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Sample Kurtosis, GARCH-t and the Degrees of

Freedom Issue

Maria S. Heracleous†

Abstract

Econometric modeling based on the Student’s t distribution introduces an

additional parameter — the degree of freedom. In this paper we use a simulation

study to investigate the ability of (i) the GARCH-t model (Bollerslev, 1987)

to estimate the true degree of freedom parameter and (ii) the sample kurtosis

coe cient to accurately determine the implied degrees of freedom. Simulation

results reveal that the GARCH-t model and the sample kurtosis coe cient

provide biased and inconsistent estimates of the degree of freedom parameter.

Moreover, by varying 2, we find that only the constant term in the conditional

variance equation is a ected, while the other parameters remain una ected.
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1 Introduction

Most theoretical and applied research using the linear regression model assumes that

the error term follows a Normal distribution. In many real world applications, how-

ever, there is substantial evidence showing that the distribution of errors has thicker

tails than the Normal. One area where this distinction becomes particularly relevant

is in modeling speculative price data where thick tails and volatility clustering are

well documented features. In a seminal paper, Mandelbrot (1963) already pointed

out these empirical regularities and proposed replacing the Normality assumption

with the Pareto-Levy (Stable) family of distributions in an attempt to capture the

leptokurticity and infinite variance in the distribution of returns. Fama (1965) also

makes similar suggestions. Alternatives have also been proposed by Praetz (1972)

and Blattberg and Gonedes (1974) among others, where continuous mixtures of Nor-

mal distributions leading to Student’s t errors for modeling stock price indices are

used.

By the end of the 1970s, however, it was largely recognized that existing volatility

models based on the Pareto family were unable to account for the volatility clustering

present in speculative price data. This gave rise to a new line of research which be-

gan with the introduction of the Autoregressive Conditional Heteroskedastic Model

(ARCH) in a classic paper by Engle (1982). The original ARCH( ) model assumes a

conditional error distribution that is Normal but expresses the conditional variance

as a order weighted average of past (squared) disturbances, and is thus able to

explicitly capture volatility clustering in financial series. Following this, an enor-

mous body of research has focused on extending and generalizing the ARCH model,

primarily by suggesting alternative functional forms for the conditional variance.

In 1986 an important contribution to this literature occurred when Bollerslev
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proposed the Generalized ARCH (GARCH) model as a more parsimonious way to

capture volatility dynamics. In order to better account for the observed leptokur-

tosis, Bollerslev (1987) further extended the GARCH specification to allow for the

conditional Student’s t distribution as an alternative to the Normal. In addition

to these models, alternatives to the GARCH family utilizing the multivariate Stu-

dent’s t distribution have been proposed by Spanos (1994), McGuirk, Robertson and

Spanos (1993) and Heracleous and Spanos (2005). These authors begin by assuming

a multivariate Student’s t distribution for the observables and impose appropriate

probabilistic reduction assumptions to derive the conditional statistical model. Con-

ditional model specifications obtained using this approach naturally accommodate

static and dynamic heteroskedasticity as well as non-linear dependence.

Econometric modeling based on the Student’s t distribution, however, introduces

an additional parameter the degree of freedom parameter, which measures the ex-

tent of leptokurtosis in the data. One can also interpret this as a measure of the

extent of departure from the Normal distribution. This in turn raises an estimation

issue, since Zellner (1976) shows that there do not exist maximum likelihood esti-

mates for the linear regression coe cients, the dispersion parameter and the degree

of freedom parameter. Consequently, to use maximum likelihood, it is necessary to

assign a degree of freedom parameter that reflects the distributional properties of the

error term. One commonly proposed technique for selecting the degree of freedom is

by using the kurtosis coe cient as a guide to solve for the implied degrees of freedom.

Most studies using the Student’s t distribution, however just assume that the degree

of freedom parameter is known so that the standard maximum likelihood approach

can be used. Bollerslev (1987) is an exception where the degree of freedom parameter

as well as the GARCH parameters are all estimated by maximum likelihood methods.

