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Introduction

This thesis deals with different topics in time series econometrics that belong, broadly speak-
ing, to the area of macroeconometrics. That is, topics and methods are investigated which
are of interest to applied researchers that want to analyze the behavior of aggregate mea-
surements of the economy by means of time series data. For instance, macroeconomic time
series often display specific nonlinear characteristics. Chapter 1 applies one of the recently
proposed techniques to capture nonlinearity to U.S. interest rate data. Another important
area of macroeconomic research is the identification of structural shocks that have an eco-
nomically meaningful interpretation, in contrast to prediction errors. Chapter 2 compares
some alternative structural estimators in the context of a recent discussion on the reliability
of standard structural estimators. Finally, the third chapter compares different estimators of
so-called vector autoregressive moving-average (VARMA) models that are a potential alterna-
tive to vector autoregressive models which are used predominantly in applied macroeconomic
research. In the following, I will briefly describe each chapter in more detail.

Chapter 1 reviews some simple extensions of the threshold cointegration models forwarded
by Balke and Fomby (1997). These are models designed for non-stationary series with non-
linear dynamics that are tight together by a long-run equilibrium relationship. I apply one
of these models to the U.S. interest rate spread and show that there is evidence in favor of
a threshold model of this kind. The model suggests that the spread is probably not mean-
reverting in a large band around the equilibrium. However, the model is not found to provide
better forecasts relative to a linear benchmark vector error-correction model.

In chapter 2 Karel Mertens and I compare different structural estimators in the context
of a recent discussion on the reliability of long-run identified structural vector autoregressions
(SVARs). Several authors have suggested that SVARs fail partly because they are finite-
order approximations to infinite-order processes. In the second chapter we estimate VARMA
and state space models, which are not misspecified, using simulated data and compare true
with estimated impulse responses of hours worked to a technology shock. We find little
gain from using VARMA models. However, state space models do outperform SVARs. In
particular, subspace methods consistently yield lower mean squared errors, although even
these estimates remain too imprecise for reliable inference. Our findings indicate that long-

run identified SVARs perform weakly not because of the finite-order approximation. Instead,
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we find that the simulated processes used in the previous studies are nearly violating the most
basic assumptions on which long-run identification schemes are based.

Chapter 3 compares different estimation methods for VARMA models. Classical Gaussian
maximum likelihood estimation is plagued with various numerical problems and has been
considered difficult by many applied researchers. These disadvantages could have led to the
dominant use of vector autoregressive (VAR) models in macroeconomic research. Therefore,
several other, simpler estimation methods have been proposed in the literature. In chapter 3
these methods are compared by means of a Monte Carlo study. Different evaluation criteria
are used to judge the relative performances of the algorithms. The obtained results suggest
that the algorithm of Hannan and Kavalieris (1984a) is the only algorithm that reliably
outperforms the other algorithms and the benchmark VARs. However, the procedure is
technically not very reliable and therefore would have to be improved in order to make it an

alternative tool for applied researchers.
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Chapter 1

Threshold Cointegration and the
Interest Rate Spread

1.1 Introduction

It is widely believed that many economic variables behave and are related in a nonlinear
fashion. So far econometric theory has been primarily concerned with linear models that are
unable to generate some apparent, nonlinear features of the data such as asymmetry, limit
cycles or amplitude dependent frequency. Nonlinear models have only recently received much
attention in the time series literature. Important examples in the econometric literature are
Markov-Switching models (Goldfeld and Quandt, 1973; Hamilton, 1989), threshold autore-
gressive models (Tong, 1978; Chan and Tong, 1986), smooth transition models (Bacon and
Watts, 1971; Terasvirta and Anderson, 1992) and artificial neural networks (see, e.g., Kuan
and White, 1994).

In particular, threshold models have been first proposed by Tong (1978) as a simple but
potentially powerful alternative to linear econometric models. In threshold autoregressive
(TAR) models the relation between the dependent variable and its lags depends on whether
another variable, a so-called threshold variable, falls in a certain interval or regime. The
limits of these intervals are called thresholds. Conditional on a certain value of the threshold
variable, the relation between the dependent variable and its lags is linear. Therefore, the
linear autoregressive model is a special case of a threshold autoregressive model with only one
regime. That is, the threshold model nests the standard autoregressive model. The property
that the threshold model is linear conditional on the threshold variable makes is analytically
more tractable than comparable models that do not share this property, in general. Another
advantage is that testing linearity is straightforward. Furthermore, even though the model is
not overly complicated, it is quite flexible in that it allows to approximate different forms of
nonlinearity. The asymptotic theory for the estimators of threshold models has long lagged
behind until recently (see, e.g., Hansen, 1999, 2000). Still today the properties of these models

7
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8 CHAPTER 1. THRESHOLD COINTEGRATION

such as stationarity, existence of moment etc. are not fully understood.

The extension to multivariate models is straightforward. For an account on threshold
vector autoregressive models see the paper of Tsay (1998). Threshold cointegration models
have been proposed by Balke and Fomby (1997) to model jointly non-stationarity and nonlin-
earity. These models have been found useful for modelling monetary policy variables (Baum
and Karasulu, 1998), testing the purchasing power parity (Obstfeld and Taylor, 1997; Tay-
lor, 2001; Lo and Zivot, 2001) and modelling nonlinear mean reversion in the term structure
(Seo, 2003). Recently, Hansen and Seo (2002) proposed a method to implement maximum-
likelihood estimation of the threshold cointegration model in the bivariate case and developed
a test for the presence of a threshold effect. However, there are several open questions for
future research related to the maximum likelihood estimator of threshold cointegrated sys-
tems. For instance, one would like to allow for models with multiple cointegrating vectors and
the asymptotic distribution theory for all the estimated parameters, including the threshold
estimates, has yet to be developed. Another fundamental question is how to restrict the
parameters of a threshold cointegration model such that certain deterministic properties of
the data such as trends or seasonality are captured properly in these models.

This paper is a brief review of some simple generalizations of the threshold cointegration
models proposed by Balke and Fomby (1997) and I discuss how one rules out deterministic
trends in these very special cases. I then apply one of these models to the U.S. term struc-
ture and review the relevant tools for the specification and estimation of these models while
analyzing the series. The application investigates the validity of the expectation hypothesis
which is interesting to practitioners and economists as well in that the implied cointegration
relation might provide better forecasts and gives insight in the efficiency of financial markets.
I find that there is evidence for threshold nonlinearity though the proposed model does not
yield superior forecasts relative to the linear VECM.

The remaining part of the paper is organized as follows. First, I review the particular
threshold models and discuss how these models can be interpreted and estimated. Second,
I apply one of them to a bivariate series of U.S. interest rates, provide evidence for thresh-
old nonlinearity and discuss the essential specification tools and, third, I comment on the

estimation results as well as possible theoretical extensions and conclude.

1.2 Econometric Methods

In this section I review some generalizations of the models proposed by Balke and Fomby
(1997) and discuss how a linear trend is ruled out in these models. Careful handling of the
deterministic terms is important in modelling non-stationary time series. Estimation methods
that impose restrictions on the intercepts and trends such that the actual model replicates

main features of the data is likely to improve the fit of the model and to increase estimation
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1.2. ECONOMETRIC METHODS 9

efficiency. In threshold models, however, it is far from obvious how to deal with these issues.

For illustration, a simple, univariate threshold model with no intercept like

e = 09yt—1+¢et, y-1>0
-
02y;1+e, y-1<0

with g; ~ iid N(0,0?) generates a series with nonzero mean. The reason is that though the
shocks are symmetrically distributed around zero they are much more persistent in one direc-
tion than in the other. This simple process exemplifies the difficulties that are encountered
when modelling nonlinear integrated series and that, in particular, restrictions on the inter-
cept in threshold cointegrated systems are not easily implemented. Therefore, I consider only
threshold cointegrated systems in which it is very easy to restrict the intercept term properly.
Precisely, I consider the following three-regime model for a bivariate series v = (y1t, yor)

with p lags in differences and one cointegrating relation given by
Yy = M + T,

where p denotes a constant (2 x 1) vector and x; is a non-stationary process that will be
defined below. I require for my purpose that E(Az;) = 0 such that E(Ay;) = 0 and thus
the observed series does not display a deterministic downward or upward movement. This is
achieved by considering a symmetric but nonlinear model in first differences. Precisely, the

stochastic part, x;, has a threshold vector error correction (TVECM) representation as

Axy = a@pBa  +TOAX g 4wy, |Bai—a| >y
t aWpr +TWAX, | +ug, || <7,

where a), j = 1,2, denotes (2x 1) constant vectors and the threshold is denoted by ~, v > 0.
The (2 x 2p) parameter matrices are T'V) = [ng), e ,FZ()J)] and AX;_1 (2p x 1) is given by

Ax_q

ACCt_p

for some integer p > 0. The vector u; is assumed to be a independently and normally dis-
tributed random sequence, u; ~ iid N (02, %), with non-singular covariance matrix E[uzu;] =
>.. Note that the model is written as a two-regime model.

Denoting k = B'u, p* = (B, —k) and yf = (y;, 1)’, one can write the vector error

correction model for y; as

(2) x/, x (2) x/ %
Ayt _ { o ﬂ ytfl +F A}/;f—l +Ut, ’ﬂ yt71| > Y (11)

aWplys | + TOAY, 1 4w, |87y ] <.
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10 CHAPTER 1. THRESHOLD COINTEGRATION

This model includes the classical EQ - TAR model of Balke and Fomby (1997) when p = 0.
In this model, the error correction term converges towards the equilibrium relationship itself
given by 3'y;_1 — k. The speed of adjustment, however, is allowed to depend on the magnitude
of the equilibrium deviation. This effect may be explained by the presence of transaction or
information costs that prevent agents to adjust immediately to equilibrium. In general, this
model may allow us to evaluate the “strength” of a postulated equilibrium relationship. A

useful restricted version of this model could be

Agy = 4 OOF YA A TAY e e, 87| >
oD ys |+ TAY 1+, By ] < .

This model allows only the loading coefficients to switch while restricting the parameters on

the lagged differences to be the same across regimes.

One can also think of an extension of the BAND-TAR model proposed by Balke and
Fomby (1997). The process z; takes then the form

(B —7) +TOAX, 1 +up, i1 >
Az =< oWz +TWAX, 1+ uy, —y < Blr1 <y
a? (Bxi—1+7) + FOAX, |+, a1 < —r.

Using the same notation as above, this specification implies the following model for y;

a@ (B yr | — )+ TOAY, g+, B yf >
Aye =13 V(7Y ) +TOAY, oy +u, =y <87y, <y (1.2)
a@ (B yr |+ ) +TOAY, g 4wy, B yf < —.

In this model, the error correction term converges towards a band [—7,~] rather than to the
equilibrium relation itself, provided that the cointegration residual is large in absolute value.
This specification might be a sensible description of the data if, for instance, transaction costs

are specified as a proportional loss of the value gained by adjusting to the equilibrium.

The maximum likelihood estimation of the models 1.1 and 1.2 is implemented as proposed
by Hansen and Seo (2002). That is, one first concentrates out all parameters except the
cointegrating vector and the threshold and then searches for the maximum of the likelihood
function using a grid search over values for § and 7. However, the dimension of the grid-
search increases by one because (standardizing the first element of 3, $; = 1) one has to
search over values for (9, x and . This is computationally more demanding but still feasible.

The procedure is explained in more detail in the appendix.
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1.3. APPLICATION TO THE U.S. INTEREST RATE SPREAD 11

1.3 Application to the U.S. interest rate spread

In economic theory short-term and long-term interest rates are supposed to be linked via the
expectation hypothesis that asserts that long-term interest rates roughly represent an average
of current and expected short-term interest rates over the life of the long-term bond. Since
agents can re-sample a long-term bond by several bonds of a shorter maturity the expected
returns of both strategies must be equal up to a risk premium in equilibrium. Denote by 74
and Rgn) the short-term interest rate and the long-term interest rate, respectively. Then the
following relation should hold approximately between a one-period short and a n-period long
rate

R,En) = Z Ei(rii-1) + ¢
i=1

SERS

for n = 1,2,... and ¢ denotes the liquidity premium. According to Campbell and Shiller
(1987) this economic relation implies a cointegrating relation between the two rates in econo-
metric terms - provided that future expected changes in the short rate are stationary. In
contrast, the segmented market theory states that bond markets for different maturities are
separated since agents have preferences over different maturities. Thus, according to this
theory, bonds with different maturities cannot be seen as substitutes and consequently the
interest rate spread should not display a mean reverting behavior. The term structure has
been analyzed by various authors using linear cointegration analysis and nonlinear techniques
- with different outcomes. In particular, Seo (2003) fits an unrestricted three-regime TVECM
arguing that transaction and information costs may imply a non-linear mean reversion in the
spread. He finds that the spread is persistent within a non-symmetric band but returns to the
equilibrium relation when the spread exceeds the thresholds. I evaluate here the performance
of the restricted models 1.1 and 1.2.

The three-month treasury bill (TB3M) and the ten-year constant maturity rate (TN10Y)
are used as the short-term interest rate and long-term interest rate, respectively. The monthly
data is taken from the Federal Reserve data base and comprises the period 1960:1 to 2004:10.
The series are plotted in figure 1.1. The series seem to be non-stationary and display persistent
behavior which is confirmed by a visual inspection of the autocorrelations. However, the series
show no deterministic upward or downward pattern. Thus, it may indeed be reasonable to
exclude a time trend in the following VECM analysis. Furthermore, the impression is that
the series may very well cointegrate but one observes that both series drift apart for long
periods without any tendency to return to some stable relation.

Linear unit-root tests loose power when the alternative is a nonlinear, stationary process.
However, as shown by Balke and Fomby (1997) they still work reasonably well in the case
of threshold cointegration. Therefore, the results of standard unit-root tests convey some
information. The results are given in table 1.1 for the ADF and the KPSS test for level
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12 CHAPTER 1. THRESHOLD COINTEGRATION

18

o o o o b

1960.11 1966.09 1972.07 1978.05 1984.03 1990.01 1995.11 2001.09

Figure 1.1: Short and long-term interest rates

stationarity (Fuller, 1976; Dickey and Fuller, 1979; Kwiatkowski, Phillips, Schmidt and Shin,
1992). For TB3M the Schwarz criterion suggests a lag length of 13. I also provide the results
for an autoregressive model with 6 lags for robustness. For TN10Y the Schwarz criterion
and the Hannan-Quinn criterion recommend lag lengths 6 and 2, respectively. The results
for both lag lengths are given in the table. For both series, the ADF test cannot reject the
null of a unit-root at a 10% level for different lag lengths. For the corresponding differenced
series, however, the ADF test rejects the null of a unit root always at the 1 % level. For the
KPSS test, Corradi, Swanson and White (2000) have shown that this test is still applicable for
many nonlinear specifications of the DGP, including some threshold autoregressive processes.
I report the test statistic for lags of 6 and 18 '. The KPSS test confirms the results of the
ADF test. The differenced series, however, are stationary according to both tests. Based on

these linear tests one may therefore conclude that both series are I(1).

To confirm these results I test the null of a unit-root also within the class of some common
threshold models using the approach by Caner and Hansen (2001). They consider two-regime
TAR models with different threshold variables and suggest a bootstrap method to calculate

!The lag length is chosen according to I, = ¢(T//100)"/* with ¢ = 4,12 as proposed by Kwiatkowski et al.
(1992).
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1.3. APPLICATION TO THE U.S. INTEREST RATE SPREAD 13

the p-values for different statistics. The framework is the following univariate TAR model

e
Ayt iv Z-12>7

Ay = {pzyt 1+,th +Z 1

P1Yt 1+Mt +Z

N/_\SA

Ayt i Z—1 <7,

where the threshold variable, z;_1, is assumed be a stationary random variable under the
null as well as under the alternative hypothesis. They assume |Za§1)| <1, ]Za£2)| <1
such that the process Ay; is stationary and ergodic. Note that by this assumption a non-
rejection of the unit-root hypothesis implies that the series are I(1). They evaluate tests
for Ho : p1 = p2 = 0 versus Hy : p1 # 0 or po # 0 (R2t), Ha : p1 < 0 or po < 0 (RI1t)
and provide the negative t-ratios (¢1, ¢2) in order to test for Hs : p1 < 0, Hy : p2 < 0.
The threshold variable is allowed to be either a long difference in w;, 2t 1 = ¥—1 — Ye—1—d,
(Id) or a lagged change, z;—1 = y¢—q — Yt—a—1, (lc) where d denotes the delay parameter. The
autoregressive lags were chosen according to the linear information criteria as discussed above
for the ADF statistic. The delay that minimized the residual sum of squares was chosen for
the threshold variable (Caner and Hansen, 2001). The p-values obtained by their bootstrap
methodology are given in table 1.2 for different specifications and for the various alternative
hypothesis. The asymptotic p-values (not reported) are in general more conservative. The
null hypothesis cannot be rejected in most cases at the 5 % level against any of the different
alternative hypothesis, aside from one case (row 9). The overall impression based on these

nonlinear statistics is therefore that both series are indeed I(1).2

The same limitations for the standard unit-root tests also apply to the linear cointegration
tests when the true processes are nonlinear. Though they remain useful as well (Balke and
Fomby, 1997). The results are given in table 1.3 for the Johansen and the Saikkonen and
Liitkepohl test (Johansen, 1995; Saikkonen and Liitkepohl, 2000a,b). The lag length has been
chosen according to the Schwarz criterion that recommends a lag length of 3 in levels and
only a constant is included. We also tabulate the results for 6 levels for robustness. The
results in table 1.3 are very uniform: The Johansen test and the Saikkonen and Liitkepohl

test indicate clearly that the series are cointegrated with rank one.

