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Abstract 
The convergence rate of the sample mean of fractionally integrated processes is 
exploited to build test statistics for the fractional integration parameter d of univariate 
series, as well as for the rank of fractional cointegration of multivariate series with 
known or unknown order of fractional integration. Recursive adjustment is employed 
when dealing with deterministic components. The suggested test statistics are easy to 
compute and possess standard limiting distributions.  
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Fractional Integration and Cointegration
Testing using the Sample Mean

Matei Demetrescu∗

Goethe University Frankfurt†, European University Institute‡

1 Introduction

The most direct way to build a test for the fractional integration parameter d
is to exploit the distribution of a suitable estimator. There is indeed a large
body of literature concerning point estimation, in both the time and the
frequency domain, such as Granger and Joyeux (1980) or Sowell (1992), and
Geweke and Porter-Hudak (1983), Fox and Taqqu (1986) or Robinson (1995),
respectively. Asymptotic distributions have been derived for these estimators
(under several restrictions for d and additional regularity conditions), based
on which tests may be built.

A different branch of the literature is concerned with the LM fractional
integration test pioneered by Robinson (1991, 1994), which has asymptotic
normal distribution. By working under the null hypothesis, the test does not
require restrictions on d. Refinements have been proposed by Tanaka (1999),
as well as Agiakloglou and Newbold (1994), Breitung and Hassler (2002) or,
more recently, Demetrescu, Kuzin and Hassler (2008).

There are other possibilities to test hypotheses about d. In an autore-
gressive context, Dickey-Fuller type tests for the null of a unit root have

∗E-mail addresses: deme@wiwi.uni-frankfurt.de, matei.demetrescu@eui.eu .
The author would like to thank Uwe Hassler, Vladimir Kuzin, Helmut Lütkepohl, Paulo
M.M. Rodrigues and Adina I. Tarcolea for very helpful comments.
†Statistics and Econometric Methods, Goethe-University Frankfurt, Gräfstr. 78 PF 76,

D-60054 Frankfurt, Germany.
‡Max Weber Programme, European University Institute, Via delle Fontanelle, 10, I-

50014 San Domenico.
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power against fractional alternatives with d < 1 under suitable assumptions
(Diebold and Rudebusch, 1991, Hassler and Wolters, 1994, Krämer, 1998). A
generalization following from this is the so-called fractional Dickey-Fuller test
proposed by Dolado, Gonzalo and Mayoral (2002). Similarly, when testing
the null of integration of order 0 [I (0)], the KPSS test due to Kwiatkowski
et al. (1992) has power against I (d) for d 6= 0 (Lee and Schmidt, 1996).

When cointegration testing is the focus, it may not be convenient to
look at the long memory properties of residuals from a static regression, see
the literature on residual log-periodogram inference, in particular Hassler,
Marmol and Velasco (2006). While the multivariate LM test proposed by
Nielsen (2005) or the (multivariate) test of Breitung and Hassler (2002) can
be used to test the cointegration rank in the same manner as the Johansen
(1995) trace test, they require known d, as does the residual-based cointe-
gration test proposed by Hassler and Breitung (2006). Notably, Robinson
and Hualde (2003) develop a procedure that works with estimated fractional
integration parameters.

The testing approach presented here builds on the convergence rate of
the sample mean of fractionally integrated processes, which depends on d.
In fact, for stationary fractional integration, the suggested method parallels
the use of a Central Limit Theorem [CLT] for the sample mean.

The contribution of this paper is threefold. First, extensions to test the
rank of fractional cointegration are provided; it is shown that the test sug-
gested here does not require knowledge about fractional integration order,
since it copes with estimation of d under very weak requirements for the
convergence rate of the used estimator d̂. Second, a way to deal with deter-
ministic components is suggested. This is not a trivial issue, since one cannot
apply a CLT to data from which the sample mean has been subtracted.1 This
non-trivial problem is avoided by using recursive demeaning (and detrend-
ing) when accounting for deterministics. Third, it is shown how to apply this
approach to series exhibiting nonstationary fractional (co)integration.

The remainder of this paper is structured as follows. In Section 2, the sug-
gested test is presented for stationary fractional integration, d ∈ (−0.5, 0.5),
followed by an examination of the cointegration case. Section 4 addresses
the treatment of deterministic components. The extension to nonstationary

1The behavior of sample moments has been used before to test the null of I(1), see
the variance ratio test Phillips and Ouliaris (1990). Sample variances, however, can be
computed from demeaned (or detrended) series.
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fractional integration, d ∈ (0.5, 1.5), is then dealt with. The final section
concludes.

2 Stationary fractional integration

Let the observed series yt be fractionally integrated of order d:

yt = (1− L)−d et, t ∈ Z, (1)

where the fractional difference operator (1− L)d is given by the usual series
expansion and d ∈ (−0.5, 0.5). The short-memory process et is specified by
the following assumption.

Assumption 1 Let

et = εt +
∑
j≥1

bjεt−j,

where
∑

j≥1 |bj| <∞, εt ∼ iid (0, σ2) and ∃s > 2 so that E |εt|s <∞.

Let γh be the hth autocovariance of et, and recall that the long-run vari-

ance of et, ω
2 = γ0+2

∑
h≥1 γh, is finite and positive, ω2 = σ2

(
1 +

∑
j≥1 bj

)2

.

An invariance principle holds under these assumptions (see e.g. McLeish,
1975):

1

ωT 0.5+d

[sT ]∑
t=1

yt ⇒ Bd (s) as T →∞, (2)

where “⇒” stands for weak convergence in a suitable metric space, [·] is the
floor function, and Bd (s) a standard fractional Brownian motion of type I
(as denoted by Marinucci and Robinson, 1999).2

One may define short-memory processes as processes for which weak con-
vergence of their cumulated-sums process to a Brownian motion holds, see
Lo (1991) for a short discussion. Similarly, in the context of fractional in-
tegration, one may extend this definition of short memory to the invariance
principle in (2). The assumptions made on et are stronger than those re-
quired by McLeish (1975) and could be relaxed or replaced; in particular,

2Actually, a CLT would suffice for this section. An invariance principle, however, is
needed later on, so using it from the beginning ensures a unified framework.
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conditional heteroscedasticity could be allowed for. But discussing condi-
tions under which an invariance principle as in (2) holds is not the aim of
this paper and the general linear process assumption is kept as a simple way
to illustrate the proposed tests.

The convergence rate of the sample mean depends on the fractional inte-
gration parameter d; it follows from (2) that

T 0.5−dy
d→ ωBd (1) ,

where “
d→” denotes convergence in distribution, and y = T−1

∑T
t=1 yt. Mul-

tiplying the sample mean with T 0.5−d0 hence leads under the null hypoth-
esis d = d0 to a proper asymptotic distribution. Under the alternative
d > d0, it obviously holds that

∣∣T 0.5−d0y
∣∣ p→∞; under the alternative d < d0,∣∣T 0.5−d0y

∣∣ p→ 0 holds, with “
p→” standing for convergence in probability.

A pivotal test statistic for the null hypothesis d = d0 is thus given by

T =
T 1−2d0

ω̂2
y2, (3)

with ω̂2 a consistent estimator of the long-run variance of the short-memory
component et. The following proposition then holds true:

Proposition 1 Provided that T →∞, it holds for T from (3) with yt from
(1) and et from Assumption 1 under the null hypothesis d = d0 that

T d→ χ2
1.

Proof: Obvious and omitted.

One rejects in favor of d < d0 for too small values, and in favor of d >
d0 for too large values of the test statistic, with the test obviously being
consistent. One-sided as well as two-sided tests can be performed.

Remark 1 Just as with the KPSS test, the divergence rate under the al-
ternative hypothesis depends on the distance to the null hypothesis and, for
alternatives very close to the null, it may be lower than the divergence rate
of a test based on estimators of d. On the other hand, it may also be higher
for large distances to the null. This behavior is the effect of focusing on such
a general property of long-range dependent processes as the convergence rate
of their sample mean.
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The common way to compute an estimate for the long-run variance is
to use a kernel estimator of the spectral density of et at the origin (of the
type studied by Newey and West, 1987, or Andrews, 1991) with the series
differenced to stationarity.3 Two possible estimation strategies arise:

First, one can estimate ω2 under the null hypothesis, that is, based on et =
(1− L)d0 yt. Under the alternative, ω̂2 is no longer consistent, and explodes if
d > d0 (implodes for d < d0). This, however, does not affect the consistency
of the test based on T from (3), since Lo (1991) and Lee and Schmidt (1996)

show the relations T 2d0−2dω̂2 p→ 0 for d > d0 and T 2d0−2dω̂2 p→∞ for d < d0

to hold true for many kernel estimators ω̂, leading to T p→ 0 for d < d0 and
T p→∞ for d > d0.

Second, one can estimate ω2 under the alternative hypothesis, that is,

based on êt = (1− L)d̂ yt, with d̂ some consistent estimator for d. Since êt
are in turn consistent estimators for et, ω

2 will itself be consistently estimated
if the convergence rate of d̂ is higher than the rate at which the bandwidth
increases, and the test retains the properties outlined in Proposition 1.

3 Stationary fractional cointegration

Let us now examine the case of multivariate time series. Assume that all K
elements ytk of the observed time series yt have the same integration order
d:

yt = (1− L)−d et, t ∈ Z (4)

with et ∈ RK a short memory process given by the following assumption:

Assumption 2 Let

et = εt +
∑
j≥1

Bjεt−j,

where εt ∼ iid (0,Σ) with Σ positive semidefinite, ∃ s > 2 so that E |εt|s <∞
and

∑
j≥1 ‖Bj‖ < ∞, ‖·‖ being the matrix norm induced by the Euclidean

vector norm.

Let Ω be the long-run covariance matrix of et, Ω = BΣB′, with B =
IK+

∑
j≥1Bj, and recall that Ω is symmetric. The long-run covariance matrix

3There are also semiparametric approaches available, see e.g. Berk (1974), or
subsampling-based ones, as introduced by Carlstein (1986).
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Ω is positive definite if and only if ytk, k = 1, 2, . . . , K, are not cointegrated.
Nielsen (2004) shows that Ω has exactly rank K − r, where r is the rank of
fractional cointegration of yt.

In the case of no cointegration, the multivariate version of the test statistic
from (3) is, naturally,

TK = T 1−2d y′Ω̂−1y.

For r = r0 > 0, the probability limit (as T → ∞) of Ω̂ is singular and thus

not invertible. This suggests using the Moore-Penrose inverse Ω̂− instead of
the usual inverse. Since the Moore-Penrose inverse is not continuous, special
care needs to be taken in the estimation of Ω−. That is, one needs to ensure
that the rank of Ω̂− converges a.s. to that of Ω− (Andrews, 1987). This
could be accomplished by estimating Ω by the usual methods and restricting
its rank when building the inverse Ω̂−.

Furthermore, it turns out that the order of fractional integration need not
be known: one may plug in an estimator d̂ without affecting the asymptotics.
The test statistic is thus given by

TK = T 1−2d̂ y′Ω̂−y, (5)

and its behavior is characterized by the following proposition.

Proposition 2 Under the null hypothesis r = r0 for TK from (5) with yt
from (4), et from Assumption 2, and d̂ = d+ Op (T−α) for some positive α,
it holds as T →∞ that

TK
d→ χ2

K−r0 .

Proof: See the Appendix.

When testing the null of r = r0, there are two possible families of alter-
native hypotheses:

One can test the number of cointegration relations - the Johansen (1995)
approach:

H0 : r = r0 = 0, 1, . . . , K − 1

H1 : r > r0

Here, rejecting the null r = r0 = K − 1 in favor of r = K points toward
a wrong fractional integration parameter d, i.e. the fractional integration
parameter of (at least) one of the elements of yt is smaller than d.
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Following Nyblom and Harvey (2000), who analyze a multivariate version
of the KPSS test,4 one can alternatively test the number of common trends:

H0 : r = r0 = K − 1, . . . , 0

H1 : r < r0

Here, rejecting the null r = r0 = 0 points toward a true fractional integration
parameter that is larger than assumed for (at least) one of the univariate
series ytk.

The tests reject for too small values in the first family of tests, and for
too large in the second.

Remark 2 One uses the same test statistic in both types of tests and all
null hypotheses r = r0; only the limiting distributions change depending on
r0. Moreover, two-sided testing is straightforward to implement.

Remark 3 Rejection probabilities are easily computed for each null and al-
ternative hypothesis. Thus, the properties of any estimation scheme of the
cointegration rank based on sequential testing can be derived analytically,
based on the cumulative distribution function of the χ2 distribution(s).

