoretical proofs, and

additional results on the linking effect

2.1 Extensions

2.1.1 Treatment defined over all links

Suppose we are interested in the comparison between two configurations, such as c1 and c2.

A configuration is a rule C that the treatment vector has to satisfy. For example, c1 could be

2 female and 1 male and c2 be 1 female and 2 male. Assume L-SUTVA holds, for any node

i let us denote the set of treatments that satisfies configuration c as Dc
i = {Di|C(Di) = c},

whereDi = (Di1, ...Dij, ..., DiN). For any dc1 ∈ Dc1 and dc2 ∈ Dc2 . we can define an estimand

mc1,c2
i :

mdc1 ,dc2
i = Yi(d

c1)− Yi(d
c2)

For any configuration c, use |Dc| to denote the number of elements in the set Dc and the

expectation Ec as the expectation over the set Dc with uniform probability. Average over

the set of treatments that satisfy the configuration rules, we can define the treatment effect
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of configuration c1 v.s. c2 on node i as:

mc1,c2
i = Ec1 [Yi(d

c1)]− Ec2 [Yi(d
c2)]

:=
1

|Dc1|
∑

dc1∈Dc1

Yi(d
c1)− 1

|Dc2|
∑

dc2∈Dc2

Yi(d
c2)

Finally, by averaging over the set of egos, we can easily define the average treatment

effect of configuration c1 v.s. c2 as:

mc1,c2 = Ei

[
Ec1 [Yi(d

c1)]− Ec2 [Yi(d
c2)]

]
:=

1

N

∑
i=1,...,N

( 1

|Dc1 |
∑

dc1∈Dc1

Yi(d
c1)− 1

|Dc2|
∑

dc2∈Dc2

Yi(d
c2)

)
Lemma 1 (Unconfoundedness when treatment is defined over all links).

Pr(Di = dc|Y pot
i ,Ui,V1, ...,VN) = Pr(Di = dc|Ui,V1, ...,VN)

and

Pr(Di = dc|Y pot
i , e(Ui,V1), ..., e(Ui,VN)) = Pr(Di = dc|e(Ui,V1), ..., e(Ui,VN))

Proof. The first half of the proof is identical to that of Proposition 1. For the last part,

instead we have

Pr(Di = dc|U1, ...,UN ,V1, ...,VN ,Y
pot
i )

=Pr(Di = dc|U1, ...,UN ,V1, ...,VN)

=Pr(Di = dc|Ui,V1, ...,VN)

The first equation holds because we have ruled out any confounders that affect any of the

links, which means there are no confounders to affect all of i’s links. The second equation

comes from equation (2).

Assumption 1 (Overlap for all links). 0 < Pr(Di = dc1|Ui,V1, ...,VN) < 1
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Proposition 1. Under assumption 1,2,3 and 1, mc1,c2 is identified:

mc1,c2 = E
[
Ei

[
Edc1 [Yi(Di = dc1)|e(Ui,V1), ..., e(Ui,VN),Di = dc1 ]

]]
− E

[
Ei

[
Edc2 [Yi(Di = dc2)|e(Ui,V1), ..., e(Ui,VN),Di = dc2 ]

]]

Proposition (1) is proved in Section 2.4.5.

Notice here in order to estimate this estimand, we need to condition not just on the

single pairwise propensity score e(Ui,Vj), but rather on the vector of propensity scores

e(Ui,V1), ..., e(Ui,VN). To gain some intuition, first recall that in the main analysis, the

hypothetical intervention was on a single pair, and the estimand is the average of potential

outcomes under repeated hypothetical interventions over different pairs each time. Here the

hypothetical intervention, however, is on all the relationships of node i, thus the need to

condition on the propensity scores of all relationships being formed.

Finally, note that as N goes to infinity, the overlap condition will fail to hold. To see

why, write the generalised propensity score as the product of individual pairwise propensity

score:

Pr(Di = dc1|Ui,V1, ...,VN)

=
N∏
j=1

(
Pr(Dj

i = 1|Ui,Vj)
)dc1i (

1− Pr(Dj
i = 1|Ui,Vj)

)1−d
c1
i

Since 0 < Pr(Dj
i = 1|Ui,Vj) < 1, this product goes to 0 as N goes to infinity, causing the

overlap condition to fail.

2.1.2 Alternative estimands

In the main analysis the treatment effect of sender-j relationship on receiver i’s potential

outcome is defined as the following contrast of potential outcomes:

τ ji = Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )
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where all the non-sender-j relationships of receiver i are fixed at their observed level. This

is only one of the many ways we can define the pair level estimand. In fact, for any i, j and

d−j
i we could define

τ̃ ji (d
−j
i ) = Yi(D

j
i = 1,D−j

i = d−j
i )− Yi(D

j
i = 0,D−j

i = d−j
i ) (2.1)

In this case, we could define an average linking effect for link receivers with characteristic

Ri = r and link senders with characteristic Aj = a by averaging the pair level treatment

effects over the probability distribution of the linking status of i’s other (than j) relationships:

τ̃ar = E(i,j):Ri=r,Aj=a

∑
d−j
i ∈Dj

τ̃ ji (d
−j
i )Pr(D−j

i = d−j
i ) (2.2)

With a slight abuse of notation, I use E(i,j):Ri=r,Aj=a[·] to represent E(i,j)[·|Ri = r, Aj = a].

Dj = ∪id
−j
i .1 Next I will prove that τ̃ar is identified.

1This estimand is similar to the kind of estimands usually defined in the literature of treatment interfer-
ence, e.g. Forastiere et al. (2021). The difference is that in the treatment inference literature the “direct” or
main estimand is defined by averaging over the treatments of interfering units, while here we average over
the non-focal links of the same receiver.
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Proof.

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
= E

[
E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )|Ui,V1, ...,VN

]]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )|Ui,V1, ...,VN

]]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )|Ui,V1, ...,VN

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Yi(D

j
i = 1,D−j

i = d−j
i )|Ui,V1, ...,VN, D

j
i = 1,D−j

i = d−j
i

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
= E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

E
[
Y obs
i |Ui,V1, ...,VN, D

j
i = 1,D−j

i = d−j
i

]
× Pr(D−j

i = d−j
i |Ui,V1, ...,VN)

]
The first equation comes from the law of iterated expectations, the second equation is due to

linearity of expectations, the third equation is due to the independence between potential out-

come and linking probability conditional on (Ui,V1, ...,VN) (same d-separation argument

as before), the fourth equation comes from the unconfoundedness of Yi(D
j
i = 1,D−j

i = d−j
i )

conditional on (Ui,V1, ...,VN) (1), and the fifth equation holds because when Dj
i = 1 and

D−j
i = d−j

i , Yi(D
j
i = 1,D−j

i = d−j
i ) = Y obs

i . This means if (Ui,V1, ...,VN) were observed,

or equivalently if {e(Ui,V1), ..., e(Ui,VN)} were observed,

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 1,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
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is identified, and can be estimated with observed data. The same proof holds for

E(i,j):Ri=r,Aj=a

[ ∑
d−j
i ∈Dj

Yi(D
j
i = 0,D−j

i = d−j
i )Pr(D−j

i = d−j
i )

]
.

This means estimand τ̃ar is identified.

2.1.3 Other types of linking effect to explore in the future

Indirect linking effect

As shown in Figure 2.1, we can define an indirect effect that contrasts i’s potential outcome

when some link sender j is linked to one of i’s existing direct peer and its potential outcome

when j is not linked to one of i’s existing direct peer, while keeping i’s existing peers fixed

at the realised value. This requires the relaxation of L-SUTVA and is similar to the study

of spillover effects in traditional setting (Forastiere et al., 2021).

Figure 2.1: Indirect linking effect
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Triangle reinforced linking effect

The triangle reinforced linking effect contrasts i’s potential outcome when its direct peer j

also sends a link to one of i’s other existing direct peer and its potential outcome when j is not

linked to one of i’s existing direct peer, while keeping i’s existing peers fixed at the realised

value. This could be used to study whether direct linking effect could be reinforced by an

additional indirect link. If the underlying mechanism for the peer effect is information flow,

then triangle reinforced effect shouldn’t exist. It also requires the relaxation of L-SUTVA to

allow for interference.

Figure 2.2: Triangle reinforced linking effect

2.1.4 Small networks

When networks are small, the estimation of propensity scores might be difficult, even if we

have a large number of such small networks. This is because the estimation of propensity

score is based on each single network. If the individual network is small, there is very little

information for the inference of sufficient confounders and their propensity scores.

In this case, we could still make causal discovery based on additional assumptions. The
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idea is to assume that the effective treatment is some characteristic of the node, instead of

the identity of the node. Let Y g
i (·) denote the potential outcome of link receiver i in network

g, this assumption is formalised as Assumption 2.

Assumption 2. For some function l : {0, 1}N → RM

Y g
i (Di1, Di2, ..., Din) = Y g

i (l(Di1, Di2, ..., DiN))

= Y g
i (l1, ..., lM)

Function l(·) defines the effective treatment. For example if l(·) =
∑

j=1,...,n DijXj where

X is a dummy variable, Assumption 2 means i’s links affect i’s potential outcome only

through the total number of links with characteristics X. Similarly, if l(·) =
∑

j=1,...,n DijXj∑
j=1,...,n Dij

,

Assumption 2 means i’s links affect i’s potential outcome only through the share of i’s

links with characteristics X. Note that here we do not assume that the potential outcome

is a linear function of l(·) as in the linear-in-means and linear-in-sum models. In both

examples, we have M = 1, but this is not necessary. For example, l(Di1, Di2, ..., DiN) =

(
∑

j=1,...,n DijX
1
j ,
∑

j=1,...,n DijX
2
j ) means the effective treatment is the total number of links

with characteristics X1 and the total number of links with characteristics X2.

Next I show that under Assumption 2, causal identification and estimation of linking

effect could be achieved by inferring sufficient confounders that render the distribution of

effective treatment conditionally independent, as long as M ≥ 2.

Definition 2.1.1. LetN g be the number of nodes in network g, andN =
∑

g=1N
g. o1, ..., oN

and q1, ..., qM are two vectors of random variables that satisfy the following condition:

Pr(li1, ..., liM |oi, q1, ..., qM) =
M∏

m=1

Pr(lim|oi, qm) i = 1, ..., N

Effectively li1, ..., liM is the multiple treatment vector of link receiver i, and since M is

a fixed number, we are in the standard case studied in Wang and Blei (2019). Therefore

o1, ..., oN and q1, ..., qM are sufficient confounders in the sense that after conditioning on

them, treatment (li1, ..., liM) is independent of the potential outcome Yi(li1, ..., liM).

Assumption 2 makes it possible to identify and estimate linking effects when networks
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are small. The intuition is that since nodes from different networks all share the same set

of possible treatment l1, ..., lM . we could pool the link receivers across networks together to

infer the sufficient confounders and their propensity scores. Note that in this case the esti-

mators from the statistical network analysis literature, such as the neighbourhood smoothing

estimator, won’t work. But the factor models can still be used to estimate the propensity

scores.

Finally, note that if this assumption doesn’t hold, we will get biased causal estimates.

This is because the sufficient confounders are defined as variables that make the suppos-

edly effective treatments conditionally independent. If treatments are in fact at a more

disaggregated level, these sufficient confounders are no long ‘sufficient’.

2.2 Alternative 2nd-step treatment effect estimatiors

As mentioned earlier, the inverse probability weighting estimator described in Section 1.4.2

is not the only 2nd-step estimator we could use to estimate the linking effect. Two of the

popular ones in the causal inference literature are propensity score matching and propensity

score subclassification. Here I will explain in detail how subclassification works and omit the

details for matching. The case of propensity score matching is similar to subclassification.