In this paper we conduct a simulation study to examine two questions that natu-
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rally arise in the context of the Student’s t distribution. The first relates to the relia-

bility of the estimated degree of freedom parameter from Bollerslev’s (1987) GARCH

t model as well as its consequences. Secondly, we investigate the usefulness of us-

ing the sample kurtosis coe cient for determining the appropriate degree of freedom

parameter for the Student’s t distribution.

The plan of this paper is as follows. In the next section the Student’s t distribution

is introduced and the theoretical questions to be investigated are discussed. In section

3 we then provide a detailed description of the simulation set up. Section 4 presents

the simulation results. The final section contains a summary of results and some

concluding remarks.

2 Theoretical Background

We begin this section by defining and stating some of the properties of this distrib-

ution. Let y = ( 1 2 ) be a × 1 vector which has a multivariate Student’s t
distribution denoted by y ( 0 2I) Its probability density function is given

by:

(y 2) =

£
1
2
( + )

¤
( ) 2 2

£
1
2

¤ 1 +
y0y

2

¸ 1
2
( + )

(1)

where and 2 are respectively the degree of freedom parameter and the dispersion

parameter. The degree of freedom parameter is also referred to as the shape parameter

because the peakedness of the density function and thickness of the tails in equation(1)

depend on its value. It is well known that as the t-distribution approaches

the Normal but for small values of the t-distribution is more sharply peaked and
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has thicker tails than the Normal. The student’s t distribution is symmetric around

0 has the following properties:

( ) = 0 ( 2) =
2

2 ( 4) =
3 2

( 2) ( 4)
4 (2)

where 4.

As already mentioned, financial data such as stock prices, interest rates and ex-

change rates seem to have a distribution which is much closer to the Student’s t.

Thus, an important decision to be made when using the Student’s t distribution

for modeling such data is to choose the appropriate value of the degree of freedom

parameter. Some authors have used density estimates (Spanos 1994), standardized

Student’s t P-P plots (Heracleous and Spanos 2005) as well as the kurtosis coe cient

as guides for the an initial value of In these papers however the final choice of

is made on statistical adequacy grounds. By contrast, Bollerslev (1987) does not

prespecify the degree of freedom but treats it as a parameter to be estimated. This

will be discussed in detail in the following section.

2.1 Bollerslev’s GARCH - t model

In view of the fact that the Gaussian GARCH model could not explain the leptokur-

tosis exhibited by asset returns, Bollerslev (1987) suggested replacing the assumption

of conditional Normality of the error with the conditional Student’s t distribution.

He argued that this formulation would permit us to distinguish between conditional

leptokurtosis and conditional heteroskedasticity as plausible causes of the uncondi-

tional kurtosis observed in the data. This model can be specified in terms of its first

two conditional moments. The conditional mean is constant as follows:
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= + F 1 (0 2) (3)

where F 1 represents the past history of the dependent variable. The GARCH (p,q)

conditional variance, 2 for this model takes the form:

2 = +
X
=1

2 +
X
=1

2 1 1 (4)

where the parameter restrictions 0 0 0 ensure that the conditional

variance is always positive. Moreover,
P
=1

+
P
=1

1 is required for the convergence

of the conditional variance. The distribution of the error term according to Bollerslev

(1987) takes the form:

( 1; 1) =

£
1
2
( + 1)

¤
1
2

£
1
2

¤ £
( 2) 2

¤ 1
2 1 +

2

( 2) 2

¸ 1
2
( +1)

(5)

However, McGuirk et al. (1993) argue that the above distribution in equation

(5) can be obtained by substituting the conditional variance 2 in the functional

form of the marginal Student’s t distribution and re-arranging the dispersion (scale)

parameter. This would be indeed the correct strategy for the Normal distribution,

where one does not have to be concerned about the degree of freedom parameter.