4 Accounting for deterministic components

Deterministic components, such as a non-zero mean, a linear time trend, and
seasonally varying means, pose no problems when estimating ω2 or d. This is
not the case with the test statistics themselves, since usual demeaning would
be an obvious mistake.

Let us discuss the non-zero mean case first, where a solution is offered by
so-called recursive (adaptive) demeaning, introduced by So and Shin (1998).
Assume one observes in the univariate case

yt = zt + µ, (6)

where zt is fractionally integrated of order d with a short memory component
as described by Assumption 1.

4Given the result of Lee and Schmidt (1996), the multivariate KPSS test should itself
have power against fractional cointegration.
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A handy solution is to apply the test to yµt , the recursively demeaned yt.
The observations yt from (6) are recursively demeaned as follows:

yµt = yt −
1

t

t∑
j=1

yj, t = 2, 3, . . . , T (7)

and yµ1 = 0. A non-zero mean obviously cancels out, but the null distribu-
tion of the test statistic T computed with yµt instead of yt is changed. To
be more precise, it requires a different standardization, since the following
convergence result is easily established with the help of the Continuous Map-
ping Theorem under stationary fractional integration of order d, given the
invariance principle in (2).

Lemma 1 Define for some c ∈ (0, 1)

Bµ
d (s) = Bd (s)− 1

s

∫ s

0

Bd (r) dr, s ∈ [c, 1],

the recursively demeaned standard fractional Brownian motion. Then, pro-
vided that T →∞, it holds for yµt from (7) that

1

ωT 0.5+d

[sT ]∑
t=1

yµt ⇒ Bµ
d (s), s ∈ [c, 1].

Proof: Obvious and omitted.

The recursively demeaned fractional Brownian motion is not defined for
s = 0,5 hence the restriction to a compact interval not containing 0. Fortu-
nately, this is not a problem, since only what happens at s = 1 is of interest.

The recursively demeaned fractional Brownian motion has a different vari-
ance at s = 1, say vµ (d) = V ar(Bµ

d (s)). The test statistic then becomes

Tµ =
T 1−2d0

vµ (d0) ω̂2
yµ

2
. (8)

5For d = 0, i.e. for the usual Brownian motion, the corresponding recursively demeaned
Brownian motion possesses a proper limit as s→ 0, so one can extend it to a continuous
process on [0, 1] by setting Bµ

d (0) = 0 almost surely (Chang, 2002, Section 5).
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Since Bµ
d (s) is itself a Gaussian process, inheriting B(s), it follows a nor-

mal distribution at s = 1. Hence, χ2 asymptotics will follow for Tµ, a fact
formalized in Proposition 3 below.

The standardizing factor vµ (d) is not tractable analytically; numerical
approximations are provided in the Appendix.

Should yt contain a linear time trend,

yt = zt + µ+ τt, (9)

the following recursive detrending scheme can be used

yτt = yt +
2

t

t∑
j=1

yj −
6

t(t+ 1)

t∑
j=1

j yj, t = 2, 3, . . . , T (10)

and yτ1 = 0. Lemma 2 follows, similarly:

Lemma 2 Define for some c ∈ (0, 1)

Bτ
d (s) = Bd (s) +

2

s

∫ s

0

Bd (r) dr − 6

s2

∫ s

0

rBd (r) dr, s ∈ [c, 1],

the recursively detrended standard fractional Brownian motion continuous on
[0, 1]. Then, provided that T →∞, it holds for yτt from (10) that

1

ωT 0.5+d

[sT ]∑
t=1

yτt ⇒ Bτ
d (s), s ∈ [c, 1].

Proof: Obvious and omitted.

Again, this leads to a different standardizing factor, vτ (d) for the test
statistic

Tτ =
T 1−2d0

vτ (d0) ω̂2
yτ

2
. (11)

Values of vτ (d) are tabulated in the Appendix.
Moreover, Kuzin (2005) shows how to recursively deseasonalize an ob-

served time series so that the problem is reduced to the case of recursive
demeaning. The extension to deseasonalizing in the presence of a time trend
follows directly from his work.

The proof of the following proposition is then easily established.
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Proposition 3 Provided that T → ∞, it holds under the null hypothesis
d = d0 for Tµ and Tτ from (8), and (11), respectively, that

Tµ
d→ χ2

1

and
Tτ

d→ χ2
1 .

Proof: Obvious and omitted.

