An Alternative Approach to Modeling and Forecasting Seasonal Time-Series
Title: An Alternative Approach to Modeling and Forecasting Seasonal Time-Series
Author: CANOVA, Fabio

Date: 1992
Citation: Journal of Business & Economic Statistics, 1992, 10, 1, 97-108
ISSN: 0735-0015
Abstract:
This article proposes an alternative methodology for modeling and forecasting seasonal series. The approach is in the Bayesian autoregression tradition pioneered by Doan, Litterman, and Sims and builds seasonality directly into the prior of the coefficients of the model by means of a set of uncertain linear restrictions. As an illustration, the method is applied to 10 U.S. quarterly macroeconomic series. For each series, I compare the forecasting performance of a univariate time-varying autoregressive model with seasonality built in the prior of the coefficients with five other widely used models.
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |