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Preface

This thesis contains several lines of research conducted during my four years at

the European University Institute. It deals with two distinct topics in the area of

recursive economies, developed in three chapters.

The first chapter considers a general class of recursive models in which inequality

constraints pose a challenging problem: Standard Dynamic Programming techniques

often necessitate a non established differentiability of the value function, while Eu-

ler equation based techniques have problematic or unknown convergence properties.

The chapter aims to resolve parts of these two concerns: An envelope theorem is pre-

sented that establishes the differentiability of any element in the convergent sequence

of approximate value functions when inequality constraints may bind. As a corollary,

convergence of an iterative procedure on the Euler equation, usually referred to as

time iteration, is ascertained. This procedure turns out to be very convenient from a

computational perspective; dynamic economic problems with inequality constraints

can be solved reliably and extremely efficiently by exploiting the theoretical insights

provided.

The second chapter studies a model of optimal redistribution policies in which

agents face unemployment risk and in which savings may provide partial self-insurance.

Moral hazard arises as job search effort is unobservable. The optimal redistribution

policies provide new insights into how an unemployment insurance scheme should be

designed: First, the unemployment insurance policy is recursive in an agent’s wealth

level, and thus independent of the duration of the unemployment spell. Second, the

level of benefit payments is negatively related to the agent’s asset position. The rea-

son behind the latter result is twofold; in addition to the first-order insurance effect

of wealth, an increase in non-labor income (wealth) amplifies the opportunity cost of

employment and thus reduces the agent’s incentive to search for a job.

7
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8 PREFACE

During unemployment the agent decumulates assets and the sequence of benefit

payments is observationally increasing - a result that stands in sharp contrast with

previous studies.

The third chapter studies a very similar model to that explored in Chapter 2.

In contrast, however, I impose a liquidity constraint that limits agents’ possibility

to borrow. As will be shown, this additional constraint will have salient quantita-

tive implication on how an optimal unemployment insurance programme should be

designed. As in the second chapter, the optimal unemployment insurance scheme is

recursive in an agent’s asset position and her past and current employment status.

As a consequence, a liquidity constrained agent receives a constant flow of benefit

payments throughout the unemployment spell. In the quantitative analysis I show

that the effect of a liquidity constraint is of high importance: A constrained agent

with zero liquid wealth ought to receive benefits payments three times higher than

that received by an agent with wealth equal to one months labor income; twenty

times higher than that received by an agent with wealth equal to three months labor

income; and one hundred times higher compared to an agent with savings equal to

twelve months of labor income (US median labor income to wealth ratio).
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CHAPTER 1

Inequality Constraints in Recursive Economies
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10 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

1. Introduction

Dynamic models with inequality constraints are of considerable interest to many

economists. In microeconomics, and in particular in consumption theory, the impor-

tance of liquidity constraints is widely recognized (e.g. Deaton, 1991). With respect

to macroeconomic models of heterogeneous agents, a debt limit is generally a nec-

essary condition for the existence of an ergodic set (see for instance Ljungqvist and

Sargent (2004), Aiyagari (1994) and Krusell and Smith (1998)), and models with

limited enforcement have recently proven to provide a realistic description of inter-

national co-movements (Kehoe and Perri, 2002). Additionally, inequality constraints

may convey substantial empirical relevance; for instance, employment laws may pro-

hibit firing, lending contracts may prevent bank runs. Foreign direct investments,

minimum wages, price regulations, etc. are all examples of potentially binding in-

equality constraints. Nonetheless, solving dynamic economic models with inequality

constraints is generally perceived as challenging: Methods that can handle inequality

constraints with ease, generally suffer from the curse of dimensionality, while meth-

ods that can moderate this curse have difficulties dealing with such constraints. This

paper shows the conditions under which the n-step value function for a dynamic

problem with inequality constraints is differentiable, and utilizes this result to show

how a Euler equation based method can deal with inequality constraints in an easily

implementable, efficient and accurate manner.1

In the context of discretized Dynamic Programming, dealing with inequality con-

straints is generally straightforward; the state space is trivially delimited such that

any inequality constraint cannot be violated. Nevertheless, discretized Dynamic Pro-

gramming severely suffers from the curse of dimensionality. To circumvent this dif-

ficulty, researchers have on many instances relied upon continuous state approxima-

tion methods.2 These procedures generally work well for interior problems where it

is known that the value function is differentiable, which is commonly a necessary

condition to recover the equilibrium policy function. However, given that Benveniste

and Scheinkman’s (1979) envelope theorem assumes interiority, this result does not

1The “n-step value function” refers to any element in the sequence {vn}n∈N.
2Or, equivalently, “Parameterized Dynamic Programming”.
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2. THEORY 11

extend to models where inequality constraints may occasionally bind. In the liter-

ature, many researchers have chosen to ignore this problem and to proceed as the

value function is known to be differentiable even when such constraints are present.

An appealing approach to deal with inequality constraints in dynamic models

is to operate on the Euler equation. Christiano and Fisher (2000) show that such

constraints can be dealt with in a straightforward way when preferably using the

parameterized expectations algorithm developed by den Haan and Marcet (1990), or

a version thereof.3 However, when using such Euler equation based methods, conver-

gence is far from certain and, without an educated initial guess for the equilibrium

policy function, convergence may indeed often fail.4

This paper addresses these concerns. It will be shown that under certain condi-

tions, any element of the sequence of value functions defined by value function iter-

ation is differentiable when a general class of inequality constraints are considered.

Moreover, analytical expressions of their respective derivatives will be presented.

By exploiting these theoretical insights, an iterative procedure on the Euler equa-

tion, commonly known as time iteration, is derived. Given that this procedure is

equivalent to value function iteration it is, under mild initial conditions, a globally

convergent method of finding the equilibrium functions for recursively defined, Pareto

optimal problems. Due to the concavity of the problem, this turns out to be a very

convenient and efficient technique from a computational perspective.

The outline of the paper is the following: Section 2 states and proves the paper’s

main propositions. Section 3 shows through three examples how the results in section

2 may be implemented in practice. Section 4 concludes.

2. Theory

In this section two central propositions will be presented: Proposition 1 establishes

the conditions under which any element of the convergent sequence of approximate

value functions, {vn}n∈N, is differentiable. After defining time iteration as a particular

3See McGrattan (1996) for an alternative Euler equation based technique that utilizes the notion

of a “penalty function”.
4In Christiano and Fisher (2000), a log linearized version of the model is solved and used as an

initial guess for the equilibrium functions.
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12 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

iterative procedure on the Euler equation, Proposition 2 will establish that the se-

quence of policy functions generated by this method converges to the unique solution.

This paper looks for solutions for problems that may be framed on the basis of

the following Bellman equation

v(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

v(y, z′)Q(z, dz′)} (1)

Where x ∈ X is the endogenous state, z ∈ Z is the exogenous state with a law of

motion determined by the stationary transition function Q. The following is assumed:

(i) X is a convex Borel set in R` with Borel subsets X , and Z is a compact

Borel set in Rk with Borel subsets Z. Denote the (measurable) product

space of (X,X ) and (Z,Z) as (S,S).

(ii) The transition function, Q : Z ×Z → [0, 1], has the Feller property.5

(iii) The feasibility correspondence Γ : X × Z → 2X is, nonempty, compact-

valued, and continuous. Moreover, the set A = {(y, x) ∈ X × X : y ∈
Γ(x, z)} is convex in x, for all z ∈ Z.

(iv) The return function F (·, ·, z) : A → R is, once continuously differentiable,

strictly concave and bounded on A for all z ∈ Z.

(v) The discount factor, β, is in the interval (0, 1).

It is important to note that the above definition of the feasibility correspondence

includes the possibility of inequality constraints.

If v0 is (weakly) concave and the above assumptions hold, the following statements

are true for any n ∈ N (Section 9.2 in Stokey, Lucas and Prescott, 1989):

(i) The sequences of functions defined by

vn+1(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

gn+1(x, z) = argmax
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

converge pointwise (in the sup-norm) to the unique fixed points v and g.6

(ii) v and vn are strictly concave.

(iii) g and gn are continuous functions.

5Alternatively one may assume that Z is countable and that Z is the power set of Z; Z = 2Z .
6Where g is the argmax of (1).
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2. THEORY 13

For subsequent reference, the following additional assumptions will be used

Assumption 1. The feasibility correspondence can be formulated as

Γ(x, z) = {y ∈ X : mj(x, y, z) ≤ 0, j = 1, . . . , r}
and the functions mj(x, y, z), j = 1, . . . , r, are, once continuously differentiable in x

and y, and convex in y.

Assumption 2. Linear Independence Constraint Qualification (LICQ): The Ja-

cobian of the p binding constraints has full (row) rank; i.e. rank(Jm) = p.

Assumption 3. The following hold

(i) Γ(x, z) ⊂ int(X) or

(ii) X is compact and gn(x, z) ∈ int(X), for all n ∈ N.

Note that Assumption 2 implies that there exists a ŷ such that mj(x, ŷ, z) < 0,

for all x, z and j (Slater’s Condition). Moreover, part (i) in Assumption 3 implies

part (ii), but the converse is generally not true.

Define the operator T on C1(S), the space of bounded, strictly concave once

continuously differentiable functions, as

(Tf)(x, z) = max
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

f(y, z′)Q(z, dz′)} (2)

Before moving ahead, it is important to note that under the above additional assump-

tions it is possible to express the problem in (2) as

(Tf)(x, z) = min
µ≥0

max
y∈X

L(x, y, z, µ) = max
y∈X

min
µ≥0

L(x, y, z, µ) (3)

L(x, y, z, µ) =F (x, y, z) + β

∫

Z

f(y, z′)Q(z, dz′)−
r∑

j=1

µjmj(x, y, z)

where L(x, y, z, µ) is a saddle function (see for instance Rockafellar, 1970).

The ultimate goal of this section is to show that time iteration yields a convergent

sequence of policy functions. The following definition of time iteration will be used.7

7This definition covers of course the special cases of time iteration discussed in, for instance,

Judd (1998), and Coleman (1990). As far as the author is aware, there has been no application of

“time iteration” that has not complied with this definition.
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14 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

Definition 1. Denote the partial derivatives of F and mj with respect to the ith

element of y as Fi(x, y, z) and mj,i(x, y, z), respectively. Then, time iteration is the

iterative procedure that finds the sequence {hn(x, z)}∞n=0 as y = hn+1(x, z) such that

0 = Fi(x, y, z) + β

∫

Z

[Fi(y, hn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, hn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

Notwithstanding the seemingly esoteric notation, time iteration can be thought

of as using the Euler equation to find today’s optimal policy, hn+1, given the policy

of tomorrow, hn.

In order to verify that this procedure yields a sequence of policy functions con-

verging to g, the following will be shown: Proposition 1 ascertains that the value

functions vn, all n ∈ N, are differentiable and, by exploiting this finding, Proposition

2 will establish the desired result.

The following lemma is necessary for Proposition 1.

Lemma 1. The minimizer, µ(x, z), of (3) is a continuous function with respect

to x and z.

Proof. By the definition of a saddle function, the fact that µ ≥ 0 and mj(x, ŷ, z) <

0, for all x, z and j, it follows that

(Tf)(x, z) ≥ L(x, ŷ, z, µ∗) ≥ F (x, ŷ, z) + β

∫

Z

f(ŷ, z′)Q(z, dz′)− µj(x, z)mj(x, ŷ, z)

Which further implies that

µj(x, z) ≤ µ̄j ≡ max
x∈X

(Tf)(x, z)− F (x, ŷ, z)− β
∫

Z
f(ŷ, z′)Q(z, dz′)

−mj(x, ŷ, z)
< +∞

Denote g̃ as g̃(x, z, µ) = argmaxy∈X L(x, y, z, µ). By Berge’s Theorem of the Maxi-

mum, L(x, g̃(x, z, µ), z, µ) is a continuous function in µ. Hence, the set of minimizers

µ(x, z) that solve the dual problem

min
0≤µ≤µ̄

L(x, g̃(x, z, µ), z, µ)

is an upper hemicontinuous correspondence in x and z. Assumptions 2 and 3, ensures

that µ(x, z) is single valued and, consequently, a continuous function in x and z. ¤
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2. THEORY 15

Proposition 1. The n-step value function, vn, is (once) continuously differen-

tiable with respect to x ∈ int(X) and its partial derivatives are given by

vi,n(x, z) = Fi(x, gn(x, z), z)−
r∑

j=1

µj,n(x, z)mi,j(x, gn(x, z), z)

for i = 1, . . . , `.

Proof. It is sufficient to show that T : C1(S) → C1(S).

Define the saddle function

L(x, g(x, z), z, µ(x, z)) = F (x, g(x, z), z) + β

∫

Z

f(g(x, z), z′)Q(z, dz′)

−
r∑

j=1

µj(x, z)mj(x, g(x, z), z) = (Tf)(x, z)

Pick an x ∈ int(X) and an x′ in a neighborhood, Nε(x), such that x′i > xi and x′j = xj

∀j 6= i. Here, xi denotes the ith element of the vector x. For notational convenience,

denote the policy and multiplier functions from (3) as g, µ and g′, µ′ for (x, z) and

(x′, z) respectively.

The definition of a saddle function implies

L(x′, g, z, µ′) ≤ L(x′, g′, z, µ′) ≤ L(x′, g′, z, µ)

and

L(x, g′, z, µ) ≤ L(x, g, z, µ) ≤ L(x, g, z, µ′)

Combine these two expressions and divide by x′i − xi

L(x′, g, z, µ′)− L(x, g, z, µ′)
x′i − xi

≤ (Tf)(x′, z)− (Tf)(x, z)

x′i − xi

≤ L(x′, g′, z, µ)− L(x, g′, z, µ)

x′i − xi

By Lemma 1 and the results on page 12, the functions g and µ are continuous.

Consequently the limits of g′ and µ′ exist and equal limx′→x g′ = g, limx′→x µ′ = µ.

Hence

lim
x′→x

L(x′, g, z, µ′)− L(x, g, z, µ′)
x′i − xi

= lim
x′→x

L(x′, g′, z, µ)− L(x, g′, z, µ)

x′i − xi

By the Pinching (Squeeze) Theorem

lim
x′→x

(Tf)(x′, z)− (Tf)(x, z)

x′i − xi

= Li(x, g, z, µ)
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16 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

Assuming, instead, that x′i < xi, one may repeat the same steps attaining the same

result. Thus

∂(Tf)(x, z)

∂xi

= Li(x, g, z, µ) = Fi(x, g, z)−
r∑

j=1

µjmj,i(x, g, z)

If v0 is a weakly concave and differentiable function, the desired result is achieved. ¤

Note that since the space C1(S) is not complete in the sup-norm, Proposition 1

does not imply that the limiting value function, v, is differentiable. Moreover, in the

proposition above, strict concavity of the problem and full rank of Jm is assumed.

This simplifies the proof given in Corollary 5, p. 597, in Milgrom and Segal (2002),

which essentially is equivalent for x ∈ (0, 1).

The final proposition will show that the sequence of policy functions obtained by

time iteration converges to the true policy function.

Proposition 2. The function y = hn+1(x, z) that solves

0 = Fi(x, y, z) + β

∫

Z

[Fi(y, gn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, gn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

for i = 1, . . . , `, is equal to

gn+1(x, z) = argmax
y∈Γ(x,z)

{F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)}

Proof. Due to the stated assumptions, a sufficient condition for a maximum is

a saddle point of the Lagrangian

L(x, y, z, µ) = F (x, y, z) + β

∫

Z

vn(y, z′)Q(z, dz′)−
r∑

j=1

µj,n+1mj(x, y, z)

By Proposition 1, the value function vn(y, z′) is differentiable and by Assumption 3,

given minimizers µn+1, sufficient conditions for a saddle point are thus8

0 = Fi(x, y, z) + β

∫

Z

vn,i(y, z′)Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

8Assuming that differentiation under the integral is legitimate.
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2. THEORY 17

for i = 1, . . . , `. By Proposition 1, this can be rewritten as

0 =Fi(x, y, z) + β

∫

Z

[Fi(y, gn(y, z′), z′)

−
r∑

j=1

µj,n(y, z′)mj,i(y, gn(y, z′), z′)]Q(z, dz′)−
r∑

j=1

µj,n+1(x, z)mj,i(x, y, z)

Due to strict concavity the solution is unique and hn+1(x, z) = gn+1(x, z), which

concludes the proof. ¤

Since it is known that for all ε > 0 there exist an Ns such that sups |g(s)−gn(s)| <
ε for all n ≥ Ns, Proposition 2 states that sups |g(s) − hn(s)| < ε for all n ≥ Ns.

Hence, the sequence {hn}n∈N converges to the unique function g.9

Lastly, there are two additional remarks to be made: Firstly, gn → g implies

that Fi(x, gn(x, z), z) → Fi(x, g(x, z), z). As long as mj(x, y, z) = mj(y, z), this

further implies that vi,n(x, z) → Fi(x, g(x, z), z).10 Hence, if convergence of gn is

uniform, then v(x, z) is, under these additional conditions, indeed differentiable and

its derivative is given by Fi(x, g(x, z), z). In fact, this result holds under weaker

assumptions than previously stated; undeniably, LICQ is dispensable.

Secondly, a sufficient condition for v(x, z) to be differentiable in the more general

setting, is that µ(s) is unique for each s ∈ S.11

2.1. Discussion. A natural question to ask is how the propositions above are

useful in the sense of finding the solution to an infinite horizon problem. Indeed, what

has been proven is an equivalence between value function and time iteration and, as

such, neither method has any advantage over the other. From a strict theoretical

viewpoint this is certainly true. However, it should be noted that very few problems

actually have an analytical solution, and a numerical approximation to the solution

is commonly required. When such procedures are necessary, the propositions above

can be used extensively if inequality constraints are present.