The Schwarz criterion recommends a lag length of three for a linear VAR. After fitting
the linear VECM, I test the null of linearity against nonlinearity using the test of Tsay
(1998). Tsay (1998) tests for nonlinearity in the framework of a VAR. Although the test
was originally constructed to test linearity against threshold nonlinearity it is essentially non-
parametric in that it tests linearity against a class of nonlinear models. It makes use of an
“arranged autoregression”, that is, the data is ordered according to the threshold variable,
preserving the dynamic relation between y; and its lags. Then the predictive residuals from

a standard OLS regression are computed recursively starting from some initial observation.

2Furthermore, Caner and Hansen (2001) also develop a Wald test for linearity versus threshold non-linearity.
The calculated bootstrap test statistics all reject the linear model strongly in favor of the threshold models.
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14 CHAPTER 1. THRESHOLD COINTEGRATION

The test makes use of the simple idea that under the null hypothesis of linearity the predictive
residuals should approach white noise and consequently be uncorrelated with the threshold
variable. On the other hand, if y; follows a threshold autoregression than the residuals will
be correlated with the threshold variable. For the test of Tsay (1998) the threshold variable
is taken as given. In this case, however, the threshold variable, the error correction term, is
unknown and thus has to be estimated under the null of linearity. However, it is not clear to
what extent the test is still valid when the threshold variable is estimated. The test rejects
linearity clearly at the 1% level with a test statistic of 68.86. This result has to be interpreted
in favor of some general nonlinear alternative. In sum, there is evidence favoring (threshold)
nonlinearity.

Also for the TVECMs 1.1 and 1.2 I use a lag length of three in levels. Since a distribution
theory for the case of an unknown cointegrating vector has yet to be developed, I select
the model comparing the AIC criterion which yields a minimal value for the model given
in (1.1). The resulting error correction term and the residuals for the fitted TVECM are
plotted in figure 1.2. The corresponding estimated coefficients are given in table 1.4, where
the order of the variables in the model is y; = (TB3M;, TN10Y;)". The standard deviations
of the parameters are given in parenthesis. However, since there is no distribution theory
for an unknown cointegration vector, one has to interpret them with some caution although
results for univariate TAR processes lead to the suspicion that the distribution converges to a
multivariate normal distribution, as if 3 and v were known. With regard to the cointegrating
vector, one observes that the coefficient on the long-term interest rate is remarkably close to -1,
while one may interpret the constant as a mean risk premium of about 1.5 percentage points.
The estimated threshold is noticeably high at 1.9. This result implies a rather large band
around the equilibrium in which the two series drift apart freely. The estimated coefficients
are consistent with an adjustment cost interpretation. As long as the error correction term
is in the estimated band the loading coefficients are relatively small compared to those in
the outer regime and insignificant at conventional levels (if the above mentioned conjecture
about the asymptotic distribution is right). In sum, this would mean that the theoretical
term structure relation does not help very much in predicting interest rates unless the spread
is very high in absolute terms.

I compare the forecast performance of the linear VECM and the TVECM 1.1 by computing
one-step-ahead predictions and estimate the root mean square error (RMSE), the mean and
median absolute error (MAE and MEAE) for the short-term interest rate. This is done by
estimating both models recursively and comparing the resulting forecast with the true value.
I compute the forecasts for the last 150 observations in the sample. Table 1.5 shows the point
estimates of the measures for the TVECM model 1.1 relative to the ones obtained from the
linear VECM. The picture is at best mixed in that the predictions from the TVECM are

worse in terms of the first two measures but better in terms of the last measure.
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1.3. APPLICATION TO THE U.S. INTEREST RATE SPREAD 15

Figure 1.2: Data, cointegrating term, residuals

The resulting residuals from the TVECM give a slightly better impression in that they are
less skewed and have a lower kurtosis than the residuals obtained from a linear VECM (not
shown). Furthermore, the number of outliers is reduced. However, the residuals do not look
very well behaved. We still lack specification tests for threshold cointegrated models, thus we
are not able to present some reliable diagnostics such as an LM test for autocorrelation or
a test for structural stability. The latter would be particularly useful in order to distinguish
nonlinearity and structural breaks and would allow for a full model comparison. Though when
applying linear checks as provisional tools we find that, e.g., the ARCH-LM test indicates
that there are ARCH effects present while the Portmanteau test indicates that there is some
autocorrelation left in the residuals. Another nonlinear model might actually be a better
description of the underlying DGP of the investigated series. In particular, it seems reasonable

to model also the dependence in the conditional variance.
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16 CHAPTER 1. THRESHOLD COINTEGRATION

1.4 Conclusion

In this note I reviewed symmetric threshold models that are extensions of the BAND-TAR
and EQ-TAR models of Balke and Fomby (1997). These models allow to control for the
deterministic components in the data and are applied to a bivariate U.S. interest rate series
to study the dynamics towards the term structure implied by the expectation hypothesis. I
also review the relevant specification tools for threshold models.

The employed test for linearity provides evidence in favor of the threshold models. The
fitted model would confirm the view that in a band around the equilibrium relation there is
little mean reversion in the spread. Only when deviations from the equilibrium become large
one observes that the interest rates are attracted towards the cointegration relationship.

There are many open questions related to the specification and estimation of threshold
cointegrated systems. The asymptotic theory for the maximum likelihood estimates in the
threshold cointegration model has yet to be developed and extended to cover more general
processes than the models considered in this note. The provision of valid specification and
model checking tools would be very useful in order to appreciate the potential merits of
threshold models better. It would also be useful to find ways to restrict the intercepts and
trends in the framework of more general threshold cointegration models. These restrictions
are likely to be quite complicated and it is not obvious how to impose them. These topics,

however, are left for future research.
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Appendix

1.A Maximum Likelihood Estimation of

TVECMs

As mentioned above the used implementation of maximum likelihood estimation was originally

proposed by Hansen and Seo (2002). I exemplify their methodology using the model in (1.1):
Aye = di(aW By + TWAY, ) + doy (0P yr_ 1 + TPAY 1) + wy,

where di; = 1 By 1<) and doy = 1 (1B yr_,|>) are indicator functions. To simplify notation
let us write A’ = (@) :TW) and Z;_1 = (8*'y | : AY/). Assuming that the errors u; are

7id normally distributed the joint log-likelihood can be formulated as
27T T 1 &
ET(A]J A27 27 5*7 ’Y) = _7 10g(27T) - 5 log |E’ - 5 ;U;Z_luh

with
u(Ar, A9, 3, 8%, v) = Ay — A\ Zy_1dyy — ASZ_1dy.

The algorithm can be described in four steps:

1. Obtain an initial linear estimate of the cointegrating vector, 3y, and the corresponding

error correction term Zgp; = B(’)yt. Normalize the cointegrating vector such that ﬁg =
(1 . 5072 . 1%0)/.

2. Set up an evenly spaced grid on an interval [3r,y] centered around @072, a grid on
[kL, k] around Ao and another grid on the empirical support of 2o, [y, vv], subject

to the constraint that a minimum fraction of observations is in each regime for all
v € [ve.wl
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18 CHAPTER 1. THRESHOLD COINTEGRATION

3. Compute for each triple (52,k,7) € [Or,Bu] X [kL, kU] X [vL,y0] the value of the
log-likelihood function by computing the conditional maximum likelihood estimates
Al(ﬂg, Ky7), /12(52, Ky ), f)(ﬁg, k,7y). These are just the usual LS estimates yielding the

concentrated likelihood

T2 T

T ~
Lr(83,5,7) = — 5 og(2m) = - — £ 108 [S(53,5,7)] (13)

4. The maximum likelihood estimate (32, #,4) is the triple (82, #,~) that maximizes (1.3)

and the estimates for the remaining parameters are A; (ﬁg, R, 9), Ag(,@’g, Ry9), i(ﬁg, Ry5).

1.B Tables
Table 1.1: Linear Unit-Root Tests

Series Lags Det. ADF KPSS

TB3M; 6 C -1.65 1.23%%* /(.49%*
13 ¢ -2.31

ATB3M; 5 - -12.14%** 0.09/0.09
12 - -5.QTHH*

TN10Y; 2 C -1.46 1.66%** /0.64**
6 ¢ -1.59

ATN10Y; 1 - S17. 1Tk 0.21/0.20
5 - -9.49%%*

Linear unit-root tests for the levels and first differences of the short-term and long-term interest rates (TB3M and
TN10Y). The number of lags refers to the ADF test. Det. indicates the deterministic terms included, where ¢ means
that a constant is included. The notation */** /*** indicates rejection of Ho at the 10/5/1% level.

Table 1.2: Nonlinear Unit-Root Tests
p d z-1 R2T RI1T tl t2
TB3M; 6 2 1 0.20 0.21 0.08 0.94

TB3M, 13 7 I1d 0.19 0.17 0.52 0.10
T™B3M; 6 6 Ilc 087 0.8 0.87 048
TB3M; 13 6 1lc  0.66 094 0.67 0.99
TN10Y, 2 2 I1d 036 0.52 097 0.25
TN10Y, 6 5 1d 034 071 033 0.99
TN10Y; 2 2 1lec 0.09 0.07 0.03 0.79

TN10Y; 6 2 lc 0.89 0.88 0.52 0.89

Calculated bootstrap p-values for Ho : p1 = p2 = 0 versus different alternative hypothesis (see text). p and d denote
the used lag length and the delay of the threshold variable, respectively, and lc and ld indicate whether the threshold
variable is a lagged changed or a long difference of the dependent variable.
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Table 1.3: Cointegration Tests

No. of lags Null Test
Test (levels) hypothesis value p-value
Johansen 3 r=20 24.33 0.01
r=1 2.86 0.61
6 r=20 24.53 0.01
r=1 4.08 0.41
S& L 3 r=20 17.15 0.01
r=1 1.66 0.23
6 r=0 17.52 0.01
r=1 2.18 0.16

Johansen and Saikkonen and Liiktepohl (S & L) cointegration tests for different null hypotheses about the
cointegrating rank, r. Deterministic terms: constant.

Table 1.4: Estimation results
g = (1, —0.99, 1.53)
4 =1.89

&) Pl fng)

outer regime | -0.103 | -0.110 1.524 | 0.211 -0.902
(0.026) | (0.085)  (0.164) | (0.087)  (0.177)
0.032 | -0.212 0.810 | 0.218 -0.559
(0.017) | (0.056)  (0.110) | (0.058)  (0.118)
inner regime | 0.015 | 0.530 0.041 | -0.250 -0.008
(0.017) | (0.061)  (0.083) | (0.060)  (0.084)
0.014 | 0.074 0.297 | -0.051 -0.190
(0.012) | (0.040)  (0.056) | (0.040)  (0.056)

Estimated coefficient matrices for model 1.1 dependent on the regime. The numbers in parenthesis are standard errors
of the corresponding single coefficients above.

Table 1.5: Relative Forecasting Performance
RMSE MAE MEAE
TVECM /VECM  1.23 1.10 0.91

Root mean square error (RMSE), mean absolute and median absolute error (MAE and MEAE) for the predictions of
TB3M; obtained from model 1.1 relative to the linear benchmark VECM.
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Chapter 2

Business Cycle Analysis and
VARMA Models

Jointly written with Karel Mertens

2.1 Introduction

Structural vector autoregressions (SVARs) are a widely used tool in empirical macroeco-
nomics, particularly for the evaluation of dynamic stochastic general equilibrium (DSGE)
models.! The results from SVARs are often viewed as stylized facts that economic models
should replicate. However, there is some debate whether SVARs can in practice discriminate
between competing DSGE models and whether their sampling properties are good enough
to justify their popularity in applied macroeconomics. In response to a seminal paper by
Gali (1999), the discussion has focused on the impact of technology shocks on hours worked,
identified using restrictions on the long-run impact matrix of the structural errors. Chari,
Kehoe and McGrattan (2005) and Christiano, Eichenbaum and Vigfusson (2006) investigate
the properties of the estimators based on SVARs by simulating an artificial data generating
process (DGP) derived from a prototype real business cycle (RBC) model and by comparing
true with estimated impulse responses.

According to Chari et al. (2005), long-run identified SVARs fail dramatically for both a
level and difference specification of hours worked. Even with a correct specification of the
integration properties of the series, the SVAR overestimates in most cases the impact of
technology on labor and the estimates display high variability. However, Christiano et al.
(2006) argue that the parametrization chosen by Chari et al. (2005) is not very realistic.
With their preferred parametrization, Christiano et al. (2006) find that both long-run and

short-run identification schemes display only small biases and argue that, on average, the

'"Examples in the literature are, among many others, Blanchard and Quah (1989), as well as King, Plosser,
Stock and Watson (1991), Christiano and Eichenbaum (1992) and Gali (1999).
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24 CHAPTER 2. BUSINESS CYCLE ANALYSIS AND VARMA MODELS

confidence intervals produced by SVARs correctly reflect the degree of sampling uncertainty.?
Nevertheless, they also find that the estimates obtained via a long-run identification scheme
are very imprecise. These results have been further confirmed by Erceg, Guerrieri and Gust
(2005). In the end, with long-run restrictions, it is often very difficult to even make a correct
inference about the sign of the structural impulse responses. The question is therefore if
one should use this type of identification scheme at all. However, long-run identification is
attractive from a theoretical point of view, since it requires much weaker assumptions than

short-run identification and is in any case a useful additional tool for model evaluation.

The failure of finite-order SVARs is sometimes attributed to the fact that they are only
approximations to infinite-order VAR processes or to the possibility that there does not exist
a VAR representation at all. For example, Cooley and Dwyer (1998) give an example of an
economic model that implies a vector autoregressive moving-average (VARMA) representa-
tion of the data series and state: “While VARMA models involve additional estimation and
identification issues, these complications do not justify systematically ignoring these moving
average components, as in the SVAR approach”. As further shown by Fernandez-Villaverde,
Rubio-Ramirez and Sargent (2005), DSGE models generally imply a state space system that
has a VARMA and eventually an infinite VAR representation. Ferndndez-Villaverde et al.
(2005) propose the inclusion of moving-average terms if the DSGE model at hand does not
permit an infinite VAR representation. Christiano et al. (2006) state that “Given our data
generating processes, the true VAR of the data has infinite lags. However, the econometrician
can only use a finite number of lags in the estimation procedure. The resulting specification
error is the reason why in some of our examples the sum of VAR coefficients is difficult to

estimate accurately” .

This paper explores the possible advantages of structural VARMA and state space models
that capture the full structure of the time series representation implied by DSGE models, while
imposing minimal theoretical assumptions. We investigate whether estimators based on these
alternative models can outperform SVARs in finite samples.® This question is important for
several reasons. First, it is useful to find out to what extent the poor performance of SVARs
in these simulation studies is due to the omission of moving-average components. Second,
whether estimators based on alternative representations of the same DGP have good sampling
properties is interesting in itself. Employing these alternatives enables researchers to quantify

the robustness of their results by comparing different estimates.

In order to assess whether the inclusion of a moving-average component leads to impor-

2In addition, Christiano et al. (2006) find that short-run identification schemes work much better compared

to identification via long-run restrictions.
3McGrattan (2006) is closely related to our paper. In a similar setting, McGrattan (2006) also investigates

whether state space or VARMA models with minimal structural assumptions can uncover statistics of interest.
Her work focusses on different business cycle statistics, while we are exclusively concerned with classical

structural estimation.
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2.2. THE DATA GENERATING PROCESS 25

tant improvements, we stick to the research design of Chari et al. (2005) and Christiano
et al. (2006): We simulate DSGE models and fit different reduced form models to recover
the structural shocks using the same long-run identification strategy. We then compare the
performance of the models by focusing on the estimated contemporaneous impact to a tech-
nology shock. We employ a variety of estimation algorithms for the VARMA models, and
both a prediction error method and a subspace algorithm for the state space models. One of
the findings is that one can indeed perform better by taking the full structure of the DGP
into account: While the algorithms for VARMA models and the prediction error method
do not perform significantly better (and sometimes worse), the subspace algorithm for state
space models consistently outperforms SVARs in terms of mean squared error. Unfortunately,
we also find that even these alternative estimators are highly variable and are therefore not
necessarily much more informative for discriminating between different DSGE models. One
of the implications is that SVARs do not perform poorly in these simulation studies because
they are only finite-order approximations. Given the properties of the data generating pro-
cess, the disappointing performance of SVARs is most likely due to the fact that the long-run
identification approach is inappropriate with small samples.

The rest of the paper is organized as follows. In section 2 we present the RBC model used
by Chari et al. (2005) and Christiano et al. (2006) that serves as the basis for our Monte Carlo
simulations. In section 3 we discuss the different statistical representations of the observed
data series. In section 4 we present the specification and estimation procedures and the results

from the Monte Carlo simulations. Section 5 concludes.

2.2 The Data Generating Process

The DGP for the simulations is based on a simple RBC model taken from Chari et al. (2005).
In the model, a technology shock is the only shock that affects labor productivity in the
long-run, which is the crucial identifying assumption made by Gali (1999) to assess the role
of technology shocks in the business cycle.