Remark 4 Consistency against the respective alternative hypotheses is guar-
anteed by the same mechanism as for the case without deterministic compo-
nents.

For multivariate time series, one can recursively remove the deterministic
component for each element of yt separately, since neither recursive demean-
ing or detrending affect the property of fractional cointegration. All elements,
however, should be either recursively demeaned or recursively detrended:

yµt = yt −
1

t

t∑
j=1

yj, t = 2, 3, . . . , T (12)

yτt = yt +
2

t

t∑
j=1

yj −
6

t(t+ 1)

t∑
j=1

j yj, t = 2, 3, . . . , T, (13)

with yµ1 = yτ1 = 0. The respective test statistics are

TKµ =
T 1−2d̂ yµ

′
Ω̂−yµ

vµ(d0)
, (14)

TKτ =
T 1−2d̂ yτ

′
Ω̂−yτ

vτ (d0)
, (15)

with d̂ and Ω̂ computed with usual demeaning or detrending. The result
analogous to Proposition 2 holds as well.

Proposition 4 Provided that T → ∞, it holds under the null hypothesis
r = r0 for TKµ and TKτ from (14), and (15), respectively, that

TKµ
d→ χ2

K−r0

and
TKτ

d→ χ2
K−r0 .

Proof: Obvious and omitted.
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5 Nonstationary fractional integration

In principle, the treatment of the nonstationary case does not pose addi-
tional difficulties. Rather, problems may arise from what one understands
by nonstationary fractional integration since there are two ways of defining
it. The starting point is the same short-memory component, but while one
representation of an I (d) process, d > 0.5, is that of a cumulated-sums pro-
cess where the increments are stationarily integrated of order d−1, the other
one is given by

yt = (1− L)−d et, t ∈ {1, 2, . . .} ,
with yt = 0 for t ≤ 0.6 The test idea nevertheless translates in the same
manner for both definitions.

Begin by assuming the cumulated-sums process to be the true data gener-
ating process. The second case is briefly addressed at the end of the section.

In the univariate case, it holds because of (2) that

1

ωT d−0.5
y[sT ] ⇒ Bd−1 (s) . (16)

Under fractional integration of order d, it follows with the Continuous
Mapping Theorem that

1

ωT d−0.5
y

d→
∫ 1

0

Bd−1 (s) ds.

The integral follows a normal distribution; the variance of the integral, how-
ever, does not equal unity. Thus, a standardizing factor v(d) in the case of
nonstationary fractional integration is necessary even without having recur-
sively demeaned/detrended the data. For d ∈ (0.5, 1.5), the variance function

v (d) = V ar
(∫ 1

0
Bd−1(s)ds

)
is given by

v (d) =

∫ 1

0

∫ 1

0

Cov (Bd−1(s), Bd−1(v)) dsdv

=
1

2

∫ 1

0

∫ 1

0

(
s2d−1 + v2d−1 − |s− v|2d−1

)
dsdv

=
1

1 + 2d
.

6Marinucci and Robinson (1999) note that the first definition tends to be used in the
probabilistic literature and the second one is preferred by econometricians.
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For consistency of notation, one can define v(d) = 1 for d ∈ (−0.5, 0.5).7

Then, for stationary as well as nonstationary fractional integration, one can
write

T =
T 1−2d0

v (d0) ω̂2
y2,

with
T ∼ χ2

1.

Note that a nonzero mean is automatically accommodated, due to division
by T 2d0−1, since d0 > 0.5. The same holds for structural breaks or seasonally
varying means. But for large values of the mean, size or power distortions will
appear in small samples. Moreover, a linear trend does need to be removed,
in contrast to a non-zero mean.

A way to eliminate these is again offered by recursive removal of de-
terministics. When computing Tµ and Tτ based on recursively demeaned
observations, Lemma 3 follows:

Lemma 3 Under Assumption 1, it holds with yµt from (7) and yτt from (10)
and d ∈ (0.5, 1.5) as T →∞ that

1

ωT d−0.5
yµ

d→
∫ 1

0

(1 + ln s)Bd−1 (s) ds,

1

ωT d−0.5
yτ

d→
∫ 1

0

(6s− 2 ln s− 5)Bd−1 (s) ds.

Proof: See the Appendix.