9If X is compact, Ns is independent of s.
10Such constraints, (endogenous) state independent constraints, corresponds, for instance, to

debt limits.
11If the dual objective function is strictly convex in µ (it is known to be weakly convex), then

µ(s) is unique for each s ∈ S.

Rendahl, Pontus (2007) Essays in Recursive Macroeconomics 
European University Institute

 
10.2870/22151



18 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

To appreciate this line of reasoning, note that in many applications Dynamic

Programming relies upon a discretized state space, and such a formulation makes

any inequality constraint easy to implement. Nonetheless, to achieve high accuracy

the discretization must be made on a very fine grid and this causes the procedure

to suffer severely from the curse of dimensionality. To avoid the curse of dimen-

sionality, scholars have relied upon sophisticated approximation methods to enhance

accuracy without markedly increasing computer time.12 Generally, such approxima-

tion methods use the derivative of a numerically approximated value function to find

the sequence of policy functions. Clearly, Proposition 1 confirms that such continuous

state methods will converge to the true solution under a wide set of circumstances.

Moreover, when numerical approximations are used, there may be significant dif-

ferences between value function- and time iteration, and on some occasions there are

reasons to favor the latter: Depending on the character of the problem, the policy

function might behave in a less complicated way than the value function, and hence

might be more straightforward to approximate. More importantly, given that the de-

rivative of the value function is usually needed to find the policy function, an accurate

approximation of its slope is as important as its level. As a consequence, not only

are more data points needed for the approximation, but the choice of approximation

method is also restricted. This restriction generally causes Dynamic Programming to

suffer more from the curse of dimensionality than time iteration.13

As a final remark it ought to be mentioned that time iteration can be implemented

using the standard timing convention, or the timing convention defined in Carroll

(2005). Hence, problems within the preceding framework can thus be solved extremely

efficiently with sustained convergence features.

12For instance, Judd and Solnick (1994) show, in the case of the standard neoclassical growth

model, that using a grid with 12 nodes and applying a shape-preserving spline performs as well as

a discretized technique with 1200 nodes.
13Approximation methods that are capable of accurately approximating both the level and the

slope of a function - certain classes of finite element methods - are not even theoretically developed

to deal with high dimensions. Thus, time iteration is the only available technique for reliably solving

high-dimensional nonlinear problems.
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3. Examples

This section will provide three examples of problems with inequality constraints

where time iteration is applicable. The examples are variations of the infinite horizon

neoclassical growth model and are chosen on the basis that they represent a large

class of models used in the literature. For each respective model, the underlying

assumptions required for the results in section 2 will be explicitly verified. In addition,

the possible caveats and violations to Assumptions 2 and 3 will be explored.

It is not the purpose of this paper to establish the accuracy or efficiency of various

algorithms by solving large scale Dynamic Programming problems. However, since

the first example presented below allows for a closed form solution, an accuracy ver-

ification is indeed easily carried out and will thus be presented.

The economies are comprised by an infinite number of ex ante homogenous agents

of measure one. The agents maximize their utility by choosing a stochastic consump-

tion process that has to satisfy some feasibility restrictions. In general, the problem

faced by any agent can be formulated as

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, dz′)}

Γ(k, z) = {k′ ∈ K : mj(k, k′, z) ≤ 0, j = 1 . . . r}
Where y(k, z) − k′ denotes consumption, k denotes capital, y is some function de-

termining income and z denotes some stochastic element. Naturally, it is assumed

that u, β, K, Z, Q and m fulfill the assumptions stated on page 12. Moreover, it is

assumed that u(c) = limγ→σ
c1−γ

1−γ
, ∞ > σ ≥ 1, that y(k, z) is concave in k and, unless

something else is specifically stated, that y is such that for all z ∈ Z there exist an

k̂ > 0 such that k ≤ y(k, z) ≤ k̂, all 0 ≤ k ≤ k̂, and y(k, z) < k, all k > k̂. As in most

of the neoclassical literature it is assumed that y somehow depends on the function

f(k, h, z) = zkαh1−α, for α ∈ (0, 1). Labor, h, is assumed throughout to be supplied

inelastically and is normalized to unity.

3.1. An analytical example. The purpose of this example is to show how the

results from Corollary 1 and Propositions 1 and 2 work in a setting with a closed

form solution.

It is assumed that σ = 1, y(k) = kα, K = [k, k], m1(k, k′) = b − k′, m2(k, k′) =

k′ − kα and α ∈ (0, 1). The economic model is hence characterized by the Bellman
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20 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

equation

v(k) = max
k′∈Γ(k)

{ln(kα − k′) + βv(k′)}

Γ(k) = {k′ ∈ K : b− k′ ≤ 0, k′ − kα ≤ 0}

The model is the deterministic neoclassical growth model with full depreciation and

logarithmic utility, with an additional constraint on capital holdings. As long as k < b

and k > 1 = k̂, Assumption 3 is guaranteed to hold. Note that the specific choice

of utility function together with the additional assumption that 0 < b1/α < k will

ensure that k′− kα ≤ 0 never is breached. Hence, without violating Assumption 3, it

is possible to reduce the correspondence to

Γ(k) = {k′ ∈ K : b− k′ ≤ 0}

By construction, Assumption 2 will hold. To eliminate uninteresting cases it is as-

sumed that b is set such that b < ( 1
αβ

)
1

α−1 .

Under the above conditions the results on page 12 hold, and the problem can be

solved with value function iteration. Assume for the sake of simplicity that (b/β)1/α <

k < b. Then finding

v1(k) = max
k′∈Γ(k)

{ln(kα − k′) + βv0(k
′)}

for v0(k) = α ln k+ln(1−β)
1−β

, corresponds to the time iteration step of finding k′ = g1(k)

such that
1

kα − k′
+ µ0(k) = β

1

k′α − g0(k′)
αkα−1

for g0(k) = βkα.14 Since, the problem itself is strictly concave, it is possible to ignore

the multiplier: The policy function from solving this equation is accordingly given by

g1(k) = max{ αβ
1−β+αβ

kα, b}. Let v and v denote the value functions when the agent is

and is not constrained respectively. Hence

v1(k) = α
1− β + αβ

1− β
ln k + A1, v1(k) = ln(kα − b) + βv0(b)

Where A1 is some constant. The derivatives of these two functions are given by

v′1(k) =
α

k

1− β + αβ

1− β
, v′1(k) =

1

kα − b
αkα−1

14Note that v0(k) = ln(kα−g0(k))
1−β . Moreover, g0 is a feasible policy for all k ∈ K. Feasibility of

g0 is not a necessary requirement, but is merely used for the sake of simplicity.
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The value function, v1, is consequently differentiable if, and only if, v′1(k) = v′1(k) at

k such that b = αβ
1−β+αβ

kα. Inserting this expression for b into v′1(k) yields

v′1(k) =
α

k

1− β + αβ

1− β
= v′1(k)

Hence, v1 is differentiable and its derivative is given by15

v′1(k) =
1

kα − g1(k)
αkα−1

Continuing by induction one finds that

gn(k) = max

{
αβ

(1− β)((αβ)n−1 − 1) + (αβ)n−1(αβ − 1)

(1− β)((αβ)n − 1) + (αβ)n(αβ − 1)
kα, b

}

vn(k) = α ln k
(1− β)((αβ)n − 1) + (αβ)n(αβ − 1)

(1− β)(αβ − 1)
+ An

vn(k) = ln(kα − b) + βvn−1(b)

And by the same argument, vn is differentiable and its derivative is given by

v′n(k) =
1

kα − gn(k)
αkα−1

The limiting functions are

g(k) = max {αβkα, b}

v(k) =
α

1− αβ
ln k +

αβ
1−αβ

ln(αβ) + ln(1− αβ)

1− β

v(k) = ln(kα − b) + βv(b)

And the limiting value function is differentiable with derivative

v′(k) =
1

kα − g(k)
αkα−1

Finally, the Lagrange multiplier can be recovered as16

µ(k) =
1

kα − g(k)
− β

αg(k)α−1

g(k)α − g(g(k))

Since the problem allows for an analytical solution, accuracy of various numerical

algorithms can be assessed straightforwardly. Table 1 lists the numerical results of

15Equivalently, one could exploit the, ex ante known, directional differentiability of v1(k) and

show that v′(k;−1) = −v′(k; 1), ∀k ∈ int(K); i.e. that the left and right derivative of v1(k) coincides

at all interior points of K.
16Clearly, the complete sequence of multipliers, {µn}∞n=1, could be recovered in a similar fashion.
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Table 1.1. Performance of Algorithmsa

Value Iteration Time Iteration

Algorithm #1 #2 #3 #4

N 500 1000 20 20

Accuracy 5.3e-3 3.3e-3 5.8e-4 2.9e-6

ree 4.2e-3 2.1e-3 1.2e-3 3.2e-5

cpu-time 72 295 0.01 0.02

Remark Discrete grid Linear Spline

aAccuracy refers to the maximum absolute percentage error of the policy function in terms

of capital. ree refers to the maximum relative Euler equation errors defined in Judd (1998).

Computer time is denoted in seconds, Linear and (cubic) Spline refer to the interpolation

method used for the equilibrium functions, and N denotes the number of nodes in the grid.

applying discretized value function iteration and time iteration to the model with

α = 0.3, β = 1.03−1/4 b = 0.15, K = [0.7kss, 1.3kss] and kss = (1/αβ)1/(α−1). The

0.1 0.11
0.1495

0.154

k’

 

 

k

Closed Form Solution
Value Function Iteration
Time Iteration

Figure 1.1. Policy functions for Algorithm #1 and #3.

advantage of time iteration is here quite clear; time iteration outperforms value func-

tion iteration in both norms, using a very coarse grid and in a fraction of the time.

The advantage of time iteration is further illuminated by Figure 1.1 where the policy

functions recovered from the procedures are graphed close to the debt limit. Even at

the binding point, time iteration performs extremely well.
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3.2. Irreversible investment. (Christiano and Fisher, 2000) Irreversibility of

investment in the neoclassical growth model is an important example given that it

captures the problem of state dependent inequality constraints.

For this economy it is assumed that y(k, z) = f(k, z) + (1 − δ)k, K = [k, k],

m1(k, k′, z) = (1 − δ)k − k′ and m2(k, k′, z) = k′ − y(k, z). Moreover, markets for

idiosyncratic risks are complete. The problem is thus characterized by the following

Bellman equation

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, dz′)}

Γ(k, z) = {k′ ∈ K : (1− δ)k − k′ ≤ 0, k′ − y(k, z) ≤ 0}

In the previous example, it was possible to use an unbounded return function since the

“borrowing constraint” together with restrictions on the income function generated a

natural boundedness of the problem. However, in this formulation it is not possible to

impose a similar (debt) constraint, since such a restriction would clearly interfere with

the irreversibility constraint on investment and hence violate Assumption 2. As an

alternative it will be assumed ex ante that there exist an ε > 0 such that for all z ∈ Z,

n ∈ N, gn(ε, z) > ε; that is, a lower interiority of gn(k, z) is ex ante assumed for all

k, z and n.17 By the definition of k̂ on page 19, the set of maintainable capital stocks

are thus given by K = [ε, k̂] and, given the specific choice of the utility function, the

feasibility correspondence can be reformulated as Γ(k, z) = {k′ ∈ K : (1−δ)k−k′ ≤ 0}
without violating Assumption 3.

Under these restrictions it is known that

vn+1(k, z) = max
k′≥(1−δ)k

{u(y(k, z)− k′) + β

∫

Z

vn(k′, z′)Q(z, dz′)}

converges to v. By Proposition 2 and for a given µn+1(k, z), this procedure reduces

to finding k′ = gn+1(k, z) such that

u′(y(k, z)− k′)− µn+1(k, z) = β

∫

Z

[u′(y(k′, z′)− gn(k′, z′))yk(k
′, z′) (4)

− µn(k′, z′)(1− δ)]Q(z, dz′)

As can be seen from (4), the multiplier from the previous iteration is in the expectation

term. This indicates the presence of a state dependent constraint.

17Naturally, such a conjecture needs to be verified when solving the model.
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24 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

Although it is necessary to find both a policy function and a multiplier at each it-

eration, this is a trivial task. Since the problem itself is strictly concave, it is possible

to ignore µn+1 in (4) and find the function ĝn+1 that solves the (reduced) equation.

The true policy function gn+1 can then be recovered as gn+1 = max{ĝn+1, (1 − δ)k}
and µn+1 is merely the residual in (4) when gn+1 is inserted into the equation.

For a parameterization given by, α = 0.3, β = 1.03−1/4, δ = 0.02, σ = 1, Z =

exp({0.23,−0.23}), and Q(z, z′) = 1/2 for all (z, z′) pairs, the solution is depicted in

Figure 1.2. Figure 1.2 illustrates how distinctly the procedure captures the Kuhn-

Tucker condition of µ(k, z)m1(k, k′, z) = 0. The Matlab program for this model,

24 26 28 30 32 34 36 38 40
0

0.02
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0.06
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0.1
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0.14

0.16

k

g(k,z)−(1−δ)k, µ(k,z)

µ(k,z
low

)

g(k,z
low

)−(1−δ)k

Figure 1.2. Investment function and multiplier for the model with

irreversible investment.

presented in Appendix A, clearly illustrates the simplicity of the procedure.

3.3. Incomplete markets. (Aiyagari, 1994) Standard models with incomplete

market are relevant for the procedure proposed in this paper since the assumption of

risk-free borrowing induces a debt limit as a necessary condition for the characteri-

zation of the economy to be valid.

It is assumed that y(k, z) = wz+(1+r)k, K = [k, k], Z is countable, m1(k, k′, z) =

−φ − k′ and, as before, m2(k, k′, z) = k′ − y(k, z). Here z denotes an uninsurable

idiosyncratic component; markets are incomplete. However, there is no aggregate

risk in the economy. Moreover, w and r are given by fh(k̃, h) and 1 + fk(k̃, h) − δ

respectively. k̃ represents the aggregate capital stock in the economy and, as be-

fore, h represent the employment rate, normalized to unity. The problem is thus
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characterized by the following equations

v(k, z) = max
k′∈Γ(k,z)

{u(y(k, z)− k′) + β

∫

Z

v(k′, z′)Q(z, z′)}

Γ(k, z) = {k′ ∈ K : −φ− k′ ≤ 0, k′ − y(k, z) ≤ 0}

k̃ =
∑

z

∫

K

kλ(k, z) dk

λ(k′, z′) =
∑

z

∫

{k∈K:k′=g(k,z)}
λ(k, z)Q(z, z′) dk

Where λ(k, z) denotes the (stationary) distribution of asset holdings and employment

status.

Note that y(k, z) does not fulfill the desired properties to ensure an upper bound

on the endogenous state space (as stated on page 19). However, as noted in Aiyagari

(1994), for all z ∈ Z, there exist a k∗ such that, for all k ≥ k∗, k′ ≤ k. In order to

ensure that Assumption 3 holds, set k > k∗ and k < −φ < wz + k(1 + r), where

z = inf Z. By again exploiting the properties of the functional form of the return

function, the feasibility correspondence can be reformulated as Γ(k, z) = {k′ ∈ K :

−φ− k′ ≤ 0} and Assumption 2 will, by construction, hold.18

Under the above stated conditions, it is known that the procedure

vn+1(k, z) = max
−φ≤k′

{u(y(k, z)− k′) + β

∫

Z

vn(k′, z′)Q(z, z′)}

converges to v. Given µn+1(k, z), Proposition 2 asserts that this procedure reduces

to finding k′ = gn+1(k, z) such that

u′(y(k, z)− k′)− µn+1(k, z) = β

∫

Z

u′(y(k′, z′)− gn(k′, z′))(1 + r)Q(z, z′)

As in the previous example, it is possible due to the concavity of the problem, to

ignore the multiplier µn+1 and solve the problem to find ĝn+1. Again, the true policy

function gn+1 is recovered as gn+1 = max{−φ, ĝn+1}. The multiplier can then be ob-

tained as a residual. Thus, except for a applying a “max” operator at each iteration,

such a procedure is no more difficult to solve than a model with no constraints at all.

18Note that −φ in the above analysis is set strictly higher than what Aiyagari (1994) refers to

as “the natural debt limit”. Here, −φ is what is usually referred to as an “ad-hoc constraint”; an

important feature in the current setting to ensure the boundedness of the problem. See for instance

Krusell and Smith (1997) for the empirical relevance of ad-hoc constraints.
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26 1. INEQUALITY CONSTRAINTS IN RECURSIVE ECONOMIES

For a parameterization given by, α = 0.3, β = 0.95, δ = 0.1, σ = 1, φ = −2,

Z = {1, 0.5}, and Q(z, z′) = 1/2 for all (z, z′) pairs, the solution is depicted in Figure

1.3. Again, Figure 1.3 illustrates how ably the procedure captures the Kuhn-Tucker

condition of µ(k, z)m1(k, k′, z) = 0.
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Figure 1.3. Policy and multiplier for an Aiygari economy with an ad

hoc constraint (φ = −2).

4. Concluding Remarks

Recursive models with inequality constraints are generally problematic to solve:

Discretized Dynamic Programming suffers severely from the curse of dimensionality

and Parameterized Dynamic Programming imposes a differentiability property of the

value function that might be false. Furthermore, Euler equation techniques have

unknown or very poor convergence properties, and are thus difficult to solve without

making initial educated guesses for the equilibrium functions.