The only difference is that instead of dividing pairs into blocks based on similarity of propen-

sity scores, we will find for each pair its M-nearest neighbour(s) in terms of their propensity

scores. As in traditional propensity score matching, we could do both matching with replace-

ment or without replacement. Next I will start with a simple example to illustrate the steps

of subclassfication. Then I will provide formal justification of the subclassfication estimator.

2.2.1 An example of subclassification estimator

In this example there are 8 link receivers with characteristic R = r (labelled 1 to 8) and 7

link senders with characteristic A = a (labelled a to g). The treatment assignment for the

link receivers is given in Table 2.1. Here I omit the link receivers with characteristic R ̸= r

and the link senders with characteristic A ̸= a because they are not needed for the estimand

τar . Note that the matrix in Table 2.1 is not an adjacency matrix itself, but the intersection

of a selection of rows and columns from the underlying adjacency matrix.
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Table 2.1: Example treatment assignment

a b c d e f g
1 0 0 0 1 0 0 0
2 0 0 1 0 0 1 0
3 1 0 0 1 0 0 0
4 0 0 0 0 0 0 1
5 0 0 1 0 0 0 1
6 1 0 0 0 1 1 0
7 0 0 0 0 0 0 0
8 1 0 1 0 0 0 0

Table 2.2: Example propensity scores

a b c d e f g
1 0 0.1 0 0.11 0.33 0 0
2 0 0 0.5 0 0 0.33 0.16
3 0.25 0 0 0.67 0 0.25 0
4 0.15 0.33 0 0.33 0.1 0 0.27
5 0 0 0.2 0.2 0 0 0.3
6 0.33 0 0 0 0.6 0.56 0
7 0 0.2 0.3 0 0 0 0.1
8 0.5 0 0.1 0 0.3 0 0

The matrix of propensity scores are shown in Table 2.2. These propensity scores are

fictional and are only meant for illustration purpose, meaning they are not estimated. The

observed outcomes of the link receivers are: Y1 = Y2 = Y4 = Y7 = 1, and Y3 = Y5 = Y6 =

Y8 = 0.

The main idea of subclassification is that if we divide the estimated propensity scores

into small intervals, or subclasses, units within the same subclass will have similar estimated

propensity scores and therefore can be viewed as having the same potential outcome distri-

butions due to unconfoundedness. Here a unit is a pairwise link. Then, within the same

subclass, the average of the missing potential outcomes for the treated units can be unbias-

edly estimated by the observed outcomes of the control (untreated) units. Going back to the

data above, I divide the propensity scores into three subclasses: b1 = (0, 0.3), b2 = [0.3, 0.5),

b3 = [0.5, 1), with the assumption that uncounfoundedness holds within each subclass. Note

that some pairs have an estimated propensity score of 0, which violates the positivity con-

dition, so I leave them out in the data analysis. This means the estimator is now unbiased
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for the average effect only for those pairs within positive treatment probability.2

This leads to the classification of link receiver link sender pairs as shown in Table 2.3.

The estimator is then:

13

13 + 8 + 5

(Y3 + Y5 + Y8 + Y1 + Y4

5
− Y4 + Y1 + Y7 + Y5 + Y4 + Y3 + Y2 + Y7

8

)
+

8

13 + 8 + 5

(Y6 + Y2 + Y5

3
− Y4 + Y7 + Y4 + Y1 + Y8

5

)
+

5

13 + 8 + 5

(Y8 + Y2 + Y3 + Y6

4
− Y7

)
Notice that the outcome of the same link receiver could be used multiple times, such as Y4.

They can appear both in the treated group and the control group, across multiple subclasses

of propensity scores. This is because the propensity score is based on the pair, while the

outcome is based on the link receiver only, and the same link receiver could appear in multiple

pairs.

Note that unconfoundedness given propensity scores doesn’t imply pairs with the same

propensity scores have the same ui, uj. Instead, it means that the treated units and control

unis have the same distribution of ui, uj, and that treated units and and control units have

the same distribution of potential outcomes.

2.2.2 Subclassification formally

For exposition purpose, let’s focus on the estimand

τ ra = E
[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 1]

]
− E

[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 0]

]
2In fact, in subclassfication analysis, researchers often leave out units with too low or too high propensity

scores, even if they are not exactly 0 or 1. This is because with finite sample, there are often too few treated
units within the subclass of very low propensity scores and two few control units within the subclass of very
high propensity scores.
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Table 2.3: Subclassification of pairs

(0,0.3) [0.3,0.5) [0.5,1)

Dj
i=1 (3,a) (6,a) (8,a)

(5,c) (2,f) (2,c)
(8,c) (5,g) (3,d)
(1,d) (6,e)
(4,g)

Dj
i=0 (4,a) (4,b) (7,e)

(1,b) (7,c)
(7,b) (4,d)
(5,d) (1,e)
(4,e) (8,e)
(3,f)
(2,g)
(7,g)

number of pairs 13 8 5

Suppose we decide to divide the propensity scores into B subclasses and assume the propen-

sity scores within the same subclass are roughly constant, then τ ra can also be written as

τ ra =
1

B

B∑
b=1

Nb

N
E(i,j)[Y

obs
i |(i, j) ∈ b,Dj

i = 1]

− 1

B

B∑
b=1

Nb

N
E(i,j)[Y

obs
i |(i, j) ∈ b,Dj

i = 0]

=
1

B

B∑
b=1

τ ra,b

where Nb is the number of (i, j) pairs in subclass b ∈ B, and τ ra,b = Nb

N
(E(i,j)[Y

obs
i |(i, j) ∈

b,Dj
i = 1] − E(i,j)[Y

obs
i |(i, j) ∈ b,Dj

i = 0]). To estimate τ ra,b, we can simply compare the

sample mean of the outcomes of the link receiver in treated pairs (Dj
i = 1) and the sample

mean of the outcomes of the link receiver in control pairs (Dj
i = 0) belonging to the subclass

b. Alternatively, we could use linear regressions to estimate τ ra,b for all b ∈ B, thanks to the

equivalence between τ ra,b and βb of the following regression function:

Yi = αb + βbD
j
i + ϵji
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where observation is at the pair level. Within each subclass b, Dj
i is as good as random and

independent of potential outcome. This means E[ϵji |D
j
i ] = 0, and that τ ra,b = βb:

τ ra,b = E(i,j)[Y
obs
i |(i, j) ∈ b,Dj

i = 1]− E(i,j)[Y
obs
i |(i, j) ∈, Dj

i = 0]

= E(i,j)[αb + βb + ϵji |(i, j) ∈ b,Dj
i = 1]− E(i,j)[αb + ϵji |(i, j) ∈ b,Dj

i = 0]

= βb

Expressing τ ra,b as a regression coefficient allows the easy incorporation of additional covari-

ates into the analysis. Including pre-treatment predictors of the outcome in the regression

could help reduce the bias coming from the variation of propensity scores within the same

subclass, as well as increasing estimation precision, the same as in the conventional subclas-

sification method Imbens and Rubin (2015).

2.3 Discussion of Assumption 2

2.3.1 Super Population

We are interested in the super population if the estimands of interest are functions of the

infinite population, for example the contrast in the mean potential outcomes for all units

in the infinite population, including the ones not sampled. Assumption 2 is automatically

satisfied if the sample network D is viewed as constructed by uniform random sampling of

nodes from an infinite super population network with infinite number of nodes, where a link is

recorded in the sample if it exists in the super population network. Under this construction,

the randomness in link formation, or in other words, the assignment mechanism, solely comes

from random sampling.

To see why random node sampling from super population implies Assumption 2, we

proceed in 3 steps. First, based on the definition in Crane (2018), Assumption 2 is equivalent

to D being vertex exchangeable. Second, under the Aldous-Hoover theorem, the equivalence

of the De-Finetti theorem for network data, the distribution of vertex exchangeable network

links can always be represented by some graphon process:

Definition 2.3.1 (Graphon (Crane, 2018)). Function ϕ ∈ Φ : [0, 1] × [0, 1] → [0, 1] has 0
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diagonal. Fix any ϕ ∈ Φ and draw w1, w2, ... i.i.d. Uniform[0,1]. Given w1, w2, ..., assign Dj
i

conditionally independently with probabilities

Pr(Dj
i = 1|w1, w2, ...;ϕ) = ϕ(wi, wj) (2.3)

This way of constructioning D is called a graphon process.

Therefore random node sampling guarantees that there exists i.i.d. {wi}1≤i≤N such that

Pr(D = d|w1, w2, ..., wN) =
N∏
i=1

N∏
j ̸=i

Pr(Dj
i = dji |wi, wj) (2.4)

Finally, as the third step let us compare equation (2.4) to equation (1.1). We can see the

difference is that here Ui = Vi = wi. This is not restrictive because we could always trans-

form a vector of random variables to a random variable with standard uniform distribution.

Moreover, it is always possible to find another function ϕ′ such that ϕ(wi, wj)=ϕ′(Ui,Vj)

In conclusion, when the sample network is constructed by random node sampling from

an infinite super population network, the assumption of doubly individualistic assignment

mechanism must be true. This is similar to the case of conventional causal inference where

random sampling from super population guarantees that the assignment mechanism is in-

dividualistic Imbens and Rubin (2015). Note that only random node sampling guarantees

Assumption 2. Other sampling schemes, such as random link sampling, do not enjoy this

property. An example of link sampling is in the study of co-authorship network where article

is the sampling unit instead of the authors being the sampling unit.

2.3.2 Finite Population

In Leung (2015)’s network formation model, i’s linking decision could depend on the antic-

ipated network structure. Network nodes simultaneously form directed links to maximise

expected utility given their beliefs about the state of the network. Because the objective

is the expected utility, i’s linking probability will be a function of equilibrium beliefs about

others’ linking decisions, conditioning on the observed attributes of all agents in the network.

For this reason, equilibrium linking decisions are functions of the exogenous attributes only.
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As such, the pairwise linking decision can be expressed as

Dj
i = h(Zi, Zj, θij)

where Zi includes both i’s equilibrium beliefs about the the state of the network and i’s

observed exogenous attributes. Observed exogenous attributes are assumed to be common

knowledge. Leung (2015) assumes that θij are unobserved node or pairwise attributes that

are private information and satisfy θij ⊥⊥ θkl for i ̸= k. This allows θij to be correlated with

θil, which means by just conditioning on Zi and Zj we couldn’t yet write the probability

distribution of the entire network links as a conditionally independent process in the form of

equation (1.1). But if we partition θij into (v1,i, v2,ij) where v1,i are unobserved shocks to link

formation common to more than one sender j, and v2,ij are mutually independent pairwise

shocks. The idea is that we could always separate out variables that cause correlations

among θij and Vil for j ̸= l, and put them in v1,i. Then

Dj
i = h(Zi, Zj, θij)

becomes

Dj
i = h(Zi, Zj, v1,i, v2,ij) = h̃(Ui,Vj, v2,ij)

where Ui = (Zi, v1,i). Conditioning on Ui,Vj, the probability distribution of network links

then becomes exactly as in equation (1.1). Therefore, network formation games with network

externalities as specified in Leung (2015) satisfy the individualistic assignment mechanism

assumption.

2.4 Proofs

As before, subscript d in all probabilities and expectations indicate the distribution is over

random link assignment, subscript (i, j) and i indicate the distribution is over sampling

from the super-population of pairs of nodes and nodes, respectively. I use E to indicate

expectations over the distributions of both random link assignment and sampling from the
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super-population.