For the Student’s t distribution however, the degree of freedom in the conditional

distribution change depending on the number of the conditioning variables. In fact

McGuirk et al. (1993) further show that if we derive the conditional distribution

from the joint distribution of the observables ( 1 ; ) we get the expression
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shown in equation (6) below:

( 1; 2) =

£
1
2
( + + 1)

¤
1
2

£
1
2
+
¤ £

2 2
¤ 1

2 1 +
2

2 2

¸ 1
2
( + +1)

(6)

Note that the parameter in the gamma function in the two equations are di erent.

More importantly however, we observe that 2 does not appear in equation (5). This

suggests that estimation of the degree of freedom parameter, from the GARCH- t

model à la Bollerslev (1987), that ignores 2 will give an incorrect mixture of both

and 2. To investigate this issue further we allow 2 to vary and examine its e ect

on all estimated parameters of the GARCH- t model.

2.2 Sample Kurtosis Coe cient

The sample kurtosis coe cient introduced by Pearson (1895) measures of the peaked-

ness in relation to the tails of the distribution. It is defined as the standardized fourth

central moment as follows: 4 = 4

( 2)
2 In the case of the Student’s t distribution the

sample kurtosis coe cient is related to the degree of freedom parameter in the fol-

lowing way: 4 = 3+
6
4
This provides one way of choosing the degrees of freedom

parameter The Normal distribution, with a value of 4 = 3 is often used as a

benchmark. Distributions with 4 3 are called leptokurtic and have a sharper peak

and fatter tails than the Normal. Typically, for financial data the kurtosis coe cient

is well above 3 indicating possible non-Normality.

Even though the sample kurtosis coe cient is widely used in quantitative finance,

it has been criticized in the statistics literature as a “vague concept”(Mosteller and

Tuckey, 1977). Also Ballanda and MacGillivray (1988) point out that “although

moments play an important role in statistical inference they are very poor indicators
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of distributional shape”. Its usefulness has also been questioned since it is based

on sample averages, which are sensitive to outliers. This e ect can be amplified

easily since they are raised to the fourth power. Fisher pointed out the weakness of

using moments beyond the second as early as 1922. Given these criticisms it is not

apparent that the kurtosis coe cient is a useful way to compute the implied degrees

of freedom. Hence we use simulations to investigate the sampling distribution of the

kurtosis coe cient and the sampling distribution of the implied degrees of freedom

parameter.

3 Simulation Set Up

Data for this simulation were generated in the following way. First, a raw series of

Student’s t random numbers with mean 0 and variance 1 is generated. The degree

of freedom parameter was allowed to vary in di erent simulations according to the

needs of the study. The raw Student’s t numbers were generated using the algorithm

proposed by Dagpunar (1988). This algorithm uses numbers from a uniform distrib-

ution as an input, allowing the user to control the seed. The following procedure was

used in order to enable easy reproduction of the data from any given run. The initial

seed was set to 211 1 and series of Student’s t numbers were generated. The gen-

erated data were tested for skewness and kurtosis using tolerance levels specified in

Paczkowski (1997). Only samples that met the standards were used in the simulation

study. Maximum allowable skewness was set to ±0 1. The tolerance for kurtosis was
set to ±0 5 around the value implied by the degree of freedom parameter according

to the relationship shown below:

4 = 3 +
6

4
; 4 (7)
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Note that for = 4 the above relationship breaks down and the allowable kurtosis

range was set to 7.5 8.5.

The true structure of the data is given by:

Y1 S
¡
1 1

¢
= 1

where Y1 = ( 1 2 )0 = 0 and ( 1) 1 is

( 1) 1=

1 0 4 0 2

0 4 1 16 0 32 0 2

0 2 0 32 1 20 0 32 0 2

0 2 0 32 1 20 0 32 0 2

0 2 0 32 1 20 0 32 0 20

0 2 0 32 1 16 0 4

0 2 0 4 1

(8)

Using = 0 and equation (8) the remaining parameters can be computed as

follows:
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=
2

1

=
0 2

0 4

2 = 1 0 = 0

Next, we use the Cholesky factorization as shown below to impose the necessary

dependence structure on the generated data.

