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Return Variance
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Abstract

The objective of this paper is to calculate, model and forecast realized 
volatility, using high frequency stock market index data. The approach 
taken differs from the existing literature in several aspects. First, it is 
shown that the decay of the serial dependence of high frequency returns 
with the sampling frequency, is consistent with an ARMA process un­
der temporal aggregation. This finding has important implications for 
the modelling of high frequency returns and the optimal choice of sam­
pling frequency when calculating realized volatility. Second, motivated 
by the outcome of several test statistics for long memory in realized 
volatility, it is found that the realized volatility series can be modelled 
as an ARFIMA process. Significant exogenous regressors include lagged 
returns and contemporaneous trading volume. Finally, the ARFIMA’s 
forecasting performance is assessed in a simulation study. Although it 
outperforms representative GARCH models, the simplicity and flexibility 
of the GARCH may outweigh the modest gain in forecasting performance 
of the more complex and data intensive ARFIMA model.
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1 Introduction

A crucial element in the theory and practice of derivative pricing and financial 
risk management is the estimation and modelling of asset return variance. Both 
the Stochastic Volatility and the Autoregressive Conditional Heteroskedasticity' 
(ARCH) class of models have become widely established and successful ap­
proaches, in both the theoretical and the empirical literature, to the modelling 
of the variance process. The objective of this paper, however, is to explore the 
extent to which the use of the increasingly available intra-daily data on finan­
cial assets can be used to improve or facilitate the estimation and modelling of 
return variance. To this end Merton (1980) notes that the variance (over a fixed 
interval) of an iid random variable can be estimated arbitrarily accurate by the 
sum of squared realizations, provided that the data is available at a sufficiently 
high sampling frequency. Empirical studies, such as French, Schwert and Stam- 
baugh (1987), Hsieh (1991), Taylor and Xu (1997), Andersen and Bollerslev 
(1998), make use of this insight and employ intra-daily return data to estimate 
daily return variance by simply summing up squared intra-daily returns. In 
the literature this variance measure is referred to as “realized variance” . In 
a recent paper Andersen et. al. (2000a) has shown in a continuous time set­
ting that when the return process follows a special semi-martingale, the sum 
of squared returns will yield a consistent estimate for the integrated variance 
(squared volatility) of the return process:

“ The mechanics are simple - we compute daily realized volatility 
simply by summing up squared returns - but the theory is deep: by 
sampling intra-day returns sufficiently frequently, the realized volatil­
ity can be made arbitrarily close to the underlying integrated volatil­
ity, the integral of instantaneous volatility over the interval of in­
terest, which is a natural volatility measure" - (Andersen et. al. 
(2000a))

Although the work by Merton (1980) and Andersen et. al. (2000a) is 
taken as a starting point for the calculation and analysis of the realized vari­
ance measure, the present study is distinguished from the existing literature 
in several ways. First and foremost, the choice of sampling frequency and the 
impact that market micro structure induced autocorrelations have on realized 
variance are discussed in considerable detail; issues to which has been paid sur­
prisingly little attention so far. The serial dependence of high frequency returns
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is analyzed and it is found that the autocorrelation structure (magnitude and 
rate of decay) of returns at different sampling frequencies is consistent with 
the results on temporal aggregation of an ARMA process. This finding has 
important implications for the choice of optimal sampling frequency when cal­
culating the realized variance measure. 10 years of minute by minute FTSE-100 
index returns are employed to illustrate that when the sampling frequency is 
not carefully chosen, solely summing up squared returns can seriously under- or 
overestimate the average daily return variance. Second, a realized variance se­
ries for the FTSE-100 index returns is constructed using 25 minute return data 
which is modelled subsequently. It is found that an ARFIMA specification, 
including some exogenous variables such as lagged returns and trading volume, 
models the series well. This extends the work of Andersen and Bollerslev (1998) 
which uses the realized variance estimates for evaluation of the forecasting per­
formance of their GARCH model or that of Andersen et. al. (2000a,b) which 
analyzes the properties of the data. The regression coefficients of the lagged re­
turn variable are used to test for the presence of Black’s leverage effect. Third 
and finally, the forecasting performance of the ARFIMA model for realized vari­
ance is assessed in a simulation study. The results indicate that the ARFIMA 
model for realized variance outperforms representative GARCH-class models. It 
is noted, however, that the simplicity of the GARCH together with its flexibil­
ity to account for persistence in return variance, may outweigh the modest gain 
in forecasting performance of the more complex and data intensive ARFIMA 
model.

The remainder of this paper is structured as follows. Section 2 discusses 
the calculation of realized variance and proposes a model for daily as well as 
intra-daily returns. The realized variance series is constructed and a careful 
analysis shows that most of the stylized facts, as documented in the recent 
literature, can be confirmed for the FTSE-100 index data. Section 3 models 
realized variance as an ARFIMA process. Section 4 compares the forecast­
ing performance of the ARFIMA model for realized variance with conventional 
GARCH type models. Section 5 concludes.

2 Realized Variance

The term “realized variance” refers to the sum of squared intra-period returns, 
being an estimator for the average or integral of instantaneous variance over the 
interval of interest. In fact, in a continuous time framework, it has been shown

2
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by Andersen et. al. (2000a) that when the return process is assumed to follow 
a special semi-martingale the realized variance measure can be made arbitrarily 
close to the integral of instantaneous variance, provided that the intra-period 
returns are sampled at a sufficiently high frequency. In the present context, 
however, the focus will be on a discrete time model which has the advantage that 
the impact of market micro structure effects, present in returns sampled at high 
frequency, on the realized variance measure can be analyzed in a straightforward 
fashion. It will be shown that when intra-period returns are serially correlated, 
the realized variance measure will yield a biased estimator of the average true 
variance over the interval of interest. Throughout the remainder of the paper 
the interval of interest is set to one trading day.