Households choose infinite sequences, {Cy, Lt, Kiy1 }72,, of per capita consumption, labor

and capital to maximize expected lifetime utility

(1 - Lyt -1
1—0

)

oo
EoY_ 1801+ )] [logCi-+ v
t=0
given an initial capital stock Ky, and subject to a set of budget constraints given by

Co+ (1 +7) (L+7) K1 — (1= 0)Ky) < (1 —7)we Ly + re Ky + T,

for t = 0,1,2,..., where w; is the wage, 7 is the rental rate of capital, T} are lump-sum

government transfers and 7;; is an exogenous labor tax. The parameters include the discount
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factor 8 € (0,1), the labor supply parameters, ¥ > 0 and o > 0, the deprecation rate
0 € (0, 1), the population growth rate v > 0 and a constant investment tax 7,. The production
technology is

Y, = K (X¢Ly)' ™,

where X reflects labor-augmenting technological progress and « € (0, 1) is the capital income
share. Competitive firms maximize Y; — wyL; — rK;. Finally, the resource constraint is
Y > Gt (147K — (1 - 0)K,.

The model contains two exogenous shocks, a technology shock and a tax shock, which

follow the stochastic processes

log X1 = p+1og Xy + 0p€q 41,

Tir1 = (1 — p)71 + pTie + 0r€1441,

where €, ; and ¢ are independent random variables with mean zero and unit standard devi-
ation and o, > 0 and g; > 0 are scalars. p > 0 is the mean growth rate of technology, 7, > 0
is the mean labor tax and p € (0,1) measures the persistence of the tax process. Hence, the
model has two independent shocks: a unit root process in technology and a stationary AR(1)

process in the labor tax.

2.3 Statistical Representations

Fernandez-Villaverde et al. (2005) show how the solution of a detrended, log-linearized DSGE
model leads to different statistical representations of the model-generated data. This section
presents several alternative ways to write down a statistical model for the bivariate, stationary

time series

Alog(Y:/Lt)
log(Ly)

Yt =

Labor productivity growth Alog(Y;/L;) and hours worked log(L;) are also the series analyzed
by Gali (1999), as well as Chari et al. (2005) and Christiano et al. (2006). The appendix
provides more detail on the derivations. Given the log-linearized solution of the RBC model

of the previous section, we can write down the law of motion of the logs

logkir1 = ¢1+ ¢11logks — p11logxy + P12,
logy: —log Ly = @2+ ¢po1log ks — @21 logxy + Poo7y,
¢3 + @31 log kt — @31 logxy + P32,

log L

where ky = K;/ X411 and y = Y;/X; are capital and output detrended with the unit-root
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shock and the ¢’s are the coefficients of the calculated policy rules. Following Fernandez-
Villaverde et al. (2005) the system can be written in state space form. The state transition

equation is

log ]{It+1 — K+ A log k¢ +B €xt
Tt Tt—1 €t ,
Xt+1 = Kl + Axt + BEt,

and the observation equation is

= Ky +C

Alog(Y:/Ly)
log Ly

10g k‘t i D €x,t ’
Tt—1 €t

Y+ = K2+CXt+D€t,

where K1, A, B, K5,C and D are constant matrices that depend on the coefficients of the
policy rules and therefore on the “deep” parameters of the model. The state vector is given
by x; = [log k¢, 7:—1]" and the noise vector is €; = [e,t, €;1]. Note that the system has a state
vector of dimension two with the logarithm of detrended capital and the tax rate shock as

state components.

The above state space system is still a structural model, since the formulation contains the
non-observable state vector and the structural errors. We now show different representations
of the system for y;, which can be estimated in practice. Given certain invertibility conditions

on the system matrices, A, B,C, D, there is an infinite VAR representation:

yi=Ks+C (I —(A—BD'C)L) "' BD 'y, ; + De, (2.1)
or
[o.¢]
yt = K3+ ZHth—i + ug,
i=1
where K3 and II;,7 = 1,2, ... are constant coefficient matrices, L denotes the lag operator, I

denotes an identity matrix of suitable dimensions, u; = De; and ug ~ iid N(0,%,,), X, = DD’,
where ¥, is the covariance matrix of u;. Note that a condition for the existence of an infinite
VAR representation is that the eigenvalues of (A — BD™'C) are strictly less than one in
modulus. In practice, it is only possible to approximate this structure by a finite-order VAR.

Alternatively, the system can be written as a state space model in “innovations form”:

Xt4+1 = Kl-l-AXt—l-Kut, (2.2)
Yy = K2+Cxt+ut,
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where the innovation, uy, is defined as above and K = BD~!. In contrast to the VAR
representation in (2.1), it is possible to estimate (2.4) exactly.
Finally, the underlying DGP can be represented by a VARMA (1,1) representation:

yt = Ki+CAC 'y,1+ (D+(CB—CAC™'D)L) e, (2.3)
ye = Ky+ Arys1+u+ Miugq,

where the last equation defines A1, M7 and u; is defined as above. As with the state space
representation, the VARMA(1,1) representation can also be estimated exactly.

Given the conditions stated in Ferndndez-Villaverde et al. (2005), all three representations
are algebraically equivalent. That is, given the same input sequence {¢;}, they produce the
same output sequence {y;}. The representations are however not statistically equivalent:
the properties of estimators and tests depend on the chosen statistical representation. It
should be emphasized that we are always interested in the same process and ultimately in the
estimation of the same coeflicients, i.e. those associated with the first-period response of y; to
a unit shock in €, ; to the technology process. However, the different representations give rise
to different estimation algorithms and therefore our study can be regarded as a comparison

of different algorithms to estimate the same linear system.

2.4 The Monte Carlo Experiment

2.4.1 Monte Carlo Design and Econometric Techniques

To investigate the properties of the various estimators, we simulate 1000 samples of the
vector series y; in linearized form and transform log-deviations to values in log-levels. As in
the previous Monte Carlo studies, the sample size is 180 quarters. We use two different sets
of parameter values: The first is due to Chari et al. (2005) and is referred to as the CKM-
specification, while the second is the one used by Christiano et al. (2006) and is labeled the
KP-specification, referring to estimates obtained by Prescott (1986).* The specific parameter
values are given in table 2.1 for the CKM and KP benchmark specifications. Christiano et al.
(2006) show that the key difference between the specifications is the implied fraction of the
variability in hours worked that is due to technology shocks. Table 2.1 also provides the
eigenvalues of the autoregressive and moving-average matrices of the corresponding VARMA
representations, together with the eigenvalues of the Kalman gain K. In terms of these values,
the time series properties are very similar and indicate why the estimation of both systems

could be difficult. Note that the moving-average part is not of full rank and the associated

4Both parameterizations are obtained by maximum likelihood estimation of the theoretical model, using
time series on productivity and hours worked in the US. However, because of differences in approach, both

papers obtain different estimates.
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eigenvalue is close to unity in modulus. Also, the eigenvalues of the autoregressive part are
close to one and close to the eigenvalue of the moving-average part in modulus. The fact
that one eigenvalue of the moving-average part is close to one eigenvalue of the autoregressive
part could imply that the VARMA (1,1) representation is close to being not identified (Klein,
Mélard and Spreij, 2004).

To check the robustness of our results, we also consider variations of the benchmark mod-
els. As in Christiano et al. (2006), we consider different values for the preference parameter
o and the standard deviation of the labor tax, ;. These variations change the fraction of
the business cycle variability that is due to technology shocks. The different values for o are
reported in table 2.2. For the CKM specification, we also consider cases where o; assumes a
fraction of the original benchmark value.

Turning to the issue of identification, consider the following infinite moving-average rep-

resentation of y; in terms of wuy:
o0
Yt = Z Dy jur—; = Doy (L)us,
i=0

where we abstract from the intercept term and ®,,(L) is a lag polynomial, ®,,(L) = >3, ®,, ;L'

Analogously, we can represent y; in terms of the structural errors using the relation u; = De;:

o
yt = Z ®y,iDer—j = Pe(L)e,
i=0

where ®.(L) = Y%, ®,;DL". The former lag polynomial, evaluated at one,
O,(1) =T+Py1+Pya+...

is the long-run impact matrix of the reduced form error u;. Note that the existence of this
infinite sum depends on the stationarity of the series. If the stationarity requirement is
violated or “nearly” violated, then the long-run identification scheme is not valid or may face
difficulties as can be seen from the following discussion. Also note that the matrix D defined
in section 2.3 gives the first-period impact of a unit shock in ¢. Using the above relations,
we know that ®.(1) = ®,(1)D and further ¥, = DD’, where ®(1) is the long-run impact
matrix of the underlying structural errors. The identifying restriction on ®.(1) is that only
the technology shock has a permanent effect on labor productivity. This restriction implies

that in our bivariate system the long-run impact matrix is triangular,

B,(1) = [‘D“ 0 ] ,

Dy Poo

and it is assumed that ®1; > 0. Using ®.(1)®.(1) = ®,(1)X, P}, (1) we can obtain ®.(1) from
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the Cholesky decomposition of ®,(1)%,®/,(1). The contemporaneous impact matrix can be

recovered from D = [®,(1)]71®.(1). Correspondingly, the estimated versions are

d(1) = chol[d,(1)Z,(1)],
D = [Ci>u(1)]_1(i)e(1)'

Only the first column of D is identified and is our estimate of the first-period impact of the
technology shock.

Next, we comment on the estimation techniques. First, note that for each representation
there are several possible estimation methods. We chose algorithms that are both popular
in the literature and known to work well in general. Of course, it is possible that there are
algorithms that work slightly better for one of the representations in the current setting.
However, the aim of this study is primarily to quantify whether the inclusion of the moving-
average term alone leads to important gains in terms of more precise estimates of the structural

parameters.

Vector Autoregressive Models: VARs are well known, so we comment only on a few
issues. Fernandez-Villaverde et al. (2005) show that for the CKM-specification there exists
an infinite VAR representation. We verified that the same is true for the benchmark KP-
specification. As in the previous Monte Carlo studies, the VAR lag length is set at four.
However, for different sets of parameter values a VAR with different lags may yield slightly
better results. We have chosen to stick to the VAR(4) because we want to facilitate comparison
with the results of Christiano et al. (2006) and because there was no lag order that performed
uniformly better for all DGPs.

State Space Models: There are many ways to estimate a state space model, e.g., the
Kalman-based maximum likelihood methods and subspace identification methods such as
N4SID of Van Overschee and DeMoor (1994) or the CCA method of Larimore (1983). An
obvious candidate is maximum likelihood. Therefore, we included a prediction error method
that is implemented with the PEM routine in the MATLAB system identification toolbox.
However, it is well-known that maximum likelihood methods can face numerical problems
that are due to the dependence on starting values, nonlinear optimization or local maxima.
Indeed, these problems also apply to our setting. Therefore, we also use the CCA subspace
algorithm that is asymptotically equivalent to maximum likelihood and was previously found
to be remarkably accurate in small samples. As argued in Bauer (2005), CCA might be
the best algorithm for econometric applications. The idea of subspace methods is that the
state, x;, summarizes all information of the past that can be used for mean square prediction.
Thus, the center of attention is the state that is estimated in a first step. In a second step

the coeflicient matrices are estimated by OLS. The different subspace algorithms use the
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structure of the state space representation in various ways. See Bauer (2005) for a more
general introduction to subspace methods and the appendix for a detailed description of the
algorithm that is employed in this paper.

While implementing the algorithm, we chose the correct dimension of the state vector,
n = 2.5 To calculate the long-run effect of the prediction errors, it is necessary to solve the
state space equations x;11 = Axy + Kuy, y¢ = C'xy + ug, where the deterministic component

is omitted. The lag polynomial of the infinite moving-average representation is given by

O (L) =1+ CALMK=I+LCI-LA)K.
=0

An estimate of the long-run impact matrix ®,(1) can be obtained from the estimated system
matrices, ®,(1) = I + C(I — A)"'K. Henceforth, the estimation of the contemporaneous
impact matrix is entirely analogous to long-run identification in a standard VAR setting.

That is, we recover ®.(1) by a Cholesky decomposition and then obtain an estimate of D.

Vector Autoregressive Moving-Average Models: The VARMA representation given

in (2.3) implies that we can represent y; in terms of the innovations as
ye = (I — A L) "I 4+ MiL)uy = A(L) "' M (L)uy,

where A(L) and M (L) are the autoregressive polynomial and the moving-average polynomial,
respectively, and the intercept term has been omitted. The long-run impact of u; is given
by ®,(1) = A(1)"'M (1) and D can be recovered as before. The representation in (2.3) is
however not the most useful representation in practice. It is more useful to choose a specific
representation which guarantees that all parameters are identified and the number of esti-
mated parameters is minimal. For an introduction to the identification problem in VARMA
models see Liitkepohl (2005). Here we employ a final moving-average (FMA) representation
that can be derived analogously to the final equation form (see Dufour and Pelletier, 2004).
In our case, this results in a VARMA (2,1) representation in final moving-average form (see
appendix).

As in the case of state space models there are many different estimation methods for
VARMA models. Examples are the methods developed by Hannan and Rissanen (1982),
Koreisha and Pukkila (1990), Mauricio (1995) or Kapetanios (2003). We report results for a

5There are two auxiliary parameters in the subspace algorithm, f, p, which determine the row and column
dimension of a Hankel matrix which is estimated in an intermediate step (see Bauer (2005) and the appendix).
They have been set to f = p = 8. These parameters are of no importance asymptotically as long as they
increase at certain rates with the sample size. In the literature it has been suggested to set f = p = 2p where

p is the order of the chosen autoregressive approximation (Bauer, 2005).
5We experimented with other identified representations such as the final equation representation or the

Echelon representation. However, the final moving-average representation always yielded the best results.
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simple two-stage least squares method as in Hannan and Rissanen (1982), an iterative least
squares estimation algorithm proposed by Kapetanios (2003) and the three-stage procedure
developed by Hannan and Kavalieris (1984b). The two-stage least squares method starts
with an initial “long” autoregression in order to estimate the unobserved residuals. The
estimated residuals are then plugged into equation (2.3) and a (generalized) least squares
regression is performed. The iterative least squares procedure takes these estimates as initial
parameters and uses them to computes new residuals which are again used in a second least
squares regression in order to update the parameter estimates. The updated parameter
estimates are then used to update the residual estimates and so on, until convergence. The
last algorithm is regression-based and is the first step of a Gauss-Newton procedure for the
maximization of the likelihood, conditional on initial values. First, a high-order VAR is fitted
to get initial estimates of the innovations. In the second stage these estimates are used to
estimate the autoregressive and moving-average parameters by least squares. In the third
stage the estimated coefficients are used to form new residuals and the coeflicient estimates
from the second stage are refined (see, e.g., Hannan and Kavalieris (19845) or Hannan and
Deistler (1988)). In the appendix we provide further details on the estimation algorithms.
We use a VAR with lag length ny = 0.5 v/T for the initial long autoregression.”

2.4.2 Results of the Monte Carlo Study

Table 2.2 summarizes the results of the Monte Carlo simulation study. We tabulate Monte
Carlo means and standard deviations of the estimates of the contemporaneous impact of
a technology shock on productivity and hours worked for the various estimators. We also
tabulate the MSE of the different estimators relative to the MSE of the estimator resulting
from the benchmark SVAR. For the VARMA algorithms the estimation method is indicated
in parenthesis, where 25LS refers to the two-stage least squares method and ILS and 3SLS
refer to the iterative least squares algorithm and the Hannan-Kavalieris method, respectively.
Figures 2.1 and 2.2 depict the average estimated impulse responses of hours worked, together
with the true impulse responses for the SVAR and the CCA subspace algorithm. In the
figures, the bands around the mean lines correspond to the 0.025% and 0.975% quantiles of
the estimated impulse responses at each point of time.

Our SVAR results confirm the findings of both Christiano et al. (2006) and Chari et al.
(2005). While the SVAR is unbiased for the KP-specification (first row in table 2.2), the
same is not true for the CKM-specification (fourth row in table 2.2). The associated pictures

for both parameterizations show that the 95% bands around the mean impulse responses

"We also tried full information maximum likelihood maximization as, for example, in Mauricio (1995).
However, this procedure proved to be highly unstable and was therefore not considered to be a practical
alternative. One likely reason is that the roots of the AR and the MA polynomials are all close to the unit

circle.
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comprise a large region ranging from negative values to very high positive values. Also,
for the different variations of the benchmark model we find that the SVAR is often biased
and/or displays high variability. As can be seen from row 2, 3, 5 and 6 in table 2.2, both
the biases and standard deviations are larger for the models with higher Frisch elasticities of
labor supply (lower o), as in the model this decreases the proportion of the variation in hours
worked that is due to the technology shock. From row 7 and 8 it is clear that reducing the
relative importance of the tax shock by lowering o; by 1/2 and 1/3 reduces the bias and the
standard deviations.