Y1 =

μ
2

1

¶
J (9)

where J is the series of raw Student’s t numbers and 1 is the scale matrix, and

( ) refers to the Cholesky factorization. Using this method we generate the joint

Student’s t distribution directly.

To study the questions of interest mentioned in the previous section we consider a

number of di erent scenarios. Sample sizes ( ) of 50, 100, 500 and 1000 were chosen

since financial data series can be available annually, monthly, weekly or daily. Three

di erent degrees of freedom = 4 6 and 8 were used in this study. The true value

of 4 is 6 when = 6 and 4.5 when = 8. For = 4 4 is undefined. Most financial

data are leptokurtic and thus can be described by degrees of freedom in the range

of 4 8. Moreover, as increases above 8 the distribution looks much closer to the

Normal and it would not be pertinent to consider larger degrees of freedom. For each

combination of the sample size and , 1000 data sets were generated. Also for sample

size 500 we allowed 2 to vary. It was allowed to take the values 1, 0 25 and 4. In

each of these instances the value of 2 a ects only the scale matrix 1, leaving the

other parameters unchanged. For 2 = 1 ( 1) 1 takes the values given in equation

(8). In general for 2 = 0 the inverse of the scale matrix in equation (8) is
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multiplied by the factor of 1 .1

4 Results

In this section we present the results of the simulation study. In the first part we

present the results for the sample kurtosis coe cient 4 and the implied degrees of

freedom parameter (inu) computed using 4. In the second part we focus on the

degrees of freedom parameter as estimated in Bollerslev’s (1987) model. By allowing

2 to take di erent values we examine its impact on all estimated parameters.

4.1 Estimates of 4 and the Implied Degrees of Freedom

In Table 1 we report descriptive statistics for the empirical distribution of the esti-

mates. We observe that the sample kurtosis coe cient, 4 is relatively stable around

5.6 for = 4. Similarly it is stable around 4 5 for = 6 and around 3.7 for = 8.

Also note that as increases, 4 decreases as expected. However, once we use 4 to

derive the implied degrees of freedom ( ), we find some interesting features. In all

three cases ( = 4 6 8) the implied degrees of freedom consistently exceed the true

ones. For = 4 is around 6 (starting at 6.7 for a sample size of 50 and going

down to 6.3 for sample size of 1000). Also note that the standard error decreases

dramatically from a value of 10 ( = 50) to a value of 0.46 ( = 1000). For = 6,

at sample size 50, = 10, but stabilizes around 8 for sample sizes of 500 and 1000.

Interestingly, for sample size 100, it jumps to 14 and the standard error is high as

well. For = 8 we find evidence of erratic behavior especially for sample sizes of 50

and 100 where = 1 4 and = 992 respectively.

1The computer code for this simulation exercise was written in GAUSS 4.0 and the
Student’s t GARCH model was estimated using the FANPAC toolbox which is part of the
GAUSS package.
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Parameter DF Sample size Mean Empirical s.e Skewness Kurtosis

= 4

50
100
500
1000

5.2981
5.5234
5.6626
5.6577

.9064

.9170

.6454

.5183

.4637

.3247

.6828

.6625

3.2697
3.0346
4.3656
4.4543

ˆ4 = 6

50
100
500
1000

4.3069
4.4364
4.5507
4.5317

.7529

.7100

.4824

.3960

.5666

.5382

.5406

.5921

3.7797
3.7072
3.6502
3.3306

= 8

50
100
500
1000

3.6416
3.7211
3.7202
3.7350

.6341

.5630

.3554

.2914

.4985

.6295

.7278

.7100

3.2237
3.7385
4.0377
4.0557

= 4

50
100
500
1000

6.7046
6.8047
6.3920
6.3441

10.0026
2.0034
.6194
.4664

-20.6339
2.8237
1.3633
.9253

458.6991
95.6585
7.1254
5.5797

= 6

50
100
500
1000

10.3436
14.6619
8.3120
8.1886

21.9843
145.1031
1.6467
1.1193

-.2979
30.0049
2.4282
0.9077

74.1571
929.4971
14.7343
4.2954

= 8

50
100
500
1000

-1.4269
992.27.62
15.5592
13.1225

314.2906
30878
26.7089
25.5438

-22.8729
31.5739
6.0128
-28.1416

631.6351
997.9412
316.9994
864.1377

Table 1: Descriptive Statistics for Sample Kurtosis and inu
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As the sample size increases the implied degrees of freedom parameter decreases

to 13 for = 1000 and possibly could decrease even more for sample sizes beyond

1000. This erratic behavior at small sample sizes can largely be explained by the fact

that a few bad draws can a ect the (mean) estimates for small sample sizes. Also as

mentioned before, for = 6 and = 8, we find that 4 is around 4 and 3 respectively.

Recall that = 4+ 6
4 3
. Hence, for = 6 and = 8, there is a higher probability of

getting unusually large values for inu. This can explain the erratic behavior observed

above. Overall, the results suggest that the sample kurtosis coe cient is not a good

measure of the true degrees of freedom. This result is not surprising. In fact, Wang

and Ip (2003) have shown theoretically that the moment estimate of the degree of

freedom parameter of the multivariate Student’s t distribution for the disturbance in

the linear regression model is inconsistent.

4.2 Estimates of the GARCH- t parameters

Table 2 provides descriptive statistics for the empirical distribution of the degree of

freedom parameter ( ), estimated by Bollerslev’s (1987) model. The results suggest

that the GARCH- t model consistently overestimates the true degree of freedom

parameter. For instance, when = 4 the estimated value is around 8. Also note

that for small sample sizes the empirical standard error of the parameters is larger

than their estimated value. Even if sample size increases the standard error is quite

large giving rise to imprecise estimates. For = 4 estimated is stable around the

value of 8. For = 6 and = 8 as the sample size increases, we observe a downward

trend towards the true value of . However, the final estimates are never close enough

to the true value.
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Parameter DF Sample size Mean Empirical s.e Skewness Kurtosis

= 4

50
100
500
1000

7.8161
8.2640
7.9918
8.1036

12.4646
10.9403
2.7387
1.8096

5.2276
5.3855
3.0789
1.8848

31.7047
35.1996
22.0161
9.4895

= 6

50
100
500
1000

13.0683
12.2761
10.9033
11.0866

20.7030
16.1543
4.1220
2.8603

3.0020
3.5597
1.9758
1.2313

10.9406
15.7681
8.9713
5.0127

= 8

50
100
500
1000

20.7026
20.3718
17.7961
15.4479

27.1638
24.1092
10.3940
4.5214

1.8269
2.0239
2.9042
1.9255

4.9891
6.0065
16.7992
13.8620

Table 2: Descriptive Statistics for Estimated nu

Next we present Table 3 which shows how the estimates of the conditional variance

from the GARCH- t model vary for di erent values of 2. We chose to use a sample

size of 500 in this case to avoid any problems with small sample sizes. Recall that 2

is not a free parameter that can be estimated in Bollerslev’s (1987) formulation (see

equation 5). Therefore we can interpret this as the 2 = 1 case that serves as the

benchmark for our simulation.

Interestingly, we find that the only parameter which varies with 2 is the

constant term in the conditional variance equation. Moreover, we observe that there

is a proportional relationship between 2and For example when = 4 and 2 = 4

the estimate of is 4.5016 which is roughly four times the value of when 2 = 1.