Let St,j denote the j th intra day—t price of the security under consideration 
and Ttj be the sigma field generated by { 5 ^ , 6 } J6=0- Under the assumption 
of N  equally time-spaced intra-daily observations of S (j  =  1, . . . ,  N), the daily 
return is defined as:

Rt =  In St,n -  lnSt-i,;v,
t =  1, . . . ,  T. At sampling frequency / ,  we can construct Nf =  y  intra-daily 
returns:

Rf,t,i ~  hi St,if lnSti(j_i)/,

for i =  1 , . . . ,  Nf and St,o =  St-i.jv- In the following, it is assumed that the 
asset’s (excess) return at the daily frequency can be characterized as:

Rt — cqst,

where et ~iid Af  (0,1) and o f represents the day— t return variance. Note 
that £* , (, [I??] =  of and that Vyt 0 [f?̂ ] =  2 o f. Now consider the situation 
in which intra-daily returns, at sampling frequency / ,  are uncorrelated and can 
be characterized as:

Rf,t ,i  —  a  f,t,i£f,t,i :

where £f,t,i ~iid Af (0, N f 1) and Rt =  Y)a=\ !?/,«,< by definition. Since intra-daily 
returns are assumed to be uncorrelated, it directly follows that £ * , 0 R},t,i\

[f?j] and hence o f =  N f 1 Yli'Ji As a results, two unbiased estimators 
for the average day—t return variance exist, namely the squared day—t return 
and the sum of squared intra day—t returns. It is noted, however, that while 
Vy10 [I^J =  2of the following holds:

£*,0
t Nf Nf N f - 1 N f

■ I tA t ,  =  3 N f2 4 m +  2N f  Y .  E  4 m4 m > 
J i—1 i=1 j=i+1

3
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and therefore:

K,* t ,0

r Nf r. N1 0 \ NJ n2 1

i=1 “  Nf h  Nf Nf [ h  V N f \
= ^ , 0 [^]

In words, the average daily return variance can be estimated more accurately 
by summing up squared intra-daily returns rather than calculating the squared 
daily return. In addition, when returns are observed (and uncorrelated) at 
any arbitrary sampling frequency, it is possible to estimate the average daily 
variance free of measurement error as limJv/ -.oo V*t „ R ft 4J =  0. The only
(weak) requirement on the dynamics of the intra-daily return variance for the 
above to hold is that Yli=i a),t,i «  N j+C where 0 < c < 1. Finally, note that 
although the daily realized variance measure employs intra-daily return data, 
there is no need nor gain to take the (well documented) pronounced intra­
day variance pattern of the return process into account. This feature of the 
realized variance measure contrasts sharply with popular parametric variance 
models which generally require the explicit modelling on intra-daily regularities 
in return variance.

The focus in the remainder of this section will be on how the increasingly 
available high frequency financial data can be used for the purpose of variance 
estimation. In particular, minute by minute FTSE-100 index level data* 1 will 
be used to investigate whether the method of calculating the realized variance 
measure, being the sum of squared intra-daily returns, will yield satisfactory 
results. To this end, the decomposition of the daily return into the sum of Nf 
intra-daily returns can be used to derive the following expression:

' N f

5 3

N f  N f - 1 N f

=  5 ^  ^ f,t,i+  ̂ 5 3  5 3 ( i )
1=1 j=i+ 1

When the assumption of uncorrelated returns at sampling frequency /  is 
satisfied, the second term on the right hand side of expression (1) is zero in 
expectation and the realized variance measure will therefore yield an unbiased 
estimate of the average day—t return variance. However, as noted by, for ex­
ample, French et. al. (1987), when the returns are positively correlated, solely

lThe dataset contains minute by minute data on the FTSE-100 index level, starting May
1, 1990 and ending January 11, 2000. Trading hours are 08:30-16:30, Monday to Friday until 
September 14, 1994 and 8:00-16:30 afterwards. The total number of observations is just over 
1.1 million.
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summing up squared returns will underestimate the average daily variance; the 
cross multiplication of returns will be positive on average. The reverse will 
occur for negatively autocorrelated returns.

To illustrate this, a dataset containing minute by minute data on the 
level of the FTSE-100 stock market index is employed to calculate the 10 year 
average (1990-2000) of the two terms on the right hand side of expression (1) 
for sampling frequencies between 1 and 45 minutes. The results are displayed in 
Figure 1.1 together with the 10 year average squared daily returns (dotted line). 
It is clear that the first term, the realized variance measure, increases with a 
decrease in sampling frequency while the second term, the summation of cross 
multiplied returns, decreases. Moreover, the sum of the two terms is, as one 
would expect, roughly constant. The positivity of the second term indicates that 
the FTSE-100 returns are positively correlated, introducing a downward bias 
into the realized variance measure (up to 35% when using minute by minute 
data!), while its decreasing pattern demonstrates that this dependence, and 
consequently the bias, diminishes when sampling is done less frequent. This 
term can therefore be interpreted as the autocovariance induced bias of the 
realized variance measure and will be referred to as the “autocovariance bias 
factor” in the remainder of the paper.

Although, in the context of efficient markets, the finding o f correlated 
intra-daily returns may at first sight appear puzzling, it has a sensible explana­
tion in the context of the market microstructure literature2. One of the most 
prominent hypotheses which can be used to explain the observed positive au­
tocorrelation in stock index returns is non-synchronous trading. The basic idea 
is that when individual stocks contained in an index do not trade simultane­
ously, the contemporaneous positive autocorrelation among the components will 
induce serial correlation in the index returns. Intuitively, when the index com­
ponents incorporate non-synchronously the shocks to a common factor driving 
their price, this will result in a sequence of correlated price changes at the aggre­
gated or index price level. This phenomenon, which is consistent with the above 
empirical findings3, obviously disappears when sampling frequency decreases.

2See e.g. Campbell, Lo and MacKinlay (1998), Lequeux (1999), Madhavan (2000) or Wood 
( 2000).

3The reverse would occur for a single asset. The serial correlations of returns, if present, 
would likely be negative thereby introducing an upward bias in the realized variance measure. 
The negative autocorrelation can be attributed to the bid-ask bounce; in a market where no 
new information arrives, the stock price is expected to bounce between the bid and the ask 
price whenever a trade occurs.
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It has been shown that average daily return variance can be estimated 
consistently by the realized variance measure, provided that the intra-daily re­
turns are serially uncorrelated. When the intra-daily returns are correlated, 
realized variance will either overestimate (with negative correlation) or under­
estimate (positive correlation) the average daily return variance. Correcting 
for the bias term, it is known after all, is not desirable as this is equivalent 
to using the squared daily return to estimate daily realized variance. Hence, 
when the intra-daily return data at the highest frequency available is serially 
correlated, one will need to aggregate the returns down to a frequency at which 
the correlation has disappeared. Plotting both the sum of squared intra-daily 
returns and the autocovariance bias factor versus the sampling frequency, as is 
done in Figure 1.1, proves a very helpful and easily implementable strategy to 
determine the frequency at which the correlation has died off. The “optimal” 
sampling frequency is chosen as the highest available frequency for which the 
autocovariance bias term has disappeared. Based on these observations, the 
sampling frequency for estimating realized variance will be set to 25 minutes 
( /  =  25).