This paper has resolved parts of these problems: It has been established that

under weak conditions, the n-step value function is differentiable for problems with

inequality constraints. Thus, solution techniques that impose a differentiability of the

value function will, at least theoretically, converge to the true solution. Moreover,

through a derived analytical expression of the derivative of the value function, an iter-

ative Euler equation based method has been shown to be convergent when inequality

constraints might be present.
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Moreover, as shown in section 3, time iteration proposes an iterative procedure

that is appealing from a computational perspective. Firstly, high-dimensional ap-

proximation methods are applicable given that there is no need to approximate the

slope of any equilibrium function. Secondly, policy functions possibly have a rela-

tively uncomplicated behavior relatively to the value function and are hence more

accurately approximated. Thirdly, in the iterative procedure, Lagrange multipliers

come out as residuals from the Euler equation and these are, in the case of state

dependent constraints, merely needed to be interpolated at each iteration.

As a direction for future research, it would be desirable to establish under which

additional conditions the limiting value function is differentiable when inequality con-

straints potentially bind. Moreover, methods for evaluating the accuracy of numerical

solutions using the Euler equation residuals, are well developed for interior problems

(Santos, 2000). However, they are not extended to deal with problems formulated in

the context of this paper.
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CHAPTER 2

Asset Based Unemployment Insurance
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30 2. ASSET BASED UNEMPLOYMENT INSURANCE

1. Introduction

Between the ages of 18 and 40, an American worker can expect to be unemployed

on five different occasions.1 An average spell of unemployment lasts for approximately

three months. Unsurprisingly then, unemployment is perceived as one of the greatest

economic risks an individual faces during her working life, and insurance against such

shortfalls in labor income is of high importance. Whereas most modern economies

provide unemployment insurance through a governmentally sponsored unemployment

benefits programme,2 several empirical studies suggest that this is not the only source

of insurance available to the unemployed. Of the total fraction of unemployed eligible

for benefits, Blank and Card (1991) estimate that only 67% take up unemployment

insurance, indicating that many of the unemployed find insurance elsewhere. Among

the group of participating individuals, Gruber (1997) finds that the consumption

smoothing effect of insurance is particularly high at late stages of the unemployment

spell, arguing that this occurs when financial wealth is depleted. Lastly, Gruber

(1998) shows that unemployment benefits have a significant crowding-out effect on

savings, not only suggesting that unemployment benefits and wealth act as close

substitutes, but also that savings is an important factor to consider when designing

an unemployment benefits programme.

Motivated by these issues, this paper develops a theoretical model in order to

characterize an optimal unemployment benefit programme in the presence of moral

hazard and partial self-insurance. An infinitely lived individual can at any date either

be employed or unemployed. While working she faces an idiosyncratic exogenous risk

of losing her job, and while unemployed she can devote time and effort to search

for a new job. The agent enjoys consumption and leisure, and she may reallocate

resources intertemporally by means of a riskless asset. A utilitarian government

provides unemployment insurance. It has information on the agents’ consumption

1According to the Bureau of Labor Statistics’ National Longitudinal Survey of Youth, 1979

(NLSY79).
2As unemployment insurance reduces the opportunity cost of employment, it evokes substantial

moral hazard effects in the labor market (Meyer, 1990; Moffitt, 1985). Private insurance solutions

are thus unlikely to function efficiently, and may even fail to exist. As a consequence, most mod-

ern economies relies exclusively on a governmentally funded unemployment insurance programme

(Oswald, 1986; Chiu and Karni, 1998).
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1. INTRODUCTION 31

level and preferences, but not on their search effort. The government’s redistribution

policy must therefore be incentive compatible.

In this setting, the government has full control over the agent’s consumption and

search effort allocations, and may thus choose these directly. Allowing the govern-

ment to choose allocations, rather than policies, simplifies the problem considerably.

However, it also forces the analysis to proceed in two separate steps: The first step

characterizes the optimal allocations while the second implements these allocations

through a tax system in a decentralized economy.

I show that the government’s intertemporal first order condition must observe

an inverse Euler equation (Rogerson, 1985). By Jensen’s inequality, this optimality

condition implies a wedge between the agent’s intertemporal marginal rate of sub-

stitution and the economy-wide interest rate (the marginal rate of transformation).

Said differently, in relation to a frictionless economy, the agent is saving constrained.

The reason behind this result is straightforward: In order to provide incentives to

exert search effort, the government wishes to generate a positive correlation between

consumption and employment. When the agent’s utility function is concave, higher

savings weakens this correlation and thus decreases search effort. Thus, at an optimal

programme, a crowding-out effect of unemployment insurance on savings is indeed

desired.

Following recent developments in the dynamic public finance literature, I con-

struct tax (or policy-) functions that implement the optimal allocations in a decen-

tralized economy (cf. Kocherlakota (2005); Albanesi and Sleet (2006); and Golosov

and Tsyvinski (2006)). By implement, I mean a tax system such that the solution

to a decentralized maximization problem faced by an individual agent that takes the

tax system as given, coincides with the government’s optimal solution. The resulting

tax functions are simple: Current taxes depend solely on the agent’s current and pre-

vious employment state, and on her level of assets. These tax functions provide new

insights into how an optimal unemployment insurance scheme should be designed:

First, the unemployment insurance policy is time-invariant, and thus independent of

the duration of the unemployment spell. Second, unemployment benefit payments

relate negatively to the agent’s asset position: In addition to the first-order insurance

effect of wealth, a ceteris paribus increase in non-labor income (wealth) amplifies

the opportunity cost of employment and thus reduces the agent’s incentive to search

for a job. Moreover, during unemployment the agent decumulates assets and the
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32 2. ASSET BASED UNEMPLOYMENT INSURANCE

sequence of benefit payments is observationally increasing - a result that stands in

sharp contrast with previous studies (e.g. Shavell and Weiss, 1979; Hopenhayn and

Nicolini, 1997; Pavoni, 2007; Pavoni and Violante, 2007).

The essential economic mechanisms in this paper are closest related to those in

Shavell and Weiss (1979), Hopenhayn and Nicolini (1997), and Pavoni (2007). In

their seminal study, Shavell and Weiss (1979) show that consumption ought to be

decreasing with respect to the duration of the unemployment spell, a result further

confirmed and strengthened in Hopenhayn and Nicolini (1997) and Pavoni (2007).3

Since these studies abstract from savings, the policy recommendation is immediate;

unemployment benefits are given as the difference between consumption and labor

income, and should therefore decrease along the duration of the unemployment spell. I

deviate from this literature by relaxing two assumptions: Firstly, I model employment

and unemployment as recurrent states, while previous studies have assumed that

employment is an absorbing state. Secondly - and more importantly - I allow for

partial self-insurance by means of a riskless asset. This has salient implications for

the optimal unemployment benefit policy. While the consumption pattern largely

remains unaltered, the benefit policy does not.

In order identify the effect of savings and benefit payments on consumption, I rely

on recent developments in the dynamic public finance literature. Following Kocher-

lakota (2005) and Albanesi and Sleet (2006), I consider tax systems that resemble

modern economies’ combined usage of taxes and markets to reallocate resources in

the economy. Kocherlakota (2005) and Albanesi and Sleet (2006) consider dynamic

versions of Mirrleesian taxation (Mirrlees, 1971); concisely, a utilitarian government

wishes to allocate resources in an economy where skills are unobservable, but la-

bor income is not. Although the economy explored in this paper functions under

fundamentally different informational frictions, the proximity of some results should

be noted. As in both Kocherlakota (2005) and Albanesi and Sleet (2006), (wealth-)

taxes and marginal taxes are period-by-period expected to be zero. Moreover, whereas

Kocherlakota (2005) puts no restrictions on the process governing the evolution of

3In fact, Pavoni (2007) finds that consumption should be non-increasing : By exogenously im-

posing a minimum lower bound on the agent’s present value utility - a constraint that may be

interpreted as a minimum subsistence level - the consumption sequence embeds a flat profile when-

ever this constraint is binding.
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agents’ skills, the resulting tax system admits a complex structure in which the tax

in any period depends upon the full history of past labor income reports. In contrast,

Albanesi and Sleet (2006) assume that the evolution of agents’ skills are identically

and independently distributed over time, and show that the tax system lends itself

to a recursive representation in the agents’ wealth. Although the evolution of em-

ployment status in this paper is endogenous and exhibits high persistence, the tax

system admits a simple recursive representation in the agents’ wealth and current

employment status transition.

In a recent paper, Shimer and Werning (2005) consider a problem closely related to

the question explored in this paper. Similar to this paper, Shimer and Werning (2005)

first consider the optimal allocations, and then, by proving an equivalence result,

derive the decentralized policy that implements these allocation . However, the two

papers show considerable differences: Shimer and Werning (2005) consider a version

of McCall’s (1970) search model with hidden reservation wages. This paper considers

hidden search effort decisions. More importantly, all qualitative properties explored

in Shimer and Werning (2005) hinges on the assumption of CARA utility, and thus on

potentially negative consumption levels.4 Abstracting from some standard regulatory

conditions, this paper puts no restrictions on the specific functional form of the agents’

momentary utility function.

2. Structure of the economy

The economy is populated by a utilitarian government and a continuum of risk-

averse agents. The planning horizon is infinite. Time is discrete and denoted by

t = 0, 1, . . . In any given period t, an agent can either be employed or unemployed

and the agent’s employment status is publicly observable.

When an agent is employed, she earns a gross wage, w. There is no on-the-job

search and the probability of losing the job is exogenously given at the constant

hazard rate 1− γ.

When unemployed, the agent receives unemployment benefits and searches for a

job with effort e. The probability of finding a job, conditional on search effort, is

denoted p(e). Search effort - and thus the probability of finding a job - is considered

private information, not observable by the government or by any other agent in the

4In Shimer and Werning (2005) it is shown that their results do not extend to a setting with

CRRA utility.
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economy.5 The wage distribution is degenerate, and a job offer is, consequently,

always accepted. The agents can save using a riskless bond that pays net pre-tax

return equal to r > 0. The intertemporal price of consumption, 1/(1 + r), is denoted

by q. Savings are publicly observable.

2.1. Model. Formally, employment status in any period t is given by θt ∈ Θ =

{0, 1}. Let θt = 1 denote employment. The history of employment status up to

period t is given by θt = (θ0, . . . , θt) ∈ Θt, where Θt = {0, 1} × {0, 1} × . . . × {0, 1},
represent all possible histories up to period t.

At time zero, each agent is born as either employed or unemployed, and she is

entitled some level of initial cash-on-hand, b0. The initial entitlement/employment

status-pair, (b0, θ0), is taken as given by each agent in the economy (the government

included). The joint distribution of (b0, θ0) is given by ψ(b0, θ0), with support on

B × Θ, where B is some subset of the real numbers, B ⊆ R. Thus, at every date,

t, each agent is distinguished by her initial entitlements and history of employment

status, (b0, θ
t).

Without any loss of generality, I will henceforth formulate the problem such the

agents choose p - the probability of finding a job -, rather than effort e, directly.

The agent then ranks contemporaneous consumption and search effort allocations

according an additively separable felicity function, {u(c) − (1 − θ)v(p)}. There is

no disutility from working.6 The function u and v are strictly increasing and once

continuously differentiable. In addition, u is strictly concave and v is strictly convex.

The standard Inada conditions apply for u; u′(0) = ∞ and limc→∞ u′(c) = 0.

An allocation in this economy is denoted σ = {ct, pt}∞t=0, where

ct : B ×Θt → R+

pt : B ×Θt → [0, 1]

Here, ct(b0, θ
t) is the amount of consumption an (b0, θ0)-agent is assigned under history

θt. The contemporaneous probability of finding a job, pt(b0, θ
t), is defined equivalently.

Let λ(b0, θ
t+1) denote the probability measure for history θt+1, conditional on (b0, θ0).

For notational convenience let pt(b0, θ
t) be defined as γ if and only if θt = 1. λ(b0, θ

t+1)

5This is the source of moral hazard in the model; if benefit payments would be made contingent

upon search effort, the economy would reach its first best allocation.
6Including disutility from working would not change any of the results in the paper.
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2. STRUCTURE OF THE ECONOMY 35

is then recursively given by

λ(b0, θ
t+1) =

{
pt(b0, θ

t)λ(b0, θ
t), θt+1 = 1

(1− pt(b0, θ
t))λ(b0, θ

t), θt+1 = 0

An agent’s net present value utility of an allocation σ is given as

V (σ, b0, θ0) =
∞∑

t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (5)

The utilitarian government wishes to find σ that maximizes the sum of net present

value utilities

V̂ (ψ) = max
σ

∫

B×Θ

{V (σ, b0, θ0)}dψ (6)

subject to each agent’s present value budget constraint

b0 ≥
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt, ∀ (b0, θ0) ∈ B ×Θ (7)

Furthermore, since the search effort allocation is private information, the optimal

allocation must also respect incentive compatibility

{pt}∞t=0 = argmax{V (σ, b0, θ0)}, ∀ (b0, θ0) ∈ B ×Θ (8)

The motivation behind the incentive compatibility constraint is simple: Each agent

takes the consumption allocation as given and chooses search effort to maximize her

private utility. Without any loss of generality, the problem is organized such that

the government directly proposes a search effort allocation that coincides with the

agent’s private optimal choice.

Constraint (7) ensures feasibility. It should be noted that this constraint will

always hold as an equality; if it did not, the government could simply increase the

agent’s period zero consumption without inflicting with incentive compatibility. An

allocation that is both incentive compatible and feasible will be referred to as incentive

feasible.

Note that in (7), q is the constant intertemporal price equal to 1/(1+r). Implicitly,

this assumes that there exist an exogenous financial sector, willing to borrow and lend

at the intertemporal price q.

The following lemma states that maximizing (5) subject to individual incentive

compatibility and feasibility, is equal to solving the more complicated problem given

in (6). The result is standard and the proof is merely included for completeness.
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36 2. ASSET BASED UNEMPLOYMENT INSURANCE

Lemma 2. Define σ∗ as the allocation that maximizes (5) for each (b0, θ0) ∈ B×Θ,

subject to individual incentive compatibility and feasibility. Define σ̂∗ as the allocation

that solves (6). Then

V̂ (ψ) =

∫

B×Θ

V (σ∗, b0, θ0)dψ

Proof. By construction, V̂ (ψ) ≥ ∫
B×Θ

V (σ∗, b0, θ0)dψ. If the inequality was

strict, then there exist some (b0, θ0) such that V (σ̂∗, b0, θ0) > V (σ∗, b0, θ0). Since σ̂∗

is incentive compatible and delivers b0, σ∗ could not have attained the maximum in

(5). ¤

2.2. A recursive formulation. Following the insights provided by Lemma 2,

the problem of interest is given by

V (b0, θ0) = max
σ

∞∑
t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (9)

s.t. {pt}∞t=0 = argmax{V (σ, b0, θ0)} (10)

b0 =
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt (11)

Under an optimal allocation, σ∗, equations (9) and (11) can be written as

V (b0, θ0) = u(c∗0(b0, θ0))− (1− θ0)v(p∗0(b0, θ0)) + β

∫

Θ1

V (σ∗, b∗(θ1), θ1)λ(b0, θ
1)dθ1

(12)

b0 = c∗0(b0, θ0)− θ0w + q

∫

Θ1

b∗(θ1)λ(b0, θ
1)dθ1 (13)

The following lemma asserts that, given the budget b∗(θ1), re-optimizing the prob-

lem in period one, does not alter period zero present value utility.

Lemma 3. V (σ∗, b∗(θ1), θ1) maximizes the agent’s utility subject to the budget

b∗(θ1) and incentive compatibility. That is, V (σ∗, b∗(θ1), θ1) = V (b∗(θ1), θ1).

Proof. See Appendix B. ¤

The result is not trivial. If V (b∗(θ1), θ1) > V (σ∗, b∗(θ1), θ1) for at least one θ1,

period zero incentive compatibility is violated. The idea behind the proof lies in the

fact that V (b0, θ0) is strictly increasing in b0, and that b∗(θ1) must therefore be resource

minimizing given utility V (σ∗, b∗(θ1), θ1). The Inada conditions on u then guarantees
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2. STRUCTURE OF THE ECONOMY 37

that duality holds: If b∗(θ1) is resource minimizing under utility V (σ∗, b∗(θ1), θ1),

V (σ∗, b∗(θ1), θ1) must be utility maximizing under the budget b∗(θ1).

Let be and bu denote period t+1 contingent claims in the employed and unemployed

state, respectively. Then - by exploiting the insights provided by Lemma 3 and

following the arguments outlined in Spear and Srivastava (1987) - problem (9) can

be made recursive as

V (b, θ) = max
c,p,be,bu

{u(c)− (1− θ)v(p) + β(pV (be) + (1− p)V (bu))} (14)

subject to

p = argmaxp{u(c)− θv(p) + β(pV (be) + (1− p)V (bu))} (15)

and

b = c− θw + q(pbe + (1− p)bu) (16)

Since the function v is differentiable and strictly convex, the incentive compatibility

constraint (15) can be replaced by its first order condition

v′(p) = β(V (be)− V (bu))

The solution to (14)-(16) yields a value function, V (b, θ), associated with policy func-

tions c(b, θ), p(b, θ), be(b, θ) and bu(b, θ). When there is no confusion regarding the

agent’s employment status, the policy functions will be addressed by their respective

initial letter, and reliance on b will be left implicit.