The algorithms based on the state space representation perform quite differently. The
PEM routine performs uniformly worse for all sets of parameter values. Although, in contrast
to the SVAR, the state space model nests the DSGE model, the small sample performance
of this estimation algorithm is much poorer. The low accuracy of the PEM routine can be
attributed to the near non-stationarity and non-invertibility of the series that cause difficulties
for the optimization procedure. The results of the PEM routine illustrate that using a formally
exact representation of the DGP does not automatically lead to more precise estimates because
the associated estimation algorithm may be numerically unreliable or not robust to the near
violation of the underlying assumptions. For the CCA subspace algorithm, however, we find
that the associated MSE of the estimated first-period impulse response is almost uniformly
lower for both series and across different specifications. Only in two cases does the MSE of
the CCA-based estimates exceed the MSE of the SVAR, and only by a very small amount.
In particular, the first-period impact on hours worked is estimated more precisely up to a
relative reduction to 85% in terms of MSE for the KP-specification. Figure 2.1 shows that
the 95% interval is narrower for the estimated state space model, but still rather wide. In
almost all cases the bias is at least slightly reduced. Although the response of hours worked is
usually estimated more precisely, the performances of the subspace algorithm and the SVAR
seem to be related: in cases where the SVAR, does poorly, the state space model does so too.
The advantage of the CCA algorithm over the SVAR-based least squares algorithm should
be due to the use of the more general state space representation.®

The results for the different algorithms based on the VARMA representation are either
similar to or worse than those for the VAR approximation. Generally, the less sophisticated
methods give better results than the more complex estimation algorithms. Improvements in
terms of bias are compromised by increases in variance and a higher MSE. The reason for
this pattern is that we face an ill-conditioned problem that cannot be remedied by rescaling
the data because of the presence of eigenvalues close to the unit circle of both the autoregres-
sive and moving-average parts. Furthermore, the roots of the moving-average part and the

autoregressive part imply that the model is close to being not identified. The iterative least

81t is also worth mentioning that since the CCA algorithm is based on OLS regressions, it is computationally
not more intensive than a VAR. The same is not true for the PEM routine and most VARMA estimation
algorithms.
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squares method and the Hannan-Kavalieris method face consequently more problems than
the simple two-stage least squares method. In comparison to the SVAR model, the structural
estimates obtained from the VARMA algorithms perform relatively well in estimating the
impact on hours worked, but worse in estimating the response of productivity to a technology
shock. While the VARMA model fully nests the underlying DGP, this representation is not
very efficient in our context.

A problem common to all algorithms is that the stationarity requirement is nearly violated
for the DGPs at hand. As we have seen in section 2.4.1, the stationarity assumption lies at the
heart of the long-run identification scheme. However, as the eigenvalues in table 2.1 indicate,
this assumption is nearly violated for the benchmark models. This problem is independent of
the chosen representation and, therefore, does not vanish even when we control for omitted
moving-average terms. Apart from problems specific to the algorithms, this common problem
may explain the relatively weak performance of all algorithms - a problem that could be

overcome in larger samples.?

2.5 Conclusions

There has been some debate whether long-run identified SVARs can in practice discriminate
between competing DSGE models and whether their sampling properties are good enough to
justify their widespread use. Several Monte Carlo studies indicate that SVARs based on long-
run restrictions are often biased and usually imprecise. Some authors have suggested that
SVARs do poorly because they are only approximate representations of the underlying DGPs.
Therefore, we replicate the simulation experiments of Chari et al. (2005) and Christiano
et al. (2006) and apply more general models to their simulated data. In particular, we use
algorithms based on VARMA and state space representations of the data and compare the
resulting estimates of the underlying structural model. For our simulations, we found that
one can do better by taking the full structure of the DGP into account. While our VARMA-
based estimation algorithms and the prediction error algorithm for state space models were
not found to do significantly better and often even worse, the CCA subspace algorithm seems
to consistently outperform the SVAR. However, the estimates display high variability and are
often biased, regardless of the reduced form model used. Furthermore, the performances of
the different estimators are strongly correlated. This finding suggests that long-run identified
SVARs do not fail because they are simple finite-order approximations. Instead, we find
that the simulated processes are nearly violating the most basic assumptions on which long-
run identification schemes are based. Given these properties of the data series, the poor

performance seems almost entirely a small sample problem in this type of simulation studies.

?Our estimation results are in line with McGrattan’s (2006) findings. However, McGrattan (2006) stresses

the need to impose more theoretical restrictions to obtain informative statistics from empirical models.
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Appendix

2.A Final MA Equation Form

Consider a standard representation for a stationary and invertible VARMA process
A(L)y: = M(L)u.

Recall that M~1(L) = M*(L)/|M(L)|, where M*(L) denotes the adjoint of M (L) and |M (L)|
its determinant. We can multiply the above equation with M*(L) to get

M*(L)A(L)y: = [M(L)uy.

This representation therefore places restrictions on the moving-average polynomial which
is required to be a scalar operator, |[M(L)|. Dufour and Pelletier (2004) show that this
restriction leads to an identified representation. More specifically, consider the VARMA(1,1)
representation in (2.3). Since the moving-average part is not of full rank we can write the

system as

14+mnL amqyi L

Ut,
mo1 L 14+ amoi L

1-— allL —algL .
—aglL 1-— CLQQL L

where « is some constant not equal to zero.

Clearly, det(M (L)) = 1 + (m11 + ama1)L and we can write

1— a11L —a12L

= [14 (m11 + amoy)L|uy,.
—an L 1 — apl Yt [ ( 11 21) ]t

1+ amo1L —amq1L
—m21L 1+ OémllL

Because of the reduced rank we end up with a VARMA (2,1). Note that the moving-average

part is indeed restricted to be a scalar operator.

35
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2.B Statistical Representations

This section elaborates on the derivation of the infinite VAR, VARMA and state space repre-
sentations that result from our DSGE model in order to get an insight into the relationship
between the economic model and the implied time series properties.

Consider again the law of motion of the logs

logkiy1 = ¢1+ ¢11logks — ¢11log s + 1o,
logy: —log Ly = ¢o + ¢po1logks — ¢21logzs + oo,
logL; = ¢3+ ¢31logky — ¢31logxs + P27y,

and the exogenous states

logxi41 = p+ 0g€s 41,

Tir1 = (1= p)7 + p1e + or€1141.

From these equations the state space representation can be derived as follows. First write

down the law of motion of labor productivity in differences:
Alog(Yy/ L) = logwi + ¢a1Alog ki — pa1Alog zy + daoATy.
Thus the observed series can be expressed as

Alog(Yi/Ly) = ¢o1loghks — ¢pailoghki—1 + (1 — ¢21) log
+go1log zy_1 + 22T — P22Ti1,
logL; = ¢3+ ¢31logk; — ¢31log s + P327;.

Next, rewrite the law of motion for capital as
log k-1 = —¢11 d1 + o1y log ke + logwe—1 — o1 drame-1,
in order to substitute for capital at time ¢ — 1:

Alog(Yi/Li) = ¢n¢p) é1 + dar(1 —¢p)') log ks
+(1 — ¢21) log ¢ + poai + (P2107 D12 — P22) T 1.
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Using the laws of motion for the stochastic shock processes, substitute the current exoge-

nous shocks to get

Alog(Yy/Li) = [p21¢77 01+ (1 — o)+ doa(1l — p)Ti] + d21(1 — ¢1') log ki
+(p2167] b2 — (1 — p)oa)Te—1 + (1 — b21)0wers + doaoiery,
logL; = [¢p3— ¢aip+ ¢32(1 — p)7y) + P31 log ki + PzopTi—1

—P3104€5,4 + P3207€] 4.

Next, consider the law of motion for capital and express future capital in terms of the current

states as

logkiv1 = [¢p1 — dup+ d12(1 — p)71] + é11log ke + Ppr2pTi—1

—P1102€x1 + 1201614

Collecting the above equations, the system can be written in state space form according

to Fernandez-Villaverde et al. (2005). The state transition equation is

€zt
b
€t

Ky = [ ¢1 — pup + ¢12(1 — p)7 ] ’

logk
0og ~t B

Tt Tt—1

[ log ki 11 ] K 4 A

where the system matrices are given by

(1-p7
. b1 P12p ] 7
0 »p
and
B —

0 o}

—$1102 120 ]
The observation equation is

[ Alog(Vi/Ly) | _ Kyt C

log Ly

log k‘t D €.t ’
Tt—1 €t

o [ P21671 b1 + (1 — dar)p + ¢22(1 — p)7y ]
2 — )

with system matrices

¢3 — 310+ P32(1 — )Ty
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do1(1 — ¢17") by b1z — (1 — p)dao
®31 $32p

C =

and

—¢310,  P320]

D_ [ (1 —¢21)or P20y

This representation permits us to derive the infinite VAR and VARMA representation in
compact form.
Let y; denote the vector of observables, x; the vector of states, and e¢ the white noise

shocks. Then we have as above

xip1 = K+ Axy + Bey,
y: = Ko+ Cxs+ Dey.

If D is invertible, it is possible to use
e =D (yr — Ko — Oxy)
in the transition equation to obtain

xi41 = K+ Ax; + BD Yy — Ky — Cxy),
(I —(A-BD7'C)L)xys1 = [Ki— BD 'Ky +BD™'y,.

If the eigenvalues of (A — BD~1C) are strictly less than one in modulus we can solve for

Xt41*
xtp1 = (I = (A—BD'C)L) ' ([Ky, — BD'K,) + BD ly,) .

Using this relation in the observation equation yields the infinite VAR representation for y;:
yi=Ky+C (I —(A—BD'C)L)"" ([Ki — BD™'Ky] + BD 'y;_1) + De,

yi=Ks+C(I—(A=BD'C)L) ' BD 'y, | + Dey.

Note that the condition for the existence of an infinite VAR-representation is that I — (A —
BD~!C) is invertible. If this condition does not hold, impulse responses from a VAR are

unlikely to match up those from the model.

Kascha, Christian (2007), Three Essays in Time Series Econometrics
European University Institute 10.2870/25748



2.C. ESTIMATION ALGORITHMS 39
If C is invertible, it is possible to rewrite the state as
x;=C! (yt — K2 — De)
and use it in the transition equation:
C (yi+1 — K2 — Degyr) = K1 + AC™! (v, — Kz — Det) + Bey,
yis1 — CAC 'y, = CKy 4+ Koy — CAC™ Ky + (CB — CAC ™ 'D)e; + Deyy 1.
Therefore, we obtain a VARMA(1,1) representation of y;:
yi = Ki+CAC 'y + (I + (CBD™' — CAC™)L) wy.

with u; ~ N (0, DD').

2.C Estimation Algorithms

2.C.1 Two-State Least Squares and Iterative Least Squares

These two methods are computationally very easy to implement. The iterative least squares
method has been introduced by Kapetanios (2003).

We discuss the methods in the framework of a standard VARMA (p, ¢) representation
Yt = Alyt—l + ...+ Apyt—p + ur + Mlut_l + ...+ Mqut_q.

Usually additional restrictions need to be imposed on the coefficient matrices to ensure iden-
tification of the parameters.

Given that the moving-average polynomial is invertible, there exists an infinite VAR rep-
resentation of the process, y; = Z;’il IT;y¢—; + us. In the first step of both algorithms, this
representation is approximated by a “long” VAR to get an estimate of the residuals. More

precisely, the following regression equation is used
nr
Yt = Z iye—i + ut,
i=1

where np is large and goes to infinity as the sample size grows. The estimated residuals are
(0)

denoted by 1, . Given these estimates, we might obtain estimates of the parameter matrices
by performing a (restricted) regression in

~(0 ~(0
ye = A1yp 1+ ...+ Apyt_p + ug + Mlugf)l +...+ Mqugjq.
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Denote the estimated coefficient matrices by Agl),Agl), o ,AI(,I) and Ml(l), M2(1), cee Mq(l).
These estimates are the final estimates of the two-stage least squares method. These initial
parameter estimates can be used to obtain a new estimate of the residuals. Denote by o
the vector collecting the estimated new residuals. We can then use U() again in the above
equation to obtain new estimates of the coefficient matrices. Denote the vector of estimated
residuals at the " iteration by U, Kapetanios (2003) proposes to iterate least squares

i-1) _

regressions until ||U U@|| < ¢, according to some pre-specified number c.

2.C.2 Hannan-Kavalieris Method

This method goes originally back to Durbin (1960) and has been introduced by Hannan and
Kavalieris (1984a) for multivariate processes.!” It is a Gauss-Newton procedure to maximize
the likelihood function conditional on y; = 0, u; = 0 for ¢t < 0, but its first iteration has been
sometimes interpreted as a three-stage least squares procedure (Dufour and Pelletier (2004)).

We discuss also this method in the framework of a standard VARMA (p, ¢) representation
yr = A1y + o+ Apyi—p Fup + Myug—1 + ...+ Myug—g.

To consider zero restrictions, we use the following notation. The vector of all parameters is
denoted by = vec[Ay, ..., Ap, My, ... Mg]. The vector of free parameters, v, can be defined
by introducing a restriction matrix R such that the vectors are related by 0 = R7.

Given that the moving-average polynomial is invertible, there exists an infinite VAR rep-
resentation of the process, yr = > oo Iiys—; + us. In the first step of the algorithm, this
representation is approximated by a “long” VAR to get an estimate of the residuals. More

precisely, the following regression equation is used
nr
(T Z y—i + ug,
i=1

where nr is large and goes to infinity as the sample size grows. Given an estimate of the
residuals, 4, we might obtain starting values for future iterations by performing a (restricted)

regression in
y=Ayp1+...+ Apyt,p +up + M1+ ...+ Mqat,q.

Denote the estimated coefficient matrices by Ay, A, ,flp and Ml, MQ, R Mq. The first
iteration of the conditional maximum likelihood algorithm can be expressed in a simple re-

gression framework. One forms new residuals, €;, and new matrices, &, n; and X;, according

10See also Hannan and Deistler (1988), sections 6.5, 6.7, for an extensive discussion.
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to

p q
e = w—Y Ay —Y Mgy,
j=1 j=1

q
& = =Y M j+e,
j=1
q ~
n = _ZMjnt—j+yta
j=1
A q ~ A
Xy = _ZMthfj‘F(}/;g/@IK)Ra

<
Il
-

fort =1,2,...,7, Vs = [y}, .., Ys_pp1: 0. U _gq) and gy =&y = & =n = 0 and X; = 0
for ¢ < 0. The final estimate is

T L/
Y= (Z Xt/12t_1Xt—1> (Z Xia S e +me — &)) ;
m+1 m+1

where & = T 13 e}, m = max{p,q}. This procedure is asymptotically efficient under
certain conditions (Liitkepohl (2005)).

2.C.3 Subspace Algorithms

Subspace algorithms rely on the state space representation of a linear system. The CCA
algorithm is originally due to Larimore (1983). The basic idea behind subspace algorithms
lies in the fact that if we knew the unobserved state, z;, we could estimate the system matrices,

A, K, C, by linear regressions as can be seen from the basic equations

Tyl = A$t+KUt,
ye = Cay+ uy.

Given the state and the observations, C' and i could be obtained by a regression of y on z;
and A and K could be obtained by a regression of z;41 on x; and @;. Therefore, the problem
is to obtain in a first step an estimate of the n-dimensional state, Z;. This is analogous to
the idea of a long autoregression in VARMA models that estimates the unobserved residuals

in a first step which is followed by a least squares regression.
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Solving the state space equations, one can express the state as a function of past obser-

vations of y; and an initial state for some integer p > 0 as

p—1
2 = (A-KCPzyy+ Y (A—KC) 'Ky,
i=0

where K = [K, (A - KO)K,...,(A— KO 'K] and Y;, = [y;_,---,¥;—p). On the other

hand, one can express future observations as a function of the current state and future noise

as
j—1
Yt+j = CAJJIt + Z CA’LKUH_j_i_l + U475, (25)
i=0
for j = 1,2,.... Therefore, at each ¢, the best predictor of y;; is a function of the current

state only, C A7z;, and thus the state summarizes in this sense all relevant information in the

past up to time t.

Define Yt‘*} = [}, Ypy y_1| for some integer f > 0 and formulate equation (2.5) for all
observations contained in Y;} simultaneously. Combine these equations with (2.4) in order
to obtain

YZ} = Of/CpY;;, + Of(A — BC)p%gfp + 5fEt+,f7

where Oy = [C", A'C’,..., (A1) C"Y, Etff = [u,. .., up 4] and & is a function of the
system matrices. The above equation is central for most subspace algorithms. Note that if
the maximum eigenvalue of (A—KC) is less than one in absolute value, we have (A—KC)? ~ 0
for large p. This condition is satisfied for stationary and invertible processes. This reasoning
motivates an approximation of the above equation by
+ _ - +

Yir = BVt Ny (2.6)

where 8 = O¢K, and N: ¥ is defined by the equation. Most popular subspace algorithms use

this equation to obtain an estimate of 3 that is decomposed into O and Kp. The identification

problem is solved implicitly during this step.
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For given integers, n, p, f, the employed algorithm consists of the following steps :

1. Set up Y;} and Y; , and perform OLS in (2.6) using the available data to get an estimate

Bt
2. Compute the sample covariances
A | T+ ) | T+
Of = 2 Yy Ty =g D Yy
Po—pt1 R ]

where Ty, =T — f —p+ 1.

3. Given the dimension of the state, n, compute the singular value decomposition
(O 2B, (T = U2V + R,

where ¥, is a diagonal matrix that contains the n largest singular values and U, and
V,, are the corresponding singular vectors. The remaining singular values are neglected

and the approximation error is R,,. The reduced rank matrices are obtained as
OsKy = [(O)) 20,282V (0) 777,

4. Estimate the state as &; = lépYaj and estimate the system matrices using linear regres-

sions as described above.