2.1 Serial Correlation, Tim e Aggregation & Sampling 
Frequency

Prior to the estimation and analysis of realized variance, a closer look is taken 
at the autocovariance bias term in relation to the dynamic properties of the 
intra-daily returns at different sampling frequencies. Table I (and Figure 1.1) 
reports some descriptive statistics for the FTSE-100 return data at different 
sampling frequencies. Both the order and the magnitude of the autocorrela­
tions decrease with a decrease in sampling frequency. The Box-Ljung statistic 
comes down from around 800 for minute data, to around 20 for daily data (the 
95% critical value of this test is 18.31). The Durbin Watson test statistic in­
creases from about 1.6 for the minute data to 2.0 for the daily data. Finally, it 
is noted that the first 20 autocorrelations calculated for the minute by minute 
data appear significant while only the first order autocorrelation of daily data 
is significant. These findings suggest that a realistic statistical model for intra­
daily returns should have a more flexible structure than the standard model for 
daily returns. In the remainder of this section it will be shown that modelling 
intra-daily returns as an ARMA process is a natural and, as it turns out, suc­
cessful choice for it is well suited to account for the serial dependence of returns 
at various sampling frequencies. From a market micro structure point of view,
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the AR  part will arguably be able to capture any autocorrelation induced by 
non-synchronous trading while the MA part will account for potential negative 
first order autocorrelation induced by the bid ask bounce. Moreover, within this 
framework it can be shown that the decreasing order and magnitude of autocor­
relations with the sampling frequency is a consequence of temporal aggregation 
of the return process.

Suppose that returns at the highest sampling frequency, Rx (the t subscript 
is momentarily dropped for convenience), can be described as an ARMA(p,q) 
process:

a (L ) Ri i =  /3 (L ) £ ij ,

where a  (L ) and j3 (L ) are lag polynomials of lengths p and q respectively. Con­
sider the case where all the reciprocals of the roots of a  (L) =  0, denoted by 
9i,...,8p, lie inside the unit circle. The model through which the returns at 
an arbitrary sampling (or aggregation) frequency can be represented is derived 
using the results of Wei (1981) on temporal aggregation4 (see appendix for a 
summary). In particular, when Rx follows an ARMA(p,q) process as given 
above, the returns sampled at frequency / ,  denoted by Rf, can be represented 
by an ARMA(p,r) process:

n ( i - ^ ) ^ = n
1 - 1 - U  
1 -  QjL 1 -  L 0  (£) £/,».

where r equals the integer part of p +  2j £, ef}i =  YljZo Due to the in-
vertibility of the AR polynomial, the above model can be written as an MA(oo) 
process with parameters and ipo =  1. Let </?{ denote the hth autoco­
variance of the temporally aggregated returns at frequency / ,  for which it turns 
out that:

vi. =  E  [Rf,tRf,i-h\ «
i=o

( j \ i+fh i
E  E  ^

U=max(0,j—/+1) /  \ i=j+l+f(h—1) J
(2)

As the ipj coefficients decay exponentially fast with j , the serial correlation 
disappears under temporal aggregation. To see this, let ^  =  w63 for [<5| < 1 
and w some positive constant. It can now be shown that:

OO

1=0

1 j+fh

È wêi E w6‘
i= 0  i = j + f ( h - l )

< 6/(h- 1)
( 1  -  S)3

4Temporal aggregation for AR M A models is discussed in Brewer (1973), Tiao (1972), Wei 
(1981), Weiss (1984) and the VARFIM A in Marcellino (1999).
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from which it can be seen that the serial correlation disappears when either the 
sampling frequency, / ,  or the displacement, h, increases. In fact, Wei (1981) 
has shown that the limit model of an ARMA(p,q) process under temporal ag­
gregation is an ARMA(0,0) or equivalently white noise.

Note that these theoretical properties of the ARMA process appear very 
much in accordance with the reported empirical properties of the return process 
at different sampling frequencies. More specifically, at high sampling frequen­
cies the ARMA model can account for the observed serial dependence while 
at lower sampling frequencies these dependencies die off as a consequence of 
temporal aggregation of the return process. In addition, as the limit model 
of the ARMA(p,q) model is an ARMA(0,0) under temporal aggregation, the 
model specification for returns at the intra-daily frequency does not necessarily 
conflict with the model for daily returns.

The above expression for the autocovariance function of the ARMA pro­
cess can be used to check the consistency of the model with the properties of the 
data by comparing the temporal aggregation implied decay of the autocovari­
ance bias term with the empirically observed one. To this end various ARMA 
models are estimated using the minute by minute returns and it is found that an 
ARMA(6,0) model yields satisfactory results5 with uncorrelated residuals and 
relatively stable coefficients over time. Using solely one set of ARMA(6,0) pa­
rameters for the minute data, autocovariances for the estimated return process 
at various sampling frequencies are “implied” using expression (2). It is noted
that:

£ * t,0
N j-l Nf

y  y
i=1 j=i+1

Nf - 1

= E  (Nf - h)vl
h=i

(3)

Hence, the “aggregation implied” autocovariance estimates can be used to cal­
culate the “aggregation implied” autocovariance bias term as in expression (3). 
Figure 1.2 in the appendix demonstrates that the empirical and theoretically im­
plied curves are remarkably close. The implications of this finding are twofold. 
First, it shows that the ARMA model is a good description of the return data 
sampled at different frequencies; the decay of the (market - microstructure - 
induced) serial dependencies in high frequency returns is consistent with the 
decay of an ARMA process under temporal aggregation. Second, relying on the 
close correspondence between the empirical and theoretically implied autoco-

5 Although the residuals are highly leptokurtic and heteroskedastic, and hence the MLE is 
not efficient, the parameter estimates are consistent (see e.g. Amemiya (1985)). Moreover, 
the efficiency loss should be unimportant given the large amount of data.
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5  C o ­
variance bias factor one can locate the optimal frequency, that î , the higl
sampling frequency available for which the autocovariance bias term has- an 
off, using solely a single set of ARMA parameter estimates. <

2.2 Stylized Facts of Realized Variance

High frequency data have already been analyzed extensively by a number of 
studies6. The results regarding the characteristics of high frequency financial 
data obtained so far (relevant for this study) can be summarized as follows. 
First, the unconditional distribution of daily returns is not skewed, but it does 
exhibit excess kurtosis. Daily returns are not autocorrelated (except for the first 
order in some cases). Second, the unconditional distributions of realized vari­
ance (calculated as the sum of squared intra-daily returns sampled at frequencies 
between 5 and 20 minutes depending on the dataset used) and variance are dis­
tinctly non-normal and extremely right skewed, whereas the natural logarithm 
of the standard deviation is close to Gaussian. Third, the log of the realized 
variance displays a high degree of (positive) autocorrelation which dies out very 
slowly. Fourth, realized variance does not seem to have a unit root, but there 
is clear evidence of fractional integration7, roughly of order 0.40. Fifth8, daily 
returns standardized by the realized variance measure are (nearly) Gaussian.