Previous studies on optimal unemployment insurance adopt a dual formulation to

the problem in (14)-(16). Specifically, the literature has, without exception, followed

the cost-minimization framework commonly employed in the repeated-agency liter-

ature. Fundamentally, this approach amounts to minimize (7) such that the agent

receives a pre-specified level of present value utility, and subject to incentive com-

patibility. Due to Spear and Srivastava (1987), this dual formulation lends itself

straightforwardly to a recursive representation. In contrast, this paper adopts a pri-

mal approach. The reason for this is twofold: First, the primal formulation simplifies

the subsequent analysis and provides an intuitive recursive representation in terms

of (non-labor) cash-on-hand, b. Second, this way of formulating the problem has a

quite appealing and natural interpretation: Akin to a social planner, the government

maximizes the agent’s utility by choosing current consumption, search effort, and one
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38 2. ASSET BASED UNEMPLOYMENT INSURANCE

period ahead Arrow securities at prices qp and q(1−p). By respecting incentive com-

patibility, moral hazard is internalized through individually and quantity contingently

priced assets.

3. Analysis

Consistent with the formulation of the problem in (14), the government chooses

allocations rather than policies. While it facilitates the analysis of the governments

optimal policy problem, it also restricts the subsequent analysis to proceed in two

separate steps. The first step concerns the optimal allocations. The second step

considers the tax functions that implement these allocations in a decentralized bond

economy.

Although the two steps presented above may appear distinctly separate, they are,

in effect, intimately related. Thus, as a third step, Section 3.3 will show how the shape

of the derived tax functions are closely tied to the incentive compatibility constraint,

and how a quite esoteric optimality condition, commonly known as the inverse Euler

equation, relate to a more familiar form of the standard Euler equation.

3.1. Allocations. Analogous to the definition of be and bu, let ce and cu denote

period t + 1 consumption at the associated employment states. During employment,

moral hazard is absent and the first order necessary conditions from (14) (together

with the envelope condition) gives

u′(c) =
β

q
u′(ce) =

β

q
u′(cu) (17)

When β = q, condition (17) implies that consumption is constant for any two con-

secutive periods; on a period-by-period basis, the agent is fully insured.

The equivalent optimality conditions for an unemployed agent gives

1

u′(c)
=

q

β

(
p

1

u′(ce)
+ (1− p)

1

u′(cu)

)
(18)

µv′′(p) = λq(be − bu) (19)

µ

λ
= p(1− p)

(
1

u′(cu)
− 1

u′(ce)

)
(20)

Where λ and µ are the Lagrange multipliers on the budget- and the incentive com-

patibility constraint, respectively.
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Equation (18) is commonly known as the “inverse Euler equation” (Rogerson,

1985). When ce 6= cu, Jensen’s inequality implies

u′(c) <
β

q
(pu′(ce) + (1− p)u′(cu)) (21)

Rearranging terms, equation (21) infers that there is a wedge between the agent’s

marginal rate of substitution and the economy’s marginal rate of transformation. In

particular, (21) implies that current marginal utility of consumption is lower than

the expected future marginal utility. In other words, the agent is savings constrained

relative to an economy with no private information. Golosov, Kocherlakota and

Tsyvinski (2003) interpret this wedge as an “implicit tax”.

According to the standard Euler equation, an optimal intertemporal plan has

the property that any marginal, temporary and feasible change in behavior equates

marginal benefits to marginal costs in the present and in the future. The inverse Euler

equation appears to violate this logic. For a given value of p, consider the choice of

reallocating resources from period t to period t + 1. If an increase in savings would

bring about a proportional increase in be as well as bu, equation (21) reveals that,

at least on the margin, such a policy would increase overall utility. However, the

incentive compatibility constraint in (15) does generally not permit a proportional

increase in be and bu. To keep the choice of p unaltered, the incentive compatibility

constraint forces the increase in resources to be relatively low in future states where

the marginal utility of resources is relatively high, and vice versa. Period t+1 marginal

utilities will thus be “weighted” by their respective incentive compatible inflow of

state contingent resources. In contrast, utility maximization implies relatively high

weights of resource inflow to states in which the marginal benefit of resources is

relatively high. Since incentive compatibility inflicts with period t + 1 resources only,

it is thus optimal to relegate a high degree of resources to period t consumption. As

a result, the agent appears savings constrained. The inverse Euler equation is simply

the resulting expression when these conflicting forces are internalized. Section 3.3

will more algebraically confirm the validity of this interpretation of the inverse Euler

equation.

Lemma 4. If V (b, θ) is concave and q = β, then

(i) ce(b, 0) > c(b, 0) > cu(b, 0).

(ii) c(b, 1) > c(b, 0).
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40 2. ASSET BASED UNEMPLOYMENT INSURANCE

(iii) b > bu(b, 0) > be(b, 0) and bu(b, 1) > b = be(b, 1).

Proof. (i) Assume that cu(b, 0) ≥ ce(b, 0). Then from equation (19), be(b, 0) ≥
bu(b, 0). From (18) it is immediate that c ∈ (ce, cu) and thus that bu(b, 0) ≥ b. By

concavity of V , c(b, θ) is non-decreasing, and thus c(b, 0) ≥ ce(b, 0) ≥ c(b, 1), where

the last inequality follows from be(b, 0) ≥ bu(b, 0) ≥ b. When θ = 1, we have that

b = be(b, 1). Moreover, since c(b, 0) ≥ c(b, 1) = cu(b, 1), b ≥ bu(b, 1). Collecting

inequalities yield

be(b, 0) ≥ bu(b, 0) ≥ b = be(b, 1) ≥ bu(b, 1)

From the budget constraint, and using the fact that w > 0, this implies that c(b, 1) >

c(b, 0), which contradicts c(b, 1) ≤ c(b, 0). Since c(b, 1) ≤ c(b, 0) was a corollary of

cu(b, 0) ≥ ce(b, 0), we must have cu(b, 0) < ce(b, 0).

Claims (ii) and (iii) are immediate consequences of the proof of (i). ¤

The mechanisms underlying the proof can be seen from equation (19), in which

the utility gain/cost from a marginal increase in p is equalized. If cu > ce, the left-

hand side in equation (19) states the utility gained through a marginal increase in p.

It is a gain since a small increase in ce, accompanied with a decrease in cu, attains the

marginal change in the right-hand side of the incentive compatibility constraint (15)

necessary to accompany the change in p. Such a change provides more insurance and

thus increases utility. However, due to interiority, there is an associated utility cost ;

be must be larger than bu, and an increase in p thus increase the share of the budget

spent on period t + 1 resources. The proof then proceeds by showing that cu > ce

together with bu < be, cannot be budget feasible since the wage when employed is

strictly positive.

In a two period setting, the terms be and bu in equation (19) may be replaced

by ce − w and cu, respectively. The intuition behind the result in Lemma 4 is then

straightforward: To provide incentives to exert search effort, the government gener-

ates a positive correlation between employment and consumption, ce > cu. Insurance

is provided by a low intertemporal variance, ce > c > cu. Concavity then ensures

that this logic extends to a setting with an infinite planning horizon.

Remarks. The notion of Lemma 4 is equivalent to Proposition 1 in Hopenhayn and

Nicolini (1997). The proof is however substantially different: Here, employment is

not an absorbing state and the problem is primal rather than dual.
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In Lemma 4, concavity of V (b, θ) is assumed.7 The assumption is common in

the literature and is indispensable for the analysis (Hopenhayn and Nicolini, 1997;

Ljungqvist and Sargent, 2004). The difficulty in proving concavity lies in the fact

that the choice set in (14) is not necessarily convex, and that (functions of) some

choice variables does not enter the Bellman equation additively.8

Previous studies on optimal unemployment insurance abstract from self-insurance

(e.g. Shavell and Weiss (1979), Hopenhayn and Nicolini (1997) and Pavoni (2007)).

In the absence of savings, the policy implication from Lemma 4 is lucid; the tax/sub-

sidy policy is defined as the difference between consumption and labor income, and

benefit payments should therefore decrease along the duration of an unemployment

spell. While Lemma 4 reveals that the consumption pattern remains unaltered in the

current setting with self-insurance, the unemployment benefit policy does not: Most

theoretical models of self-insurance (e.g. Aiyagari (1994)) display a decreasing con-

sumption profile even in the absence of any unemployment benefit programme. It is

thus the aim of the subsequent section to characterize the policy that can implement

the optimal allocations in an economy with self-insurance.

3.2. Decentralization.

3.2.1. A fiscal implementation. The previous section characterized the constrained

Pareto-optimal allocations attainable in the economy. This section will demonstrate

how these allocations may be attained in a setting in which the agents choose con-

sumption, search effort, and savings, taking the government’s policy as given. The

ultimate task of this section is thus to find the tax policy such that the agents’ private

choices corresponds to the optimal allocations derived above.

The agents in the decentralized economy have access to a riskless bond, a, that

pays net (pre-tax) return equal to r. At time zero, the agents enter a market economy

with a given level of cash-on-hand equal to b0. For a given tax policy, the agents

maximize their utility by choosing consumption, savings, and search processes that

fulfill their intertemporal budget constraint. If there is a one-to-one correspondence

7Indeed, conditions (17)-(19) are derived using Benveniste and Scheinkman’s (1979) envelope

theorem - a theorem that requires concavity.
8Note that these are sufficient, but not necessary conditions for concavity. All numerical solutions

in, for instance, Hopenhayn and Nicolini (1997) and Ljungqvist and Sargent (2004) display a strictly

concave value function (or, equivalently, a strictly convex cost function).
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42 2. ASSET BASED UNEMPLOYMENT INSURANCE

between the chosen processes and the optimal allocation, σ∗, the tax allocation is

called a fiscal implementation of σ∗.

Formally,

Definition 2. Let b0 = a0 − T0 be given. If there exist a tax allocation T̂ =

{Tt}∞t=0, Tt : Θt × Rt → R, such that {ct, at+1, pt}∞t=0 solves

V (b0, θ0) = max
{ct,at+1,pt}∞t=0

∞∑
t=0

βt

∫

Θt+1

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt

(22)

subject to

wθt + at(b0, θ
t−1)− Tt(θ

t, a(b0, θ
t)) = ct(b0, θ

t) + qat+1(b0, θ
t) for t = 0, 1, . . . (23)

and {ct, pt}∞t=0 equals the optimal allocation σ∗, then T̂ is said to be a fiscal imple-

mentation of σ∗.

Note that the tax allocation has a very general form. Taxes in any period t may

depend on the full history of employment as well on the full history of asset positions.

The motivation underlying this formulation is not obvious; since the agents choose

t + 1 assets using information available up to period t, it is plausible to conjecture

that taxes in t + 1 will themselves only depend on information available up to period

t. However, as shown by Kocherlakota (2005), this intuition may fail; when actions

are hidden there might not exist a fiscal implementation limited to this information

set. Section 3.3 will explore the underlying reason behind this conclusion further.

The following proposition shows that a fiscal implementation exists and that the

resulting tax functions are simple: The tax level is recursive and contingent on the

agent’s current transition and her level of wealth.

Proposition 3. There exist a time invariant tax function, Tt = T (at, θt, θt−1),

that implements σ∗.

Proof. The proof is direct and establishes a one-to-one relationship between the

government’s and the agent’s problem.

Rendahl, Pontus (2007) Essays in Recursive Macroeconomics 
European University Institute

 
10.2870/22151



3. ANALYSIS 43

By Bellman’s Principle of Optimality, the government’s problem in (14)-(16) can

be split up as

V (b, θ) = max
c,ζ
{u(c) + X(ζ, θ)}

s.t. b = c− θw + qζ

X(ζ, θ) = max
p,be,bu

{−(1− θ)v(p) + β(pV (be) + (1− p)V (bu))}

s.t. v′(p) = β(V (be)− V (bu))

ζ = pbe + (1− p)bu

Define functions Te and Tu as Te(ζ, θ) = ζ − be(ζ, θ) and Tu(ζ, θ) = ζ − bu(ζ, θ),

respectively. By definition,

X(ζ, θ) = max
p
{−(1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}

Thus,

V (b, θ) = max
c,ζ
{u(c) + max

p
{−(1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}}

= max
c,ζ,p

{u(c)− (1− θ)v(p) + β(pV (ζ − Te(ζ, θ)) + (1− p)V (ζ − Tu(ζ, θ)))}

s.t. b = c− θw + qζ

Where the last equality follows, again, from the Principle of Optimality. By con-

struction, if a′ = ζ, the above Bellman equation is the recursive formulation of the

decentralized problem given in Definition 2. ¤

The above proposition hinges upon an important assumption: As in Kocherlakota

(2005) and Albanesi and Sleet (2006), I assume that the fiscal implementation is such

that the optimal allocation is “affordable”. Affordability means that if the agent had

the possibility to buy the optimal allocation, she would period-by-period afford it.

That is,

wθt + at − Tt = ct + q(ptbe,t+1 + (1− pt)bu,t+1)

This restriction is crucial for separating the effect of savings and taxes on consump-

tion. Affordability implies that the government’s state variable, bt, must equal the
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agent’s non-labor cash-on-hand at − Tt. As a consequence, taxes are strictly redis-

tributive

at+1 = (pt(at+1 − Te,t+1) + (1− pt)(at+1 − Tu,t+1)) (24)

By Lemma 4, it is thus immediate that bu,t+1 > at+1 > be,t+1. The agent is conse-

quently positively taxed when employed and negatively taxed when unemployed (or

equivalently, receiving an unemployment benefit).

When savings and taxes are identified as above, the intuition underlying Proposi-

tion 3 is quite straightforward. Bellman’s Principle of Optimality reveals that savings,

a′, is a sufficient state variable for the choice of be, bu and p. The tax functions are

then defined as the difference between savings and the optimal t + 1 non-labor cash-

on-hand, be and bu. By the design of the tax function, the agent can always choose

the assigned allocation. Any other feasible choice amounts to imitating the t + 1

allocation of some other agent. By construction, imitating someone else is incentive

compatible and budget feasible. Thus, since the allocation is optimal under incentive

compatibility and budget feasibility, imitation cannot be optimal.

The tax functions in Proposition 3 are recursive in an agent’s wealth, her cur-

rent and previous employment state. Akin to the tax functions that map savings to

state contingent cash-on-hand, functions be(b, θ) and bu(b, θ) map period t resources

to period t+1 state contingent cash-on-hand. Why, then, could the tax functions not

be recursive in (b, θ)? Inasmuch the optimal allocation still would be attainable for

an agent operating in the decentralized economy, choosing the allocation would no

longer be optimal: Imitating someone else is feasible, but not incentive compatible.

By the same logic underlying the inverse Euler equation, the agent would, then, in-

crease savings to equalize equation (21), violating the incentive compatibility of the

optimal allocation.

Remarks. There is a continuum of tax systems that may implement any incentive fea-

sible allocation. To appreciate this, consider an arbitrary incentive feasible allocation

at time t. The agent consumes c and she exerted search effort in the previous period

inducing p−1. Her asset position and unemployment benefit handouts equal a and τ ,

respectively. Then another allocation with a′ = a + ε, τ ′ = τ − ε and c′ = c, is still

incentive compatible, feasible, and generates the same level of utility to the agent for

any real value of ε. At one extreme, 100% wealth- and labor taxes with lump-sum

transfers equal to consumption, would indeed implement any allocation. Arguably,
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such a tax system is quite draconian and does not resemble the combined usage of

taxes and markets to reallocate resources observed in most current economies. At

another extreme, zero taxes and individually and quantitative-contingently priced

Arrow securities could be designed to exactly mimic the problem in (14)-(16). While

perhaps elegant, and by construction optimal, such a market arrangement requires an

elaborate pricing system relying on common knowledge of individual asset positions

and preferences.

Ruling out such elaborate asset structures and focusing on the one bond scenario,

one may, alternatively, view the problem of indeterminacy as a question regarding

savings. Specifically, it is a question regarding whether it is the government, or the

agent (or any combination of the two), that carries out the intertemporal allocations

of resources. Of course, inasmuch there are a continuum of possible arrangement of

storage, one may legitimately wonder on what basis one can rationally chose between

those arrangements. As in Kocherlakota (2005) and Albanesi and Sleet (2006), this

paper imposes two assumptions in order to identify the effect of self-insurance from

taxes/benefits on consumption. First, agents save using a riskless bond. The presence

of a riskless bond can be thought of as a parsimonious representation of a more elab-

orate underlying diversified portfolio choice (at the intertemporal price q). Second,

the optimal allocation is assumed to be period-by-period affordable. Fundamentally

this assumes that all intertemporal transfers of resources are actualized by the agents’

savings. This identification scheme guarantees to attain the optimal allocation with

minimal governmental interference.9

3.2.2. Characterization. While taxes has been shown to have a simple recursive

representation, so far little has been shown regarding their properties. Examining the

qualitative properties of the tax function T corresponds to examine how T = a − b

responds to a change in a. To this end, I will derive and exploit the properties of the

marginal tax functions.

This section will state the main results, supported by brief comments. In the sub-

sequent section, I will relate the results presented here to properties of a “weighted”

Euler equation, and, in turn, relate this equation to the inverse Euler equation. For

clarity of exposition, focus is put on the case (of interest) at θ = 0. To facilitate

9Allowing the government to intertemporally allocate resources using her own storage technology,

however subject to some “iceberg cost”, would endogenously identify savings, and thus taxes, as in

the current setting.
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46 2. ASSET BASED UNEMPLOYMENT INSURANCE

notation, let Te(a
′) and Tu(a

′) denote period t+1 taxes at the associated employment

states at θ = 0.

Proposition 4. If V (b, θ) is concave, there exist marginal tax functions given by

T ′
e(a

′) = 1− u′(cu)

pu′(cu) + (1− p)u′(ce)
, T ′

u(a
′) = 1− u′(ce)

pu′(cu) + (1− p)u′(ce)

Proof. See Appendix B. ¤

The idea behind the proof is to consider an infinitesimal change in a′. The resulting

marginal change in taxes must be such that the government’s first order conditions

hold, incentive compatibility is preserved and the budget balances. In addition, the

agent’s decentralized first order condition must hold

u′(c) =
β

q
(pu′(ce)(1− T ′

e(a
′)) + (1− p)u′(cu)(1− T ′

u(a
′)))

Combining the marginal taxes in Proposition 4 with the inverse Euler equation in

(18) gives

T ′
e(a

′) = 1− qu′(c)
βu′(ce)

, T ′
u(a

′) = 1− qu′(c)
βu′(cu)

If β = q, and since ce > c > cu, it is evident that T ′
e(a

′) < 0 and 1 > T ′
u(a

′) > 0.

Thus, both unemployment benefits and “reemployment taxes” are decreasing with the

agents asset position.

Corollary 1. Marginal taxes are expected to be zero.

Proof. When the agent is unemployed Proposition 4 together with the inverse

Euler equation (18), gives the result.

When the agent is employed, taxes satisfies a′ = γ(a′−Te(a
′))+(1−γ)(a′−Tu(a

′)).

If taxes are differentiable, the derivative of this expression with respect to a′ gives the

result. ¤

Zero expected marginal taxes are not particularly surprising in this setting; by

the construction of the tax functions, taxes are always expected to be zero. A ceteris

paribus change in savings mimics the action taken by some other agent and taxes

respond accordingly.

The main part of the literature on optimal unemployment insurance has concluded

that benefit payments ought to decrease along the duration of unemployment. The

result is intuitive; in the absence of savings, a decreasing benefit profile induces a
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decreasing consumption profile, providing both insurance as well as sufficient search

effort incentives. Abstracting from savings, Lemma 4 confirms this result. Neverthe-

less, Proposition 3 shows that this result does not immediately generalize to a setting

in which partial self-insurance is present: The tax policy is time-invariant and thus

independent of the duration of the unemployment spell. In addition, the following

proposition reveals that the intuition supporting a decreasing benefit profile fails in

the current setting. Indeed, along the duration of the unemployment spell, the agent

will decumulate assets and the sequence of unemployment benefits will observationally

be increasing.

Proposition 5. If V (b, θ) is concave and β = q, then (i) a > a′, (ii) Tu(a) >

Tu(a
′), and (iii) Te(a) < Te(a

′).

Proof. By Proposition 4, 1 > T ′
u(a

′) > 0. Thus for any a1 and a2, such that

a1 > a2, Tu(a1) > Tu(a2). If a′ ≥ a, 1 > T ′
u(a

′) implies that bu ≥ b, which contradicts

Lemma 4, part (iii). Thus a > a′, Tu(a) > Tu(a
′) and, by Proposition 4, Te(a) <

Te(a
′). ¤

The result is intuitive. During unemployment, the agent exploits the insurance

effect of savings by decumulating assets. Proposition 4 infers that unemployment

taxes are positively related to the agent’s asset position. Thus, as the agent’s level of

assets decline, so does the level of the tax. Since unemployment taxes are negative

this implies that unemployment benefits will increase.

Accompanied with the inverse Euler equation, Proposition 5 has an intuitive ex-

planation. First, wealth has a first order insurance effect. The higher is an agent’s

wealth, the less she needs to worry about loss of consumption if she loses her job.

Second, in order to provide incentives to exert search effort, the government wishes

to generate a positive correlation between consumption and employment. When the

agent’s utility function is concave, a higher level of savings makes it costlier for the

government to induce such a correlation and the agent’s search effort decreases. By

generating a negative correlation between savings and unemployment benefits, the

government manages to mitigate the distortionary effect of savings on search.

3.3. The Euler equation, taxes, and the inverse Euler equation. I now

provide a deeper intuition underlying some of the results presented in the preceding

sections. To this end I will consider an equivalent version of the government’s problem
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48 2. ASSET BASED UNEMPLOYMENT INSURANCE

in which the sole choice is strictly intertemporal, and not state contingent. It will

be shown how this problem formulation leads to a “weighted Euler equation”, and

further how these weights relate to marginal taxes. At the optimum, the weighted

Euler equation implies the inverse Euler equation.

The inverse Euler equation can be thought of as the outcome when savings are

chosen to balance two conflicting forces: To maximize utility, resources should be

allocated to where the marginal benefit of resources is relatively high. For incentive

compatibility, resources should be allocated to states in which the marginal benefit

of resources is relatively low. Since incentive compatibility inflicts with period t + 1

resources only, it is thus optimal relegate a relatively high degree of resources to

period t consumption. As a result, the agent appears savings constrained.

For a given value of savings, it is instructive to think of the optimal division of

period t+1 resources across employment states as functions fulfilling two restrictions:

The incentive compatibility constraint and the budget constraint. Similar to the tax

functions explored in the previous section, these functions then allocate, for a given

level of savings, resources to the different employment states. Let the government

choose savings, a′, and let the functions δe(a
′) and δu(a

′) allocate resources between

employment states such that the budget is balanced and incentive compatibility holds.

That is, for a given p, a′ = pδe(a
′)+(1−p)δu(a

′) and v′(p) = β(V (δe(a
′))−V (δu(a

′))).

The government then faces the following intertemporal maximization problem

V (b) = max
a′
{u(b− qa′) + β(pV (δe(a

′)) + (1− p)V (δu(a
′)))}

The first order condition to the above problem, evaluated at the optimal solution, is

given by

u′(c) =
β

q
(pV ′(be)δ

′
e(a

′) + (1− p)V ′(bu)δ
′
u(a

′)) (25)

Equation (25) resembles a standard Euler equation, and has an interpretation in

terms of marginal intertemporal trade-offs: The utility cost of an marginal increase

in savings equals its feasible marginal utility gain. As with standard intertemporal

problems, the t+1 feasible marginal utility gain is determined by the feasible inflow of

resources in period t+1 - a marginal decrease of period t consumption is accompanied

by a proportional marginal increase of period t+1 resources, weighted by the interest

rate: 1 = pδ′e(a
′) + (1 − p)δ′u(a

′). In addition, however, there is a further restriction

on how the period t + 1 resources must be divided between employment states. In
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order to leave p unaltered, a marginal incentive compatibility constraint must hold

V ′(δe(a
′))δ′e(a

′) = V ′(δu(a
′))δ′u(a

′) (26)

One can combine this marginal incentive compatibility constraint with the “marginal

budget constraint” above, to solve for the weights δ′(a′)

δ′e(a
′) =

V ′(bu)

pV ′(bu) + (1− p)V ′(be)
, δ′u(a

′) =
V ′(be)

pV ′(bu) + (1− p)V ′(be)
(27)

The expressions above reveals an important feature: Whenever V ′(bu) > V ′(be),

δ′e(a
′) > δ′u(a

′), and vice versa. That is, for states in which the marginal value of

resources is relatively high, the marginal inflow of resources should be relatively low.

Substituting the relationship in (27) into (25) gives the inverse Euler equation.

It is important to note that the functions in (27) are directly related to the mar-

ginal taxes derived in Proposition 4. In particular, δ′(a′) = 1− T ′(a′). The intuition

underlying the shape of the tax function then becomes evident: For a certain choice

of p to remain incentive compatible, an increase in savings must be divided between

employment states such that the incentive compatibility constraint holds. That is,

the inflow of resources must be relatively high at states in which the marginal value

of resources is relatively low. By Lemma 4, the marginal value of resources is high

in the unemployed state, and the additional inflow must therefore be low. Since the

optimal policy is recursive in an agent’s wealth, a higher level of assets must induce

a lower level of unemployment benefits.

Additionally, the marginal incentive compatibility constraint in (26) illuminates

the answer to a further inquiry explored in the literature (e.g. Kocherlakota (2005),

Section 3): As savings are chosen on the basis of information available in period t,

could period t + 1 taxes be a function of period t information only? That is, could

δ′e(a
′) equal δ′u(a

′)? From equation (26) it is straightforward to see that this cannot

be the case. In order for incentive compatibility to hold, period t + 1 taxes can only

be a function of period t information if (and only if) V ′(be) = V ′(bu), or, equivalently,

if ce = cu. Under all other circumstances, a tax contingent on period t information

only would, with certainty, violate the incentive compatibility constraint.

4. Concluding Remarks

This paper has studied a model of optimal redistribution policies in which the

foremost risk in an agent’s life is unemployment. Moral hazard arises as job search
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50 2. ASSET BASED UNEMPLOYMENT INSURANCE

effort is unobservable. The model permits agents to self-insure by means of a riskless

bond.

In contrast with previous studies in the literature, it is shown that the optimal

unemployment insurance policy does not display any duration dependence. Whereas

wealth encodes the agents’ relevant employment status history, the insurance policy

is time-invariant and, instead, contingent on the agents’ asset position. In order to

induce job search effort, the government wishes to provide a positive correlation be-

tween consumption and employment status. Since a higher level of savings reduces

the correlation, unemployment benefits relate negatively to wealth. The agents decu-

mulates assets over the unemployment spell in order to exploit the intrinsic insurance

effect of wealth. Thus, the sequence of benefit payments is, observationally, increasing

with the duration of unemployment.

The policy implications from the analysis are stark; unemployment benefits should

be asset based and relate negatively to wealth. As wealth itself encodes insurance pos-

sibilities, the negative relation between wealth and unemployment benefits is intuitive.

However, asset based approaches have commonly been criticized for its distortive, and

negative, effect on savings (e.g. Hubbard, Skinner and Zeldes (1995), Gruber (1998)).

Although undesirable per se, this paper has revealed an additional effect of wealth;

a higher level of savings reduces the opportunity cost of being employed and thus

increases the unemployment duration. Together, the net distortive effect of an asset

based scheme appears to be favorable.

There are several ways in which an asset based unemployment insurance pro-

gramme could be accomplished. As with Medicaid, food stamps, and until recently,

Aid to Families with Dependent Children (AFDC), to mention a few social policies

in the United States, unemployment benefits may be asset based means tested; that

is, unemployment benefits are paid only if an agent has assets below a specified max-

imum amount. Alternatively, and obviously, schemes may be more elaborate with a

continuous decline in benefit payments as assets increases.
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52 3. UNEMPLOYMENT INSURANCE FOR THE LIQUIDITY CONSTRAINED

1. Introduction

This paper examines how the presence of liquidity constraints affects the proper-

ties of optimal unemployment insurance provisions in a model of job-search, moral

hazard and partial self-insurance. I show that the optimal unemployment insurance

scheme is recursive in an agent’s asset position and her current employment transi-

tion. Unemployment benefits are decreasing with the agent’s wealth level, and they

are constant whenever the liquidity constraint is binding - a result markedly in con-

trast with previous studies in which benefit payments displays a declining pattern

along the duration of the unemployment spell (e.g. Shavell and Weiss (1979), and

Hopenhayn and Nicolini (1997)). In calibrated version of the model it is shown that

the effect of the liquidity constraint is quantitatively important: A constrained agent

with zero liquid wealth ought to receive benefits payments three times higher than

that received by an agent with wealth equal to one months labor income; twenty

times higher than that received by an agent with wealth equal to three months labor

income; and one hundred times higher compared to an agent with savings equal to

twelve months of labor income (US median labor income to wealth ratio). The rea-

son behind this swift increase in benefit payment along the wealth dimension is that

optimal insurance provision should replace a missing market - the market for credits.

A large and growing literature has studied optimal unemployment insurance poli-

cies in models in which agents’ search efforts are private information (e.g. Shavell and

Weiss (1979), Hopenhayn and Nicolini (1997), and Pavoni (2007)). The conclusion

from this literature is that unemployment benefits should be a decreasing function

of the duration of unemployment, as this declining benefit profile allows the govern-

ment to provide agents with incentives to undertake job search. It is common in this

literature to neglect means of self-insurance and, therefore, the presence of liquidity

constraints. Yet, several empirical studies have documented that self-insurance, and

indeed, liquidity constraints, are important factors to consider when designing an un-

employment benefits programme. Blank and Card (1991), for instance, calculate that

only 67% of those eligible for unemployment insurance indeed take up unemployment

benefits, indicating that a large fraction of the unemployed find insurance elsewhere.

Gruber (1998) finds that unemployment benefits have a significant crowding-out effect

on savings, suggesting that wealth and unemployment benefits act as close substitute.

Browning and Crossley (2001) concludes that nearly half of job losers in the United
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1. INTRODUCTION 53

States report zero liquid wealth at the time of job loss, suggesting that liquidity is a

concern for many of the unemployed, and Gruber (1997) finds that the consumption

smoothing effect of insurance is particularly high at late stages of the unemployment

spell, arguing that this occurs when financial wealth is depleted. Moreover, Chetty

(2007) divides the unemployed into subgroups based on how likely they are to be

liquidity constrained. He finds that while the effect of unemployment benefits on

the hazard rate of reemployment is extremely small for the unconstrained, the cor-

responding measure for the constrained group is severe.1 Chetty (2007) concludes

that for liquidity constrained individuals, unemployment benefits replaces a missing

credit market, and thus conveys a substantial, and undistortionary, wealth effect on

the reemployment hazard rate.

The model adopted in this paper follows closely Shavell and Weiss (1979), and

Hopenhayn and Nicolini (1997), extended with limited self-insurance: An infinitely

lived individual can at any date either be employed or unemployed. While working

she faces an idiosyncratic exogenous risk of losing her job, and while unemployed she

can devote time and effort to search for a new job. The agent enjoys consumption

and leisure, and she may reallocate resources intertemporally by means of a riskless

asset. When doing so, the agent is subject to a liquidity constraint.

The utilitarian government has information on the agents’ consumption level and

preferences, but not on their search effort. The redistribution policy must therefor

be incentive compatible. Akin to a social planner that respects incentive compatibil-

ity, the government has full control over the agents’ consumption and search effort

allocations, and may choose these directly. However - following Kocherlakota (2005)

and Albanesi and Sleet (2006) - the government does not command any storage tech-

nology of her own.2 Thus, any intertemporal reallocation of resources is obtained

through the agents’ savings, and must therefore respect the liquidity constraint. By

1Specifically, Chetty (2007) measure the elasticity of the hazard rate of reemployment on un-

employment benefits. He finds that this elasticity is close to zero for the wealthiest 50% of the

unemployed, while the corresponding elasticity for the 50% poorest equals approximately −0.7; in-

dicating that roughly 70% of the unemployment insurance/duration link is caused by a wealth effect,

due to the presence of a liquidity constraint.
2Kocherlakota (2005), and Albanesi and Sleet (2006) assume that all transfers of resources across

time is actualized by the agents’ private savings. This is equivalent to assuming that the government

operates no storage technology of her own.
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54 3. UNEMPLOYMENT INSURANCE FOR THE LIQUIDITY CONSTRAINED

carefully “buying and selling” contingent claims, however, the government Pareto-

improves on the intertemporal allocation by intratemporally reallocating resources

across employment states.

For an unemployed and unconstrained agent, the government’s intertemporal op-

timality conditions, the inverse Euler equation, implies a wedge between the agent’s

intertemporal marginal rate of substitution and the economy-wide real interest rate

(the marginal rate of transformation). The reason is that in order to provide incen-

tives to exert search effort, the government wishes to generate a positive correlation

between consumption and employment. When the agent’s utility function is concave,

higher savings weakens this correlation and thus decreases search effort. In contrast,

when the agent is liquidity constrained, a Lagrange multiplier enters into the intertem-

poral optimality condition. The presence of the multiplier implies that savings and

consumption are constant between any two consecutive periods of unemployment.

Following recent developments in the dynamic public finance literature, I construct

tax functions that implement the optimal allocations in a decentralized economy (cf.

Kocherlakota (2005), and Albanesi and Sleet (2006)). By implement, I mean a tax

system such that when taken as given, the solution to a decentralized maximization

problem faced by an individual coincides with the government’s optimal solution. In

addition to an agent’s current and previous employment state, the resulting tax policy

is recursive in the agent’s wealth. As a consequence, a liquidity constrained agent’s

unemployment benefits are constant over the course of unemployment.

2. Structure of the economy

The economy is populated by a utilitarian government and a continuum of risk-

averse agents. The planning horizon is infinite. Time is discrete and denoted by

t = 0, 1, . . . At any given period t, an agent can either be employed or unemployed

and the agent’s employment status is publicly observable.

When an agent is employed, she earns a gross wage, w. There is no on-the-job

search and the probability of being fired is exogenously given at the constant hazard

rate 1− γ.

When unemployed, the agent receives unemployment benefits and searches for a

job with effort e. The probability of finding a job, conditional on search effort, is

denoted p(e). Search effort - and thus the probability of finding a job - is considered

private information, not observable by the government or by any other agent in the
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2. STRUCTURE OF THE ECONOMY 55

economy.3 The wage distribution is degenerate, and a job offer is, consequently,

always accepted. The agents save using a riskless bond that pays net pre-tax return

equal to r > 0. The intertemporal price of consumption, 1/(1+r), is denoted q. Bond

holdings, a, are subject to a liquidity constraint, φ, such that for any t, at ≥ φ. It

should be noted that this liquidity constraint is imposed rather than derived from any

additional assumptions on private information in the credit market. Indeed, savings

are publicly observable. Several studies have found wide empirical support on the

view that restricted borrowing is a reality for the vast majority of household, and

has, ever since the seminal paper by Deaton (1991), been a standard ingredient in

several theoretical models explaining consumption and savings behavior.4

2.1. Model. An agent’s employment status in any period t is given by θt ∈ Θ =

{0, 1}. Let θt = 1 denote employment. The history of employment status up to

period t is given by θt = (θ0, . . . , θt) ∈ Θt, where Θt = {0, 1} × {0, 1} × . . . × {0, 1},
represent all possible histories up to period t.

At time zero, each agent is born as either employed or unemployed, and she is

entitled some level of initial cash-on-hand, b0. The initial entitlement/employment

status-pair, (b0, θ0), is taken as given by each agent in the economy (the government

included). The joint distribution of (b0, θ0) is given by ψ(b0, θ0), with support on

B × Θ, where B is some subset of the real numbers, B ⊆ R. Thus, at every date,

t, each agent is distinguished by her initial entitlements and history of employment

status, (b0, θ
t).

Without any loss of generality, I will henceforth formulate the problem such the

agents choose p - the probability of finding a job - rather than effort e. The agent

then ranks contemporaneous consumption and search effort allocations according an

additively separable felicity function, {u(c)− (1−θ)v(p)}. There is no disutility from

working.5 The function u is strictly concave, strictly increasing, and once continu-

ously differentiable. The function v is strictly convex, strictly increasing, and twice

continuously differentiable. In addition, limp→0 v′(p) = 0 and limp→1 v′(p) = ∞.

3This is the source of moral hazard in the model; if benefit payments would be made contingent

upon search effort, the economy would reach its first best allocation.
4For empirical evidence, see, for instance, Zeldes (1989).
5Including disutility from working would not change any of the results in the paper.
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An allocation in this economy is denoted σ = {ct, pt}∞t=0, where

ct : B ×Θt → R+

pt : B ×Θt → [0, 1]

Here, ct(b0, θ
t) is the amount of consumption an (b0, θ0)-agent is assigned under history

θt. The contemporaneous probability of finding a job, pt(b0, θ
t), is defined equivalently.

Let λ(b0, θ
t+1) denote the probability measure for history θt+1, conditional on (b0, θ0).

For notational convenience let pt(b0, θ
t) be defined as γ if and only if θt = 1. λ(b0, θ

t+1)

is then recursively given by

λ(b0, θ
t+1) =

{
pt(b0, θ

t)λ(b0, θ
t), θt+1 = 1

(1− pt(b0, θ
t))λ(b0, θ

t), θt+1 = 0

An agent’s net present value utility of an allocation σ is given as

V (σ, b0, θ0) =
∞∑

t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (28)

The utilitarian government wishes to find σ that maximizes the sum of net present

value utilities

V̂ (ψ) = max
σ

∫

B×Θ

{V (σ, b0, θ0)}dψ (29)

subject to each agent’s present value budget constraint

b0 ≥
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt, ∀ (b0, θ0) ∈ B ×Θ (30)

Furthermore, since the search effort allocation is private information, the optimal

allocation must respect incentive compatibility

{pt}∞t=0 = argmax{V (σ, b0, θ0)}, ∀ (b0, θ0) ∈ B ×Θ (31)

The motivation behind the incentive compatibility constraint is simple: Each agent

takes the consumption allocation as given and chooses search effort to maximize her

private utility. Without any loss of generality, the problem is formulated such that

the government directly proposes a search effort allocation that coincides with the

agent’s private optimal choice.

Before formally introducing the agents’ liquidity constraint into the government’s

problem, it is useful to discuss the relationship between allocations and bond holdings.

It is instructive, for the time being, to consider an allocation in a two period version

of the above problem: In period zero, an (b0, θ0)-type agent will exert search effort p
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and consume c. In period one she consumes c(1) if employed and c(0) if unemployed.

The measure of (b0, θ0)-agents in state θ1 = 1 and θ1 = 0 must then equal p and

1 − p, respectively. The total amount of resources transferred from period zero to

period one thus equals p(c(1) − w) + (1 − p)c(0). As in Albanesi and Sleet (2006)

and Kocherlakota (2005), I will henceforth assume that the total amount of resources

transferred between period zero and period one for an (b0, θ0)-agent equals that agent’s

savings.

Generalizing the above discussion to an infinite horizon setting gives the following

assumption

Assumption 4. All transfers of resources across time equals private savings. That

is

at+1(b0, θ
t) =

∞∑
s=1

qs−1

∫

Θt+s

{ct+s(b0, θ
t+s)− θt+sw}λ(b0, θ

t+s)

λ(b0, θt)
dθt+s

Note that the budget constraint in (30) above may be rewritten as

b0 ≥ c0(b0, θ
0)− θ0w + q

∞∑
t=1

qt−1

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt

= c0(b0, θ
0)− θ0w + qa1(b0, θ

0)

That is, at period t, the agent spends his resources bt on current consumption, ct,

and reallocates resources to period t + 1 by means of the riskfree bond, at+1. The

government then faces the additional liquidity constraint

at+1(b0, θ
t) ≥ φ, ∀ (b0, θ

t) ∈ B ×Θt (32)

The liquidity constraint in (32) is exogenously imposed, and represents a reduced

form presumption that agents are unwilling to lend out resources to asset poor indi-

viduals. Exogenous liquidity constraints is common in the literature of optimal social

policies, and is deployed since it captures the effect of credit market imperfections in

a parsimonious manner.6

It should be noted that constraint (30) together with the liquidity constraint en-

sures feasibility. Constraint (30) will always hold as an equality; if it did not, the

6See for instance Hansen and Imrohoroglu (1992), Gomes, Greenwood and Rebelo (2001), Ab-

dulkadiroğlu, Kuruşçu and Sahin (2002), and Wang and Williamson (2002).
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government could simply increase the agent’s period zero consumption without inter-

fering with neither incentive compatibility nor the liquidity constraint. An allocation

that is both incentive compatible and feasible will be referred to as incentive feasible.

The following lemma states that maximizing (28) subject to the individual budget

constraint, incentive compatibility and the liquidity constraint, is equal to solving

the more complicated problem given in (29). The result is standard and the proof is

merely included for completeness.

Lemma 5. Define σ∗ as the allocation that maximizes (28) for each (b0, θ0) ∈ B×
Θ, subject to individual incentive compatibility, feasibility and the liquidity constraint.

Define σ̂∗ as the allocation that solves (29). Then

V̂ (ψ) =

∫

B×Θ

V (σ∗, b0, θ0)dψ

Proof. By construction, V̂ (ψ) ≥ ∫
B×Θ

V (σ∗, b0, θ0)dψ. If the inequality was

strict, then there exist some (b0, θ0) such that V (σ̂∗, b0, θ0) > V (σ∗, b0, θ0). Since σ̂∗

is incentive compatible, delivers b0, and satisfies the liquidity constraint, σ∗ could not

have attained the maximum in (28). ¤

2.2. A recursive formulation. Following the insights provided by Lemma 5,

the problem of interest is given by

V (b0, θ0) = max
σ

∞∑
t=0

βt

∫

Θt

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt (33)

s.t. {pt}∞t=0 = argmax{V (σ, b0, θ0)} (34)

b0 =
∞∑

t=0

qt

∫

Θt

{ct(b0, θ
t)− θtw}λ(b0, θ

t)dθt (35)

0 ≥ φ−
∞∑

s=1

qs−1

∫

Θt+s

{ct+s(b0, θ
t+s)− θt+sw}λ(b0, θ

t+s)

λ(b0, θt)
dθt+s, ∀ t (36)
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Under an optimal allocation, σ∗, equations (33), (35) and (36) can be written as

V (b0, θ0) = u(c∗0(b0, θ0))− (1− θ0)v(p∗0(b0, θ0)) + β

∫

Θ1

V (σ∗, b∗(θ1), θ1)λ(b0, θ
1)dθ1

(37)

b0 = c∗0(b0, θ0)− θ0w + q

∫

Θ1

b∗(θ1)λ(b0, θ
1)dθ1 (38)

0 ≥ φ− q

∫

Θ1

b∗(θ1)λ(b0, θ
1)dθ1 (39)

The following lemma asserts that, given the budget b∗(θ1), re-optimizing the prob-

lem in period one, does not alter period zero present value utility.

Lemma 6. If u(0) = −∞, then V (σ∗, b∗(θ1), θ1) in (37), maximizes the agent’s

utility subject to the budget b∗(θ1), the liquidity constraint, and incentive compatibility.

That is, V (σ∗, b∗(θ1), θ1) = V (b∗(θ1), θ1).

Proof. See Appendix C. ¤

In a companion paper, Rendahl (2007), the above problem is analyzed in the ab-

sence of liquidity constraints. While the presence of the constraint complicates the

proof, and indeed necessitates additional assumptions, the underlying idea is similar:

Since V (b0, θ0) is strictly increasing in b0, b∗(θ1) can be shown to be resource minimiz-

ing given utility V (σ∗, b∗(θ1), θ1). The proof then proceed by showing that duality

holds: If b∗(θ1) is resource minimizing under utility V (σ∗, b∗(θ1), θ1), V (σ∗, b∗(θ1), θ1)

must be utility maximizing under the budget b∗(θ1).

Let be and bu denote period t+1 contingent claims in the employed and unemployed

state, respectively. Then - by exploiting the insights provided by Lemma 6 and

following the arguments outlined in Spear and Srivastava (1987) - problem (33) can

be made recursive as

V (b, θ) = max
c,p,be,bu

{u(c)− (1− θ)v(p) + β(pV (be) + (1− p)V (bu))} (40)

subject to

p = argmaxp{u(c)− θv(p) + β(pV (be) + (1− p)V (bu))} (41)

and

b = c− θw + q(pbe + (1− p)bu) (42)

and

0 ≥ φ− pbe − (1− p)bu (43)
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In accordance with Assumption 4, pbe + (1− p)bu equals savings.

Since the function v is differentiable and strictly convex, the incentive compati-

bility constraint (41) can be replaced by its first order condition

v′(p) = β(V (be)− V (bu))

The solution to (40)-(42) yields a value function, V (b, θ), associated with policy func-

tions c(b, θ), p(b, θ), be(b, θ) and bu(b, θ). When there is no confusion regarding the

agent’s employment status, the policy functions will be addressed by their respective

initial letter, and reliance on b will be left implicit.

Previous studies on optimal unemployment insurance adopt a dual formulation

to the problem in (40)-(42). Specifically, the literature has, without exception, fol-

lowed the cost-minimization framework commonly employed in the repeated-agency

literature. Fundamentally, this approach amounts to minimize (30) such that the

agent receives a pre-specified level of present value utility, and subject to incentive

compatibility. Due to Spear and Srivastava (1987), this dual formulation lends itself

straightforwardly to a recursive representation. In contrast, this paper adopts a pri-

mal approach. The reason for this is twofold: First, the primal formulation simplifies

the subsequent analysis and provides an intuitive recursive representation in terms

of (non-labor) cash-on-hand, b. Second, this way of formulating the problem has a

quite appealing and natural interpretation: Akin to a social planner, the government

maximizes the agent’s utility by choosing current consumption, search effort, and one

period ahead Arrow securities at prices qp and q(1−p). By respecting incentive com-

patibility, moral hazard is internalized through individually and quantity contingently

priced assets.

3. Analysis

Consistent with the formulation of the problem in (40), the government chooses

allocations rather than policies. While it facilitates the analysis of the governments

optimal policy, it also restricts the subsequent analysis to proceed in two separate

steps. The first step concerns the optimal allocations. The second step considers tax

functions that implement these allocations.

3.1. Allocations. Analogous to the definition of be and bu, let ce and cu denote

period t + 1 consumption at the associated employment states. During employment,
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moral hazard is absent and the first order necessary conditions of (40) (together with

the envelope condition) gives

u′(c)− µ =
β

q
u′(ce) =

β

q
u′(cu), µ ≥ 0 (44)

Condition (44) implies that when µ = 0, consumption is constant for any two con-

secutive periods; on a period to period basis, the agent is fully insured. When µ > 0,

consumption at t + 1 is higher than consumption at t. However, consumption is still

constant across states, ce = cu.

For an unemployed agent, it is instructive to consider the following partition of

the problem given in (40)-(43)

V (b, θ) = max
c,a′

{u(c) + X(a′, θ)} (45)

s.t. b = c− θw + qa′ (46)

0 ≥ φ− a′ (47)

X(a′, θ) = max
p,be,bu

{−v(p) + β(pV (be) + (1− p)V (bu))} (48)

s.t. v′(p) = β(V (be)− V (bu)) (49)

a′ ≥ pbe + (1− p)bu (50)

As previously mentioned, V is strictly increasing. It is important to note that X is

strictly increasing as well. This is formally proved in the appendix, but can more

easily be seen from the following argument (Golosov et al., 2003): Suppose that (50)

is an inequality. Then for some (sufficiently small) ε, the planner may increase be

and bu with ε/V ′(ce) and ε/V ′(cu), respectively. At the resulting allocation, p is

unchanged and lifetime utility has increased by βε.

The optimality conditions for an unemployed agent give

1

u′(c)− µ
=

q

β

(
p

1

u′(ce)
+ (1− p)

1

u′(cu)

)
, µ ≥ 0 (51)

q(be − bu) = v′′(p)p(1− p)

(
1

u′(cu)
− 1

u′(ce)

)
(52)
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When µ = 0, equation (51) is the commonly known as the “inverse Euler equation”

(Rogerson, 1985). When ce 6= cu, Jensen’s inequality implies the following inequality

u′(c) <
β

q
(pu′(ce) + (1− p)u′(cu)) (53)

Rearranging terms, equation (53) suggests that there is a wedge between the agent’s

marginal rate of substitution and the economy’s marginal rate of transformation.

Note that the inequality is such that, absent agency problems, the agent would wish

to increase future expected consumption at the expense of lower current consumption.

In other words, the optimal allocation implies that the agent is savings constrained.

According to the standard Euler equation, an optimal plan has the property that

any marginal, temporary and feasible change in behavior equates marginal benefits

to marginal costs in the present and future. The inverse Euler equation appears to

violate this logic. For a given value of p, consider the optimal choice of reallocating

resources from period t to period t + 1. If an increase in savings would bring about

a proportional increase in be as well as bu, equation (53) reveals that, at least on the

margin, such a policy would increase overall utility. However, the incentive compat-

ibility constraint in (41) does generally not permit a proportional increase in be and

bu. To keep the choice of p unaltered, this constraint forces the increase in resources

to be relatively low in states where the momentum (or for small changes, marginal

utility) of resources is high, and vice versa. The period t + 1 marginal utilities will

thus be “weighted” by their respective inflow of state contingent resources such that

the incentive compatibility constraint holds. These weights are high at states in which

the marginal utility is low. In contrast, utility maximization implies relatively high

weights in states where the marginal benefits of resources is relatively high. Since

incentive compatibility inflicts with period t + 1 resources only, it is thus optimal to

relegate a relatively high degree of resources to period t consumption. As a result,

the agent appears “savings constrained”. The inverse Euler equation is simply the re-

sulting expression when these conflicting forces are internalized (see Rendahl (2007),

Section 3.3, for an algebraic argument revealing the same logic).

The proof for the following lemma may be found in Rendahl (2007), and is there-

fore omitted.

Lemma 7. If X(a, θ) is concave, q = β, and µ = 0, then

(i) c(b, 1) > c(b, 0)
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(ii) ce(b, 0) > c(b, 0) > cu(b, 0)

(iii) b > bu(b, 0) > be(b, 0) and bu(b, 1) > b = be(b, 1)

The lemma states two important facts: First, for a given level of cash on hand,

consumption when employed is always strictly higher than consumption when unem-

ployed. Second, consumption is decreasing between any two consecutive periods of

unemployment. In a two period setting, the intuition underlying part (ii) in Lemma

7 is lucid. The terms be and bu in equation (52) may then be replaced by ce −w and

cu, respectively. In order to provide incentives to exert search effort, the government

then generates a positive correlation between employment and consumption, ce > cu.

Insurance is provided by a low intertemporal variance, ce > c > cu. Concavity ensures

that this logic extends to a setting with an infinite planning horizon.

Proposition 6. If X(a, θ) is concave and q = β there exist an interval [b, b],

such that for any b ∈ [b, b], a′(b, 0) = φ and bu(φ, 0) = b.

Proof. Let θ = 0 be implicit throughout the proof. Note that concavity of X

implies strict concavity of V . From the first order conditions of (45)-(47), a′(b) is

strictly increasing in b when µ = 0. By the Maximum Theorem, a′(b) is a continuous

function (Stokey et al., 1989). Thus there exist a b such that a′(b) = φ and µ = 0.

By Lemma 7, b > bu(φ). Now, consider a b ∈ (b, bu(φ)]. The proposition claims

that a′(b) = φ and that µ > 0. Assume the opposite; that is, a′(b) ≥ φ and µ = 0.