Remark 5 It is true that such representations could be derived for the sta-
tionary integration case as well; they would, however, lead to Stjeltjes-type
integrals over Bd(s). For d = 0 this poses no problems, but otherwise it is
unclear how to define such integrals for d 6= 0, see the discussion in Pipiras
and Taqqu (2003).

The standardizing factors become

vµ(d) =

∫ 1

0

∫ 1

0

(1 + ln s) (1 + ln v)Cov (Bd−1(s), Bd−1(v)) dsdv

7Note the discontinuity at d = 0.5.
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and

vτ (d) =

∫ 1

0

∫ 1

0

(6s− 2 ln s− 5) (6v − 2 ln v − 5)Cov (Bd−1(s), Bd−1(v)) dsdv,

where, as before,

Cov (Bd−1(s), Bd−1(v)) =
1

2

(
s2d−1 + v2d−1 − |s− v|2d−1

)
.

In this case, integration can be analytically dealt with, but the result is
expressed with hyperbolic functions, which are not user-friendly. Again,
numerical approximations are provided in the Appendix.

The extension to the multivariate case is straightforward, leading to the
same test statistic as in (5), (14) and (15), respectively, with the same asymp-
totic properties.

Should one opt for the alternative definition of nonstationary fractional
integration, the employed invariance principles still hold, but in terms of
standard fractional Brownian motions of type II. Marinucci and Robinson
(2000) show such convergence to hold under an additional assumption on
the short-memory component,

∑
k≥0

∑
j≥k+1

(
‖Bj‖2 + ‖B−j‖2) <∞.

For the perhaps more empirically relevant case d = 1, Wd−1 (s) and
Bd−1 (s) coincide with the standard Wiener process. With respect to the
suggested test, the main difference between Wd−1 (s) and Bd−1 (s) for the
case d 6= 1 lies in the respective covariance functions, where the fractional
Brownian motion of type II exhibits more dependence in the neighborhood
of the origin. The difference however is only significant for infinitesimally
small distances (see Marinucci and Robinson, 1999), so using the standard-
izing factors v, vµ and vτ is justifiable. The test statistics from (5), (14) and
(15) remain otherwise unaffected.

6 Summary

A family of tests for fractional integration and cointegration has been pro-
posed, tests that are based on the convergence rate of the sample mean.

The tests are easy to compute and possess χ2 limiting distributions. In
the case of cointegration testing, knowledge of the fractional integration pa-
rameter is not required.

13



Recursive schemes for the removal of deterministic components are used,
with the test statistics retaining their standard asymptotics.

Appendix

A Tabulated values of v (d), vµ (d), and vτ (d)

The numerical approximations provided for the stationary case are based on
the following expression for V ar (Bµ

d (1)) = vµ (d):

lim
T→∞

1

T 1+2d

T∑
t=2

T∑
u=2

Γ(1− 2d)Γ(|t− u|+ d)

Γ(d)Γ(1− d)Γ(1 + |t− u| − d)

×
(

1 + ln
t− 1

T

)(
1 + ln

u− 1

T

)
.

This is a consequence of

1

T 0.5+d

T∑
t=1

yµt =
1

T 0.5+d

T∑
t=2

yt

(
1 + ln

t− 1

T

)
+ op (1) ,

which is established with arguments similar to those in the proof of Lemma
3. The required variance of the recursively demeaned fractional Brownian
motion at s = 1 is then

V ar(Bµ
d (1)) = lim

T→∞
V ar

(
1

T 0.5+d

T∑
t=2

yt

(
1 + ln

t− 1

T

))
.

This can be expressed as a function of variances and covariances of yt. At
this point, one may assume a fractional white noise model for yt, since the
corresponding invariance principle guarantees the expression above to have
the same limit, irrespective of the form of the short memory component. It
follows that

V ar(Bµ
d (1)) = lim

T→∞

1

T 1+2d

(
T∑
t=2

T∑
u=2

γd(|t− u|)
(

1 + ln
t− 1

T

)(
1 + ln

u− 1

T

))
,
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with the hth autocovariance of the fractionally integrated standard white
noise,

γd(h) =
Γ(1− 2d)Γ(h+ d)

Γ(d)Γ(1− d)Γ(1 + h− d)
.