In order to complement and widen the focus of the research in this area 
European stock market index data (minute by minute data on the FTSE-100 
from May 1990 until January 2000) is utilized. As mentioned above, daily re­
alized variance on the FTSE-100 is estimated using the high frequency data 
sampled at /  =  25. This results in a total of 2445 realized variance estimates 
which are reported in Figure 2.1. In the appendix, some descriptive statistics 
of realized variance, the log of realized variance, the daily return, and daily 
return standardized by realized variance are reported in Table II. The stylized 
facts are essentially confirmed for the dataset under study. More specifically, 
the distribution of daily returns has fat tails but is not very skewed and vari­
ance clustering is clearly present in the return series (not reported). The strong

6See e.g. Anderson, Bollerslev, Diebold and Labys (2000a,b), Froot & Perold (1995), 
Goodhart & O ’Hara (1997), Hsieh (1991), Lequeux (1999), Stoll & Whaley (1990), Zhou 
(1996).

7See e.g. Baillie (1996), Bollerslev and Mikkelsen (1996), Breidt et. al. (1998), Liu (2000), 
Lo (1991).

8In a multivariate setting it is found that the distribution of correlations between realized 
variance is close to normal with positive mean, and that the autocorrelations of realized 
correlation decays extremely slow.
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evidence found regarding the normality of the daily returns standardized by 
realized variance indicates that similar results of Andersen et. al. (2000b) on 
exchange rate data can be extended to stock market index data. The uncondi­
tional distribution of the realized variance is significantly skewed and exhibits 
severe kurtosis, while the unconditional distribution of log realized variance is 
much less skewed and displays significantly reduced kurtosis. Furthermore, the 
correlogram for the realized variance measure decays only very slowly but the 
Augmented Dickey Fuller test9 strongly rejects the null hypothesis of a unit root 
(Table II, Figure 2.3). This last observation is usually indicative for fractional 
integration.

3 Modelling Realized Variance

Having calculated and analyzed the realized variance measure, the focus is on 
finding a statistical model that captures the main characteristics of this time 
series. Some observations from the previous section have to be taken into ac­
count when deciding on the modelling strategy. First of all, the benefits of the 
log transformation of realized variance indicate that log realized variance should 
be modelled instead of the original series. Second, the absence of a unit root 
and the highly persistent autocorrelation point into the direction of fractional 
integration (see appendix for a summary on the concept of fractional integra­
tion). This section further explores the characteristics of the data and finds 
that the log of realized variance series can be modelled well using a fraction­
ally integrated ARMA model. By means of an application, the existence of the 
Black leverage effect is tested for within the ARFIMA framework. The present 
section concludes with a discussion of the impact that structural breaks have 
on the empirical findings.

3.1 Fractional Integration V  Realized Variance

Driven by the remarkable resemblance between the correlogram displayed in 
Figure 2.3 in the appendix and the theoretically implied correlogram for frac­
tionally integrated process, the focus is on fractionally integrated models. Prior 
to estimation, some informal tests are performed to strengthen this motivation.

Augm ented Dickey Fuller test: Axt =  a +  /fa t -i  +  X !"= i 7, +  £t- Rejection of
Ho : 0  =  0, implies that xt is 1(0). The specification of the lag length, which we set equal to 
5, assumes that st is white noise. The critical value of this test equals -2.865 at 5% confidence 
level and -3.439 at 1%.
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The fractional difference operator is applied to the log of the realized vari­
ance series for various values of d (the sequence given by expression (5) in the 
appendix is truncated at h =  1000). It is found that autocorrelations are dras­
tically reduced for values of d between 0.25 and 0.45 and that they fall nicely in 
between the 95% confidence bounds (±2AT-1/2 where N  denotes the number of 
observations). For instance, see Figure 2.4 in the appendix where d is set equal 
to 0.40. Moreover, the long ’waves’ in log realized variance disappear almost 
entirely after fractional differencing (Figure 2.1 versus 2.2). A supplementary 
test consists of plotting log autocorrelations versus the log of displacements. It 
is known that for a fractionally integrated process the autocorrelation function 
decays at a hyperbolic rate as opposed to the autocorrelation function of an 
7(0) process which decays at an exponential rate. Therefore the log of the auto­
correlation function will yield a linear relationship in terms of log displacement, 
i.e. \ogiph oc (2d — l ) logh.  Figure 2.5 in the appendix shows that plotting 
log <ph against logh yields a linear relationship up to approximately h =  100. 
An OLS regression is performed to determine the slope. Using the complete 
sample (h =  250) implies that d «  0.37. Ignoring the last 150 autocorrelations 
implies that d «  0.43. Although the graph does not strongly indicate a linear 
relationship, the results are not taken as a rejection of fractional integration. 
The final check on the presence and degree of fractional integration is done in 
the frequency domain. Two standard tests are employed. The first one has 
been developed by Geweke and Porter-Hudak (1983, GPH hereafter), while the 
second one by Robinson (1995). A short summary of both the estimators can 
be found in the appendix. To implement both methods a bandwidth parameter 
to, controlling the range of periodic frequencies used, has to be set. Although 
it is required that m grow at a slower rate than the sample size T, this does 
not guide us as to what the value of m should be. In the present study, d 
is estimated for a range of m between10 25 and 275. The results of this esti­
mation are summarized in Figure 2.6 where the GPH estimates together with 
the Robinson estimates are plotted as a function of m. For small m, the two 
alternative estimates both fall into the non-stationary region while for large m 
(above 150) they are both below 0.5. Although it is clear from this that the 
value for d will be close to 0.5, it is difficult to judge on the stationarity of the 
process as the choice of m is relatively arbitrary. In summary, the reported test 
results provide good reasons to believe that the (log) realized variance series is 
fractionally integrated. The results are ambiguous as to what the value for d 10

10The sample size is 2445 and hence the range of m is between T ° 40and T° m. This is in 
line with e.g. Bollerslev, Cai and Song (2000) who sets m — T 0'50 or Dittmann and Granger 
(2000) who set m =  T° s.
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will be, although it seems clear that it will most likely be close to 0.50.