Then by the first order conditions of (45)-(47) and concavity of X, a′(b) ≥ a′(b)

and c(b) ≥ c(b). By the budget constraint in (46), this implies that b ≥ b which

contradicts b ∈ (b, bu(φ)]. Thus for any two b, b′ ∈ [b, bu(φ)], a′(b) = a′(b′) = φ and

b = bu(φ). ¤

The intuition underlying the proposition is straightforward: If the constraint is

binding at a certain b, then it is binding for any b′ < b. The policy function from

(48)-(50) is denoted bu(a
′). Since for any binding b, a′ is by definition equal to φ. As

long as b is a binding value, bu is independent of b. Thus, bu(φ) is the lowest possible

value of b and a′(b) = φ at b = bu(φ).
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Remarks. In Lemma 7 and Proposition 6, concavity of X(a, θ) is assumed.7 The

assumption is quite drastic but indispensable for the analysis. The difficulty in proving

concavity lies in the fact that the choice set in (48)-(50) is not necessarily convex,

and that (functions of) some choice variables do not enter the Bellman equation

additively.8

3.2. A fiscal implementation. Assumption 4 asserts that an agent’s private

savings equals the intertemporal transfer of resources between any two consecutive

periods. The assumption identifies how the agent’s liquidity constraint can be intro-

duced into a problem where a government chooses allocations rather than policies.

Thus, as Assumption 4 identifies savings, it also identifies the government’s policy:

Taxes (and, obviously, unemployment benefits) are simply given as the residual be-

tween the agent’s savings and her cash on hand

Te(a
′, θ) = a′ − be(a

′, θ), and Tu(a
′, θ) = a′ − bu(a

′, θ) (54)

It will in this section be shown that given these taxes, the optimal allocation will, in

fact, be chosen by an agent operating in a decentralized economy.

Each agent in the decentralized economy have access to a riskless bond, a, that

pays net (pre-tax) return equal to r. At time zero, the agents enter a market economy

with a given stock of non-contingent claims equal to b0. Treating the tax system in

(54) as given, the agents maximize their lifetime utility by choosing consumption,

savings, and search processes respecting the liquidity and the intertemporal budget

constraint.

Formally,

Definition 3. Let the tax allocation T : R × {0, 1} × {0, 1} → R, and initial

cash-on-hand b0 be given. The decentralized economy is then given by

V (b0, θ0) = max
{ct,at+1,pt}∞t=0

∞∑
t=0

βt

∫

Θt+1

{u(ct(b0, θ
t))− (1− θt)v(pt(b0, θ

t))}λ(b0, θ
t)dθt

(55)

7Indeed, conditions (44), (51) and (52) are derived using Benveniste and Scheinkman’s (1979)

envelope theorem - a theorem that requires concavity of V . Concavity of X is sufficient for this.
8Note that these are sufficient, but not necessary conditions for concavity. All numerical solutions

in this paper as well as in Hopenhayn and Nicolini (1997) displays a strictly concave value function.
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subject to

wθt + at(b0, θ
t−1)− T (at(b0, θ

t−1), θt−1, θt) = ct(b0, θ
t) + qat+1(b0, θ

t) (56)

and

at+1(b0, θ
t) ≥ φ, for t = 0, 1, 2, . . . (57)

The following proposition shows that given the tax functions in (54), the solution

to (55)-(57) coincides with the optimal allocation

Proposition 7. The solution to (55)-(57) coincides with the solution to (40)-

(43).

Proof. The proof is direct and establishes a one-to-one relationship between the

government’s and the agent’s problem.

By the construction of the tax function in (54), the solution to (48) may be

formulated as

X(a′, θ) = max
p
{−(1− θ)v(p) + β(pV (a′ − Te(a

′, θ)) + (1− p)V (a′ − Tu(a
′, θ)))}

Thus,

V (b, θ) = max
c,a′

{u(c) + max
p
{−(1− θ)v(p) + β(pV (a′ − Te(a

′, θ)) + (1− p)V (a′ − Tu(a
′, θ)))}}

= max
c,a′,p

{u(c)− (1− θ)v(p) + β(pV (a′ − Te(a
′, θ)) + (1− p)V (a′ − Tu(a

′, θ)))}

s.t. b = c− θw + qa′, and a′ ≥ φ

Which is the recursive form of the problem given in (55)-(57). ¤

The intuition behind this result is immediate. By the design of the tax function,

the agent can always choose the assigned allocation. Any other choice is equal to

imitate the allocation of some other agent. By construction, imitating someone else

is incentive compatible and budget feasible. Thus, since the allocation is optimal

under incentive compatibility and budget feasibility, imitation cannot be optimal.

3.3. Unemployment benefits and the duration of unemployment. In this

section I will analyze the qualitative properties of an optimal unemployment insurance

program during the course of unemployment. When an unemployed agent is uncon-

strained, consumption is decreasing, the agent decumulates assets, and the sequence

of unemployment benefits displays an increasing profile. As was shown in Lemma 7,
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consumption should decrease along the duration of the unemployment spell in order

to provide incentives to search. The agent chooses to decumulate assets along the

unemployment spell in order to exploit the intrinsic insurance effect of wealth. Un-

employment benefits displays an increasing profile for two reasons: First, a higher

level of non-labor income (from wealth) reduces the correlation between employment

and consumption. An increasing benefit payments structure thus intentionally crowds

out savings in order to render search incentives. Second, an increasing benefits profile

enhance the role of benefits as insurance for those who deplete their wealth as a con-

sequence of being unemployed for long periods. Moreover, when the agent is liquidity

constrained, consumption, savings and unemployment benefits are all constant. By

Proposition 6, a′(b) = φ and bu(φ) = b. By the construction of the tax function it is

immediate that cash-on-hand, as well as unemployment benefits, are constant. Since

cash-on-hand stays constant, so does consumption.

Examining the qualitative properties of the unemployment benefits corresponds

to examine how the tax function in (54) responds to a change in a′. This is a non-

trivial task; taxes and wealth must interact in a course such that the solutions to the

problems (33) and (55) coincide. To this end, I will examine the properties of the

marginal tax functions.

Let Te(a
′) and Tu(a

′) denote period t + 1 taxes at the associated employment

states, and at θ = 0. The following proposition reveals that the tax functions are

differentiable

Proposition 8. If V (b, θ) is concave, there exist marginal tax functions given by

T ′
e(a

′) = 1− q

β

u′(c)− µ

u′(ce)
, T ′

u(a
′) = 1− q

β

u′(c)− µ

u′(cu)

Proof. See Appendix C. ¤

The idea behind the proof is to consider an infinitesimal change in a′. The resulting

marginal change in taxes must be such that the government’s first order conditions

hold, incentive compatibility is preserved, the budget balances, and the definition of

the tax functions hold. In addition, the agent’s decentralized first order conditions

must hold:

u′(c)− µ =
β

q
(pu′(ce)(1− T ′

e(a
′)) + (1− p)u′(cu)(1− T ′

u(a
′)))
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The qualitative features of the unemployment insurance program depends on the

sign of these marginal tax functions. When the liquidity constraint is not binding, the

result is straightforward; if β = q, then ce > c > cu and T ′
e < 0 and T ′

u > 0. Thus, for

an unconstrained agent, unemployment benefits are decreasing with wealth. Define c

as c(b, 0). For any b in the binding interval [b, b], define c as c(b, 0). Then from the

first order conditions, µ(b, 0) = u′(c)− u′(c). Thus, for all b ∈ [b, b], the marginal tax

functions are given by

T ′
e(a

′) = 1− q

β

u′(c)
u′(ce)

, T ′
u(a

′) = 1− q

β

u′(c)
u′(cu)

Since ce and cu was optimal when c was chosen, ce > c > cu. Again it follows that

T ′
e < 0 and T ′

u > 0.

Proposition 9. If X(a′, θ) is concave, β = q, and µ = 0, then (i) a ≥ a′, (ii)

Tu(a) > Tu(a
′), and (iii) Te(a) < Te(a

′).

Proof. By Proposition 8 and Lemma 7, 1 > T ′
u(a

′) > 0. Thus for any a1 and a2,

such that a1 > a2, Tu(a1) > Tu(a2). If a′ > a, then 1 > T ′
u(a

′) implies that bu > b,

thus contradicting Lemma 7 and Proposition 6. Thus a > a′, Tu(a) > Tu(a
′), and

Te(a) < Te(a
′). ¤

Thus, when µ = 0, Lemma 7 gives that c > cu. Proposition 9 reveals that a > a′

and that Tu(a) > Tu(a
′).

When µ > 0 and b = b, Proposition 6 reveals that a′(b) = φ and bu(φ) = b.

Thus a = a′ = φ and b = bu = b. By the construction of the tax functions in (54),

unemployment benefits are constant and equal b− φ.

4. Quantitative Analysis

To shed further light on the properties of the optimal unemployment insurance

program, I turn to a calibrated version of the model. The aim of this section is

to answer the following question: Should a liquidity constrained agent be treated

significantly different from an unconstrained agent?

As will be shown, an unconstrained agent with savings equal to three months of

labor income (sufficient to sustain a labor income loss equal to an average unemploy-

ment spell), ought to receive a first-period replacement rate of 1.5%, to be compared

with the 30% received by a liquidity constrained agent with zero liquid wealth. This

result gives support for a asset based means tested unemployment insurance scheme.
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4.1. Calibration. Following the main macroeconomic literature the function u

is chosen to be of the type constant relative risk aversion

u(c) = lim
ρ→σ

c1−ρ

1− ρ

The coefficient of risk-aversion σ is set to 2.9 As in Pavoni (2007) and Pavoni and

Violante (2007), the length of each period is assumed to be one month. The yearly

interest rate is set at 5% and the intertemporal discount factor β is thus 1.05−1/12. In

order for the results to be comparable with the previous (contractual) literature on

unemployment insurance, the hazard rate of unemployment, 1 − γ, is set to zero.10

Employment is thus an absorbing state. The net wage, w, is normalized to 1.

The function governing the disutility of search effort, v, is assumed to have the

following functional form

v(p) = − ln(1− p)

α
− p

α
Note that v is strictly convex on [0, 1] and that v(0) = 0, v′(0) = 0 v(1) = ∞ and

v′(1) = ∞. Several articles on optimal unemployment insurance (e.g Hopenhayn

and Nicolini (1997), Young (2004) and Wang and Williamson (2002)), assume that

p(e) = 1 − exp(−αe) and that the disutility of search equals e. A choice consistent

with the literature would thus be v(p) = − ln(1−p)/α. To ensure interiority, however,

the above simple modification is employed.

In line with previous research on unemployment insurance, the liquidity constraint

φ is set to zero (e.g. Hansen and Imrohoroglu (1992), Wang and Williamson (2002),

Abdulkadiroğlu et al. (2002), and Young (2004)). Borrowing is thus not permitted.

To calibrate the parameter α in the function v, an auxiliary economy is used. The

auxiliary economy is given as the problem in equations (55)-(57), but in which the

government’s policy, T , is exogenously specified. As in Wang and Williamson (2002)

and Young (2004), the fixed unemployment insurance policy delivers unemployment

benefits equal to 50% of labor income for the first six months of unemployment,

and 17% thereafter. Taxes when employed are assumed to be constant and levied

on labor income. The income tax is endogenous as to balance the government’s

budget. The parameter α is then set to match the elasticity of the hazard rate of

9Estimates show that this parameter is genrally within the range [1, 3] (Mehra and Prescott,

1985).
10That is, Shavell and Weiss (1979), Hopenhayn and Nicolini (1997), Pavoni (2007) and Pavoni

and Violante (2007).
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4. QUANTITATIVE ANALYSIS 69

employment with respect to unemployment benefits given in Chetty (2007). Under

this calibration α is set to 0.4 and generates an elasticity equal to −0.46 for liquidity

constrained individuals, and −0.25 for individuals with savings equal to one year of

labor income.11

Table 1 summarizes the baseline parameter calibration.

Table 3.1. Calibration of Parameters

Parameter β σ r 1− γ w α φ

Value 1.04−
1
12 2 5% 0 1 .4 0

4.2. Numerical Results. Figure 3.1 depicts how the level of unemployment

benefits are related to an agent’s asset position. The agent’s wealth is featured on

the horizontal axis. Wealth ranges from zero to the US median labor income to

wealth ratio (which is, on yearly basis, equal to one). The vertical axis displays

the level of unemployment benefits as a fraction of the wage. The figure reveals an
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Figure 3.1. Unemployment benefits and wealth.

illuminating pattern; unemployment benefits for the asset poor ought to be several

orders of magnitude of that of a wealthy agent. For instance, unemployment benefits

paid to an agent with wealth equal to three month labor income (enough to sustain

11The corresponding numbers in Chetty (2007) roughly equal −.7 and +.2. However, since it is

impossible for the current model to generate a positive elasticity, these numbers cannot be targeted

exactly.The numbers generated in this calibration are thus a compromise somewhere in between

Chetty’s (2007) estimates.
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an average unemployment spell) is 5% of that paid to a borrowing constrained agent.

The equivalent figure for an agent with wealth equal to the US median labor income

to wealth ratio (i.e 12) is .6%.

The relationship featured in Figure 3.1 is sensitive to the calibration of the coef-

ficient of relative risk aversion, σ, and the degree of moral hazard, α. For instance,

at σ = 3 and α = .8 (high risk aversion, moderate moral hazard), a borrowing con-

strained agent ought to receive a replacement rate of 50%. At σ = .5 and α = .2

(low risk aversion, severe moral hazard) the corresponding number drops to 7%. The

intuition is not far fetched; a higher degree of risk aversion unequivocally generates a

higher provision of insurance. When moral hazard is moderate, high insurance comes

at a low cost (in terms of distortion to incentives). However, Table 3.2 reveals that

the relationship between unemployment benefits paid at different wealth level conveys

a more robust pattern. Even at a high degree of risk aversion and a modest degree of

moral hazard, unemployment benefits should decrease swiftly with the agent’s wealth

level; at wealth equal to one month of labor income, unemployment benefits ought to

be 40% of the benefits received by a constrained agent with zero wealth.

Table 3.2. Relative Unemployment Benefitsa

Values of Parameters σ and α
Wealth {3, .8} {1.5, .4} {.5, .2}

0 100% 100% 100%
1 40% 27% 20%
2 15% 10% 9%
3 7% 5% 4%

12 3% 1% 0%

aThe ratios are calculated as the unemployment benefits received at the respective
wealth level, divided by benefits paid to a liquidity constrained individual at zero
wealth.

Figure 3.2 corresponds to Proposition 9 and depicts the sequence of consumption

(upper solid line), decumulation of assets (dashed line), and unemployment bene-

fits received along the course of unemployment. Decumulation of assets is defined

as at+1 − at. As in Proposition 9, unemployment benefits are increasing when the

agent is unconstrained. This increasing profile is targeted at crowding out savings

in order to provide incentives to exert search effort. Recall that the government

provides incentives by letting consumption covary positively with employment. A

higher level of savings reduces this correlation and thus aggravates the duration of
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Figure 3.2. The sequence of consumption (upper solid line), decu-

mulation of assets (dashed line), and unemployment benefits along the

duration of unemployment.

unemployment. The net effect is a decreasing sequence of cash-on-hand and, thus, a

decreasing sequence of consumption. When the liquidity constraint binds, the level

of unemployment insurance peaks, and stays constant.

5. Concluding Remarks

This paper has studied a model of optimal redistribution policies in which the

foremost risk in an agent’s life is unemployment. Moral hazard arises as job search

effort is unobservable. Whereas the model permits agents to self insure by means of

a riskless bond, borrowing is exogenously restricted.

Previous studies on unemployment insurance - e.g. Shavell and Weiss (1979),

Hopenhayn and Nicolini (1997), and Pavoni (2007) - assume that whereas each agent

is borrowing constrained, the government operates her own storage technology where

any such restriction is absent. As a consequence, the government saves (and borrows)

in an agent’s name, effectively relieving the agent of any impediment caused by the

liquidity constraint. In contrast, this paper has taken a different position: A liquidity

constraint is here an exogenously imposed presumption that agents are unwilling to

lend resources to agents with savings lower than a pre-specified threshold. Although

the government may function as a financial intermediary, she is not able to fend off

the lending loath imposed by the liquidity constraint.
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72 3. UNEMPLOYMENT INSURANCE FOR THE LIQUIDITY CONSTRAINED

The optimal unemployment insurance scheme reveals two illuminating features:

First, unemployment benefits ought to be constant for liquidity constrained agents.

Since a liquidity constrained agent’s situation (or state) does not change over the

course of unemployment, the optimal program does not embed any duration depen-

dence. Second, in a calibrated version of of the model it was shown that the liquidity

constraint conveys important quantitative implications. A constrained agent ought

to receive benefits payments three times higher than that received by an agent with

wealth equal to one months labor income; twenty times higher than that received by

an agent with wealth equal to three months labor income; and one hundred times

higher compared to an agent with savings equal to twelve months of labor income

(US median labor income to wealth ratio).

The policy implications from the analysis are stark; unemployment benefits should

be asset based and depend negatively on the agent’s asset position. As wealth itself

encodes insurance, the negative relation between wealth and unemployment benefits

is intuitive. However, asset based approaches have commonly been criticized for its

distortive, and negative, effect on savings (e.g. Hubbard et al. (1995)). Although

undesirable per se, this paper has revealed an additional effect of wealth; a higher

level of savings reduces the opportunity cost of being employed and thus increases the

unemployment duration. Together, the net distortive effect of an asset based scheme

appears to be favorable.

The optimal program in this paper displays a continuous, and negative, relation-

ship between assets and unemployment benefits. Such a continuous relationship may

be very costly to implement in practice. Nevertheless, the (very) steep decline in

benefits along the wealth dimension does indicate that an asset based means tested

insurance program may be close to optimal: As with Medicaid, food stamps, and

until recently, Aid to Families with Dependent Children (AFDC), to mention a few

social policies in the United States, unemployment benefits may be paid only if an

agent has assets below some threshold.
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78 APPENDIX

A. Code for Chapter 1.

1 % The neoclassical growth model with irreversible investment

2 % in the setting of Christiano and Fischer (2000), model (1),

3 % solved by the method of endogenous gridpoints using a finite

4 % element method (linear interpolation is default).