For recursive detrending, the following expression for V ar (Bτ
d (1)) is obtained

with the same arguments as above:

lim
T→∞

1

T 1+2d

T∑
t=2

T∑
u=2

Γ(1− 2d)Γ(|t− u|+ d)

Γ(d)Γ(1− d)Γ(1 + |t− u| − d)

×
(
−5− 2 ln

t− 1

T
+ 6

t

T + 1

)(
−5− 2 ln

u− 1

T
+ 6

u

T + 1

)
.

For computing the approximation, T is set equal to 12 000. This ensures a
two-digit precision for the results.8

For the nonstationary case, numerical integration is used to compute
vµ (d) and vτ (d). Computation is carried out with Euler’s method and a
number of N = 1000 evaluation points.

The results are given in Table 1 (together with v (d) for completeness).

B Proofs

Proof of Proposition 2

The invariance principle given in (2) has a multivariate extension, proven by
Csörgö and Mielniczuk (1995):9

1

T d−0.5

[sT ]∑
t=1

yt ⇒ Ω0.5Bd (s) , (17)

where Bd (s) is a K-dimensional vector of independent standard fractional
Brownian motions of type I and “⇒” stands for joint weak convergence.

8The precision can be assessed by examining the case d = 0, where it can be shown
analytically that vµ (0) = vτ (0) = 1.

9Again, they pose less restrictive conditions than the general linear process assumed
here.
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Table 1: Standardizing factors v (d), vµ (d), and vτ (d)

d v (d) vµ (d) vτ (d) d v (d) 102vµ (d) 102vτ (d)
-0.48 1.00 85.67 290.75 0.52 0.49 1.10 0.48
-0.46 1.00 63.72 207.75 0.54 0.48 2.02 0.84
-0.44 1.00 47.80 149.34 0.56 0.47 2.81 1.12
-0.42 1.00 36.18 108.06 0.58 0.46 3.50 1.35
-0.40 1.00 27.66 78.75 0.60 0.45 4.10 1.53
-0.38 1.00 21.37 57.84 0.62 0.45 4.62 1.66
-0.36 1.00 16.68 42.84 0.64 0.44 5.06 1.77
-0.34 1.00 13.16 32.01 0.66 0.43 5.45 1.84
-0.32 1.00 10.50 24.15 0.68 0.42 5.79 1.89
-0.30 1.00 8.48 18.40 0.70 0.42 6.08 1.92
-0.28 1.00 6.91 14.17 0.72 0.41 6.33 1.93
-0.26 1.00 5.70 11.02 0.74 0.40 6.55 1.92
-0.24 1.00 4.75 8.66 0.76 0.40 6.73 1.91
-0.22 1.00 4.00 6.88 0.78 0.39 6.88 1.88
-0.20 1.00 3.40 5.53 0.80 0.38 7.01 1.85
-0.18 1.00 2.92 4.48 0.82 0.38 7.12 1.81
-0.16 1.00 2.52 3.67 0.84 0.37 7.21 1.76
-0.14 1.00 2.20 3.04 0.86 0.37 7.28 1.71
-0.12 1.00 1.93 2.53 0.88 0.36 7.33 1.66
-0.10 1.00 1.70 2.13 0.90 0.36 7.38 1.60
-0.08 1.00 1.52 1.80 0.92 0.35 7.41 1.54
-0.06 1.00 1.35 1.54 0.94 0.35 7.43 1.48
-0.04 1.00 1.22 1.32 0.96 0.34 7.44 1.42
-0.02 1.00 1.10 1.14 0.98 0.34 7.44 1.36
0.00 1.00 1.00 1.00 1.00 0.33 7.43 1.30
0.02 1.00 0.91 0.87 1.02 0.33 7.42 1.23
0.04 1.00 0.83 0.76 1.04 0.32 7.40 1.17
0.06 1.00 0.76 0.67 1.06 0.32 7.38 1.11
0.08 1.00 0.70 0.60 1.08 0.32 7.35 1.05
0.10 1.00 0.64 0.53 1.10 0.31 7.32 0.99
0.12 1.00 0.59 0.47 1.12 0.31 7.28 0.93
0.14 1.00 0.55 0.42 1.14 0.30 7.24 0.87
0.16 1.00 0.51 0.38 1.16 0.30 7.20 0.81
0.18 1.00 0.47 0.34 1.18 0.30 7.15 0.75
0.20 1.00 0.44 0.31 1.20 0.29 7.10 0.69
0.22 1.00 0.41 0.28 1.22 0.29 7.06 0.64
0.24 1.00 0.39 0.25 1.24 0.29 7.01 0.59
0.26 1.00 0.36 0.23 1.26 0.28 6.95 0.53
0.28 1.00 0.34 0.21 1.28 0.28 6.90 0.48
0.30 1.00 0.32 0.19 1.30 0.28 6.85 0.43
0.32 1.00 0.30 0.17 1.32 0.27 6.79 0.38
0.34 1.00 0.28 0.16 1.34 0.27 6.73 0.34
0.36 1.00 0.27 0.14 1.36 0.27 6.68 0.29
0.38 1.00 0.25 0.13 1.38 0.27 6.62 0.24
0.40 1.00 0.24 0.12 1.40 0.26 6.56 0.20
0.42 1.00 0.22 0.11 1.42 0.26 6.51 0.16
0.44 1.00 0.21 0.10 1.44 0.26 6.45 0.12
0.46 1.00 0.20 0.09 1.46 0.26 6.39 0.08
0.48 1.00 0.19 0.09 1.48 0.25 6.33 0.04