3.2 Empirical Results

Motivated by the preliminary tests discussed above, the focus of the modelling 
approach will center around the ARFIMA specification. Consider the following 
model:

a (L )(l  -  L)d [in 5 ^  -  tt% ]  =  0(L )et,

where djs.t denotes the d a y -f realized variance measure calculated using 25 
minute intra-daily returns, X t is a vector of exogenous variables, a(L) is a lag 
polynomial of order p, /3(L) a lag polynomial of order q and et is a residual term. 
Under the assumptions that the roots of a(L) and /3(L) are outside the unit cir­
cle, roots of a(L) are simple, residuals are iid Normal and d <  |, the ARFIMA 
model parameters are estimated in Ox11 using the maximum likelihood esti­
mator of Sowell (1992). The model could alternatively be estimated with the 
popular and easily implementable two-step procedure in which the fractional 
parameter is estimated in the first step (by e.g. the GPH or Robinson estima­
tor), while the remaining ARM A coefficients are estimated in the second step 
on the fractionally differenced data by ordinary least squares. As it has been 
found that the ARMA coefficients are generally estimated inaccurate or biased 
this way (see e.g. Smith et al. (1997)), the Sowell procedure is preferred as it 
allows for the simultaneous estimation of the model parameters.

In order to address the concern that the long memory may be induced 
by infrequent structural breaks12 (see e.g. Granger (1999), Diebold and Inoue 
(1999) and Granger and Hyung (1999)) the above model is estimated on various 
subsamples. Table 3 in the appendix, reports the estimation results for the 
ARFIMA model (where p =  q =  1) for two different samples, namely Sample I 
which runs from May 1, 1990 until June 15, 1997 (1800 observations) and Sample 
II which is the full sample (2444 observations). As the fractional parameter 
remains highly significant for the different subsamples considered, it is argued 
that the realized variance series clearly exhibit a long memory feature that is

n See Doornik and Ooms (1998) for documentation on the Arfima package.
12A simple and representative model that can cause long memory is the stochastic break 

model which takes the following form: yt =  ut+et, where ut =  ut-i+qt-\qt, Et ~  iid A'(0, <r2), 
T)t ~  iid 7V(0, <r2) and qt equals 0 with probability p and 1 with probability 1 — p. Diebold 
and Inoue (1999) note that in order to achieve a slowly declining autocorrelation function, 
whatever the model may be, the key idea is to let p decrease with the sample size so that 
regardless of the sample size, realizations of the process tend to have just a few breaks.
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not caused by structural breaks. For both samples, the fractional parameter 
d is indeed between 0.40 and 0.50, confirming the preliminary analysis above. 
In fact, based on the t—statistic one cannot reject that d >  0.5 at a 95% 
confidence level: the realized variance series may be non-stationary. Regarding 
the inclusion of exogenous variables13, lagged returns and contemporaneous 
trading volume axe considered. This choice of variables is motivated by Black 
(1976) and Lamoureux and Lastrapes (1990a) respectively.

Black’s leverage states that negative returns have a larger impact on future 
variance than do positive returns. One possible rationale for this is that when 
equity value decreases the debt-to-equity ratio increases, thereby raising the 
riskiness of the firm as manifested by an increase in future variance. Modifying 
the above model as follows:

n ' X t =  C l"R f- 1  +  C l R t - 1 +  ••• +  Cm R t-m  +  C m R t-n v

where R+ (R~) is a vector containing the positive (negative) daily returns and 
zero otherwise, allows an assessment of the explanatory power of lagged returns 
while the relative magnitude of the £ coefficients will indicate whether a leverage 
effect is present. From the estimation results reported in the appendix (Table 
III) it can be observed that the log likelihood value drastically increases when 
lagged returns axe added and that the AIC information criteria drops from about 
0.8 to 0.5. Moreover, coefficients on negative returns are consistently above 
coefficients on positive returns. Although this observation is indicative for the 
presence of the leverage effect, its significance is tested for by reformulating the 
model as follows:

C i R t - i  +  Ci l-Ri-il +  ••• + ChRt-h  +  Ch \Rt-h\ ■

Note that & = f(C,+ -  C ) and C; = 5(C+ + C,7)- Where Ch is significantly 
negative14, it can be concluded that the leverage effect is significant at horizon 
h. Estimation results15 indicate that the leverage effect, as proposed by Black

13Glosten, Jagannathan and Runkle (1993) find that the short term interest rate has a 
significant positive effect on stock market volatility' The 1 month UK Interbank rate is 
added, but for the dataset under study it does not appear to be a significant regressor. The 
data frequency (daily) in the present analysis may well be too high for the interest rate to 
have a significant influence.

14Note that r =  r+ — r~ and |r| =  r+ +  r~. Therefore, =  C i +  C i an<l CT =  C i — C i- For 
leverage to be present it is required that Ci" — Ci*" =  —2 • Ci >  0 or Ci <  0.

15The estimates for C i > C2 an<̂  C3 are -4 .6 0  (4.21), —5.58 (5.13) and -3 .8 1  (3.49) respec­
tively. t-values are in parenthesis.
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(1976), is present at the first three horizons and is insignificant afterwards. Note 
that although the statistical significance of this finding does not necessarily 
imply an economic significance, it does provide support for the GJR-GARCH 
and EGARCH specifications which explicitly account for the asymmetric effect 
that returns have on future variance.

The inclusion of (log) contemporaneous trading volume has been sug­
gested by Lamoureux and Lastrapes (1990a). They discuss a model in which 
heteroskedasticity results from time dependence in the process which governs 
the information flow to the market. Taking trading volume as a proxy for 
the information arrival rate they argue (and show empirically) that (i) trading 
volume is positively related to return variance and (ii) the persistence of re­
turn variance decreases (or disappears) when trading volume is accounted for. 
Based on the estimation results reported in the appendix, where Ao denotes the 
regression coefficient of log contemporaneous trading volume, it is found that 
trading volume further improves the fit of the model and, consistent with the 
theory, has a significant positive effect on variance. The fractional parameter 
d does, however, not decrease upon inclusion of trading volume indicating that 
the persistence of the variance process remains unchanged upon conditioning 
on trading volume.

4 Forecasting Realized Variance

Ultimately the goal of analyzing and modelling variance is to use the resulting 
model for return variance forecasting. Obviously, this is of great interest to the 
fields of risk management and derivative pricing. This section assesses the fore­
casting ability of the ARFIMA model for daily log (realized) variance and takes 
a standard GARCH(1,1) model, implemented with daily returns, as a bench­
mark. As the dataset in this study does not allow us to study the forecasting 
performance of the models in depth, a simulation study is undertaken.

4.1 Simulation Design

The approach taken is as follows. In every simulation run a time series of 2750 
daily log (realized) return variances is generated according to an ARFIMA(0,d,0) 
process:

(1 -  L)d [in aj -  n\ =  eu
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where Et ~i.i.d.A/’ (0, A 2). The rationale for excluding the autoregressive and 
moving average terms, which govern the short run dynamics of the process, 
is that including or excluding them is unlikely to change the results qualita­
tively. Motivated by the empirical results of the last section the mean // =  10, 
the fractional parameter d =  0.45 and the residual variance A 2 =  0.15. To 
obtain forecasts of In c2, note that Et - i [(1 — L)d (lnoj. — /i)] =  0 or equiva­
lently ET- x [In c4  -  M] =  -  EhLi r(h+i)r(-d) (ln<Tr-/i ~  41)- This autoregressive 
representation of In a j  can be used to recursively compute the s-step  ahead 
forecasts (where the infinite AR polynomial is truncated at h =  2500 lags for 
practical implementation). The s—step ahead forecast of log realized variance 
will have a forecast error etiS =  Et [In <r2+s] -  In a\+s, that is normally distributed 
with mean 0 and variance A 2. As a consequence the forecast error for realized 
variance16, et s =  Et [exp(lncr2+s)] — of+s, will have a log normal distribution 
with a mean equal to exp (|A 2). Given that the focus is on the realized vari­
ance forecasts (and not the log of it), this “bias” is corrected for by using an 
estimate of A 2.

In every simulation run the fractional parameter of the ARFIMA model is 
estimated using the GPH estimator. A density of the estimates is given in Figure 
3.4. To assess the forecasting performance of the ARFIMA model for realized 
variance the GARCH(1,1) model, motivated by its widespread usage in variance 
modelling and forecasting, is taken as a benchmark. Daily return data, which 
are needed for the implementation of the GARCH model, are constructed by 
multiplying the simulated realized variance series with an iid standard normal 
random variable. To avoid re-estimation of the GARCH parameters at every 
simulation run au and l31 are fixed while the intercept, u, is set such that 
the unconditional mean of the GARCH process, , equals the estimated
unconditional variance of the return process. Regarding the choice of Qi and /31, 
two cases are considered. In the first model specification, which is referred to 
as “GARCH1” , cq =  0.90 and /?1 =  0.05. In the “GARCH2” specification the 
persistence of the variance process is increased by increasing ot\ to 0.94 while 
leaving f31 unchanged. The s—step ahead forecast of daily realized variance

generated by the GARCH model, <?t+i\T’ is given by &t+s\t — i-a-g—  ̂+
(a -I- /3)s~1 o't+i t . Note that the long run forecast tends to the unconditional 
mean of the variance process exponentially fast. Finally, the information set for

16Note that the simulated realized variance series will be log normal and have an uncondi­

tional mean equal to exp [p +  |cA^] where c =  929=0 [ r(h+i)r(-d)] ■ F °r d =  0.45 we have 
c a; 2.5 (we cut of the infinite summation at h — 2500) which corresponds to an annual return 
volatility of about 15%.
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forecasting consists of the first 2500 observations while the forecasting horizon, 
s, takes on values between 1 and 250 (one day up to one year). The simulation 
is repeated k =  5000 times.

4.2 Performance Measurement and Simulation Results

For notational convenience let ESii|T =  ^ =1 T̂+j,i\T> the forecasted cumula­
tive realized variance over a specified forecast horizon s starting at period T. 
The subscript i =  1 denotes the simulation run. Analogously, define
S a,i|T =  S j= i  aT+j,i 3s the cumulative true variance over a specified fore­
cast horizon s starting at period T. The forecasting performance of each 
model is measured by computing the sum of squared error criteria: SSE(s) =

To measure potential consistent over or under estima­
tion the ratio of forecasted and actual average realized variance are computed 
for the different forecasting horizons: RFA(s)  — Xu=i i\T! AT'

The simulation results are reported in the appendix. Figure 3.1 demon­
strates that the forecasts for all models and all horizons are virtually unbiased. 
For forecasts up to a year the maximum under or over estimation of the accu­
mulated realized variance is about 2.5% of the actual value. The sum of squared 
error criteria, which is used to assess the models’ forecasting performance, is 
plotted in Figure 3.2. Not surprisingly, it is found that the ARFIMA model does 
the best job for all horizons considered. However, the difference in SSE  between 
the ARFIMA and GARCH model for forecasting horizons up to say 3 months 
is small. For longer forecasting horizons the ARFIMA clearly outperforms the 
GARCH. This can be attributed to the ARFIMA model’s ability to account for 
the long memory property of the log realized variance series. The standard de­
viations of forecasting errors are plotted in Figure 3.3; the ARFIMA model has 
the lowest forecast error variance for all horizons. Finally, the standard devia­
tion, skewness and kurtosis of the forecast errors are calculated (not reported). 
The results indicate that both skewness and kurtosis are almost identical for the 
different models. Moreover, they decrease with the forecast horizon; skewness 
from about —1.5 for daily horizon to —0.5 for yearly horizon. Kurtosis from 8.5 
for daily horizon to about 4.5 for yearly horizon. Some complimentary simula­
tions are performed to investigate the model and parameter estimation risk but 
it is found that for both the ARFIMA and the GARCH model this risk appears 
to be negligible. The naive and simple estimation procedure of the GARCH 
yields sensible forecasts while the ARFIMA model’s forecasting performance is
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insensitive to “noisy” input values of the fractional parameter.

The results reported above suggest that the ARFIMA model, as expected, 
outperforms the representative GARCH model according to all the criteria used. 
Several points should, however, be noted. The forecasts of the ARFIMA model 
are obtained from a truncated infinite autoregression, generally including a 
thousand lags or more. In contrast, forecasts of the GARCH model can be 
constructed using solely one lagged return and conditional variance estimate. 
Moreover, the GARCH model can be implemented with daily returns while the 
ARFIMA model requires intra-daily return data for the calculation of the re­
alized variance measure. It is therefore clear that the ARFIMA model will be 
more difficult to implement in practise than the GARCH model. In addition, for 
a given forecasting horizon, the persistence of the misspecified GARCH can be 
controlled for by fixing the parameters to the appropriate values so as to min­
imize the difference in forecasting performance with respect to the ARFIMA 
model; while for short horizon forecasting the flexibility of the GARCH is more 
important than its persistence, the opposite is true for long horizon forecasting 
where a high persistence is needed to counter the long memory property of the 
variance process (i.e. “GARCH1 versus “GARCH2” in Figure 3.2 and 3.3).