Although the algorithm looks quite complicated at first sight, it is actually very simple and
is regarded to lead to numerically stable and accurate estimates. There are certain parameters
which have to be determined prior to estimation, namely the dimension of the state and the
integers f and p. See the text for the employed values. For the asymptotic consequences of

various choices see Bauer (2005).
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2.D Tables and Figures

Table 2.1: Benchmark Calibrations and Time Series Properties

Common CKM KP
Parameters Benchmark Benchmark
« 0.33
3 0.981/4
o 1
5 1—(1-0.6)"4
0 2.5
v 1.01Y/4 -1
7 0.00516
L 1
7] 0.243
Ty 0.3
P 0.94 0.993
or 0.008 0.0066
Oz 0.00568 0.011738
Selected time series properties
eig(Aq) 0.9573, 0.9400  0.9573, 0.9930
eig(M) —0.9557, 0 —0.9505, 0
eig(K) —1.7779 £ 0.517 —2.0298 £+ 0.357

Parameter values of the CKM and KP benchmark calibrations. The last three rows display some
properties of the implied VARMA and state space representation. eig(A;) and eig(M;) denote the
eigenvalues of the autoregressive and the moving-average matrix, respectively. eig(K) denotes the

eigenvalues of the matrix K in the state space model in innovations form.
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Table 2.2: Simulation Results

VAR (4) PEM (2) SS (2,8,8) VARMA (2SLS) VARMA (ILK) VARMA (3SLS)
Variable True Value Mean Std. MSE Mean Std. MSE Mean Std. MSE Mean Std. MSE Mean Std. MSE Mean Std. MSE
KP Benchmark
Prod. 0.69 0.55 0.19 1 0.53 0.23 1.44 0.57 0.18 0.86 0.54 0.18 1.02 0.54 0.19 1.06 0.53 0.21 1.23
Hours 0.28 0.31 0.43 1 0.32 0.50 1.33 0.31 0.40 0.85 0.33 0.42 0.92 0.32 0.42 0.94 0.36 0.47 1.22
KP, 0 = 0 (Indivisible Labor)
Prod. 0.65 0.48 0.23 1 0.45 0.28 1.49 0.50 0.22 0.92 0.47 0.22 1.02 0.47 0.22 1.02 0.47 0.23 1.09
Hours 0.43 0.56 0.56 1 0.58 0.67 1.44 0.52 0.54 0.92 0.57 0.54 0.93 0.56 0.55  0.98 0.62 0.63 1.30
KP, o = 6 (Frisch elasticity=0.63)
Prod. 0.75 0.61 0.16 1 0.57 0.24 2.03 0.63 0.14 0.80 0.59 0.16 1.10 0.59 0.16 1.16 0.59 0.17 1.26
Hours 0.11 0.10 0.19 1 0.10 0.24 1.52 0.10 0.18 0.89 0.10 0.19 0.98 0.10 0.19 1.00 0.11 0.23 1.37
CKM Benchmark
Prod. 0.34 0.10 0.17 1 0.13 0.20 1.03 0.11 0.18 1.00 0.09 0.16 1.07 0.09 0.17 1.08 0.10 0.17 1.04
Hours 0.14 0.65 0.39 1 0.61 0.53 1.21 0.62 0.40 0.95 0.67 0.37 1.02 0.66 0.40 1.03 0.70 0.41 1.18
CKM, o = 0 (Indivisible Labor)
Prod. 0.31 -0.12 0.21 1 -0.07 0.30 1.02 -0.12 0.23 1.05 -0.15 0.19 1.09 -0.13 0.21 1.06 -0.12  0.22 1.04
Hours 0.21 1.26 0.49 1 1.16 0.84 1.20 1.24 0.54 1.01 1.31 0.45 1.06 1.28 0.50 1.03 1.33 0.55 1.17
CKM, o = 6 (Frisch elasticity=0.63)
Prod. 0.36 0.30 0.08 1 0.29 0.11 1.67 0.31 0.08 0.95 0.29 0.08 1.04 0.29 0.09 1.21 0.30 0.09 1.24
Hours 0.05 0.12 0.17 1 0.12 0.20 1.35 0.11 0.17 0.92 0.13 0.17 0.97 0.12 0.17 1.02 0.14 0.18 1.11
CKM, o0;/2
Prod. 0.34 0.25 0.10 1 0.25 0.12 1.45 0.26 0.10 0.93 0.25 0.09 1.06 0.25 0.10 1.07 0.25 0.10 1.17
Hours 0.14 0.26 0.22 1 0.26 0.26 1.35 0.24 0.21 0.88 0.27 0.21 0.97 0.26 0.22 1.01 0.28 0.23 1.19
CKM, o,/3
Prod. 0.34 0.28 0.07 1 0.28 0.09 1.63 0.29 0.07 0.89 0.28 0.07 1.08 0.28 0.07 1.13 0.28 0.07 1.11
Hours 0.14 0.18 0.15 1 0.18 0.18 1.44 0.17 0.14 0.87 0.19 0.14 0.96 0.18 0.15 1.01 0.20 0.16 1.14

Percent contemporaneous impact on productivity and hours of one standard deviation shock to technology.
The entries are Monte Carlo means and standard deviations. MSEs are relative to the MSE of the SVAR.
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Figure 2.1: Mean impulse response (- -), true impulse response (—) and 95% intervals of
hours worked to one standard deviation shock to technology for the VAR and the CCA
subspace algorithm.
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Figure 2.2: Mean impulse response (- -), true impulse response (—) and 95% intervals of
standard deviation shock to technology for the VAR and the CCA
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Chapter 3

A Comparison of Estimation
Methods for Vector Autoregressive

Moving-Average Models

3.1 Introduction

Although vector autoregressive moving-average (VARMA) models have theoretical and prac-
tical advantages compared to simpler vector autoregressive (VAR) models, VARMA models
are rarely used in applied macroeconomic work. One likely reason is that the estimation of
these models is considered difficult by many researchers. While Gaussian maximum likeli-
hood estimation is theoretically attractive, it is plagued with various numerical problems.
Therefore, simpler estimation algorithms have been proposed in the literature that, however,
have not been compared systematically. In this paper some prominent estimation methods for
VARMA models are compared by means of a Monte Carlo study. Different evaluation criteria
such as the accuracy of point forecasts or the accuracy of the estimated impulse responses
are used to judge the algorithms’ performance. I focus on sample lengths and processes that
could be considered typical for macroeconomic applications.

The problem of estimating VARMA models received a lot of attention for several reasons.
While most economic relations are intrinsically nonlinear, linear models such as VARs or uni-
variate autoregressive moving-average (ARMA) models have proved to be successful in many
circumstances. They are simple and analytically tractable, while capable of reproducing com-
plex dynamics. Linear forecasts often appear to be more robust than nonlinear alternatives
and their empirical usefulness has been documented in various studies (e.g. Newbold and
Granger, 1974). Therefore, VARMA models are of interest as generalizations of successful
univariate ARMA models.

ol
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In the class of multivariate linear models, pure VARs are currently dominating in macroe-
conomic applications. These models have some drawbacks which could be overcome by the
use of the more general class of VARMA models. First, VAR models may require a rather
large lag length in order to describe a series “adequately”. This means a loss of precision
because many parameters have to be estimated. The problem could be avoided by using
VARMA models that may provide a more parsimonious description of the data generating
process (DGP). In contrast to the class of VARMA models, the class of VAR models is not
closed under linear transformations. For example, a subset of variables generated by a VAR
process is typically generated by a VARMA, not by a VAR process. The VARMA class in-
cludes many models of interest such as unobserved component models. It is well known that
linearized dynamic stochastic general equilibrium (DSGE) models imply that the variables of
interest are generated by a finite order VARMA process. Ferndndez-Villaverde et al. (2005)
show formally how DSGE models and VARMA processes are linked. Also Cooley and Dwyer
(1998) claim that modelling macroeconomic time series systematically as pure VARs is not
justified by the underlying economic theory. In sum, there are a number of theoretical reasons
to prefer VARMA modelling to VAR modelling. However, there are also some complications
that make VARMA modelling more difficult. First, VARMA representations are not unique.
That is, there are typically many parameterizations that can describe the same DGP (see
Liitkepohl, 2005). Therefore, a researcher has to choose first an identified representation. In
any case, an identified VARMA representation has to be specified by more integer-valued
parameters than a VAR representation that is determined just by one parameter, the lag
length. Thus, the search for an identified VARMA model is more complex than the speci-
fication of a VAR model. This aspect introduces additional uncertainty in the specification
stage, although specification procedures for VARMA models do exist which could be used
in a completely automatic way (Hannan and Kavalieris, 1984b; Poskitt, 1992). An identified

representation, however, is needed for consistent estimation.

Apart from a more involved specification stage, the estimation stage is also affected by the
identification problem. The literature on estimation of VARMA models focussed on maximum
likelihood methods which are asymptotically efficient (e.g. Hillmer and Tiao, 1979; Mauricio,
1995). However, the maximization of the Gaussian likelihood is not a trivial task. Numerical
problems arise in the presence of nearly not-identified models, multiple equilibria and nearly
non-invertible models. In high-dimensional, sparse systems maximum likelihood estimation
may become even infeasible. In the specification stage one usually has do examine many

different models which turn out not to be identified ex-post.

For these reasons several other estimation algorithms have been proposed in the literature.
For example, Koreisha and Pukkila (1990) proposed a generalized least squares procedure.
Kapetanios (2003) suggested an iterative least squares algorithm that uses only ordinary least

squares regressions at each iteration. Recently, subspace algorithms for state space systems,
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an equivalent representation of a VARMA process, have become popular also among econo-
metricians. Examples are the algorithms of Van Overschee and DeMoor (1994) or Larimore
(1983).! While there are nowadays several possible estimation methods available, it is not
clear which methods are preferable under which circumstances. In this study some of these
methods are compared by means of a Monte Carlo Study. Instead of focussing only on the
accuracy of the parameter estimates, I consider the use of the estimated VARMA models.
After all, a researcher might be rather interested in the accuracy of the generated forecasts
or the precision of the estimated impulse response function than in the actual parameter
estimates. I conduct Monte Carlo simulations for four different DGPs with varying sam-
ple lengths and parameterizations. Five different simple algorithms are used and compared
to maximum likelihood estimation and two benchmark VARs. The algorithms are a simple
two-stage least squares algorithm, the iterative least squares procedure of Kapetanios (2003),
the generalized least squares procedure of Koreisha and Pukkila (1990), a three-stage least
squares procedure based on Hannan and Kavalieris (1984a) and the CCA subspace algorithm
by Larimore (1983). The obtained results suggest that the algorithm of Hannan and Kava-
lieris (1984a) is the only algorithm that reliably outperforms the other algorithms and the
benchmark VARs. However, the procedure is technically not very reliable in that the algo-
rithm very often yields estimated models which are not invertible. Therefore, the algorithm
would have to be improved in order to make it an alternative tool for applied researchers.
The rest of the paper is organized as follows. In section 2 stationary VARMA processes
and state space systems are introduced and some identified parameterizations are presented.
In section 3 the different estimation algorithms are described. The setup and the results of

the Monte Carlo study are presented in section 4. Section 5 concludes.

3.2 Stationary VARMA Processes

I consider linear, time-invariant, covariance - stationary processes (y;)ez of dimension K that

allow for a VARMA (p, q) representation of the form
Aoyt = Alytfl 4+ ...+ Apytfp + Mout + Miusg—1+ ...+ Mqut,q (31)

for t € Z, p,q € No. The matrices Ao, A1,..., A, and My, M, ..., M, are of dimension
(K x K). The term u; represents a K-dimensional white noise sequence of random variables
with mean zero and nonsingular covariance matrix X. In principle, equation (3.1) should
contain an intercept term and other deterministic terms in order to account for random series
with non-zero mean and/or seasonal patterns. This has not been done here in order to
simplify the exposition of the basic properties of VARMA models and the related estimation

algorithms. For most of the algorithms discussed later, it is assumed that the mean has been

!See also the survey of Bauer (2005b).
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subtracted prior to estimation. We will also abstract from issues such as seasonality. As
will be seen later, we consider models of the form (3.1) such that Ay = My and Ay, My are
non-singular. This does not imply a loss of generality as long as no variable can be written
as a linear combination of the other variables (Liitkepohl, 2005). It can be shown that any
stationary and invertible VARMA process can then be expressed in the above form.

Let L denote the lag-operator, i.e. Ly; =y forallt € Z, A(L) = Ag— AL —...— ApLP
and M (L) = Mo+ ML+ ...+ MyL?. We can write (3.1) more compactly as

ALy, = M(L)u, t€Z. (3.2)

VARMA processes are stationary and invertible if the roots of these polynomials are all outside

the unit circle. That is, if
A)] #0, [M(2)] 0 for 2 € C, ]2 < 1

is true. These restrictions are important for the estimation and for the interpretation of
VARMA models. The first condition ensures that the process is covariance-stationary and

has an infinite moving-average or canonical moving-average representation
o0
Y = Z @iut_i == @(L)Ut, (33)
i=0

where ®(L) = A(L)"*M(L). If Ay = My is assumed, then ®) = Ix where Ix denotes an
identity matrix of dimensions K. The second condition ensures the invertibility of the process,

in particular the existence of an infinite autoregressive representation
oo
v = Y Ty i+u, (3-4)
i=1

where Ay = M is assumed and II(L) = Ix — > 50 II;L = M (L)' A(L). This representation
indicates, why a pure VAR with a large lag length might approximate processes well that are
actually generated by a VARMA system.

It is well known that the representation in (3.1) is generally not identified unless special
restrictions are imposed on the coefficient matrices (Liitkepohl, 2005). Precisely, all pairs
of polynomials A(L) and M (L) which lead to the same canonical moving-average operator
®(L) = A(L)"'M(L) are equivalent. However, uniqueness of the pair (A(L), M(L)) is
required for consistent estimation. The first possible source of non-uniqueness is that there are
common factors in the polynomials that can be canceled out. For example, in a VARMA(1, 1)

system such as

(IK - AlL)yt == (IK + MlL)’LLt
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the autoregressive and the moving-average polynomial cancel out against each other if
A1 = —M;j. In order to ensure a unique representation we have to require that there are
no common factors in both polynomials, that is A(L) and M (L) have to be left-coprime.
This property may be defined by introducing the matrix operator [A(L), M (L)] and calling
it left-coprime if the existence of operators D(L), A(L) and M (L) satisfying

D(L)[A(L), M(L)] = [A(L), M(L)] (3.5)

implies that D(L) is unimodular.? A polynomial matrix D(L) is called unimodular if its
determinant, |D(L)|, is a nonzero constant that does not depend on L. Then D(L) can only
be of finite order having a finite order inverse. This condition ensures just that a representation
is chosen for which further cancelation is not possible.

Still, the existence of many unimodular operators satisfying equation (3.5) cannot gener-
ally be ruled out. To obtain uniqueness of the autoregressive and moving-average polynomials
we have to impose further restrictions ensuring that the only feasible operator satisfying the
above equation is D(L) = Ik. Therefore, different representations have been proposed in the
literature (Hannan and Deistler, 1988; Liitkepohl, 2005). These representations impose par-
ticular restrictions on the coefficient matrices that make sure that for a given process there is
exactly one representation in the set of considered representations. We present two identified
representations which are used later.

A VARMA(p, q) is in final equations form if it can be written as
a(L)yyy = I+ M+ ...+ ML),

where a(L) :=1—a1L — ... — apLP is a scalar operator with oy # 0. The moving-average
polynomial is unrestricted apart from My = Ix. It can be shown that this representation
is uniquely identified provided that p is minimal (Liitkepohl, 2005). A disadvantage of the
final equations form is that it requires usually more parameters than other representations
in order to represent the same stochastic process and thus might not be the most efficient

representation.

2[A, B] denotes a matrix composed horizontally of two matrices A and B.
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The Echelon representation is based on the Kronecker index theory introduced by Akaike
(1974). A VARMA representation for a K-dimensional series y; is completely described by
K Kronecker indices or row degrees, (p1,...,px). Denote the elements of A(L) and M (L)
as A(L) = [agi(L)]xi and M (L) = [mp;(L)]g;- The Echelon form imposes zero-restrictions

according to

Pk
(L) = 1= o L7,
7=1

Pk
ari(L) = — Z ag; L7, for k # j,
J=Pr—Pri+1
Pk
mii(L) = kai,ij with My = Ag ,
7=0

for k,i=1,..., K. The numbers py; are given by

i 1, p; ifk>1
Pei = {mln{pk+ 7p’b}7 1 =1 k,izl,...,K,

and denote the number of free parameters in the polynomials, ay;(L), k # i. Again, it can
be shown that this representation leads to identified parameters (Hannan and Deistler, 1988).
In this setting, a measure of the overall complexity of the multiple series can be given by the
McMillian degree Z?:l p; which is also the dimension of the corresponding state vector in
a state space representation. Note that the Echelon Form with equal Kronecker indices, i.e.
p1 = p2 = ... = pg, corresponds to a standard unrestricted VARMA representation. This
is one of the most promising representations, from a theoretical point of view, since it often

leads to more parsimonious models than other representations.

There is also another representation of the same process which is algebraically equivalent.

Every process that satisfies (3.1) can also be written as a state space model of the form

Tt4+1 = Al‘t + But, (36)
yr = Cuap+uy,

where the vector x; is the so-called state vector of dimension (nx 1) and A (nxn), B (nx K),
C (K xn) are fixed coefficient matrices. Generally, the state x; is not observed. Processes that
satisfy (3.6) can be shown to have a VARMA representation (see, e.g., Aoki, 1989; Hannan
and Deistler, 1988). In the appendix it is illustrated how a VARMA model can be written in

state space form and how a state space model can define a VARMA model.

Also the state space representation is not identified unless restrictions on the parameter

matrices are imposed. Analogously to the VARMA case, we first have to rule out over-
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parametrization by requiring that the order of the state vector, n, is minimal. Still, this does
not determine a unique set (A, B,C) for a given process. To see this, consider multiplying
the state vector by a nonsingular matrix T and define a new state vector s; := Tx;. The

redefinition of the state leads to another state space representation given by

sty1 = TAT ls, + TBu,,
y = CT 's; +us.

Thus, the problem is to pin down a basis for the state x;. There are various canonical
parameterizations, among them parameterizations based on Echelon canonical forms. We
briefly discuss here balanced canonical forms, in particular stochastic balancing, because it is

used later in one of the estimation algorithms.