This relationship holds for = 6 and 8 (see Table 4). We can also see from Table 3

that the estimated degree of freedom ( ), and the GARCH and ARCH parameters

in the conditional variance remain unchanged as 2 varies. Thus, these results suggest

that the e ect of the 2 (the missing parameter) in Bollerslev’s formulation is fully

absorbed by the constant in the conditional variance equation.
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Parameter DF 2 Mean Empirical s.e Skewness Kurtosis

= 4
1
0.25
4

7.9918
7.8868
7.8574

2.7387
2.5311
2.5787

3.0789
3.0377
3.2067

22.0161
24.2803
27.3063

= 4
1
0.25
4

1.1164
.2778
4.5016

.3846

.0959
1.5929

.4161

.3616

.4569

3.1568
3.0933
3.1791

1 = 4
1
0.25
4

.2226

.2264

.2196

.2074

.2072

.2121

-.0394
.0119
-.0699

2.8308
2.8227
2.8588

1 = 4
1
0.25
4

.2229

.2219

.2219

.0642

.0642

.0641

.3804

.3653

.3451

3.2621
3.1943
3.0918

Note:
1. 1 is the GARCH parameter, 1 is the ARCH parameter and is the constant
in the Student’s t GARCH model (Bollerslev, 1987)

Table 3: Descriptive Statistics for the Student’s t GARCH parametes, n=500

We also present Normal kernel density estimates of the empirical distribution of

for various sample sizes and = 6 in figures 1-6. The dashed lines in these figures

represent the contour of the Normal density, with the same mean and variance as the

data whose distribution is shown in the graph. Figures 1-4 show the kernel density

for = 6 2 = 1 and sample sizes = 50 100 500 and 1000 respectively. In figures

5-6 we let 2 take the values of 4 and 0.25 while = 6 and = 500. It is easy to

see from figures 1 6 that the distribution is leptokurtic, skewed to the left and the

mode and the mean are far from the true value ( = 6). Graphs for = 4 and = 8

exhibit similar patterns and hence have been omitted.
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Parameter DF 2 Mean Empirical s.e Skewness Kurtosis

= 4
1
0.25
4

1.1164
.2778
4.5016

.3846

.0959
1.5929

.4161

.3616

.4569

3.1568
3.0933
3.1791

= 6
1
0.25
4

.9111

.2246
3.6325

.4027

.0987

.1896

.6434

.5478

.5383

4.0782
3.6875
3.7684

= 8
1
0.25
4

.9728

.2454
3.8037

.5244

.1310
2.0297

.7333

.7034

.6705

3.2792
3.2997
3.2348

Table 4: Descriptive Statistics for the constant in the Student’s t GARCH model,
n=500

Figure 1: Kernel density for , = 6 2 = 1 = 50
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Figure 2: Kernel density for , = 6 2 = 1 = 100

Figure 3: Kernel density for , = 6 2 = 1 = 500

17



Figure 4: Kernel density for , = 6 2 = 1 = 1000

Figure 5: Kernel density for , = 6 2 = 0 25 = 500
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Figure 6: Kernel density for , = 6 2 = 4 = 500

5 Conclusion

The Student’s t distribution provides a useful alternative for modeling financial data.

Relative to the Normal distribution, it has an additional variable — the degree of

freedom parameter for capturing the leptokurtosis in the data. However, it also raises

an additional question — how do we ascertain the appropriate degrees of freedom? In

this paper we evaluate this question in the context of the sample kurtosis coe cient

which is often used to determine the implied degree of freedom, and for Bollerslev’s

GARCH- t model (1987) where the degree of freedom parameter is also estimated.

Our simulation results reveal that the sample kurtosis coe cient provides a bi-

ased and inconsistent estimator of the degree of freedom parameter. Our simulations

further show that the GARCH- t model also provides biased and inconsistent esti-

mates. This is mitigated by the fact that the conditional mean parameters, the ARCH

and GARCH coe cients as well as the degree of freedom parameter in the Student

19



t GARCH model are not a ected when the dispersion parameter, 2, is allowed to

vary. However, we do find that the constant term in the conditional variance equa-

tion is a ected when 2 varies. This will certainly have consequences for estimating

and predicting volatility. Finally note that there seems to be a proportional relation-

ship between the change in 2 and the e ect on the constant term in the volatility

equation.