2.4.1 Proof of Lemma 1

Proof. LHS:

Prd(D
j
i = 1|Ui,Vj, e(Ui,Vj)) = Prd(D

j
i = 1|Ui,Vj) = e(Ui,Vj)

The first equality holds because e(Ui,Vj) is a function of Ui,Vj, the second equality holds

from the definition of e(Ui,Vj).

RHS:

Prd(D
j
i = 1|e(Ui,Vj)) = Ed[D

j
i |e(Ui,Vj)] = E[Ed[D

j
i |Ui,Vj, e(Ui,Vj)]|e(Ui,Vj)]

= E[Ed[D
j
i |Ui,Vj]|e(Ui,Vj)] = E[e(Ui,Vj)|e(Ui,Vj)]

= e(Ui,Vj)

2.4.2 Proof of Lemma 2

Proof.

Prd(D
j
i = 1|Y pot

i , e(Ui,Vj))

= Ed[D
j
i = 1|Y pot

i , e(Ui,Vj)]

= E
[
Ed[D

j
i = 1|Y pot

i ,Ui,Vj, e(Ui,Vj)]
∣∣Y pot

i , e(Ui,Vj)
]

The inner expectation is equal to Ed[D
j
i = 1|Ui,Vj, e(Ui,Vj)] by unconfoundedness given

Ui,Vj. And by the balancing property of the propensity score, this is Ed[D
j
i = 1|e(Ui,Vj)].
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Therefore the last expression is

E
[
Ed[D

j
i = 1|e(Ui,Vj)

]
|Y pot

i , e(Ui,Vj)
]

= Ed[D
j
i = 1|e(Ui,Vj)]

= Prd(D
j
i = 1|e(Ui,Vj))

2.4.3 Proof of proposition 2

Proof.

τ ra := E(i,j)[Yi(D
j
i = 1,D−j

i = d̄−j
i )− Yi(D

j
i = 0,D−j

i = d̄−j
i )|Ri = r, Aj = a]

= E
[
E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i )|Ui,Vj, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

− E
[
E(i,j)[Yi(D

j
i = 0,D−j

i = d̄−j
i )|Ui,Vj, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

= E
[
E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i )|Ui,Vj, D

j
i = 1, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

− E
[
E(i,j)[Yi(D

j
i = 0,D−j

i = d̄−j
i )|Ui,Vj, D

j
i = 0, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

= E
[
E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i )|e(Ui,Vj), D

j
i = 1, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

− E
[
E(i,j)[Yi(D

j
i = 0,D−j

i = d̄−j
i )|e(Ui,Vj), D

j
i = 0, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

= E
[
E(i,j)[Y

obs
i |Ui,Vj, D

j
i = 1, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

− E
[
E(i,j)[Y

obs
i |Ui,Vj, D

j
i = 0, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

= E
[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 1, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

− E
[
E(i,j)[Y

obs
i |e(Ui,Vj), D

j
i = 0, Ri = r, Aj = a]

∣∣Ri = r, Aj = a
]

The second equation is from law of iterated expectations. The third and fourth are from

unconfoundedness given both Ui,Vj and e(Ui,Vj). The fifth and the last equalities are

from no multiple versions of treatment assumption.
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2.4.4 Proof of unbiasedness of IPW estimator

Proof. Here I will only prove that

E(i,j)

[ 1∑N
i=1 Ri = r

· 1∑N
j=1A

j = a

∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)

]
= E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ri = r, Aj = a].

The case for

E(i,j)

[ 1∑N
i=1 Ri = r

· 1∑N
j=1A

j = a

∑
i:Ri=r

∑
j:Aj=a

(1−Dj
i ) · Y obs

i

1− e(Ui,Vj)

]
= E(i,j)[Yi(D

j
i = 0,D−j

i = d̄−j
i |Ri = r, Aj = a]

can be similarly proved.

E(i,j)

[ 1∑N
i=1 Ri = r

· 1∑N
j=1 A

j = a

∑
i:Ri=r

∑
j:Aj=a

Dj
i · Y obs

i

e(Ui,Vj)
|Ri = r, Aj = a

]
=E(i,j)

[ Y obs
i ·Dj

i

e(Ui,Vj)
|Ri = r, Aj = a

]
=E(i,j)

[Yi(D
j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)
|Ri = r, Aj = a

]
=E(i,j)

[
E(i,j)

[Yi(D
j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

∣∣Ui,Vj, Ri = r, Aj = a
]
|Ri = r, Aj = a

]

The second equation holds because Y obs
i = Yi(D

j
i = 1,D−j

i = d̄−j
i ) when Dj

i = 1, the third

equation is from iterated expectations.

Then the inner expectation can be re-written as

E(i,j)

[Yi(D
j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)

∣∣Ui,Vj, Ri = r, Aj = a
]

=
E(i,j)[D

j
i |Ui,Vj, Ri = r, Aj = a] · E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ui,Vj, Ri = r, Aj = a]

e(Ui,Vj)

=
e(Ui,Vj) · E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ui,Vj, Ri = r, Aj = a]

e(Ui,Vj)

=E(i,j)[Yi(D
j
i = 1,D−j

i = d̄−j
i |Ui,Vj, Ri = r, Aj = a]
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where the first equation holds because Dj
i and Yi(D

j
i = 1,D−j

i = d̄−j
i ) are independent

conditional on Ui,Vj, by unconfoundedness 1. Therefore

E(i,j)

[
E(i,j)

[Yi(D
j
i = 1,D−j

i = d̄−j
i ) ·Dj

i

e(Ui,Vj)
,Ui,Vj, Ri = r, Aj = a

]
|Ri = r, Aj = a

]
=E(i,j)

[
E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ui,Vj, Ri = r, Aj = a

]
|Ri = r, Aj = a

]
=E(i,j)[Yi(D

j
i = 1,D−j

i = d̄−j
i |Ri = r, Aj = a]

2.4.5 Proof of Proposition 1

Proof. mc1,c2 = Ei

[
Edc1 [Yi(d

c1)]
]
−Ei

[
Edc2 [Yi(d

c2)]
]
. Here I will only prove that Ei

[
Edc1 [Yi(d

c1)]
]

is identified. The identification of Ei

[
Edc2 [Yi(d

c2)]
]
follows similarly.

Ei

[
Edc1 [Yi(d

c1)]
]
= Ei

[
Edc1 [Yi(Di = dc1)]

]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Ui,V1, ...,VN ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Ui,V1, ...,VN ,Di = dc1 ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|Pr(Di = dc1 |Ui,V1, ...,VN),Di = dc1 ]

]]
= E

[
Ei

[
Edc1 [Yi(Di = dc1)|e(Ui,V1), ..., e(Ui,VN),Di = dc1 ]

]]

The first equation comes from the law of iterated expectations. The second equation follows

the unconfoundedness condition in Lemma 1. The third equation comes from the balancing

property of generalised propensity scores. The last equation holds because

Pr(Di = dc1|Ui,V1, ...,VN)

=
∏
j=1

(
Pr(Dj

i = 1|Ui,Vj)
)dc1i (

1− Pr(Dj
i = 1|Ui,Vj)

)1−d
c1
i

=
∏
j=1

(
e(Ui,Vj)

)dc1i (
1− e(Ui,Vj)

)1−d
c1
i
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2.5 Additional simulation results

2.5.1 Details of network formation model g2

The second network link generation process Pr(Dj
i = 1) = g2(Ci, Cj) is a slgihtly more

complicated version of a statistical block model. The linking probabilities are asymmetric,

that is g2(Ci, Cj) ̸= g2(Cj, Ci). For any node i and j, the probability of i receiving a link

from j is in general higher if i) Ci is larger and ii) Cj is slightly higher than Cj. If we

think of C as the ability of the node, this is a model where higher ability nodes receive more

friendships, but only from nodes who are slightly more able than themselves. This might

be because they don’t like people who are less able than them, and admire people who are

more able, but become jealous of people who are too much more able than themselves.

g2 : P
j
i =



0.05 if Ci ∈ [0.1, 0.2) & Cj ∈ (0.2, 0.21]

0.1 if Ci ∈ [0.2, 0.3) & Cj ∈ (0.3, 0.31]

0.15 if Ci ∈ [0.3, 0.4) & Cj ∈ (0.4, 0.41]

0.2 if Ci ∈ [0.4, 0.5) & Cj ∈ (0.5, 0.51], or if, Ci ∈ [0.5, 0.6) & Cj ∈ (0.6, 0.61]

0.25 if Ci ∈ [0.6, 0.7) & Cj ∈ (0.7, 0.71], or if, Ci ∈ [0.7, 0.8) & Cj ∈ (0.8, 0.81]

0.3 if Ci ∈ [0.8, 0.9) & Cj ∈ (0.9, 0.91], or if, Ci ∈ [0.9, 1] & Cj ∈ (0.99, 1]

0.01 if Ci ∈ [a, a+ 0.1) & Cj ∈ [a, a+ 0.1) for a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

or if, Ci ∈ [0, 0.1) & Cj ∈ [0, 0.05)

0 otherwise

(2.5)

2.6 Empirical application supplementary material
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Table 2.4: Mean degree distribution for simulated g2 networks

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N=100 0 0 0 0 0 0.2 0.8 1 1.1 1.9 4.3
N=300 0 0 0.2 1 1 1.5 2 2.6 3.3 4.7 10.2
N=500 0 0.3 1 1.5 2 2.7 3.2 4.1 5.5 7.4 15.7

Note: This table reports the mean degree distribution of the simulated networks. For each size
N=100,300,500, and for each simulated network of that size, I caculate the deciles of the number of links
each link receiver receives, and average over all the 500 simulated networks of that size.
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Table 2.5: Simulation results for g2

IPW Matching Sub Naive ols

Yb Bias X0

N=100 0.083264 0.096999 0.099578 0.135588
N=300 0.048002 0.084757 0.087946 0.167218
N=500 0.036638 0.088748 0.091242 0.186257

X1

N=100 0.074813 0.087677 0.089541 0.126791
N=300 0.04956 0.086555 0.08927 0.167975
N=500 0.035027 0.085468 0.089596 0.184303

MAE X0

N=100 0.103605 0.134378 0.112983 0.143077
N=300 0.050245 0.085861 0.087946 0.167218
N=500 0.037016 0.088748 0.091242 0.186257

X1

N=100 0.094632 0.114537 0.10228 0.13395
N=300 0.052468 0.087344 0.089483 0.167975
N=500 0.03631 0.085468 0.089596 0.184303

Yc Bias X0

N=100 0.465683 0.529408 0.561574 0.779459
N=300 0.2608 0.470754 0.494971 0.956848
N=500 0.186274 0.526728 0.546989 1.148476

X1

N=100 0.456105 0.536314 0.54596 0.76797
N=300 0.263195 0.482857 0.495973 0.954869
N=500 0.177633 0.512275 0.537143 1.136513

MAE X0

N=100 0.489148 0.601876 0.575155 0.784664
N=300 0.262791 0.470754 0.494971 0.956848
N=500 0.187562 0.526728 0.546989 1.148476

X1

N=100 0.465316 0.555527 0.548736 0.768234
N=300 0.263612 0.482857 0.495973 0.954869
N=500 0.179018 0.512275 0.537143 1.136513

Note: This table reports for the g2 model the bias and the mean absolute error (MAE) of the
inverse probability weighting estimator, the nearest neighbour matching estimator with replace-
ment, the subclassification estimator and the narive ols estimator, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification estimator is 8. All the
estimates are for the average treatment effect for the treated.
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Table 2.6: True Propensity Score vs True Effects for g1