5

6 % Parameters: exp(z) is the solow residual, a is the capital share

7 % of output, b is the discount factor, d is the depreciation

8 % rate and g is the coefficient of relative riskaversion.

9 % Z is the exogenous state space with associated transition

10 % matrix, Q.

11

12 %N defines the number of nodes in the endogenous state space.

13

14 N=200; p=0; z=0.23; a=0.3; b=1.03ˆ(−1/4); d=0.02; g=1;

15 Q=[(1+p)/2,(1−p)/2;(1−p)/2,(1+p)/2]; Z=exp([z;−z]);
16

17 n=ones(size(Z')); nn=ones(N,1); d1=0.5;

18 khat=((1−b*(1−d))/(a*b))ˆ(1/(a−1)); kmax=khat*1.9; kmin=khat*0.3;

19 kp=(linspace(kmin,kmax,N))'; kpp=(1−d)*kp*n; mp=0; mup=0*nn*n;

20 m0=(kp./(1−d)).ˆa*Z';
21

22 while d1>1e−8
23 up=(kp.ˆ(a)*Z'+(1−d)*kp*n−max(kpp,(1−d)*kp*n)).ˆ(−g);
24 r=a*kp.ˆ(a−1)*Z'−d;
25 m=(b*(up.*(1+r)−max(mup,0))*Q').ˆ(−1/g)+kp*n;
26 mu=(m0).ˆ(−g)−b*(up.*(1+r)−max(mup,0))*Q';
27 d1=max(max(abs(mp−m)./(1+abs(m))));
28 mp=m;

29 for i=1:length(Z)

30 kpp(:,i)=interp1(m(:,i),kp,Z(i)*kp.ˆa+(1−d)*kp);
31 mup(:,i)=interp1(m(:,i),mu(:,i),Z(i)*kp.ˆa+(1−d)*kp);
32 end

33 end
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B. Proofs of Chapter 2

Lemma 3.

Proof. Equations (12) and (13) are repeated for convenience:

V (b0, θ0) = u(c∗0(b0, θ0))− (1− θ0)v(p∗0(b0, θ0)) + β

∫

Θ1
V (σ∗, b∗(θ1), θ1)λ(b0, θ

1)dθ1 (B1)

b0 = c∗0(b0, θ0)− θ0w + q

∫

Θ1
b∗(θ1)λ(b0, θ

1)dθ1 (B2)

The proof proceeds in three steps: First it will be shown that for any utility maximizing or re-

source minimizing allocation, the Inada-conditions on u(c) implies that if ct(b0, θ
t) = 0, then

ct+s(b0, θ
t+s) = 0, for s ∈ N, almost surely. Second, focusing on the interior case, it will then be

shown that b∗(θ1), as given in equation (B2), is resource minimizing under the value V (σ∗, b∗(θ1), θ1).

Third it will be shown that duality holds; that is if b∗(θ1) is resource minimizing under V (σ∗, b∗(θ1), θ1),

then V (σ∗, b∗(θ1), θ1) is utility maximizing under b∗(θ1) - that is, V (σ∗, b∗(θ1), θ1) = V (b∗(θ1), θ1).

Step 1. For any utility maximizing or resource minimizing allocation, define δ(b0, θ
t) as

δ(b0, θ
t) = u(ct)− v(pt) + β(ptu(c1

t+1) + (1− pt)u(c0
t+1))

The dependency of ct, pt and ct+1, on (b0, θ
t) and (b0, (θt, θt+1)) is here left implicit. Assume that

λ(b0, θ
t) > 0. Consider the following problem

max
x,z,y

{y − q(px + (1− p)z)}

s.t. δ(b0, θ
t) = u(ct − y)− v(pt) + β(ptu(c1

t+1 + x) + (1− pt)u(c0
t+1 + z))

u(c1
t+1 + x)− u(c0

t+1 + z) = u(c1
t+1)− u(c0

t+1)

ct ≥ y, c1
t+1 ≥ −x, c0

t+1 ≥ −z

where the allocation {ct, pt}∞t=0 is incentive feasible. At the optimal allocation, the solution to the

above problem is given by x = y = z = 0. To see why, notice that any deviation of x, y, and z

from zero, fulfilling the above restrictions, is feasible and incentive compatible. Moreover, such a

perturbation frees up period t resources equal to y − q(px + (1 − p)z). These additional resources

may, if properly discounted, be allocated as period zero consumption - or, in a resource minimizing

setting, as less period zero resources - without inflicting with incentive compatibility.

Assume that ct = 0. Then the first order necessary conditions to the above problem with respect

to x, y and z, evaluated at zero, must observe

1
u′(0)

≥ β

q

(
pt

1
u′(c1

t+1)
+ (1− pt)

1
u′(c0

t+1)

)
(B3)

Since u′(0) = ∞, c1
t+1 must also equal zero whenever pt > 0. The same holds for c0

t+1 whenever

(1−pt) > 0. Thus if ct(b0, θ
t) = 0 for any θt with λ(b0, θ

t) > 0, then ct+s(b0, θ
t+s) = 0, λ(b0, θ

t+s)-a.s.
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Step 2. Consider the following resource minimization problem:

b(V, θ̂0) = min
σ

∞∑
t=0

qt

∫

Θt

{ct(V, θ̂t)− θ̂tw}λ(V, θ̂t)dθ̂t (B4)

s.t. V ≤
∞∑

t=0

βt

∫

Θt

{u(ct(V, θ̂t))− (1− θ̂t)v(pt(V, θ̂t))}λ(V, θ̂t)dθ̂t (B5)

and subject to the incentive compatibility constraint. A “hat” on the sequence θt is used to distin-

guish it from the values of θt in the original problem (9)-(11). If the constraint in (B5) is non-binding,

then c0 = 0 and, by Step 1. above, ct(V, θt) = 0 ∀ θt. I will henceforth refer to this solution as the

zero solution. It is important to note that a non-zero solution attains at least as high utility as the

zero solution; at any non-zero solution, the agent could exert the same search effort as at the zero

solution (which is zero), and attain a strictly higher level of utility. Thus, independently of c0 being

interior, constraint (B5) must hold as an equality.

Assume that V in (B5) equals V (σ∗, b∗(θ1), θ1) in (B1). Assume further that θ1 = θ̂0. Could

b(V, θ̂0) in (B4) take on a smaller value than b∗(θ1) in (B2)? If so, V (b(V, θ̂0), θ1) = V (σ∗, b∗(θ1), θ1)

∀ θ1 ∈ Θ, and b(V, θ̂0) < b∗(θ1) for at least one value of θ1. At this alternative allocation, p∗0 is still

incentive compatible and

V (b0, θ0) = u(c∗0(b0, θ
0))− (1− θ0)v(p∗0(b0, θ

0)) + β

∫

Θ1
V (b(V, θ̂0), θ1)λ(b0, θ

1)dθ1

b0 > c∗0(b0, θ
0)− θ0w + q

∫

Θ1
b(V, θ̂0)λ(b0, θ

1)dθ1

Where the last inequality together with monotonicity of V (b0, θ0) implies thus that σ∗ could not

have attained the maximum in (9).

Step 3. In order to complete the proof, it must be shown that V (σ∗, b∗(θ1), θ1) attains the

maximum value under resources b∗(θ1).

Assume that V (b∗(θ1), θ1) > V (σ∗, b∗(θ1), θ1). By Berge’s Maximum Theorem (Aliprantis and

Border, 1999), V (b∗(θ1), θ1) is continuous in b. Since any non-zero solution renders greater utility

than the zero solution, c1(b∗(θ1), θ1) > 0, and there exist a b∗∗(θ1) arbitrarily close to b∗(θ1) such that

b∗(θ1) > b∗∗(θ1) and V (b∗∗(θ1), θ1) > V (σ∗, b∗(θ1), θ1). This contradicts that b∗(θ1) was resource

minimizing for V (σ∗, b∗(θ1), θ1). Thus V (b∗(θ1), θ1) = V (σ∗, b∗(θ1), θ1). ¤

Proposition 4.

Proof. The proof is direct and derives the implied marginal taxes from an infinitesimal change

in assets.

By construction, the equilibrium tax functions satisfies

a′ = p(a′)(a′ − Te(a′)) + (1− p(a))(a′ − Tu(a′))

Thus, if the tax functions are differentiable, the following must hold for the marginal tax

p′(a′)(Tu(a′)− Te(a′)) = pT ′e(a
′) + (1− p)T ′u(a′) (B6)
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From the incentive compatibility constraint we have

v′′(p)p′(a′) = β(V ′
e (a′)(1− T ′e(a

′))− V ′
u(a′)(1− T ′u(a′))) (B7)

Substituting the relationships be = a′−Te(a′) and bu = a′−Tu(a′) into (19) (the government’s first

order condition for p) gives

q(Tu(a′)− Te(a′)) =
µ

λ
v′′(p) (B8)

Where λ and µ are the multipliers on the budget and incentive compatibility constraint, respectively.

Substituting (B8) into (B6)

p′(a′)v′′(p)
µ

λq
= pT ′e(a

′) + (1− p)T ′u(a′) (B9)

Substituting (B7) into (B9)

β(V ′
e (a′)(1− T ′e(a

′))− V ′
u(a′)(1− T ′u(a′)))

µ

λq
= pT ′e(a

′) + (1− p)T ′u(a′) (B10)

In addition, the agent’s decentralized first order condition must hold:

u′(c) =
β

q
(pu′(ce)(1− T ′e(a

′)) + (1− p)u′(cu)(1− T ′u(a′))) (B11)

Using equation (18) and solving equations (B10) and (B11) yields

T ′e(a
′) = 1− u′(cu)

pu′(cu) + (1− p)u′(ce)
, T ′u(a′) = 1− u′(ce)

pu′(cu) + (1− p)u′(ce)
¤
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C. Proofs of Chapter 3

Lemma 6.

Proof. By the Principle of Optimality, the problem in (33)-(36) can be split up as

V (b0, θ0) = max
c0,a1

{u(c0)− θ0v(p0) + X(a1, θ0)} (C1)

s.t. b0 = c0 − θ0w + qa1 (C2)

0 ≥ φ− a1 (C3)

X(a1, θ0) = max
σ(a1)

∞∑
t=1

βt

∫

Θt

{u(ct(a1, θ
t))− (1− θt)v(pt(a1, θ

t))}λ(a1, θ
t)dθt (C4)

s.t. {pt}∞t=0 = argmax{X(a1, θ0)} (C5)

a1 =
∞∑

t=1

qt

∫

Θt

{ct(a1, θ
t)− θtw}λ(a1, θ

t)dθt (C6)

0 ≥ φ−
∞∑

s=1

qs−1

∫

Θt+s

{ct+s(a1, θ
t+s)− θt+sw}λ(a1, θ

t+s)
λ(a1, θt)

dθt+s, for t = 1, 2, . . . (C7)

Under an optimal allocation, equations (C4) and (C6) can be written as

X(a1, θ0) = −v(p∗0(a1, θ0)) + β

∫

Θ1
V (σ∗, b∗(a1, θ1), θ1)λ(a1, θ

1)dθ1 (C8)

a1 = q

∫

Θ1
b∗(a1, θ1)λ(b0, θ

1)dθ1 (C9)

The proof then proceeds in three steps. The first step shows that X(a1, θ0) is strictly increasing

in a1. By exploiting this fact, the second step will then proceed by showing that b∗(a1, θ1) must

be resource minimizing under promised utility V (σ∗, b∗(a1, θ1), θ1). Lastly, the third step then

shows that duality holds: If b∗(a1, θ1) is resource minimizing under utility V (σ∗, b∗(a1, θ1), θ1), then

V (σ∗, b∗(a1, θ1), θ1) must be utility maximizing under resources b∗(a1, θ1).

Step 1. Assume that there is an inflow of resources to the left-hand side of (C6) equal to

ε > 0. For notational convenience, define c1 and c0 as period one consumption in the employed and

unemployed state respectively. Pick an ε1 ≥ 0 and ε0 ≥ 0 such that

u(c1 + ε1)− u(c0 + ε0) = u(c1)− u(c0)

ε1 + ε0 = ε

Since the relative value between employment states are unaltered, p∗0(a1, θ0) is still incentive com-

patible and period zero expected utility has increased by

β(p0(u(c1 + ε1)− u(c1)) + (1− p0)(u(c0 + ε0)− u(c0))) > 0

Where p0 = p∗0(a1, θ0).
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Step 2. Consider the following resource minimization problem:

b(V, θ̂0) = min
σ

∞∑
t=0

qt

∫

Θt

{ct(V, θ̂t)− θ̂tw}λ(V, θ̂t)dθ̂t (C10)

s.t. V ≤
∞∑

t=0

βt

∫

Θt

{u(ct(V, θ̂t))− (1− θ̂t)v(pt(V, θ̂t))}λ(V, θ̂t)dθ̂t (C11)

and subject to the incentive compatibility and liquidity constraint. A “hat” on the sequence θt is

used to distinguish it from the values of θt in the original problem (33)-(36). It is important to

note if constraint (C11) in problem (C10)-(C11) is slack, then c0(V, θ̂0) is interior; if it was not,

since u(0) = −∞, the right-hand side in (C11) would equal minus infinity, and V ≥ −∞. It is

then straightforward to see that constraint (C11) will hold as an equality. If it did not, period zero

consumption could simply be reduced without interfering with neither incentive compatibility nor

the liquidity constraint, reducing the objective function.

Now, consider the scenario in which θ̂0 = θ1 and V = V (σ∗, b∗(a1, θ1), θ1). Could b(V, θ̂0) in

(C10) be smaller than b∗(a1, θ1), for at least one value of θ1? Assume that it is. Define a′1 as

a′1 = p0(a1, θ
0)b(V, 1)+ (1− p0(a1, θ

0))b(V, 0), and note that a1 > a′1, and that a′1 is budget feasible,

incentive compatible and delivers utility V (b0, θ0). a′1 might not, however, respect the time zero

liquidity constraint. Pick an a′′1 such that a1 > a′′1 > a′1. Then, since X(a′1, θ0) is strictly increasing

and continuous (Aliprantis and Border, 1999), X(a′′1 , θ0) > X(a1, θ0), which violates the optimality

of V (b0, θ0). Thus, b∗(a1, θ1) is resource minimizing under promised utility V (σ∗, b∗(a1, θ1), θ1).

Step 3. In order to complete the proof, it must be shown that V (σ∗, b∗(a1, θ1), θ1) attains the

maximum value under resources b∗(a1, θ1).

Assume that V (b∗(a1, θ1), θ1) > V (σ∗, b∗(a1, θ1), θ1). By Berge’s Maximum Theorem (Aliprantis

and Border, 1999), V (b∗(a1, θ1), θ1) is continuous in b. By the same argument as above, c1(b∗(a1, θ1), θ1) >

0 since u(0) = −∞. Thus there exist a b∗∗(a1, θ1) arbitrarily close to b∗(a1, θ1) such that b∗(a1, θ1) >

b∗∗(a1, θ1) and V (b∗∗(a1, θ1), θ1) > V (σ∗, b∗(a1, θ1), θ1). This contradicts that b∗(a1, θ1) was resource

minimizing for V (σ∗, b∗(a1, θ1), θ1). Thus V (b∗(a1, θ1), θ1) = V (σ∗, b∗(a1, θ1), θ1). ¤

Proposition 8.

Proof. The proof is direct and derives the implied marginal taxes from an infinitesimal change

in assets.

By construction, the equilibrium tax functions satisfies

a′ = p(a′)(a′ − Te(a′)) + (1− p(a))(a′ − Tu(a′))

Thus, if the tax functions are differentiable, the following must hold for the marginal tax

p′(a′)(Tu(a′)− Te(a′)) = pT ′e(a
′) + (1− p)T ′u(a′) (C12)

From the incentive compatibility constraint we have

v′′(p)p′(a′) = β(V ′
e (a′)(1− T ′e(a

′))− V ′
u(a′)(1− T ′u(a′))) (C13)
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Substituting the relationships be = a′−Te(a′) and bu = a′−Tu(a′) into (52) (the government’s first

order condition for p) gives

q(Tu(a′)− Te(a′)) = ζv′′(p) (C14)

Where ζ is the ratio of the multipliers on the budget and incentive compatibility constraint, respec-

tively. Elementary algebra shows that ζ = p(1 − p)(1/u′(cu) − 1/u′(ce)). Substituting (C14) into

(C12)

p′(a′)v′′(p)ζ = pT ′e(a
′) + (1− p)T ′u(a′) (C15)

Substituting (C13) into (C15)

β

q
(V ′

e (a′)(1− T ′e(a
′))− V ′

u(a′)(1− T ′u(a′)))ζ = pT ′e(a
′) + (1− p)T ′u(a′) (C16)

In addition, the agent’s decentralized first order condition must hold:

u′(c)− µ =
β

q
(pu′(ce)(1− T ′e(a

′)) + (1− p)u′(cu)(1− T ′u(a′))) (C17)

Using equation (51) and solving equations (C16) and (C17) yields

T ′e(a
′) = 1− q

β

u′(c)− µ

u′(ce)
, T ′u(a′) = 1− q

β

u′(c)− µ

u′(cu)
¤
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