The discussion on stochastic balancing is based on Desai, Pal and Kirkpatrick (1985) and
the introduction in Bauer (2005a). Define the observability matrix O := [C”, A'C’, (A2)'C’,..]
and the matrix K := [B, (A — BO)B, (A — BC)?B,...]. The unique parametrization is de-
fined in terms of these matrices. Define as well an infinite vector of future observations as
Y," = (y},yi41,-..) and an infinite vector of past observations as Y, = (y;_1,¥)_o,...)"
Define analogously the vector of future residuals, U;”. Note that from (3.6) we can represent

the state as a function of all past observations as
Tt = ,C}/t_,

provided that the eigenvalues of (A — BC') are less than one in modulus. The covariance
matrix of the state vector is therefore given by Elxix}] = KE[Y, (Y, )]K' = KT K', where
' := E[Y, (Y,7)']. Given a state space system as in (3.6), there is also another representation

which is called backward innovation model

z = Az +Nfy,
vy = Mz + fi,

where time “runs backwards” and A is as in (3.6) and N (n x K), M (n x K) are functions
of (A, B,C), in particular M = E[zy,_;]. The error f; can be interpreted as the one-step
ahead forecast error from predicting y; given future observations. One can show that the
variance of the backward state is given by E[zz;] = O'(E[Y,7(Y,7)]) 10 = O'(TL) 10,
where T'Y, := E[Y,;7(Y;7)].

Equipped with these definitions, we say that (A, B,C) and X is a stochastically balanced
system if Elzix}] = Elzz;] = diag(o1,...,0pn), with 1 > 01 > 09 > ... > 0, > 0. Also
stochastically balanced systems are not unique. Uniqueness can however be obtained by

determining the matrices O and K by means of the identification restrictions implicit in the
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singular value decomposition (SVD) for a given covariance sequence.

For doing so, introduce the Hankel matrix of autocovariances of 1

(1) 7(2) A(3)

7(2) ~(3)
H:=E[Y,"(Y,)] = ,
= |
where v(j) := E[ytyg_j], j=1,2,... are the covariance matrices of the process y;. Using the
relation H = OKT', a stochastically balanced representation can be obtained by using the
SVD of

()2 [(00) 2] = UasaVi

Setting O = (Fjo)l/QUnSTlL/2 and K = S}/QVTZ(FO*O)*UQ, the associated system is in balanced
form with E[z;7}] = E[z2)] = S,.3 From the definition of the parametrization one can see
that it is not easy to incorporate prior knowledge of parameter restrictions.

While the VARMA and the state space representation are equivalent in an algebraic
sense, they lead to other estimation techniques and therefore differ in a statistical sense.
These models have become popular because of their conceptional simplicity and because they
allow for estimation algorithms, namely so-called subspace methods, that possess very good
numerical properties. See also Deistler, Peternell and Scherrer (1995) and Bauer (2005b) for
some of the properties of subspace algorithms. It is claimed that these methods are very
successful in estimating multivariate linear systems. Therefore, subspace methods are also
considered as potential competitors to estimation techniques which rely on the more standard
VARMA representation.

3.3 Description of Estimation Methods

In the following, a short description of the examined algorithms is given. Obviously, one
cannot consider each and every existing algorithm but only a few popular algorithms. The
hope is that the performance of these algorithms indicate how their variants would work.
Throughout it is assumed that the data has been mean-adjusted prior to estimation. In
the following, I do not distinguish between raw data and mean-adjusted data for notational
ease. Most of the algorithms are discussed based on the general representation (3.1) and
throughout it is assumed that restrictions are imposed on the parameter vector of the VARMA
model. That is, the coefficient matrices are assumed to be restricted according to the final

equations form or the Echelon form. I adopt the following notation. The observed sample is

3The square root of a matrix X, Y = X'/? is defined such that YY"’ = X.
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Y1,Y2,--.,yr. 1 denote the vector of total parameters by 3 (K2(p 4 q) x 1) and the vector
of free parameters by 7. Let the dimension of v be given by n,. Let A := [Ay,...,Ap] and
M := [My,..., M,] be matrices collecting the autoregressive and moving-average coefficient

matrices, respectively. Define
B :=vec[lg — Ao, A, M],

where vec denotes the operator that transforms a matrix to a column vector by stacking the
columns of the matrix below each other. This particular order of the free parameters allows to
formulate many of the following estimation methods as standard linear regression problems.
Ap is assumed to be either the identity matrix or to satisfy the restrictions imposed by the
Echelon representation. To consider zero and equality restrictions on the parameters, define
a ((K%(p+q)) x n,) matrix R such that

B =Ry. (3.7)

This notation is equivalent to the explicit formulation of restrictions on 3 such as C3 = ¢ for
suitable matrices C' and c¢. The above notation, however, is advantageous for the representa-

tion of the estimation algorithms.

Two-Stage Least Squares (2SLS) This is the simplest method. The idea is to use the
infinite VAR representation in (3.4) in order to estimate the residuals u; in a first step. In
finite samples, a good approximation is a finite order VAR, provided that the process is of low
order and the roots of the moving-average polynomial are not too close to unity in modulus.

The first step of the algorithm consists of a preliminary long autoregression of the type
nr
Yt = Z ye—i + ug, (3.8)
i=1

where np is the lag length that is required to increase with the sample size, T'. In the second

stage, the residuals from (3.8), ﬁgo), are plugged in (3.1). After rearranging (3.1), one gets

v = (g —Ao)|yt — aEO)] + Ay 4.+ Ay

O, + ut, (3.9)

+Myal” 4+ M
where Ag = My has been used. Write the above equation compactly as

Yt = [IK - A07A7M]Yt(70% + Ut,
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where

(e —a”)
Yt—1

Collecting all observations we get
Y = [Ix — Ag, A, M| X© 11, (3.10)

where Y := [Ynyp+m+1s---,y7], U = [Ungptm+1,--.,ur| is the matrix of regression errors,
X©) .= [Yn(g)er, cel YT(,O_)I] and m := max{p, ¢}. Thus, the regression is started at np+m+1.
One could also start simply at m + 1, setting the initial errors to zero but we have decided

not to do so. Vectorizing equation (3.10) yields
vee(Y) = (X' @ I) Ry + vec(U),

and the 2SLS estimator is defined as

5= R(XOXO0 g S HRR(X® @ S Vvee(Y). (3.11)

S : . . . ~(0
where Y is the covariance matrix estimator based on the residuals u,g )

. The corresponding
estimated matrices are denoted by Ay, Ay, .. .,flp and My, M, . .. ,Mq, respectively. Alter-

natively, one may also plug in the estimated current innovation ﬁgo) in (3.9), define a new

regression error, say &, and regress y; — ﬂgo) on Yt(ﬂ Existing Monte Carlo studies though
indicate that the difference between both variants is of minor importance (Koreisha and
Pukkila, 1989).

For univariate and multivariate models different selection rules for the lag length of the ini-
tial autoregression have been proposed. For example, Hannan and Kavalieris (1984a) propose
to select ny by AIC or BIC, while Koreisha and Pukkila (1990) propose choosing np = /T
or ny = 0.5v/T. In general, choosing a higher value for ny increases the risk of obtaining
non-invertible or non-stationary estimated models (Koreisha and Pukkila, 1990). Liitkepohl
and Poskitt (1996) propose for multivariate, non-seasonal data a value between logT and
VT. Throughout the whole paper we employ ny = 0.5v/T.*

4Since this algorithm provides also starting values for other algorithms, it is quite important that the
resulting estimated VARMA model is invertible. In case the initial estimate does not imply an invertible
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Hannan-Kavalieris-Procedure (3SLS) This method adds a third stage to the procedure
just described. It goes originally back to Durbin (1960) and has been introduced by Hannan
and Kavalieris (1984a) for multivariate processes.” It is a Gauss-Newton procedure to maxi-
mize the likelihood function conditional on y; = 0, u; = 0 for ¢ < 0 but its first iteration has
been sometimes interpreted as a three-stage least squares procedure (Dufour and Pelletier
(2004)). The method is computationally very easy to implement because of its recursive na-
ture. Corresponding to the estimates of the 2SLS algorithm, new residuals, ¢; (K x 1), are
formed. One step of the Gauss-Newton iteration is performed starting from these estimates.

For this reason, matrices, & (K x 1), n; (K x 1) and X; (K x n,) are calculated according to

p q
~ 71 ~ ~ ~
g = Ao Aoyt — ZAjyt—j - Z Mjei—j |,
j=1 j=1
~ _1 ~
& = A =) Mg j+e |,
j=1
~ _1 q ~
mo= Ao | =D Mym_j+uy |,
j=1
A ~ —1 d ~ ~ ~
Xt = Ao - ZMth—j + (Y ®Ix)R |,
j=1

fort=1,2,...,Tand ys = e = & = 1 = Ogx1 and Xt =0k xn, for t <0 and }7} is structured

as Yt(o) with e; in place of ﬂgo). Given these quantities, we compute the 3SLS estimate as

T L/

Y= <Z Xt/1§t_1Xt—1> (Z XiaS e +m - ft)) ;
m+1 m+1

where & := T~ Y e,e}, m := max{p, ¢} as before and the estimated coefficient matrices are

denoted by AO,Al, e ,flp and Ml,MQ, .. .,Mq, respectively. While the 2SLS estimator is

not asymptotically efficient, the 3SLS is, because it performs one iteration of a conditional

maximum likelihood procedure starting from the estimates of the 2SLS procedure.

Hannan and Kavalieris (1984b) showed consistency and asymptotic normality of these
estimators. Dufour and Pelletier (2004) extend these results to even more general condi-
tions. The Monte Carlo evidence presented by Dufour and Pelletier (2004) indicates that
this estimator represents a good alternative to maximum likelihood in finite samples. It is

possible to use this procedure iteratively, starting the above recursions in the second iteration

VARMA model, different lag lengths are tried in order to obtain an invertible model. If this procedure fails,
the estimated moving-average polynomial, say M (L), is replace by My (L) = Mo + A(M (L) — M), X € (0,1).
The latter case occurs in less than 0.1 % of the cases.

5See also Hannan and Deistler (1988), sections 6.5, 6.7, for an extensive discussion.
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with the newly obtained parameter estimates in 4 from the 3SLS procedure, and so on until

convergence.

Generalized Least Squares (GLS) Also this procedure has three stages. Koreisha and
Pukkila (1990a) proposed this procedure for univariate ARMA models and Kavalieris, Hannan
and Salau (2003) proved efficiency of the GLS estimates in this case. See also Flores de Frutos
and Serrano (2002). The motivation is the same as for the 2SLS estimator. Given consistent
estimates of the residuals, we can estimate the parameters of the VARMA representation
by least squares. However, Koreisha and Pukkila (1990a) note that in finite samples the
residuals are estimated with error. This implies that the actual regression error is serially
correlated in a particular way due to the structure of the underlying VARMA process. The
GLS procedure tries to take this into account. I consider a multivariate generalization of the
same procedure. In the first stage, preliminary estimates of the innovations are obtained by
a long autoregression as in (3.8). Koreisha and Pukkila (1990a) assume that the residuals
obtained from (3.8) estimate the true residuals up to an uncorrelated error term, u; = ﬁio) +et.

If this expression is inserted in (3.1), one obtains

p q
A = Y A+ Ao +e) + > M), + &),

=1 j=1
0 . 0
v = (Ix —Ao)(ye — ") + ZAjyt—j +af”
j=1
q . q
+ Z M]ﬂgjj -+ A()Et + Z Mjet_j,
=1 =1

P
g — a0l = (I— Aoy — ")+ Ay
7=1

q
+3 Ml + ¢ (3.12)
j=1

As can be seen from these equations, the error term, (3, in a regression of y; on its lagged values
and estimated residuals ﬁgo) is not uncorrelated but is a moving-average process of order g,
(¢ = Ager + 23:1 Mje_j = & + Z?:l MjAo_lé_j, where € := Ape;. Thus, a least squares
regression in (3.12) is not efficient. Koreisha and Pukkila (1990a) propose the following
three-stage algorithm to take the correlation structure of (; into account. In the first stage
the residuals are estimated using a long autoregression. In the second stage one estimates the
coefficients in (3.12) by ordinary least squares: Let z; := y; —ﬁgo) and Z = [Zpnptm+1s - - - 27

The second stage estimate is given analogously to the 2SLS final estimate by

§ = [R(XOXY @ 1) R R(X ) @ ) vee(2),
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and the residuals are computed in the usual way, that is

z )’ z

G=2z— (Y, ®Ix)Ry.

The covariance matrix of these residuals, 3¢ := E[G(}], is estimated as X = T~ th(ft)’ .
From the relations ¢ = Ager + Mier—1+ ...+ Mge—q and ¢ = AgSAH+ ... + MqEEMé one

can retrieve

a -\ ¢ 3
vee(3.) = <Z(Mz ® Mz)) vec(X¢),

1=0

where the Mj are formed from the corresponding elements in 4. These estimates are then
used to build the covariance matrix of ¢ = ((},,. 4,11 ---Cp)'- Let ® := E[(('] and denote its

estimate by ®. In the third stage, we re-estimate (3.12) by GLS using ®:
;y = [R/(X(O) ® IK)i)_l(X(O)/ 2 IK)R]—lR/(X(O) ® IK)(i)_lvec(Z).

In comparison to the 2SLS estimator the main difference lies in the GLS weighting with &1,
Given ’:y one could calculate new estimates of the residuals (; and update the estimate of the
covariance matrix. Given these quantities one would obtain a new estimate of the parameter

vector and so on until convergence.b

Iterative Least Squares (IOLS) The suggestion made by Kapetanios (2003) is simply to
use the 2SLS algorithm iteratively. Denote the estimate of the 2SLS procedure by 5. We

may obtain new residuals by
vee(UM) = vee(Y) — (X(O)/ ® Igx)RYW.

Therefore, it is possible to set up a new matrix of regressors X (1) that is of the same structure
as X©) but uses the newly obtained estimates of the residuals 1251) in UM, Generalized least

squares as in (3.11) in
vee(Y) = (X' ® Ic) Ry + vec(U)

yields a new estimate 2. Denote the vector of estimated residuals at the it" iteration by
U@, Then we iterate least squares regressions until ||U -1 U(i)H < c according to some
pre-specified number c. In contrast to the above-mentioned regression-based procedures, the

IOLS procedure is iterative but the computational load is still minimal.

5The evidence given by Koreisha and Pukkila (1990a), however, suggests that further iterations do have a
negligible effect. This is also the experience of the present author. The results presented here are therefore
given for the first iteration of the GLS procedure.
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Maximum Likelihood Estimation (MLE) The dominant approach to the estimation

of VARMA models has been of course maximum likelihood estimation. Given a sample,

Y1, ..., y1, the Gaussian likelihood conditional on initial values can be easily set up as

T
) = D k()
=1

where
K 1 1 _
W(y) = =5 log2r — S log[] = Su(1)X w(y),
u(y) = Mgl(Aoyt - Ay — .. — pYt—p
—Myup—1(y) — ... — Mqut,q(’y)).

The initial values for y; and u; are assumed to be fixed equal to zero (see Liitkepohl, 2005).
These assumptions introduce a negligible bias if the orders of the VARMA model are low
and the roots of the moving-average polynomial are not close to the unit circle. In contrast,
exact maximum likelihood estimation does consider the exact, unconditional likelihood that
backcasts the initial values. The formulation of this procedure requires some considerable
investment in notation and can be found for example in Reinsel (1993). Since processes with
large moving-average eigenvalues are also investigated, exact maximum likelihood estimation
is considered. The procedure is implemented using the time series package 4.0 in GAUSS.
The algorithm is based upon the formulation of Mauricio (1995) and uses a modified Newton-
algorithm. The starting values are the true parameter values and therefore the results from
the exact maximum likelihood procedure must be regarded as a benchmark than as a realistic

estimation alternative.

Subspace Algorithms (CCA) Subspace algorithms rely on the state space representation
of a linear system. There are many ways to estimate a state space model, e.g., Kalman-based
maximum likelihood methods and subspace identification methods such as N4SID of Van
Overschee and DeMoor (1994) or the CCA method of Larimore (1983). In addition, many
variants of the standard subspace algorithms have been proposed in the literature. I focus only
on one subspace algorithm, the CCA algorithm. The algorithm is asymptotically equivalent
to maximum likelihood and was previously found to be remarkably accurate in small samples
and is likely to be well suited for econometric applications (see Bauer, 2005b). The general
motivation for the use of subspace algorithms lies in the fact that if we knew the unobserved

state, x;, we could estimate the system matrices, A, B, C, by linear regressions as can be seen
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from the basic equations

Ti+1 = AIL’t + But

vy = Cxp+ uy.

Given knowledge of the state, estimates, C' and 4, could be obtained by a regression of y;
on x; and A and B could be obtained by a regression of x;y1 on z; and ;. Therefore, one
obtains in a first step an estimate of the n-dimensional state, Z;. This is analogous to the idea
of a long autoregression in VARMA models that estimates the residuals in a first step that is
followed by a least squares regression. Solving the state space equations, one can express the

state as a function of past observations of 4, and an initial state for some integer p > 0 as

p—1
2, = (A= BC)Pz;_y+ Y (A= BC)' By 1,
=0

where Ky = [B, (A — BC)B,...,(A — BC)*"'B] and Yio = Wi—1,--»¥i—p|’- On the other
hand, one can express future observations as a function of the current state and future noise
as

j—1

v = CAzit+ ) CABupgjion +ur. (3.14)
=0

Therefore, at each ¢, the best predictor of y4; is a function of the current state only, C A7z,
and thus the state summarizes in a certain sense all available information in the past up to

time t.