IPW Matching Sub

Yb Bias X0

N=100 -0.00618 0.00017 -0.00134
N=300 0.002273 0.002384 0.006239
N=500 -0.00044 -0.00046 0.004332

X1

N=100 -0.00422 -0.00806 -0.00598
N=300 -0.00232 -0.00379 0.00157
N=500 0.000664 0.00104 0.005368

MAE X0

N=100 0.080231 0.097323 0.073752
N=300 0.026164 0.029931 0.023283
N=500 0.013928 0.018599 0.013309

X1

N=100 0.065956 0.085406 0.061449
N=300 0.025165 0.029701 0.023626
N=500 0.016689 0.018747 0.016217

Yc Bias X0

N=100 0.005795 0.011732 0.04541
N=300 -0.00335 -0.00898 0.026149
N=500 0.000463 -0.00044 0.033232

X1

N=100 -0.02251 -0.05712 -0.01709
N=300 -0.01018 -0.01714 0.018337
N=500 -0.0004 -0.00359 0.031436

MAE X0

N=100 0.259116 0.281393 0.208147
N=300 0.101655 0.104463 0.079084
N=500 0.069394 0.070489 0.056754

X1

N=100 0.219053 0.215143 0.159517
N=300 0.086806 0.088471 0.066411
N=500 0.058299 0.058505 0.049941

Note: This table reports for the g1 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using true peopensity scores, compared to the true linking ef-
fects, for link sender with Xj = 0 and Xj = 1 separately. The number
of matches for the matching estimator is 1, the number of subclasses for
the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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Table 2.7: True Propensity Score vs True Effects for g2

IPW Matching Sub

Yb Bias X0

N=100 0.000634 0.000271 0.003285
N=300 -0.00094 0.00024 0.004268
N=500 0.000682 0.000218 0.004587

X1

N=100 -0.00704 -0.01052 -0.00802
N=300 0.000635 -0.00019 0.004349
N=500 -0.00077 -0.00149 0.004058

MAE X0

N=100 0.077348 0.094386 0.067707
N=300 0.02476 0.030613 0.02275
N=500 0.015357 0.019648 0.014188

X1

N=100 0.068187 0.088944 0.063137
N=300 0.024323 0.029334 0.022893
N=500 0.016496 0.017966 0.014982

Yc Bias X0

N=100 0.002911 -0.00577 0.02452
N=300 -0.00701 -0.00254 0.028533
N=500 0.003169 -0.00064 0.031012

X1

N=100 -0.01186 -0.01944 -0.00279
N=300 -0.00522 -0.01368 0.020637
N=500 -0.00502 -0.00856 0.027283

MAE X0

N=100 0.270586 0.274076 0.199427
N=300 0.100294 0.103225 0.080769
N=500 0.068604 0.071309 0.055641

X1

N=100 0.211424 0.224245 0.162451
N=300 0.084764 0.091543 0.068273
N=500 0.062315 0.059699 0.049605

Note: This table reports for the g2 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using true peopensity scores, compared to the true linking ef-
fects, for link sender with Xj = 0 and Xj = 1 separately. The number
of matches for the matching estimator is 1, the number of subclasses for
the subclassification estimator is 8. All the estimates are for the average
treatment effect for the treated.
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Table 2.8: Using estimated propensity scores vs true propensity scores for g1

IPW Matching Sub

Yb Bias X0

N=100 0.083621 0.096681 0.095233
N=300 0.049644 0.084352 0.085735
N=500 0.033614 0.084658 0.083421

X1

N=100 0.082936 0.102901 0.098823
N=300 0.049853 0.087267 0.086033
N=500 0.033867 0.08433 0.083669

MAE X0

N=100 0.08604 0.13704 0.096486
N=300 0.0501 0.085676 0.085735
N=500 0.033836 0.084672 0.083421

X1

N=100 0.084721 0.124468 0.09916
N=300 0.050546 0.087735 0.086033
N=500 0.034166 0.08433 0.083669

Yc Bias X0

N=100 0.488645 0.579477 0.538106
N=300 0.26446 0.492194 0.47262
N=500 0.172692 0.512657 0.499917

X1

N=100 0.476862 0.591576 0.556474
N=300 0.26786 0.4877 0.475234
N=500 0.17529 0.510615 0.501656

MAE X0

N=100 0.488645 0.635377 0.541816
N=300 0.264799 0.492258 0.47262
N=500 0.172846 0.512657 0.499917

X1

N=100 0.476916 0.619324 0.556625
N=300 0.267956 0.4877 0.475234
N=500 0.175635 0.510615 0.501656

Note: This table reports for the g1 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using factor model estimated propensity scores, compared to the
linking effects estimated using the true propensity socres, for link sender
with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification
estimator is 8. All the estimates are for the average treatment effect for
the treated.
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Table 2.9: Using estimated propensity scores vs true propensity scores for g2

IPW Matching Sub

Yb Bias X0

N=100 0.08263 0.096729 0.096293
N=300 0.048945 0.084517 0.083678
N=500 0.035957 0.088529 0.086655

X1

N=100 0.081855 0.098198 0.097559
N=300 0.048925 0.086743 0.084921
N=500 0.035799 0.086957 0.085537

MAE X0

N=100 0.086134 0.138018 0.097608
N=300 0.049154 0.086261 0.083678
N=500 0.036224 0.088529 0.086655

X1

N=100 0.084542 0.120627 0.098128
N=300 0.049115 0.086914 0.084921
N=500 0.036091 0.086957 0.085537

Yc Bias X0

N=100 0.462772 0.535179 0.537054
N=300 0.267808 0.473296 0.466438
N=500 0.183105 0.527369 0.515976

X1

N=100 0.467964 0.555751 0.548748
N=300 0.268415 0.496538 0.475336
N=500 0.182649 0.520831 0.50986

MAE X0

N=100 0.462914 0.601572 0.537354
N=300 0.267808 0.473863 0.466438
N=500 0.183854 0.527369 0.515976

X1

N=100 0.46845 0.574089 0.549009
N=300 0.268415 0.496538 0.475336
N=500 0.182914 0.520831 0.50986

Note: This table reports for the g2 model the bias and the mean absolute
error (MAE) of the inverse probability weighting estimator, the nearest
neighbour matching estimator with replacement, and the subclassification
estimator using factor model estimated propensity scores, compared to the
linking effects estimated using the true propensity socres, for link sender
with Xj = 0 and Xj = 1 separately. The number of matches for the
matching estimator is 1, the number of subclasses for the subclassification
estimator is 8. All the estimates are for the average treatment effect for
the treated.
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Table 2.10: Matching and Subclassification with increasing matches and subclasses vs True
Effects for g1

Matching Sub

Yb Bias X0

N=100 0.096851 0.093895
N=300 0.088153 0.091161
N=500 0.083725 0.085986

X1

N=100 0.094838 0.092844
N=300 0.082749 0.08666
N=500 0.084929 0.087267

MAE X0

N=100 0.137418 0.111374
N=300 0.088258 0.091161
N=500 0.083725 0.085986

X1

N=100 0.11907 0.103271
N=300 0.082933 0.086674
N=500 0.084929 0.087267

Yc Bias X0

N=100 0.591209 0.583515
N=300 0.483253 0.493814
N=500 0.508767 0.522097

X1

N=100 0.534451 0.539381
N=300 0.467582 0.488238
N=500 0.507616 0.521799

MAE X0

N=100 0.62927 0.595459
N=300 0.483253 0.493814
N=500 0.508767 0.522097

X1

N=100 0.558012 0.542142
N=300 0.467582 0.488238
N=500 0.507616 0.521799

Note: This table reports for the g1 model the bias and the mean absolute error (MAE)
of the nearest neighbour matching estimator with replacement and the subclassification
estimator with factor model estimated propensity scores, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for
the matching estimator is 1 for networks with N = 100, 3 for networks with N = 300,
5 for networks with N = 500. The number of subclasses for the subclassification
estimator is 8 for networks with N = 100, 10 for networks with N = 300, 12 for
networks with N = 500. All the estimates are for the average treatment effect for the
treated.
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Table 2.11: Matching and Subclassification with increasing matches and subclasses vs True
Effects for g2

Matching Sub

Yb Bias X0

N=100 0.096999 0.099578
N=300 0.083618 0.086948
N=500 0.088433 0.089523

X1

N=100 0.087677 0.089541
N=300 0.086064 0.08834
N=500 0.085855 0.087839

MAE X0

N=100 0.134378 0.112983
N=300 0.083826 0.086948
N=500 0.088433 0.089523

X1

N=100 0.114537 0.10228
N=300 0.086486 0.08858
N=500 0.085855 0.087839

Yc Bias X0

N=100 0.529408 0.561574
N=300 0.470578 0.489446
N=500 0.525757 0.535877

X1

N=100 0.536314 0.54596
N=300 0.47555 0.490552
N=500 0.513496 0.526042

MAE X0

N=100 0.601876 0.575155
N=300 0.470578 0.489446
N=500 0.525757 0.535877

X1

N=100 0.555527 0.548736
N=300 0.47555 0.490552
N=500 0.513496 0.526042

Note: This table reports for the g2 model the bias and the mean absolute error (MAE)
of the nearest neighbour matching estimator with replacement and the subclassification
estimator with factor model estimated propensity scores, compared to the true linking
effects, for link sender with Xj = 0 and Xj = 1 separately. The number of matches for
the matching estimator is 1 for networks with N = 100, 3 for networks with N = 300,
5 for networks with N = 500. The number of subclasses for the subclassification
estimator is 8 for networks with N = 100, 10 for networks with N = 300, 12 for
networks with N = 500. All the estimates are for the average treatment effect for the
treated.
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Table 2.12: Variable definitions for CFP friendship re-analysis

Variable Definition in the original papers Definition in this paper

Post college ed-
ucation for par-
ents

Dummy variable equal to 1 if the respondent reports
that the highest level of education attained by their res-
idential father and residential mother has a post-college
education, and 0 otherwise. If a student either does not
have a residential father/mother or the information is
missing, that parent’s level of education is imputed us-
ing the other parent’s education a.

Same definition. The difference is
that in-home data is used instead.
If the in-home data is missing, in-
school data is used. This is because
for saturated schools, data from in-
home interviews have less missing
values than data from the in-school
survey.

log family in-
come

log of total household income (thousands). If family in-
come is missing, family income is set to the mean value
for the school and a dummy is included for missing fam-
ily income.

Same. In addition, for families with
0 annual family income, their in-
come is replaced with 0.1, in order
for the log income to take real val-
ues.

Grade Grade point average is calculated based on self-reported
student grades in math, science, english, and history
from the Wave I in-home survey where A=4, B=3, C=2,
and D or lower=1.

Same. Note: If the respondent
didn’t take the subject, I code the
grade as missing.

MaleFrac (Fe-
maleFrac) high

They are the fraction of male and female high flyers
(those with at least one post-college parent) in the grade
and school.

Same

Bachelor’s de-
gree

Dummy variable equal to 1 if the respondent has com-
pleted a bachelor’s degree (four-year college) and 0 oth-
erwise.

Same

LFP Dummy variable equal to 1 if the respondent is currently
working at least 10 hours per week, is on sick leave or
temporarily disabled, is on maternity/paternity leave, or
is unemployed and looking for work, and is equal to zero
otherwise.

Same

Ever married Dummy variable equal to one if the respondent resported
they have ever been married

Same

Children Total number of (non-deceased) biological children they
have.