References

[1] Aptech Systems (2002). GAUSS 4.0 Manual, Maple Valley, Aptech Systems Inc.

[2] Balanda, K.P. and H.L. MacGillivray (1988). “Kurtosis: A Crirical Review”,

The American Statistician, 42, 111-119.

[3] Blattberg, R.C., N.J. Gonedes (1974). “A Comparison of the Stable and the Stu-

dent Distributions as Statistical Models for Stock Prices”, Journal Of Business,

47, 244-280.

[4] Bollerslev, T. (1986). “Generalized Autoregressive Conditional Heteroskedastic-

ity”, Journal of Econometrics, 31, 307-327.

[5] Bollerslev, T. (1987). “A Conditionally Heteroskedastic Time Series Model for

Speculative Prices and Rates of Return”, Review of Economics and Statistics,

69, 542-547.

[6] Dagpunar, J. (1988). Principles of Random Variate Generation, Oxford: Oxford

University Press.

20



[7] Engle, R.F. (1982). “Autoregressive Conditional Heteroskedasticity with Esti-

mates of the Variance of United Kingdom Inflation”, Econometrica, 50, 987-

1008.

[8] Engle, R.F. and T. Bollerslev (1986). “Modeling the Persistence of Conditional

Variances”, Econometric Reviews, 5, 1-50 (with discussion).

[9] Fama, E.F. (1965). “The Behaviour of Stock-Market Prices”, Journal of Busi-

ness, 38, 34-105.

[10] Fisher, R.A. (1922). “On the Mathematical Foundations of Theoretical Statis-

tics”, Philosophical Transactions of the Royal Society A, 222, 309-368.

[11] Heracleous, M.S. and A. Spanos (2005). “The Student’s t Dynamic Linear Re-

gression: Re-examining Volatility Modeling”. Advances in Econometrics, 20A,

289-319.

[12] Mandelbrot, B. (1963). “The Variation of Certain Speculative Prices”, Journal

of Business, 36, 394-419.

[13] McGuirk, A., J. Robertson and A. Spanos (1993). “Modeling Exchange Rate

Dynamics: Non-Linear Dependence and Thick Tails”, Econometric Reviews, 12,

33-63.

[14] Mosteller, F. and J.W. Tuckey (1977). Data Analysis and Regression. Reading,

MA: Addison - Wesley.

[15] Paczowski, R. (1997).Monte Carlo Examination of Static and Dynamic Student’s

t Regression Models, Ph.D Dissertation, Virginia Polytechnic Institute and State

University.

21



[16] Pearson, K. (1895). “Contributions to the mathematical theory of evolution

II. Skew variation in homogeneous material”, Philosophical Transactions of the

Royal Society of London, series A, 186, 343-414.

[17] Praetz, P.D. (1972). “The Distribution of Share Price Changes”, Journal of

Business, 45, 49-55.

[18] Spanos, A. (1994). “On Modeling Heteroskedasticity: The Student’s t and El-

liptical Linear Regression Models”, Econometric Theory, 10, 286-315.

[19] Spanos, A. (1999). Probability Theory and Statistical Inference: Econometric

Modeling with Observational Data, Cambridge: Cambridge University Press.

[20] Wang, S. and W. Ip (2003). “Inconsistency of estimate of the degree of freedom

of multivariate student-t disturbances in linear regresssion models”, Economics

Letters, 80, 283-285.

[21] Zellner, A. (1976). “Bayesian and non-Bayesian analysis of the regression model

with multvariate student-t error terms”, Journal of American Statistical Asso-

ciation, 71, 400-405.

22