Define Y, = [y}, ... +Ypy p—q) for some integer f > 0 and formulate equation (3.14) for all
observations contained in Y;} simultaneously. Combine these equations with (3.13) in order
to obtain

Y+

vr = OrKYi, + Op(A— BCPPayp + Er B/

where Oy = [C", A'C’,..., (A1) C"Y, Et+,f = [u,. .., up 4] and & is a function of the
system matrices. The above equation is central for most subspace algorithms. Note that if
the maximum eigenvalue of (A— BC) is less than one in absolute value we have (A—BC)? ~ 0
for large p. This condition is called the minimum phase assumption. This reasoning motivates
an approximation of the above equation given by

Y+

o= B+ N (3.15)
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where 3 = O;K, and N:f is defined by the equation. Most popular subspace algorithms
use this equation to obtain an estimate of 8 which is decomposed into Oy and Kp. The
identification problem is solved implicitly during this step. Different algorithms use these
matrices differently to obtain an estimate of the state. Given an estimate of the state, the

system matrices are recovered.

For given integers n, p, f, the employed algorithm consists of the following steps :

1. Set up Y;} and Y;, and perform OLS in (3.15) using the available data to get an
estimate Bf,p-

2. Compute the sample covariances

T—f+1

STV B = 3 Vi),

Trp t=p+1 R )

where Ty, =T — f —p+ 1.

3. Given the dimension of the state, n, compute the singular value decomposition

(2B, (T2 = UnZ Vi + R,
where 3, is a diagonal matrix that contains the n largest singular values and U, and

V,, are the corresponding singular vectors. The remaining singular values are neglected

and the approximation error is R,,. The reduced rank matrices are obtained as

Op = [(THV20.57,
Ko = [EY2V(,)"V2.

4. Estimate the state as 2; = IepY;; and estimate the system matrices using linear regres-

sions as described above.

Although the algorithm looks quite complicated at first sight, it is actually very simple and is
regarded to lead to numerically stable and accurate estimates. There are certain parameters
which have to be determined before estimation. While the order of the system is given by the
simulated process, the integers f,p have to be chosen deterministically or data-dependent.
For example, Deistler et al. (1995) advocated choosing f = p = dppjc for some d > 1, while
in the paper of Bauer (2005a) f = p = 2pasc is suggested, where pprc and parc are the
orders chosen by the BIC and AIC criterion for an autoregressive approximation, respectively.

Here f = p = 2pajc is employed.
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3.4 Monte Carlo Study

I compare the performance of the different estimation methods using a variety of measures
that could reveal possible gains of VARMA modelling. Namely, the parameter estimation
precision, the accuracy of point forecasts and the precision of the estimated impulse responses
are compared. These measures are related. For instance, one would expect that an algorithm
that yields accurate parameter estimates performs also well in a forecasting exercise. However,
it is also known that simple univariate models such as an AR(1) can outperform much more
general models or even the correct model in terms of forecasting precision. This phenomenon
is simply due to the limited information in small samples. Analogously, algorithms that may
be asymptotically sub-optimal, may still be preferable when it comes to forecasting in small
samples. With the sample size tending to infinity, the more exact algorithms will also yield
better forecasts, but this might not be true for the small sample sizes investigated. While
it is not clear a priori whether there are important differences with respect to the different
measures used, it is worth investigating these issues separately in order to uncover potential
advantages or disadvantages of the algorithms.

Apart from the performance measures mentioned above, I am also interested in the “tech-
nical reliability” of the algorithms. This is not a trivial issue as the results will make clear.
The most relevant statistic is the number of cases when the algorithms yielded non-invertible
VARMA models. In this case the resulting residuals cannot be interpreted as prediction
errors anymore. For the IOLS algorithm another relevant statistic is the number of cases
when the iterations did not converge. These statistics are defined more precisely in section
3.4.3. In both cases and for all algorithms the estimates of the 2SLS procedure are adopted
as the result of the particular algorithm for the corresponding replication of the simulation
experiment.

I consider various processes and variations of them as described below. For all data
generating processes I simulate N = 1000 series of length 7" = 100 and 7" = 200. The index
n refers to a particular replication of the simulation experiment. The sample sizes represent
typical lengths of data in macroeconomic time series applications. The investigated processes
include small-dimensional and higher-dimensional systems. I consider mostly processes that
have been used in the literature to demonstrate the virtue of specific algorithms but I also

consider an example taken from estimated processes.

3.4.1 Performance Measures
Parameter Estimates

The accuracy of the different parameter estimates are compared. The parameters may be of
independent interest to the researcher. Denote by 44, the estimate of v obtained by some

algorithm A at the nth replication of the simulation experiment. One would like to summarize
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the accuracy of an estimator by a weighted average of its squared deviations from the true

value. That is, for each algorithm the following statistic is computed

N

1 . 14
MSE.A = N Z(’YA,n - ’7)/271(7A,n - 7)'

n=1

Here, Y, denotes the large sample variance of the parameter estimates obtained by exact
maximum likelihood. In order to ease interpretation, we compute the ratio of the MSE of a

particular algorithm relative to the mean squared error of the MLE method:

MSE 4
MSEyrE

Forecasting

Forecasting is one of the main objectives in time series modelling. To assess the forecasting
power of different VARMA estimation algorithms I compare forecast mean squared errors
(FMSE) of 1-step and 4-step ahead out-of-sample forecasts. I calculate the FMSE at horizon
h for the algorithm A as

N
1 . 1 "
FMSE4(h) = N Z(yTJrh,n — Ursnrn) En (YT+hn — UTnTon);

n=1
where yripy, is the value of y; at 7'+ h for the nth replication and §r,p 7, denotes the
corresponding h-step ahead forecast at origin 7', where the dependence on A is suppressed.
The covariance matrix Y refers to the corresponding theoretical h-step ahead forecast error
obtained by using the true model with known parameters based on the information set Qp =

{ys|s < T}, that is, on all past data. Then the forecast MSE matrix turns out to be

h—1
Y, = Z ;NP
i=0
For given estimated parameters and a finite sample at hand, the white noise sequence u; can
be estimated recursively, using the past data as u; = y; —Aal (Zle Ajyi—j + 2321 Mjut,]),
given some appropriate starting values, ug,u_1,...,u—¢+1 and yo,y—1,...,Y—p+1. These are
computed using the algorithm of Mauricio (1995). The obtained residuals, 4y, are used to

compute the forecasts recursively, according to

p q

N 1 N N

Yrenr = Ag E A n—jr + E Mjirin—j |,
j=1 j=h
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for h = 1,...,q. For h > g, the forecast is simply gy pr = Aal 25:1 Ajgrin—jr- The
forecast precision of an algorithm A is measured relative to the unrestricted long VAR ap-

proximation:

FMSE4(h)
FMSEvar(h)

In addition, I also compute the FMSE of a standard unrestricted VAR with lag length chosen
by the AIC criterion in order to assess the potential merits of VARMA modelling compared
to standard VAR modelling.

Impulse Response Analysis

Researchers might also be interested in the accuracy of the estimated impulse response func-
tion as in (3.3),

> @y = O(L)u,
=0

since it displays the propagation of shocks to y; over time. To assess the accuracy of the esti-
mated impulse response function I compute impulse response mean squared errors (IRMSE)
at two different horizons, h = 1 and h = 4. Let ¢, = vec(®,) denote the vector of responses
of the system to shocks h periods ago. A measure of the accuracy of the estimated impulse

responses is
1 & \
IRMSE(h) = Z_j Y = bnn) Sy (Un = rn),

where 1y, is the theoretical response of y; to shocks in u; and @@h’n is the estimated response.
Yy.n is the asymptotic variance-covariance matrix of the impulse response function estimates
obtained by maximum likelihood estimation. The precision of the estimated responses are

again measured relative to the long VAR:

IRMSE 4(h)
IRMSEvyar(h)’

Also in this case, the results for a VAR with lag length chosen by the AIC criterion are

computed.
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3.4.2 Generated Systems
Small-Dimensional Systems
DGP I: The first two-dimensional process has been taken from Kapetanios (2003). This is

a simple bivariate system in final equations form and was used in Kapetanios’s (2003) paper

to demonstrate the virtues of the IOLS procedure. Precisely, the process is given by

a1 0 i 4 m1171 —0.20
= _ U Up—
Yt 0 a Yt—1 t 0.15  mas, t—1

2:((1) 1).

This is an admittedly very simple process that is supposed to give an advantage to the IOLS

and

procedure and also serves as a best case scenario for the VARMA algorithms because of its

simplicity.

The autoregressive polynomial has one eigenvalue and the moving-average polynomial
has two distinct eigenvalues different from zero. Denote the eigenvalues of the autoregressive
and moving-average part by A*" and A%, respectively. These eigenvalues are varied and the
remaining parameters, aq, mi11 and maoa ;1 are set accordingly. For this and the following
DGPs, I consider parameterizations with medium eigenvalues (M EV), large positive autore-
gressive eigenvalues (LPARFEV), large negative autoregressive eigenvalues (LN AREV'), large
positive moving-average eigenvalues (LPMAEV') and large negative moving-average eigen-
values (LNMAEV). The parameter values corresponding to the different parameterizations
can be found in table 3.1 for all DGPs.

For the present process the M EV parametrization corresponds to the original process
used in Kapetanios’s (2003) paper, with aq = 0.2, my1; = 0.25 and mgp; = —0.10. I fit
restricted VARMA models in final equations form to the data. This gives a slight advantage
to algorithms based on the VARMA formulation since in this case the CCA method has to
estimated relatively more parameters. For the CCA method the dimension of the state vector

is set to the true McMillian degree which is two.

DGP II: The second DGP is based on an empirical example taken from Liitkepohl (2005).
A VARMA (2,2) model is fitted to West-German income and consumption data. The variables

were the first differences of log income, y1, and log consumption, ys. More specifically, a
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VARMA (2,2) model with Kronecker indices (p1,p2) = (0,2) was assumed such that

0 0 0 0
Yt = Yt—1 + Yt—2 + Uy
0 w921 0 a9
0 0 0 0
+ Ug—1 + Ut—2
0.31 Tn2271 0.14 m2272

1.44 »
e x 1074,
0.57 0.82

While the autoregressive part has two distinct, real roots, the moving-average polynomial

and

has two complex conjugate roots in the original specification. We vary again some of the
parameters in order to obtain different eigenvalues. In particular, we maintain the property

that the process has two complex moving-average eigenvalues which are less than one in

modulus.
The MEV parametrization corresponds to the estimated process with age; = 0.23,
a2 = 0.06, maa1 = —0.75 and 12 = 0.16. These values imply the following eigen-

values A{" = 0.385 A\§" = —0.159, A\T"* = 0.375 4 0.1397, AJ*® = 0.375 — 0.139:. Restricted

VARMA models with restrictions given by the Kronecker indices were used.

Higher-Dimensional Systems

DGP III: T consider a three-dimensional system that was used extensively in the literature
by, e.g., Koreisha and Pukkila (1989), Flores de Frutos and Serrano (2002) and others for
illustrative purposes. Koreisha and Pukkila (1989) argue that the chosen model is typical
for real data applications in that the density of nonzero elements is low, the variation in
magnitude of parameter values is broad and feedback mechanisms are complex. The data is

generated according to

a1 000 0 1.1 0
Yt = 0 0 Olyt—1t+u+1]0 m22,1 0 Up—1
0 04 0 0 0 0.5
and
1
X=1-07 1
04 0 1
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The Kronecker indices are given by (p1,p2,p3) = (1,1,1) and corresponding VARMA models
are fit to the data. While this DGP is of higher dimension, the associated parameter matrices
are more sparse. This property is reflected in the fact that the autoregressive polynomial and
the moving-average polynomial have both only one root different from zero.

The parameters aq1;1 and moo 1 are varied in order to generate particular eigenvalues
of the autoregressive and moving-average polynomials as in the foregoing examples. The
MEYV specification corresponds to the process used in Koreisha and Pukkila (1989) and has
eigenvalues A*" = 0.7 and AT*® = —0.6 and A\J*® = 0.5.

DGP 1V: This process has been used in the simulation studies of Koreisha and Pukkila
(1987). The process is similar to the DGP III and is thought to typify many practical real
data applications. In this study it is used in particular to investigate the performance of
the algorithms for the case of high-dimensional systems. The five variables are generated
according to the following VARMA (1,1) structure

a0 0 00 0 00 —-11 0
0 0 08 0 0 0O 00 O -0.2
Y = 0 -04 0 O Of|y—1+w+| O O 0 O 0 U1
0 0 0 00 055 0 0 —0.8 0
0.2 0 0 00 0 00 0 mss1
and
1
02 1
YX=]10 0 1
0 0 07 1
0 0 0 —-04 1

The true Kronecker indices are (p1,p2,ps3,p4,p5) = (1,1,1,1,1) and corresponding VARMA
models in Echelon form are fit to the data. The MEV parametrization corresponds to the one
used by Koreisha and Pukkila (1987). That is, aq1,1 = 0.5 and ms5 1 = —0.6 with eigenvalues
A" =0.5, \§" =0=£140.57, A\T"* = —0.6 and A\5** = —0.4 £10.67.

3.4.3 Results

The results are summarized in tables 3.2 to 3.5 and figures 3.1 to 3.8. The tables show
the frequency of cases when the algorithms failed for different reasons. The figures plot the
various MSE ratios discussed above.

Table 3.2 and table 3.3 display the frequency of cases when the algorithms yielded models

that were not invertible or, in the case of the CCA algorithm, violated the minimum phase
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assumption for sample sizes T = 100 and 7" = 200, respectively. Apart from these cases,
there are also cases when the IOLS algorithm did not converge. The IOLS algorithm is
regarded as non-convergent if it did not converge after 500 iterations. Furthermore, there
are some very rare instances when the GLS algorithm returned estimated models that were
extremely far from the true process (0.8 % in DGP III, LNMAEV, T=200). The tables 3.4
and 3.5 show the frequency of cases when the algorithms failed for one of the mentioned
reasons in order to give a comprehensive picture of the reliability of the algorithms. First, as
expected, the algorithms yield non-invertible models more frequently when the eigenvalues of
the moving-average polynomial are close to one in absolute value, in particular in the case of
large negative eigenvalues. Furthermore, as the number of estimated parameters increases,
the algorithms yield non-invertible models more often. For 200 observations all algorithms
become much more reliable in the sense that the number of estimated non-invertible models
is much reduced. The most reliable algorithms are 2SLS, GLS and CCA. In particular, GLS
and CCA yield non-invertible models for all algorithms and sample sizes in less than 1% of
the replications. The 3SLS and the IOLS algorithm are the less reliable algorithms, although
the IOLS algorithm can be quite stable. For particular DGPs, 3SLS can occasionally yield
non-invertible models in more than 10 % of the cases. For some DGPs the IOLS algorithm
does not converge relative frequently, but the problem becomes much less severe when the

number of observations is increased to 7' = 200 as can be seen from tables 3.4 and 3.5.

With respect to parameter estimation accuracy, the differences between the algorithms
are generally more pronounced when the moving-average polynomial has eigenvalues that
are close to one in absolute value. The differences become also more pronounced when the
number of observations increases but the ranking of the algorithms remains unchanged, in
general. The 2SLS algorithm is dominated by the other algorithms, aside from one case
(DGP III, LNMAEV). The parameter estimation accuracy of the GLS estimator is much
better but close to the accuracy of the 2SLS algorithm for higher-order processes, although
in cases with large negative moving-average eigenvalues the estimator might be relatively
accurate. The IOLS estimator is in most cases much better than 2SLS and its advantage
becomes most pronounced in the high-dimensional case IV. Compared to the GLS algorithm,
IOLS can be worse for small-dimensional systems but the ranking changes for the higher
dimensional processes. The 3SLS estimator is always superior to any other method, apart
from MLE. In particular, the 3SLS method is much better when the number of estimated
parameters increases, that is for DGP III and IV. However, the MLE method is in this context
much more accurate and is often twice as good as the 3SLS method. Summarizing, the 3SLS
procedure is the best alternative to MLE despite the high number of cases when the algorithm
yielded non-invertible model. Nevertheless, even the best alternative can be quite imprecise
compared to MLE. This does not necessarily mean that 3SLS is not a relatively good estimator

because the MLE procedure starts with the true parameter values and therefore the procedure
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represents an ideal case in this context.

The differences in terms of forecasting precision are less pronounced. Additionally, even
though some algorithms do estimate the parameters more accurately than others, they are not
necessarily superior in terms of forecasting accuracy. The ranking might change. Not surpris-
ingly, in almost all cases the VARMA algorithms do better than the benchmark long VAR. In
most cases, the VARMA algorithms also display smaller MSE ratios than a VAR chosen by
AIC. However, given that the orders of the VARMA models are fixed and correspond to the
true orders, the comparison is biased in favor of VARMA modelling. Increasing the forecast
horizon, does reduce the differences between the different algorithms. The same is true when
more observations are available. Increasing the complexity in terms of Kronecker indices does
have minor effects. The forecasts obtained by the CCA method are often comparable but often
also inferior to the forecasts obtained by other algorithms. In particular, the CCA forecasts
are often inferior for the one-step forecast horizons. The 2SLS estimator yields usually better
forecasts than the CCA forecasts and comparable but sometimes slightly worse forecast than
the other VARMA algorithms. The GLS and the IOLS procedure do quite well in forecasting
depending on the specific DGP and number of observations. The 3SLS procedure, however,
seems to be slightly preferable. The MLE method is always superior to all simple algorithms
apart from one case, DGP III, LNMAEV with T" = 100, where its MSE is roughly three times
as large as the MSE of the other VARMA algorithms. In this case, the MSE ratio for the
MLE procedure is not shown on the graph since this would imply loosing important details
in other parts. In general, however, the differences are small, in particular in comparison to
the rather large differences in terms of parameter estimation accuracy. In sum, the ranking
of the different algorithms becomes less clear when forecasting is the objective. While the
VARMA methods do generally better than the VARs and the CCA method, the differences
are often small. For the simulated processes, 3SLS is a good alternative algorithm to MLE if

forecasting is the objective.