Same

aFor example, if the residential father’s education is missing, but the residential mother has a high-school
education, they impute a value for father post-college by taking the average value of father post-college
among students of the same gender within the school who also have a residential mother with a high-school
education. If there are no students with equivalent mother’s education and non-missing information on
father’s education, they impute father post-college using the value of father post-college among all students
in the school who have a residential mother with a high-school education.
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Table 2.13: Naive OLS estimates for the effect of friendship

Bachelor’s Degree (p.p) Want (p.p) Will (p.p) Intelligence (p.p)

F FL 0.638∗∗∗ 0.195 −0.109 0.214
(0.163) (0.208) (0.206) (0.209)

F ML 1.150∗∗∗ 0.525 0.284 0.175
(0.342) (0.379) (0.363) (0.441)

F FH 2.984∗∗∗ 4.441∗∗∗ 2.600∗∗ 0.955
(1.118) (0.987) (1.065) (1.699)

F MH 2.052 1.474 1.429 3.451∗∗

(1.435) (1.344) (1.120) (1.741)

M FL 0.473∗ 0.152 0.147 −0.697∗∗

(0.282) (0.272) (0.283) (0.314)

M ML 0.499∗∗ −0.058 −0.253 −0.327
(0.202) (0.189) (0.217) (0.244)

M FH 4.145∗∗ 1.971 −3.514 0.021
(1.777) (2.013) (2.480) (2.833)

M MH 3.262∗∗ 1.765 2.540∗∗ 4.102∗∗∗

(1.561) (1.378) (1.123) (1.145)

Note: This table reports the naive OLS estimated effects of high school friendship on students’ bachelor’s degree attainment
(column 1), and their intermediate outcomes (column 2-4). The dependent variable in Column (2) is a dummy variable recording
whether the student reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go
to college (Wave II). The dependent variable in Column (3) is a dummy variable recording whether the student reported a
scale 5 (1 is the lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). The dependent variable in
Column (4) is a dummy variable recording whether the student reported a scale 5 or 6 (1 is the lowest and 6 is the highest) on
their intelligence compared to other people of their age (Wave II). Each row corresponds to a characterisation of the friendship,
based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar , and sender
characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and “L” are
used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL” means
the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported in
all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.14: Effect of friendship on long-term outcomes

LFP Num Children Married

(1) (2) (3)

F FL 0.002 0.003 0.007∗∗∗

(0.002) (0.005) (0.002)

F ML 0.001 −0.031∗∗∗ −0.001
(0.004) (0.008) (0.004)

F FH −0.016 −0.081∗∗∗ 0.046∗∗∗

(0.012) (0.031) (0.012)

F MH 0.024 −0.064∗∗∗ 0.006
(0.015) (0.018) (0.010)

M FL 0.010∗∗∗ 0.004 0.009∗∗∗

(0.003) (0.008) (0.003)

M ML 0.003 −0.003 −0.003
(0.003) (0.006) (0.003)

M FH −0.055∗∗ 0.024 −0.015
(0.024) (0.031) (0.016)

M MH −0.034∗∗ −0.057∗∗∗ 0.025∗

(0.013) (0.021) (0.013)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: This table reports the estimated effects of high school friendship on students’ long term outcomes measured in Wave

IV. The dependent variable in Column (1) is a dummy variable recording whether the respondent was part of the labour force.
The dependent variable in Column (2) is the number of children the respondent. The dependent variable in Column (3) is a
dummy variable recording whether the respondent has ever been married. The estimands are all ATT. Each row corresponds
to a characterisation of the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown
before the underbar , and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male
respectively. “H” and “L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively.
For example, “F FL” means the linking effect is estimated for female link receivers and female non-high flyer link senders. The
regressions reported in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether
their PVT score is above the population median PVT score, whether their mother’s and father’s highest degree is high school,
some college, college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log
family income, whether family is missing, the age of the student during Wave I, whether the student’s mother and father were
in the household, dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated
with subsample bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within
each school are sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.15: Heterogeneous effects of friendship on desire and likelihood to go to college

Dependent variable:

Want Will

PVT Median - PVT Median + PVT Median - PVT Median +

(1) (2) (3) (4)

F FL −2.100∗∗∗ 0.603 −1.256∗∗∗ −0.328
(0.508) (0.385) (0.350) (0.407)

F ML 0.216 −0.462 −1.396∗ 0.091
(0.798) (0.876) (0.774) (0.697)

F FH 5.494∗∗∗ −0.387 2.600 −0.410
(2.089) (1.708) (3.457) (1.584)

F MH 4.506∗ −0.722 5.365∗∗∗ −0.441
(2.393) (1.548) (1.816) (1.260)

M FL 0.153 −0.893∗ 0.394 −0.890∗

(0.767) (0.496) (0.746) (0.522)

M ML 1.010∗∗ −0.525 −0.352 −0.884∗∗

(0.436) (0.437) (0.480) (0.436)

M FH 1.805 0.648 −5.984∗∗ 0.746
(2.537) (1.928) (2.426) (2.587)

M MH −4.820∗∗ 10.053∗∗∗ −3.905 9.147∗∗∗

(2.295) (2.411) (2.912) (2.593)

Note: This table reports the estimated heterogeneous effects of high school friendship on students’ desire and likelihood of
going to college. The dependent variable in Column (1) and Column (2) is a dummy variable recording whether the student
reported a scale 5 (1 is the lowest and 5 is the highest) on the the extent of how much they want to go to college (Wave II).
The dependent variable in Column (3) and Column (4) is a dummy variable recording whether the student reported a scale
5 (1 is the lowest and 5 is the highest) on the likelihood that they will go to college (Wave II). Column (1) and (3) reports
results for ego whose PVT score is below population median PVT score. Column (2) and (4) reports results for ego whose
PVT score is above population median PVT score. The estimands are all ATT. Each row corresponds to a characterisation of
the friendship, based on the character of the receiver and the sender. Receiver characteristics is shown before the underbar ,
and sender characteristics is shown after. “F” and “M” are used to refer to the gender female and male respectively. “H” and
“L” are used to refer to whether the individual is a high flyer or non-high flyer (low flyer) respectively. For example, “F FL”
means the linking effect is estimated for female link receivers and female non-high flyer link senders. The regressions reported
in all columns include cohort dummies, whether the student was born in the US, their PVT score, whether their PVT score
is above the population median PVT score, whether their mother’s and father’s highest degree is high school, some college,
college, or post college, whether their mother’s and father’s highest education level is missing, the student’s log family income,
whether family is missing, the age of the student during Wave I, whether the student’s mother and father were in the household,
dummies for whether the student is black, hispanic, white, asian and indian. Standard errors are estimated with subsample
bootstrapping with 900 subsamples drawn randomly. At each bootstrap, 90% of the individuals (nodes) within each school are
sampled without replacement. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 3

Gender difference in preference for

competition

3.1 Introduction

Competition exists everywhere in our daily life. Students compete in exams, athletes com-

pete in tournaments, and firms compete in the market. While some competitions are used

to select the best performer, other competitions are designed solely to improve the perfor-

mance of their participants. In fact, is it shown that competition improves performance

even without tangible rewards. For example, Delfgaauw et al. (2013) finds that regardless of

being rewarded or not for winning sales competition, workers in retail stores perform better

if they are put in competition with each other. The assumption underlying the design of

these competitions is that human beings are status-seeking, meaning they care about their

relative position among their peers. As formally shown by Hopkins and Kornienko (2004),

status-seeking people spend more on status-enhancing goods when there is competition for

status than when there is no competition for status. Tincani (2018) translates this model to

an education setting where students seek higher ranking in terms of academic performance

within their classroom.

A common feature of the theoretical models in Hopkins and Kornienko (2004) and Tincani

(2018) is that everyone has the same preference for status or ranking. However, from the

empirical literature on competition, it is clear that there are gender differences in attitudes
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toward competition. The general consensus in the empirical literature, most of which use

insights from lab experiments, is that women shy away from competition, largely due to their

stronger risk aversion and more negative beliefs about their ability (Niederle and Vesterlund,

2011; Gneezy et al., 2003).

It has been difficult to measure the gender difference in attitudes towards competition

that is purely due to preference because, in most settings, the competition is constructed in

a way that involves risk and/or belief. In contrast, I am able to isolate the gender difference

in preference for competition thanks to the special features of the Duolingo setting. During

the weekly Duolingo leaderboard competition, learners could see the real-time performance

of all competitors in their group. This eliminates the risk component in the competition.

Moreover, all lessons and exercises on Duolingo are standardized. Each time a learner makes

a mistake in the exercise, the correct answer is provided, and the same question will re-

appear at the end of the exercise. In order to complete an exercise, the learner only needs

to correctly answer all the questions. Each exercise has about 10 questions and takes about

1-5 minutes to finish. Due to the known and fixed production technology that produces

performance, it is also unlikely that there is a gender difference in beliefs about ability.

Finally, the fact that learners are randomly assigned to competition groups eliminates any

concern about self-selection.

In order to empirically examine the differences in preference for ranking between female

and male Duolingo players, I introduce preference heterogeneity into the utility function

specified in Hopkins and Kornienko (2004) and Tincani (2018), and I derive testable im-

plications of the model. The empirical results show that female learners exhibit a stronger

preference for ranking than male learners. This suggests that by designing competition in a

way that does not involve risks, e.g. through real-time performance feedback, and makes it

clear to participants how efforts are transformed to achievements, women could outperform

men due to their stronger innate preference for ranking. This is in line with the findings

in Alan and Ertac (2019), which suggest the gender difference in willingness to compete

disappears when students are introduced a worldview that emphasizes the importance of

effort.

Section 3.2 introduces the institutional setting of the Duolingo leaderboard competition
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and details the data collection procedure. Section 3.3 develops a theoretical model of group

competition that incorporates gender differences in preference for ranking. Section 3.4 in-

troduces the empirical strategy. Section 3.5 discusses the empirical results. Section 3.6

concludes and suggests future improvements.

3.2 Duolingo and data collection

Duolingo is one of the most popular online language learning platforms used by more than

300 million users for second language learning. All contents on Duolingo are freely available

to its users.1 It is accessible both via web (http://www.duolingo.com) and mobile apps.

Duolingo divides learning targets into skills (e.g. Food, Plural, etc). Each skill is composed

of several lessons that include tasks such as completing the sentence, translation, speaking,

and listening. It usually takes between 1-5 minutes to complete one lesson. Users earn

experience points (XP) for completing lessons.

Since the year 2019, Duolingo introduced a new feature called leaderboard, where users

could compete with other people in the same league based on their XP. Every Monday at

12am UTC, leaderboards are reset, and 30 people who complete their first lesson at around

the same time after the reset are paired to be in the same league.2 Users could opt out of

the leaderboard competition by setting their account as private.

Only XP earned during that week counts for the leaderboard competition. During the

week, users could see the rank of everyone else in the same league, as well as how many XP

they have. There are 10 leagues level, starting from Bronze to Diamond. At the end of the

week, the top 10 will advance to the next league level, while the bottom 5 will be demoted

to the previous league level.3 The rest remains at the same league level.4 Users who finish

in the top 3 of their league will get some lingots, the Duolingo currency that can be used to

1Users could pay a monthly fee to become a premium member. Among other things, premium users do
not see ads on the platform and can access the content offline. However, premium users and non-premium
users have the same access to all Duolingo content.

2Note that users learning different languages could be paired into the same league as long as they com-
pleted their first lesson at around the same time.

3There are some exceptions. For the Bronze league, the top 20 will be promoted to the next league,
Silver. For the Silver league, the top 15 will be promoted to Gold. For the Bronze league, no one will be
demoted as there is no league lower.

4You will not be demoted if you don’t enter the leaderboard competition during the week. That is if you
don’t do any lessons during that week.
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purchase certain features, such as streak freeze.5 In general, users have more lingots than

they could spend as it is easy to earn them in many ways. In addition, if you finish as top 1

in any league level, you will earn the badge Winner, and if you finish as top 1 in the Diamond

league, you will earn the badge Legendary. Other users are able to see these badges if they

go to your profile page. In conclusion, even though no tangible reward or punishment results

from the leaderboard competition, users have incentives to perform well to gain recognition

from others as well as to fulfill their need to succeed.