5 Summary

Minute by minute data on the FTSE-100 stock market index have been em­
ployed to calculate and analyze daily realized variance. It has been shown that 
in order to implement the “sum of squared returns” approach to calculate real­
ized variance, a careful check on serial dependence in high frequency returns is 
required so as to avoid serious biases in the resulting measure for average daily 
return variance; i.e. for the FTSE-100 data this (downward) bias amounts up 
to 35% for the minute data. In addition, it has been shown that the decay 
of serial dependence with the sampling frequency is consistent with an ARMA 
model under temporal aggregation. This finding can be used to set the “op­
timal sampling frequency” , that is, the highest possible sampling frequency at 
which the autocovariance bias factor is negligible. Motivated by several test 
statistics for the presence of long memory, the realized variance time series is 
modelled as an ARFIMA model. Lagged returns and trading volume are found 
to be significant regressors. The Black leverage effect is tested for and found 
to be present at horizons of one to three days. This finding is supportive for 
asymmetric GARCH models such as the EGARCH and GJR GARCH model.
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Contemporaneous trading volume is helpful in explaining the variation in real­
ized variance, although the persistence of the process remains unchanged upon 
inclusion of this variable. In a simulation study the forecasting performance 
of the ARFIMA model for daily (realized) variance is assessed and it is found 
that it outperforms conventional GARCH type models. It should be noted, 
however, that although the ARFIMA model works best, its implementation re­
quires much more data than the GARCH. The relatively small loss at short 
horizons together with the flexibility of the GARCH to account for persistence 
in the variance process, make it a reasonable alternative to the complicated and 
data intensive ARFIMA model for realized variance.
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A Appendix: Empirical Results

A .l Descriptive Statistics and Estimation Results

Frequency Skew Kurtosis BL (10) D W Vi ^2 ^3 ¥>5 ¥io Vis
1 Min 30.6 1432 814 1.70 0.152 0.131 0.115 0.072 0.032 0.023
10 Min 10.1 410 308 1.70 0.151 0.071 0.049 - - -

25 Min 5.26 202 144 1.76 0.118 - - - - -

1 Hour 4.34 142 53.1 1.94 0.031 - 0.030 - -0.029 -

1 Day 0.04 5.24 12.6 2.00 0.069 - - - - -

Table 1: Descriptive statistics of FTSE-100 returns at different sampling frequencies. 
BL(10) denotes the Box-Ljung Statistic with 10 autocorrelations (18.31 critical value at 
95% confidence bound). DW denotes the Durbin Watson test. denotes the j th autocor­
relation. The statistics are calculated using 10,000 observations for sampling frequencies 
down to one hour and 2,400 observations for the daily frequency. The 95% confidence 
bounds are therefore ±  0.02 and ±0.042 respectively. Entries which contain the symbol 
are not significant based on these bounds.

Mean Std.Dev. Skewness Kurtosis ADF(5)

Realized Variance 8.54E-5 2.57E-4 21.2 596 -16.2
Logof Realized variance -9.98 0.962 0.558 4.11 -8.83
Daily Return 4.60E-4 9.28E-3 0.0628 5.29 -21.8
Standardized Daily Return 0.091 1.09 0.0362 2.23 -22.3

Table 2: Descriptive statistics for realized volatility and daily returns. The 
column " ADF(5)" reports the augmented dickey fuller test including a constant 
and 5 lags
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Model Sample d “ 1 Pi c t cr C2 ^ 0 LogL A IC /T

ARFIM A i 0.446
( 9 . 2 0 )

0.422
( 5 .9 2 )

-0.636
(8 .4 1 )

- - - - - -723 0.81

+  Returns i 0.415
( 7 . 5 2 )

0.302
( 4 .6 3 )

-0.597
(7 .3 3 )

33.6
( 2 0 . 1 )

39.4
( 2 1 .5 )

14.8
( 8 .8 6 )

18.0
( 9 .7 7 )

- -453 0.51

4- Volume i 0.481
( 1 9 .8 )

0.317
( 6 .3 9 )

-0.677
( 1 5 .3 )

27.7
( 1 6 .8 )

36.4
( 2 0 .6 )

11.7
( 7 .3 1 )

16.9
( 9 .6 4 )

0.379
( 1 3 .6 )

-366 0.42

ARFIM A ii 0.487
( 2 9 .2 )

0.401
( 7 .2 4 )

-0.642
( 1 3 . 1 )

- - - - - -968 0.80

+  Returns ii 0.484
( 2 4 .2 )

0.327
( 7 .1 2 )

-0.662
( 1 6 .0 )

25.5
(2 0 .5 )

32.3
( 2 4 .2 )

10.6
(8 .5 2 )

14.9
( 1 1 .2 )

- -649 0.54

+  Volume ii 0.489
(3 2 .1 )

0.339
( 8 .0 6 )

-0.684
( 1 9 .4 )

21.5
( 1 7 .7 )

29.4
( 2 2 .7 )

8.62
( 7 .2 2 )

13.9
( 1 0 .9 )

0.358
( 1 5 .3 )

-537 0.45

Table 3: ARFIMA estimation results. Sample I runs from M ay 2, 1990 until June 15, 
1997. Sample II runs from M ay 2, 1990 until January 11, 2000. d, au, and (dx denote 
the A R F I M A (l ,d ,l )  model parameters. £ ~ , and Ao, are the regression coefficients of 
corresponding to the ith lag of positive and negative returns and contemporeneous trading 
volume respectively. T he last two columns contain the value of the log likelihood function 
and the Akaike information criteria. t-Statistics are reported in parenthesis.
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A .2  M icro Structure & Sampling Frequency

Figure 1.1: 1990-2000 average daily realized variance and autocovariance bias 

factor (dotted line is unconditional variance calculated using daily return data)

Figure 1.2: Empirical (solid line) and aggregation implied (dotted line) 

“Autocovariance Bias Factor”
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A .3 The F T S E -100  Realized Variance

1992 1994 1996 1998 2000 "?990 1992 1994 1996 1998 2000

Figure 2.1: Log of realized variance Figure 2 2. ftactionaily differenced (using

d=0.40) log realized variance series.

Figure 2.3: Correlogram log realized variance Figure 2.4: Correlogram of fractionally 

plus fractional implied correlations. differenced log realized variance series

d as a function of the bandwidth m.
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A .4 Forecasting Performance

by actual average realized variance casted cummulative realized variance

Figure 3.3: Forecast error standard deviationFigure 3.4: Density Geweke Porter Hudak estimates
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B Appendix: Theory

B .l  Temporal Aggregation &; Systematic Sampling

Consider an ARMA(p,q) process

a { L ) X t = P ( L ) e t,

where a (L ) and /? (L ) are lag polynomials of lengths p and q respectively. Con­
sider the case where the reciprocals of the roots of a  (L) =  0, 6P, all lie
inside the unit circle.

When X t is a stock variable, Wei (1981) showed that by applying the 
operator S(L)

s ( L ) = n
3 — 1

l -
1 -  6jL

to ARMA(p,q) process, the ARMA(p,r) model through which the filtered sub­
series may be represented is obtained. In this case, /  denotes the systematic 
sampling frequency. When X t is a flow variable, Wei (1981) showed that by 
applying the operator T(L)

T(L)  =  S (L )i— ^

to ARMA(p,q) process, the ARMA(p,r) model through which the filtered sub­
series may be represented is obtained. In this case, /  denotes the temporal 
aggregation frequency. The moving average lag length r is given by the integer 
part of p +  and for large /  will be equal to p or p — 1, depending on whether 
q >  p  or q <  p.