Note. For d > 0.5, values are given for 100 vµ (d) and 100 vτ (d). See the text for details on how the

figures were obtained.
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It is known that, if X ∼ N(0,Σ), X ′Σ−X ∼ χ2
rank(Σ). Bd (1) being a

vector of standard normal independent variables, the result follows directly
for known d when ensuring consistent estimation of Σ−.

Denote T ∗K the test statistic computed with known d. When the fractional

integration order is estimated, TK = T ∗K ·T 2d−2d̂ holds. Since limT→∞ T
−2T−α

=
limT→∞ exp (−2T−α lnT ) = 1, the desired result follows.

Proof of Lemma 3

It holds for d ∈ (0.5, 1.5) that

T 0.5−dyµ =
1

T 0.5+d

T∑
t=2

(
yt −

1

t

t∑
j=1

yj

)
=

1

T 0.5+d

T∑
t=2

yt

(
1−

T∑
j=t

1

j

)
.

Since
∑p

j=1
1
j

= C + ln p+O
(

1
p

)
, with C Euler’s constant, one can write for

t ≥ 2

T∑
j=t

1

j
=

T∑
j=1

1

j
−

t−1∑
j=1

1

j
= lnT +O

(
1

T

)
− ln (t− 1)−O

(
1

t− 1

)
= ln

(
T

t− 1

)
+O

(
1

T
− 1

t− 1

)
.

It follows that

1

T 0.5+d

T∑
t=2

yµt =
1

T 0.5+d

T∑
t=2

yt

(
1 + ln

t− 1

T

)
+Op

(
1

T 0.5+d

T∑
t=2

yt
t− 1

)
.

For the first term, it follows from the Continuous Mapping Theorem that

1

T 0.5+d

T∑
t=2

yt

(
1 + ln

t− 1

T

)
⇒ ω

∫ 1

0

(1 + ln s)Bd−1 (s) ds.

For the second term, it holds due to (16) that yt = Op(T
d−0.5), or T 0.5−dyt =

Op(1). Then,

1

T 0.5+d

T∑
t=2

yt
t− 1

=
1

T

T∑
t=2

T 0.5−dyt
t− 1

= Op

(
1

T

T∑
t=2

1

t− 1

)
= Op

(
lnT

T

)
,
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so this term converges to zero for positive d. For d ≤ 0, one proceeds along
the same lines to obtain the first result.

When recursively detrending, one has

T 0.5−dyτ =
1

T 0.5+d

T∑
t=2

yτt =
1

T 0.5+d

T∑
t=2

(
yt +

2

t

t∑
j=1

yj −
6

t(t+ 1)

t∑
j=1

j yj

)
.

Rearranging terms leads to

T 0.5−dyτ =
1

T 0.5+d

T∑
t=2

yt

(
1 + 2

T∑
j=t

1

j
− 6t

T∑
j=t

1

j(j + 1)

)
.

Since
T∑
j=t

1

j(j + 1)
=

T∑
j=t

(
1

j
− 1

j + 1

)
=

1

t
− 1

T + 1
,

it follows as before that

1

T 0.5+d

T∑
t=2

yτt =
1

T 0.5+d

T∑
t=2

yt

(
1− 2 ln

t− 1

T
− 6 + 6

t

T + 1

)
+ op (1) ,

from which the second result follows.
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