For data collection, I created hundreds of Duolingo accounts, all controlled exclusively by

me. I call these accounts the seed players. All seed players are learning the Italian language

with English as their “mother tongue”. The nicknames of the seed accounts are randomly

selected from the five most common female names and the five most common male names.

In order to identify all the learners in the same group during a certain week, it is neces-

sary to have at least one seed player enter that group. seed players enter the leaderboard

competition sequentially at the beginning of the week. Every seed player will only do 2

lessons when they enter their group, earning about 25-30 XP, and do nothing else during

the rest of the week.6 The order of the seed accounts entering the competition is random.

Because within a certain time interval, there could be more or fewer real learners entering the

leaderboard, sometimes two or more seed accounts enter the same leaderboard competition.

Once a seed player enters a group, the profiles of the learners in the same group will be

scraped. After the competition ends, learner data is scraped again in order to obtain their

learning activities during the competition week. The gender of the learners is inferred from

their Duolingo username, which is often variation of their real name.

The current data is collected during two waves. The first wave contains the competition

data for the week of 29 May -5 June 2022. These are 363 groups, all of which are in the

league level “Gold”. The second wave contains the competition data for the week of 17 July

-24 July 2022. In the second wave, some groups are in the league level “Gold” (326 groups),

and some groups are in the league level “Sapphire” (259 groups), which is one level above

5Users have an n-day streak if they have non-zero daily XP for n consecutive days. If a user is inactive
for 24 hours, then his/her n-day streak is lost, a new streak will start once he/her starts earning XP again.
The streak freeze allows users to not lose the n-day streak if they are inactive for a day.

6There are some exceptions where seed players do more than 2 lessons due to technical issues.
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“Gold”.

Table 3.1 shows the summary statistics of the seed players, and Table 3.2 shows the

summary statistics of the real active learners. “XP past 7d” gives the total number of XP

earned 7 days prior to the start of the corresponding competition. For learners with non-

zero “XP past 7d”, this statistic gives the total XP earned during their last competition

week. “Total crowns” gives the total number of crowns the learner earned until the moment

the learner data is scraped.7 “Total XP” refers to the total XP earned until the current

competition started.

None of the seed players had any activities during the last 7 days prior to entering the

competition, as reflected in Table 3.1. The seed players in the second wave on average have

more XP and more crowns than in the first wave. This is natural because the seed players

who entered the competition during the first wave only did 2 lessons during the entire week

and therefore are demoted to the lower “Silver” league. After the first wave of competition

ended, these seed players are put into another competition in order to bring them back up

to the “Gold” league.

Looking at Table 3.2, we see that the active learners in Wave II Gold league on average

earned more than twice as many XPs during the days prior to the recorded competition than

active learners in Wave I Gold league did. They also have more than 10 percent more total

crowns and total XPs. This difference could be due to a seasonal effect: learners might have

more time and be more active during July than during May due to holidays. The active

learners in the Sapphire league on average have higher statistics than the active learners in

the Gold league. This should not come as surprise either since Sapphire is a level higher

than the Gold league, and in general, learners need to perform better to be in the higher

league.

7Note that the time a learner’s data is scraped is later than the time that learner started the competition.
This means some of the crowns might have been earned after the competition started. Therefore, strictly
speaking, the total number of crowns is not a pre-treatment variable. However, since the time interval
between a learner’s start of the competition and the time that her data is scraped is usually short, making
it difficult to earn a lot of crowns within this period, I still use it as a pre-treatment variable.
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Table 3.1: Descriptive statistics for seed players

Mean SD Median

Wave I Gold (363 groups)

XP past 7d 0.00 0.00 0.00

total crowns 14.15 2.23 15.00

total XP 758.15 110.46 771.00

Wave II Gold (326 groups)

XP past 7d 0.00 0.00 0.00

total crowns 16.61 1.74 17.00

total XP 918.10 137.90 898.50

Wave II Sapphire (259 groups)

XP past 7d 0.00 0.00 0.00

total crowns 16.78 1.51 17.00

total XP 919.97 126.28 909.00

Table 3.2: Descriptive statistics for active players

Mean SD Median

Wave I Gold (363 groups)

Female 0.54 - -

XP past 7d 33.30 56.87 29.00

Total crowns 95.34 125.47 53.00

Total XP 7644.82 11128.89 3798.00

Wave II Gold (326 groups)

Female 0.52 - -

XP past 7d 85.43 55.23 92.00

Total crowns 105.74 152.12 51.00

Total XP 8994.71 14322.41 3740.00

Wave II Sapphire (259 groups)

Female 0.52 - -

XP past 7d 88.91 47.92 103.00

Total crowns 141.95 163.28 87.00

Total XP 13021.82 15334.62 7501.00
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3.3 Conceptual framework

A general model of group competition in classrooms is considered in Tincani (2018), which

is a derivation from the model of status-seeking by Hopkins and Kornienko (2004). First,

a simple model of group competition directly adapted from Tincani (2018) is described in

Section 3.3.1. Then in Section 3.3.2, I allow heterogeneous preferences for ranking as an

extension of the baseline model, allowing the study of gender differences in preference for

competition.

3.3.1 A model of group competition

The level of effort a learner exerts, denoted as e, can be chosen by the learner, and it has

a positive effect on their learning outcome, denoted as y and measured by cumulative XP

earned during some time period. The effort is costly, and learners differ on this cost, denoted

as q. q is a function of e and learner type c, q(e, c). In the case of Duolingo, c could represent

time constraints, language learning talent, existing language knowledge, the language itself,

how different the language is from the mother tongue, etc.8 The model imposes that q

decreases in c, so higher type c means lower marginal cost of effort. Learners compete

within their group, which consists of 30 learners. Learners gain utility from improvement in

their language skills, as well as their ranking within their leaderboard group. Additionally,

utility decreases with the cost of effort. In the baseline model, type c is the only source of

heterogeneity.

Formally denote utility as U(y, q). It has two components, the utility that only depends

on own learning outcome y and cost of effort q, denoted as V (y, q), and the utility that

depends on the relative ranking R of the learner, S(R). As conventional in the study of

status-seeking, ranking Ri is represented by the proportion of learners whose outcome y is

lower than yi. This is FY (yi), where FY (·) is the c.d.f of y. The overall utility is given

by U(y, q) = V (y, q)(S(FY (y)) + ϕ), where ϕ > 0 is to make sure that even the learner

with the lowest rank still gets positive utility from their absolute level of learning outcome.

Furthermore, the following assumptions on the utility function are made:

8For an individual with many other time-consuming commitments will face a trade-off between learning
a language and doing other things. Therefore the cost related to time constraints is an opportunity cost.
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Assumption 1. dddddddddtext

1.1 y(e) = αe. The learning outcome y measured by XP is a deterministic linear function

of effort, and with zero effort, learners earn zero XP.9 Because of the deterministic

linear relationship between y and e, ranking FY (y) can be equivalently expressed as

FE(e) where FE(·) is the c.d.f of effort.

1.2 V (y, q) = k1y − k2q − k3yq where k1, k2 > 0, k3 ≥ 0. That is, the utility from own

achievement is linearly increasing in the learning outcome, linearly decreasing in the

effort cost, and the marginal utility from the learning outcome is weakly lower at a

higher cost.

Learner type c is private information, but the distribution of c, G(c), is common knowl-

edge. Learners choose their own effort to maximize their overall utility by solving the fol-

lowing first order condition:

αV1 +
V

FE(e) + ϕ
fE(e) = −V2

∂q

∂e
(3.1)

where V1 = ∂V
∂y
, V2 = ∂V

∂q
, fE(e) is the p.d.f of effort e. One important result from Tincani

(2018) and Hopkins and Kornienko (2004) is that the symmetric equilibrium strategy e(c) is

a strictly increasing function of c. This means the first order condition can also be expressed

as

αV1 +
V

G(c(e)) + ϕ
g(c(e))c′(e) = −V2

∂q

∂e
(3.2)

where c(e) is an increasing function mapping the equilibrium effort to type. It is useful to

note that in equilibrium, learners always choose a higher level of effort than they would in

the situation of no rank concerns.

Another important result from Tincani (2018) and Hopkins and Kornienko (2004) con-

cerns comparative statistics for any two groups A and B with distributions of type c given

9In Tincani (2018), α and u are a function of group mean type to incorporate technological spillover
(Blume et al., 2015). α is allowed to differ by gender. This technological spillover should not exist in the
case of Duolingo, because learners can not discuss or chat with each other, which means their own learning
outcome is only a function of their own effort.
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by GA(c) and GB(c). In particular, they show that if GB(c) is a mean-preserving spread of

GA(c), for example, if GA(c) and GB(c) have the same mean but GB(c) has a larger variance

than GA(c), the following results hold:

1. A learner with middle c exerts less effort and achieves lower performance in group B

than in group A.

2. A learner with low cexerts more effort and achieves better performance in group B

than in group A.

3. A learner with high c may perform better or worse in group B than in group A,

depending on the relative strength of the preference for achievement versus rank.

The intuition is that when the type distribution of group B is a mean-preserving spread of

that of group A, there are fewer learners with middle type, but more learners with high and

low types in group B. This means for middle type learners, improving their rank is more

difficult in group B, while for low type and high type learners, improving their rank is easier

in group B. To see why, notice that if there are more people of similar type, then for the

same increase in effort, it is easier to surpass more people and therefore improve one’s rank

by a high amount. For this reason, the low type learners will respond to an increase in the

density of their type by exerting more effort, and the middle type learners will respond to

a decrease in the density of their type by exerting more effort while being able to maintain

their rank. For the high type learner, there are two forces that push toward the opposite

direction. On the one hand, just like low type learners, the high type learners have an

incentive to exert more effort because for the same amount of increase in effort, they are

now able to surpass more people. On the other hand, since the middle type learners are

exerting less effort, the high type learners also have the incentive to exert less effort while

maintaining their rank. The final result depends on the relative strength of preference for

higher ranks and the preference for the absolute level of achievement.

3.3.2 Incorporating heterogeneous preferences

The baseline model assumes that learners only differ in their type c, which is the determinant

of how costly a unit effort is. Next, I will allow learners to have heterogeneous preferences
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for both ranking and absolute achievement based on their gender. I do this by assuming the

utility function is instead given by (3.3)

Assumption 2 (Utility function with heterogeneous preferences).

Ui(y, q; γi, ϕi) = V (y, q)(γiS(FY (y)) + ϕi) γi = {γF , γM}, ϕi = {ϕF , ϕM} (3.3)

Wlog, suppose γF > γM , the utility function given by (3.3) means for any given level of

achievement y and cost of effort q, therefore fixing the absolute utility V , an equal increase

in the rank FY (y) will give female learners more utility than the male learners. In other

words, γi measures the preference for ranking. Similarly, wlog, suppose ϕF > ϕM , the utility

function given by (3.3) means that for any given rank, an increase in the absolute utility

gives more overall utility to female learners than male learners. That is, ϕi measures the

strength of preference for the absolute achievement net of the cost of effort.

In order to analyze how heterogeneous preferences affect the equilibrium strategy, let us

first rewrite the overall utility function for female and male learners separately.