Note that although the order of the autoregressive part of the ARMA 
model remains the same under systematic sampling or temporal aggregation, 
the magnitude of the autoregressive coefficients decrease exponentially with 
/ .  Hence, in the limit the autoregressive part will disappear. Moreover, for 
temporal aggregation, the term will dominate the MA part and hence the 
limit model is an ARMA(0,0) or equivalently white noise.

B.2 Fractional Integration

A time series, X t is said to be fractionally integrated of order d, if after applying 
the difference operator (1 — L)d it follows a stationary ARMA(p,q) process where
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p and q are finite nonnegative integers. The concept was developed by Granger 
(1980, 1981) and Granger and Joyeux (1980). A typical feature of a fractionally 
integrated or long memory process is that the effect of a shock to the process is 
highly persistent but decays over time. This, as opposed to 7(1) processes where 
a shock has infinite persistence or at the other extreme /(O)-processes in which 
the effect of a shock to the system decays exponentially fast. Moreover,note that 
the fractional difference operator takes care of the long run dynamics while the 
ARMA structure can account for the short run dynamics. The ARFIMA(p,d,q) 
model can be written as

a(L)( l  -  L)dX t =  (3{L)eu (4)

where a(L)  is a lag polynomial of order p and (3(L) of order q. Note that the 
ARMA(p,q) and Integrated ARMA(p,q) models are special cases of (4) for d =  0 
and d =  1 respectively. Using a binomial17 or Taylor-like expansion (around 
L =  0), the fractional difference operator can be expressed as follows:

(1 - L ) d = 1 - d L -  ld{  1 -  d)L2 -  irf(l -  d){ 2 -  d)L3 -  ... 
2 6

V  r  ( h - d )  h
2-,o r(h + m - d )

n ti fo-l -d),
ft!

(5)

Using Stirling’s formula18 it can be shown that:

n l U ( w - 1 -  d) =  r  (ft -  d)
ft! r ( -d )r ( f t+ 1)

for ft large. Moreover, for d <  | and d ^  0, it can be shown that:

<fih =  corr(Xt, X t-h)
F(1 ~ d )  T(ft +  d) h2d_,

r(d) T(ft +  1 — d) h large (6)

and hence the decay of the correlogram is hyperbolic, as opposed to an expo­
nential decay for an 7 (0) process. For d =  0, iph =  0 for ft >  0. The process

l7The Binomial Theorem states that (1 — L)d — YlhLo (  ft )  (—1 )hLh where

^ ^ ^ 1)'* =  T(ft -  d)/ [r(-d) ■ T(ft +  l)j and T(-) is the Gamma function for which it

holds that T(x) =  (x — 1) • T(x — 1)
i8Stirling’s formula states that T (ft) 'J2ii-hĥ l^e~h for ft large and hence a  ha~b.
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is stationary and long memory for 0 < d <  0.5. The process is stationary 
and intermediate memory when —0.5 < d <  0. For d >  0.5, the process is 
non-stationaxy.

B.2.1 Log-Periodogram Regressions

Several two step procedures have been proposed to estimate the fractionally 
integrated ARMA model. The main idea is to estimate the fractional param­
eter, d, in the first step while in the second step this estimate can be used to 
fractionally difference the observed series, transforming it into an ARMA pro­
cess of which the parameters can be obtain straightforwardly by ordinary least 
squares. Geweke Porter-Hudak (1983, GPH hereafter) propose to estimate d by 
a log-periodogram regression which is described below. Consider (1—L)dX t =  et 
where et is a stationary linear process with spectral density function / e (A) which 
is finite, bounded away from zero and continuous on the interval [—n, n}. The 
spectral density function of { X t}  is /  (A) =  [4 sin2 A] d / £ (A) or equivalently

In /  (A) =  In -  d In [4 sin2 (A/2)] + l n | ^ | .  (7)

Define the harmonic frequency Aj =  ^  where T  is the sample size and let 
I  ( \ j )  be the periodogram at A3 which is given by

I  (Aj)
1

Y  x teiXjt
t=l

Rearranging terms and evaluating expression (7) at A j close to zero (the term 
In is therefore negligible) the following expression is obtained:

In/(A,-) =  In °  -  din [4sin2 (A.,/2)] +  In (8)

Therefore, the coefficient d can now be estimated as the slope coefficient in 
a least squares regression of In I  (Xj )  on a constant and In [4 sin2 (A.,/2)] for 
j  =  1 +  l , . . .  ,m  <C T. GPH set l — 0 and require that the bandwidth pa­
rameter m increases at a slower rate than the sample size. In many practical 
applications m is set to equal to the square root of the sample size T. Robinson 
(1995a) provides the asymptotic behavior of the estimator. In addition, Robin­
son (1995b) proposed an alternative estimator which is derived under weaker
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conditions and proved to be asymptotically more efficient than the GPH esti­
mator. This estimator, for the fractional parameter, is given by the value of d 
that minimizes the following objective function:

1 m

3=1 L

\ 2d
ln ^ A - ^  +  ^-ZC A,)

where c > 0 and d is restricted to lie between —-j and

B.2.2 Exact Maximum Likelihood

Motivated by the finding that the ARMA parameters are generally not esti­
mated accurately using a two step method, Sowell (1992) proposes an exact 
maximum likelihood procedure that estimates all model parameters simultane­
ously. Let £  denote the covariance matrix of the joint distribution of { X tYtZj 
where X t is assumed to follow an ARFIMA(p,d,q) process as given by expres­
sion (4). The model parameters can be estimated by maximizing the following 
log-likelihood function over the parameter space

log L (d, a, 0 , a2) =  log (2tt) -  i  log |£| -  ^X'YTlX,

where =  <P\i-j\ for i , j  =  1,2, . . . , T ,  is expressed in terms of the model 
parameter. Sowell (1992) shows that the covariance matrix, needed for the 
estimation, is given by

9 v
Vs = E  E 19 W (d>P +  1 ~ A <Pj)

l = - q  3=1

where

and

min[ç,g— 1]

15(0 = E  M . -1
s=max[0,i]

*71 = fl3-fl(i - M i )  I l (e3 -  ««)
i= 1 m ĵ

where 9j denote the roots of a(L)  and are assumed to lie outside the unit disk. 
Finally, the expression for C  is given by

C (d, h , 6 ) = g  (d, h) [62pF  {d +  h, 1; 1 -  d +  A; 9) +  F  {d -  h, 1; 1 -  d -  h; 9) -  l]

where g (d, h) — and F (a> h  cie) is t*ie hypergeometric func­
tion.
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