The precision of the estimated impulse responses varies much more between the algo-
rithms. In most cases the VARMA algorithms do comparably or better than the VAR ap-
proximations but, as mentioned above, this comparison is biased in favor of VARMA mod-
elling. When the impulse response horizon is increased, VARMA modelling becomes much
more advantageous in comparison with the VAR approximations. At short horizons the pic-
ture is rather mixed depending on the algorithms and DGPs. For example, for the rather
simple DGP I, there are little advantages of VARMA modelling apart from the LPMAEV
and LNMAEV parameterizations. For the other DGPs there are in principle considerable
advantages provided that the right algorithm is chosen and the process is correctly specified.
Furthermore, the VARMA algorithms differ much more at horizon h = 1. Increasing the
sample size has no important effect on the ranking of the algorithms. First, the CCA method
seems to be inferior to the VARMA algorithms for all DGPs and both horizons. Occasionally,
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CCA is worse than the VAR chosen by AIC. The 2SLS algorithm estimates the impulse re-
sponses with comparable or slightly worse accuracy than the other VARMA algorithms. Only
for DGP II the impulse response estimates obtained by 2SLS are as precise as the estimates
obtained by other algorithms. Also the results for the impulse response estimates obtained by
GLS are mixed. In some cases, such as DGP I with large moving-average eigenvalues, GLS is
performing quite well but in most other cases GLS is inferior to IOLS or 3SLS. In fact, these
two algorithms estimate the impulse response function best in most of the cases. While the
performance of IOLS in this respect depends still on the specific DGP, 3SLS is almost always
the preferable method. Furthermore, even though IOLS is often the second-best method, the
difference to 3SLS can be considerable, in particular for higher-order processes. In sum, the
3SLS procedure is by far preferable, independent of the specific DGP at hand. Generally, the
impulse response estimates obtained by MLE are much more precise than the corresponding
estimates obtained by the 3SLS algorithm. These results correspond to the statements made
above about the algorithms’ relation in terms of parameter estimation accuracy. Overall,
VARMA modelling turns out to be potentially quite advantageous if one is interested in the
impulse responses of the DGP. The precision obtained by MLE is, however, rarely obtained
by any of the simpler VARMA estimation algorithms.

In sum, VARMA modelling can be advantageous. While the advantages are potentially
minor with respect to forecasting precision, the results suggest that the impulse responses can
be estimated more accurately by using VARMA models, provided that the model is specified
correctly. Apart from forecasting, there are large differences between the algorithms. Overall,
the algorithm, which is closest to maximum likelihood estimation, 3SLS, seems to be superior
to any other of the simpler estimation algorithms. In particular, when the complexity of the
simulated systems increases, 3SLS is the only algorithm that almost always outperforms the
benchmark VARs in terms of accuracy of the estimated impulse responses. A concern, however
is the instability of the algorithm in the presence of large eigenvalues of the moving-average
polynomial. Even though full-information maximum likelihood would be the ideal algorithm,
3SLS is performing quite well in comparison not only to the alternative simple VARMA
algorithms but also in comparison to the benchmark VARs. However, as the algorithm is
implemented here, it is still not stable enough in order to be used in a automatic fashion
because of the non-invertibility problem. Given the simplicity of the used DGPs and that
complications such as specification, outliers etc. are neglected, these results suggest that the
3SLS algorithm would have to be improved considerably in order to create an algorithm that

returns accurate estimates in almost all cases.
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3.5 Conclusion

Despite the theoretical advantages of VARMA models compared to simpler VAR models,
they are rarely used in applied macroeconomic work. While Gaussian maximum likelihood
estimation is theoretically attractive, it is plagued with various numerical problems. There-
fore, simpler estimation algorithms are compared in this paper by means of a Monte Carlo
study. The evaluation criteria used are the precision of the parameter estimates, the accu-
racy of point forecasts and the accuracy of the estimated impulse responses. The VARMA
algorithms are also compared to two benchmark VARs in order to judge the potential merits
of VARMA modelling.

It has been shown in the simulations that there are situations where the investigated algo-
rithms do not perform very well. There is a rough trade-off between the technical reliability
of the algorithms and the quality of the estimates. With respect to the accuracy of the pa-
rameter estimates, the iterative least squares procedure of Kapetanios (2003) and the simple
least squares procedure of Hannan and Kavalieris (1984a) seem to perform relatively well for
smaller processes with small eigenvalues of the moving-average part. However, they can be
quite imprecise relative to exact maximum likelihood for higher dimensional processes and in
particular for processes with large eigenvalues in the moving-average part.

If the purpose of time series analysis is forecasting, the methods perform approximately
comparable though few can reach or outperform the forecasting power of exact maximum
likelihood. The gains from using VARMA models in contrast to VARs appear to be relatively
small. Also, in this case the procedure of Hannan and Kavalieris (1984a) turned out to be
preferable over the other simpler estimation algorithms.

The true impulse responses are estimated poorly by most algorithms given the benchmark
of a long VAR. Again, the procedure of Hannan and Kavalieris (1984a) is potentially quite
advantageous. Also the iterative least squares procedure of Kapetanios (2003) is performing
well in this respect. Nevertheless, the algorithms cannot reach the precision of the exact
maximum likelihood procedure.

It turns out, that the only simple procedure that reliably gave significantly better results
than the benchmark VARs in terms of the accuracy of the derived forecasts and impulse
response estimates, is the procedure which is closest to maximum likelihood, namely the pro-
cedure of Hannan and Kavalieris (1984a). However, this procedure is also the most unreliable
procedure in technical terms, in that it often yields estimated models which are not invertible.
Given the simplicity of the simulated data generating processes, the algorithm would have to
be improved considerably in order to make it a standard tool for applied researchers.

A reliable and accurate algorithm for the estimation of VARMA models still remains to
be developed. This study suggests that there are potentially considerable gains from VARMA
modelling. Such an algorithm would have to be able to deal with various issues which are

not considered in this study. The algorithm should work well in the case of integrated and
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cointegrated multivariate series. The algorithm must give reasonable results with extremely
over-specified processes as well as in the presence of various data irregularities such as outliers,
structural breaks etc. The applicability of such an algorithm would also crucially depend on
the existence of a reliable specification procedure. These topics, however, are left for future

research.
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Appendix

3.A Equivalence between VARMA and State Space Represen-

tations

This discussion serves as an illustration and is based on the corresponding sections in Aoki’s
(1989) book.” It is not claimed, for example, that the following state space representation
of a VARMA model is especially meaningful. The point is simply to demonstrate that a
VARMA model can be written in state space form. Suppose that a multiple time series

vyt = (Y1t, - - -, yxe) of dimension K satisfies a VARMA (p, ¢) model given by
P q
y = Z Aiyr—i +ug + Z Miug—s,
i=1 i=1

where Ag = Ik is assumed for simplicity. This process can be written as a state space model

by defining
(A A M My M
Ix O 0 0
0
A fie O K K
= 170 0 0 (P + 9K x (p+q)K),
0 Ik O
0 Ik 0
B = | Ig: 0: ... Ig: ...:O},(K(p-l—q)XK),
C = Ay o0t A, Mo :Mq},(KxK(p—i—q)).

See also the book of Hannan and Deistler (1988) for an extensive discussion on the relation between state
space and VARMA models.

79
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The state space model is of the form

Tiy1 = Axy+ Buy,

yr = Cuxp+uy,
with a state vector given by
Yi—1

e = | 7P| (p+ K x1).
Ut—1

Ut—q

Given a state space model of order n for a K-dimensional process, let the characteristic
polynomial of the system matrix A be |[A — AI,| = coA" + 1 A" L+ oA 2+ ..+ cp, co = 1.
Multiply the observation equation for ¢,...,¢ + n with the coefficients ¢;, ¢ = 0,...,n, in the

following way

Yt = cn(Cwp + uy),
en—1Yt41 = Cn—1(CAzy + CBup + upy1),
Yt+n = CA”IEt + C’A"_IBut + ...+ CBUtJrnfl + Ut+n,

where the right hand side has been obtained by recursive substitution. Summing up these

equations one obtains
n
Yt4n + ClYt4n—1 t+ ...+ Crlyr = C(An + ClAn_l + ...+ cnIn)xt + Z Djugy
i=0

where D; = ¢—ilx + Zz;i Cn—i—kCA*=1B. According to the Cayley - Hamilton theorem,
the matrix polynomial in A vanishes, A" +c; A" 1+ ... +¢, I, = 0 (Aoki, 1989). One obtains
therefore the following VARMA representation

n
Yt+n + CQYt4n-1+ .. T Yt = Z Ditipys.
i=0
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3.B Figures and Tables

Table 3.1: Parameter Values

81

DGP Parameters AT Ame
DGP 1 MEV a1 =0.2, mi1,1 = 0.25 0.2 0.1, 0.05
ma2,1 = —-0.1
LPAREV a3 =0.9, mi1,1 =0.25 0.9 0.1, 0.05
ma2,1 = —0.1
LNAREV a1 = —0‘9, mii,1 = 0.25 -0.9 0.1, 0.05
TT'L2271 = *01
LPMAEV a1 =0.2, mi11 = 0.98 0.2 0.9, 0.6
ma2,1 = 0.52
LNMAEV a3 =0.2, mi1,1 = —0.52 0.2 -0.9, -0.6
ma2,1 = —0.98
DGP II MEV a22,1 = 0.23, ag22 = 0.06 0.39, -0.16 0.38 £10.14
ma2,1 = —0,75, ma22 = 0.16
LPAREV 22,1 = 0.744, a222 = 0.14 0.9, -0.16 0.38 +£10.14
ma2,1 = —0.75, ma22 = 0.16
LNAREV g2 = —1.06, as22 = —0.14 -0.9,-0.16 0.38 £10.14
m22,1 = —0.75, ma22 = 0.16
LPMAEV  as22,1 = 0.23, a22,2 = 0.06 0.39, -0.16 0.48 +£10.13
ma2,1 = —0.95, ma22 = 0.25
LNMAEV  as22,1 = 0.23, az2,2 = 0.06 0.39, -0.16 -0.48 +£10.13
ma2,1 = 0.95, maz2 = 0.25
DGP III MEV a11,1 = 0.7, mao1 = —0.6 0.7 -0.6, 0.5
LPAREV  ai1,1 = 0.9, ma21 = —0.6 0.9 -0.6, 0.5
LNAREV a11,1 = —0.97 ma21 = —0.6 -0.9 -0.67 0.5
LPMAEV  «ai1,1 =0.7, ma2,1 = 0.9 0.7 0.9, 0.5
LNMAEV  ai1,1 = 0.7, maz1 = —0.9 0.7 -0.9, 0.5
DGP IV MEV a11,1 = 0.5, mss,1 = —0.6 0.5,0 £10.57 -0.6,-0.4 +10.67
LPAREV o111 =0.9, mss1 = —0.6 09,0+10.57 -0.6,-04 £1i0.67
LNAREV  «i11,1 = —0.9, ms5,1 = —0.6 -0.9,0 £10.57 -0.6,-0.4 £10.67
LPMAEV  ai11,1 = 0.5, mss,1 = 0.9 0.5,0 +£10.57 0.9,-04 £10.67
LNMAEV o111 =0.5, mss,;1 = —0.9 0.5,0+10.57 -0.9,-04 £1i0.67

Varied parameter values and corresponding eigenvalues of the autoregressive and the moving-average parts

for the different data generating processes.
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Table 3.2: Non-invertible Estimated Models, T' = 100

DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0
LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.1
LPMAEV 1.7 4.9 0.0 0.5 0.6
LNMAEV 0.8 8.9 0.0 0.5 0.2
DGP II MEV 0.2 3.3 0.0 0.7 0.1
LPAREV 0.2 1.1 0.0 0.4 0.1
LNAREV 0.0 1.0 0.0 0.1 0.4
LPMAEV 1.0 4.1 0.0 2.5 0.1
LNMAEV 0.7 8.9 0.0 3.5 0.0
DGP III MEV 0.2 3.9 0.3 0.3 0.0
LPAREV 0.2 3.6 0.1 0.2 0.1
LNAREV 0.2 2.5 0.2 0.1 0.0
LPMAEV 238 6.2 0.3 1.0 0.5
LNMAEV 15 11.3 0.2 0.5 0.1
DGP IV MEV 0.0 3.4 0.1 0.0 0.0
LPAREV 0.1 1.6 0.1 0.0 0.1
LNAREV 0.2 1.5 0.1 0.0 0.1
LPMAEV 1.1 9.2 0.3 0.6 0.3
LNMAEV 1.7 10.0 0.3 0.2 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models or, in case of the CCA

algorithm, yielded models that violated the minimum phase assumption.
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Table 3.3: Non-invertible Estimated Models, T' = 200

DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0
LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.0
LPMAEV 0.8 1.6 0.0 0.2 0.0
LNMAEV 0.1 5.0 0.0 0.0 0.1
DGP II MEV 0.0 0.1 0.0 0.1 0.0
LPAREV 0.0 0.1 0.0 0.0 0.0
LNAREV 0.0 0.2 0.0 0.0 0.0
LPMAEV 0.0 0.2 0.0 0.3 0.0
LNMAEV 0.1 7.3 0.0 1.0 0.0
DGP III MEV 0.0 0.5 0.2 0.0 0.0
LPAREV 0.0 0.4 0.2 0.0 0.0
LNAREV 0.0 0.1 0.0 0.0 0.0
LPMAEV 0.7 1.8 0.4 0.5 0.0
LNMAEV 0.3 4.8 0.0 0.5 0.0
DGP IV MEV 0.0 0.1 0.1 0.0 0.0
LPAREV 0.0 0.0 0.3 0.0 0.0
LNAREV 0.0 0.5 0.0 0.0 0.0
LPMAEV 0.2 3.6 0.1 0.0 0.0
LNMAEV 0.2 3.5 0.2 0.0 0.2

83

Frequency of cases in percentage when the algorithms returned non-invertible models or, in case of the CCA

algorithm, yielded models that violated the minimum phase assumption.
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Table 3.4: Total Estimation Failures, T' = 100

DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0
LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.1
LPMAEV 1.7 4.9 0.0 5.0 0.6
LNMAEV 0.8 8.9 0.0 3.6 0.2
DGPII MEV 0.2 3.3 0.0 0.7 0.1
LPAREV 0.2 1.1 0.0 0.4 0.1
LNAREV 0.0 1.0 0.0 0.1 0.4
LPMAEV 1.0 4.1 0.0 2.5 0.1
LNMAEV 0.7 8.9 0.0 3.5 0.0
DGP III MEV 0.2 3.9 0.3 0.9 0.0
LPAREV 0.2 3.6 0.1 0.6 0.1
LNAREV 0.2 2.5 0.2 0.7 0.0
LPMAEV 29 6.2 0.3 3.6 0.5
LNMAEV 15 11.3 0.2 1.6 0.1
DGP IV MEV 0.0 3.4 0.1 2.3 0.0
LPAREV 0.1 1.6 0.1 0.7 0.1
LNAREV 0.2 1.5 0.1 0.4 0.1
LPMAEV 1.1 9.2 0.3 4.7 0.3
LNMAEV 1.7 10.0 0.3 3.3 0.2

Frequency of cases in percentage when the algorithms returned non-invertible models, did not converge, or
returned an extreme outlier.
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Table 3.5: Total Estimation Failures, T' = 200

DGP 2SLS 3SLS GLS IOLS CCA
DGP I MEV 0.0 0.0 0.0 0.0 0.0
LPAREV 0.0 0.0 0.0 0.0 0.0
LNAREV 0.0 0.0 0.0 0.0 0.0
LPMAEV 0.8 1.6 0.0 1.1 0.0
LNMAEV 0.1 5.0 0.0 0.9 0.1
DGPII MEV 0.0 0.1 0.0 0.1 0.0
LPAREV 0.0 0.1 0.0 0.0 0.0
LNAREV 0.0 0.2 0.0 0.0 0.0
LPMAEV 0.0 0.2 0.0 0.3 0.0
LNMAEV 0.1 7.3 0.0 1.0 0.0
DGP III MEV 0.0 0.5 0.2 0.0 0.0
LPAREV 0.0 0.4 0.2 0.1 0.0
LNAREV 0.0 0.1 0.0 0.0 0.0
LPMAEV 0.7 1.8 0.4 0.9 0.0
LNMAEV 0.3 4.8 0.8 0.6 0.0
DGP IV MEV 0.0 0.1 0.1 0.1 0.0
LPAREV 0.0 0.0 0.3 0.0 0.0
LNAREV 0.0 0.5 0.0 0.0 0.0
LPMAEV 0.2 3.6 0.1 0.2 0.0
LNMAEV 0.2 3.5 0.2 0.1 0.2
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Frequency of cases in percentage when the algorithms returned non-invertible models, did not converge, or
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Figure 3.8: MSE ratios for DGP IV with T" = 200.
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