Female learners:

UF (y, q) = ϕFV (y, q)(
γF
ϕF

S(FY (y)) + 1) (3.4)

Male learners:

UM(y, q) = ϕMV (y, q)(
γM
ϕM

S(FY (y)) + 1) (3.5)

An immediate observation from equations (3.4) and (3.5) is that preferences heterogeneity

only affects the equilibrium strategy through γM
ϕM

. This is because when taking the FOCs, ϕF

and ϕM in front of V will disappear. In other words, it is the relative strength of preference

for ranking and absolute achievement that determines the equilibrium strategy. Therefore,

it is only possible to identify γF
ϕF

( γM
ϕM

) as a whole, and not separately for γF and ϕF , nor γM

and ϕM .

Denote θF = γF
ϕF

and θM = γM
ϕM

. Because it is still true that for all learners, the equilibrium

effort with ranking concern is still more than the optimal effort level without ranking concern,
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the equilibrium effort continues to be a compromise between decreasing utility from the

absolute achievement and increasing utility from a higher ranking. A higher θ therefore

represents a higher willingness to increase ranking at the cost of a lower absolute utility.

Delaying rigorous proofs to the future and only resorting to the intuitions developed by

Tincani (2018) and Hopkins and Kornienko (2004), next, I will give some conjectures on

how the equilibrium strategies and the comparative statistics should look like.

Proposition 1. Under Assumptions 1 and 2,

1.1 The equilibrium effort is a function of both c and θ, denoted by e(c, θ).

1.2 Conditional on θ, the equilibrium effort is a strictly increasing function of c. That is,

among female learners, the ones with higher c will exert more effort, and among male

learners, the ones with higher c will exert more effort.

1.3 Conditional on c, the equilibrium effort is higher for the learners with higher θ.

The intuition for 1.3 is that the equilibrium effort with ranking concern must be higher

than the equilibrium effort without the ranking concern, meaning that the equilibrium effort

with ranking concern is sub-optimal (too high) when we only look at the direct utility from

absolute achievement. Therefore, learners will only have the incentive to increase their effort

if they can get extra utility from ranking. This extra utility is higher for learners with a

stronger preference for ranking, hence their higher equilibrium effort.

In terms of comparative statistics, when we change the distribution of types within a

group, the results from Tincani (2018) and Hopkins and Kornienko (2004) need to be modi-

fied to accommodate the heterogeneity of preferences. This is because the equilibrium effort

is no longer only a function of type c, but is also dependent on gender, meaning the relative

competitiveness between pairs of groups r and r′ can no longer be characterized by Gr(c)

and Gr′(c).
10

10For example, let us assume θF > θM . Then in the case where GB(c) is a mean-preserving spread of
GA(c), if group B also has more middle c female learners who have a stronger preference for ranking, a given
middle c learner, if they were put in group B compared to if they were put in group A, could either face
an either higher degree of competition when the effect of more female middle c learners dominates or face a
lower degree of competition when the effect of less middle c learners dominates.
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Assumption 3. Distribution of type in the population is independent of gender:

G(ci|Femalei = 1) = G(ci|Femalei = 0) = G(ci) (3.6)

Because type completely determined the effort cost for any given level of effort, Assump-

tion 3 essentially assumes female and male learners have the same production technology in

turning effort into achievement. This assumption could be violated in situations where fe-

male learners are better at completing the Duolingo exercises, for example, if female learners

need less time to complete a standardized lesson. In the next stage of this project, I will

test this assumption by inferring the task completion time from the data. I will also explore

ways to relax this assumption.

Proposition 2 (Comparative statistics). Under Assumptions 1, 2 and 3, for any pair of

groups A and B where GB(c) is a mean preserving spread of GA(c), and the share of female

learner are the same in both groups, the following is true:

2.1 Given learner gender, in expectation (over all such pairs of groups), a learner with

middle c exerts less effort and achieves lower performance in group B than in group

A; a learner with low c exerts more effort and achieves higher performance in group B

than in group A; a learner with high c may perform better or worse in group B than

in group A, depending on the value of θ.

2.2 Given learner type c, in expectation (over all such pairs of groups), the difference in

a low or high (middle) type learner’s performance is positive (negative) when moving

from group B to group A if the learner has higher θ.

The intuition for Proposition 2.2 is that for any pair of groups A and B, learners with

a higher relative preference for ranking θ will exert more effort and obtain more XP when

they are placed in the group with higher density of similar type learners. If B is a mean-

preserving spread of A, high type and low type learners will have a higher density of similar

type learners if they were put in group B than group A, and middle type learners will have a

lower density of similar type learners if they were put in group B than group A. This means

high and low type learners with a higher relative preference for ranking will exert more effort
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than learners with the same type c but lower relative preference for ranking, while middle

type learners with a higher relative preference for ranking will exert less effort than learners

with the same type c but lower relative preference for ranking.

3.4 Empirical strategy

Proposition 1 and 2 suggest if we were to observe every learner’s type c, the relationship

between θF and θM could be empirically examined with two tests. The first one is a direct

result of Proposition 1, and tests whether yrF (c) > yrM(c). The second one comes from

Proposition 2.2 and looks within pairs of groups where one is a mean-preserving spread of

the other in terms of the distribution of c, whether the effect of higher density of similar

types causes female learners to change their effort more than male learners. However, both

of the two tests require conditioning on the unobserved type c. For this reason, I will first

discuss how to measure the unobserved type (or substitute type, as defined later) in Section

3.4.1. Then I will propose two empirical tests in Section 3.4.2.

3.4.1 Conditioning on unobserved type c

In order to test the relationship between θF and θM , we need to condition on type c. However,

type c is not observed by the econometrician. One way to deal with this problem is by

assuming c is a function of some individual characteristics and estimate the parameters of

this linear function by minimizing the distance between the predicted achievement y and the

observed y (Tincani, 2018).

In this paper, I propose another solution by observing that instead of conditioning on

c itself, it is sufficient to condition on any variable that is a monotone transformation of c.

Recall that the equilibrium achievement of learner i is a function of their own type c, their

preference parameter θ, and the distribution of types and gender in their group g in week t.

yit = f(ci, θi, sit)

for some function f .

Assumption 4. ddddddddddddd
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1. The distribution of types and gender in i’s group affects learner i only through a

demeaned summary statistic sit, with E(sit) = 0.

2. learner type c and relative preference for ranking θ do not change over time. This

means the observed achievement of learner i during week t can be expressed as

yit = f(ci, θi, sit)

for some function f .

3. f(ci, θi, sit) can be parameterized as the following linear function

yit = m(ci) + sit +m(ci)× sit +m(ci)× l(θF )× Femalei +m(ci)× l(θM)× (1− Femalei)

(3.7)

m(·) is a strictly increasing function of c because the equilibrium effort, hence achievement,

is proved to be a strictly increasing function of c, for any given θ and distribution of types

and gender. l(·) is also an increasing function because everything else equal, the higher the

relative preference for ranking, the higher the equilibrium effort and achievement. Param-

eterization as in equation (3.7) assumes that i) the effect of relative preference θ, which is

determined by gender, is separable from the effect of group type and gender distribution sit;

ii) the effect of relative preference for ranking depends linearly on own type ci; and iii) the

effect of within-group distribution of types and gender depends on own type ci linearly.

Now suppose after collecting leaderboard competition data during period t = 0, we

follow all learners and collect data on their weekly achievements yit for an additional T

periods (weeks), and defined the average achievement for learner i across periods T as

ȳTi :=
1

T

T∑
t=1

yit

= m(ci) + s̄i +m(ci)s̄i +m(ci)× l(θF )× Femalei +m(ci)× l(θM)× (1− Femalei)

(3.8)

where s̄i :=
1
T

∑T
t=1 sit. As T → ∞, s̄i → 0, and because of randomization of leaderboard
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competition groups, sit is independent of learner type ci, therefore m(ci)s̄i → 0.11 This

means

ȳi := lim
T→∞

ȳTi = m(ci) +m(ci)× l(θF )× Femalei +m(ci)× l(θM)× (1− Femalei) (3.9)

Next define ȳF := E[ȳi|Femalei = 1] and ȳM := E[ȳi|Femalei = 0]. Plugging in equation

(3.9), we get

ȳF =E[m(ci)|Femalei = 1]

+ E[m(ci)× l(θF )× Femalei|Femalei = 1]

+ E[m(ci)× l(θM)× (1− Femalei)|Femalei = 1]

Next notice that Assumption 3 means E[m(ci)|Femalei = 1] = E[m(ci)|Femalei = 0] =

µc, E[m(ci) × l(θF ) × Femalei|Femalei = 1] = l(θF )µc, and E[m(ci) × l(θM) × (1 −

Femalei)|Femalei = 1] = 0. That is,

ȳF = µc + l(θF )µc

And similarly

ȳM = µc + l(θM)µc

Therefore, ȳF
ȳM

= l(θF )
l(θM )

, and ȳF − ȳM = (l(θF )− l(θM))µc. Plug this back in to equation (3.9),

11The fact that learners could be promoted/demoted to a different or remain at the same league level
after every week’s competition might complicate things. My conjecture is that learners will eventually have
a stable range of league levels they compete at, so approximately, in the steady state, the type and gender
distribution of their leaderboard group is orthogonal to their type. A proper way to account for this is left
for future work.
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we get

ȳi = m(ci) +m(ci)× (l(θF )− l(θM))× Femalei +m(ci)× l(θM)

= m(ci)(1 + l(θM) +
ȳF − ȳM

µc

× Femalei)

=
m(ci)

µc

(µc + µcl(θM) + (ȳF − ȳM)× Femalei)

=
m(ci)

µc

(ȳM + (ȳF − ȳM)× Femalei)

Rearrange we get

c̃i :=
ȳi

ȳM + (ȳF − ȳM)× Femalei
=

m(ci)

µc

(3.10)

This means c̃i is an increasing function of ci, and we could use

c̃Ti :=
ȳTi

ȳTM + (ȳTF − ȳTM)× Femalei
(3.11)

as an estimator of c̃i.

3.4.2 Testing gender difference in relative preference for ranking

A further assumption is needed to translate Proposition 1 and Proposition 2, which are based

on the unobserved type c, to empirical tests based on the substitute type c̃.

Assumption 5. m(·) is linear.

With Assumption 5, it is easy to show that if µB
c̃ = µA

c̃ and σB
c̃ > σA

c̃ , it is also true

that µB
c = µA

c and σB
c > σA

c . Let hr
F (M)(c̃) denote the achievement of a female (male)

learner with substitute type c̃ when she (he) is put in group r. This means if θF > θM ,

hB
F (c̃)−hA

F (c̃) > hB
M(c̃)−hA

M(c̃) for high and low levels of c, and hB
F (c̃)−hA

F (c̃) < hB
M(c̃)−hA

M(c̃)

for middle level of c̃.

Empirically, similar to Tincani (2018), we could estimate the functiona hr
F (c̃) and hr

F (c̃)
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for any group r non-parametrically:

ĥr
F (c̃) =

∑
i∈r,Femalei=1wiK( ci−c

b
)yi∑

i∈r,Femalei=1wiK( ci−c
b
)

(3.12)

ĥr
M(c̃) =

∑
i∈r,Femalei=0wiK( ci−c

b
)yi∑

i∈r,Femalei=0 wiK( ci−c
b
)

(3.13)

where a standard normal KernelK(·), the optimal bandwidth b = 1.06σ̂cn
−1/5 that minimizes

the Approximated Mean Integrated Squared Error are used. The weights wi are such that

only observations i where the p.d.f. of c at ci exceeds a small positive number are kept.

Next, we could again non-parametrically estimate the effect of an increase in group

(substitute) type dispersion on the performance of a learner of any (substitute) type for

female and male learners separately. This is done by finding all pairs of groups where one has

higher variance than the other and calculating the difference in their expected performance

for every c̃ (c) and gender, where the difference is weighted to make sure higher weights are

given to pairs of groups with more similar mean (substitute) type.

∆̂F (c̃) =

∑
r=1

∑
r′=r+1 ωrr′(ĥ

r
F (c̃)− ĥr′

F (c̃))∑
r=1

∑
r′=r+1 ωrr′

(3.14)

∆̂M(c̃) =

∑
r=1

∑
r′=r+1 ωrr′(ĥ

r
M(c̃)− ĥr′

M(c̃))∑
r=1

∑
r′=r+1 ωrr′

(3.15)

where ωrr′ = 1{σr > σr′} 1
bµ
K(

µr−µr′
bµ

).

Finally, the estimated difference between female and male learners in their response to

increased type dispersion is given by

δ̂F,M(c̃) = ∆̂F (c̃)− ∆̂M(c̃) (3.16)

Again, according to the prediction of the model, if female learners have a higher relative

preference for ranking, δF,M(c̃) should be positive for high and low levels of c̃, and negative
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for middle level of c̃.

Additionally, as an implication of Proposition 1 is that if female learners have a stronger

relative preference for ranking, hr
F (c̃)] should be higher than hr

M(c̃)] for all r and c. Ψ̂ defined

in (3.17) could be used to test this.

Ψ̂F,M(c̃) =
1

Ng

∑
r=1

(ĥr
F (c̃)− ĥr

M(c̃)) (3.17)

3.5 Empirical results

Analysis in Section 3.4 suggests the use of long-term average weekly XP to construct a

substitute type. Unfortunately, by the time of this draft, the long-term performance data has

not been collected. However, data on past performance is available. Particularly of interest

is the XP earned during the 7 days (XP7d) before group competition data is collected.12

Because this is a very short period, it is a noisy measure for the substitute type c̃. One main

source of noise comes from the fact that the effect of group type and gender distribution

cannot be averaged out by multiple periods since only one period is available, as can be

seen from equations (3.8) and (3.9). Another source of noise comes from the fact that many

learners did not participate in the leaderboard competition during the past week because

they didn’t do any lessons. For these learners, we have no direct information to infer their

substitute type.

One way to examine the suitability of using XP7d as a substitute type is by looking at

how well it predicts the competition week performance, as the model predicted higher type

learners will in general exert more effort and accumulate more XP. Figure 3.1 shows the

locally smoothed relationship between the average competition week XP and XP7d. As can

12Other measures are also available, for example, the total and average accumulated XP since the learner’s
Duolingo account registration and the total number of crowns the learner has earned. However, as Table 3.3
shows, these measures have almost 0 correlation with the competition week XP, hence bad measures for the
substitute type. To see why this is the case, notice that a low type learner could have higher total XP and
crowns if they have been active on Duolingo for a much longer period than a high type learner. In terms of
average XP, notice that a high type learner could have a lower average XP if, for the majority of the weeks
since their registration, they were inactive hence not participating in the competition at all. None of these
will be a problem when we have data on learners’ XP during each active week following the competition
week.
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be seen in the figure, there is a positive relationship between past and current performance

for learners with roughly more than 120 XP7d. However, no clear relationship is found for

learners with less than 120 XP7d. This could be because when learners do not do a lot

of lessons during a particular week, it is not because they have a lower type, but rather

because of idiosyncratic negative productivity shocks. For example, a learner could learn

less than their type predicted level because an unusually high workload at their job or a

family emergency prevented them to spend time learning on Duolingo. Notice also that

learners with 0 XP7d have an expected competition week XP of around 190 XP, similar to

those with 150 XP7d. This is precisely because learners with 0 XP7d are, in fact, inactive

during that week, and their substitute type cannot be directly inferred. To partly deal with

this problem, I substitute the XP7d of the inactive learners with the average XP7d if the

active learners with similar characteristics in terms of the number of latest streaks, the data

collection wave, the total accumulated XP, and the number of crowns earned since Duolingo

account registration, and their league level.

Figure 3.1: Smoothed relationship between average XP7d days and competition week XP

After constructing c̃ with XP7d, I conduct the two tests discussed in the previous section.
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Figure 3.2: Expected Competition XP: difference between female and male learners

Note: Standard errors are calculated by bootstrapping groups at random for 1000 times. The confidence
band is at the 1% level.

The first result is from the test based on Proposition 1. Figure 3.2 shows that in general

female males achieve higher performance than male learners, conditional on their c. Note

that at the right tail of the distribution of c̃, the difference first becomes much higher, then

completely disappears due to missing data. This is likely to be caused by the fact that very

few learners’ substitute type c̃ are higher than 170 (less than 1%), as can be seen from Figure

3.5. Figure 3.2 provides the first piece of evidence that female learners have a higher relative

preference for ranking.

The second result is from the test based on Proposition 2. Figure 3.3 shows that for

learners with c̃ between around 120 to 170, female learners exert more effort and achieve

higher performance when in groups with higher type variance but the same mean type.

Referring to Figure 3.5, we can see that c̃ between around 120 to 170 represents the top

85-99% of the c̃ distribution, suggesting they are the high type learners. This means for

high type learners, females have a higher preference for ranking than males. For the low and
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Figure 3.3: Difference in female and male response to type dispersion

Note: Standard errors are calculated by bootstrapping groups at random for 1000 times. The confidence
band is at the 10% level.

middle levels c̃, the result is less clear. Figure 3.1 suggests that this could be because XP7d

is a bad measure to construct c̃ for learners with less than 120 XP7d.

3.6 Conclusion

This paper develops a model of group competition with heterogeneous preferences for rank-

ing. Using web-scrapped data from Duolingo, I find evidence suggesting that women have a

stronger preference for ranking than men. However, both the theoretical and the empirical

analysis need to be dealt with more carefully. In terms of the theoretical model, rigorous

proofs of the propositions, instead of just intuitions, will be developed. In terms of the

empirical analysis, the main focus will be on collecting performance data for a much longer

period in order to construct a better measure of substitute type c̃.
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3.7 Appendix

Table 3.3: Correlation between pre-treatment variables and competition week XP

XP past 7d Total past XP Average past XP Total crowns

Pearson 0.09084*** -0.0571*** 0.00874 -0.04115***

Kendall 0.15949*** -0.00204 0.03448*** -0.00436

Figure 3.4: Quantile of c̃ by gender: from 0 to 99%
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Figure 3.5: Quantile of c̃ by gender: from 99% to 100%
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Figure 3.6: Expected Competition XP: female

Note: Standard errors are calculated by bootstrapping groups at random for 1000 times. The confidence
band is at the 1% level.
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Figure 3.7: Expected Competition XP: male

Note: Standard errors are calculated by bootstrapping groups at random for 1000 times. The confidence
band is at the 1% level.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin, “Peer Effects in Networks:

a Survey,” Annual Review of Economics, 2020.

109



Carrell, Scott E., Bruce I. Sacerdote, and James E. West, “From Natural Variation to

Optimal Policy? The Importance of Endogenous Peer Group Formation,” Econometrica,

May 2013, 81 (3), 855–882.

Cools, Angela, Raquel Fernández, and Eleonora Patacchini, “Girls, Boys, and High

Achievers,” Technical Report w25763, National Bureau of Economic Research, Cambridge,

MA April 2019.

, , and , “The asymmetric gender effects of high flyers,” Labour Economics, December

2022, 79, 102287.

Crane, Harry, Probabilistic foundations of statistical network analysis, CRC Press, 2018.

Currarini, Sergio, Matthew O. Jackson, and Paolo Pin, “An Economic Model of

Friendship: Homophily, Minorities, and Segregation,” Econometrica, 2009, 77 (4), 1003–

1045.

Delfgaauw, Josse, Robert Dur, Joeri Sol, and Willem Verbeke, “Tournament In-

centives in the Field: Gender Differences in the Workplace,” Journal of Labor Economics,

April 2013, 31 (2), 305–326. Publisher: The University of Chicago Press.

Diaconis, Persi and Svante Janson, “Graph limits and exchangeable random graphs,”

arXiv preprint arXiv:0712.2749, 2007.

Forastiere, Laura, Edoardo M. Airoldi, and Fabrizia Mealli, “Identification and

Estimation of Treatment and Interference Effects in Observational Studies on Networks,”

Journal of the American Statistical Association, April 2021, 116 (534), 901–918.

Gagete-Miranda, Jessica, “An aspiring friend is a friend indeed: school peers and college

aspirations in Brazil,” Manuscript, 2020, p. 46.

Gneezy, Uri, Muriel Niederle, and Aldo Rustichini, “Performance in Competitive

Environments: Gender Differences,” The Quarterly Journal of Economics, 2003, 118 (3),

1049–1074. Publisher: Oxford University Press.

Goldsmith-Pinkham, Paul and Guido W. Imbens, “Social Networks and the Identi-

fication of Peer Effects,” Journal of Business & Economic Statistics, July 2013, 31 (3),

253–264.

Graham, Bryan S., “Network data,” in “Handbook of Econometrics,” Vol. 7, Elsevier,

2020, pp. 111–218.

110



Hernán, MA and JM Robins, Causal Inference: What If, Boca Raton: Chapman &

Hall/CRC, 2020.

Hopkins, Ed and Tatiana Kornienko, “Running to Keep in the Same Place: Consumer

Choice as a Game of Status,” THE AMERICAN ECONOMIC REVIEW, 2004, 94 (4).

Hoxby, Caroline, “Peer effects in the classroom: Learning from gender and race variation,”

Technical Report, National Bureau of Economic Research 2000.

Hsieh, Chih-Sheng and Lung Fei Lee, “A Social Interactions Model with Endogenous

Friendship Formation and Selectivity,” Journal of Applied Econometrics, March 2016, 31

(2), 301–319. 00118.

Imai, Kosuke and Zhichao Jiang, “Discussion of ”The Blessings of Multiple Causes” by

Wang and Blei,” October 2019. arXiv:1910.06991 [stat].

Imbens, Guido W. and Donald B. Rubin, Causal Inference in Statistics, Social, and

Biomedical Sciences, Cambridge University Press, April 2015.

Jochmans, Koen, “Peer effects and endogenous social interactions,” arXiv preprint

arXiv:2008.07886, 2020.

Johnsson, Ida and Hyungsik Roger Moon, “Estimation of Peer Effects in Endogenous

Social Networks: Control Function Approach,” The Review of Economics and Statistics,

May 2021, 103 (2), 328–345.

Leung, Michael P., “Two-step estimation of network-formation models with incomplete

information,” Journal of Econometrics, September 2015, 188 (1), 182–195.

Li, Xinran, Peng Ding, Qian Lin, Dawei Yang, and Jun S. Liu, “Randomization

Inference for Peer Effects,” Journal of the American Statistical Association, October 2019,

114 (528), 1651–1664.

Manski, Charles F., “Identification of Endogenous Social Effects: The Reflection Prob-

lem,” The Review of Economic Studies, 1993, 60 (3), 531–542.

Niederle, Muriel and Lise Vesterlund, “Gender and Competition,” Annual Review of

Economics, September 2011, 3 (1), 601–630.

Olhede, Sofia C. and Patrick J. Wolfe, “Network histograms and universality of block-

model approximation,” Proceedings of the National Academy of Sciences, October 2014,

111 (41), 14722–14727. Publisher: Proceedings of the National Academy of Sciences.

111



Olivetti, Claudia, Eleonora Patacchini, and Yves Zenou, “Mothers, Peers, and

Gender-Role Identity,” Journal of the European Economic Association, February 2020,

18 (1), 266–301.

Sacerdote, Bruce, “Peer Effects with Random Assignment: Results for Dartmouth Room-

mates,” The Quarterly Journal of Economics, 2001, 116 (2), 681–704.
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